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We present a conjecture on the distribution of the valuations of p-adic regulators of cyclic extensions
of Q of odd prime degree. This is based on the observation of computational data of p-adic regulators of
the 5 521 222 cyclic quintic and 329 708 cyclic septic extensions of Q for 2< p < 100 with discriminant
up to 5× 1031 and 1042 respectively, and noting that the observation matches the model that the entries
in the regulator matrix are random elements with respect to the obvious restrictions.

1. Introduction

The class group and regulator of a number field are important invariants of the field, providing information
about the multiplicative and unit group structure of the number field. These two invariants are intimately
linked by the class number formula, and following the improvements to the class group algorithm by
Buchmann [Buc90], can be computed together in the same algorithm. Despite various improvements to
the algorithm, some in recent times, an efficient algorithm to compute the class group and regulator of
arbitrary number fields remains elusive and a significant focus in computational number theory.

In [Leo62], Leopoldt introduced the p-adic regulator Rp(K ) of a number field K in his study of
p-adic L-functions, and his conjecture states that it is nonvanishing. While its classical counterpart, the
regulator of a number field, is well defined for all finite extensions of Q, the p-adic regulator is only
unambiguous for totally real or CM number fields, and very little is known about the actual value of
p-adic regulators.

Previous efforts on computing the p-adic regulators of number fields were predominantly focused on
numerical verification of Leopoldt’s conjecture, and significant practical difficulties with p-adic compu-
tations restricted efforts to compute its exact value. Indeed, this was noted in the PhD thesis of Panayi
[Pan95], who was one of the first to compute Rp(K ) explicitly.

Research on the valuation of p-adic regulators has also been limited. One investigator was Schirokauer
[Sch93, Proposition 3.8], who provided heuristic arguments regarding the p-divisibility of the units, while
Miki [Mik87] attempted to provide an upper bound on vp(Rp(K )), and Hakkarainen provided a simple
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lower bound in his PhD thesis [Hak07], along with limited heuristics using the valuation of the class
number and the class number formula.

A recent development by Fieker and Zhang [FZ16] in a p-adic class number algorithm for totally
real abelian fields allowed relatively efficient computation of the p-adic regulator of these fields. This
algorithm was used in [HZ16] to compute the p-adic regulator of the almost 16 million cyclic cubic
extensions of Q with discriminant less than 1016, and from this experimental data, the authors were able
to conjecture and provide heuristics on the distribution of the values of vp(Rp(K )).

We continue this previous work by computing the p-adic regulator for a large number of cyclic quintic
and septic extensions for 2 < p < 100. Based on this new experimental data, we extend the previous
heuristics to a conjecture for all cyclic extensions of Q with prime degree as follows.

Fix an odd prime ` and let K be the set of all cyclic extensions of Q with degree ` inside a fixed
algebraic closure of Q. Note that such extensions are necessarily totally real. For a prime p let Kun

p

and Kram
p denote the set of all fields in K which are unramified and ramified at p, respectively. Note that

Kram
p =∅ and K=Kun

p in the case p 6≡1 mod ` and p 6=`. For D>0 we set K(D)={K ∈K | |d(K )|≤D},
where d(K ) is the discriminant of K, Kun

p (D)=Kun
p ∩K(D), and Kram

p (D)=Kram
p ∩K(D). Let ord`(p)

be the multiplicative order of p modulo `, and vp be the p-adic valuation. Based on heuristics and
numerical data, we claim the following conjecture:

Conjecture 1. Let p 6= 2, ` be a prime, ord`(p)=m, `−1=mn and T ∈ {un, ram}. Then vp(Rp(K )) ∈
mZ+ vT for all K ∈ KT

p and for i ≥ 0 we have

lim
D→∞

#{K ∈ KT
p(D) | vp(Rp(K ))= mi + vT}

#KT
p(D)

=

( i+n−1
n−1

) 1
pmi

(
1−

1
pm

)n

,

where vun = `− 1 and vram = (`− 1)/2.

This paper is organised as follows: some basic definitions are recalled in Section 2. We then conjecture
a link between the distributions of vp(Rp(K )) and vp(det(M)), where M is an arbitrary matrix in a
particular form, in Section 3 (see Conjecture 1′). So far this is similar to [HZ16, §1–3], but we diverge
in Section 4 to obtain some results about solutions of linear equations in p-adic rings. Applying this to
the factorisation of det(M), we obtain Conjecture 1 in Section 5. Finally, in Section 6, we provide the
numerical data from our computations.

2. Definition and notation

Let K be a number field of degree ` and p a prime. By Cp we denote the completion of an algebraic
closure of Qp. By fixing an embedding from Cp into C, any embedding of K into Cp can be considered
as either real or complex, depending on the image of K in the composite embedding into C. Note that
for totally real or CM fields, whether an embedding from K to Cp is real or complex is independent of
the choice of embedding from Cp to C, but this is not well defined in general.
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Let (r1, r2) be the signature of K and r = r1 + r2 − 1 the unit rank. Denote by τ1, . . . , τr1 the real
and by τr1+1, τ r1+1, . . . , τr1+r2, τ r1+r2 the complex embeddings of K into Cp. Let ε1, . . . , εr be a set
of independent units of K such that, modulo torsion, the index of 〈ε1, . . . , εr 〉 in O×K is coprime to p.
Consider the submatrix formed by deleting one column of the matrix,

(δi logp(τ j (εi )))i, j ∈ Cr×(r+1)
p ,

where δi = 1 for 1≤ i ≤ r1 and δi = 2 if r1+ 1≤ i ≤ r1+ r2, and logp : C×p → Cp is the p-adic Iwasawa
logarithm (see [Iwa72]). As each row sums to zero, the determinant of such a submatrix is independent
of the column deleted, up to a sign. The value of this determinant is also independent of the choice of
the units ε1, . . . , εr , up to a p-adic unit, and is known as the p-adic regulator Rp(K ) of the number field
K.

There is an alternate definition introduced by Iwasawa [Iwa72] and subsequently implemented in the
algorithm by Fieker and Zhang [FZ16]. Instead of deleting a column in the matrix, one can add a row
of 1’s to it, and divide the determinant by `. Again, due to each row summing to zero, the value of
the determinant is unaffected. In [HZ16] it was noted that while this does have the disadvantage of
calculating the determinant of a matrix one dimension higher than necessary, it is outweighed by leaving
the structure of the original matrix intact.

If G is a compact group, we denote by µG the unique left Haar measure with µG(G) = 1. When
no confusion can arise, we just write µ instead of µG . For two integers n ∈ Z≥1, k ∈ Z we denote by
k mod n the unique representative of k+ nZ in the set {0, . . . , n− 1}.

3. p-adic regulators and regulator matrices

Let ` be a prime and denote by K a cyclic extension of Q of degree `. We start by collecting basic facts
about p-adic regulators, beginning with lower bounds, a special case of which was observed in [HZ16,
Lemma 3.1].

Proposition 2. For a prime p 6= ` we have

vp(Rp(K ))≥
{
(`− 1)/2 if p is ramified in K ,
`− 1 if p is unramified in K.

Proof. By the theorem of Ax and Brumer (see [Bru67]) we know that Leopoldt’s conjecture holds for
abelian extensions of Q and in particular Rp(K ) 6= 0. For a nonzero prime ideal p | pOK denote by νp
the number of p-power roots of unity in the completion of K at p. By [Coa77, Appendix, Lemma 5] we
know that

` · p · Rp(K )

1
1/2
K

∏
p | pOK

(νp · N (p))−1

has nonnegative p-adic valuation. Using that vp(νp)≥ 0 we obtain

vp(Rp(K ))≥
vp(1K )

2
− vp(`)− vp(p)+

`

e(p)
,
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where e(p) is the ramification index of p in K. Since K/Q is cyclic of prime degree `, we know that
if p is ramified, then e(p) = `. Moreover, as p is tamely ramified, we have vp(1K ) = `− 1 ([Ser79,
Chapter III, §7, Proposition 13]) �

Definition 3. Let R=Z[X1, . . . , X`−1] and set X0=−
∑`−1

i=1 X i . We define M`= (mi j )1≤i, j≤`∈ R`×` by

mi j =

{
1 if i = 1,
X(i+ j−2) mod ` otherwise.

We call M` the generic regulator matrix of degree `. Using the Haar measure µ on Z`−1
p we define the

random variable

P`,p : Z`−1
p −→ R≥0, (a1, . . . , a`−1) 7−→ vp(det(M`(a1, . . . , a`−1))),

where M`(a1, . . . , a`−1) is obtained by setting X i = ai in the matrix M`, so that for i ∈ Z≥0 we have
pr(P`,p = i)= µ({a ∈ Z`−1

p | vp(det(M`(a)))= i}).

The name of the generic regulator matrix is justified by the following result, which was also observed
in [HZ16, Proposition 3.2] for `= 3.

Theorem 4. Let p 6= ` be a prime. Then there exists a ∈ Q`−1
p such that vp(Rp(K )) = vp(M`(a)).

Moreover, if p is split in K, the vector a can be chosen in Z`−1
p .

Proof. Let σ be a generator of Gal(K/Q) and τ : K →Qp a p-adic embedding. For i ∈ {1, . . . , `} we
define τi = τ ◦ σ

i−1 and note that τ1, . . . , τ` are the distinct p-adic embeddings of K. Due to [Mar96]
there exists a p-Minkowski unit ε ∈O×K ; that is, modulo torsion the subgroup 〈ε, σ (ε), . . . , σ `−2(ε)〉 of
O×K has index prime to p. Thus vp(Rp(K ))= vp(det((mi j )1≤i, j≤`)), where m1 j = 1 for j ∈ {1, . . . , `}
and mi j = logp(τ j (σ

i−2(ε))) for i ∈ {2, . . . , `}, j ∈ {1, . . . , `}. Now τ j (σ
i−2)= σ (i+ j−2) mod ` and the

claim follows by setting ai = logp(σ
i−1(ε)) for i = 1, . . . , `− 1.

For the final statement first note that if p splits in K, then Qp is a p-adic splitting field of K, that is,
τi (α) ∈Qp for all α ∈ K and i ∈ {1, . . . , `}, and therefore τi (ε) ∈ Zp. �

Theorem 4 suggests that there could be a connection between the distribution of valuations of p-adic
regulators and valuations of determinants of matrices of the form M`(a), where a ∈Q`−1

p or a ∈ Z`−1
p in

the case p is split. Based on numerical observations for the quintic and septic fields, similar to [HZ16,
Conjecture 6], we conjecture that the distribution of the valuations of the p-adic regulators in cyclic
`-extensions matches that of the corresponding random variable P`,p : Z`−1

p → R, a 7→ vp(det(M`(a)))
associated to the generic regulator matrix of degree `. Although Theorem 4 supports this only in the case
p splits, numerical evidence suggests that it holds for all primes independent of the decomposition type.
The lower bound of the regulator in the conjecture comes from Proposition 2.

Conjecture 1′. For primes 2< `, p 6= ` and T ∈ {un, ram} the following holds:

lim
D→∞

#{K ∈ KT
p(D) | vp(Rp(K ))= i + vT}

#KT
p(D)

= pr(P`,p = i),

where vun = `− 1 and vram = (`− 1)/2.
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This is in agreement with the authors’ previous work, since for the cubic case ` = 3, Conjecture 1′

is equivalent to [HZ16, Conjecture 6]. Note that in the following it is shown that the value pr(P`,p)= i
on the right-hand side of Conjecture 1′ can be computed explicitly (see Theorem 9), making it possible
to gather numerical evidence for Conjecture 1′ by only investigating statistics of valuations of p-adic
regulators of cyclic number fields (see Section 6).

While it may be possible to extend [HZ16, Lemmas 4.8 and 4.9] to cover pr(P`,p= i) when ord`(p)= 1
and ord`(p)= `− 1, respectively, this would be extremely tedious due to the increasing complexity of
det(M`(a)) as ` grows, and it remains unclear whether such an approach could be adapted for arbitrary
values of `. Furthermore, this leaves the case of ord`(p) 6= 1, `− 1 unresolved, which only occurs when
` ≥ 5. For these reasons we need a different approach, and we start by obtaining some results about
solutions of linear equations in p-adic rings.

4. Solutions of linear equations

Let ` be a prime and M` ∈ Z[X1, . . . , X`−1] the generic regular matrix of degree `. To investigate the
associated random variable P`,p, where p is a prime, we will determine properties of the image of Z`−1

p

under the polynomial det(M`) ∈ Z[X1, . . . , X`−1] using the following general setup.
Let R ⊆ S be an extension of p-adic rings, that is, valuation rings of p-adic fields, such that the residue

fields have cardinalities p and q, respectively. We consider a system of k linear forms f1, . . . , fk ∈

S[X1, . . . , Xk] with k indeterminates. By M ∈ Sk×k we denote the unique matrix such that
f1(a1, . . . , ak)

f2(a1, . . . , ak)
...

fk(a1, . . . , ak)

= M


a1

a2
...

ak

 .
For the remainder of this section we assume that det(M) ∈ S×.

Lemma 5. For v1, . . . , vk ∈ Z≥0 we have

µ({a ∈ Sk
| vp( fi (a))= vi , i = 1, . . . , k})= q−s(1− q−1)k,

where s = v1+ · · ·+ vk .

Proof. Let Y be the set {(b1, . . . , bk) ∈ Sk
| vp(bi )= vi , i = 1, . . . , k}. Then

{a ∈ Sk
| vp( fi (a))= vi } = {a ∈ Sk

| ( f1(a), . . . , fk(a)) ∈ Y }

= {a ∈ Sk
| M · a ∈ Y }

= {M−1b | b ∈ Y }.

Since M is invertible and measure-preserving, this implies that

µ({a ∈ Sk
| vp( fi (a))= vi , i = 1, . . . , k})= µ(Y )=

k∏
i=1

q−vi (1− q−1)= q−s(1− q−1)k . �
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In our application, we will be mainly interested in counting solutions in Rk. While this seems rather
difficult in general, we will see that in our case, the action of the associated Galois group of the p-adic
fields on the set of polynomials { f1, . . . , fk} is of a particular simple form, reflected in the following
assumption: Assume that the field extension of the corresponding fraction fields of R and S is cyclic of
degree d with Galois group G = 〈σ 〉 and the system of linear forms f1, . . . , fk satisfies the following
property: there exists a partition { f1, . . . , fk} =

⋃l
i=1 Fi into disjoint sets Fi of cardinality d such that

G acts transitively on each Fi . For i ∈ {1, . . . , l} we write Fi = { fi,1, . . . , fi,d}. As G acts transitively
we may order the polynomials such that σ( fi, j )= fi,( j+1) mod d for all i ∈ {1, . . . , l}, j ∈ {1, . . . , d}.

Lemma 6. Let c=(ci, j )1≤i≤l,1≤ j≤d=(c1,1, . . . , c1,d , c2,1, . . . , c2,d , . . . , cl,d)∈ Sk and a=(a1, . . . , ak)∈

Sk such that M ·a= c. Then a ∈ Rk if and only if for each 1≤ i ≤ l we have ci, j = σ
j−1(ci,1) for 1≤ j ≤ d.

Proof. First assume that a ∈ Rk. We fix 1≤ i ≤ l. Since fi,1(a)= ci,1 for all 1≤ j ≤ d we have

σ j−1(ci,1)= σ
j−1( fi,1(a))= (σ j−1( fi,1))(σ (a))= fi, j (a)= ci, j .

Now assume that ci, j = σ
j−1(ci,1) for all 1≤ i ≤ l, 1≤ j ≤ d; that is, σ(ci, j )= ci,( j+1) mod d . Then

ci,( j+1) mod d = σ(ci, j )= σ( fi, j (a))= (σ ( fi, j ))(σ (a))= fi,( j+1) mod d(σ (a)),

implying that also σ(a) satisfies M · σ(a) = c. Since M is invertible it follows that a = σ(a); that is,
a ∈ Rk. �

We can now determine the number of solutions with prescribed valuation in the subring R. Since the
valuation of an element is invariant under σ , a necessary condition for the existence of solutions in R is
that the valuations in every block Fi must be equal.

Proposition 7. For v1, . . . , vl ∈ Z≥0 we have

µ({a ∈ Rk
| vp( fi, j (a))= vi , i = 1, . . . , l, j = 1, . . . , d})= p−s(1− p−d)l,

where s = d(v1+ · · ·+ vl).

Proof. By defining

Y = {(bi , σ (bi ), . . . , σ
d−1(bi ))1≤i≤l | (b1, . . . , bl) ∈ Sl, vp(bi )= vi } ⊆ Sk,

Lemma 6 shows that

{a ∈ Rk
| vp( fi, j (a))= vi , i = 1, . . . , l, j = 1, . . . , d} = {M−1b | b ∈ Y }.

The remainder of the proof is analogous to the proof of Lemma 5. �

5. Distribution for cyclic field of prime degree

Let K be a cyclic field of odd prime degree `, and p 6= 2, `. Let M` be the generic regulator matrix of K.
To find the associated random variable P`,p using the results from Section 4, we first need to determine
the factorisation of det(M`) ∈ Z[X1, . . . , X`−1].
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Proposition 8. Denote by ζ a primitive `-th root of unity and by σ : Q(ζ ) → Q(ζ ) a generator of
Gal(Q(ζ )/Q). Define f0 = X0+ ζ X1+ · · ·+ ζ

`−1 X`−1.

(1) We have

det(M`)= (−1)(`−1)/2
·NQ(ζ )/Q( f0)= (−1)(`−1)/2

·

`−2∏
i=0

σ i ( f0).

(2) For i ∈ {1, . . . , `− 2} define fi = σ
i ( f0). The matrix M ∈Q(ζ )(`−1)×(`−1) defined by f0
...

f`−2

= M

 X1
...

X`−1


satisfies det(M)2 = (−1)(`−1)/2

· ``−2.

Proof. (1) Recall that

M` =


1 1 1 · · · 1 1

X1 X2 X3 · · · X`−1 X0

X2 X3 X4 · · · X0 X1
...

...
... · · ·

...
...

X`−1 X1 X2 · · · X`−3 X`−2

 .
As X0 =−X1− X2− · · ·− X`−1, we may treat X0 as an indeterminate and prove the result for M` by
considering it as an `× ` matrix over Z[X0, . . . , X`−1]. By applying to M` the column transpositions
(i + 1, `− (i − 1)), i ∈ {1, . . . , (`− 1)/2}, we see that det(M`)= (−1)(`−1)/2

· det(N ), where

N =


1 1 1 · · · 1 1

X1 X0 X`−1 · · · X3 X2

X2 X1 X0 · · · X4 X3
...

...
... · · ·

...
...

X`−1 X`−2 X`−3 · · · X1 X0

 .
On the other hand, the circulant matrix

N ′ =


X0 X`−1 X`−2 · · · X2 X1

X1 X0 X`−1 · · · X3 X2

X2 X1 X0 · · · X4 X3
...

...
... · · ·

...
...

X`−1 X`−2 X`−3 · · · X1 X0

 .
has determinant det(N ′)= (X0+ X1+ · · ·+ X`−1) ·NQ(ζ )/Q( f0) (see [Dav79, Section 3.2]). Adding the
last `− 1 rows of N ′ to the first row of N ′, we see that

det(N ′)= (X0+ X1+ · · ·+ X`−1) · det(N ).

This shows that
det(M`)= (−1)(`−1)/2

· det(N )= (−1)(`−1)/2
·NQ(ζ )/Q( f0).
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(2) As the matrix M is equal to (σ i (ζ j ))0≤i, j≤`−2 and {ζ j
| j ∈{0, . . . ,`−2}} is an integral basis of the cy-

clotomic field Q(ζ ), we obtain det(M)2=disc(Q(ζ ))=(−1)(`−1)/2
·``−2 (see [Lan94, Chapter IV, §1]). �

We can now apply the results of Section 4 to determine P`,p.

Theorem 9. Let ord`(p)= m and `− 1= mn. Then for i ∈ Z≥0 the following holds:

pr(P`,p = mi)=
( i+n−1

n−1

) 1
pmi

(
1−

1
pm

)n

.

Proof. We use the same notation as in Proposition 8. Let i ∈ Z≥0 and v1, . . . , vn ∈ Z≥0 such that
i = v1+ · · ·+ vn .

As ord`(p) = m we know that Zp ⊆ Zp[ζ ] is an extension of degree m. Using Proposition 8, by
setting Fk = { f j | j ≡ k mod m}, k ∈ {1, . . . , n}, we find ourselves in the situation stated in Section 4,
and Proposition 7 implies

µ({a ∈ Z`−1
p | vp( fk(a))= v j , j = 1, . . . , n, fk ∈ F j })=

1
pm(v1+···+vn)

(
1−

1
pm

)n

.

As there are a total of
(i+n−1

n−1

)
choices of (v1, . . . , vn) with v1+ · · ·+ vn = i , we have

µ({a ∈ Z`−1
p | vp(det(M(a)))= mi})=

∑
v1+···vn=i

1
pm(v1+···+vn)

(
1−

1
pm

)n

=

( i+n−1
n−1

) 1
pmi

(
1−

1
pm

)n

. �

In particular, Conjecture 1 is just a reformulation of Conjecture 1′ using Theorem 9.

6. Numerical evidence

We have investigated Conjecture 1 (and Conjecture 1′) numerically for ` ∈ {5, 7}. Recall that Conjecture 1
states that for a prime p 6= 2, ` with ord`(p)= m, `− 1= mn and T ∈ {un, ram} we have vp(Rp(K )) ∈
mZ+ vT for all K ∈ KT

p and for i ≥ 0 we have

lim
D→∞

#{K ∈ KT
p(D) | vp(Rp(K ))= i + vT}

#KT
p(D)

= pr(P`,p = i),

lim
D→∞

#{K ∈ KT
p(D) | vp(Rp(K ))= mi + vT}

#KT
p(D)

=

( i+n−1
n−1

) 1
pmi

(
1−

1
pm

)n

,

where vun = `− 1 and vram = (`− 1)/2. As the right-hand side of this equation is straightforward to
calculate, only the limit on the left-hand side had to be investigated. Thus to test our conjecture we needed
algorithms to compute both a large number of cyclic extensions and their p-adic regulators. We used an
algorithm based on global class field theory as provided by Fieker in [Fie01] to obtain a list of cyclic
quintic and septic extensions. For the computation of the p-adic regulators, we relied on the methods from
Fieker and Zhang [FZ16]. A more detailed discussion of the algorithms can be found in these references.
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p #Kun
p (5 · 1031) 4 5 6 7 8 9 10

11 4 049 077 0.68249 0.24878 0.05655 0.01026 0.00162 2.37 ·10−2 3.26 ·10−3

Conjecture 1 0.68301 0.24836 0.05644 0.01026 0.00163 2.37 ·10−2 3.23 ·10−3

31 4 890 617 0.87712 0.11313 0.00913 5.67 ·10−2 3.31 ·10−3 2.04 ·10−4 2.04 ·10−5

Conjecture 1 0.87707 0.11317 0.00912 5.88 ·10−2 3.32 ·10−3 1.71 ·10−4 8.30 ·10−6

41 5 030 537 0.90597 0.08837 0.00538 2.53 ·10−2 1.15 ·10−3 1.98 ·10−5 0
Conjecture 1 0.90595 0.08838 0.00538 2.62 ·10−2 1.12 ·10−3 4.37 ·10−5 1.60 ·10−6

61 5 181 713 0.93575 0.06163 0.00252 8.49 ·10−3 1.73 ·10−4 0 0
Conjecture 1 0.93602 0.06137 0.00251 8.24 ·10−3 2.36 ·10−4 6.20 ·10−6 1.52 ·10−7

71 5 226 957 0.94495 0.05311 0.00187 5.49 ·10−3 7.65 ·10−5 0 0
Conjecture 1 0.94484 0.05323 0.00187 5.27 ·10−3 1.30 ·10−4 2.93 ·10−6 6.19 ·10−8

Table 1. Distribution of valuations of p-adic regulators where ord5(p)= 1 and p is unramified.

p #Kram
p (5 · 1031) 2 3 4 5 6 7 8

11 1 472 145 0.68262 0.24847 0.05671 0.01028 0.00161 2.47 ·10−2 3.19 ·10−3

Conjecture 1 0.68301 0.24836 0.05644 0.01026 0.00163 2.37 ·10−2 3.23 ·10−3

31 630 605 0.87763 0.11259 0.00909 6.29 ·10−2 4.28 ·10−3 1.58 ·10−4 0
Conjecture 1 0.87707 0.11317 0.00912 5.88 ·10−2 3.32 ·10−3 1.71 ·10−4 8.30 ·10−6

41 490 685 0.90685 0.08748 0.00538 2.58 ·10−2 1.42 ·10−3 0 0
Conjecture 1 0.90595 0.08838 0.00538 2.62 ·10−2 1.12 ·10−3 4.37 ·10−5 1.60 ·10−6

61 339 509 0.93634 0.06122 0.00234 8.54 ·10−3 0 0 0
Conjecture 1 0.93602 0.06137 0.00251 8.24 ·10−3 2.36 ·10−4 6.26 ·10−6 1.52 ·10−7

71 294 265 0.94497 0.05291 0.00207 4.07 ·10−3 0 0 0
Conjecture 1 0.94484 0.05323 0.00187 5.27 ·10−3 1.30 ·10−4 2.93 ·10−6 6.19 ·10−8

Table 2. Distribution of valuations of p-adic regulators where ord5(p)= 1 and p is ramified.

p #Kun
p (5 · 1031) 4 6 8 10

19 5 521 222 0.99447 0.00550 2.10 ·10−3 1.81 ·10−5

Conjecture 1 0.99446 0.00550 2.28 ·10−3 8.45 ·10−6

29 5 521 222 0.99762 0.00237 5.07 ·10−4 0
Conjecture 1 0.99762 0.00237 4.23 ·10−4 6.70 ·10−7

59 5 521 222 0.99942 5.70 ·10−2 3.62 ·10−5 0
Conjecture 1 0.99942 5.74 ·10−2 2.47 ·10−5 9.47 ·10−9

79 5 521 222 0.99967 3.24 ·10−2 0 0
Conjecture 1 0.99967 3.20 ·10−2 7.69 ·10−6 1.64 ·10−9

89 5 521 222 0.99974 2.52 ·10−2 0 0
Conjecture 1 0.99974 2.52 ·10−2 4.78 ·10−6 8.04 ·10−10

Table 3. Distribution of valuations of p-adic regulators where ord5(p)= 2.
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p #Kun
p (5 · 1031) 4 8 12 16

3 5 521 222 0.98766 0.01218 1.42 ·10−2 1.81 ·10−4

Conjecture 1 0.98765 0.01219 1.50 ·10−2 1.85 ·10−4

7 5 521 222 0.99958 4.13 ·10−2 0 0
Conjecture 1 0.99958 4.16 ·10−2 1.73 ·10−5 7.22 ·10−9

13 5 521 222 0.99996 3.54 ·10−3 0 0
Conjecture 1 0.99996 3.50 ·10−3 1.22 ·10−7 4.29 ·10−12

17 5 521 222 0.99998 1.10 ·10−3 0 0
Conjecture 1 0.99998 1.19 ·10−3 1.43 ·10−8 1.71 ·10−13

23 5 521 222 0.99999 2.71 ·10−4 0 0
Conjecture 1 0.99999 3.57 ·10−4 1.27 ·10−9 4.56 ·10−15

37 5 521 222 0.99999 1.26 ·10−4 0 0
Conjecture 1 0.99999 5.33 ·10−5 2.84 ·10−11 1.51 ·10−17

43 5 521 222 0.99999 1.81 ·10−5 0 0
Conjecture 1 0.99999 2.92 ·10−5 8.55 ·10−12 2.50 ·10−18

47 5 521 222 0.99999 1.81 ·10−5 0 0
Conjecture 1 0.99999 2.04 ·10−5 4.19 ·10−12 8.60 ·10−19

53 5 521 222 1 0 0 0
Conjecture 1 0.99999 1.26 ·10−5 1.60 ·10−12 2.03 ·10−19

67 5 521 222 1 0 0 0
Conjecture 1 0.99999 4.96 ·10−6 2.46 ·10−13 1.22 ·10−20

73 5 521 222 1 0 0 0
Conjecture 1 0.99999 3.52 ·10−6 1.23 ·10−13 4.36 ·10−21

83 5 521 222 1 0 0 0
Conjecture 1 0.99999 2.10 ·10−6 4.43 ·10−14 9.35 ·10−22

97 5 521 222 1 0 0 0
Conjecture 1 0.99999 1.12 ·10−6 1.27 ·10−14 1.44 ·10−22

Table 4. Distribution of valuations of p-adic regulators where ord5(p)= 4.

6.1. Cyclic quintic extensions. We computed the valuation of p-adic regulators for all cyclic quintic
extensions with discriminant up to 5 · 1031 for 2< p < 100, p 6= `. The computations were carried out
using Magma [BCP97]. For these 5 521 222 fields, the values

#{K ∈ KT
p(5 · 1031) | vp(Rp(K ))= j}

#KT
p(5 · 1031)

are presented in Tables 1–4 and compared to the values as predicted by Conjecture 1. Note that in Tables 1
and 2 for p = 11 the fields with vp(Rp(K )) ∈ {11, 12, 13} and vp(Rp(K )) ∈ {9} respectively have been
omitted for brevity.
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p #Kun
p (1042) 6 7 8 9 10 11

29 273 289 0.81036 0.16753 0.01990 0.00204 1.35 ·10−2 1.09 ·10−3

Conjecture 1 0.81014 0.16761 0.02022 0.00186 1.44 ·10−2 9.95 ·10−4

43 289 489 0.86861 0.12041 0.01034 5.71 ·10−2 4.97 ·10−3 3.45 ·10−4

Conjecture 1 0.86833 0.12116 0.00986 6.11 ·10−2 3.20 ·10−3 1.48 ·10−4

71 304 141 0.91805 0.07774 0.00400 1.74 ·10−2 1.31 ·10−3 0
Conjecture 1 0.91841 0.07761 0.00382 1.43 ·10−2 4.55 ·10−4 1.28 ·10−5

Table 5. Distribution of valuations of p-adic regulators where ord7(p)= 1 and p is unramified.

p #Kram
p (1042) 3 4 5 6 7

29 56 419 0.81070 0.16575 0.02164 0.00171 1.77 ·10−2

Conjecture 1 0.81014 0.16761 0.02022 0.00186 1.44 ·10−2

43 40 219 0.86861 0.12041 0.01034 5.71 ·10−2 4.97 ·10−3

Conjecture 1 0.86833 0.12116 0.00986 6.11 ·10−2 3.20 ·10−3

71 25 567 0.91977 0.07713 0.00297 1.17 ·10−2 0
Conjecture 1 0.91841 0.07761 0.00382 1.43 ·10−2 4.55 ·10−4

Table 6. Distribution of valuations of p-adic regulators where ord7(p)= 1 and p is ramified.

p #Kun
p (1042) 6 8 10

13 329 708 0.98216 0.01766 1.75 ·10−2

Conjecture 1 0.98235 0.01743 2.06 ·10−2

41 329 708 0.99814 0.00184 3.03 ·10−4

Conjecture 1 0.99821 0.00178 2.11 ·10−4

83 329 708 0.99957 4.21 ·10−2 0
Conjecture 1 0.99956 4.35 ·10−2 1.26 ·10−5

97 329 708 0.99971 2.88 ·10−2 0
Conjecture 1 0.99968 3.18 ·10−2 6.77 ·10−6

Table 7. Distribution of valuations of p-adic regulators where ord7(p)= 2.

Moreover, the conjecture predicts that the valuations occur in an arithmetic progression with an initial
value of `− 1 or (`− 1)/2 and common difference ord`(p); indeed, no valuations not in this arithmetic
progression were observed. For example, when p= 13 we have ord5(13)= 4, and the conjecture predicts
that all valuations must be multiples of 4, and no valuation that is not a multiple of 4 was observed.

6.2. Cyclic septic extensions. The same computations as in the quintic case were carried out for all
329 708 cyclic septic extensions of discriminant ≤ 1042; see Tables 5–9. Again, no valuations not
predicted by Conjecture 1 were observed in the computation.
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p #Kun
p (1042) 6 9

11 329 708 0.99857 0.00142
Conjecture 1 0.99849 0.00150

23 329 708 0.99984 1.57 ·10−2

Conjecture 1 0.99983 1.64 ·10−2

37 329 708 0.99996 3.63 ·10−3

Conjecture 1 0.99996 3.94 ·10−3

p #Kun
p (1042) 6 9

53 329 708 0.99998 1.51 ·10−3

Conjecture 1 0.99998 1.34 ·10−3

67 329 708 0.99998 1.21 ·10−3

Conjecture 1 0.99999 6.64 ·10−4

79 329 708 0.99999 3.03 ·10−4

Conjecture 1 0.99999 4.05 ·10−4

Table 8. Distribution of valuations of p-adic regulators where ord7(p)= 3.

p #Kun
p (1042) 6 12

3 329 708 0.99865 0.00134
Conjecture 1 0.99862 0.00136

5 329 708 0.99992 7.58 ·10−3

Conjecture 1 0.99993 6.39 ·10−3

17 329 708 1 0
Conjecture 1 0.99999 4.14 ·10−6

19 329 708 1 0
Conjecture 1 0.99999 2.12 ·10−6

31 329 708 1 0
Conjecture 1 0.99999 1.12 ·10−7

p #Kun
p (1042) 6 12

47 329 708 1 0
Conjecture 1 0.99999 9.27 ·10−10

59 329 708 1 0
Conjecture 1 0.99999 2.37 ·10−9

61 329 708 1 0
Conjecture 1 0.99999 1.94 ·10−9

73 329 708 1 0
Conjecture 1 0.99999 6.60 ·10−10

89 329 708 1 0
Conjecture 1 0.99999 2.01 ·10−10

Table 9. Distribution of valuations of p-adic regulators where ord7(p)= 6.
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