
THE OPEN BOOK SERIES 2

ANTS XIII
Proceedings of the Thirteenth
Algorithmic Number Theory Symposium

msp

Fast Jacobian arithmetic for hyperelliptic curves of genus 3
Andrew V. Sutherland

THE OPEN BOOK SERIES 2 (2019)

Thirteenth Algorithmic Number Theory Symposium
dx.doi.org/10.2140/obs.2019.2.425

msp

Fast Jacobian arithmetic for hyperelliptic curves of genus 3

Andrew V. Sutherland

We consider the problem of efficient computation in the Jacobian of a hyperelliptic curve of genus 3
defined over a field whose characteristic is not 2. For curves with a rational Weierstrass point, fast
explicit formulas are well known and widely available. Here we address the general case, in which we
do not assume the existence of a rational Weierstrass point, using a balanced divisor approach.

1. Introduction

Like elliptic curves, Jacobians of hyperelliptic curves over finite fields are an important source of finite
abelian groups in which the group operation can be made fully explicit and efficiently computed. This
has given rise to many cryptographic applications, including Diffie–Hellman key exchange and pairing-
based cryptography, and has also made it feasible to experimentally investigate various number-theoretic
questions related to the L-series of abelian varieties over number fields, including analogs of the Birch
and Swinnerton-Dyer conjecture, the Koblitz–Zywina conjecture, the Lang–Trotter conjecture, and the
Sato–Tate conjecture, each of which was originally formulated for elliptic curves but has a natural gen-
eralization abelian varieties of higher dimension. They can also be used to study analogs of the Cohen–
Lenstra heuristics [6] and related questions in arithmetic statistics that were originally formulated for
quadratic number fields but have a natural analog for quadratic function fields [1; 9].

Thanks to work by many authors, there are several algorithms available for Jacobian arithmetic in
genus 2 that have been heavily optimized (primarily with a view toward cryptographic applications).
For hyperelliptic curves of genus g > 2, fully general algorithms have been developed only in the last
decade, and fast explicit formulas are available only for curves that have a rational Weierstrass point. This
simplifying assumption makes it easier to encode elements of the Jacobian using unique representatives
of their divisor class as described by Mumford [25] and later exploited by Cantor [4], who gave the first
fully explicit algorithm for computing in the Jacobian of a hyperelliptic curve with a rational Weierstrass
point.

But most hyperelliptic curves do not have a rational Weierstrass point. Over finite fields the proportion
of such curves is roughly 1/(2g), and over a number field the proportion is zero (as an asymptotic

MSC2010: primary 14H40; secondary 11G10, 11G40, 14H25, 14K15.
Keywords: hyperelliptic curve, Jacobian, genus 3.

425

http://msp.org/obs
http://dx.doi.org/10.2140/obs.2019.2-1
http://dx.doi.org/10.2140/obs.2019.2.425
http://msp.org

426 ANDREW V. SUTHERLAND

limit taken over curves of increasing height). In particular, many arithmetically interesting examples of
hyperelliptic curves do not have any rational Weierstrass points. This includes, for example, all 19 of the
modular curves X0(N) that are hyperelliptic.1

In this article we treat hyperelliptic curves of genus g = 3; in order to simplify matters, we assume
the field characteristic is not 2. Our formulas are based on the balanced divisor approach introduced
by David J. Mireles Morales in his (unpublished) thesis [24] and presented by Galbraith, Harrison, and
Mireles Morales in [10]. The basic idea is to represent divisors of degree 0 as the difference of an effective
divisor of degree g and an effective divisor D∞ whose support is “balanced” over two points at infinity
(see Section 3 for further details). This is one of two approaches to generalizing Cantor’s algorithm; the
other is to work in what is known as the infrastructure of a “real” hyperelliptic curve [20; 32]. We find
the balanced divisor approach easier to work with, and we expect that it is likely to be faster, as has
proven to be the case for genus 2 curves [19]. However, the odd genus case is more challenging because
one cannot make D∞ perfectly balanced when g is odd, and this introduces complications that do not
appear when g is even. This makes genus 3 an interesting test case for the balanced divisor approach.

Another reason to be particular interested in the genus 3 case, and the main motivation for this work, is
that group computations in the Jacobian play a small but crucial role in efficiently computing the L-series
of a genus 3 curve. Recall that for a curve C/Q we may define its L-series as an Euler product

L(C, s) :=
∏

p

L p(p−s)−1,

where L p ∈ Z[T] is an integer polynomial of degree at most 2g; for primes p of good reduction (all but
finitely many), the degree is exactly 2g and L p(T) is the numerator of the zeta function

ZC p(T) := exp
(∞∑

r=1

#C p(Fpr)
T r

r

)
=

L p(T)
(1− T)(1− pT)

,

where C p denotes the reduction of C modulo p. Using the average polynomial-time algorithm described
in [15; 17; 18], for hyperelliptic curves of genus g one can simultaneously compute L p(T) mod p at
all primes p ≤ N of good reduction in time Õ(g3 N log3 N). In principle one can use a generalization
of the algorithm in [15] to compute L p(T) modulo higher powers of p sufficient to determine L p ∈

Z[T] (in genus 3, computing L p(T) mod p2 suffices for p > 144), but this requires a more intricate
implementation and is much more computationally intensive than computing L p(T) mod p.

Alternatively, as described in [7; 21], for curves of genus 3 one can use Õ(p1/4) group operations
in the Jacobian of C p and its quadratic twist to uniquely determine L p ∈ Z[T] using generic group
algorithms [33; 34]. Within the practical range of computation, say N ≤ 230, the cost of doing this is
negligible compared to computing L p(T) mod p, provided that the group operations can be performed
efficiently. This is the goal of the present work.

1This follows from results of Ogg [28; 29], who both determined the N for which X0(N) is hyperelliptic and gave a criterion
for rational Weierstrass points on X0(N) that allows one to rule out the existence of any such points on the hyperelliptic X0(N).

FAST JACOBIAN ARITHMETIC FOR HYPERELLIPTIC CURVES OF GENUS 3 427

The formulas presented here played a key role in the results described in [16], which generalizes the
algorithm in [18] to treat genus 3 curves that are hyperelliptic over Q, but not necessarily over Q (they may
be degree 2 covers of pointless conics). The output of this algorithm is L p(T)L p(−T) mod p, and, as
explained in [18, §7], one can again use Õ(p1/4) group operations in the Jacobian to uniquely determine
L p ∈ Z[T] given this information. As can be seen in Table 1 of [16], which shows timings obtained
using a preliminary version of the formulas presented in this article, the time spent on group operations
is negligible compared to the time spent computing L-polynomials modulo p (less than a tenth). This
was not true of initial attempts that relied on a generic implementation of the balanced divisor approach
included in Magma [3], which has not been optimized for hyperelliptic curves of genus 3.

The explicit formulas we obtain here are nearly as efficient as the best known formulas for genus 3
hyperelliptic curves that have a rational Weierstrass point [5; 8; 13; 12; 22; 27; 36], which have been
extensively optimized.2 The difference is about 10 or 20 percent, comparable to the difference seen when
using explicit formulas based on the balanced divisor approach for genus 2 curves without a rational
Weierstrass point [2; 10]. This suggests that while the implementation is slightly more complicated, the
balanced divisor approach is just as effective in odd genus as it is in even genus.

2. Background

In this section we recall some basic facts about hyperelliptic curves and their Jacobians.

2A. Hyperelliptic curves. A (smooth, projective, geometrically integral) curve C over a field k is said
to be hyperelliptic if its genus g is at least 2 and it admits a 2-1 morphism φ : C→ P1 (the hyperelliptic
map). The map φ determines an automorphism P→ P of C , the hyperelliptic involution, which fixes the
fibers of φ and acts trivially only at ramification points. The fixed points of the hyperelliptic involution
are precisely the Weierstrass points of C (the points P for which there exists a nonconstant function
on C with a pole of order less than g + 1 at P and no other poles). The Riemann–Hurwitz formula
implies that a hyperelliptic curve of genus g has exactly 2g+ 2 Weierstrass points. Some authors require
the hyperelliptic map φ to be defined over k (rationally hyperelliptic), while others only require it to
be defined over k (geometrically hyperelliptic); we shall assume the former. When k is a finite field
the distinction is irrelevant because P1

k has no nontrivial twists (these would be genus 0 curves with no
rational points, which do not occur over finite fields).

Provided char(k) 6= 2, which we henceforth assume, every hyperelliptic curve C/k has an affine model
of the form

y2
= f (x),

with f ∈ k[x] separable of degree 2g+1 or 2g+2. The hyperelliptic map φ sends each affine point (x, y)
on C to (x : 1) on P1, and the hyperelliptic involution swaps (x, y) and (x,−y). The projective closure

2Indeed, our addition formula uses exactly the same number of field multiplications as the formula in [5, Algorithm 14.52]
for genus 3 curves with a rational Weierstrass point in odd characteristic (this formula has since been improved).

428 ANDREW V. SUTHERLAND

of the model y2
= f (x) has a singularity at infinity; the curve C is obtained by desingularization. Equiva-

lently, C is the smooth projective curve with function field k(C) := k[x, y]/(y2
− f (x)); the field k(C) is a

quadratic extension of the rational function field k(x)' k(P1), and the inclusion map φ∗ : k(P1) ↪→ k(C)
corresponds to the hyperelliptic map φ.

When deg f = 2g + 1, the model y2
= f (x) has a unique rational point at infinity that is also a

Weierstrass point. Conversely, if C has a rational Weierstrass point, we can obtain a model of the form
y2
= f (x) with deg f = 2g+ 1 by moving this point to infinity. We can then make f monic via the

substitutions x 7→ lc(f)x and y 7→ lc(f)g y, after dividing both sides of y2
= f (x) by lc(f)2g.

If C does not have a rational Weierstrass point, then we necessarily have deg f = 2g+ 2, and there
are either 0 or 2 rational points at infinity, depending on whether the leading coefficient of f is a square
in k× or not. Provided that C has some rational point P , moving this point to infinity ensures that there
are two rational points at infinity (the other is P 6= P). This makes the leading coefficient of f a square,
and we can then make f monic by replacing y with

√
lc(f)y and dividing through by lc(f).

In summary, if C is a hyperelliptic curve with a rational point, then it has a model of the form y2
= f (x)

with f monic of degree 2g+1 or 2g+2. The former is possible if and only if C has a rational Weierstrass
point, and the latter can always be achieved provided that C has a rational point that is not a Weierstrass
point. If k is a finite field of cardinality q , the Weil bound #C(k)≥ q + 1− 2g

√
q guarantees that C has

a rational point whenever q > 4g2, and it is guaranteed to have a rational point that is not a Weierstrass
point when q > 4g2

+ 2g+ 2. For g = 3 this means that if k is a finite field of odd characteristic and
cardinality at least 47, then C has a model of the form y2

= f (x) with f monic of degree 8; in what
follows, we shall assume that the hyperelliptic curves C we work with have such a model.

Remark 2.1. In the literature, hyperelliptic curves with a model y2
= f (x) that has two rational points

at infinity are sometimes called “real” hyperelliptic curves (those with one rational point at infinity are
called “imaginary”). We avoid this abuse of terminology as it refers to the model and is not an intrinsic
property of the curve. As noted above, in the setting of interest to us every hyperelliptic curve can be
viewed as a “real” hyperelliptic curve.

2B. Divisor class groups of hyperelliptic curves. The Jacobian of a curve C/k of genus g is an abelian
variety Jac(C) of dimension g that is canonically determined by C ; see [23] for a formal construction.
Describing Jac(C) as an algebraic variety is difficult, in general, but we are only interested in its prop-
erties as an abelian group. Provided that C has a k-rational point, then by [23, Theorem 1.1], we may
functorially identify the group Jac(C) with the divisor class group Pic0(C), the quotient of the group
Div0(C) of divisors of degree 0 by its subgroup of principal divisors. We recall that a divisor on C can
be defined as a formal sum D =

∑
n P P over points P ∈ C(k) with only finitely n P nonzero; the degree

of D is deg(D) :=
∑

n P . A divisor is said to be principal if it is of the form div(α) :=
∑

P ordP(f)P
for some function α ∈ k(C); such divisors necessarily have degree 0.

We are interested in the k-rational points of Jac(C). Under our assumption that C has a k-rational
point, these correspond to divisor classes [D] of k-rational divisors D ∈Div0(C) (this means D=

∑
n P P

FAST JACOBIAN ARITHMETIC FOR HYPERELLIPTIC CURVES OF GENUS 3 429

is fixed by Gal(k/k), even though the points P in its support need not be). In order to describe the divisor
classes [D] explicitly, we now assume that C is a hyperelliptic curve that has a rational point, and fix a
hyperelliptic map φ : C→ P1. We say that a point P on C is affine if it lies above an affine point (x : 1)
on P1 and we call P a point at infinity if lies above the point (1 : 0) on P1.

Recall that a divisor D =
∑

n P P is effective if n P ≥ 0 for all P; an effective divisor can always be
written as

∑
i Pi , where the Pi need not be distinct.

Definition 2.2. An effective divisor D =
∑

Pi on a hyperelliptic curve C is semireduced if Pi 6= P j for
any i 6= j ; a semireduced divisor whose degree does not exceed the genus of C is said to be reduced.

Lemma 2.3. Let C/k be a hyperelliptic curve that has a rational point. Every rational divisor class [D]
in Pic0(C) can be represented by a divisor whose affine part is semireduced.

Proof. By adding a suitable principal divisor to D if necessary, we can assume the affine part D0 of D is
effective. If D0 is not semireduced it can be written as D1+ D1+ D2 with D2 rational and semireduced;
if we now take a principal divisor E on P1 with affine part φ∗D1 and subtract φ∗E from D we obtain a
linearly equivalent rational divisor with affine part D2 (here φ : C→ P1 is the hyperelliptic map). �

Let us now fix a model y2
= f (x) for our hyperelliptic curve C that has a rational point at infinity.

A semireduced affine divisor D =
∑

Pi can be compactly described by its Mumford representation
div[u, v]: let Pi = (xi , yi), define u(x) :=

∏
i (x − xi), and let v be the unique polynomial of degree

less than deg u for which f − v2 is divisible by u. As explained in [25, §1], this amounts to requiring
that v(xi)= yi with multiplicity equal to the multiplicity of Pi in D; when the xi are distinct v can be
computed via Lagrange interpolation in the usual way. If D is a rational divisor, then u, v ∈ k[x].

Conversely, suppose we are given u, v ∈ k[x] with u monic, deg v < deg u, and f −v2 is divisible by u.
Write u(x)=

∏
i (x − xi), define Pi := (xi , v(xi)); the affine points Pi lie in C(k) because u | (f − v2)

implies f (xi)− v(xi)
2 is divisible by u(xi)= 0, and therefore v(xi)

2
= f (xi). We now define

div[u, v] :=
∑

i

Pi .

The effective divisor div[u, v] is rational, since u, v ∈ k[x], and it is semireduced: if Pi = P j , then we
must have xi = x j and v(xi) = −v(x j) = −v(xi) = 0, and if i 6= j , then xi is a double root of u and
of v, and therefore also a double root of f , but this is impossible since f is separable. There is thus a
one-to-one correspondence between semireduced affine divisors and Mumford representations div[u, v],
and div[u, v] is rational if and only if u, v ∈ k[x].

Let us now fix an effective divisor D∞ of degree g supported on rational points at infinity; if C has
one rational point P∞ at infinity we may take D∞ = g P∞, and if C has two rational points P∞ and P∞
at infinity we may take D∞ = dg/2eP∞+bg/2cP∞.

Proposition 2.4. Let C be a hyperelliptic curve of genus g, and let D∞ be an effective divisor of degree g
supported on rational points at infinity. Each rational divisor class in Pic0(C) can be uniquely written
as [D0− D∞], where D0 is an effective rational divisor of degree g whose affine part is reduced.

430 ANDREW V. SUTHERLAND

Proof. See Proposition 1 in [10], which follows from Propositions 3.1 and 4.1 of [30] (provided the
support of D∞ is rational, which we have assumed). �

Remark 2.5. When g is even it is not actually necessary for the points at infinity to be rational; the
divisor D∞ = (g/2)(P∞+ P∞) will be rational in any case. Indeed, as astutely observed in [10], when
C has even genus and no rational Weierstrass points, it is computationally advantageous to work with a
model for C that does not have rational points at infinity. But this will not work when the genus is odd
because we do need D∞ to be rational (Proposition 2.4 is false otherwise).

3. Hyperelliptic divisor class arithmetic using balanced divisors

In this section we summarize the general formulas for Jacobian arithmetic using balanced divisors. Our
presentation is based on [10], but we are able to make some simplifications by being more specific about
our choice of D∞ and unraveling a few definitions (we also introduce some new notation). We refer the
reader to [10; 24] for details and proofs of correctness. In the next section we specialize these formulas
to the case g = 3 and optimize for this case.

Let us first fix a model y2
= f (x) for a hyperelliptic curve C/k of genus g with rational points

P∞ := (1 : 1 : 0) and P∞ := (1 : −1 : 0) at infinity (in weighted projective coordinates), and let us define
D∞ := dg/2eP∞+bg/2cP∞. This implies that f is monic of degree 2g+ 2; as noted above, this can
be assumed without loss of generality if C has any rational points that are not Weierstrass points. The
case where C has a rational Weierstrass point is better handled by existing algorithms in any case, so the
only real constraint we must impose is that C have a rational point.3 The assumption that char(k) 6= 2 is
made purely for the sake of convenience; the algorithms in [10; 24] work in any characteristic.

Proposition 2.4 implies that we can uniquely represent each rational divisor class in Pic0(C) by a triple
(u, v, n), where div[u, v] is a rational reduced affine divisor in Mumford notation (so u, v ∈ k[x] satisfy
deg v < deg u, with u a monic divisor of f −v2) with deg u≤ g, and n is an integer with 0≤ n≤ g−deg u).
The triple (u, v, n) corresponds to the divisor

div[u, v, n] := div[u, v] + n P∞+ (g− deg u− n)P∞− D∞.

Whenever we write div[u, v, n] we assume that u, v, n are as above. In this notation

div[1, 0, dg/2e] = div[1, 0] + dg/2eP∞+ (g− 0−dg/2e)P∞− D∞ = 0

is the unique representative of the trivial divisor class in Pic0(C).
At intermediate steps in our computations we shall need to work with divisors whose affine parts

are semireduced but not reduced. Given a semireduced affine divisor div[u, v] with deg u ≤ 2g and an

3The assumption that C has a rational point is required by any algorithm that represents rational elements of Pic0(C) using
rational divisors (even though this is not always explicitly stated in the literature). As observed in [31, p. 287], without this
assumption a rational divisor class need not contain any rational divisors.

FAST JACOBIAN ARITHMETIC FOR HYPERELLIPTIC CURVES OF GENUS 3 431

integer n with 0≤ n ≤ 2g− deg u, we define

div[u, v, n]∗ := div[u, v] + n P∞+ (2g− deg u− n)P∞− 2D∞,

and whenever we write div[u, v, n]∗ we assume that u, v, n are as above (in particular, deg u+ n ≤ 2g).
We begin by precomputing the unique monic polynomial V for which deg(f −V 2)≤ g. This auxiliary

polynomial is determined by the top g+ 1 coefficients of f and will be needed in what follows.

Algorithm (Precompute). Given f (x)= x2g+2
+ f2g+1x2g+1

+· · ·+ f1x+ f0, compute the monic V (x)
for which deg(f − V 2)≤ g.

1. Set Vg+1 := 1.

2. For i = g, g− 1, . . . , 0 compute c := fg+1+i −
∑g+1

j=i+1 V j Vg+1+i− j and set Vi := c/2.

3. Output V (x) := xg+1
+ Vgxg

+ · · ·+ V1x + V0.

We now give the basic algorithm for composition, which is essentially the same as the first step in
Cantor’s algorithm [4]. In all of our algorithms, when we write a mod b with a, b ∈ k[x] and b nonzero,
we denote the unique polynomial of degree less than deg b that is congruent to a modulo b (the zero
polynomial if deg b = 0), and for any divisors D1, D2 ∈ Div(C) we write D1 ∼ D2 to denote linear
equivalence (meaning that D1− D2 is principal).

Algorithm (Compose). Given div[u1, v1, n1] and div[u2, v2, n2], compute div[u3, v3, n3]
∗ such that

div[u1, v1, n1] + div[u2, v2, n2] ∼ div[u3, v3, n3]
∗.

1. Use the Euclidean algorithm to compute monic w := gcd(u1, u2, v1+v2)∈ k[x] and c1, c2, c3 ∈ k[x]
such that w = c1u1+ c2u2+ c3(v1+ v2).

2. Let u3 := u1u2/w
2 and let v3 := (c1u1v2+ c2u2v1+ c3(v1v2+ f))/w mod u3.

3. Output div[u3, v3, n1+ n2+ degw]∗.

To reduce the divisor div[u3, v3, n3]
∗ output by Compose to the unique representative of its divisor

class we proceed in two steps. The first is to repeatedly apply the algorithm below to obtain a divisor
whose affine part is semireduced with degree at most g+ 1.

Algorithm (Reduce). Given div[u1, v1, n1]
∗ with deg u1 > g+1, compute div[u2, v2, n2]

∗ with deg u2≤

deg u1− 2 such that

div[u1, v1, n1]
∗
∼ div[u2, v2, n2]

∗.

1. Let u2 be (f − v2
1)/u1 made monic and let v2 := −v1 mod u2.

2. If deg v1= g+1 and lc(v1)= 1, then let δ := deg u1−(g+1); else if deg v1= g+1 and lc(v1)=−1,
then let δ := g+ 1− deg u2; else let δ := (deg u1− deg u2)/2.

3. Output div[u2, v2, n1+ δ].

432 ANDREW V. SUTHERLAND

Reduce decreases the degree of the affine part of its input by at least 2, so at most b(g− 1)/2c calls
to Reduce suffice to reduce the output of Compose to a linearly equivalent divisor whose affine part has
degree at most g+ 1. Having obtained a divisor div[u, v, n]∗ with deg u ≤ g+ 1, we need to compute
the unique representative of its divisor class. Now if dg/2e ≤ n ≤ d3g/2e− deg u, then deg u ≤ g and

div[u, v, n]∗ = div[u, v] + (n−dg/2e)P∞+ (d3g/2e− deg u− n)P∞+ D∞− 2D∞,

so we can simply take div[u, v, n−dg/2e] as our unique representative. The following algorithm “adjusts”
div[u, v, n]∗ until n is within the desired range; it can be viewed as composition with a principal divisor
supported at infinity followed by reduction.

Algorithm (Adjust). Given div[u1, v1, n1]
∗ with deg u1 ≤ g+ 1 compute div[u2, v2, n2] such that

div[u1, v1, n1]
∗
∼ div[u2, v2, n2].

1. If n1 ≥ dg/2e and n1 ≤ d3g/2e− deg u1, then output div[u1, v1, n1−dg/2e] and terminate.

2. If n1<dg/2e, let v̂1 :=v1−V+(V mod u1), let u2 be (f−v̂2
1)/u1 made monic, let v2 :=−v̂1 mod u2,

and let n2 := n1+ g+ 1− deg u2.

3. If n1≥dg/2e, let v̂1 :=v1+V−(V mod u1), let u2 be (f−v̂2
1)/u1 made monic, let v2 :=−v̂1 mod u2,

and let n2 := n1+ deg u1− (g+ 1).

4. Output Adjust(div[u2, v2, n2]
∗).

The polynomial u2 computed in step 2 or 3 of Adjust has degree at most g (this is guaranteed by
deg(f − V 2) ≤ g and deg v1 < deg u1). If deg u1 ≤ g, then Adjust either terminates or outputs a value
for n2 that is strictly closer to the desired range than n1, and if deg u1 = g+ 1, then Adjust outputs a
divisor whose affine part has strictly lower degree with n2 no further from the desired range than n1.
Thus, it always makes progress, and the total number of nontrivial calls to Adjust (those that do not
terminate in step 1) is at most dg/2e+ 1.

We now give the general algorithm for adding rational divisor classes.

Algorithm (Addition). Given div[u1, v1, n1], div[u2, v2, n2], compute div[u3, v3, n3] ∼ div[u1, v1, n1]+

deg[u2, v2, n2].

1. Set div[u, v, n]∗← Compose(div[u1, v1, n1, div[u2, v2, n2]).

2. While deg u > g+ 1, set deg[u, v, n]∗← Reduce(div[u, v, n]∗).

3. Output Adjust(div[u, v, n]∗).

Note that Addition is fully general; the supports of its inputs may overlap, and it can be used with
hyperelliptic curves of any genus, so long as the curve has a model with two rational points at infinity
(always true over a sufficiently large finite field).

Let us now analyze the behavior of Addition in the typical case (which will be overwhelmingly dom-
inant when k is a large finite field). We generically expect divisors to have affine parts of degree g, and

FAST JACOBIAN ARITHMETIC FOR HYPERELLIPTIC CURVES OF GENUS 3 433

even when the two inputs to Addition coincide, we expect the GCD computed in step 1 of Compose to
be trivial.

More specifically, we expect the following to occur in a typical call to Addition:

• The inputs will satisfy deg u1 = deg u2 = g, deg v1 = deg v2 = g− 1, and n1 = n2 = 0.

• The divisor div[u, v, n]∗ output by Compose will have deg u = 2g, deg v = 2g− 1, and n = 0.

• Each call to Reduce will reduce the affine degree by 2 and increase n by 1.

• The input to Adjust will have deg u = g+ 1 if g is odd, deg u = g if g is even, and n = bg/2c.

• If g is even Adjust will simply set n to 0 and return. If g is odd Adjust will reduce the degree of u
from g+ 1 and increase n by 1 in the initial call, and then set n to 0 and return.

It is worth comparing this to Cantor’s algorithm for hyperelliptic curves with a rational Weierstrass
point, which instead uses a model y2

= f (x) for C with deg f = 2g+ 1. If we remove the steps related
to maintaining the integers n, all of which have negligible cost, the algorithms Compose and Reduce are
identical to those used in Cantor’s algorithm; the only difference is that in Cantor’s algorithm there is
no analog of Adjust. But note that in the typical odd genus case, Cantor’s algorithm will need to call
Reduce when deg u reaches g+ 1, and this is essentially equivalent to calling Adjust in the typical odd
genus case.

In summary, the asymptotic complexity of Addition in the typical case is effectively identical to that
of Cantor’s algorithm; the only meaningful difference is that the degree of the curve equation is 2g+ 2
rather than 2g+ 1, and this increases the complexity of various operations by a factor of 1+ O(1/g).

We conclude this section with an algorithm to compute the additive inverse of a divisor class.4

Algorithm (Negation). Given div[u1, v1, n1], compute div[u2, v2, n2] ∼ − div[u1, v1, n1].

1. If g is even, output div[u1,−v1, g− deg u1− n1] and terminate.

2. If n1 > 0, output div[u1,−v1, g− deg u1− n1+ 1] and terminate.

3. Output Adjust(div[u1,−v1, d3g/2e− deg u1+ 1]∗).

Perhaps surprisingly, negation is the one operation that is substantially more expensive when the genus
is odd (it is trivial when the genus is even). In the typical case we will have n1 = 0 and the call to Adjust
will need to perform a reduction step.

4. Explicit formulas in genus 3

We now specialize to the case g = 3 and give explicit straight-line formulas for the two most common
cases of Addition: adding divisors with affine parts of degree 3 and disjoint support, and doubling a
divisor with affine part of degree 3. We also give a formula for Negation in the typical case.

4We correct a typo that appears in step 4 of the divisor inversion algorithms given in [10; 24] (m1 should be n1).

434 ANDREW V. SUTHERLAND

We assume the curve equation is y2
= f (x) where f (x)=

∑8
i=0 fi xi is monic of degree 8 (so f8 = 1);

we also assume that f7 = 0, which can be achieved via the linear substitution x→ x− f7/8. This implies
that our precomputed monic polynomial V =

∑4
i=0 Vi x i with deg(f − V 2)≤ 3 has V3 = 0.

4A. Addition in the typical case. Unraveling the execution of Addition in the typical case for g = 3
with deg u1 = deg u2 = 3, and gcd(u1, u2)= 1 yields the following algorithm.

Algorithm (TypicalAddition, preliminary version). Given div[u1, v1, 0] and div[u2, v2, 0] with deg u1 =

deg u2 = 3 and gcd(u1, u2)= 1, compute

div[u5, v5, n5] ∼ div[u1, v1, 0] + div[u2, v2, 0].

1. Compute c1, c2 ∈ k[x] such that c1u1+ c2u2 = 1.

2. Compute u3 := u1u2 and v3 := (c1u1v2+ c2u2v1) mod u3 (we have deg u3 = 6 and n3 = 0).

3. Let u4 be (f − v2
3)/u3 made monic, and let v4 := −v3 mod u4 (we have deg u4 = 4 and n4 = 1).

4. Let v̂4 := v4− V + (V mod u4), let u5 be (f − v̂2
4)/u4 made monic, and let v5 := −v̂4 mod u5.

5. Output div[u5, v5, 3− deg u5].

As first proposed by Harley in [11; 14] for genus 2 curves and subsequently exploited and generalized
by many authors, the straight-line program obtained by unrolling the loop in Cantor’s algorithm [4] in
the typical case can be optimized in two ways. The first is to avoid the GCD computation in step 1 by
applying the Chinese remainder theorem to the ring k[x]/(u3)= k[x]/(u1u2)' k[x]/(u1)× k[x]/(u2)

to compute
v3 = ((v2− v1)u−1

1 mod u2)u1+ v1,

where u−1
1 denotes the inverse of u1 modulo u2 (here we use gcd(u1, u2) = 1). This expression for v3

has degree at most 5, which is less than deg u3 = 6, so there is no need to reduce modulo u1u2.
The second optimization is to combine composition with the reduction step, in which we compute u4

as (f − v2
3)/u3 made monic and v4 := −v3 mod u4. If we put s̃ := (v2− v1)u−1

1 mod u2, then u4 is

f − (s̃u1+ v1)
2

u1u2
=
(f − v2

1)/u1− s̃(s̃u1+ 2v1)

u2

made monic. All the divisions are exact and u4 has degree at most 4, so we only need know the top 3
coefficients of w := (f − v2

1)/u1 = x5
− u12x4

+ (f6+ u2
12− u11)x3

+ · · · , which do not depend on v1

(here we have used f7 = 0). To simplify matters we assume deg s = 2 (which will typically be true), so
that deg u4 = 4. If we let s be s̃ made monic and put c := 1/ lc(s̃) and z := su1, then

u4 = (s(z+ 2cv2)− c2w)/u2 and v4 =−v1− c−1(z mod u4).

These optimizations are exactly the same as those used to obtain existing explicit formulas that op-
timize Cantor’s algorithm for hyperelliptic curves of genus 3 with a rational Weierstrass point using
Harley’s approach; see [36, Algorithm 3], for example. We now discuss a further optimization that is

FAST JACOBIAN ARITHMETIC FOR HYPERELLIPTIC CURVES OF GENUS 3 435

specific to the balanced divisor approach. Rather than computing v4, we may proceed directly to the
computation of v̂4 := v4− V + (V mod u4), which is needed to compute u5 as (f − v̂2

4)/u4 made monic.
Now V and u4 are monic of degree 4, so −V + (V mod u4)=−u4 does not depend on V , and

ṽ4 := −v̂4 = u4− v4 = u4+ v1+ c−1(z mod u4)

is a monic polynomial of degree 4 that we may use to compute u5 as (f − ṽ2
4)/u4 made monic and

v5 = ṽ4 mod u5.
There is a notable difference here with the formulas used for genus 3 hyperelliptic curves with a

rational Weierstrass point, where the corresponding expression (f − v2
4)/u4 is already monic, since

deg v4 ≤ 3. But (f − ṽ2
4)/u4 is not monic; its leading coefficient is −2ṽ43, where ṽ43 denotes the cubic

coefficient of ṽ4. Expanding the equations for u4, v4, ṽ4 above yields the identity

ṽ43 = u12− u22+ c+ 2s1+ c−1(u21+ s1(s1− u22)− s0). (1)

We now give an optimized version of TypicalAddition that forms the basis of our explicit formula.

Algorithm (TypicalAddition). Given div[u1, v1, 0] and div[u2, v2, 0] with deg u1 = deg u2 = 3 and
gcd(u1, u2)= 1, compute

div[u5, v5, n5] ∼ div[u1, v1, 0] + div[u2, v2, 0].

1. Compute w := (f − v2
1)/u1, and s̃ := (v2− v1)u−1

1 mod u2.

2. Compute c := lc(t)−1 and s = cs̃ and z := su1 (require deg s = 2).

3. Compute u4 := (s(z+ 2cv1)− c2w)/u2 and ṽ4 := v1+ u4+ c−1(z mod u4).

4. Compute u5 := (2ṽ43)
−1(ṽ2

4 − f)/u4 and v5 := ṽ4 mod u5 (require ṽ43! = 0).

5. Output div[u5, v5, 3− deg u5].

When expanding TypicalAddition into an explicit formula there are several standard optimizations
that one may apply. These include the use of Karatsuba and Toom style polynomial multiplication, fast
algorithms for exact division, the use of Bezout’s matrix for computing resultants, and Montgomery’s
method for combining field inversions. The last is particular relevant to us, as we require three inversions:
the inverse of the resultant r := Res(u1, u2) used to compute u−1

1 mod u2, as well as the inverses of lc(t)
and ṽ43. We may use (1) to calculate ṽ43 earlier than it is actually needed so that we can invert all
three quantities simultaneously using Montgomery’s trick: compute (r lc(t)ṽ43)

−1 using a single field
inversion, and then use multiplications to obtain the desired inverses. We omit the details of these well
known techniques and refer the interested reader to [36, §4].

An explicit formula that implements TypicalAddition appears on pages 438–440 and also in the on-
line supplement for this article. It includes a single exit point where we may revert to the general
Addition algorithm if any of our requirements for typical divisors are not met: it verifies the assumptions

http://msp.org/obs/2019/2-1/obs-v2-n1-x27-FormulasForAlgorithms.zip
http://msp.org/obs/2019/2-1/obs-v2-n1-x27-FormulasForAlgorithms.zip

436 ANDREW V. SUTHERLAND

gcd(u1, u2) = 1, deg s = 2, and ṽ43 6= 0. This makes it unnecessary to verify gcd(u1, u2) = 1 before
applying the formula.

We give field operation counts for each step in the form [i I +m M+a A], where i denotes the number
of field inversions, m is the number of field multiplications (including squarings), and a is the number of
additions or subtractions of field elements. The count a includes multiplications by 2, and also divisions
by 2, which can be efficiently implemented using a bit-shift (possibly preceded by an integer addition)
and costs no more than a typical field addition. The divisions by 2 arise primarily in places where we
have used Toom style multiplications and could easily be removed if one wished to adapt the formula to
characteristic 2 by switching to Karatsuba.

The total cost of the formula for TypicalAddition is I + 79M + 126A; this is within 10 or 20 percent
of the I + 67M + 108A cost of the best known formula for addition on genus 3 hyperelliptic curves
with a rational Weierstrass point [27] (the exact ratio depends on the cost of field inversions relative to
multiplications).5 Aside from increasing the degree of f , the main difference in the two formulas is the
need to compute and invert v̂43, and to then multiply by this inverse to make u5 monic. By comparison,
the cost of a naïve implementation of the unoptimized version of TypicalAddition that uses standard
algorithms for multiplication, division with remainder, and GCD (as in [35, Chapter 1], for example),
in which we do not count multiplications or divisions by 1, is 5I + 275M + 246A [26, p. 45]. Our
optimizations thus improve performance by a factor of 4 or 5, in terms of the cost of field operations. In
practice the speedup is better than this, closer to 6× when working over word-sized finite fields. This is
due largely to the removal of almost all conditional logic from the explicit formula.

4B. Doubling in the typical case. When doubling a divisor the inputs to Addition are identical, but the
GCD computed in Compose is still trivial in the typical case where gcd(u1, v1)= 1 with deg u1 = 3. The
divisor div[u3, v3, n3] output by Compose will have u3 = u2

1 and v3 = (c1u1v1+ c3(v
2
1 + f)) mod u2

1,
where c1u1 + 2c3v1 = 1. In this situation we have v3 ≡ v1 mod u1, and since both div[u1, v1] and
div[u3, v3] are Mumford representations of semireduced divisors, we have u1 | (v

2
1− f) and u2

1 | (v
2
3− f).

We may thus view v1 as a square root of f modulo u1, and we may view v3 as a “lift” of this square root
from k[x]/(u1) to k[x]/(u2

1). Rather than computing v3 as in Compose, as suggested in [11] we may
instead compute it using a single u1-adic Newton iteration:

v3 := v1−
v2

1 − f
2v1

mod u2
1.

If we put w := (f − v2
1)/u1 and define s̃ := w(2v1)

−1 mod u1, where (2v1)
−1 denotes the inverse of 2v1

modulo u1 (here we use gcd(u, v1)= 1), then v3 = v1+ s̃u1, and u4 is

f − (v1+ s̃u1)
2

u2
1

=
w− 2v1s̃

u1
− s̃2

made monic. We now proceed as in Section 4A. We assume deg s̃ = 2, let s be s̃ made monic, and define

5The formula in [27] contains some typographical errors; see [8, p. 25] for a clean version.

FAST JACOBIAN ARITHMETIC FOR HYPERELLIPTIC CURVES OF GENUS 3 437

c := lc(s̃)−1 and z := su1. We then have

u4 = s2
− (c2w− 2cv1s)/u1 and v4 =−v1− c−1(z mod u4),

and
ṽ4 := −v̂4 = u4− v4 = u4+ v1+ c−1(z mod u4)

is a monic polynomial of degree 4 that we may use to compute u5 as (f − ṽ2
4)/u4 made monic and

v5 = ṽ4 mod u5. The polynomial (f − ṽ2
4)/u4 has leading coefficient −2ṽ43, and expanding the equations

for u4, v4, ṽ4 yields the identity

ṽ43 = 2s1+ c+ c−1(s1(s1− u12)− s0+ u11). (2)

This leads to the following optimized formula for doubling a typical divisor.

Algorithm (TypicalDoubling). Given div[u1, v1, 0] with deg u1 = 3 and gcd(u1, v1)= 1, compute

div[u5, v5, n5] ∼ 2 div[u1, v1, 0].

1. Compute w := (f − v2
1)/u1 mod u1, and s̃ := w(2v1)

−1 mod u1.

2. Compute c := lc(s̃)−1, and s := cs̃ and z := su1 (require deg s = 2).

3. Compute u4 := (c2w− 2csv1)/u1− s2 and ṽ4 := v1+ u4+ c−1(z mod u4).

4. Compute u5 := (2ṽ43)
−1(ṽ2

4 − f)/u4 and v5 := ṽ4 mod u5 (require ṽ43! = 0).

5. Output div[u5, v5, 3− deg u5].

An explicit formula that implements TypicalDoubling appears on the next three pages and in the online
supplement for this article. In terms of field operations, its total cost is I + 82M + 127A, which may
be compared with I + 68M + 102A for the best known formula for a genus 3 curve with a rational
Weierstrass point [27], and 5I + 285M + 258A for the unoptimized cost of doubling a typical advisor.

4C. Negation in the typical case. Finally, we consider the case of negating a typical divisor div[u1, v1, 0]
with deg u1 = 3, which amounts to computing Adjust(div[u1,−v1, 3]∗). Let

ṽ1 := v1− V + (V mod u1)=−x4+ ṽ12x2
+ ṽ11x + ṽ10

(here we have used V3 = 0). We wish to compute u2 as (f − ṽ2
1)/u1 made monic and v2 := ṽ1 mod u2.

The polynomial (f − ṽ1)
2/u1 has degree 3 and leading coefficient f6+ 2ṽ12, where

ṽ12 = v12+ u2
12− u11.

We thus obtain the following algorithm.

Algorithm (TypicalNegation). Given div[u1,v1,0], deg u1=3, compute div[u2,v2,n2]∼− div[u1, v1, 0].

1. Compute ṽ1 := v1− V + (V mod u1).

2. Compute u2 := (f6+ 2ṽ12)
−1(f − ṽ2

1)/u1 and v2 := ṽ1 mod u2 (require f6+ 2ṽ12 6= 0).

3. Output div[u2, v2, 0].

http://msp.org/obs/2019/2-1/obs-v2-n1-x27-FormulasForAlgorithms.zip
http://msp.org/obs/2019/2-1/obs-v2-n1-x27-FormulasForAlgorithms.zip

438 ANDREW V. SUTHERLAND

TYPICALADDITION: div[u5, v5, n5] ∼ div[u1, v1, 0] + div[u2, v2, 0] with gcd(u1, u2) = 1.
1. Compute r := Res(u1, u2) and i(x) = i2 x2 + i1 x + i0 := ru−1

1 mod u2 (and w0 := u11 − u12). [15M+12A]
t1 := u10 − u20; t2 := u11 − u21; w0 := u12 − u22; t3 := t2 − u22w0;
t4 := t1 − u21w0; t5 := u22 t3 − t4; t6 := u20w0 + u21 t3;
i0 := t4 t5 − t3 t6; i1 := w0 t6 − t2 t5; i2 := w0 t4 − t2 t3;
r := t1i0 − u20(t3i2 +w0i1);
2. Compute q(x) = q2 x2 + q1 x + q0 := r(v2 − v1)u−1

1 mod u2. [10M+30A]
t1 := v20 − v10; t2 := v11 − v21; t3 := v12 − v22; t4 := t2i1; t5 := t1i0; t6 := t3i2; t7 := u22 t6;
t8 := t4 + t6 + t7 − (t2 + t3)(i1 + i2); t9 := u20 + u22; t10 := (t9 + u21)(t8 − t6); t11 := (t9 − u21)(t8 + t6);
q0 := t5 − u20 t8;
q1 := t4 − t5 + (t11 − t10)/2− t7 + (t1 − t2)(i0 + i1);
q2 := t6 − q0 − t4 + (t1 − t3)(i0 + i2)− (t10 + t11)/2;

3. Compute t1 := rq2 ṽ43 via (1), and w1 := c−1 = q2/r, w2 := c = r/q2, w3 := c2, w4 := (2ṽ43)−1.
Then compute s(x) = x2 + s1 x + s0 := c(v2 − v1)u−1

1 mod u2 and ṽ43. [I+18M+5A]
t1 := (r + q1)2 + q2(rw0 + q2u21 − q1u22 − q0); t2 := 2t1; t3 := rq2;
If t2 = 0 or t3 = 0 then abort (revert to ADDITION).
t4 := 1/(t2 t3); t5 := t2 t4; t6 := r t5;
w1 := t5q2

2; w2 := r t6; w3 := w2
2; w4 := t2

3 t4;
s0 := t6q0; s1 := t6q1;
ṽ43 := t1 t5;

4. Compute z(x) = x5 + z4 x4 + z3 x3 + z2 x2 + z1 x + z0 := su1. [4M+15A]
t6 := s0 + s1; t1 := u10 + u12; t2 := t6(t1 + u11); t3 := (t1 − u11)(s0 − s1); t4 := u12s1;
z0 := u10s0; z1 := (t2 − t3)/2− t4; z2 := (t2 + t3)/2− z0 + u10; z3 := u11 + s0 + t4; z4 := u12 + s1;

5. Compute u4(x) = x4 + u43 x3 + u42 x2 + u41 x + u40 := (s(z + 2cv1)− c2(f − v2
1)/u1)/u2. [14M+31A]

u43 := z4 + s1 − u22;
t0 := s1z4; t1 := u22u43;
u42 := z3 + t0 + s0 −w3 − u21 − t1;
t2 := u21u42; t3 := (u21 + u22)(u42 + u43)− t1 − t2; t4 := 2w2;
t5 := t4v12; t6 := s0z3; t7 := (s0 + s1)(z3 + z4)− t0 − t6;
u41 := z2 + t7 + t5 +w3u12 − u20 − t3;
u40 := z1 + s1(t5 + z2) + t6 + t4v11 −w3(f6 + u2

12 − u11)− u20u43 − t2 − u22u41;

6. Compute ṽ4(x) = x4 + ṽ43 x3 + ṽ42 x2 + ṽ41 x + ṽ40 := −v̂4 = v1 + u4 + c−1(z mod u4). [6M+10A]
t1 := u43 − z4 +w2;
ṽ40 := v10 +w1(z0 + u40 t1);
ṽ41 := v11 +w1(z1 − u40 + u41 t1);
ṽ42 := v12 +w1(z2 − u41 + u42 t1);
7. Compute u5(x) = x3 + u52 x2 + u51 x + u50 := (2ṽ43)−1(ṽ2

4 − f)/u4. [9M+17A]
u52 := ṽ43/2+w4(2ṽ42 − f6)− u43;
u51 := w4(2(ṽ41 + ṽ43 ṽ42)− f5)− u52u43 − u42;
u50 := w4(ṽ2

42 + 2(ṽ40 + ṽ43 ṽ41)− f4)− u51u43 − u52u42 − u41;

8. Compute v5(x) = v52 x2 + v51 x + v50 := ṽ4 mod u5. [3M+6A]
t1 := u52 − ṽ43;
v50 := ṽ40 + t1u50;
v51 := ṽ41 − u50 + t1u51;
v52 := ṽ42 − u51 + t1u52;

9. Output div[u5, v5, 3− deg u5]. [Total: I+79M+126A]

2

FAST JACOBIAN ARITHMETIC FOR HYPERELLIPTIC CURVES OF GENUS 3 439

TYPICALDOUBLING: div[u5, v5, n4] ∼ 2 div[u1, v1, 0] with gcd(u1, v1) = 1.
1. Compute r := Res(u1, v1) and i(x) = i2 x2 + i1 x + i0 := rv−1

1 mod u1 (w0 := v11 − u12v12). [15M+9A]
w0 := v11 − u12v12; t2 := v10 − u11v12; t3 := u12w0 − t2; t4 := u10v12 + u11w0;
i0 := w0 t4 − t2 t3; i1 := v11 t3 − v12 t4; i2 := v11w0 − v12 t2;
r := v10i0 − u10(w0i2 + v12i1);
2. Compute p(x) = p2 x2 + p1 x + p0 := w := (f − v2

1)/u1 mod u1 (w1 := u2
12, w2 := w1 + f6). [11M+24A]

w1 := u2
12; t2 := 2u10; t3 := 3u11; w2 := w1 + f6; t5 := 2t2 − f5; t6 := 2u12; t7 := t3 −w2;

p2 := f5 + t6(t7 −w1)− t2;
p1 := f4 + u12 t5 − v2

12 − u11(2 f6 − t3)−w1(t7 + t3);
p0 := f3 − u11(w1 t6 − t5)− t2w2 − u12p1 − 2v11v12;
3. Compute q(x) = q2 x2 + q1 x + q0 := r((f − v2

1)/u1)v−1
1 mod u1. [10M+28A]

(w3 := u10 + u11 + u12, w4 := u10 − u11 + u12)
t1 := i1p1; t2 := i0p0; t3 := i2p2; t4 := u12 t3; t5 := (i1 + i2)(p1 + p2)− t1 − t3 − t4; t6 := u10 t5;
t7 := u10 + u12; w3 := t7 + u11; w4 := t7 − u11; t10 := w3(t3 + t5); t11 := w4(t5 − t3);
q0 := t2 − t6;
q1 := t4 + (i0 + i1)(p0 + p1) + (t11 − t10)/2− t1 − t2;
q2 := t1 + t6 + (i0 + i2)(p0 + p2)− t2 − t3 − (t10 + t11)/2;
4. Compute t3 := 2rq2 ṽ43 via (2), and w5 := 1/c, w6 := c, w7 := 1/ṽ43. [I+18M+7A]

Then compute s(x) = x2 + s1 x + s0 := q/(2r) made monic and ṽ43.
t0 := 2r; t1 := t2

0; t2 := q2
2; t3 := t1 − q0q2 + q1(2t0 + q1 − q2u12) + t2u11;

If q2 = 0 or t3 = 0 then abort (revert to ADDITION).
t4 := 1/(t0q2 t3); t5 := t3 t4; t6 := t0 t5;
w5 := t2 t5; w6 := t1 t5; w7 := t1 t2 t4;
s0 := t6q0; s1 := t6q1; ṽ43 := t3 t5;
5. Compute z(x) = x5 + z4 x4 + z3 x3 + z2 x2 + z1 x + z0 := su1. [4M+12A]
t1 := w3(s0 + s1); t2 := w4(s0 − s1); t3 := u12s1;
z0 := s0u10; z1 := (t1 − t2)/2− t3; z2 := (t1 + t2)/2− z0 + u10; z3 := u11 + s0 + t3; z4 := u12 + s1;
6. Compute u4(x) = x4 + u43 x3 + u42 x2 + u41 x + u40 := s2 − (c2(f − v2

1)/u1 − 2csv1)/u1. [8M+14A]
t1 := v12w6; t2 := w2

6;
u43 := 2s1;
u42 := 2s0 + s2

1 − t2;
u41 := 2(s0s1 + u12 t2 + t1);
u40 := s2

0 + 2(w0w6 + s1 t1)− t2(w2 + 2(w1 − u11));
7. ṽ4(x) = ṽ43 x3 + ṽ42 x2 + ṽ41 x + ṽ40 := −v̂4 = v1 + u4 + c−1(z mod u4). [6M+10A]
t1 := u43 − z4 +w6;
ṽ40 := v10 +w5(z0 + u40 t1);
ṽ41 := v11 +w5(z1 − u40 + u41 t1);
ṽ42 := v12 +w5(z2 − u41 + u42 t1);
8. u5(x) = x3 + u52 x2 + u51 x + u50 := (2ṽ43)−1(ṽ2

4 − f)/u4. [7M+17A]
u52 := ṽ43/2+w7(ṽ42 − f6/2)− u43;
u51 := ṽ42 +w7(ṽ41 − f5/2)− u52u43 − u42;
u50 := ṽ41 +w7((ṽ2

42 − f4)/2+ ṽ40)− u51u43 − u52u42 − u41;
9. v5(x) = v52 x2 + v41 x + v50 := ṽ4 mod u5. [3M+6A]
t1 := u52 − ṽ43;
v50 := ṽ40 + t1u50;
v51 := ṽ41 − u50 + t1u51;
v52 := ṽ42 − u51 + t1u52;
10. Output div[u4, v4, 3− deg u4]. [Total: I+82M+127A]

3

440 ANDREW V. SUTHERLAND

TYPICALNEGATION: div[u2, v2, 0] ∼ −div[u1, v1, 0].
1. Compute ṽ1(x) = −x4 + ṽ12 x2 + ṽ11 x + ṽ10 := v1 − V + (V mod u1). [3M+5A]
ṽ12 := v12 − u11 + u2

12;
ṽ11 := v11 − u10 + u11u12;
ṽ10 := v10 + u10u12;
2. Compute u2(x) = x3 + u22 x2 + u21 x + u20 := (f6 + 2ṽ12)−1(f − ṽ2

1)/u1. [I+8M+14A]
t1 := 2ṽ12; t2 := f6 + t1;
If t1 = 0 then abort (revert to NEGATION).
t3 := 1/t2;
u22 := t3(f5 + 2ṽ11)− u12;
u21 := t3(f4 + 2ṽ10 − ṽ2

12)− u11 − u12u22;
u20 := t3(f3 − t1 ṽ11)− u10 − u11u22 − u12u21;
3. Compute v2(x) = v22 x2 + v21 x + v20 := ṽ1 mod u2. [3M+5A]
v22 := ṽ12 − u2

22 + u21;
v21 := ṽ11 − u21u22 + u20;
v20 := ṽ10 − u20u22;
4. Output div[u2, v2, 0]. [Total: I+14M+24A]

4

Note. The explicit formulas presented on those pages were typeset using latex source generated by an
automated script that reads an executable version of verified source code; they should thus be free of the
typos that unfortunately plague many of the formulas one finds in the literature. Magma source code
for the formulas and an implementation of all the algorithms in this article can be found at the author’s
website, along with scripts that verify their correctness.

References

[1] Jeffrey D. Achter, Results of Cohen–Lenstra type for quadratic function fields, Computational arithmetic geometry, Con-
temp. Math., no. 463, Amer. Math. Soc., 2008, pp. 1–7. MR 2459984

[2] Roberto Avanzi, Michael J. Jacobson, Jr., and Renate Scheidler, Efficient reduction of large divisors on hyperelliptic
curves, Adv. Math. Commun. 4 (2010), no. 2, 261–279. MR 2654136

[3] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system, I: The user language, J. Symbolic
Comput. 24 (1997), no. 3–4, 235–265. MR 1484478

[4] David G. Cantor, Computing in the Jacobian of a hyperelliptic curve, Math. Comp. 48 (1987), no. 177, 95–101. MR 866101

[5] Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja Lange, Kim Nguyen, and Frederik Vercauteren
(eds.), Handbook of elliptic and hyperelliptic curve cryptography, Chapman & Hall, 2006. MR 2162716

[6] Henri Cohen and Hendrik W. Lenstra, Jr., Heuristics on class groups, Number theory, Lecture Notes in Math., no. 1052,
Springer, 1984, pp. 26–36. MR 750661

[7] Noam D. Elkies, Elliptic and modular curves over finite fields and related computational issues, Computational perspec-
tives on number theory, AMS/IP Stud. Adv. Math., no. 7, Amer. Math. Soc., 1998, pp. 21–76. MR 1486831

[8] Xinxin Fan, Thomas Wollinger, and Guang Gong, Efficient explicit formulae for genus 3 hyperelliptic curve cryptosystems,
technical report 2006-37, Centre for Applied Cryptographic Research, 2006.

http://doi.org/10.1090/conm/463/09041
http://msp.org/idx/mr/2459984
http://doi.org/10.3934/amc.2010.4.261
http://doi.org/10.3934/amc.2010.4.261
http://msp.org/idx/mr/2654136
http://doi.org/10.1006/jsco.1996.0125
http://msp.org/idx/mr/1484478
http://doi.org/10.2307/2007876
http://msp.org/idx/mr/866101
http://msp.org/idx/mr/2162716
http://doi.org/10.1007/BFb0071539
http://msp.org/idx/mr/750661
http://msp.org/idx/mr/1486831
http://cacr.uwaterloo.ca/techreports/2006/cacr2006-38.pdf

FAST JACOBIAN ARITHMETIC FOR HYPERELLIPTIC CURVES OF GENUS 3 441

[9] Eduardo Friedman and Lawrence C. Washington, On the distribution of divisor class groups of curves over a finite field,
Théorie des nombres, de Gruyter, 1989, pp. 227–239. MR 1024565

[10] Steven D. Galbraith, Michael Harrison, and David J. Mireles Morales, Efficient hyperelliptic arithmetic using balanced
representation for divisors, Algorithmic number theory, Lecture Notes in Comput. Sci., no. 5011, Springer, 2008, pp. 342–
356. MR 2467851

[11] Pierrick Gaudry and Robert Harley, Counting points on hyperelliptic curves over finite fields, Algorithmic number theory,
Lecture Notes in Comput. Sci., no. 1838, Springer, 2000, pp. 313–332. MR 1850614

[12] Masaki Gonda, Kazuto Matsuo, Kazumaro Aoki, Jinhui Chao, and Shigeo Tsujii, Improvements of addition algorithm on
genus 3 hyperelliptic curves and their implementations, The 2004 Symposium on Cryptography and Information Security,
Institute of Electronics, Information and Communication Engineers, 2005, pp. 89–96.

[13] Cyril Guyot, Kiumars Kaveh, and Vijay M. Patankar, Explicit algorithm for the arithmetic on the hyperelliptic Jacobians
of genus 3, J. Ramanujan Math. Soc. 19 (2004), no. 2, 75–115. MR 2076897

[14] Robert Harley, A short description of an efficient algorithm for computing the group law in the jacobian of a genus-2
curve, 2000, addenda to [11].

[15] David Harvey, Counting points on hyperelliptic curves in average polynomial time, Ann. of Math. (2) 179 (2014), no. 2,
783–803. MR 3152945

[16] David Harvey, Maike Massierer, and Andrew V. Sutherland, Computing L-series of geometrically hyperelliptic curves of
genus three, LMS J. Comput. Math. 19 (2016), suppl. A, 220–234. MR 3540957

[17] David Harvey and Andrew V. Sutherland, Computing Hasse–Witt matrices of hyperelliptic curves in average polynomial
time, LMS J. Comput. Math. 17 (2014), suppl. A, 257–273. MR 3240808

[18] , Computing Hasse–Witt matrices of hyperelliptic curves in average polynomial time, II, Frobenius distributions:
Lang–Trotter and Sato–Tate conjectures, Contemp. Math., no. 663, Amer. Math. Soc., 2016, pp. 127–147. MR 3502941

[19] Michael J. Jacobson, Jr., Monireh Rezai Rad, and Renate Scheidler, Comparison of scalar multiplication on real hyperel-
liptic curves, Adv. Math. Commun. 8 (2014), no. 4, 389–406. MR 3290945

[20] Michael J. Jacobson, Jr., Renate Scheidler, and Andreas Stein, Cryptographic protocols on real hyperelliptic curves, Adv.
Math. Commun. 1 (2007), no. 2, 197–221. MR 2306309

[21] Kiran S. Kedlaya and Andrew V. Sutherland, Computing L-series of hyperelliptic curves, Algorithmic number theory,
Lecture Notes in Comput. Sci., no. 5011, Springer, 2008, pp. 312–326. MR 2467855

[22] Junichi Kuroki, Masaki Gonda, Kazuto Matsuo, Jinhui Chao, and Shigeo Tsujii, Fast genus three hyperelliptic curve
cryptosystems, The 2002 Symposium on Cryptography and Information Security, Institute of Electronics, Information and
Communication Engineers, 2002.

[23] James S. Milne, Jacobian varieties, Arithmetic geometry, Springer, 1986, pp. 167–212. MR 861976

[24] David J. Mireles Morales, Efficient arithmetic on hyperelliptic curves with real representation, Ph.D. thesis, University of
London, 2008.

[25] David Mumford, Tata lectures on theta, II: Jacobian theta functions and differential equations, Birkhäuser, 2007.

[26] Koh-ichi Nagao, Improving group law algorithms for Jacobians of hyperelliptic curves, Algorithmic number theory, Lec-
ture Notes in Comput. Sci., no. 1838, Springer, 2000, pp. 439–447. MR 1850624

[27] Jun Nyukai, Kazuto Matsuo, Jinhui Chao, and Shigeo Tujii, On the resultant computation in the harley algorithms on
hyperelliptic curves, technical report ISEC2006-5, Institute of Electronics, Information and Communication Engineers,
2006, in Japanese.

[28] Andrew P. Ogg, Hyperelliptic modular curves, Bull. Soc. Math. France 102 (1974), 449–462. MR 0364259

[29] , On the Weierstrass points of X0(N), Illinois J. Math. 22 (1978), no. 1, 31–35. MR 0463178

[30] Sachar Paulus and Hans-Georg Rück, Real and imaginary quadratic representations of hyperelliptic function fields, Math.
Comp. 68 (1999), no. 227, 1233–1241. MR 1627817

[31] Bjorn Poonen, Computational aspects of curves of genus at least 2, Algorithmic number theory, Lecture Notes in Comput.
Sci., no. 1122, Springer, 1996, pp. 283–306. MR 1446520

http://msp.org/idx/mr/1024565
http://doi.org/10.1007/978-3-540-79456-1_23
http://doi.org/10.1007/978-3-540-79456-1_23
http://msp.org/idx/mr/2467851
http://doi.org/10.1007/10722028_18
http://msp.org/idx/mr/1850614
http://doi.org/10.1093/ietfec/e88-a.1.89
http://doi.org/10.1093/ietfec/e88-a.1.89
http://msp.org/idx/mr/2076897
http://cristal.inria.fr/~harley/hyper/adding.text
http://cristal.inria.fr/~harley/hyper/adding.text
http://doi.org/10.4007/annals.2014.179.2.7
http://msp.org/idx/mr/3152945
http://doi.org/10.1112/S1461157016000383
http://doi.org/10.1112/S1461157016000383
http://msp.org/idx/mr/3540957
http://doi.org/10.1112/S1461157014000187
http://doi.org/10.1112/S1461157014000187
http://msp.org/idx/mr/3240808
http://doi.org/10.1090/conm/663/13352
http://msp.org/idx/mr/3502941
http://doi.org/10.3934/amc.2014.8.389
http://doi.org/10.3934/amc.2014.8.389
http://msp.org/idx/mr/3290945
http://doi.org/10.3934/amc.2007.1.197
http://msp.org/idx/mr/2306309
http://doi.org/10.1007/978-3-540-79456-1_21
http://msp.org/idx/mr/2467855
http://msp.org/idx/mr/861976
http://doi.org/10.1007/978-0-8176-4578-6
http://doi.org/10.1007/10722028_28
http://msp.org/idx/mr/1850624
http://www.numdam.org/item?id=BSMF_1974__102__449_0
http://msp.org/idx/mr/0364259
http://projecteuclid.org/euclid.ijm/1256048830
http://msp.org/idx/mr/0463178
http://doi.org/10.1090/S0025-5718-99-01066-2
http://msp.org/idx/mr/1627817
http://doi.org/10.1007/3-540-61581-4_63
http://msp.org/idx/mr/1446520

442 ANDREW V. SUTHERLAND

[32] Renate Scheidler, Andreas Stein, and Hugh C. Williams, Key-exchange in real quadratic congruence function fields, Des.
Codes Cryptogr. 7 (1996), no. 1–2, 153–174. MR 1377761

[33] Andrew V. Sutherland, Order computations in generic groups, Ph.D. thesis, Massachusetts Institute of Technology, 2007.
MR 2717420

[34] , Structure computation and discrete logarithms in finite abelian p-groups, Math. Comp. 80 (2011), no. 273,
477–500. MR 2728991

[35] Joachim von zur Gathen and Jürgen Gerhard, Modern computer algebra, 3rd ed., Cambridge University, 2013. MR 3087522

[36] Thomas Wollinger, Jan Pelzl, and Christof Paar, Cantor versus harley: optimization and analysis of explicit formulae for
hyperelliptic curve cryptosystems, IEEE Trans. Comput. 54 (2005), no. 7, 861–872.

Received 2 Mar 2018. Revised 9 Jun 2018.

ANDREW V. SUTHERLAND: drew@math.mit.edu
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, United States

msp

http://doi.org/10.1007/BF00125081
http://msp.org/idx/mr/1377761
https://search.proquest.com/docview/304746400
http://msp.org/idx/mr/2717420
http://doi.org/10.1090/S0025-5718-10-02356-2
http://msp.org/idx/mr/2728991
http://doi.org/10.1017/CBO9781139856065
http://msp.org/idx/mr/3087522
http://doi.org/10.1109/TC.2005.109
http://doi.org/10.1109/TC.2005.109
mailto:drew@math.mit.edu
http://msp.org

VOLUME EDITORS

Renate Scheidler
University of Calgary
Calgary, AB T2N 1N4

Canada

Jonathan Sorenson
Butler University

Indianapolis, IN 46208
United States

The cover image is based on a design by Linh Chi Bui.

The contents of this work are copyrighted by MSP or the respective authors.
All rights reserved.

Electronic copies can be obtained free of charge from http://msp.org/obs/2
and printed copies can be ordered from MSP (contact@msp.org).

The Open Book Series is a trademark of Mathematical Sciences Publishers.

ISSN: 2329-9061 (print), 2329-907X (electronic)

ISBN: 978-1-935107-02-6 (print), 978-1-935107-03-3 (electronic)

First published 2019.

msp

MATHEMATICAL SCIENCES PUBLISHERS

798 Evans Hall #3840, c/o University of California, Berkeley CA 94720-3840

contact@msp.org http: //msp.org

http://msp.org/obs/2
mailto:contact@msp.org
mailto:contact@msp.org
http://msp.org

THE OPEN BOOK SERIES 2
Thirteenth Algorithmic Number Theory Symposium

The Algorithmic Number Theory Symposium (ANTS), held biennially since 1994, is the premier inter-
national forum for research in computational number theory. ANTS is devoted to algorithmic aspects of
number theory, including elementary, algebraic, and analytic number theory, the geometry of numbers,
arithmetic algebraic geometry, the theory of finite fields, and cryptography.

This volume is the proceedings of the thirteenth ANTS meeting, held July 16-20, 2018, at the University
of Wisconsin-Madison. It includes revised and edited versions of 28 refereed papers presented at the
conference.

Edited by Renate Scheidler and Jonathan Sorenson

CONTRIBUTORS
Simon Abelard
Sonny Arora
Vishal Arul
Angelica Babei
Jens-Dietrich Bauch
Alex J. Best
Jean-François Biasse
Alin Bostan
Reinier Bröker
Nils Bruin
Xavier Caruso
Stephanie Chan
Qi Cheng
Gilles Christol
Owen Colman
Edgar Costa
Philippe Dumas
Kirsten Eisenträger
Claus Fieker
Shuhong Gao

Pierrick Gaudry
Alexandre Gélin
Alexandru Ghitza
Laurent Grémy
Jeroen Hanselman
David Harvey
Tommy Hofmann
Everett W. Howe
David Hubbard
Kiran S. Kedlaya
Thorsten Kleinjung
David Kohel
Wanlin Li
Richard Magner
Anna Medvedovsky
Michael Musty
Ha Thanh Nguyen Tran
Christophe Ritzenthaler
David Roe

J. Maurice Rojas
Nathan C. Ryan
Renate Scheidler
Sam Schiavone
Andrew Shallue
Jeroen Sijsling
Carlo Sircana
Jonathan Sorenson
Pierre-Jean Spaenlehauer
Andrew V. Sutherland
Nicholas Triantafillou
Joris van der Hoeven
Christine Van Vredendaal
John Voight
Daqing Wan
Lawrence C. Washington
Jonathan Webster
Benjamin Wesolowski
Yinan Zhang
Alexandre Zotine

A
N

T
S

X
III:

Thirteenth
A

lgorithm
ic

N
um

ber
Theory

Sym
posium

Scheidler,Sorenson
O

B
S

2

	1. Introduction
	2. Background
	2A. Hyperelliptic curves
	2B. Divisor class groups of hyperelliptic curves

	3. Hyperelliptic divisor class arithmetic using balanced divisors
	4. Explicit formulas in genus 3
	4A. Addition in the typical case
	4B. Doubling in the typical case
	4C. Negation in the typical case

	References
	
	

