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We describe a method for counting the number of extensions of Qp with a given Galois group G, founded
upon the description of the absolute Galois group of Qp due to Jannsen and Wingberg. Because this
description is only known for odd p, our results do not apply to Q2. We report on the results of counting
such extensions for G of order up to 2000 (except those divisible by 512), for p = 3, 5, 7, 11, 13. In
particular, we highlight a relatively short list of minimal G that do not arise as Galois groups. Motivated
by this list, we prove two theorems about the inverse Galois problem for Qp: one giving a necessary
condition for G to be realizable over Qp and the other giving a sufficient condition.

1. Introduction

The inverse Galois problem is most commonly studied over Q. There, a theorem of Shafarevich [13; 18,
Theorem 9.6.1] shows that every solvable group is realizable as the Galois group of an extension of Q.
Attention has thus focused on simple groups, and many have been shown to be realizable; see [11] for
background.

Over Q, if a given group arises as a Galois group it will arise for infinitely many extensions. Thus the
constructive version of the problem, finding extensions with a given Galois group, has been approached
by the method of generic polynomials. A generic polynomial for a group G is a monic polynomial with
coefficients in a function field Q(c1, . . . , cn) so that every extension of Q with Galois group G will arise
via specializing the ci to elements of Q. Even if G is realizable, it may not have a generic polynomial
parametrizing all extensions.

Over Qp, for fixed p and G, there are only finitely many isomorphism classes of Galois extensions
K/Qp with Gal(K/Qp) ∼= G. Thus, rather than trying to produce them via a generic polynomial, one
could hope to enumerate them directly. As a first step toward such an enumeration, in this paper we
study the less refined question of counting such K.

The counting and enumeration of p-adic fields has a rich history, mostly separate from the study of
the inverse Galois problem. Rather than focusing on the Galois group, most approaches have studied the
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extensions of a given degree, or with a given degree and discriminant. Foundational work of Krasner
[10, Theorem 2] gave counts for the number of extensions of degree n in a fixed algebraic closure, and
Serre [17] gives a “mass formula” where the counts are weighted appropriately. More recently, Hou
and Keating [7] and Monge [12] have described how to count isomorphism classes of extensions with
prescribed ramification and inertia degrees.

There has been some work on counting extensions with a given Galois group. When G is a p-group
generated by d elements (minimally) and k/Qp has degree n, Shafarevich [19] has obtained the following
formula for the number of extensions of k with Galois group G, using his description of the maximal
pro-p quotient of the absolute Galois group:

1
|Aut(G)|

(
|G|
pd

)n+1 d−1∏
i=0

(pn+1
− pi ). (1)

The result only holds for k that do not contain the p-th roots of unity, but Yamagishi [20] has generalized
it, obtaining a formula involving characters of G.

Other authors have pursued the problem of enumerating p-adic fields [14; 9] of a given degree. Theo-
retically, this would solve the problem of enumerating with a given Galois group, since one can determine
from G the smallest degree where a field can have a normal closure with Galois group G. However, for
many groups this degree is prohibitively large for the methods employed, since you also get many other,
much larger, Galois groups at the same time.

In this paper, we count Galois extensions with Galois group G by exploiting the explicit description
of the absolute Galois group of Qp. This approach has the benefit of completely avoiding computations
with polynomials, allowing for a large number of groups to be considered. The downside is that we do
not get any information on many invariants of number theoretic interest, such as the discriminant or the
ramification filtration, beyond distinguishing between tame and wild inertia.

We have chosen to focus on the case of Qp because it has the most intrinsic interest, and because the
number of extensions grows exponentially with the absolute degree of the base field, as illustrated by (1).
The code, which uses GAP [3] and SageMath [16], can be found at https://github.com/roed314/padicIGP.

1A. Summary. We begin Section 2 with the notion of a potentially p-realizable group, which encap-
sulates the obvious conditions on G that come from the first few steps of the ramification filtration.
This notion is closed under quotients, and we conjecture that any potentially p-realizable group can be
expressed as a semidirect product of its p-core and its tame quotient. This conjecture is supported by
experimental evidence, and has consequences for the existence of subextensions complementary to the
maximal tame subextension. We close with Section 2B, where we give algorithms to test whether a
group is potentially p-realizable and to enumerate such groups.

In Section 3 we review the structure of the absolute Galois group, which plays a key role in our
approach to counting extensions. We use the description to show that our notion of a potentially p-
realizable group has the property that any such group will be realized over some p-adic field k.

https://github.com/roed314/padicIGP
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Section 4 describes the algorithms used to count extensions K/Qp with a given Galois group G.
We give an explicit enumeration in the case of abelian groups, since we need this as a base case for
inductive lifting methods later. We then summarize the tame case, which follows from the well-known
structure of the tame quotient of Gal(Qp/Qp). Finally we give a lifting method for counting extensions
for arbitrary G, and briefly discuss its runtime.

In Section 5 we apply the counting algorithms to the question of whether a potentially p-realizable
group is actually realized over Qp. We start by listing minimal examples of groups that are unrealizable.
We then proceed, in Section 5B, to prove Theorems 5.3 and 5.4 giving one necessary and one sufficient
condition for p-realizability. Both conditions relate to the structure of the p-core of G as a representation
of the tame quotient.

1B. Notation and terminology. We work throughout with a prime p 6= 2 and a finite group G. There
are some naturally defined subgroups of G that will play an important role throughout the paper. The
p-core V of G is the intersection of all of the p-Sylow subgroups of G:

V =
⋂

P p-Sylow

P.

It is the maximal normal p-group inside G. The quotient T = G/V has the structure of a metacyclic
group (an extension of a cyclic group by a cyclic group), but not canonically. It acts on V by conjugation.
We call G tame if V is trivial and G = T.

We will also use the Frattini subgroup W of V, defined as

W = V pV ′,

where V ′ is the commutator subgroup of V. The quotient V/W is the maximal quotient of V that
is an elementary abelian p-group. The action of T on V descends to an action on V/W, yielding a
representation of T on an Fp-vector space.

We will refer to groups by their ID in GAP’s SmallGroups library [2] using the notation nGk, where
n is the order of G and k enumerates groups of that order.

Write G for the absolute Galois group Gal(Qp/Qp).

2. Potentially p-realizable groups

2A. The structure of p-adic Galois groups. The structure of p-adic field extensions [4, Chapter 16]
imposes constraints on the possible Galois groups that can arise. Any finite extension K ⊇Qp can be
decomposed into a tower K ⊇ Kt ⊇ Ku ⊇Qp, where Ku/Qp is unramified, Kt/Ku is tame and totally
ramified, and K/Kt is totally wildly ramified. When K/Qp is Galois, this tower corresponds to the first
parts of the ramification filtration on G = Gal(K/Qp):

G = G−1 ⊇ G0 ⊇ G1. (2)
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The fixed field of G0 is the unramified subfield Ku and the quotient G/G0 must be cyclic. The fixed
field of G1 is the tame subfield Kt and the quotient G0/G1 must be cyclic of order relatively prime to p.
Finally, G1 ∼= Gal(K/Kt) is a p-group. Moreover, G0 and G1 are normal subgroups of G.

By a theorem of Iwasawa [8, Theorem 2], the Frobenius element of G/G0 acts on G0/G1 by raising
to the p-th power.

Definition 2.1. A group G is potentially p-realizable if it has a filtration G ⊇ G0 ⊇ G1 so that

(1) G0 and G1 are normal in G,

(2) G/G0 is cyclic, generated by some σ ∈ G,

(3) G0/G1 is cyclic of order relatively prime to p, generated by some τ ∈ G0,

(4) τ σ = τ p,

(5) G1 is a p-group.

We will call such a filtration on G a tame structure. A group G is p-realizable if there exists an extension
K/Qp with Gal(K/Qp)∼= G.

Remark 2.2. By the discussion above, any p-realizable group is potentially p-realizable, justifying the
terminology. We will also see in Proposition 3.2 that if G is potentially p-realizable then it arises as a
Galois group after some finite extension, conforming with the common usage of “potentially.”

Remark 2.3. Since every p-group is nilpotent, the condition that G is potentially p-realizable implies
that G is solvable. However, some groups G may have multiple tame structures. The simplest example
is G = C2 and p odd, where we can take G0 = G or G0 = 1. An example with varying G1 is G = C p2 ,
where we can take G0 = G1 = C p or G0 = G1 = 1.

Proposition 2.4. Any quotient of a potentially p-realizable group is potentially p-realizable.

Proof. Suppose G has tame structure G⊇G0⊇G1 and N EG. It suffices to show that G/N ⊇G0 N/N ⊇
G1 N/N is a tame structure on G/N.

By the third isomorphism theorem, (G/N )/(G0 N/N ) ∼= G/(G0 N ) is a quotient of G/G0 and thus
cyclic, generated by the image of σ . The natural map

G0→ (G0 N/N )/(G1 N/N )∼= (G0 N )/(G1 N )∼= G0/(G1(G0 ∩ N ))

has kernel containing G1, showing that (G0 N/N )/(G1 N/N ) is cyclic and generated by the image of τ .
Since the relation τ σ = τ p holds in G, it also holds for the images of σ and τ in G/N. Finally,

G1 N/N ∼= G1/(G1 ∩ N ) is a p-group since G1 is. �

If G is potentially realizable, the maximal choice for G1 is the p-core V. We may always enlarge a
tame structure on G to make G1 = V :

Proposition 2.5. If G ⊇ G0 ⊇ G1 is a tame structure on G, so is G ⊇ G0V ⊇ V.
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Proof. Since G0 and V are normal subgroups of G, so is G0V. Moreover, G/(G0V ) is a quotient of G/G0

and thus cyclic generated by the same σ ∈ G. Since the order of G0/G1 is prime to p, G0∩V = G1 and
the second isomorphism theorem implies that (G0V )/V ∼= G0/G1 with the image of τ still generating
(G0V )/V. �

Define T = G/V, the smallest possible tame quotient of G.

Conjecture 2.6. If G is potentially p-realizable, then G ∼= V o T.

The conjecture holds for p ∈ {3, 5, 7, 11, 13} and potentially p-realizable groups G with |G| ≤ 2000.
It also holds when T has order prime to p, by the Schur–Zassenhaus theorem. Note that we may not
replace V with an arbitrary G1, as the example of C p2 ⊇ C p ⊇ C p shows. Moreover, attempting to
decompose the pieces further fails. The tame quotient T is not necessarily the semidirect product of
G0/G1 by G/G0: the quaternion group of order 8 is p-realizable for p ≡ 3 (mod 4) but not a semidirect
product of cyclic subgroups.

The conjecture has an interesting corollary for p-adic fields.

Corollary 2.7. Assume Conjecture 2.6 holds, and suppose that K/Qp is Galois. If Kt/Qp is the maximal
tamely ramified subextension of K/Qp and Gal(K/Kt) is the p-core of Gal(K/Qp) then there is a totally
wildly ramified complement K0/Qp with K = K0Kt .

2B. Enumerating small examples. The first step toward counting p-adic fields by Galois group is com-
puting a list of potential G. Since GAP’s database of small groups [2] can identify groups of order n for
n ≤ 2000 except n = 512, 1024, 1536, groups of these orders were screened.

When n is prime to p, we may use the classification of metacyclic groups [5, Lemma 2.1] to screen G.
This process is described in Algorithm 1.

When n has p-adic valuation 1, we can build groups as extensions of metacyclic groups. Any group
of order n will arise either as an extension of a group of order n/p by C p, or as a metacyclic group

Algorithm 1: Finding potentially p-realizable groups: the tame case

Input :an integer n
Output : the list of potentially p-realizable groups of order n with trivial G1

1 groups = [];
2 for positive k,m with n = k ·m do
3 if m divides pk

− 1 then
4 step = m / gcd(m, p− 1);
5 for ` from 0 to m by step do
6 find the GAP id of 〈x, y | xk

= y`, ym
= 1, yx

= y p
〉;

7 add id to groups if not present;
8 return sorted(groups);
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Algorithm 2: Finding potentially p-realizable groups: valuation 1

Input :an integer n with vp(n)= 1
Output : the list of potentially p-realizable groups of order n

1 groups = [];
2 foreach tame group T of order n/p do
3 foreach homomorphism φ from T to Aut(C p) do
4 foreach group G in Extensions(T, φ) do
5 if x and y lift to elements of G satisfying the tame relation then
6 find the GAP id of G;
7 add id to groups if not present;
8 foreach tame group T of order n do
9 find the id of T;

10 add id to groups if not present;
11 return sorted(groups);

produced by Algorithm 1. The extensions are computable using GAP’s Extensions method, and we
describe the process in Algorithm 2.

When n has larger p-adic valuation, this extension method becomes more complicated, since there
are more possibilities for V. Moreover, some of the possible V are not elementary abelian p-groups, so
GAP’s Extensions method does not apply. While it would be possible to try to construct the extensions
manually using GAP’s GrpConst package [1], in practice it suffices to check whether each group in the
small group database [2] with order n is potentially p-realizable using Algorithm 3 (see next page).

3. The absolute Galois group of a local field

Our approach to counting p-adic fields rests on the following description of the absolute Galois group of
Qp. Let p 6=2, k be a p-adic field, N =[k :Qp], q be the cardinality of the residue field of k, and ps be the
order of the group of p-power roots of unity in the maximal tame extension kt/k. Choose g, h ∈ Zp with

ζ σ = ζ g, ζ τ = ζ h for ζ ∈ µtr ,

where σ, τ ∈ Gal(kt/k) with τ σ = τ q as in [8], and µtr are the p-power roots of unity in kt.
Let π = πp be the element of Ẑ =

∏
` Z` with coordinate 1 in the Zp-component and 0 in the Z`

components for ` 6= p. Then for x, y in a profinite group,1 set

〈x, y〉 = (xh p−1
yxh p−2

y · · · xh y)π/(p−1).

Theorem 3.1 [13, Theorem 7.5.14]. The absolute Galois group Gal(k/k) is isomorphic to the profinite
group generated by N + 3 generators σ, τ, x0, . . . , xN , subject to the following conditions and relations.

(1) The closed subgroup topologically generated by x0, . . . , xN is normal in G and is a pro-p-group.

1See [15], especially Sections 3.3 and 4.1, for relevant background on profinite groups.
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Algorithm 3: Determining whether a group is potentially p-realizable

Input :a group G
Output :whether or not G is potentially p-realizable

1 V = PCore(G);
2 T = G/ V;
3 if IsCyclic(T) then
4 return True;
5 D = DerivedSubgroup(G);
6 if IsCyclic(D) then
7 for N in NormalSubgroupsContaining(D) do
8 if IsCyclic(N) and IsCyclic(G/N) then
9 let e be the order of N and f the order of G/N;

10 let a be the exponent in the conjugation action of G/N on N;
11 find b with ab

≡ p (mod e), or continue if not possible;
12 let m be the order of a (mod e);
13 if gcd(m, b, f )= 1 then
14 return True;
15 return False;

(2) The elements σ, τ satisfy the tame relation

τ σ = τ q .

(3) The generators satisfy the wild relation

xσ0 = 〈x0, τ 〉
gx ps

1 [x1, x2][x3, x4] · · · [xN−1, xN ] if N is even,

xσ0 = 〈x0, τ 〉
gx ps

1 [x1, y1][x2, x3] · · · [xN−1, xN ] if N is odd;

here g and s are defined above and y1 is an explicit element in the span of x1, σ , and τ , specified
below when k =Qp.

We will mostly be interested in the case where k =Qp; recall that we write G for Gal(Qp/Qp). Now
q = p, g = 1 and h is a (p− 1)-st root of unity in Zp. In order to define y1, let Qt

p be the maximal
tamely ramified extension of Qp and define β : Gal(Qt

p/Qp)→ Z×p by setting β(σ)= 1 and β(τ)= h.
For ρ in the subgroup of G generated by σ and τ and x ∈ G, set

{x, ρ} = (xρ2xβ(ρ)ρ2
· · · xβ(ρ

p−2)ρ2)π/(p−1).

Let π2 ∈ Ẑ be the element with π2Ẑ= Z2, and set τ2 = τ
π2 and σ2 = σ

π2. Set

y1 = x
τ

p+1
2

1 {x1, τ
p+1

2 }
σ2τ

(p−1)/2
2

{
{x1, τ

p+1
2 }, σ2τ

(p−1)/2
2

}σ2τ
(p+1)/2
2 +τ

(p+1)/2
2 . (3)
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The wild relation for Qp then becomes

xσ0 = 〈x0, τ 〉x
p
1 [x1, y1]. (4)

We can use this description of absolute Galois groups to show that any potentially p-realizable group
occurs as a Galois group over some k with k/Qp finite.

Proposition 3.2. If G is potentially p-realizable and V/W has dimension m then G will be realized over
k if [k :Qp] ≥ 2m+ 1.

Proof. It suffices to exhibit a surjective homomorphism Gal(k/k)→ G, which we define by specifying
the images of the generators. Map x0, x1, x3, x5, . . . , x2m+1 and x2m+2, . . . , xN to 1. Then the wild
relation is automatically satisfied, and we may freely choose the images of x2, . . . , x2m . As long as we
map them to elements of V that project to an Fp-basis of V/W, Burnside’s basis theorem implies that
they will generate V. The fact that G is potentially p-realizable then implies that we may extend this
homomorphism to a surjective map on all of Gal(k/k). �

Note that one can decrease 2m+ 1 in some cases using the representation of T on V, and even then
this bound is certainly not sharp.

4. Counting p-adic fields

4A. Parametrizing extensions. Following [20], we count the extensions of Qp with Galois group G by
counting the surjections G→ G, modulo automorphisms of G. We can then translate the description of
G from Theorem 3.1 to a counting problem in G. Let n be the order of G and factor n = u p pr

= u22s

with (u p, p)= 1 and u2 odd. Using the Chinese remainder theorem, define integers a and b so that

a = 0 (mod u p), (p− 1)a = 1 (mod pr ),

b = 0 (mod u2), b = 1 (mod 2s).

Since the images of x0 and x1 have p-power order, they lie in V.

Definition 4.1. Define TG to be the set of pairs (σ, τ ) ∈ G2 so that

(1) τ σ = τ p,

(2) the images of σ and τ in G/V generate G/V.

Define XG to be the set of quadruples (σ, τ, x0, x1) ∈ G4 satisfying the following properties:

(1) τ σ = τ p.

(2) x0, x1 ∈ V.

(3) σ, τ, x0, x1 generate G.

(4) xσ0 = 〈x0, τ 〉x
p
1 [x1, y1], where y1 is defined as in (3).

Note that we may compute the projections π/(p−1) and π2 by raising to the a and b powers, respectively.
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Proposition 4.2. The Galois extensions of Qp with Galois group G are in bijection with the orbits of XG

under the action of Aut(G).

Proof. Finite extensions K of Qp within a fixed algebraic closure of Qp correspond to finite index
subgroups HK of G. The condition that K is Galois with Galois group G translates to the condition
that HK is normal with G/HK ∼= G. Different subgroups H cannot yield isomorphic K since an iso-
morphism of fields would extend to an automorphism of Qp conjugating one H to the other, which is
impossible since both are normal. Finally, elements of XG correspond to homomorphisms G→ G by the
description of G in Theorem 3.1, and the kernel of such a homomorphism is preserved by composition
with an automorphism of G. �

We will be inductively constructing representatives for the orbits of Aut(G) on XG ; write YG for
a choice of such representatives. Then YG will be in bijection with the extensions of Qp with Galois
group G.

4B. Abelian groups. When G is abelian, the wild relation simplifies to x0 = x p
1 . Thus x0 is determined

by x1, and the wild relation imposes no constraint on x1. The order of τ must divide p− 1, the order
of x1 must be a power of p, and the three elements σ, τ , and x1 must generate G.

Write

G ∼=
∏
`

m∏̀
i=1

Z/`n`,i Z, (5)

where n`,1 ≤ · · · ≤ n`,m`
for each `. We can enumerate the elements of XG as a function of the n`,i .

Let α` be the element of G with a 1 in the `,1 component and 0s elsewhere, and let β` be the element
with a 1 in the `,2 component and 0s elsewhere. Since we will be analyzing the `-components separately,
we drop ` from the notation, writing a for n`,1, b for n`,2, α for α` and β for β`.

(1) In the case m` ≥ 3, set c` = 0 and C` = {}.

(2) In the case m` = 2, if a 6= b and `= p, set c` = 2 and C` = {(α, 0, pβ, β), (β, 0, pα, α)}.

(3) In the case m` = 2, if a 6= b and `b divides p− 1, set c` = 2 and C` = {(α, β, 0, 0), (β, α, 0, 0)}.

(4) In the case m` = 2, if a = b and `= p, set c` = 1 and C` = {(α, 0, pβ, β)}.

(5) In the case m` = 2, if `a divides p−1 but case (3) does not apply, set c` = 1 and C` = {(β, α, 0, 0)}.

(6) In the case m` = 2, if ` 6= p and `a - p− 1, set c` = 0 and C` = {}.

(7) In the case m` = 1, if `= p, set c` = pa−1(p+ 1) and

C` = {(α, 0, pkα, kα) : 0≤ k < pa
} ∪ {(pkα, 0, pα, α) : 0≤ k < pa−1

}.

(8) In the case m` = 1, if `a divides p− 1, set c` = `a−1(`+ 1) and

C` = {(α, kα, 0, 0) : 0≤ k < `a
} ∪ {(pkα, α, 0, 0) : 0≤ k < `a−1

}.
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(9) In the case m` = 1, if `a does not divide p− 1, set c` = gcd(`a, p− 1) and

C` =
{
(α,

`a

c` kα, 0, 0) : 0≤ k < c`
}
.

Proposition 4.3. Let G be abelian, with elementary factors as in (5). Then the number of Galois exten-
sions K/Qp with Galois group G is

∏
` c` and the set

{∑
` η` : η` ∈ C`

}
forms a set of representatives

for the orbits of Aut(G) on XG .

Proof. The role of x1 at p is almost the same as the role of τ away from p, except that the order of τ must
divide p− 1. For ` 6= p, the `-component of x1 must be 0; the p-component of τ must be 0. Therefore,
if any m` is at least 3, it is impossible for σ, τ and x1 to generate G.

For m` = 2, generating sets for Z/`aZ×Z/`bZ are permuted transitively by Aut(G) [6, Theorem 3.6],
and if a = b then the two generators can be interchanged by an automorphism. When `b divides p− 1
then τ can be taken as either generator, whereas if `a divides p− 1 but `b does not then τ can only be
the generator of order `a. If ` 6= p and `a does not divide p− 1 then σ and τ cannot generate G.

When m` = 1 then either σ or τ (or both) must be a generator. The descriptions of C` then follow
from the fact that Aut(Z/NZ)∼= (Z/NZ)×. �

Remark 4.4. It is also possible to count abelian extensions using local class field theory, but the orbits
on XG are used in the lifting algorithm (Algorithm 5) of Section 4D.

4C. Tame groups. If G has order relatively prime to p, or more generally if V is trivial, then we must
have x0 = x1 = 1. We search for elements of XG by enumerating the normal subgroups that can contain τ ,
and then finding pairs (σ, τ ) that satisfy the tame relation and generate G. We summarize the steps in
Algorithm 4.

Algorithm 4: Enumerating extensions: tame case

Input :a group G with trivial p-core
Output :a list of pairs (σ, τ ) representing the Aut(G)-orbits in XG

1 D = DerivedSubgroup(G);
2 pairs = [];
3 if IsCyclic(D) then
4 for N in NormalSubgroupsAbove(D) do
5 if IsCyclic(N) and IsCyclic(G/N) then
6 for s in G that induce p-th powering on N do
7 for t in N that generate G along with s do
8 if (s, t) not marked then
9 append (s, t) to pairs;

10 mark images of (s, t) under Aut(G);
11 return pairs;
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4D. Lifting homomorphisms. For potentially p-realizable groups G that are neither tame nor abelian,
we choose a minimal normal subgroup N G G (such an N always exists since G is solvable) and set
Q = G/N. Inductively, we may assume that we have computed a list YQ of representatives for the orbits
of Aut(Q) on X Q . In particular, if Q is abelian or tame then we may use Section 4B or Algorithm 4;
otherwise we will recursively use Algorithm 5, described below.

The idea is to just test all lifts of quadruples (σ, τ, x0, x1) ∈ YQ to see if they are valid elements of XG .
There is a subtlety however: there may be automorphisms of Q which are not induced by automorphisms
of G. This problem comes in two parts. First, if N is not a characteristic subgroup then it may not be
stabilized by all of Aut(G), so not all automorphisms descend. Second, the map StabAut(G)(N )→Aut(Q)
is not necessarily surjective, so elements of X Q that are equivalent under Aut(Q) may lift to elements
that are inequivalent under Aut(G).

We solve the problem by computing a list of coset representatives for the image of StabAut(G)(N )→
Aut(Q). Then, instead of just lifting elements of YQ , we lift all translates under these automorphisms.
We summarize this process in Algorithm 5.

The runtime of Algorithm 5 depends on the structure of G. If N GG is the minimal normal subgroup
used, C is the list of coset representatives in Aut(Q), YQ is the list of representatives for the quotient Q,
and R is the time it takes to compute the wild relation, then the runtime is bounded by O(|C |·|YQ |·|N |4 R).
The actual runtime may be better for some N since we can short circuit some of the loops if the lifts of
(x1, x0, τ, σ ) do not satisfy the appropriate conditions.

Algorithm 5: Enumerating extensions: lifting method

Input :a potentially p-realizable group G and lists of representatives YQ for quotients Q of G
Output :a list YG of quadruples (σ, τ, x0, x1) representing the Aut(G)-orbits in XG .

1 choose a minimal normal subgroup N GG;
2 Set Q = G/N ;
3 compute the stabilizer A of N in Aut(G);
4 compute a list cokreps of representatives for the cosets of the image of A in Aut(Q);
5 Xreps = [];
6 foreach (σ, τ, x0, x1) ∈ YQ do
7 foreach α ∈ cokreps do
8 foreach lift x1 of α(x0) to G that lies in V do
9 foreach lift x0 of α(x1) to G that lies in V do

10 foreach lift τ of α(τ) to G with order prime to p do
11 foreach lift σ of α(σ0) with τ σ = τ p do
12 if (σ, τ, x0, x1) not marked then
13 mark images of (σ, τ, x0, x1) under Aut(G);
14 if σ, τ, x0, x1 generate G then
15 append (σ, τ, x0, x1) to Xreps;
16 return Xreps;
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Figure 1. Number of potentially p-realizable G with |G| ≤ 2000 and |YG | ≥ n.

Running Algorithm 5 on groups of order up to 2000 for p up to 13 required a few weeks of CPU time.
The largest counts found occurred for cyclic groups such as C1458 : p= 3 (2916) and C1210 : p= 11 (2376),
or for products of cyclic groups with small nonabelian groups such as C243 × S3 : p = 3 (1944). For
p = 3, other nonabelian groups had large counts such as 1458G553: (C27 oC27)oC2 (1323) suggesting
that the dominance of cyclic groups may not last as the order increases.

Figure 1 shows these counts in aggregate, ignoring the group structure. Specifically, recall that YG is
in bijection with the set of Galois extensions of Qp with Galois group G. Figure 1 plots the function f (n)
that counts the number of potentially realizable G with |G| ≤ 2000 and |YG | ≥ n. The difference between
the first and second bars in each chart gives the number of groups that are potentially p-realizable but
not actually p-realizable. We have truncated the charts at 25 since they have long tails; the previous
paragraph gives examples of G with large |YG |.

We have no theoretical results on the possible sizes of N and C , but experimental results are summa-
rized in Tables 1 and 2. The first shows the number of G that have a specified minimum size of N, and
the second shows the number of pairs (G, N ) with a specified size of C , called the automorphism index.

Large indices did occur, but rarely. There were 20 cases of index larger than 10000 for p = 3, the
largest being 4586868. For p= 5, the only index larger than 124 was 3100, occurring 3 times; for other p
no index larger than 120 occurred.

number of groups whose N has the given size
size p = 3 p = 5 p = 7 p = 11 p = 13

2 8765 2437 1419 638 588
3 3800 423 228 104 110
5 27 392 70 26 45
7 10 6 168 11 18
9 87 0 0 0 0

11 0 3 0 56 7
13 0 3 0 0 68

> 13 9 17 12 12 2

Table 1. Smallest N GG for nonabelian, nontame G.
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number of N GG with given automorphism index
index p = 3 p = 5 p = 7 p = 11 p = 13

1 8594 2393 1210 561 663
2 1798 594 421 111 117
3 468 24 73 25 19
4 396 157 59 107 17
5 0 7 0 4 0
6 333 10 58 0 6
8 217 42 47 17 13
9 91 0 4 0 0

10 2 0 0 0 0
12 153 7 4 7 1
13 21 0 0 0 0
16 37 0 8 0 1
18 61 0 2 0 0
20 0 4 0 1 0
24 99 30 4 12 1

> 24 428 12 7 2 0

Table 2. Automorphism index for nonabelian, nontame G.

5. The inverse Galois problem for p-adic fields

5A. Examples of nonrealizable groups. Recall that G is p-realizable if there exists an extension K/Qp

with Gal(K/Qp)∼= G. If G is p-realizable, then every quotient of G is as well, leading us to consider
the following class of groups.

Definition 5.1. A group G is minimally unrealizable if G is not p-realizable but it is potentially p-
realizable and every proper quotient of G is p-realizable.

In Table 3 we list the minimally unrealizable G that have abelian p-core. The label is from the GAP
SmallGroups library, which makes precise the description of the group; we write Fn

p for Cn
p to emphasize

the vector space structure. The column V describes the decomposition of V into indecomposable sub-
modules: nk refers to a submodule of dimension n occurring with multiplicity k. The columns SS, TD,
and XC will be described in Section 5B.

5B. Realizability criteria. We may explain many of the groups in Table 3 by considering V/W as a
representation of T = G/V on an Fp-vector space. Note that |T | may be divisible by p: this will
occur precisely when there is more than one p-Sylow subgroup in G. In this case V/W may not have
a decomposition as a direct sum of irreducible subrepresentations, but it still has a decomposition as a
direct sum of indecomposable subrepresentations. The multiplicity of an indecomposable factor is the
number of times it appears in such a representation.

Recall from Definition 4.1 that TG is the set of pairs (σ, τ ) ∈ G2 generating G/V and satisfying the
tame relation. In order to show that a potentially p-realizable group G is not p-realizable, we will show
that any possible (σ, τ, x0, x1) ∈ XG that satisfy the tame and wild relations cannot generate G. We will
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p label description V SS TD XC

3 27G5 F3
3 13 N Y Y

3 36G7 F2
3 oC4 12 Y Y Y

3 54G14 F3
3 oC2 13 Y N N

3 72G33 F2
3 o D8 12 Y Y Y

3 162G16 C2
9 oC2 12 Y N N

3 324G164 F4
3 oC4 22 Y N Y

3 324G169 F4
3 o (C2×C2) 12

⊕ 12 Y N N
3 378G51 F2

3 o (C7 oC6) 12 Y Y Y
3 648G711 F4

3 oC8 22 Y N Y
5 50G4 F2

5 oC2 12 Y Y Y
5 125G5 F3

5 13 N Y Y
5 200G20 F2

5 oC8 12 Y Y Y
5 300G34 F2

5 o (C3 oC4) 12 Y Y Y
5 400G149 F2

5 o (C8×C2) 12 Y Y Y
5 500G48 F3

5 oC4 13 Y N Y
5 1300G29 F2

5 o (C13 oC4) 12 Y Y Y
5 1300G30 F2

5 o (C13 oC4) 12 Y Y Y
5 1875G21 F4

5 oC3 22 Y Y Y
7 98G4 F2

7 oC2 12 Y Y Y
7 147G4 F2

7 oC3 12 Y Y Y
7 343G5 F3

7 13 N Y Y
7 588G22 F2

7 oC12 12 Y Y Y
7 882G23 F2

7 oC18 12 Y Y Y
7 1176G130 F2

7 o (C3× D8) 12 Y Y Y
11 242G4 F2

11 oC2 12 Y Y Y
11 605G4 F2

11 oC5 12 Y Y Y
11 1331G5 F3

11 13 N Y Y
13 338G4 F2

13 oC2 12 Y Y Y
13 507G4 F2

13 oC3 12 Y Y Y
13 676G10 F2

13 oC4 12 Y Y Y
13 1014G9 F2

13 oC6 12 Y Y Y

Table 3. Minimally unrealizable groups with abelian p-core.

say that G is strongly split (SS) if, for every (σ, τ ) ∈ TG , the order of σ in G equals the order of its image
in G/V. Note that Conjecture 2.6 would imply that there is some σ with the same order in G as in G/V,
but some lifts of σ from G/V to G may have larger order.

We will say that G is tame-decoupled (TD) if τ acts trivially on V/W for every (σ, τ ) ∈ TG . Finally,
we will say that G is x0-constrained (XC) if the implication

xσ0 〈x0, τ 〉
−1
∈W ⇒ x0 ∈W

holds for all (σ, τ ) ∈ TG . The last three columns of Table 3 record whether G is strongly split, tame-
decoupled and x0-constrained, respectively.

Proposition 5.2. If G is tame-decoupled then it is x0-constrained.
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Proof. Each condition holds for G if and only if it holds for G/W, so we may assume that V is an
elementary abelian p-group and W = 1. Since every τ acts trivially on V by conjugation and h is a
(p− 1)-st root of unity,

〈x0, τ 〉 = (x1+h+···+h p−2

0 τ p−1)π/(p−1)
= τπ = 1.

So if xσ0 〈x0, τ 〉
−1
= 1 then xσ0 = 1 and thus x0 = 1. �

Let nG,ss be 0 if G is strongly split and 1 otherwise; let nG,xc be 0 if G is x0-constrained and 1
otherwise.

Theorem 5.3. Suppose G is potentially p-realizable. Let n be the largest multiplicity of an indecompos-
able factor of V/W as a representation of T. If n > 1+ nG,ss+ nG,xc, then G is not p-realizable.

Proof. We first reduce to the case where W = 1. This is easily done, since the definitions of n, nG,ss

and nG,xc are invariant under quotienting by W, and if we can show that G/W is not p-realizable then G
will be unrealizable as well. We may therefore replace V by V/W and assume that V is an elementary
abelian p-group.

For sake of contradiction, suppose that G is p-realizable, with (σ, τ, x0, x1) ∈ XG . Suppose that we
have an arbitrary word in these generators, and assume that the word is an element of V. Using the
conjugation action of T on V and the tame relation, we may rewrite it as σ cτ d x , where x is a product of
conjugates of x0 and x1 under the action of T. Thus σ cτ d

∈ V, so we may use the fact that τ has order
prime to p to rewrite σ cτ d as σ c′

∈ V. If G is strongly split then we must have σ c′
= 1; otherwise it

could be some nonzero element of V.
Since V is an elementary abelian p-group, the wild relation (4) simplifies to

xσ0 〈x0, τ 〉
−1
= 1. (6)

If G is x0-constrained, we must have x0 = 1; otherwise x0 can be nontrivial.
Since x1 is unconstrained, we can write any word in terms of a fixed set of 1+ nG,ss+ nG,xc elements

of V, where we are allowed to act on these elements by T. Let A be a homogeneous component of V with
multiplicity n, and consider the projections of our 1+ nG,ss+ nG,xc elements onto A. Their Fp[T ]-span
is a proper subspace of A since A has multiplicity n > 1+ nG,ss+ nG,xc, contradicting the assumption
that (σ, τ, x0, x1) generate G. �

We can get a partial converse, but we now need to assume that W = 1.

Theorem 5.4. Suppose that G is potentially p-realizable with W = 1, and that V decomposes as a
multiplicity-free direct sum of irreducible T -submodules. Then G is p-realizable.

Proof. It suffices to construct an element of XG . Since V is an elementary abelian p-group, we again
have the relation (6), which is satisfied for x0 = 1 and arbitrary x1. Since G is potentially p-realizable,
by Proposition 2.5 there are σ, τ ∈ G satisfying the tame relation and generating G/V. Choose x1 ∈ V
with nonzero projection onto each irreducible component. The conjugates of x1 under T generate V,
since if they were contained in a proper subspace that subspace would have zero projection onto some
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p label description G/W V/W

3 486G146 (F4
3 oC3)oC2 54G13 12

⊕ 1
3 648G218 (C27 oC3)× D8 72G37 12

3 648G219 (F3
3 oC3)× D8 72G37 12

3 648G220 ((C9×C3)oC3)× D8 72G37 12

3 648G221 ((C9×C3)oC3)× D8 72G37 12

3 972G816 (F2
3× (F

2
3 oC3))o (C2

2) 324G170 12
⊕ 1⊕ 1

3 1458G613 ((C81×C3)oC3)oC2 18G4 12

3 1458G640 (C2
9 oC9)oC2 18G4 12

Table 4. Minimally unrealizable groups with nonabelian p-core.

irreducible component, contradicting the choice of x1. Now the fact that σ and τ generate G/V means
that x1, σ and τ generate G. �

Remark 5.5. There are two groups in Table 3 that are not explained by Theorem 5.3. For 324G169, there
are nonzero x0 satisfying (6), but they all lie in a 1-dimensional indecomposable subrepresentation. The
other subrepresentation can’t be spanned by x1 on its own. For 162G16, the quotient by W is p-realizable.
Here V is abelian but has exponent 9 rather than 3, so the wild relation takes the form

xσ0 〈x0, τ 〉
−1
= x p

1 . (7)

In order to get a nontrivial x1, we need to find x0 with xσ0 〈x0, τ 〉
−1 of order 3. Such x0 exist, but they all

have the property that xσ0 〈x0, τ 〉
−1 is a multiple of x0, preventing x1 from spanning the rest of V.

Remark 5.6. Table 4 gives the groups of order up to 2000 with nonabelian V that are minimally unre-
alizable. In each case, G/W will be p-realizable, so the methods of this section do not apply. In order
to provide an explanation for why they are not p-realizable, one would need to analyze the wild relation
more thoroughly.
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