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We provide a new algorithm for tabulating composite numbers which are pseudoprimes to both a Fermat
test and a Lucas test. Our algorithm is optimized for parameter choices that minimize the occurrence
of pseudoprimes, and for pseudoprimes with a fixed number of prime factors. Using this, we have
confirmed that there are no PSW-challenge pseudoprimes with two or three prime factors up to 280. In
the case where one is tabulating challenge pseudoprimes with a fixed number of prime factors, we prove
our algorithm gives an unconditional asymptotic improvement over previous methods.

1. Introduction

Pomerance, Selfridge, and Wagstaff famously offered $620 for a composite n that satisfies

(1) 2n�1 � 1 .mod n/ so n is a base-2 Fermat pseudoprime,

(2) .5 j n/D�1 so n is not a square modulo 5, and

(3) FnC1 � 0 .mod n/ so n is a Fibonacci pseudoprime,

or to prove that no such n exists. We call composites that satisfy these conditions PSW-challenge pseudo-
primes. In [PSW80] they credit R. Baillie with the discovery that combining a Fermat test with a Lucas
test (with a certain specific parameter choice) makes for an especially effective primality test [BW80].
Perhaps not as well known is Jon Grantham’s offer of $6.20 for a Frobenius pseudoprime n to the
polynomial x2� 5x� 5 with .5 j n/D�1 [Gra01]. Similar to the PSW challenge, Grantham’s challenge
number would be a base-5 Fermat pseudoprime, a Lucas pseudoprime with polynomial x2� 5x� 5, and
satisfy .5 j n/D�1. Both challenges remain open as of this writing, though at least in the first case there
is good reason to believe infinitely many exist [Pom84].

The largest tabulation to date of pseudoprimes of similar type is that of Gilchrist [Gil13], who found no
Baillie-PSW pseudoprimes (a stronger version of the PSW challenge) up to BD 264. After first tabulating
2-strong pseudoprimes [Fei13; Nic12] using an algorithm due to Pinch [Pin00], he applied the strong
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Lucas test using the code of Nicely [Nic12]. Taking inspiration from tabulations of strong pseudoprimes
to several bases [Jae93; Ble96; JD14; SW17], our new idea is to treat the tabulation as a two-base com-
putation: a Fermat base and a Lucas base. In this way we exploit both tests that make up the definition.

Specifically, we improve upon [Pin00] in three ways:

� GCD computations replace factorizations of bn� 1.

� Sieving searches are done with larger moduli.

� Fewer preproducts are constructed.

Other notable attempts to find a PSW-challenge number involve construction techniques that result in
a computationally infeasible subset-product problem [GA99; CG03]. The first of such attempts would
have also found the number requested at the end of [Wil77] which is simultaneously a Carmichael number
and a .P;Q/-Lucas pseudoprime for all pairs .P;Q/ with 5D P2� 4Q and .5 j n/D�1.

The new algorithm presented constructs n by pairing primes p with admissible preproducts k. In
Section 6 we provide an unconditional proof of the running time. Unfortunately, the provable running
time gets worse as the number of primes dividing k increases. Specifically, we prove the following.

Theorem 1. There exists an algorithm which tabulates all PSW-challenge pseudoprimes up to B with
t prime factors, while using zO.B1�1=.3t�1// bit operations and space for O.B.3t�2/=.4t�2// words.

The running time improves, under a heuristic assumption that factoring plays a minimal role, to
zO.B1�1=.2t�1// bit operations.

No PSW-challenge pseudoprimes with two or three prime factors exist up to B D 280.

For the computation performed we chose 2 as the Fermat base and .1;�1/ as the Lucas base, but the
algorithm as designed can handle arbitrary choices.

The rest of the paper is organized as follows. Section 2 establishes key definitions and notation, while
Section 3 provides the theoretical underpinnings of the algorithm. The algorithm is presented in Section 4
along with a proof of correctness. The running time is analyzed in Sections 5 and 6. We conclude the
paper with comments on our computation with B D 280.

2. Definitions and notation

A base-b Fermat pseudoprime is a composite n with gcd.n; b/D 1 that satisfies the congruence bn�1 �

1 .mod n/.
Lucas sequences have many equivalent definitions. We state a few important ones and let the reader

consult standard sources such as [Leh30] for a more thorough treatment. Let P;Q 2 Z and ˛; ˛ be the
distinct roots of f .x/Dx2�PxCQ, with DDP2�4Q the discriminant. Then the Lucas sequences are

Un.P;Q/D
˛n�˛n

˛�˛
and Vn.P;Q/D ˛

n
C˛n:

Equivalently, we may define these as recurrence relations, where

U0.P;Q/D 0; U1.P;Q/D 1; and Un.P;Q/D PUn�1.P;Q/�QUn�2.P;Q/;
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and

V0.P;Q/D 2; V1.P;Q/D P; and Vn.P;Q/D PVn�1.P;Q/�QVn�2.P;Q/:

We will use �.n/D .D j n/ for the Jacobi symbol and will frequently write Un or Vn when the particular
sequence is clear from context. It should be noted that the definition below guarantees that n is odd so
that the Jacobi symbol is well-defined. Often Un is referred to as the Lucas sequence with parameters
P and Q, but both Vn and Un are needed for the “double-and-add” method for computing Un using
O.log n/ arithmetic operations. For a more modern take on this classic algorithm, see [JQ96].

A .P;Q/-Lucas pseudoprime is a composite n with gcd.n; 2QD/D 1 such that Un��.n/ � 0 .mod n/.

Definition 2. We call a composite n a .b;P;Q/-challenge pseudoprime if it is simultaneously a base-b
Fermat pseudoprime, a .P;Q/-Lucas pseudoprime, and additionally satisfies �.n/D�1.

Note that �.n/D�1 means that D is not a square.
A PSW-challenge pseudoprime is then a .2; 1;�1/-challenge pseudoprime in our notation. To get a

Baillie-PSW pseudoprime, one replaces the Fermat test with a strong pseudoprime test and the Lucas test
with a strong Lucas test. The Lucas parameters are chosen as P D 1 and QD .1�D/=4, where D is the
first discriminant in the sequence f5;�7; 9;�11; : : : g D f.�1/k.2kC 1/gk�2 for which .D j n/D�1.

Certain parameter choices should be avoided as they make the challenge much less interesting. Specif-
ically, roots of unity create unwanted degenerate behavior. Thus we exclude b D˙1, and any .P;Q/ for
which the squarefree part of D is either �1 or �3, in addition to excluding D which are squares. The
reason is that the only quadratic extensions of Q that contain roots of unity are those corresponding to
the quadratic cyclotomic polynomials x2C 1 and x2˙xC 1.

We use `b.n/ when gcd.b; n/D 1 to denote the multiplicative order of b modulo n, i.e., the smallest
positive integer such that b`b.n/ D 1 .mod n/. When n D p is a prime, `b.p/ jp � 1 by Lagrange’s
theorem since p� 1 is the order of .Z=pZ/�.

Given a prime p, there exists a least positive integer ! such that U! � 0 .mod p/. We call ! the rank
of apparition of p with respect to the Lucas sequence .P;Q/, and we denote it by !.p/. It is also well
known that Up��.p/ � 0 .mod p/ and hence that !.p/ jp� �.p/.

Throughout, we will use log to represent the natural logarithm.
The function P .n/ returns the largest prime factor of n, and for asymptotic analysis we often use zO ,

where f D zO.g/ means there are positive constants N, c such that f .n/ � g.n/.log.4C g.n///c for
nonnegative functions f .n/ and g.n/ and for all n�N [vzGG03, Definition 25.8].

3. Algorithmic theory

The main idea of the tabulation comes from [Jae93; Ble96; JD14; SW17], but instead of tabulating
pseudoprimes to many bases, we have just a Fermat base and a Lucas base. For the Fermat case we state
known results for completeness, while for the Lucas case we state and prove the required results. We
follow the notation in [SW17] when possible.
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To find all .b;P;Q/-challenge pseudoprimes n<B, we construct n in factored form nDp1p2 � � �pt�1pt ,
where t is the number of prime divisors of n and pi �piC1. We call kDp1p2 � � �pi for i < t a preproduct.
Section 3.1 states theorems limiting the number of preproducts that need to be considered. Section 3.2
shows that pt may be found via a gcd computation when k is small and by a sieving search when k is
large.

3.1. Conditions on n D wk. We will frequently make use of the fact that if �.n/D�1 and nDwk then
�.w/D��.k/ by the multiplicative property of the Jacobi symbol.

Proposition 3 [Ble96, Theorem 3.20]. Let k � 1 be an integer and p a prime. If nD kp2 is a Fermat
pseudoprime to the base b then the following two conditions must be satisfied:

(1) bp�1 � 1 .mod p2/.

(2) bk�1 � 1 .mod p2/.

Proposition 4. Let k � 1 be an integer and p a prime. If nD kp2 is a .P;Q/-Lucas pseudoprime with
�.n/D�1 then the following two conditions must be satisfied:

(1) Up��.p/ � 0 .mod p2/.

(2) Uk��.k/ � 0 .mod p2/.

Proof. We start by noting that !.p2/ jp!.p/ and hence !.p2/ divides p.p � �.p// by the law of
repetition [Leh30, Theorem 1.6]. In addition, UnC1 � 0 .mod n/ by assumption so that UnC1 � 0

.mod p2/ and hence !.p2/ j nC 1. With p relatively prime to nC 1, it follows that !.p2/ divides
gcd.nC 1;p� �.p//, and we conclude that !.p2/ divides p� �.p/, which proves the first congruence.

For the second congruence, if k D 1 then Uk��.k/ D U0 and the congruence is satisfied. In the case
k > 1, we have !.p2/ divides nC 1D kp2C 1D kp2� �.k/ and p� �.p/. Thus !.p2/ divides

kp2
� �.k/� k.p� 1/.pC 1/D kp2

� �.k/� k.p2
� 1/D k � �.k/:

It follows that Uk��.k/ � 0 .mod p2/. �

In the case b D 2, these primes are known as Wieferich primes and in the .1;�1/ case they are known
as Wall–Sun–Sun primes. The paper [CDP97] suggests the following heuristic argument to understand
the rarity of these primes. Consider either bp�1� 1 or Up��.p/ in a base-p representation. The constant
coefficient is zero by Fermat’s little theorem and its analogue. The coefficient on p needs to be 0 to
satisfy the above congruence and we expect this to happen with probability 1=p. Summing over the
reciprocals of primes gives an expected count of such primes up to x as being on the order of log log x.
For challenge pseudoprimes, both congruences would have to be met simultaneously. The corresponding
count from the expected values is now a sum of 1=p2 and the infinite sum converges. So we expect the
count to be finite and we know of no examples of this behavior.

Either the Fermat case or the Lucas case can individually be checked up to a bound B in O.B1=2/

time and such primes may be then tested against the other condition. In the very unlikely scenario that
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such a prime does exist, we refer the reader to Section 6 of [Pin00] in order to account for square factors
dividing challenge pseudoprimes. Given how exceedingly rare we believe these are, we deal no further
with square factors and assume a squarefree challenge pseudoprime.

Proposition 5. Let nD p1p2 � � �pt be a .b;P;Q/-challenge pseudoprime,

LD lcm.`b.p1/; : : : ; `b.pt // and W D lcm.!.p1/; : : : ; !.pt //:

Then gcd.L;W /� 2, gcd.n;L/D 1, and gcd.n;W /D 1.

Proof. We have bn�1 � 1 .mod pi/ and hence n� 1 .mod `b.pi//. We also have UnC1 � 0 .mod pi/

and hence n � �1 .mod !.pi//. So `b.pi/ j .n � 1/ and !.pi/ j .nC 1/ and this holds for all pi j n.
Therefore, L j .n� 1/ and W j .nC 1/. Then gcd.L;W / � gcd.n� 1; nC 1/ � 2. Since n is relatively
prime to both nC 1 and n� 1, the other two gcds are as claimed. �

We call a preproduct k admissible if the gcd statements in Proposition 5 are satisfied. The concept
of admissibility is extremely useful in limiting the preproducts under consideration. As one example,
very few primes p with �.p/D 1 are admissible, since in this case `b.p/ and !.p/ both divide p� 1,
increasing the likelihood that gcd.`b.p/; !.p// > 2. In private correspondence, Paul Pollack gave a
heuristic argument suggesting around log.x/ such primes up to x.

3.2. Conditions on pt given k. Henceforth, we assume that k D p1 � � �pt�1 and that k is admissible.

Proposition 6. If nD kp is a .b;P;Q/-challenge pseudoprime then p is a divisor of

gcd.bk�1
� 1;Uk��.k//:

Proof. Recall that bn�1�1 .mod n/ and UnC1�0 .mod n/. We rewrite n�1Dkp�1Dk.p�1/Ck�1.
Since `b.p/ divides p� 1 and n� 1 we conclude `b.p/ j .k � 1/. Thus, p j .bk�1� 1/.

Similarly nC1D kp��.p/�.k/D k.p��.p//Ck�.p/��.p/�.k/D k.p��.p//C�.p/.k��.k//.
Since !.p/ divides p� �.p/ and nC 1 we conclude !.p/ j .k � �.k//. Thus, p jUk��.k/. �

Proposition 7. If nD kp is a .b;P;Q/-challenge pseudoprime then

p �

�
k�1 .mod L/;

�k�1 .mod W /;

where
LD lcm.`b.p1/; : : : ; `b.pt�1// and W D lcm.!.p1/; : : : ; !.pt�1//:

Proof. Since n D kp is a challenge pseudoprime, we have that bkp�1 � 1 .mod pi/, where pi is
any prime factor of k, and so `b.pi/ j .kp � 1/. Thus, p � k�1 .mod `b.pi//. We also know that
!.nC 1/ � 0 .mod n/, and hence that it is congruent to 0 modulo pi . Thus, !.pi/ j .kpC 1/ so that
p ��k�1 .mod !.pi//.

Now, `b.pi/ j .kp�1/ for all pi j k if and only if L j .kp�1/. A similar statement holds for W , which
completes the proof. �
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4. Algorithm

Our basic strategy follows that found in [SW17]. Find all pseudoprimes with t prime factors for each
t � 2 in turn. For a given t , we analyze all preproducts k with t � 1 prime factors. The question for each
preproduct is whether there exists a prime p that makes n D kp a challenge pseudoprime. For small
preproducts, this question can be answered with a gcd computation. For large preproducts, we instead
use a sieve.

Algorithm 1: Tabulating squarefree challenge pseudoprimes.

Input :bound B, positive integer b � 2, Lucas sequence parameters .P;Q/.
Output : list of n� B which are .b;P;Q/-challenge pseudoprimes.

1 Create an array of size
p

B with entry i containing the smallest prime factor of i ;
2 for primes p �

p
B do

3 Compute `b.p/, !.p/ and only keep prime p if gcd.`b.p/; !.p//� 2;
4 Update preproduct list;
5 for new preproducts k do
6 if k �X then
7 do GCD step;

8 else
9 do Sieve step;

The above suggests storing all such primes up to
p

B along with allowable preproducts, but space
constraints would prohibit this strategy in practice. Construction of composite preproducts may be done
with a combination of storing the 3-tuple .p; `b.p/; !.p// for small primes and creating them on the fly
for large primes, where the distinction is dependent upon space constraints. To efficiently create them,
one may use an incremental sieve or a segmented sieve to generate factorizations of consecutive integers
so that we may quickly compute `b.p/ from the factorization of p� 1 and !.p/ from the factorization
of p� �.p/.

To tabulate Baillie-PSW pseudoprimes, one tabulates all pseudoprimes for each D in the sequence.
Each discriminant performs a trial division so that successive computations will remove the next small
prime from consideration, making the algorithm progressively more efficient.

4.1. Algorithm details and correctness proof. We update the preproduct list as follows. For each ex-
isting admissible preproduct k 0, create a new preproduct k D k 0p and check that it is also admissible.
Recall that k D

Q
pi is admissible if gcd.L;W /� 2, where LD lcmi.`b.pi// and W D lcmi.!.pi//.

The GCD step involves computing and then factoring gcd.bk�1 � 1;Uk��.k//. For each prime p

dividing the gcd with p > P .k/, we build n D kp and apply the Fermat test and the Lucas test to
determine if it is a challenge pseudoprime. Importantly, both bk�1 and Uk��.k/ can be computed using
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a standard “double-and-add” strategy at a cost of O.log k/ arithmetic operations. With such large inputs,
it is vital to use a gcd algorithm asymptotically faster than the Euclidean algorithm. The solution is a
discrete fast Fourier transform method that requires zO.n/ operations on n-bit inputs [SZ04].

For the sieve step, we check primes p in the range pt�1 < p < B=k that fall into the arithmetic
progression given by Proposition 7. For each such prime, we again construct nD kp and apply the tests
directly to see if it is a challenge pseudoprime.

Theorem 8. Algorithm 1 correctly tabulates all squarefree .b;P;Q/-challenge pseudoprimes up to B.

Proof. Suppose that n�B is a .b;P;Q/-challenge pseudoprime. Then we can write nD p1 � � �pt D kpt .
By Proposition 5, gcd.L;W / � 2, and this is true whether L;W are computed for each of the pi

separately, for k, or for n as a whole. Thus, limiting our preproduct list to admissible k is valid. Note
that any prime p j k satisfies p � B1=2, so finding all primes up to B1=2 is sufficient, if space intensive.

Given k, it follows from Propositions 6 and 7 that pt is a divisor of gcd.bk�1� 1;Uk��.k// and that

pt �

�
k�1 .mod L/;

�k�1 .mod W /:

Note that k�1 exists modulo L and modulo W because gcd.n;L/D gcd.n;W /D 1. Thus, the algorithm
will find pt either through the GCD step or the Sieve step.

Finally, there is no chance of false positives because each potential pseudoprime is subjected to the
necessary Fermat and Lucas tests. �

5. Reciprocal sums involving order

The next two sections develop a proof of the asymptotic running time of Algorithm 1. This proof depends
on finding upper bounds on the sum over primesX

p

1

p � lcm.`b.p/; !.p//
:

Since such results are of independent interest, we spend some time here developing the appropriate theory.
A general observation is that in order to bound a reciprocal sum of a function f .n/, it is not sufficient
to know that f .n/ is usually large. Instead, we need a precise bound on how often f .n/� y for a range
of values y.

The first step is to prove a slight generalization of a known lemma. Our proof will follow closely the
version found as Lemma 3 in [Mur88]. Let b be the base of the Fermat test, and let ˇ D ˛=˛, where
˛; ˛ are the roots of x2 �PxCQ. In this context let � be the squarefree part of the discriminant of
x2 �Px CQ. Define � as the subgroup generated by ˇ of the unit group of the ring of integers of
Q.
p
�/, and let �p be the reduction of � modulo p.

Note that ˇn D 1 if and only if ˛n D ˛n if and only if Un D 0. Thus !.p/D j�pj.
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Lemma 9. Let � D hˇi be a nontorsion subgroup of Q.
p
�/. Then there are O.y2/ primes p such that

j�pj � y, where the constant depends on ˇ.

Proof. Let n be a positive integer less than y, and consider ˇn � 1. Since ˇ 2 Q.
p
�/, so is ˇn � 1.

Analyzing the numerator, it is straightforward to show that the numerator of ˇn� 1 is at most cn, where
c is a constant depending on P and Q.

Now, define S D fˇn W 0 � n � yg. If j�pj � y then two elements of S are equal modulo p, i.e.,
ˇn1 D ˇn2 .mod p/. Without loss of generality, assume n1 � n2 so that m D n1 � n2 is nonnegative.
Then ˇn1�n2 D ˇmD 1 .mod p/ with 0�m� y. Then thinking of ˇm�1 as an element of Q.

p
�/, we

have ˇm� 1D 1C 2

p
�, and ˇn1�n2 D 1 .mod p/ implies p divides the numerators of the rational

numbers 1 and 2.
Since � is nontorsion, ˇm � 1¤ 0. Thus ˇm � 1D 0 .mod p/ for only finitely many p, and this is

limited by the numerator being at most cm. For any given mDn1�n2�y, there are O.m/DO.y/ primes
dividing the numerators of both 1 and 2, where the constant depends on the choice of ˇ. Thus, the
total number of primes with j�pj � y is O.y2/. �

The next lemma will be essential in the analysis of the sieve step of Algorithm 1. The authors are
very grateful to an anonymous referee for suggesting the usage of the Cauchy–Schwarz inequality, thus
improving the bound from zO.X�2=3/ to zO.X�1/.

Lemma 10. We have X
X<p<B

gcd.`b.p/;!.p//�2

1

p � lcm.`b.p/; !.p//
D zO.X�1/;

where the sum is over primes and the implicit logarithm factor depends on B, b, P, Q.

Proof. We first utilize the fact that gcd.`b.p/; !.p//� 2 for all primes in the sum, which along with the
Cauchy–Schwarz inequality produces the upper bound

X
X<p<B

2

p � `b.p/!.p/
�

� X
X<p<B

1

p � `b.p/
2

�1
2
� X

X<p<B

1

p �!.p/2

�1
2

:

To bound these new sums, we break into two pieces depending on whether `b.p/ is greater or less than y

(similarly, whether !.p/ is greater than or less than y).
In the case where `b.p/ is small we will use partial summation, and thus require a bound on the count

of primes p with `b.p/� y. By [MS87, Lemma 1], we know there are O.y2/ primes with `b.p/� y.
Using partial summation, we then haveX

X<p<B
`b.p/�y

1

`b.p/
2
D

1

y2
�O.y2/�

Z y

1

O.t2/ � �2t�3 dt DO.1/CO.log y/

and so X
X<p<B
`b.p/�y

1

p � `b.p/
2
�

1

X

X
X<p<B
`b.p/�y

1

`b.p/
2
�O

�
log y

X

�
:
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In the case where `b.p/ is large we bound as follows:X
X<p<B
`b.p/>y

1

p � `b.p/
2
�

1

y2

X
X<p<B

1

p
�O

�
log B

y2

�
:

Balancing the two cases gives
P

X<p<B 1=.p`b.p/
2/D zO.X�1/.

We now shift to considering !.p/. The only quadratic cyclotomic polynomials are x2C 1 and x2˙

xC 1. Since our parameter choices result in � ¤ �1;�3, the only roots of unity in Q.
p
�/ are ˙1.

Since we assume D is not a square, we further know that ˇ ¤ ˙1. From this we conclude that hˇi
is nontorsion, and thus by Lemma 9 there are at most O.y2/ primes with !.p/ � y. Using the same
argument as above, we conclude

P
X<p<B 1=.p!.p/2/D zO.X�1/. The result then follows. �

6. Algorithm analysis

In this section we provide an asymptotic analysis of Algorithm 1. Recall the restrictions on parameter
choices laid out in Section 2. First we find the cost of the GCD step.

Theorem 11. The asymptotic cost of the GCD step for all k �X is zO.X 2/C zO.B1=2X 3=2/ bit opera-
tions and space for zO.B1=2X 1=2/ words.

Proof. As noted above, for each preproduct k �X we need to compute bk�1� 1 and Uk��.k/ at a cost
of zO.k/ bit operations, then apply a linear gcd algorithm to compute g.k/D gcd.bk�1� 1;Uk��.k// at
a cost of zO.k/ bit operations.

In factoring g.k/ we do not need a complete factorization; rather we need to find all primes p <

B=k that divide g.k/. Using the polynomial evaluation method of Pollard and Strassen (see [vzGG03,
Theorem 19.3]) this requires zO..B=k/1=2 � log g.k// D zO..Bk/1=2/ bit operations and O..Bk/1=2/

space.
The total cost in bit operations for all k �X is thenX

k�X

O.k/C zO.k/C zO..Bk/
1
2 /D zO.X 2/C zO.B

1
2 X

3
2 /: �

Next we find the cost of the Sieve step of Algorithm 1, broken down by the number of prime factors
in the preproduct.

Theorem 12. Restrict attention to the tabulation of .b;P;Q/-challenge pseudoprimes that are square-
free with t � 3 prime factors. Then the cost in bit operations of the Sieve step in Algorithm 1 is

zO.X�
1

t�1 B/:

Proof. By construction we have n D kpt , where k > X and pt is the largest prime factor dividing n.
Since k is admissible, gcd.`b.p/; !.p//� 2 for all p j k.

Let k 0 denote k=pt�1, the product of the smallest t � 2 primes in the preproduct. It follows that
X < k < B1�1=t and so X=k 0 < pt�1 < B1�1=t=k 0. As t increases, k 0 might become larger than X .
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In this case we use the alternate lower bound pt�1 > X 1=.t�1/. This lower bound is true because
we construct k so that its prime factors are increasing, and thus if pt�1 � X 1=.t�1/ then k � X , a
contradiction.

By Proposition 7 the size of the arithmetic progression to check for each preproduct k is given by
B=.k lcm.L;W //, where L and W are computed from the primes dividing k. Then the total cost in
arithmetic operations for all preproducts with t � 1 prime factors isX
X<k<B1�1=t

B

k lcm.L;W /
�

X
k0�X 1�1=.t�1/

X
X
k0
<pt�1<

B1�1=t

k0

B

k 0pt�1 lcm.`b.pt�1/; !.pt�1//

C

X
X 1�1=.t�1/<k0<B1�2=t

X
X 1=.t�1/<pt�1

B

k 0pt�1 lcm.`b.pt�1/; !.pt�1//
:

For both sums the key tool will be Lemma 10. In the first case we haveX
k0�X 1�1=.t�1/

X
X
k0
<pt�1<

B1�1=t

k0

B

k 0pt�1 lcm.`b.pt�1/;!.pt�1//
�

X
k0<X 1�1=.t�1/

B

k 0
� zO

�
k 0

X

�
D zO

�
B

X
1

t�1

�
;

while in the second case we haveX
X 1�1=.t�1/<k0<B1�2=t

X
X 1=.t�1/<pt�1

B

k 0pt�1 lcm.`b.pt�1/; !.pt�1//

�

X
X 1�1=.t�1/<k0<B1�2=t

B

k 0
� zO.X�

1
t�1 /D zO

�
B

X
1

t�1

�
:

Since these arithmetic operations are on integers of size at most B, the result follows. �

Note that we are only utilizing the order statements for one prime in the preproduct; utilizing more
seems quite difficult.

If the preproduct is prime and the pseudoprimes have two prime factors then the sum is easier to
analyze, namely X

X<q<B
gcd.`b.q/;!.q//�2

B

q lcm.`b.q/; !.q//
;

which is zO.B=X / by Lemma 10.
These two theorems form the main components of the analysis of Algorithm 1.

Theorem 13. The worst-case asymptotic running time of Algorithm 1, when restricted to constructing
pseudoprimes with t prime factors, is zO.B1�1=.3t�1// bit operations.

If we ignore the cost of factoring, the running time becomes zO.B1�1=.2t�1// bit operations when
constructing .b;P;Q/-challenge pseudoprimes with t prime factors.
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Proof. We balance the cost of the GCD step from Theorem 11 and the cost of the Sieve step from
Theorem 12. The bottleneck in the GCD step is factoring, and balancing B=X with B1=2X 3=2 gives
X D B1=5 and a running time with main term B4=5 in the case t D 2. In practice, computing gcds was
the bottleneck rather than factoring. If we assume this holds in general, the cost of the GCD step is
instead zO.X 2/. In the case t D 2, balancing X 2 with B=X gives X D B1=3 and a running time with
main term B2=3.

For larger t , balancing BX�1=.t�1/ with B1=2X 3=2 gives X D B.t�1/=.3t�1/ and a running time
of zO.B1�1=.3t�1// bit operations. Under the heuristic assumption that the cost of the GCD step is
instead O.X 2/, balancing with BX�1=.t�1/ instead gives X D B.t�1/=.2t�1/ and a running time of
zO.B1�1=.2t�1//.

Asymptotically smaller is the cost of finding all primes up to B1=2. Applying the Fermat test and
Lucas test to each composite constructed requires only O.log B/ arithmetic operations per number on
integers with O.log B/ bits. �

7. Computational notes and conclusion

We implemented Algorithm 1 and verified there are no .2; 1;�1/-challenge pseudoprimes (i.e., PSW-
challenge pseudoprimes) with two or three prime factors less than 280. Since there are no primes up to
240 which are simultaneously Wieferich and Wall–Sun–Sun, this claim includes composites with square
factors.

If such a challenge pseudoprime with two prime factors were to be found, one of the primes would be
admissible while satisfying �.p/D 1. It is notable that we found seven admissible primes with �.p/D 1

while generating primes less than 240:

p `2.p/ !.p/

61681 40 1542
363101449 171436 1059

4278255361 80 6684774
4562284561 120 147934
4582537681 160453 1428

26509131221 748 14176006
422013019339 290442546 2906

When k had two prime factors, we found the gcd.bk�1 � 1;Uk��.k// needed factoring more often.
However, the total time spent factoring gcds was negligible. Michael Jacobson suggested batch factoring
[Ber02] as one possibility for removing factoring as the bottleneck in the running time of Algorithm 1.

One of the reasons the .b;P;Q/ test is effective is because of conflicting divisibility conditions. The
Fermat condition requires divisibility with respect to n � 1. The Lucas condition (with �.n/ D �1)
requires divisibility with respect to nC 1. Seemingly, this conflict will happen independent of the bases
chosen. However, 2047 can be checked to be a .2; 23; 131/-challenge pseudoprime. The authors are
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curious how challenging such pseudoprimes are in general. Are there bases for which the subset-product
method of construction makes the challenge only moderately challenging?

The authors also note the influence on this problem of the number sought at the end of [Wil77].
That number is simultaneously a Carmichael number, a Lucas pseudoprime to all sequences of a fixed
discriminant, and has �.n/ D �1, so it would certainly be a challenge pseudoprime. Williams shows
that such a number has an odd number of prime factors, has more than three prime factors, and is not
divisible by 3.

We conclude by offering our own rewards for exhibiting challenge pseudoprimes:

� $20 for a .2; 1;�1/-challenge pseudoprime with an even number of prime factors.

� $20 for a .2; 1;�1/-challenge pseudoprime with exactly three prime factors.

� $6 for a .2; 1;�1/-challenge pseudoprime divisible by 3.
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