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A new proof is given for the correctness of the powers of two descent method for computing discrete
logarithms. The result is slightly stronger than the original work, but more importantly we provide a
unified geometric argument, eliminating the need to analyse all possible subgroups of PGL2(Fq). Our
approach sheds new light on the role of PGL2, in the hope to eventually lead to a complete proof that
discrete logarithms can be computed in quasipolynomial time in finite fields of fixed characteristic.

1. Introduction

In this paper we prove the following result.

Theorem 1.1. Given a prime power q, a positive integer d, coprime polynomials h0 and h1 in Fqd [x] of
degree at most two, and an irreducible degree ` factor I of h1xq

− h0, the discrete logarithm problem in
Fqd` ∼= Fqd [x]/(I ) can be solved in expected time q log2 `+O(d).

It was originally proven in [GKZ18] when q > 61, q is not a power of 4, and d ≥ 18. Even though
we eliminate these technical conditions, the main contribution is the new approach to the proof. The
theorem represents the state of the art of provable quasipolynomial time algorithms for the discrete
logarithm problem (or DLP) in finite fields of fixed characteristic. The obstacle separating Theorem 1.1
from a full provable algorithm for DLP is the question of the existence of a good field representation:
polynomials h0, h1 and I for a small d. A direction towards a full provable algorithm would be to find
analogues of this theorem for other field representations, but this may require in the first place a good
understanding of why Theorem 1.1 is true.

The integers q , d and `, and the polynomials h0, h1 and I are defined as in the above theorem for the
rest of the paper. The core of that result is Proposition 1.3 below, which essentially states that elements of
Fqd` represented by a good irreducible polynomial in Fqd [x] of degree 2m can be rewritten as a product
of good irreducible polynomials of degrees dividing m — a process called degree two elimination, first
introduced for m = 1 in [GGMZ13].
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Definition 1.2 (traps and good polynomials). An element τ ∈ Fq for which [Fqd (τ ) : Fqd ] is an even
number 2m and h1(τ ) 6= 0 is called

(1) a degenerate trap root if (h0/h1)(τ ) ∈ Fqdm ,

(2) a trap root of level 0 if it is a root of h1xq
− h0, or

(3) a trap root of level dm if it is a root of h1xqdm+1
− h0.

Analogously, a polynomial in Fq [x] that has a trap root is called a trap. A polynomial is good if it is not
a trap.

Proposition 1.3 (degree two elimination). Given an extension k/Fqd of degree m such that dm ≥ 23, and
a good irreducible quadratic polynomial Q ∈ k[x], there is an algorithm which finds a list of good linear
polynomials (L0, . . . , Ln) in k[x] such that n ≤ q + 1 and

Q ≡ h1L−1
0 ·

n∏
i=1

L i mod I,

and runs in expected polynomial time in q, d and m.

The difficulty of proving Theorem 1.1 lies mostly in Proposition 1.3. We recall briefly in Section 1B
how the proposition implies the theorem. The main contribution of the present paper is a new proof of
Proposition 1.3, which hopefully provides a better understanding of the degree two elimination method,
the underlying geometry, and the role of traps. The action of PGL2 on the polynomial xq

− x became a
crucial ingredient in the recent progress on the discrete logarithm problem for fields of small character-
istic, since [Jou14] (and implicitly in [GGMZ13]). While the proof in [GKZ18] resorted to an intricate
case by case analysis enumerating through all possible subgroups of PGL2(Fq), we provide a unified
geometric argument, shedding new light on the role of PGL2.

1A. Degree two elimination algorithm. The key observation allowing degree two elimination is that a
polynomial of the form αxq+1

+ βxq
+ γ x + δ has a high chance to split completely over its field of

definition. Furthermore, we have the congruence

αxq+1
+βxq

+ γ x + δ ≡ h−1
1 (αxh0+βh0+ γ xh1+ δh1) mod I, (1-1)

and the numerator of the right-hand side has degree at most 3. Consider the Fq -vector space V spanned
by xq+1, xq , x and 1 in Fq [x], and the linear subspace

VQ = {αxq+1
+βxq

+ γ x + δ ∈ V | αxh0+βh0+ γ xh1+ δh1 ≡ 0 mod Q}.

As long as Q is a good irreducible polynomial, VQ is of dimension two. The algorithm simply consists
in sampling uniformly at random elements f ∈ VQ(k) (or equivalently in its projectivisation P1

Q(k)) until
f splits completely over k into good linear polynomials (L1, . . . , Ldeg f ). Since f ∈ VQ , the polynomial
Q divides the numerator of the right-hand side of (1-1), and the quotient is a polynomial L0 of degree
at most 1. The algorithm returns (L0, . . . , Ldeg f ).
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To prove that the algorithm terminates in expected polynomial time, we need to show that a random
polynomial in VQ(k) has good chances to split into good linear polynomials over k. In this paper, we
prove this by constructing a morphism C → P1

Q , where C is an absolutely irreducible curve defined
over k, such that the image of any k-rational point of C is a polynomial that splits completely over k.
This construction is the content of Section 4. Absolute irreducibility implies that C has a lot of k-rational
points, allowing us to deduce that a lot of polynomials in P1

Q(k) split over k. This is done in Section 5.

1B. Proof of Theorem 1.1. We briefly explain in this section how Proposition 1.3 implies Theorem 1.1.
Consider the factor base

F= { f ∈ Fqd [x] | deg f ≤ 1, f 6= 0} ∪ {h1}.

First, the following proposition extends the degree two elimination to a full descent algorithm from any
polynomial down to the factor base.

Proposition 1.4. Suppose d ≥ 23. Given a polynomial F ∈ Fqd [x], there is an algorithm that finds
integers (α f ) f ∈F such that

F ≡
∏
f ∈F

f α f mod I,

and runs in expected time q log2 `+O(d).

Proof. This is essentially the zigzag descent presented in [GKZ18]. We recall the main idea for the
convenience of the reader. First, one finds a good irreducible polynomial G ∈ Fqd [x] of degree 2e such
that F ≡ G mod I (this can be done for e = dlog2(4`+ 1)e; see [Wan97, Theorem 5.1] and [GKZ18,
Lemma 2]). Over the extension Fqd2e−1 , the polynomial G splits into 2e−1 good irreducible quadratic
polynomials, all conjugate under Gal(Fqd2e−1/Fqd ). Let Q be one of them, and apply the algorithm of
Proposition 1.3 to rewrite Q in terms of linear polynomials (L0, . . . , Ln) in Fqd2e−1 [x] and h1. For any
index i , let L ′i be the product of all the conjugates of L i in the extension Fqd2e−1/Fqd . Then

F ≡ h2e−1

1 L ′−1
0 ·

n∏
i=1

L ′i mod I,

and each L ′i factors into good irreducible polynomials of degree a power of two at most 2e−1. The descent
proceeds by iteratively applying this method to each L ′i until all the factors are in the factor base F. �

Then, as in [GKZ18, Section 2], the descent algorithm of Proposition 1.4 can be used to compute
discrete logarithms, following ideas from [EG02] and [Die11]. To compute the discrete logarithm of
an element h in base g, the idea is to collect relations between g, h and elements of the factor base by
applying the descent algorithm on gαhβ for a few uniformly random exponents α and β (note that in
practice one descent is usually sufficient, when complemented by an independent heuristic computation
for the factor base elements).

That proves Theorem 1.1 for d ≥ 23. To remove the condition on d, suppose that d ≤ 22, and let
d ′ ≤ 44 be the smallest multiple of d larger than 22. Let I ′ be an irreducible factor of I in Fqd′ [x]. The
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DLP can be solved in expected time q log2(deg I ′)+O(d ′)
= q log2 `+O(1) in the field Fqd′ [x]/(I ′), and therefore

also in the subfield Fqd [x]/(I ).

2. The action of PGL2 on xq − x

As already mentioned, a crucial fact behind degree two elimination is that a polynomial of the form
αxq+1

+ βxq
+ γ x + δ has a high chance to split completely over its field of definition. This fact is

closely related to the action of 2× 2 matrices on such polynomials.

Definition 2.1. We denote by ? the action of invertible 2× 2 matrices on univariate polynomials defined
as follows: (

a b
c d

)
? f (x)= (cx + d)deg f f

(
ax + b
cx + d

)
.

Consider the Fq -vector subspace V spanned by xq+1, xq , x and 1 in Fq [x]. The above action induces
an action of the group PGL2 on the projective space P(V ), which we also write ?. Parametrising the
polynomials in P(V ) as αxq+1

+ βxq
+ γ x + δ, let S be the quadratic surface in P(V ) defined by the

equation αδ = βγ . This surface is the image of the morphism

ψ : P1
×P1

→ P(V ) : (a, b) 7→ (x − a)(x − b)q .

Note that to avoid heavy notation, everything is written affinely, but we naturally have ψ(∞, b)= (x−b)q ,
ψ(a,∞) = x − a and ψ(∞,∞) = 1. More generally, we say that f (x) ∈ V has a root of degree n at
infinity if f is of degree q + 1− n. Now, the following lemma shows that apart from the surface S, the
polynomials of P(V ) form exactly one orbit for PGL2.

Lemma 2.2. We have P(V ) \ S = PGL2 ? (xq
− x).

Proof. First, notice that both S and P(V ) \ S are closed under the action of PGL2. In particular,
PGL2 ? (xq

− x) ⊆ P(V ) \ S. Let f (x) ∈ P(V ) \ S. Suppose by contradiction that f (x) has a double
root r ∈ P1, and let g ∈ PGL2 be a linear transformation sending 0 to r . The polynomial g ? f (x) has a
double root at 0, so has no constant or linear term, and must be of the form αxq+1

+βxq , so it is in S, a
contradiction. Therefore f (x) has q + 1 distinct roots. Let g ∈ PGL2 send 0, 1 and∞ to three of these
roots. Then g ? f (x) has a root at 0 and at∞ so is of the form βxq

+ γ x , and since it also has a root
at 1, it can only be xq

− x . �

This result implies that most polynomials of P(V ) are of the form g ?(xq
− x), which splits completely

over the field of definition of the matrix g.

3. The role of traps

Consider a finite field extension k/Fqd of degree m. Let Q be an irreducible quadratic polynomial in
k[x] coprime to h1. Let a1 and a2 be the roots of Q in Fq . The degree two elimination aims at expressing
Q modulo h1xq

− h0 as a product of linear polynomials. To do so, we study a variety P1
Q ⊂ P(V )
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parametrising polynomials that can possibly lead to an elimination of Q (i.e., such that Q divides the
right-hand side of (1-1)). In this section, we define P1

Q and show how the notion of traps and good
polynomials determine how it intersects the surface S from Lemma 2.2.

Recall that V is the Fq -vector subspace V spanned by xq+1, xq , x and 1 in Fq [x]. Consider the linear
map

ϕ : V → Fq [x][h−1
1 ] :



1 7→ 1,

x 7→ x,

xq
7→ h0/h1,

xq+1
7→ xh0/h1.

(3-1)

We want P1
Q to parametrise the polynomials f ∈ V such that ϕ( f ) is divisible by Q. For any P ∈ Fq [x]

coprime with h1, write ϕP = πP ◦ϕ, where πP : Fq [x][h−1
1 ] → Fq [x]/P is the canonical projection. We

can now define P1
Q as

P1
Q = P(kerϕQ). (3-2)

The variety P1
Q is the intersection of the two planes P(kerϕx−a1) and P(kerϕx−a2).

Lemma 3.1. If Q is not a degenerate trap, then |(P1
Q ∩ S)(Fq)| = 2, and these two points are of the form

ψ(a1, b1) and ψ(a2, b2), with a1 6= a2 and b1 6= b2.

Proof. For a ∈ {a1, a2}, we have

P(kerϕx−a)∩ S = ψ({a}×P1)∪ψ

(
P1
×

{
h0

h1
(a)1/q

})
.

Since the polynomial Q is irreducible, we have a1 6= a2. Furthermore, assuming that Q is not a degenerate
trap, we have (h0/h1)(a1) 6∈ k, and thereby (h0/h1)(a1) 6= (h0/h1)(a2). Therefore P1

Q ∩ S is equal to

P(kerϕx−a1)∩P(kerϕx−a2)∩ S =
{
ψ

(
a1,

h0

h1
(a2)

1/q
)
, ψ

(
a2,

h0

h1
(a1)

1/q
)}
. �

In particular, when Q is not a degenerate trap, P1
Q is exactly the line passing through the two points

s1=ψ(a1, b1) and s2=ψ(a2, b2). We get a k-isomorphism P1
→P1

Q : α 7→ s1−αs2. For this reason the
two points s1 and s2 play a central role in the rest of the analysis, and the following proposition shows
that they behave nicely when Q is a good polynomial.

Proposition 3.2. Let Q be a good polynomial. Then (P1
Q∩S)(Fq)={s1, s2}, where s1 = (x − a1)(x − b1)

q

and s2 = (x − a2)(x − b2)
q , and the roots a1, a2, b1 and b2 are all distinct.

Proof. From Lemma 3.1, we can write (P1
Q ∩ S)(Fq)= {s1, s2} with a1 6= a2 and b1 6= b2. If a1 = b2 or

a2 = b1, then Q divides xqh1− h0, a trap of level 0. Now, suppose a1 = b1 (the case a2 = b2 is similar).
Since a1 and a2 are the two roots of Q, and Q divides (x−a1)(h0−aq

1 h1), then a2 is a root of h0−aq
1 h1.

We get that h0(a2)= aq
1 h1(a2), so a2 is a root of h1xqdm+1

− h0, a trap of level dm. �
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4. Irreducible covers of P1
Q

In this section we suppose Q is good, and we consider the polynomials s1 = (x − a1)(x − b1)
q and

s2 = (x − a2)(x − b2)
q as defined in Proposition 3.2, where a1, a2, b1 and b2 are all distinct. Consider

the variety P1
Q from (3-2).

Recall that our goal is to prove that a significant proportion of the polynomials of P1
Q(k) split com-

pletely over k. As mentioned in Section 1A, our method consists in constructing a morphism C→ P1
Q ,

where C is an absolutely irreducible curve defined over k, such that the image of any k-rational point of
C is a polynomial that splits completely over k. The absolute irreducibility is crucial as it implies that
C has a lot of k-rational points. The idea is to consider the algebraic set

C = {(u, r1, r2, r3) | r1, r2, r3 are distinct roots of u} ⊂ P1
Q ×P1

×P1
×P1,

and the canonical projection C→ P1
Q .

Proposition 4.1. If (u, r1, r2, r3) ∈ C(k), then u splits completely over k.

Proof. Suppose that (u, r1, r2, r3) is a k-rational point of C . From Lemma 2.2, we get u = g ? (xq
− x),

where g is the matrix g ∈ PGL2(k) sending the three points r1, r2 and r3 to 0, 1 and∞. In particular, the
set of roots of u is g−1(P1(Fq)), which are all in P1(k). �

In the rest of this section, we prove that C is absolutely irreducible (Proposition 4.6). The strategy is
the following. Instead of considering C directly, which encodes three roots for each polynomial of P1

Q ,
we start with the variety

X = {(u, r) | u(r)= 0} ⊂ P1
Q ×P1,

which considers a single root for each polynomial. We can then “add” roots by considering fibre products.
Recall that given two covers ν : Z→ Y and µ : Z ′→ Y , the geometric points of the fibre product Z×Y Z ′

are pairs (z, z′) such that ν(z)= µ(z′). In particular, the fibre product over the projection X→ P1
Q is

X ×P1
Q

X = {((u1, r1), (u2, r2)) | u1(r1)= 0, u2(r2)= 0, u1 = u2}

∼= {(u, r1, r2) | u(r1)= 0, u(r2)= 0}.

This product X ×P1
Q

X contains a trivial component, the diagonal, corresponding to triples (u, r, r).
The rest is referred to as the nontrivial part, and we prove that it is an absolutely irreducible curve
(Corollary 4.3). Iterating this construction, the fibre product (X×P1

Q
X)×X (X×P1

Q
X) (over the projection

X×P1
Q

X→ X to the first component) encodes quadruples (u, r1, r2, r3). Therefore, the curve C naturally
embeds into the nontrivial part of this product. We prove that this nontrivial part is itself an absolutely
irreducible curve (Lemma 4.5).

Instead of the projection X → P1
Q , we work with an isomorphic cover θ . It is easy to see that the

canonical projection X → P1 is an isomorphism, with inverse r 7→ (s2(r)s1 − s1(r)s2, r). Through
the isomorphisms X ∼= P1 and P1

Q
∼= P1, this projection is isomorphic to the cover θ in the following
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commutative diagram (where, again, the morphisms are written affinely for convenience):

(u, r) � // u

(u, r)
_

��

X //

o

��

P1
Q

o

��

s1−αs2_

��
r P1 θ // P1 α

r � // s1(r)/s2(r)

For convenience, consider θ as a cover X1→ X0, where X0 = X1 = P1. As a first step, we study the
induced fibre product X1×X0 X1. It contains the diagonal 11, isomorphic to X1. We wish to show that
Y2= X1×X0 X1 \11 is absolutely irreducible. The second step consists in showing that X2×X1 X2 \12 is
also absolutely irreducible, where X2 is a desingularisation of Y2 and 12 is the diagonal. The following
lemma provides a general method used in both steps.

Lemma 4.2. Let Y and Z be two absolutely irreducible, smooth, complete curves over k, and consider
a cover η : Z → Y . If there exists a point a ∈ Z such that η is not ramified at a and #(η−1(η(a))) = 2,
then Z ×Y Z \1 is absolutely irreducible, where 1 is the diagonal component.

Proof. By contradiction, suppose that Z ×Y Z \1 is not absolutely irreducible, and can be decomposed
as two components A∪ B. Let pr : Z ×Y Z → Z be the projection on the first factor. Since Z ×Y Z is
complete, both A and B are complete, so we have pr(A) = pr(B) = pr(1) = Z . Observe that pr−1(a)
consists of #(η−1(η(a)))= 2 points, so one of them must belong to two of the components A, B and 1.
That point must therefore be singular in Z ×Y Z , contradicting the fact that η is not ramified at a (recall
that a point (z1, z2) ∈ Z ×Y Z is singular if and only if η is ramified at both z1 and z2). �

Corollary 4.3. The curve Y2 = X1×X0 X1 \11 is absolutely irreducible.

Proof. First observe that θ is ramified only at b1 and b2 (as can be verified from the explicit formula
θ(r)= s1(r)/s2(r)). In particular, it is not ramified at a1. Since #(θ−1(θ(a1)))= #{a1, b1} = 2, we apply
Lemma 4.2. �

Lemma 4.4. The desingularisation morphism ν : X2→ Y2 is a bijection between the geometric points.

Proof. It is sufficient to prove that for any singular point P on Y2, and ϕ : Ỹ2→ Y2 the blowing-up at P ,
the preimage ϕ−1(P) consists of a single smooth point. Up to a linear transformation of X1 = P1, we
can assume that s1 and s2 are of the form s1(x)= (x − 1)xq and s2(x)= x − a, for some a 6= 0, 1. The
intersection A of the curve Y2 with the affine patch A2

⊂ P1
×P1 is then defined by the polynomial

f (x, y)=
s1(x)s2(y)− s1(y)s2(x)

x − y
=

xq(x − 1)(y− a)− yq(y− 1)(x − a)
x − y

.

It remains to blow up A at the singularity (0, 0) (which corresponds to (b1, b1) through the linear trans-
formation), and check the required properties. This is easily done following [Har77, Example 4.9.1], and
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we include details for the benefit of the reader. Let ψ : Z→ A2 be the blowing-up of A2 at (0, 0). The
inverse image of A in Z is defined in A2

×P1 by the equations f (x, y)= 0 and t y = xu (where t and
u parametrise the factor P1). It consists of two irreducible components: the blowing-up Ã of A at (0, 0)
and the exceptional curve ψ−1(0, 0). Suppose t 6= 0, so we can set t = 1 and use u as an affine parameter
(since f is symmetric, the case u 6= 0 is similar). We have the affine equations f (x, y)= 0 and y = xu,
and substituting we get f (x, xu)= 0, which factors as

f (x, xu)= xq−1 (x − 1)(xu− a)− uq(xu− 1)(x − a)
1− u

.

The blowing-up Ã is defined on t = 1 by the equations g(x, u) = f (x, xu)/xq−1
= 0 and y = xu. It

meets the exceptional line only at the point u = 1, which is nonsingular. �

The projection X1×X0 X1→ X1 on the first component induces another cover θ2 : X2→ X1, through
which we build the fibre product X2×X1 X2. As above, it contains a diagonal component 12 isomorphic
to X2.

Lemma 4.5. The curve Y3 = X2×X1 X2 \12 is absolutely irreducible.

Proof. Let ν : X2→ Y2 be the bijective morphism from Lemma 4.4. Since θ1 is only ramified at b1 and b2,
the cover θ2 is ramified at most at the points ν−1(bi , bi ) and ν−1(ai , bi ) (for i ∈ {1, 2}). In particular, it is
not ramified at ν−1(b1, a1). Since #

(
θ−1

2 (θ2(ν
−1(b1, a1)))

)
= #{ν−1(b1, a1), ν

−1(b1, b1)} = 2, we apply
Lemma 4.2. �

Proposition 4.6. The curve C is absolutely irreducible.

Proof. Let ν : X2 → Y2 be the morphism from Lemma 4.4. It is an isomorphism away from the
singularities of Y2, so

C→ Y3 : (u, r1, r2, r3) 7→ (ν−1(r1, r2), ν
−1(r1, r3))

is a morphism. It is an embedding, and the result follows from Lemma 4.5. �

5. Counting split polynomials in P1
Q

Recall that we wish to prove Proposition 1.3 by showing that P1
Q(k) contains a lot of polynomials that

split into good polynomials over k. The results of Section 4 allow us to prove in Theorem 5.1 that a lot of
polynomials in P1

Q(k) do split. We then show in Proposition 5.2 that all these polynomials are coprime,
which implies that bad polynomials cannot appear too often.

Theorem 5.1. Let k/Fqd be a field extension of degree m, and Q be a good irreducible quadratic polyno-
mial in k[x] coprime to h1. If dm ≥ 23, there are at least #k/2q3 polynomials in P1

Q that split completely
over the field k.

Proof. Let 2 : Y3→ P1
Q be the cover resulting from the composition of the successive covers of Section 4.

Let S3 =2
−1(P1

Q ∩ S). The embedding C→ Y3 from Proposition 4.6 has image Y3 \ S3. The morphism

µ : Y3→ P1
×P1

×P1
: (ν−1(r1, r2), ν

−1(r1, r3)) 7→ (r1, r2, r3)
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restricts to an embedding of Y3 \ S3. Let A be the intersection of µ(Y3) with the affine patch A3. The
curve A is a component of the (reducible) curve defined by the equations θ(r1)= θ(r2) and θ(r1)= θ(r3).
Therefore A is of degree at most 4(q + 1)2. If B is the closure of A in P3, then [Bac96, Theorem 3.1]
shows that

|#B(k)− #k− 1| ≤ 16(q + 1)4
√

#k.

Since Y3 is complete, µ(Y3) is closed, so all the points of B \ A are at infinity, and there are at most
deg(B)≤ 4(q + 1)2 of them. Also, at most 2(q3

− q) points of B are in µ(S3) (because #S = 2 and 2
is of degree q3

− q). Therefore,

#C(k)= #(Y3 \ S3)(k)≥ #k+ 1− 16(q + 1)4
√

#k− 4(q + 1)2− 2(q3
− q).

Since q ≥ 2 and dm ≥ 23, we get #C(k)≥ #k/2. From Proposition 4.1, and the fact that the map 2 is
q3
− q to one, we get that at least #k/2q3 polynomials in P1

Q split completely over k. �

Let ϕ be the morphism defined in (3-1).

Proposition 5.2. Suppose Q is a good polynomial. For any two distinct polynomials f and g in P1
Q(Fq),

we have gcd( f, g)= 1 and gcd(h1ϕ( f ), h1ϕ(g))= Q.

Proof. Let s1 and s2 be as in Proposition 3.2. They have no common root. Since f and g are distinct,
all the polynomials of P1

Q are of the form α f + βg for (α : β) ∈ P1. Then, if r is a root of f and g, r
is a root of all the polynomials of P1

Q . In particular, it is a root of both s1 and s2, a contradiction. This
shows that gcd( f, g)= 1.

Similarly, if a polynomial h divides h1ϕ( f ) and h1ϕ(g), it must also divide both

h1ϕ(s1)= (x − a1)(h0− bq
1 h1) and h1ϕ(s2)= (x − a2)(h0− bq

2 h1).

Since h0− bq
1 h1 and h0− bq

2 h1 are coprime, h must divide Q. �

Proof of Proposition 1.3. As discussed in Section 1A, it is sufficient to prove that a uniformly random
element of P1

Q(k) has a good probability to lead to an elimination into good polynomials. A polynomial
f ∈ P1

Q(k) leads to an elimination into good polynomials if f splits completely over k into good linear
polynomials, and ϕ( f ) is itself a good polynomial.

Let A be the set of polynomials of P1
Q(k) that split completely over k. From Theorem 5.1, A contains

at least qdm−3/2 elements. Trap roots τ occurring in A or ϕ(A) must be roots of h1xq
− h0, or of

h1xqdn+1
− h0 for n | m/2, or satisfy (h0/h1)(τ ) ∈ Fqdm/2 . There are at most q(dm/2)+3 such trap roots.

From Proposition 5.2, any trap root can only occur once in A and in ϕ(A). So there are at most 2q(dm/2)+3

polynomials in A for which trap roots appear. Therefore, the number of elements in A leading to a good
reduction is at least

1
2qdm−3

− 2q(dm/2)+3
≥

1
2(q

dm−3
− 4qdm−8)≥ 1

4qdm−3,

using dm ≥ 23. Since P1
Q(k) contains qdm

+ 1 elements, the probability of a random element to lead to
a good elimination is 1/O(q3). �
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