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Explicit bounds are given on the norms of prime ideals generating arbitrary subgroups of ray class groups
of number fields, assuming the extended Riemann hypothesis. These are the first explicit bounds for
this problem and are significantly better than previously known asymptotic bounds. Applied to the
integers, they express that any subgroup of index i of the multiplicative group of integers modulo m is
generated by prime numbers smaller than 16(i log m)2, subject to the Riemann hypothesis. Two particular
consequences relate to mathematical cryptology. Applied to cyclotomic fields, they provide explicit
bounds on generators of the relative class group, needed in some previous work on the shortest vector
problem on ideal lattices. Applied to Jacobians of hyperelliptic curves, they allow one to derive bounds
on the degrees of isogenies required to make their horizontal isogeny graphs connected. Such isogeny
graphs are used to study the discrete logarithm problem on said Jacobians.

1. Introduction

1A. Motivation. In 1990, Bach [1] computed explicit bounds for the norms of prime ideals generating
the class groups of number fields, assuming the extended Riemann hypothesis (henceforth, ERH). These
bounds made explicit the earlier work of Lagarias, Montgomery and Odlyzko [11], and have proved to be
a crucial tool in the design and analysis of many number-theoretic algorithms. However, these bounds do
not tell anything about the norms of prime ideals generating any particular subgroup of the class group.
Indeed, a generating set for the full group might not contain any element of the subgroup.

Let K be a number field of degree n, and let 1 be the absolute value of its discriminant. The results
of [11] show that the class group Cl(K ) is generated by prime ideals of norm bounded by O((log1)2).
Now, let H be an arbitrary subgroup of the class group Cl(K ). Some asymptotic bounds on the norm
of prime ideals generating H have already been computed in [10] by analyzing spectral properties of
the underlying Cayley graphs. They are of the form O((n[Cl(K ) : H ] log1)2+ε) for an arbitrary ε > 0.
Taking H to be the full class group reveals a clear gap with the bounds of [11]. The explicit bounds
provided in the present paper eliminate this gap, as they are asymptotically O(([Cl(K ) : H ] log1)2).
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Situations where proper subgroups of class groups have to be considered have already arisen in two
distinct regions of mathematical cryptology. One is related to lattice-based cryptography. Cryptographic
schemes based on ideal lattices are typically instantiated over the ring of integers OK of a cyclotomic
field K. The field K has a Hermitian vector space structure induced by its Minkowski embedding, and
ideals of OK are also lattices in this vector space. It was shown in [3; 4; 5] that in principal ideals of OK ,
an unusually short vector can be found in quantum polynomial time, under some heuristic assumptions
(this short vector is actually a generator of the ideal). This led to the break of a multitude of cryptographic
schemes using principal ideals (including [4; 8; 14; 20]).

A recent result [6] shows how to extend the algorithm to find short vectors in arbitrary ideals of OK by
transferring the problem to a principal ideal. Let n be the degree of K, K0 the maximal real subfield of K,
and Cl−(K ) the relative class group (i.e., the kernel of the norm map Cl(K )→ Cl(K0)). The transferring
method of [6] crucially relies on the assumption that Cl−(K ) is generated by a small number (polynomial
in log n) of prime ideals of small norm (polynomial in n) and all their Galois conjugates. On one hand,
very little is known about the structure of Cl−(K ), and it seems difficult to prove that it can always be
generated by such a small number of Galois orbits of ideals (yet there is convincing numerical evidence;
see [19] for the case where K has prime conductor). On the other hand it can be shown, assuming the
ERH, that the constraint on the norms can be satisfied, and the present work provides the best asymptotic
bounds, and the first explicit ones (see Theorem 1.2 and Remark 2).

The second situation is related to hyperelliptic curves. Let A be the Jacobian of a hyperelliptic curve
over a finite field Fq . Isogeny graphs around A are a central tool to study the difficulty of the underlying
discrete logarithm problem (see for instance [7; 9; 10; 21]). When A is ordinary and absolutely simple
— as required for applications in cryptography — its endomorphism algebra is a complex multiplication
field K (with maximal real subfield K0) and its endomorphism ring is isomorphic to an order O in K. Any
abelian variety isogenous to A has the same endomorphism algebra, and an isogeny that also preserves
the endomorphism ring is called a horizontal isogeny. The horizontal isogeny graphs of A are closely
related to Cayley graphs of the kernel P(O) of the norm map

NK/K0 : Cl(O)−→ Cl+(O∩ K0),

where Cl+(O∩ K0) is the narrow class group of O∩ K0. More precisely, for any bound B > 0, there is
a graph isomorphism between

(1) the Cayley graph of P(O) with generators the ideals of prime norm smaller than B, and

(2) the isogeny graph consisting of all principally polarizable abelian varieties isogenous to A and with
same endomorphism ring, and all isogenies between them of prime degree smaller than B.

When the Jacobian A is an elliptic curve, the situation is well understood since K0 =Q; hence P(O)=
Cl(K ). As a result, Bach’s bounds have successfully been used to analyse various algorithms dealing
with elliptic curve isogenies. In higher genus, however, P(O) is typically a proper subgroup of the class
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group, and Bach’s bounds are not sufficient to obtain connected isogeny graphs. New explicit bounds
guaranteeing the connectedness are provided in Theorem 1.4.

1B. Setting. Throughout this paper, K denotes a number field of degree n, with r1 embeddings into R

and 2r2 embeddings into C. Let I(K ) denote the group of fractional ideals of the ring of integers OK . A
modulus m of K is a formal product of a finite part m0 (an ideal in OK ), and an infinite part m∞ (a subset of
the set of real embeddings of K ). Then, Im(K ) denotes the subgroup generated by ideals coprime to m0.

The notion of ray class group can now be recalled. Let Pm
K ,1 be the subgroup of Im(K ) generated

by principal ideals of the form αOK , where ordp(α− 1) ≥ ordp(m0) for all primes p dividing m0, and
ı(α) > 0 for all ı ∈m∞. The ray class group of K modulo m is the quotient

Clm(K )= Im(K )/Pm
K ,1.

For any ideal a such that (a,m)= 1, let [a]m denote its class in Clm(K ). The narrow class group of K
is the group Clm(K ), where m is the set of all the real embeddings.

Our main tools to study these groups will be ray class characters. We call a ray class character modulo
m what Neukirch [16, Definition VII.6.8] calls a (generalized) Dirichlet character modulo m, that is, a
Größencharakter χ : Im(K )→ C× that factors through the ray class group Clm(K ) via the canonical
projection.

1C. Main theorem. Let K be a number field of degree n, and m a modulus on K. Consider any subgroup
H of the ray class group Clm(K ) and any character χ that is not trivial on that subgroup. The main
theorem generalizes [1] by providing explicit bounds on the smallest prime ideal p whose class is in
H and such that χ(p) 6= 1. Note that all statements containing “(ERH)” assume the extended Riemann
hypothesis (recalled in Section 2). The following theorem is proved in Section 3.

Theorem 1.1 (ERH). Let K be any number field, and 1 the absolute value of the discriminant of K. Let
m be a modulus of K, with finite part m0 and infinite part m∞. Let H be any subgroup of the ray class
group Clm(K ). Let χ be a ray class character modulo m that is not trivial on H. Then there is a prime
ideal p such that (p,m0)= 1, the class of p in Clm(K ) is in the subgroup H, χ(p) 6= 1, deg(p)= 1 and

N (p)≤
(
[Clm(K ) : H ](2.71 log(1N (m0))+ 1.29|m∞| + 1.38ω(m0))+ 4.13

)2
,

where ω(m0) denotes the number of distinct prime ideals dividing m0.

Remark 1. When H is the full group and n ≥ 2, the above bound can be compared to Bach’s bound
N (p) ≤ 18(log(12 N (m0)))

2 given by [1, Theorem 4]. Let us put the expression of Theorem 1.1 in a
comparable form. From [1, Lemma 7.1], we have

|m∞| ≤ n ≤
log(1N (m0))+

3
2

log(2π)−ψ(2)
≤ 0.71 log(1N (m0))+ 1.07,
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where ψ is the logarithmic derivative of the gamma function. Moreover, we have the bound ω(m0) ≤

log(1N (m0))/ log 2. The bound of Theorem 1.1 becomes N (p)≤ (5.62 log(1N (m0))+ 5.52)2. When-
ever 1N (m0) < 12, the corresponding ray class group is trivial, so we can suppose that log(1N (m0))≥

log(12)≥ 2.48. These estimates lead to

N (p)≤ (5.62+ 5.52/2.48)2(log(1N (m0)))
2
≤ 62(log(1N (m0)))

2. (1-1)

Even in this form, direct comparison with [1, Lemma 7.1] is not obvious. With the unrefined estimate
12 N (m0) ≤ (1N (m0))

2, Bach’s bound becomes N (p) ≤ 72(log(1N (m0)))
2. The constant factor is

slightly worse than in the bound (1-1), but this comparison does not do justice to either theorem.

1D. Consequences. In Section 4, a series of notable consequences is derived from Theorem 1.1. Fore-
most, it allows us to obtain sets of small prime ideals generating any given subgroup of a ray class group.
This is made precise in the following theorem.

Theorem 1.2 (ERH). Let K be any number field and 1 the absolute value of the discriminant of K. Let
m be a modulus of K, with finite part m0 and infinite part m∞. Let h be any ideal in K. Let H be a
nontrivial subgroup of the ray class group Clm(K ). Then H is generated by the classes of the prime
ideals in

{p prime ideal in K | (p, hm0)= 1, [p]m ∈ H, deg(p)= 1 and N (p) < B},

where B =
(
[Clm(K ) : H ](2.71 log(1N (hm0))+ 1.29|m∞| + 1.38ω(hm0))+ 4.13

)2, and [p]m denotes
the class of p in Clm(K ).

Remark 2. In particular, Theorem 1.2 implies that the relative class group of a cyclotomic field K of
degree n and discriminant 1 is generated by ideals of prime norm smaller than (2.71hK0 log1+ 4.13)2,
where hK0 is the class number of the maximal real subfield of K. This is an important improvement
for [6] over the previously known bound O((hK0n log1)2+ε) derived from [10].

Applying Theorem 1.1 to Dirichlet characters, one can obtain new results on subgroups of the multi-
plicative group (Z/mZ)×. Let m be a positive integer and H a nontrivial subgroup of G = (Z/mZ)×. It
is already known that, assuming the ERH, H contains a prime number smaller than O(([G : H ] log m)2)
(see [2; 13]). But these bounds do not provide a generating set for H : they only guarantee the existence
of one such prime number. The following theorem gives a set of generators of H whose norms are also
asymptotically O(([G : H ] log m)2).

Theorem 1.3 (ERH). Let m be a positive integer, and H a nontrivial subgroup of G = (Z/mZ)×. Then
H is generated by the set of prime numbers p such that p mod m ∈ H and p ≤ 16([G : H ] log m)2.

Finally, we derive bounds on the degrees of cyclic isogenies required to connect all isogenous princi-
pally polarizable abelian varieties over a finite field sharing the same endomorphism ring.

Theorem 1.4 (ERH). Let A be a principally polarized, absolutely simple, ordinary abelian variety over
a finite field Fq , with endomorphism algebra K and endomorphism ring isomorphic to an order O in K.
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Let K0 be the maximal real subfield of K and f the conductor of O. For any B > 0, let G(B) be the
isogeny graph whose vertices are the principally polarizable varieties isogenous to A and with the same
endomorphism ring, and whose edges are isogenies connecting them, of prime degree smaller than B.
Then, if O0 =O∩ K0 is the ring of integers of K0, the graph

G(26(h+O0
log(1N (f)))2)

is connected, with 1 the absolute value of the discriminant of K and h+O0
the narrow class number of O0.

Remark 3. In particular, the above holds in dimension 2, where principally polarized translates to Ja-
cobian of a genus-2 hyperelliptic curve (see [15, Theorem 4.1]).

1E. Notation. An inequality such as x ≤ y between complex numbers means that the relation holds
between the real parts. The function log denotes the natural logarithm.

2. Ray class characters

This section summarizes the definitions, notation and facts related to ray class characters that will be
used throughout the paper.

Recall that a ray class character modulo m is a Größencharakter χ : Im(K )→ C× that factors through
the ray class group Clm(K ) (via the canonical projection). A character is principal if it takes only the
value 1. Let δ(χ) be 1 if χ is principal and 0 otherwise. A ray class character is primitive modulo m if
it does not factor through Clm′(K ) for any modulus m′ smaller1 than m. The conductor fχ of χ is the
smallest modulus f such that χ is the restriction of a ray class character modulo f. Let βχ = |f∞| be the
number of infinite places in the conductor f. From [16, Proposition 6.9], any ray class character χ is the
restriction of a primitive ray class character of modulus fχ , which is also primitive as a Größencharakter.

The Hecke L-function associated to a character χ modulo m is defined as

Lχ (s)=
∑
a

χ(a)

N (a)s

for Re(s) > 1, where the sum is taken over all ideals of OK . Note that χ is implicitly extended to all
ideals by defining χ(a)= 0 whenever (a,m0) 6= 1. When χ is the trivial character on I(K ), we obtain
the Dedekind zeta function of K, ζK (s)=

∑
a N (a)−s. These L-functions are extended meromorphically

on the complex plane with at most a simple pole at s = 1, which occurs if and only if χ is principal.
Let Rχ be the set of zeros of Lχ on the critical strip 0 <Re(s) < 1. The ERH implies that all Hecke
L-functions are zero-free in the half-plane Re(s) > 1

2 .
We will extensively use the logarithmic derivatives L ′χ/Lχ . When Re(s) > 1, they admit the abso-

lutely convergent representation
L ′χ
Lχ
(s)=−

∑
a

3(a)χ(a)

N (a)s
, (2-1)

1A modulus m′ is (strictly) smaller than m if m′0 |m0, m′∞ ⊆m∞ and m′ 6=m.
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place residue of ζ ′K /ζK residue of L ′χ/Lχ

1 −1 0
ρ ∈ R1 1 0 if ρ 6∈ Rχ , 1 otherwise
ρ ∈ Rχ 0 if ρ 6∈ R1, 1 otherwise 1

0 r1+ r2− 1 r1+ r2−βχ

−2n+ 1, n ∈ N>0 r2 r2+βχ

−2n, n ∈ N>0 r1+ r2 r1+ r2−βχ

Table 1. Residues of the logarithmic derivative of Hecke L-functions, when χ is a primitive ray class
character [1, p. 361].

where 3 is the von Mangoldt function (i.e., 3(a) = log N (p) if a is a power of a prime ideal p, and 0
otherwise). The residues of L ′χ/Lχ when χ is primitive modulo m are summarized in Table 1, which
comes from [1, p. 361] (with the observation that β in [1] coincides with βχ = |m∞| for characters χ
which are primitive modulo m).

Let ψ be the logarithmic derivative of the gamma function, and for any ray class character χ on K,
define

ψχ (s)=
r1+ r2−βχ

2
ψ

(
s
2

)
+

r2+βχ

2
ψ

(
s+ 1

2

)
−

n logπ
2

. (2-2)

The main reason to introduce these functions is the following formula: for any complex number s, if χ
is primitive then

−Re
L ′χ
Lχ
(s)= 1

2 log(1N (fχ ))+Re

(
δ(χ)

(
1
s
+

1
s−1

)
−

∑
ρ∈Rχ

1
s−ρ
+ψχ (s)

)
. (2-3)

A proof can be found in [12, Lemma 5.1].

3. Proof of the main theorem

Throughout this section, consider a ray class character χ modulo m that is not trivial on a given subgroup
H of G = Clm(K ).

3A. Outline of the proof. For any 0< a < 1, x > 0, and ideal a, let

P(a, x)=3(a)
(

N (a)
x

)a

log
(

x
N (a)

)
.

Let us start by recalling a lemma that is the starting point of the original proof of Bach’s bounds.

Lemma 3.1 [1, Lemma 4.2]. For 0< a < 1 and any character η,∑
N (a)<x

η(a)P(a, x)=−
1

2π i

∫ 2+i∞

2−i∞

x s

(s+ a)2
·

L ′η
Lη
(s) ds.
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Bach then considers the difference between two instances of this equality at η = 1 and at η = χ , and
proves the bounds by estimating the right-hand side as x + O(

√
x), while the left-hand side is zero if the

character is trivial on all prime ideals of norm smaller than x ; therefore such an x cannot be too large.
The proof of Theorem 1.1 follows the same strategy. It exploits the series of lemmata provided in [1,

Section 5], interlacing them with a game of characters of G/H in order to account for the new condition
[a]m ∈ H. Consider the group of characters of the quotient G/H, namely Ĝ/H =Hom(G/H,C×). Given
any character θ ∈ Ĝ/H, let θ∗ be the primitive ray class character such that θ∗(a)= θ([a]mH) whenever
(a,m0)= 1. For any θ ∈ Ĝ/H, write Lθ for the L-function of θ∗. For any ray class character η and any
θ ∈ Ĝ/H, let ηθ denote the primitive character inducing the product ηθ∗.

Lemma 3.2. Let a be any ideal in K. Let n0 be the largest divisor of m0 coprime to a, and n = n0m∞.
Let π : Clm(K )→ Cln(K ) be the natural projection. Then,

∑
θ∈Ĝ/H

θ∗(a)=

{
[Cln(K ) : π(H)] if [a]n ∈ π(H),
0 otherwise.

Proof. Let 2a = {θ ∈ Ĝ/H | θ∗(a) 6= 0} = {θ ∈ Ĝ/H | (fθ∗, a) = 1}. This set is naturally in bijection
with the group X of characters of Cln(K )/π(H). We obtain

∑
θ∈Ĝ/H

θ∗(a)=
∑
θ∈2a

θ∗(a)=
∑
ν∈X

ν([a]n)=

{
[Cln(K ) :π(H)] if [a]n ∈π(H),
0 otherwise. �

Lemma 3.3. For any 0< a < 1, we have

Sm(x)+SH (x)=−
1

[G : H ]

∑
θ∈Ĝ/H

I (x, θ),

where

SH (x)=
∑

N (a)<x
[a]m∈H

(1−χ(a))P(a, x),

Sm(x)=
1

[G : H ]

∑
θ∈Ĝ/H

∑
N (a)<x
(a,m) 6=1

(θ∗(a)−χθ (a))P(a, x), and

I (x, θ)=
1

2π i

∫ 2+i∞

2−i∞

x s

(s+ a)2

(
L ′θ
Lθ
−

L ′χθ
Lχθ

)
(s) ds.

Proof. From Lemma 3.2, for any ray class character η, we have

∑
N (a)<x
[a]m∈H

η(a)P(a, x)=
∑

N (a)<x
(a,m)=1

∑
θ∈Ĝ/H θ

∗(a)

[G : H ]
η(a)P(a, x)=

1
[G : H ]

∑
θ∈Ĝ/H

∑
N (a)<x
(a,m)=1

ηθ (a)P(a, x).
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Subtracting two instances of this equality, for η = 1 and η = χ , we get

SH (x)=
1

[G : H ]

∑
θ∈Ĝ/H

∑
N (a)<x

(θ∗(a)−χθ (a))P(a, x)−Sm(x)

and conclude by applying Lemma 3.1. �

Lemma 3.4. For 0< a < 1, and with the notation from Lemma 3.3,
x

(a+ 1)2
= [G : H ](SH (x)+Sm(x))+

∑
θ∈Ĝ/H

(I1/2(x, θ)+ I0(x, θ)+ I−(x, θ)),

where

I−(x, θ)= (βχθ−βθ )
∞∑

k=2

(−1)k

(a−k)2xk ,

I1/2(x, θ)=
∑
ρ∈Rθ

xρ

(ρ+a)2
−

∑
ρ∈Rχθ

xρ

(ρ+a)2
, and

I0(x, θ)=
log x

xa

(
L ′θ
Lθ
−

L ′χθ
Lχθ

)
(−a)+

1
xa

(
L ′θ
Lθ
−

L ′χθ
Lχθ

)′
(−a)+(βχθ−βθ )

(
1
a2 −

1
x(a−1)2

)
−
δ(θ)

a2 .

Recall that for any character η, Rη is the set of zeros of Lη on the strip 0<Re(s) < 1.

Proof. This lemma is an analogue of [1, Lemma 4.4]. Evaluating each integral I (x, θ) by residue using
Table 1 yields

I (x, θ)= I1/2(x, θ)+ I0(x, θ)+ I−(x, θ)−
δ(θ)x
(a+ 1)2

.

The residue calculations can be justified as in the proof of [12, Theorem 28]. The result follows from
Lemma 3.3. �

3B. Explicit estimates. This section adopts the notation from Lemmas 3.3 and 3.4. The remainder of
the proof consists in evaluating each term in the formula of Lemma 3.4. More precisely, we bound the
quantities

(1) I1/2 in Lemma 3.7,

(2) I0 in Lemma 3.9,

(3) Sm in Lemma 3.10,

(4) SH in Lemma 3.12.

The quantity I− remains, which is easy to bound thanks to [1, Lemma 5.1]. All these estimates are
combined in Lemma 3.11. Let

R(a, χ)=
∑
θ∈Ĝ/H

(∑
ρ∈Rθ

1
|ρ+ a|2

+

∑
ρ∈Rχθ

1
|ρ+ a|2

)
.
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We bound that quantity in Lemma 3.6, but first, we need the following lemma.

Lemma 3.5. For Re(s) > 1, we have ∑
θ∈Ĝ/H

(
L ′θ
Lθ
+

L ′χθ
Lχθ

)
(s)≤ 0.

Proof. Equation (2-1) yields∑
θ∈Ĝ/H

(
L ′θ
Lθ
+

L ′χθ
Lχθ

)
(s)=−

∑
θ∈Ĝ/H

∑
a

3(a)(χθ (a)+ θ
∗(a))

N (a)s
=−

∑
a

3(a)

N (a)s
∑
θ∈Ĝ/H

(χθ (a)+ θ
∗(a)).

Fix an ideal a. If χθ (a)= 0 for all θ , Lemma 3.2 implies∑
θ∈Ĝ/H

(χθ (a)+ θ
∗(a))≥ 0.

Now suppose that there exists an η ∈ Ĝ/H such that χη(a) 6= 0. The fact that any given character is
induced by a unique primitive character implies that for any θ ∈ Ĝ/H, we have χθ (a)= χη(a)(θη−1)∗(a).
Indeed, if (θη−1)∗(a) 6= 0, the equality follows from the fact that χθ is the primitive character inducing
χη · (θη

−1)∗, and if (θη−1)∗(a) = 0, then one must have χθ (a) = 0 because (θη−1)∗ is the primitive
character inducing χθ/χη. We deduce that∑

θ∈Ĝ/H

(χθ (a)+ θ
∗(a))= χη(a)

∑
θ∈Ĝ/H

(
θ

η

)∗
(a)+

∑
θ∈Ĝ/H

θ∗(a)= (χη(a)+ 1)
∑
θ∈Ĝ/H

θ∗(a),

whose real part is nonnegative (using again Lemma 3.2). �

Lemma 3.6 (ERH). Let 0< a < 1. The sum R(a, χ) is at most

2[G : H ]
2a+1

(
log(1N (m0))+n(ψ(a+1)−log(2π))−

|m∞|

2

(
ψ

(
a+1

2

)
−ψ

(
a+2

2

)))
+

2
2a+1

(
1

a+1
+

1
a

)
.

Proof. Writing σ = 1+ a, we have

2a+ 1
|ρ+ a|2

=
1

σ − ρ
+

1
σ − ρ

for any Re(ρ)= 1
2 (as observed in [1, Lemma 5.5]), so for any ray class character η∑

ρ∈Rη

1
|ρ+ a|2

=
1

2a+ 1

∑
ρ∈Rη

(
1

σ − ρ
+

1
σ − ρ

)
.

As in [12, Lemma 5.1], we get from (2-3) that∑
ρ∈Rη

(
1

σ − ρ
+

1
σ − ρ

)
= 2Re

L ′η
Lη
(σ )+ log(1N (fη))+ 2δ(η)

(
1
σ
+

1
σ − 1

)
+ 2ψη(σ ).
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Then, R(a, η) is at most

1
2a+1

∑
θ∈Ĝ/H

(
2Re

(
L ′θ
Lθ
+

L ′χθ
Lχθ

)
(σ )+log(12 N (fθ fχθ ))+2δ(θ)

(
1
σ
+

1
σ−1

)
+2(ψθ (σ )+ψχθ (σ ))

)
. (3-1)

From Lemma 3.5, we have
∑

θ∈Ĝ/H (L
′

θ/Lθ + L ′χθ /Lχθ )(σ ) ≤ 0, and the corresponding term can be
discarded from the expression in (3-1). Also, with αχθ = r1−βχθ ,

2(ψθ (σ )+ψχθ (σ ))= (n+αχθ−βθ )ψ
(

a+1
2

)
+(n−αχθ+βθ )ψ

(
a+2

2

)
−2n logπ

= 2n(ψ(a+1)−log(2π))+(αχθ−βθ )
(
ψ

(
a+1

2

)
−ψ

(
a+2

2

))
≤ 2n(ψ(a+1)−log(2π))−|m∞|

(
ψ

(
a+1

2

)
−ψ

(
a+2

2

))
,

where the first equality uses the expression (2-2) and the second one follows from the duplication formula
(ψ(z/2)+ψ((z+ 1)/2)= 2(ψ(z)− log 2)). �

Lemma 3.7 (ERH). For 0< a < 1 and x ≥ 1, we have
∑

θ∈Ĝ/H |I1/2(x, θ)| ≤
√

x ·R(a, χ).

Proof. From the ERH, for any ray class character η and any zero ρ ∈ Rη of Lη on the critical strip, we
have Re(ρ)≤ 1

2 . Therefore |xρ | = |x |Re(ρ)
≤
√

x . �

Lemma 3.8. For any s,(
L ′θ
Lθ
−

L ′χθ
Lχθ

)
(s)=

∑
ρ∈Rθ

(
1

s− ρ
−

1
2− ρ

)
−

∑
ρ∈Rχθ

(
1

s− ρ
−

1
2− ρ

)

−
βχθ −βθ

2

(
ψ

(
s
2

)
−ψ

(
s+ 3

2

)
−ψ(1)+ψ

(
3
2

))
−
βχθ −βθ

s+ 1
+ δ(θ)

(
3
2
−

1
s
−

1
s− 1

)
+

(
L ′θ
Lθ
−

L ′χθ
Lχθ

)
(2),

and(
L ′θ
Lθ
−

L ′χθ
Lχθ

)′
(s)=

∑
ρ∈Rχθ

1
(s− ρ)2

−

∑
ρ∈Rθ

1
(s− ρ)2

−
βχθ −βθ

4

(
ψ ′
(

s
2

)
−ψ ′

(
s+ 3

2

))
+
βχθ −βθ

(s+ 1)2
+ δ(θ)

(
1
s2 +

1
(s− 1)2

)
.

Proof. This is essentially the same proof as [1, Lemma 5.2], with an additional use of the recurrence
relations ψ(z)= ψ(z+ 1)− 1/z and ψ ′(z)= ψ ′(z+ 1)+ 1/z2. �
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Lemma 3.9 (ERH). Let 0< a < 1 and x ≥ 1. Then,∑
θ∈Ĝ/H

I0(x, θ)≤
(2+ a) log x + 1

xa ·R(a, χ)+
[G : H ]|m∞|

a2 −
1
a2

+
log x

xa

(
3
2
+

1
a
+

1
a+ 1

)
+

1
xa

(
1
a2 +

1
(a+ 1)2

)
+
[G : H ]|m∞|

x

(
1

(1− a)2
−

log x
(a− 1)xa−1 −

1
(a− 1)2xa−1

)
.

Proof. For any 0< a < 1, Lemma 3.8 implies∑
θ∈Ĝ/H

(
L ′θ
Lθ
−

L ′χθ
Lχθ

)
(−a)≤ (2+ a) ·R(a, χ)+

3
2
+

1
a
+

1
a+ 1

−

∑
θ∈Ĝ/H

βχθ −βθ

1− a

and ∑
θ∈Ĝ/H

(
L ′θ
Lθ
−

L ′χθ
Lχθ

)′
(−a)≤R(a, χ)+

1
a2 +

1
(a+ 1)2

+

∑
θ∈Ĝ/H

βχθ −βθ

(1− a)2
.

We used the facts that ψ(−a/2)−ψ((3−a)/2)−ψ(1)+ψ
( 3

2

)
≥ 0, and ψ ′(−a/2)−ψ ′((3−a)/2)≥ 0,

which are easily derived from the recurrence relations ψ(z)=ψ(z+1)−1/z and ψ ′(z)=ψ ′(z+1)+1/z2,
and the monotonicity of ψ and ψ ′. From [1, Lemma 5.3], for any 0< a < 1, we have(

log x
(a− 1)xa−1 +

1
(a− 1)2xa−1 −

1
(1− a)2

)
≤ 0;

therefore∑
θ∈Ĝ/H

βχθ −βθ

x

(
log x

(a− 1)xa−1 +
1

(a− 1)2xa−1 −
1

(1− a)2

)

≤
[G : H ]|m∞|

x

(
1

(1− a)2
−

log x
(a− 1)xa−1 −

1
(a− 1)2xa−1

)
.

The result follows by applying these estimates to I0(x, θ) (as defined in Lemma 3.4). �

Lemma 3.10. For any 0< a < 1,

Sm(x)≤
2 log x

ea
ω(m0)≤

2 log x
ea log 2

log(N (m0)),

where ω(m0) is the number of distinct prime ideals dividing m0.

Proof. We have

Sm(x)=
1

[G : H ]

∑
N (a)<x
(a,m) 6=1

( ∑
θ∈Ĝ/H

(θ∗(a)−χθ (a))

)
P(a, x)≤

∑
N (a)<x
(a,m) 6=1

2P(a, x),

and the result follows from [1, Lemma 5.7]. �



472 BENJAMIN WESOLOWSKI

Lemma 3.11 (ERH). For any 0< a < 1, the fraction
√

x/(a+ 1)2 is at most

[G : H ]
(

s1(x) log(1N (m0))+ s5(x)n+ s4(x)|m∞| + s3(x)ω(m0)+
SH (x)
√

x

)
+ s2(x),

where

s1(x)=
2

2a+ 1

(
1+

(2+ a) log x + 1
xa+1/2

)
,

s2(x)= s1(x)
(

1
a
+

1
a+ 1

)
+

log x
xa+1/2

(
3
2
+

1
a
+

1
a+ 1

)
+

1
xa+1/2

(
1
a2 +

1
(a+ 1)2

)
,

s3(x)=
2 log x
ea
√

x
,

s4(x)=
1

(a− 2)2x5/2 −
s1(x)

2

(
ψ

(
a+ 1

2

)
−ψ

(
a+ 2

2

))
+

1
a2√x

+
1

x3/2

(
1

(1− a)2
−

log x
(a− 1)xa−1 −

1
(a− 1)2xa−1

)
,

s5(x)= s1(x)(ψ(a+ 1)− log(2π)).

Proof. As in [1, Lemma 5.1], we have

0≤
∞∑

k=2

(−1)k

(a− k)2xk ≤
1

(a− 2)2x2 .

We deduce that

I−(x, θ)≤
|βχθ −βθ |

(a− 2)2x2 ≤
|m∞|

(a− 2)2x2 .

Together with Lemma 3.7, the bound from Lemma 3.4 becomes
√

x
(a+ 1)2

≤
[G : H ]|m∞|
(a− 2)2x5/2 +R(a, χ)+

1
√

x

∑
θ∈Ĝ/H

I0(x, θ)+ [G : H ]
SH (x)+Sm(x)

√
x

.

The result then follows from Lemmas 3.6, 3.9 and 3.10. �

Lemma 3.12. Suppose that χ(p)= 1 for all prime ideals p such that N (p) < x , [p]m ∈ H, and deg(p)= 1.
Then, for any 0< a < 1,

SH (x)≤
2n
ea

∑
m<
√

x

3(m).

Proof. We start as in [1, Lemma 5.7] by observing that when t ≥ 1, the function t−a log t is bounded
above by 1/(ea). We deduce

SH (x)=
∑

N (a)<x
[a]m∈H

(1−χ(a))P(a, x)≤
2

ea

∑
N (a)<x
[a]m∈H
χ(a) 6=1

3(a). (3-2)
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Fix a prime ideal p (above a rational prime p) of norm smaller than x and consider the contribution of
its powers to the above sum. First suppose that deg(p) > 1. Then,∑

N (pk)<x
[pk
]m∈H

χ(pk) 6=1

3(pk)≤
∑

N (pk)<x

deg(p)3(pk)≤ deg(p)
∑

pk<
√

x

3(pk).

Now suppose that deg(p) = 1, and let ` be the smallest integer such that [p`]m ∈ H. If ` = 1, then
χ(pk)= 1 for any integer k, so the contribution of p is zero. Suppose that `≥ 2. Then,∑

N (pk)<x
[pk
]m∈H

χ(pk) 6=1

3(pk)≤
∑

N (pk`)<x

3(pk`)≤ deg(p)
∑

pk<
√

x

3(pk).

Summing over all rational primes p and ideals p above p, we obtain∑
p

∑
p | p

∑
N (pk)<x
[pk
]m∈H

χ(pk) 6=1

3(pk)≤
∑

p

∑
p | p

deg(p)
∑

pk<
√

x

3(pk)≤ n
∑

m<
√

x

3(m).

We conclude by applying this inequality to (3-2). �

Lemma 3.13. For any x > 0,

lim
a→1

(
1

(1− a)2
−

log x
(a− 1)xa−1 −

1
(a− 1)2xa−1

)
=
(log x)2

2
.

Proof. A simple application of L’Hôpital’s rule yields

lim
a→1

(
1

(1− a)2
−

log x
(a− 1)xa−1 −

1
(a− 1)2xa−1

)
= lim

b→0

(
xb
− b log x − 1

b2xb

)
= lim

b→0

(
xb log x − log x

bxb(b log(x)+ 2)

)
= lim

b→0

(
(log x)2

b2(log x)2+ 4b log x + 2

)
=
(log x)2

2
. �

3C. Proof of Theorem 1.1. Let x be the norm of the smallest prime ideal p such that [p]m∈H, deg(p)=1
and χ(p) 6= 1. First suppose that x ≤ 95, and consider the quantity

B =
(
[G : H ](2.71 log(1N (m0))+ 1.29|m∞| + 1.38ω(m0))+ 4.13

)2
.

We want to show that x ≤ B.

Suppose n= 1. For the ray class group G to be nontrivial, one must have either |m∞| = 1 and N (m0)≥ 3,
in which case

B ≥ (2.71 log(3)+ 1.29+ 1.38+ 4.13)2 = 95.59 . . .≥ x,

or |m∞| = 0 and N (m0)≥ 5, in which case

B ≥ (2.71 log(5)+ 1.38+ 4.13)2 = 97.44 . . .≥ x .



474 BENJAMIN WESOLOWSKI

Suppose n = 2. Suppose that 1N (m0)≥ 8. Then

B ≥ (2.71 log(8)+ 4.13)2 = 95.36 . . .≥ x .

Now, one must investigate the cases where 1N (m0) ≤ 7. All quadratic fields with a discriminant of
absolute value at most 7 have a trivial (narrow) class group. Therefore, one must have N (m0) ≥ 2.
There is only one quadratic field of discriminant of absolute value at most 3, namely Q(

√
−3). It has

discriminant of absolute value 3 and no ideal of norm 2, so the condition 1N (m0)≤ 7 is impossible.

Suppose n > 2. From [1, Lemma 7.1], we get

log(1N (f))≥ n(log(2π)−ψ(2))− 3
2 ≥ 2.74,

and we deduce

B ≥ (2.71 · 2.74+ 4.13)2 = 133.52 . . .≥ x .

It remains to consider the case x > 95. From Lemma 3.12 and [18, Theorem 12],

SH (x)≤
2n
ea

∑
m<
√

x

3(m)≤
2nC
√

x
ea

,

where C = 1.03883. We now apply Lemma 3.11 with a→ 1. From Lemma 3.13 (applied to the term s4),
and the facts that, for x ≥ 95, (s5(x)+ 2C/(ea)) is negative and s1, s2, s3 and s4 are decreasing, we get

x ≤ 24(
[G : H ]

(
s1(95) log(1N (m0))+ s4(95)|m∞| + s3(95)ω(m0)

)
+ s2(95)

)2

≤
(
[G : H ]

(
2.71 log(1N (m0))+ 1.29|m∞| + 1.38ω(m0)

)
+ 4.13

)2
,

which proves the theorem. �

4. Consequences

With Theorem 1.1 at hand, we can now derive a few important consequences. The first, Theorem 1.2,
asserts that a subgroup H of the ray class group Clm(K ) is always generated by ideals of bounded prime
norm.

4A. Proof of Theorem 1.2. Recall that K is a number field, 1 is the absolute value of the discriminant
of K, and m is a modulus of K, with finite part m0 and infinite part m∞. Also, h is an ideal in K, and H
is a nontrivial subgroup of the ray class group Clm(K ). Let

B =
(
[G : H ](2.71 log(1N (hm0))+ 1.29|m∞| + 1.38ω(hm0))+ 4.13

)2
,

N= {p ∈ Im(K ) | p is prime, (p, h)= 1, [p]m ∈ H, deg(p)= 1 and N (p) < B},

and N be the subgroup of H generated by N. By contradiction, suppose N 6= H. Then, there is a nontrivial
character of H that is trivial on N. Since G is abelian, this character on H extends to a character on G,
thereby defining a ray class character χ modulo m that is not trivial on H. From Theorem 1.1, there is a
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prime ideal p ∈ Ihm(K ) such that [p]m ∈ H, χ(p) 6= 1, deg(p)= 1 and N (p)≤ B. All these conditions
imply p ∈ N⊆ N, whence χ(p)= 1, a contradiction. �

The next consequence, Theorem 1.3, is a specialization of Theorem 1.2 to the field of rational numbers,
and asserts that a subgroup H of a group of the form (Z/mZ)× is generated by prime numbers bounded
polynomially in the subgroup index and log(m).

4B. Proof of Theorem 1.3. Recall that m is a positive integer, and H is a nontrivial subgroup of G =
(Z/mZ)×. Let m = m0m∞, where m0 = mZ and m∞ is the real embedding of Q. Then, Clm(Q) is
isomorphic to G = (Z/mZ)×. An isomorphism is given by the map sending the class of aZ to a mod m.
The subgroup H of (Z/mZ)× corresponds to a subgroup H ′ of Clm(Q) through this isomorphism. From
Theorem 1.2, H ′ is generated by prime numbers smaller than

B =
(
[G : H ](2.71 log(m)+ 1.29+ 1.38ω(m))+ 4.13

)2
,

and so is H. If H is the full group, then the theorem follows from [1, Theorem 3], and for m ≤ 11000, the
result is easy to check by an exhaustive computation. So we can assume that m/|H | ≥ 2 and m > 11000.
From [1, Lemma 6.4],

ω(m)
log m

≤
li(log m)+ 0.12

√
log m

log m
≤

li(log 11000)+ 0.12
√

log 11000
log 11000

≤ 0.67,

where li is the logarithmic integral function. We get

B ≤
(
[G : H ] log(m)

(
2.71+

1.29+ 4.13/2
log 11000

+ 1.38 · 0.67
))2

,

and we conclude by computing the constant. �

The third consequence is a bound on the degrees of the cyclic isogenies required to connect all isoge-
nous principally polarizable abelian varieties over a finite field sharing the same endomorphism ring.

4C. Proof of Theorem 1.4. Recall that A is a principally polarized, absolutely simple, ordinary abelian
variety over a finite field Fq , with endomorphism algebra K and endomorphism ring isomorphic to an
order O in K. The field K0 is the maximal real subfield of K, and f is the conductor of O. For any B > 0,
G(B) is the isogeny graph whose vertices are the principally polarizable varieties isogenous to A and with
the same endomorphism ring, and whose edges are isogenies connecting them, of prime degree (therefore
cyclic) smaller than B. By the theory of complex multiplication, the graph G(B) is isomorphic to the
Cayley graph of

P(O)= ker(Cl(O)→ Cl+(O∩ K0))

with set of generators the classes of ideals of prime norm smaller than B (see [10, Section 2.5] for a
detailed discussion of this isomorphism). Let g ≥ 2 be the dimension of A and n = 2g the degree of
its endomorphism algebra K. The natural map π : Clf(K )→ Cl(O) is a surjection (see for instance [10,
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Section 2.2]), so it is sufficient to find a generating set for H = π−1(P(O)). From [10, Lemma 2.1], we
have the inequality

[Clf(K ) : H ] ≤ [Cl(O) : P(O)] ≤ h+O0
.

From Theorem 1.2, G(B) is connected for

B =
(

2.71+ 1.38
ω(f)

log(1N (f))
+

4.13
log(1N (f))

)2

(h+O0
log(1N (f)))2, (4-1)

and it remains to show that the constant factor in this expression is at most 26. First, we need a lower
bound on the quantity log(1N (f)). From [17, Table 3], if n = 4, then log(1N (f))≥ 4 log(3.263)≥ 4.73
(this result assumes the ERH). For n ≥ 6, [1, Lemma 7.1] implies

log(1N (f))≥ n(log(2π)−ψ(2))− 3
2 ≥ 6.99.

Therefore for any degree n ≥ 4, we have log(1N (f)) ≥ 4.73. Now, for n = 2, smaller values of
log(1N (f)) are possible. One can easily check that the constant factor in the expression (4-1) is at
most 26 for all pairs (1, N (f)) such that log(1N (f)) < 4.73 by an exhaustive computation. There
are however five exceptions: when the field is Q(

√
−1) and N (f) ∈ {1, 2}, when the field is Q(

√
−3)

and N (f) ∈ {1, 3}, and when the field is Q(
√

5) and N (f) = 1. Since f is the conductor of an order
in a quadratic field, it is generated by an integer, so N (f) must be a square. This discards the cases
N (f) ∈ {2, 3}. When N (f) = 1, the order O is the ring of integers, which has a trivial (narrow) class
group for Q(

√
−1), Q(

√
−3) and Q(

√
5).

Then, irrespective of the value of n, we can assume in the rest of the proof that log(1N (f))≥ 4.73.
If ω(f)≤ 5, then

ω(f)

log(1N (f))
≤

5
4.73
≤ 1.06.

If ω(f) > 5, then N (f)≥ 2 · 3 · 5 · 7 · 11 · 13ω(f)−5, and

ω(f)

log(1N (f))
≤

ω(f)

log(2 · 3 · 5 · 7 · 11 · 13ω(f)−5)
≤

5
log(2 · 3 · 5 · 7 · 11)

+
1

log(13)
≤ 1.06.

Then, (
2.71+

1.38 ·ω(f)
log(1N (f))

+
4.13

log(1N (f))

)2

≤ (2.71+ 1.38 · 1.06+ 4.13/4.73)2 ≤ 26,

which concludes the proof. �
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