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We develop a computational framework for the statistical characterization of Galois characters with
finite image, with application to characterizing Galois groups and establishing equivalence of characters
of finite images of Gal(Q/Q).

1. Introduction

The absolute Galois group G = Gal(Q/Q) is a fundamental object of study in number theory. The objec-
tive of this work is to develop an explicit computational framework for the study of its finite quotients.
We may replace G with the absolute Galois group of any global field, but restrict to that of Q for simplicity
of exposition.

As point of departure, we consider an irreducible polynomial f (x) ∈ Z[x] of degree n as input. We
set K =Q[x]/( f (x)), denote by L its normal closure and write G(K ) for the Galois group Gal(L/Q)
equipped with a permutation representation in Sn determined by the action on the roots of f (x). Let
PS(Z) be the set of primes coprime to the finite set S of primes ramified in Z[x]/( f (x)).

The statistical perspective we develop expresses the map from PS(Z) to factorization data as an equidis-
tributed map to a finite set X (K ) equipped with a probability function induced from the Haar measure
on G(K ). A Frobenius lift at p, defined up to conjugacy, acts on the roots of f (x). The permutation
action on the roots of f (x) induces a representation in O(n), fixing the formal sum of the roots. The
orthogonal complement gives the standard representation in O(n− 1), spanned by differences of basis
elements. Let P(x) be the characteristic polynomial of Frobenius in the permutation representation and

S(x)= P(x)/(x − 1)= xn−1
− s1xn−2

+ · · ·+ (−1)n−1sn−1

be the characteristic polynomial in the standard representation. This polynomial is independent of choices
of lift of Frobenius and choice of basis. As such, the coordinates (s1, . . . , sn−1) ∈ Zn−1 are invariants
of the Frobenius conjugacy class Frobp in the set C̀ (G(K )) of conjugacy classes of G(K ). Denote the
finite set of such class points by X (K ). We note that the class points are entirely determined by the
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factorization data of f (x) mod p, and X (K )⊂ Zn−1 is equipped with the structure of a finite probability
space, induced from the cover C̀ (G(K ))→ X (K ). The irreducible characters are known to form an
orthogonal basis for the class functions on C̀ (G(K )), and the rational characters are integer-valued class
functions on the class space X (K ).

In what follows we develop this approach by describing systems of rational characters on G(K ) al-
gebraically as a basis of polynomials in Z[s1, . . . , sn−1] modulo the defining ideal for X (K ), together
with their associated inner product. As a consequence we develop algorithms for the characterization of
Galois groups, and more generally, tools for determining equivalence of finite Galois representations.

2. Representations of orthogonal groups

Let G be a compact Lie group. In practice, G will be an orthogonal group

G = O(n− 1)⊂ O(n) or G = SO(n− 1)⊂ O(n− 1),

or a finite permutation group, equipped with the standard representation in O(n− 1),

G ⊆ Sn ⊂ O(n− 1) or G ⊆An ⊂ SO(n− 1).

The standard representation of Sn provides the motivation for an algebraic presentation of the charac-
ter ring of a permutation group. For the character theory of permutation groups, we appeal to known
algorithms for its computation.

The symmetric group Sn acts on a set of n elements, and the linear extension to a basis of Zn
⊂Rn gives

the permutation representation of Sn , extending its action on the basis {e1, . . . , en}. Since e1+ · · ·+ en

is fixed by Sn , a line is fixed, and we consider the action on the hyperplane spanned by the orthogonal
complement. In the basis {e1 − e2, . . . , en−1 − en}, we obtain the standard representation of Sn in
O(n − 1). The choice of basis is noncanonical, but the character theory is independent of any such
choice. The orthogonal group O(n) and its subgroup O(n− 1) have two connected components, with
principal component SO(n− 1)⊂ SO(n), such that An = Sn ∩SO(n− 1).

Representation ring. For a compact Lie group G, we denote the set of conjugacy classes of G by C̀ (G).
We define the representation ring of G,

R(G)=
⊕
χ

Zχ,

as the free abelian group on irreducible characters χ : G→ C of finite degree. We identify addition with
direct sum, and thereby the abelian submonoid

⊕
Nχ ⊆R(G) with characters, and define multiplication

on R(G) by the linear extension of tensor product on
⊕

Nχ . We refer to elements of R(G) as virtual
characters.

As class functions, R(G) can be identified with a subring of complex-valued functions on C̀ (G).
Indeed, when G is finite, the number h of conjugacy classes (and of irreducible characters) is finite, and
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the character table is defined as the evaluation vectors

(χi (C1), . . . , χi (Ch))

in the ring Ch
= C× · · · ×C, for χi running over the irreducible characters, forming a generator set

for the representation ring. For a subfield F ⊂ C, we denote by RF (G) the subring of F-valued virtual
characters. While R(G)=RQ(G) for G = Sn or G = O(n− 1), for a general finite group that we may
consider, the field of definition of an irreducible character may be a proper extension of Q.

Considering the group O(n) in GLn(R), an element g satisfies a characteristic polynomial of the form

xn
− s1xn−1

+ · · ·+ (−1)nsn.

The coefficient s1 is the trace in its representation on Rn, and sn is its determinant character. We note that
sk is an invariant of the class of g, and we can identify g 7→ sk as characters. Specifically, sk is the character
on the k-th exterior power

∧k
Rn . We recall the structure of the character ring for O(n) (see [19]).

Lemma 1. The virtual character ring R(O(n)) is generated by sk , 1≤ k ≤ n, and

R(O(n))∼=
Z[s1, . . . , sn]

(sksn − sn−k, s2
n − 1)

·

The restriction Res :R(O(n))→R(SO(n)) surjects on

R(SO(n))∼=
Z[s1, . . . , sn]

(sk − sn−k, sn − 1)
,

with kernel ideal (sn − 1).

Remark. If n = 2m or n = 2m + 1, then R(SO(n)) = Z[s1, . . . , sm], and R(O(n)) is an extension by
the quadratic character ξ = sn such that ξ |SO(n) = 1.

Algebraic parametrization. If H is a subgroup of G, there is an induced map C̀ (H)→ C̀ (G) on conju-
gacy classes and concomitant restriction homomorphism Res :R(G)→R(H) on representation rings.
Applied to the standard representation of Sn in O(n − 1), the restriction homomorphism equips the
representation ring of R(Sn) with a surjective restriction map from R(O(n− 1)), giving an algebraic
presentation of R(Sn) by polynomials in Z[s1, . . . , sn−1] modulo the defining ideal (sksn−1 − sn−k−1,

s2
n−1− 1). Given a permutation group G ⊂ Sn , the subsequent restriction captures a significant subring

of RQ(G)⊂R(G).
As a tool to characterize permutation groups in Sn , for subgroups G and H, with H ⊆ G ⊆ Sn , we

develop the branching rules — explicit forms for the decomposition

Res(χi )=

ni∑
j=1

ai jψj

of irreducible characters {χ1, . . . , χr } on G in terms of the irreducible characters {ψ1, . . . , ψs} on H. In
light of the algebraic parametrization by Z[s1, . . . , sn−1], we deduce the kernel ideals IG ⊆ IH for each
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permutation group in the lattice (poset) of subgroups. A basis of generators provides test functions for
membership in a given subgroup. We develop the algorithmic details later.

Using the Brauer–Klimyk formula (see [3, Proposition 22.9]), it is possible to develop recursive for-
mulas for the character theory of orthogonal groups, as done in [17; 18] for USp(2m), and using the
algebraic presentation, to deduce recursive branching rules for Res :R(O(n− 1))→R(G). Instead, we
content ourselves with the algebraic parametrization from R(O(n− 1)) and exploit the well-established
computational character theory of permutation groups to develop branching rules in the lattice of permu-
tation subgroups of Sn .

3. Representations of permutation groups

Let G be a permutation group — a finite group equipped with an embedding in Sn . The cycle type of
g ∈ G is the multiset of cardinalities of its orbits under the action of Sn on {1, . . . , n}. A multiset can be
denoted by a tuple (d1, . . . , dt) or a formal product me1

1 · · ·m
es
s , where

d1 ≤ d2 ≤ · · · ≤ dt or m1 < · · ·< ms such that
t∑

i=1

di =

s∑
i=1

ei mi = n.

The cycle type is invariant under conjugation in Sn; thus the cycle type is well-defined for the conjugacy
class C = C(g) ∈ C̀ (G), where C(g)= {xgx−1

: x ∈ G}.

Lemma 2. The map C̀ (Sn)→
{
(d1, . . . , dt) :

∑t
i=1 di = n

}
from conjugacy classes of Sn to cycle types

is a bijection.

Proof. Clearly, giving a cyclic ordering to any partition of {1, . . . , n} into orbits determines an element
of Sn; hence the map is surjective. Moreover, by definition the symmetric group is n-transitive, conju-
gating any cyclically ordered orbit partition to any other of the same cycle type. Consequently the map
is injective. �

Remark. For a permutation group G⊂Sn the induced map C̀ (G)→ C̀ (Sn) in general is neither injective
nor surjective. The failure of injectivity means that the cycle type fails to distinguish the conjugacy classes.
We will later see this in the failure of R(Sn) to surject on R(G). In fact, the irreducible characters are
known to form a basis of the class functions on G (see [16, Theorem 6]); hence the failure to separate
conjugacy classes means that the restriction homomorphism from R(Sn) does not surject on R(G).

On the one hand, the cycle type of a conjugacy class characterizes the class. On the other hand, the
characteristic polynomial (hence its coefficients) is a class invariant of an orthogonal group element, and
the permutation and standard representations thus provide other class invariants. We make this association
explicit. Let (d1, . . . , dt) be the cycle type of an element g ∈ Sn . It is easy to see that the characteristic
polynomial of the permutation representation of g is

P(x)= (xd1 − 1) · · · (xdt − 1)= (xm1 − 1)e1 · · · (xms − 1)es .
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The eigenvalue on the trivial space is 1, so the characteristic polynomial in the standard representation is

S(x)=
P(x)
(x − 1)

= xn−1
− s1xn−2

+ · · ·+ (−1)n−1sn−1,

and (s1, . . . , sn−1) is the tuple of class invariants associated to the conjugacy class C(g) under the standard
representation in O(n− 1). This gives the following lemma.

Lemma 3. The map C̀ (Sn)→ Zn−1 from conjugacy classes to the (n−1)-tuples (s1, . . . , sn−1) of coeffi-
cients of the characteristic polynomial under the standard embedding is injective.

Proof. By Lemma 2 the map from conjugacy classes to cycle types is a bijection. However, by unique
factorization in Q[x], a polynomial of the form (xd1−1) · · · (xdt −1) is uniquely determined by the cycle
type (d1, . . . , dt); hence the map to its coefficients (s1, . . . , sn−1) is injective. �

Representation rings and character tables. Let G be a permutation group and let C̀ (G)= {C1, . . . , Ch}

and {χ1, . . . , χh} be its irreducible characters. For a conjugacy class C, define the ideal

mC = { f ∈R(G) : f (C)= 0}

such that the value f (C) of a virtual character f at C is a well-defined class in the residue class ring
R(G)/mC . The character table of G is typically represented as a matrix whose i-th row is the evaluation
vector (χi (C1), . . . , χi (Ch)). With this notation, we interpret as the embedding of the character χi in the
product ring, under the injection

R(G)→R(G)/mC1 × · · ·×R(G)/mCh .

Lemma 4. The image of the homomorphism R(G)→R(G)/mC1 × · · ·×R(G)/mCh has finite index in
its codomain.

Proof. Clearly R(G) is torsion-free, since the image of a virtual character is a subring of C. Thus R(G)
embeds in R(G)⊗Q, which is an étale algebra, isomorphic to the product of its quotients X i (see [2]
for details). It follows that the index is finite. �

More generally in the direction of the lemma, [2] finds that the center of the group ring Q[G] over Q

and the tensor product of the representation ring R(G)⊗Q are related by Brauer equivalence. We give
two examples below. In view of the restriction map from R(Sn) to R(G), and since all characters on Sn

are rational, the image of R(Sn)=RQ(Sn) lies in the subring RQ(G)⊂R(G). In the examples below,
we illustrate the role of nontrivial Galois action and of quadratic characters in the failure of surjectivity
of R(Sn) on R(G) and on RQ(G). In the next section we exploit the embedding by interpolating the
character table values by the polynomial presentation Z[s1, . . . , sn−1] →RQ(G).

Orthogonality relations. The role of arithmetic statistics of G comes from the orthogonality relations
for the irreducible characters. Let {χ1, . . . , χh} be the irreducible characters for G, and A(G) be the
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character matrix

A(G)=

χ1(C1) · · · χ1(Ch)
...

...

χh(C1) · · · χh(Ch)

 .
The orthogonality relations for characters (see [16, Section 2.3]), expressed in terms of group elements,
reformulated in terms of conjugacy classes, takes the form

δi j = 〈χi , χj 〉G :=
1
|G|

∑
g∈G

χi (g)χj (g)=
h∑

k=1

|Ck |

|G|
χi (Ck)χj (Ck).

Set D(G) to be the diagonal matrix with diagonal entries (p1, . . . , ph), where pk = |Ck |/|G| is the weight
of the conjugacy class Ck . The orthogonality relations are then expressed by the equality

Ih = A(G)D(G)A(G)†,

where † denotes the conjugate transpose. The matrix D(G) can be viewed as the inner product matrix
of the Haar measure induced by G on C̀ (G).

Rational character table. Let χ be a character on G, let m be the exponent of G, and let C = C(g) be
a conjugacy class. As the trace of a representation of g, the value χ(C) lies in Z[ζm], since each of its
eigenvalues are in µm = 〈ζm〉. We thus obtain two actions of the Galois group Gal(Q(ζm)/Q)∼= (Z/mZ)∗.
Denote by σ : (Z/mZ)∗→Gal(Q(ζm)/Q) the isomorphism such that ζ σ(k)m = ζ k

m . The first of the actions
is on conjugacy classes, by C(g) 7→ C(gk), and the second on characters by χσ(k)(C(g))= χ(C(g))σ(k).
Considering the action on eigenvalues we see immediately that

χσ(k)(C(g))= χ(C(gk)).

Restriction from R(Sn). Only characters in the image of R(Sn) can be parametrized by polynomials in
Z[s1, . . . , sn−1] from the standard representation. We note by example, that the preimage of C in C̀ (Sn)

under the induced map C̀ (G)→ C̀ (Sn) can split into an even number of conjugacy class separated by a
quadratic character not coming from Sn . We observe this phenomenon for G = D4 and G = Q8 in the
examples section below.

4. Algorithms for Galois representations

In what follows we describe algorithms for testing equivalence of finite Galois characters. As the principal
application, we consider input f (x) of degree n, determining a number field K = Q[x]/( f (x)), and
describe how to evaluate a sample set of primes S at characters on the permutation group G(K ). The
approach is completely general, allowing one to compare the set of characters on the absolute group G
mapping through permutation groups G(K1) and G(K2) determined by number fields K1 and K2.
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Factorization types of irreducible polynomials. Consider an irreducible polynomial f (x) in Z[x] of
degree n, set K =Q[x]/( f (x)) and let L be its normal closure with maximal order OL . For a rational
prime p and prime P over p in OL , the Frobenius lift FrobP is the unique element of the decomposition
subgroup DP ⊂ G = G(K ) such that

FrobP(a)≡ a p mod P

for all a in OL . Denote by Frobp the conjugacy class of FrobP in C̀ (G).
For p not dividing disc( f (x)) we define the factorization type of f (x) mod p to be the multiset of

degrees of the factorization of f (x) in Fp[x], which we may denote by (d1, . . . , dt), where d1 ≤ · · · ≤ dt

and d1+ · · ·+ dt = n. We can now identify the data of the factorization type with the cycle type of the
Galois group G = G(K ) equipped with its embedding in Sn .

Lemma 5. The factorization type of f (x) mod p is the cycle type of Frobp ⊂ G(K ).

Proof. The factorization pOK = p1 · · · pt is determined from f (x)≡ f1(x) · · · ft(x) mod p, with pk =

(p, fk(x)) a prime of degree dk = deg( fk). The Galois group acts transitively on primes of OL over p,
and there exist conjugates P1, . . . ,Pt over p1, . . . , pt , from which we see that dk divides deg(P), and
each dk is the cardinality of an orbit of roots modulo p under the action of FrobP. �

Character inner products as expectation. The factorization type of a polynomial gives a means of tak-
ing random samples of character values (s1, . . . , sn−1) at a set S of primes mapping to the group G.
Other data, for particular characters, may come from weight-1 modular eigenforms, character sums, or
Kronecker symbols. Let S be such a sample set of primes, and ψ , χ two characters which can be
evaluated on S. We write ψ(p) and χ(p) for the values of the characters at a sample point. We obtain
an approximation for the orthogonal product 〈ψ, χ〉 as the expectation of ψχ :

〈ψ, χ〉 = E(ψχ)∼ ES(ψχ)=
1
|S|

∑
p∈S

ψ(p)χ(p).

If the multiplicity of each irreducible character in the support of ψ and χ is 1, then m = 〈ψ, χ〉 is an
integer counting the number of irreducible characters in the support of both ψ and χ . When ψ and χ
are irreducible, to determine equality ψ = χ , one needs only sufficient precision to distinguish the one
bit 〈ψ, χ〉 = 0 or 〈ψ, χ〉 = 1.

The interest in working with irreducible characters, or nearly irreducible characters as captured by the
image of restriction from R(Sn), is that the variance of the character products ψχ is minimized, and the
number of primes needed to recognize is convergence small, as observed by Shieh [17; 18] in the case
of symplectic groups USp(2m) (see also [9]).

One should note that in view of classifying the Galois group, nonvanishing of an element of the kernel
ideal of the restriction R(Sn)→R(G) can be used to provably exclude G as a Galois group. This was
already observed by Pohst [14], who proposed the use of factorization types as a lower bound for the
Galois group, and that for n ≥ 8 the factorization types, and their probabilities, fail to separate groups.
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This statement, however, concerns the data of the induced Haar measure on C̀ (G), and not that of the
character table of G. Precisely we have two data structures on C̀ (G) at our disposal, that of a probability
space and of class functions (given by a character table)

• C̀ (G) with Haar measure p : C̀ (G)→ R, and

• Ch
= Hom(C̀ (G),C) with orthonormal basis {χ1, . . . , χh}.

Due to the failure of surjectivity of the restriction homomorphism from R(Sn), the subset of characters
determined from the cycle types are unlikely to separate groups for sufficiently large n. Nevertheless, the
joint data of Haar measure and character table, plus the system of restriction maps coming from common
embeddings in Sn gives more information than either the Haar measure or character table alone.

Restriction kernel ideal. To a conjugacy class C for Sn we associate an ideal mC in Z[s1, . . . , sn−1] of
the form

mC = (s1− s1(C), . . . , sn−1− sn−1(C)),

where (s1(C), . . . , sn−1(C)) are the values of si at C. Then the kernel ideal for the restriction of R(Sn) to
R(G) is the intersection ideal

I (G)=
⋂

C∈π(C̀ (G))

mC,

where π : C̀ (G)→ C̀ (Sn).

Example. Consider the restriction from R(O(3)) to R(S4). Since

R(O(3))=
Z[s1, s2, s3]

(s1s3− s2, s2
3 − 1)

and the values of (s1, s2, s3) are in

{(3, 3, 1), (−1,−1, 1), (0, 0, 1), (−1, 1,−1), (1,−1,−1)},

we obtain a defining ideal of S4 given by the additional generators

s1(s1+ 1)(s1− s3− 2), s1(s1+ 1)(s1− 1)(s1− 3), (s1+ 1)(s1− 1)(s3− 1).

The map C̀ (D4)→ C̀ (S4) fails to surject on (0, 0, 1); hence there are only four maximal ideals in the
intersection and the kernel ideal for R(S4)→R(D4) is generated by

s2
1 − s1− s2− s3− 2, s2− s1s3, s2

3 − 1.

The first polynomial is not in the kernel ideal for R(S4) and its vanishing provides a test for D4. Geo-
metrically, it means that the tensor square of the representation with trace s1 decomposes into a direct
sum of representations with trace s1+ s2+ s3+ 2.



ARITHMETIC STATISTICS OF GALOIS GROUPS 361

Restriction homomorphism. Let H ⊂ G be permutation groups, and set `= | C̀ (H)| and h = | C̀ (G)|
equal to the cardinalities of their conjugacy class sets. Suppose that {ψ1, . . . , ψ`} and {χ1, . . . , χh} are
the irreducible characters, which are given by embeddings in C` and Ch, respectively. We thus have
isomorphisms

R(H)=
⊕̀
i=1

Zψi →3(H)⊂ C` and R(G)=
h⊕

j=1

Zχj →3(G)⊂ Ch,

where 3(H) and 3(G) are the lattices in C` and Ch spanned by the rows of the character table. The
restriction homomorphism R(G) 7→R(H) is induced by the map π : C̀ (H)→ C̀ (G), by

χ 7→ (χ(π(C1)), . . . , χ(π(C`))) ∈3(H)⊂ C`.

The linear transformation 3(G)→ 3(H) gives the restriction homomorphism as an integral (h × `)-
matrix with respect to the respective bases of irreducible characters. The rows of this matrix can be
interpreted as branching rules, giving the decomposition of an irreducible character on G as a sum of
irreducible characters on H.

Inside each 3(G) we have a sublattice (generally of lower rank) 3Q(G) = 3(G)∩Qh of rational-
valued characters. We recall that for a conjugacy class C of group elements of order m, the value of χ(C)
is a sum of eigenvalues in Q(ζm). We thus obtain an action by the Galois group of a cyclotomic field on
the irreducible characters. As a consequence, the lattice 3Q(G) is generated by the sums over Galois
orbits of irreducible characters. Since these orbits are disjoint, this basis of rational characters remains or-
thogonal, but not orthonormal, since 〈χ, χ〉 measures the cardinality of the orbit (assuming χ is a sum of
irreducible characters of multiplicity 1). On the other hand, the restriction images ResG

H (3(G))⊂3(H)
and ResG

H (3Q(G))⊂3Q(H) do not possess natural reduced orthogonal bases. In order to determine a
generating set which is small with respect to the orthogonality relations on characters, we need to apply
a constrained lattice reduction inside the submonoid of characters:⊕̀

j=1

Nψj ⊂
⊕̀
j=1

Zψj =R(H).

Rather than a generic LLL algorithm, we need to carry out a structured lattice reduction in the character
monoid order to be able to invoke the heuristic arguments for convergence of small characters.

Algebraic parametrization. In order to interpret factorization types of polynomials (or splitting types of
primes) as conjugacy classes on which we can apply the class functions s1, . . . , sn−1, we need to find an
explicit algebraic parametrization

Z[s1, . . . , sn−1]

I (Sn)
→R(Sn)→ ResSn

G (3(Sn))⊆3(G).

The presentation Z[s1, . . . , sn−1]/I (Sn)→ R(Sn) comes from the standard representation of Sn , and
its composition into 3(Sn) can be effectively computed. In order to lift characters in 3(Sn) back to
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representative polynomials in (s1, . . . , sn−1), we must invert

Z[s1, . . . , sn−1]

I (Sn)
→3(Sn).

As noted above, the isomorphism R(Sn)→3(Sn) is obtained by the Chinese remainder theorem. More
precisely, over Q, we obtain a product decomposition of the étale algebra R(Sn)⊗Q,

R(Sn)⊗Q→
R(Sn)

mC1

⊗Q× · · ·×
R(Sn)

mCh

⊗Q∼=Qh,

under which R(Sn) ∼= 3(Sn) ⊆ Zh. Since the generators s1, . . . , sn−1 can be evaluated at conjugacy
classes, we can evaluate a basis of monomials modulo I (Sn) and invert a matrix to determine the preimage
of a basis of irreducible characters. The same applies to a basis of characters in ResSn

G (3(Sn)) modulo
the restriction kernel I (G).

Database of restriction-induction. Databases of transitive permutation groups of degree up to 30 are
available in GAP [10] and Magma [1; 7], computed by Greg Butler, John McKay, Gordon Royle and
Alexander Hulpke (see [5; 4; 15; 8; 12]). The above is intended to motivate an interest in a metastructure
of the restriction relations (and adjoint induction relations) between character rings R(G), and for the
algebraic parametrizations arising from the restriction homomorphism from orthogonal groups.

5. Explicit computations

We illustrate the approach through arithmetic statistics of character theory by applying the methods to
groups of low degree. First we analyze the dihedral and quaternionic groups D4 and Q8 of order 8, the
smallest groups sharing the same character table. Then we consider an example of a pair of permutation
groups of degree 8 and order 16 whose cycle types and induced Haar measure on S8-conjugacy classes are
equal. We show how an auxiliary (sub)field suffices to distinguish the characters using joint Frobenius
cycle data. In a final example, we treat different permutation representations of A5 to show how this
approach can be used to establish the equivalence of the absolute Galois representations determined by
different fields.

Dihedral and quaternionic groups of order 8. The groups D4 and Q8, known to share the same character
table, can nevertheless be separated by the restriction data coming from a permutation representation. We
first recall that the common character table takes the form

A(G)=


1 1 1 1 1
1 1 −1 1 −1
1 1 1 −1 −1
1 1 −1 −1 1
2 −2 0 0 0

 ,
with weights

( 1
8 ,

1
8 ,

1
4 ,

1
4 ,

1
4

)
on the conjugacy classes. The semisimple group algebras Q[D4] and Q[Q8]

have Wedderburn decompositions

Q[D4] ∼=Q×Q×Q×Q×M2(Q) and Q[Q8] ∼=Q×Q×Q×Q×H,
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where H is the quaternion algebra over Q ramified at 2 and∞. These decompositions correspond to the
four linear characters and sole degree-2 irreducible representation.

Only the former group, D4, embeds in S4, which shows that the permutation embedding contains
distinguishing information not in the character table. We make explicit the above approach through char-
acter theory for the degree-4 permutation representation. Let {1, χ1, χ2, χ3, χ4} be a basis of characters,
with χ1, χ2, and χ3 = χ1χ2 quadratic linear characters, and χ4 of degree 2. The standard representation
of S4 in O(3) provides irreducible characters

{1, s1, s2, s3, s2
1 − s1− s2− 1},

where s3 is the quadratic determinant character, s1 and s2 = s1s3 are degree-3 representations, and the last
one is of degree 2. Computing the inner product matrices for these characters on S4 and D4, we obtain

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 and


1 0 0 0 1
0 2 1 0 0
0 1 2 0 0
0 0 0 1 1
1 0 0 1 2

 .
For example, this was the output to the nearest integer for the expectation method on a sample size of
16 unramified primes, for the polynomials x4

+ x + 1 and x4
− 2x2

+ 2 with respective Galois groups S4

and D4.
One identifies the polynomial expression χ = s2

1 − s1− s2− 1 for the irreducible degree-2 character χ
on S4, which decomposes into a direct sum 1+ s3 on D4, from which we deduce that s2

1 − s1− s2− s3−2
is in the kernel ideal I (D4). Similarly, we read from the inner products 〈s1, s1〉 = 〈s2, s2〉 = 2 and
〈s1, s2〉 = 1 on D4 that each of s1 and s2 decompose into two irreducible characters, which share a
common irreducible summand. The restriction homomorphism from R(S4) thus captures

1, s1 = χ1+χ4, s2 = χ2+χ4, s3 = χ3.

The restriction fails to span all characters, because the conjugacy classes are not separated by characters
on S4. Indeed the cycle types of the five conjugacy classes in C̀ (D4) are 14, 1221, 22, 22, and 41, and
hence the two classes of cycle type 22 map to the same class in C̀ (S4).

The missing character χ1 is easily recovered. It arises from the quadratic subfield (here with defining
polynomial x2

−2x+2), which can be expressed as a Legendre symbol. In terms of the basis of characters
{1, s1, s2, s3, χ1}, we now obtain an inner product matrix,

1 0 0 0 0
0 1 0 0 0
0 0 2 1 1
0 0 1 2 0
0 0 1 0 1

 ,
which can be reduced to an orthonormal basis for R(D4).
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Since both D4 and Q8 admit permutation representations of degree 8, we carry out a similar analysis
of the permutation representations of degree 8 for D4 and Q8, given by

D4 ∼=

〈(1, 8)(2, 7)(3, 4)(5, 6),
(1, 2)(3, 5)(4, 6)(7, 8),
(1, 6)(2, 4)(3, 8)(5, 7)

〉
and Q8 ∼=

〈
(1, 2, 4, 7)(3, 6, 8, 5),
(1, 3, 4, 8)(2, 5, 7, 6)

〉
·

The cycle types 18, 24, 42 arise with probabilities
( 1

8 ,
5
8 ,

1
4

)
in D4, whereas in Q8, these same types have

probabilities
( 1

8 ,
1
8 ,

3
4

)
. Both groups embed in A8 ⊂ SO(7); hence the character rings are parametrized

by R(SO(7))∼= Z[s1, s2, s3] (s7 = 1 and s4 = s3, s5 = s2, s6 = s1). Since the cycle types are the same,
the kernel ideals agree, but the Haar measures differentiate the groups. However, a naive tabulation of
the probabilities gives a poor empirical invariant. In fact, computing these probabilities is tantamount to
evaluating the expectations of the idempotents e1, e2, e3 under the isomorphism

R(G)⊗Q=
Q[s1, s2, s3]

I (G)⊗Q
→

R(G)⊗Q

mC1 ⊗Q
×

R(G)⊗Q

mC2 ⊗Q
×

R(G)⊗Q

mC3 ⊗Q
∼=Q×Q×Q.

To express this computation in the character ring framework, we scale by the group order to have
integer values. As a general strategy for a group G ⊂ Sn this amounts to asking whether the scaled
idempotents converge to

(〈|G|e1, 1〉, . . . , 〈|G|es, 1〉)= (|C1|, . . . , |Cs |),

where Ci are the Sn-conjugacy classes for G.
Let {1, χ1, χ2, χ3, ψ} be a basis of irreducible characters for D4, and {1, χ ′1, χ

′

2, χ
′

3, ψ
′
} be a basis of

irreducible characters for Q8. The parametrization gives a Q-basis {1, s1, s2} and an idempotent basis
{e1, e2, e3} which are characteristic functions for the evaluations on conjugacy classes. A reduced basis
for the image of R(S8) in R(D4) is {1, σ1, σ2}, described as follows in these respective bases:

D4 {1,s1,s2} {e1,e2,e3} {1,χ1,χ2,χ3,ψ}

1 1 e1+e2+e3 1

σ1 −s1+
1
2 s2−

1
2 2e1−e2+e3 χ1+ψ

σ2 2s1−
1
2 s2+

1
2 4e1−2e3 χ1+χ2+χ3

Similarly, a reduced basis for the image of R(S8) in R(Q8) is {1, τ1, τ2}, expressed in the respective
bases as follows:

Q8 {1,s1,s2} {e1,e2,e3} {1,χ ′1,χ
′

2,χ
′

3,ψ
′
}

1 1 e1+e2+e3 1
τ1 −s1+

1
2 s2−

3
2 2e1−2e2 ψ ′

τ2 3s1−s2+3 3e1+3e2−e3 χ ′1+χ
′

2+χ
′

3

Relative to the parametrizations from R(SO(7)), the bases (σ1, σ2) and (τ1, τ2) are related by (σ1, σ2)=

(τ1+ 1, τ1+ τ2− 1), and inversely (τ1, τ2) = (σ1− 1, σ1+ σ2+ 2). We thus express (8e1, 8e2, 8e3) in



ARITHMETIC STATISTICS OF GALOIS GROUPS 365

the respective bases
{1,s1,s2} {1,σ1,σ2} {1,τ1,τ2}

8e1 s1+1 1+σ1+σ2 1+2τ1+τ2

8e2 5s1−2s2+7 5−3σ1+σ2 1−2τ1+τ2

8e3 −6s1+2s2 2+2σ1−2σ2 6−2τ2

giving inclusions of submodules 〈8e1, 8e2, 8e3〉 ⊂ 〈1, σ2, σ3〉 = 〈1, τ2, τ3〉 ⊂ 〈e1, e2, e3〉.
Computing the expectations of the test functions {1, σ1, σ2} for D4 on polynomials with Galois groups

G = D4 or Q8, the Gram matrix M(G)= (E(σiσj )) (σ0 = 1) takes the form

M(G)=

1 0 0
0 2 1
0 1 3

 , where G = D4 and otherwise

 1 1 −1
1 2 0
−1 0 5

 .
With respect to test functions {1, τ1, τ2} for Q8, the Gram matrices are

M(G)=

1 0 0
0 1 0
0 0 3

 , where G = Q8 and otherwise

 1 −1 2
−1 3 −3

2 −3 7

 .
It should be clear that the full Gram matrix gives a more complete picture of the orthogonality relations
of characters than the triple of inner products (〈8e1, 1〉), (〈8e2, 1〉), (〈8e3, 1〉), which is just one linear
combination of the rows in the above Gram matrices.

In the next section, we show that the choice of reduced basis for the target group gives a better set of
test functions, converging more rapidly to the asymptotic Gram matrix. With respect to the polynomials
x8
+ 6x4

+ 1 of Galois group D4 and x8
− 12x6

+ 36x4
− 36x2

+ 9 of Galois group Q8, we obtain
reasonably good convergence (to within a half integer) with the first 80 primes.

Nondistinguished representations of degree 8. The first example of nonisomorphic permutation repre-
sentations not distinguished by their cycle types and Haar measure are the degree-8 groups of order 16
denoted by 8T10 and 8T11 (see the LMFDB [6] Galois groups database). Specifically we define the
representative groups

G0=〈(1,2,3,8)(4,5,6,7), (1,5)(3,7)〉, G1=〈(1,3,5,7)(2,4,6,8), (1,4,5,8)(2,3,6,7), (1,5)(3,7)〉

whose character tables are given by

A(G0)=



1 1 1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1 1 1
1 1 1 1 −1 −1 1 1 −1 −1
1 1 1 1 1 1 −1 −1 −1 −1
1 −1 −1 1 1 −1 i −i −i i
1 −1 −1 1 −1 1 −i i −i i
1 −1 −1 1 −1 1 i −i i −i
1 −1 −1 1 1 −1 −i i i −i
2 −2 2 −2 0 0 0 0 0 0
2 2 −2 −2 0 0 0 0 0 0


, A(G1)=



1 1 1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 1 −1 −1 1
1 1 −1 −1 −1 −1 −1 1 1 1
1 1 −1 −1 1 1 −1 −1 −1 1
1 1 1 1 1 −1 −1 1 −1 −1
1 1 1 1 −1 1 −1 −1 1 −1
1 1 −1 −1 −1 1 1 1 −1 −1
1 1 −1 −1 1 −1 1 −1 1 −1
2 −2 −2i 2i 0 0 0 0 0 0
2 −2 2i −2i 0 0 0 0 0 0


,
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with respective probabilities
( 1

16 ,
1
16 ,

1
16 ,

1
16 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8

)
. We note that the first eight characters are

linear, and the latter two are of degree 2. The linear characters admit a group structure, isomorphic to
C2 × C4 and C3

2 , respectively. We denote the characters by {1, χ1, χ2, χ3, ρ1, ρ1, ρ2, ρ2, ψ1, ψ2} and
{1, ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7, ψ,ψ}. In the groups G0 and G1 the character of the standard representation
(of degree 7) decomposes as

s1 = χ1+ ρ1+ ρ1+ψ1+ψ2 and s1 = ξ1+ ξ2+ ξ2+ψ +ψ,

respectively, but the individual characters in s1 are not separated.
Given the obvious Galois action (on the codomain field Q(i)), we see that the subrings RQ(G0) and

RQ(G1) have different ranks, 8 and 9. On the other hand, the images of the restriction homomorphism
from R(S8) have rank 4 in each of R(G0) and R(G1), generated for instance by {1, s1, s2, s3}. Moreover,
since exactly the same four cycle types occur, with the same probabilities

( 1
16 ,

5
16 ,

1
8 ,

1
2

)
, the characters

in the image of restriction from R(S8) to R(G0) and R(G1) cannot be differentiated.
Let K0 and K1 be number fields whose normal closures have respective Galois groups G0 and G1.

In order to distinguish these fields, it suffices to construct missing characters from the linear character
groups. In fact these number fields have nontrivial automorphism groups, isomorphic to V4 and C4,
respectively. This induces respective subfield lattices of the forms

K0 K1

F ′0 F0 F ′′0 F1

G0 G ′1 G1 G ′′1

Q Q

For each field we recover a significant subgroup of the linear character groups from the quartic and
quadratic characters. In fact there is a unique cyclic subfield F0/Q in K0 which recovers the charac-
ters ρ1, ρ2, and χ1 = ρ

2
1 . (The other fields F ′0 and F ′′0 are nonnormal.) And there exists a unique

biquadratic field F1/Q in K1 which yields the quadratic characters ξ1, ξ2, ξ3. The pairs (K0, F0) and
(K1, F1) give characters on the pairs of permutation groups of degree 8 and 4, (G0,G0/H0 ∼= C4) and
(G1,G1/H1 ∼= V4), such that the joint factorization types of Frobenius characters separate the Galois
structures.

Representations of A5. We denote the irreducible characters of the alternating groups A5 by {1, χ1, χ2,

χ3, χ4}, where χ1 is the character of the degree-4 standard representation, χ2 is the character of a degree-5
representation, and χ3 and χ4 are the conjugate characters of degree-3 icosahedral representations over
Q(
√

5). The rational representations are thus spanned by the orthogonal characters {1, χ1, χ2, χ3+χ4}

of degrees 1, 4, 5, and 6.
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On the other hand, the permutation representation of A5 in S5 gives a parametrization by

R(SO(4))=
Z[s1, s2, s3, s4]

(s1− s3, s4− 1)
∼= Z[s1, s2],

and while | C̀ (A5)| = 5, there are two conjugacy classes which map to the same cycle type 51 in C̀ (S5).
Thus the restriction from R(S5) gives a basis of four independent characters, and we identify

(1, s1, s2
1 − s2− s1− 1, s2)= (1, χ1, χ2, χ3+χ4).

In addition to its degree-5 permutation representation, A5 admits a faithful permutation representation
in S6. In the restriction of Z[s1, s2] ∼= R(SO(5)) we recognize the same characters equipped with a
different parametrization

(1, s2
1 − 2s1− s2− 1, s1, s2−χ1)= (1, χ1, χ2, χ3+χ4).

Consider the number fields, each with Galois group A5, defined by polynomials

f = x5
− 5x4

+ 48x3
+ 28x2

+ 5x − 1,

g = x6
+ 4x5

+ 10x4
− 10x3

+ 17x2
+ 10x + 1,

constructed as subfields of the same normal closure. Although not isomorphic, we can construct the
inner product matrix of the same characters set {1, χ1, χ2, χ3+ χ4} on A5 with respect to its different
embeddings in S5 and S6. Jointly evaluating the characters on factorization types of f or g with those of
either f or g, yields the same diagonal inner product matrix (= diag(1, 1, 1, 2) to nearest integer). This
gives a means of recognizing the same character of the absolute Galois group via different presentations.
The arithmetic statistic approach through character theory gives a powerful tool to not only characterize
Galois groups, but to recognize equivalence of finite representations of the absolute Galois group G which
may arise in different contexts.

6. Variance, covariance and convergence

The focus on irreducible characters provides, on the one hand, a theoretic framework for understanding
the arithmetic statistics of Frobenius distributions. On the computational side, irreducible characters
provide test functions with optimal convergence properties. Naively, in view of the orthogonality relations
for a system {χ1, . . . , χr } of irreducible characters as test functions, it suffices to recognize the integer
〈χi , χj 〉 = δi j to one bit of precision. Furthermore, for χi 6= 1 and χj 6= 1 the inner products 〈χi , 1〉 =
〈χj , 1〉 = 0 imply that χi and χj have mean 0; hence we can interpret

ES(χiχ j )=
1
|S|

∑
p∈S

χi (p)χ j (p)

as a (sample) variance (i = j ) or covariance (i 6= j ) of the sample S, we see that the use of irreducible char-
acters (or of reduced characters in R(G) as the next best approximation when irreducible characters are
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not in the restriction image from R(Sn)) minimizes the variance of the test functions, and orthogonality
minimizes the covariance.

We can illustrate the convergence properties with the lattice of subgroups between the representation
of PSL2(F7) on P1(F7) and S8

PGL2(F7)∼= G1 S8

PSL2(F7)∼= H1 H2 A8

with respective orders |H1| = 168, |G1| = 336, and |H2| = 1344.
Let h(G) be the number of conjugacy classes of G, equal to the number of irreducible characters

and to the rank of R(G); let r(G) be the number of characters irreducible over Q, equal to the rank of
RQ(G); and let s(G) the rank of the image of the restriction of R(Sn) to R(G). For each of the groups
we give the respective numbers h(G), r(G) and s(G), as well as a representative polynomial (from the
LMFDB [6]) with Galois group G:

G h(G) r(G) s(G) fG(x)

S8 22 22 22 x8
−x−1

A8 14 12 12 x8
−2x7

+3x5
−5x4

+2x3
+2x2

−x+1
G1 9 8 8 x8

−x7
+x6
+4x5

−x4
−3x3

+5x2
−2x+1

H2 11 10 8 x8
−4x7

+8x6
−9x5

+7x4
−4x3

+2x2
+1

H1 6 5 5 x8
−4x7

+7x6
−7x5

+7x4
−7x3

+7x2
+5x+1

For the generic group Sn the characters (1, s1, . . . , sn−1) are irreducible on Sn and form a system of
test functions for Sn . On An and its subgroups the relations sn−1−i = si hold, and so the characters
(1, s1, . . . , sm), where n = 2m+ 1 or 2m+ 2, form a system of test functions for An .

The Gram matrices M(G) with respect to the test characters (1, s1, . . . , s7) for G = S8, A8, and G1,
respectively are

M(S8)=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


, M(A8)=



1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 1 0 0 1 0 0
0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 1


, M(G1)=



1 0 0 0 1 0 0 0
0 1 0 1 1 1 0 0
0 0 3 2 1 1 1 0
0 1 2 6 4 1 1 1
1 1 1 4 6 2 1 0
0 1 1 1 2 3 0 0
0 0 1 1 1 0 1 0
0 0 0 1 0 0 0 1


.

For the indicated representative polynomials, characters (χ1, . . . , χr ) and set of nonramified primes S,
we define the error matrix ZS(G)= ES(χiχ j )−M(G) and for an (r × r)-matrix Z = (zi j ) we define the
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S8 A8

k ‖ZS(G)‖2 ‖ZS(G)‖8 ‖ZS(G)‖∞ ‖ZS(G)‖2 ‖ZS(G)‖8 ‖ZS(G)‖∞

1 0.104870 < 0.184799 < 0.257812 0.080624 < 0.112569 < 0.140625
2 0.104915 < 0.197659 < 0.269531 0.099134 < 0.174740 < 0.226562
3 0.093747 < 0.189553 < 0.255208 0.074997 < 0.128586 < 0.166666
4 0.072267 < 0.138632 < 0.191406 0.057739 < 0.092246 < 0.119140
5 0.063890 < 0.112834 < 0.151562 0.058826 < 0.128167 < 0.181250
6 0.063620 < 0.115167 < 0.171875 0.053728 < 0.112338 < 0.158854
7 0.052897 < 0.083975 < 0.116071 0.049278 < 0.098191 < 0.138392
8 0.045921 < 0.070367 < 0.097656 0.036335 < 0.065900 < 0.092773

Table 1. Approximation for G = S8 and G =A8 on sample sets of first 128k nonramified primes.

normalized `p-norms

‖Z‖p =

(
1
r2

∑
i, j

|zi j |
p
)1/p

and ‖Z‖∞ =max
i, j
{|zi j |}.

In particular we need ‖ZS(G)‖∞ < 0.50 in order for the approximation to round to M(G). We say that
a sequence stably converges to M(G) after m terms if ‖ZS(G)‖∞ < 0.50 for all initial segments S of the
sequence with |S|> m.

Setting S equal to the first 128k nonramified primes, in the case of S8 and A8 the symmetric functions
give good convergence in the `2, `8 and `∞-norms to M(G) on small sample sets consisting of the first
128k nonramified primes; see Table 1.

Even with sample size 128, we obtain a close approximation to the correct Gram matrix, and the
convergence remains stable. In contrast, for the group G1 (of index 120 in S8) taking increments of size
1024 we find that 214

= 1024 · 16 primes gives an exact approximation of M(G1) (in the `∞-norm) but
that at least 1024 · 22 primes are needed for stable convergence; see Table 2.

k ‖ZS(G)‖2 ‖ZS(G)‖8 ‖ZS(G)‖∞ k ‖ZS(G)‖2 ‖ZS(G)‖8 ‖ZS(G)‖∞

1 0.876885 < 1.841975 < 2.686523 10 0.187304 < 0.375945 < 0.533105
2 0.229706 < 0.475835 < 0.701171 11 0.211544 < 0.429012 < 0.613725
3 0.437539 < 0.862551 < 1.233723 12 0.231261 < 0.465137 < 0.665364
4 0.542897 < 1.080542 < 1.525878 13 0.279154 < 0.560439 < 0.800030
5 0.267850 < 0.528893 < 0.756054 14 0.201504 < 0.399819 < 0.572195
6 0.365931 < 0.733534 < 1.035156 15 0.189139 < 0.375454 < 0.534960
7 0.199105 < 0.407255 < 0.580217 16 0.178182 < 0.348732 < 0.493652
8 0.229675 < 0.471416 < 0.672363 17 0.143345 < 0.282338 < 0.397633
9 0.111158 < 0.231270 < 0.333224 18 0.136637 < 0.266879 < 0.378417

Table 2. Approximation for G = G1 on sample sets of 1024k primes.
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k ‖ZS(G)‖2 ‖ZS(G)‖8 ‖ZS(G)‖∞ k ‖ZS(G)‖2 ‖ZS(G)‖8 ‖ZS(G)‖∞

1 0.191903 < 0.557482 < 0.937500 9 0.114006 < 0.234514 < 0.392361
2 0.107457 < 0.204107 < 0.312500 10 0.116967 < 0.233938 < 0.390625
3 0.111166 < 0.316320 < 0.531250 11 0.120169 < 0.241507 < 0.403409
4 0.085609 < 0.199992 < 0.335937 12 0.090920 < 0.197313 < 0.330729
5 0.087717 < 0.208395 < 0.350000 13 0.093108 < 0.180276 < 0.300480
6 0.094278 < 0.217121 < 0.364583 14 0.070129 < 0.145311 < 0.243303
7 0.103194 < 0.236602 < 0.397321 15 0.074861 < 0.160193 < 0.268750
8 0.110885 < 0.249000 < 0.417968 16 0.030534 < 0.066387 < 0.111328

Table 3. Approximation for G = G1 on sample sets of 128k primes, using a basis of irreducible characters.

Extending the computation further, we find that the apparent stable convergence fails when ‖ZS(G1)‖∞>

0.50 for |S| = 1024 · k for 19≤ k ≤ 21 and again in the range 45≤ k ≤ 48.
Passing to a basis of rational irreducible characters (r(G1)= s(G1)), the rational character table A(G1)

and the inner product matrix D(G1) of the Haar measure on conjugacy classes are respectively

A(G1)=



1 1 1 1 1 1 1 1
1 1 −1 1 1 −1 1 −1
6 −2 0 0 2 0 −1 0

12 4 0 0 0 0 −2 0
7 −1 1 1 −1 1 0 −1
7 −1 −1 1 −1 −1 0 1
8 0 −2 −1 0 1 1 0
8 0 2 −1 0 −1 1 0


and D(G1)=

1
336



1 0 0 0 0 0 0 0
0 21 0 0 0 0 0 0
0 0 28 0 0 0 0 0
0 0 0 56 0 0 0 0
0 0 0 0 42 0 0 0
0 0 0 0 0 56 0 0
0 0 0 0 0 0 48 0
0 0 0 0 0 0 0 84


,

which determine the diagonalized matrix M(G1) = A(G1)D(G1)A(G1)
t
= diag(1, 1, 1, 2, 1, 1, 1, 1)

with respect to the rational irreducible characters. With respect to this basis, in increments of 128k
primes, we find stable convergence after just 512= 128 · 4 primes; see Table 3.

For the subgroup chain H1 ⊂ H2 ⊂A8, starting with the characters (1, s1, s2, s3), irreducible on A8,
we find a similar analysis. In particular, the Gram matrices with respect to this basis are

M(A8)=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , M(H2)=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 3

 , M(H1)=


1 0 0 1
0 1 1 2
0 1 4 3
1 2 3 10

 .
In the former two cases, the characters are orthogonal and irreducible or nearly so (s3 decomposes as
a sum of three distinct irreducibles on H2), and convergence is relatively good. In contrast, the Gram
matrix M(H1) has determinant 14, and is far from being orthogonal or irreducible (except for 1 and s1)
on H1. In increments of 1024, we find stable convergence only after 215

= 1024 · 32 primes; see Table 4.



ARITHMETIC STATISTICS OF GALOIS GROUPS 371

k ‖ZS(G)‖2 ‖ZS(G)‖8 ‖ZS(G)‖∞ k ‖ZS(G)‖2 ‖ZS(G)‖8 ‖ZS(G)‖∞

1 1.300776 < 2.685076 < 3.787109 17 0.162082 < 0.331846 < 0.467773
2 0.457035 < 0.943691 < 1.331054 18 0.249476 < 0.507743 < 0.715332
3 0.316304 < 0.671333 < 0.948242 19 0.260497 < 0.533048 < 0.751336
4 0.149549 < 0.327977 < 0.463623 20 0.250136 < 0.514311 < 0.725195
...

...
...

...
...

...
...

...
...

...
...

...

13 0.201940 < 0.417409 < 0.588792 29 0.183952 < 0.364100 < 0.511112
14 0.219831 < 0.449876 < 0.634137 30 0.193960 < 0.384122 < 0.539257
15 0.207462 < 0.427431 < 0.602799 31 0.148770 < 0.290129 < 0.406060
16 0.170705 < 0.352046 < 0.496520 32 0.132390 < 0.258615 < 0.362091

Table 4. Approximation for G = H1 on sample sets of 1024k primes.

k ‖ZS(G)‖2 ‖ZS(G)‖8 ‖ZS(G)‖∞ k ‖ZS(G)‖2 ‖ZS(G)‖8 ‖ZS(G)‖∞

1 0.227868 < 0.301886 < 0.406250 9 0.064413 < 0.088651 < 0.114583
2 0.225747 < 0.296604 < 0.398437 10 0.079219 < 0.104501 < 0.132812
3 0.127307 < 0.165588 < 0.216145 11 0.091419 < 0.119029 < 0.154829
4 0.149822 < 0.191605 < 0.250000 12 0.056475 < 0.076844 < 0.097656
5 0.166819 < 0.214155 < 0.271875 13 0.047871 < 0.066901 < 0.086538
6 0.085019 < 0.114926 < 0.148437 14 0.041653 < 0.062817 < 0.083705
7 0.101179 < 0.132950 < 0.166294 15 0.029993 < 0.041051 < 0.053125
8 0.114860 < 0.148922 < 0.193359 16 0.041465 < 0.054989 < 0.069335

Table 5. Approximation for G = H1 on sample sets of 128k primes, using a basis of irreducible characters.

Going further one finds that the `∞-norm gradually decreases and does indeed stay below 0.50 after
this point. In contrast, in terms of the basis (1, χ1 = ϕ+ϕ, χ2, χ3, χ4) of irreducible characters over Q,
of degrees (1, 6, 6, 7, 8) given by

χ1 =
1
2(4s2+ 3s3− s1s2− 4s1− 2), χ3 = s1,

χ2 =
1
4(2s2+ 5s3− s1s2− 6s1− 4), χ4 =

1
2(s1s2+ 2s1+ 2− 2s2− 3s3),

the test characters stable converge to M(H1) after only 128 primes, with results here in increments of
128 primes; see Table 5.

These convergence results give empirical support to the principle of using irreducible characters as test
functions, based on the theoretical interpretation of inner product relations on characters as variance and
covariance. Moreover, when using irreducible characters, the number of primes necessary to recognize
the Gram matrix associated to a Galois group is strikingly small.

7. Asymptotics in the degree

In analyzing the character theory of a permutation group of large degree, one must avoid certain bot-
tlenecks in the complexity. First the number of transitive permutation groups is too large to enumerate,
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k ‖ZS(G)‖2 ‖ZS(G)‖8 ‖ZS(G)‖∞ k ‖ZS(G)‖2 ‖ZS(G)‖8 ‖ZS(G)‖∞

1 0.512041 < 1.947691 < 3.843750 17 0.122505 < 0.279019 < 0.473345
2 0.256200 < 0.868283 < 1.609375 18 0.118703 < 0.265146 < 0.452473
3 0.180087 < 0.525172 < 0.929687 19 0.114018 < 0.254474 < 0.432360
4 0.251753 < 0.848164 < 1.571289 20 0.110361 < 0.248728 < 0.442968
...

...
...

...
...

...
...

...

13 0.161766 < 0.376064 < 0.648137 29 0.110513 < 0.283699 < 0.530980
14 0.151537 < 0.350967 < 0.611049 30 0.108019 < 0.275711 < 0.514713
15 0.139688 < 0.325884 < 0.550000 31 0.105191 < 0.262830 < 0.491053
16 0.128557 < 0.298173 < 0.504638 32 0.102228 < 0.251891 < 0.468505

Table 6. Approximation for G = W (E8)/Z(W (E8)) on sample sets of 256k primes, using a basis of
irreducible characters.

and so clearly the poset must be navigated in a lazy fashion. Second, the number of conjugacy classes
(hence of irreducible characters) for Sn is too large to enumerate. For the generic groups Sn and An , the
characters (1, s1, . . . , sn−1) and (1, s1, . . . , sm), where n = 2m+ 1 or 2m+ 2, give a subset of rational
irreducible test functions (when n= 2m+2, the character sm is the sum of two characters on An , conjugate
over a quadratic field). In general the number of conjugacy classes is the partition number p(n), whose
asymptotic growth is known by [11] to be

p(n)∼
1

4n
√

3
exp

(
π

√
2n
3

)
.

In particular, we will treat a nontrivial example of degree 120 (and 240) despite the large size p(120)=
1844349560 (and p(240)= 105882246722733) of the corresponding partition numbers. Finally, com-
putation of the kernel ideal of the restriction R(O(n − 1))→ R(G) by Groebner basis algorithms is
prohibitively expensive, even if the s(G) points in the kernel can be computed.

Polynomials with interesting Galois groups of large degree, outside the generic groups Sn and An and
cyclic and dihedral groups Cn and Dn rely on specific constructions. We consider such an example of
Jouve, Kowalski and Zywina [13], a polynomial f (x) of degree 240 with Galois group the Weyl group
W (E8) of the lattice E8, of order 696729600. In contrast to the large number of conjugacy classes of
S240, the number of conjugacy classes of W (E8) is 112, and the restriction homomorphism from R(S240)

has full rank. We take the quotient of order 348364800 by its center, which is the Galois group of the
degree-120 polynomial g(x) such that f (x) = g(x2). The quotient group G = W (E8)/Z(W (E8)) has
67 conjugacy classes, all characters are rational, and the restriction homomorphism from R(S120) is
a subring of rank 65. We consider the 18 absolutely irreducible rational characters in the image. In
increments of 256 primes, we compute the convergence to the Gram matrix A(G) for these 18 characters
to 213

= 256 · 32 primes; see Table 6.
Extending the computation further suggests that the convergence to M(G) is stable for m > 213.
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8. Conclusion

A standard tool in Galois group computation is to recognize the probable group from an analysis of
Frobenius cycle types. We use an explicit polynomial parametrization of the character ring to identify
the irreducible characters in the restriction from orthogonal groups and subsequently from the symmetric
group. As in the thesis work of Shieh [17; 18], with the view to classifying Sato–Tate groups, it is rec-
ognized that the irreducible characters on the target group provide optimal test functions for recognizing
(or rejecting) a given group coming from a Galois representation. We develop this perspective in the
application to the parametrized representation rings of finite groups, with associated lattice structure. Al-
though we focus on Galois groups arising from splitting fields of polynomials over Q, the same methods
apply to Galois representations coming from L-series and modular forms, families of exponential sums,
and global fields of any characteristic.

At a higher level, the approach through character theory and arithmetic statistics lets us identify when
Frobenius distributions of different degrees admit a common Galois subrepresentation. Examples arise in
the form of fields with isomorphic normal closures, as described in the above examples of A5 representa-
tions, but more generally one can recognize whether two normal fields admit a common subfield. In this
framework, orthogonality relations of characters are measured by correlations of Frobenius distributions
associated to different representations of the absolute Galois group. This perspective has promising
potential for the computational investigation of Galois representations.
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