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Preface

The biennial, international Algorithmic Number Theory Symposium (ANTS) provides the premier
international forum for state-of-the-art research in computational and algorithmic number theory. This
conference is devoted to algorithmic aspects of all branches of number theory, including elementary num-
ber theory, algebraic number theory, analytic number theory, geometry of numbers, arithmetic algebraic
geometry, finite fields, and cryptography.

ANTS-XIII, the thirteenth meeting in the Algorithmic Number Theory Symposia series, was held July
16-20, 2018, at the University of Wisconsin-Madison. This volume contains the 28 contributed papers
that were presented at the conference; each paper was presented by one of the paper’s authors. These 28
papers were selected from 48 submissions through a double-blind refereeing process, where the program
committee solicited a minimum of two expert referees for each paper.

In addition to the contributed papers, the conference featured five invited plenary speakers, a poster
session on the afternoon of July 17, and a rump session on the afternoon of July 19.

The organizing committee encouraged participation by women and underrepresented minorities. The
109 people who attended represented 13 countries. About 38% of the attendees were graduate or under-
graduate students, and about 26% identified as female.

Details about ANTS-XIII, such as the conference schedule, talk slides, abstracts of talks and posters,
and more can be found on the conference website at http://www.math.grinnell.edu/~paulhusj/ants2018/.

Plenary speakers

Jennifer Balakrishnan (Boston University, USA)
Noam Elkies (Harvard University, USA)
Steven Galbraith (University of Auckland, New Zealand)
Melanie Matchett Wood (University of Wisconsin-Madison, USA)
Emmanuel Thomé (INRIA, Nancy, France)

Selfridge Prize

At each ANTS meeting since 2006, the Selfridge Prize in Number Theory has been awarded for the
best submitted paper as judged by the program committee; the prize carries a cash award funded by the
Number Theory Foundation. The winners of the 2018 Selfridge Prize are Michael Musty (Dartmouth
College, USA), Sam Schiavone (Dartmouth College, USA), Jeroen Sijsling (Universität Ulm, Germany),
and John Voight (Dartmouth College, USA) for their paper “A database of Belyi maps”.
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Poster Session Prize

The poster session was held Tuesday, July 17 from 2:30 to 3:45 PM. There were 19 poster presentations.
Thanks to a generous gift from the American Mathematical Society, the top poster at the conference, as
chosen by participant vote, was awarded a US$150 gift certificate to the AMS bookstore. This award went
to Travis Scholl (University of Washington, USA), for his poster “Abelian varieties with few isogenies
and cryptography.”

Organizing Committee
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Counting points on genus-3 hyperelliptic curves
with explicit real multiplication

Simon Abelard, Pierrick Gaudry, and Pierre-Jean Spaenlehauer

We propose a Las Vegas probabilistic algorithm to compute the zeta function of a genus-3 hyperelliptic
curve defined over a finite field Fq , with explicit real multiplication by an order Z[η] in a totally real
cubic field. Our main result states that this algorithm requires an expected number of Õ((log q)6) bit-
operations, where the constant in the Õ( ) depends on the ring Z[η] and on the degrees of polynomials
representing the endomorphism η. As a proof-of-concept, we compute the zeta function of a curve
defined over a 64-bit prime field, with explicit real multiplication by Z[2 cos(2π/7)].

1. Introduction

Since the discovery of Schoof’s algorithm [25], the problem of efficiently computing zeta functions
of curves defined over finite fields has attracted a lot of attention, as its applications range from the
construction of cryptographic curves to testing conjectures in number theory. We focus on the problem
of computing the zeta function of a hyperelliptic curve C of genus 3 defined over a finite field Fq using
`-adic methods, in the spirit of Schoof’s algorithm and its generalizations [23; 17; 2]. Although these
methods are polynomial with respect to log q , the exponents in the best known complexity bounds grow
quickly with the genus. Another line of research is to use p-adic methods [18; 24; 7; 14], which are
polynomial in the genus but exponential in the size of the characteristic of the underlying finite field.
Variants of these methods [19; 15; 16] allow us to count the points of a curve defined over the rationals
modulo many primes in average polynomial time, which is especially relevant when experimenting with
the Sato–Tate conjecture.

The aim of this paper is to show — both with theoretical proofs and practical experiments — that
the complexity of `-adic methods for genus-3 hyperelliptic curves can be dramatically decreased as
soon as an explicitly computable noninteger endomorphism η ∈ End(Jac(C)) is known. More precisely,
we say that a curve C has explicit real multiplication by Z[η] if the subring Z[η] ⊂ End(Jac(C)) is
isomorphic to an order in a totally real cubic number field, and if we have explicit formulas describing

MSC2010: primary 11G20; secondary 11M38, 11Y16.
Keywords: point-counting, hyperelliptic curves, Schoof’s algorithm, real multiplication.
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η(P −∞) for some fixed base point ∞ and a generic point P of C . By explicit formulas, we mean
polynomials (η(u)i (x, y))i∈{0,1,2,3} and (η(v)i (x, y))i∈{0,1,2,3} in Fq [x, y], such that, when C is given in
odd-degree Weierstrass form, the Mumford coordinates of η((x, y)−∞) are〈∑3

i=0
η
(u)
i (x, y)X i ,

∑2

i=0

(
η
(v)
i (x, y)/η(v)3 (x, y)

)
X i
〉
,

where (x, y) is the generic point of the curve. In cases where C does not have an odd-degree Weierstrass
model, we can work in an extension of degree at most 8 of the base field in order to ensure the existence
of a rational Weierstrass point.

The influence of real multiplication (RM) on the complexity of point counting was investigated for
genus-2 curves in [11], where the complexity was lowered from Õ((log q)8) [13] to Õ((log q)5). For
genus-2 curves, another related active line of research is to mimic the improvement of Elkies and Atkin
by using modular polynomials [3]. However, the main difficulty of this method is to precompute the
modular polynomials, which are much larger than their genus-1 counterparts.

Our main result is the following theorem.

Theorem 1. Let C be a genus-3 hyperelliptic curve defined over a finite field Fq having explicit real multi-
plication by Z[η], where η ∈ End(Jac(C)). We assume that C is given by an odd-degree Weierstrass equa-
tion Y 2

= f (X). The characteristic polynomial of the Frobenius endomorphism on the Jacobian of C can
be computed with a Las Vegas probabilistic algorithm in expected time bounded by c(log q)6(log log q)k,
where k is an absolute constant and c depends only on the degrees of the polynomials η(u)i and η(v)i and
on the ring Z[η].

In this paper, we use the notation Õ( ) as a shorthand for complexity statements hiding polylogarithmic
terms: the complexity in the theorem would be abbreviated Õ((log q)6). We insist on the fact that all
the O( ) and the Õ( ) notation used throughout the paper should be understood up to a multiplicative
constant which may depend on the ring Z[η] and on the degrees of the polynomials η(u)i and η(v)i . There
are natural families of curves for which these degrees are bounded by an absolute constant and for
which Z[η] is fixed: reductions at primes (of good reduction) of a hyperelliptic curve with explicit RM
defined over a number field.

As in Schoof’s algorithm and its generalizations in [23; 17; 2], the `-adic approach consists in com-
puting the characteristic polynomial of the Frobenius endomorphism by computing its action on the
`-torsion of the Jacobian of the curve for sufficiently many `. In order to prove the claimed complexity
bound, we consider primes ` ∈ Z such that `Z[η] splits as a product p1p2p3 of prime ideals. Computing
the kernels of endomorphisms αi in each pi provides us with an algebraic representation of the `-torsion
Jac(C)[`] ⊂Kerα1+Kerα2+Kerα3. Then, we compute from this representation integers a, b, c ∈ Z/`Z

such that the sum π +π∨ of the Frobenius endomorphism and its dual equals a+ bη+ cη2 mod `. Once
enough modular information is known, the values of a, b, c such that π+π∨= a+bη+cη2 are recovered
via the Chinese remainder theorem and the coefficients of the characteristic polynomial of the Frobenius
can be directly expressed in terms of a, b and c. In fact, in practice we do not have to restrict to split
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primes: any partial factorization of `Z[η] provides some modular information on a, b, c mod `. We give
an example with a ramified prime in Section 7.1, but on the theoretical side, considering nonsplit primes
does not improve the asymptotic complexity.

The cornerstone of the complexity analysis is the cost of the computation of the kernels of endomor-
phisms, which is done by solving a polynomial system. Using resultant-based elimination techniques and
degree bounds on Cantor’s polynomials, we prove that we can solve these equations in time quadratic in
the number of solutions, which leads to the claimed complexity bound. For practical computations, we
replace the resultants by Gröbner bases and we retrieve modular information only for small ` to speed up
an exponential collision search which can be massively run in parallel. Although using Gröbner bases
seems to be more efficient in practice, we do not see any hope of proving with rigorous arguments that
it is asymptotically competitive.

As a proof-of-concept, we have implemented our algorithm and we provide experimental results. In
particular, we were able to compute the zeta function of a genus-3 hyperelliptic curve with explicit RM
defined over Fp with p = 264

− 59. To our knowledge, the largest genus-3 computation that had been
achieved previously was the computation of the zeta function of a hyperelliptic curve defined over Fp

with p = 261
− 1, done by Sutherland [27] using generic group methods.

Examples of curves with RM are given by modular curves. For instance, the genus-3 curve y2
=

x7
+3x6

+2x5
− x4
−2x3

−2x2
− x−1 is a quotient of X0(284) and therefore has real multiplication by

an element of Q[x]/(x3
− 3x − 1). This follows from the properties of the Hecke operators as explained

in [26, Chapter 7]. Based on this theory, algorithms for constructing such curves are explained in [10];
however the explicit expression for the real endomorphism is not given. We expect that tracking the
Hecke correspondences along their construction, and using techniques like those in [29] to reconstruct
the rational fractions describing the real endomorphism, could solve this question. In any case, these
are only isolated points in the moduli space. Larger families are obtained from cyclotomic covering.
This line of research has produced several families of hyperelliptic genus-3 curves having explicit RM
by Z[2 cos(2π/7)]. In particular, explicit such families are given in [22] and [28], and explicit formulas
for their RM endomorphisms are obtained in [20]. We use the 1-dimensional family of curves from
[28, Theorem 1 with p = 7] for our experiments. Other families of genus-3 curves (but not necessarily
hyperelliptic) with RM have been made explicit in [5, Chapter 2], following [9]. We would like to point
out that within the moduli space of complex polarized abelian varieties of dimension 3, those with RM
by a fixed order in a cubic field form a moduli space of codimension 3 [21, Section 9.2]. Since Jacobians
of hyperelliptic curves form a codimension-1 space, we would expect the moduli space of hyperelliptic
curves of genus 3 with RM by a given cubic order to have dimension 2.

We finally briefly mention how our algorithm and analysis could be extended in several directions.
First, the complexity analysis leads, with small modifications, to a point-counting algorithm for general
genus-3 hyperelliptic curves (i.e., without RM) with complexity Õ((log q)14). Second, if the curve is not
hyperelliptic, the main difficulty is to define analogues of Cantor’s division polynomials and get bounds
on their degrees. Without them, it is still possible to use an explicit group law to derive a polynomial
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system for the kernel of an endomorphism, but getting a proof for its degree would require a different
approach to the one we took. Still, the complexities with or without RM are expected to remain the same
for plane quartics as for genus-3 hyperelliptic curves. Third, if we go to higher genus hyperelliptic curves
with RM, the main difficulty in extending our approach is in the complexity estimate of the polynomial
system solving, because resultant-based approaches are not competitive when the number of variables
grows, and a tedious analysis like that in [1] seems to be necessary.

The article is organized as follows. Section 2 gives a bird’s-eye view of our algorithm, along with a
complexity analysis relying on the technical results detailed in Sections 3 to 6. Practical experiments are
presented in Section 7.

2. Overview of the algorithm

Let C be a genus-3 hyperelliptic curve over a finite field Fq with explicit RM, and let η be the given explicit
endomorphism. We denote byµ0, µ1, µ2 the coefficients of the minimal polynomial T 3

+µ2T 2
+µ1T+µ0

of η over Q.

2.1. Bounds. The characteristic polynomial of the Frobenius endomorphism π is of the form χπ (T )=
T 6
− σ1T 5

+ σ2T 4
− σ3T 3

+ qσ2T 2
− q2σ1T + q3, and Weil’s bounds give

|σ1| ≤ 6
√

q, |σ2| ≤ 15q, |σ3| ≤ 20q3/2.

In order to take advantage of the explicit RM, we consider the endomorphism ψ =π+π∨, for which we
can derive the real Weil’s polynomial χψ(T )= T 3

−σ1T 2
+(σ2−3q)T −(σ3−2qσ1), which corresponds

to the characteristic polynomial of ψ viewed as an element of the real subfield of End(Jac(C))⊗Q. The
endomorphism ψ belongs to the ring of integers of Q(η). The ring Z[η] might be a proper suborder of
the ring of integers, so let us call 1 its index, so that ψ can be written ψ = a+ bη+ cη2, where a, b, c
are rationals with a denominator that divides 1. By computing formally the characteristic polynomial of
a+ bη+ cη2 in Q(η) and by equating it with the expression for the real Weil’s polynomial χψ(T ), we
obtain a direct way to compute σ1, σ2 and σ3 in terms of a, b, c:

σ1 = 3a− bµ2− 2cµ1+ cµ2
2 ,

σ2− 3q = 3a2
− 2a bµ2+ 2a c (µ2

2− 2µ1)+ b2µ1+ 3b cµ0− b cµ1µ2 − c2 (2µ0µ2+µ
2
1) ,

σ3− 2qσ1 = a3
− a2 bµ2+ a2 c (µ2

2− 2µ1)+ a b2µ1+ a b c (3µ0−µ1µ2)

+a c2 (µ2
1− 2µ0µ2)− b3µ0+ b2 cµ0µ2− b c2µ0µ1+ c3µ2

0 .

(1)

In Section 4, it is shown that the coefficients a, b and c can be bounded in O(
√

q). More precisely, we
denote by Cabc a constant that depends only on η such that their absolute values are bounded by Cabc

√
q .

Since these bounds are much smaller than the bounds for σ1, σ2, σ3, it makes sense to design an algorithm
that reconstructs these coefficients of ψ instead of the coefficients of χπ as in the classical Schoof
algorithm, and this is what we are going to do later on.
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Another important bound that we need concerns the size of small elements that can be found in ideals
of Z[η]. Let ` be a prime that splits completely in Z[η], so that we can write `= p1p2p3, where the pi ’s
are distinct prime ideals of norm `. In Section 5, it is shown that each pi contains a nonzero element
αi = ai + biη+ ciη

2, where ai , bi and ci are integers and are bounded in absolute value by O(`1/3).

2.2. Algorithms. The general RM point counting algorithm is Algorithm 1. We give a description of it,
allowing some black-box primitives that will be detailed in dedicated sections. As mentioned above, we
will work with the a, b, c coefficients of the ψ endomorphism. More precisely, we compute their values
modulo sufficiently many completely split primes ` until we can deduce their values from the bounds of
Lemma 5 by the Chinese remainder theorem, taking into account their potential denominator 1. Then
the coefficients of χπ are deduced by (1).

We now explain how the algorithm works for a given split `. First its decomposition as a product of
prime ideals `Z[η] = p1p2p3 is computed, and for each prime ideal pi , a nonzero element αi of pi is found
with a small representation αi = ai + biη+ ciη

2 as in Lemma 6. In fact, pi is not necessarily principal
and αi need not generate pi . The kernel of αi is denoted by J [αi ] and it contains a subgroup Gi isomor-
phic to Z/`Z×Z/`Z, since the norm of αi is a multiple of `. The two-element representation (`, η−λi )

of the ideal pi implies that λi is an eigenvalue of η regarded as an endomorphism of J [`] ∼= (Z/`Z)6.
On Gi ⊂ J [αi ], the endomorphism η acts as the multiplication by λi . Therefore, ψ = a+bη+cη2 also

acts as a scalar multiplication on this 2-dimensional space, and we write ki ∈ Z/`Z as the corresponding
eigenvalue: for any Di in Gi , we have ψ(Di ) = ki Di . On the other hand, from the definition of ψ , it
follows that ψπ =π2

+q . Therefore, if such a Di is known, we can test which value of ki ∈Z/`Z satisfies

kiπ(Di )= π
2(Di )+ q Di . (2)

Since ` is a prime and Di is of order exactly `, this is also the case for π(Di ). Finding ki can then be
seen as a discrete logarithm problem in the subgroup of order ` generated by π(Di ); hence the solution
is unique. Equating the two expressions for ψ , we get explicit relations between a, b, c modulo `:

a+ bλi + cλ2
i ≡ ki mod `.

Therefore we have a linear system of three equations in three unknowns, the determinant of which is the
Vandermonde determinant of the λi , which are distinct by hypothesis. Hence the system can be solved
and it has a unique solution modulo `.

It remains to show how to construct a divisor Di in Gi , i.e., an element of order ` in the kernel J [αi ].
Since an explicit expression of η as an endomorphism of the Jacobian of C is known, an explicit expression
can be deduced for αi , using the explicit group law. The coordinates of the elements of this kernel are
solutions of a polynomial system that can be directly derived from this expression of αi . Using standard
techniques, it is possible to find the solutions of this system in a finite extension of the base field (of
degree bounded by the degree of the ideal generated by the system, i.e., in O(`2)), from which divisors
in J [αi ] can be constructed. Multiplying by the appropriate cofactor, we can reach all the elements of Gi ,
but we stop as soon as we get a nontrivial one.
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Algorithm 1: Overview of our RM point-counting algorithm

Data: q an odd prime power, and f ∈ Fq [X ] a monic squarefree polynomial of degree 7 such that the
curve Y 2

= f (X) has explicit RM by Z[η].
Result: the characteristic polynomial χπ ∈ Z[T ] of the Frobenius endomorphism on the Jacobian J of

the curve.

R← 1;
while R ≤ 21Cabc

√
q + 1 do

pick the next prime ` that satisfies conditions (C1) to (C4);
compute the ideal decomposition `Z[η] = p1p2p3, corresponding to the eigenvalues λ1, λ2, λ3 of η in

J [`];
for i← 1 to 3 do

compute a small element αi of pi as in Lemma 6;
compute a nonzero element Di of order ` in J [αi ];
find the unique ki ∈ Z/`Z such that kiπ(Di )= π

2(Di )+ q Di ;
find the unique triple (a, b, c) in (Z/`Z)3 such that a+ bλi + cλ2

i = ki , for i in {1, 2, 3};
R← R · `;

reconstruct (a, b, c) using the Chinese remainder theorem;
deduce χπ from (1);

We summarize the conditions that must be satisfied by the primes ` that we work with:

(C1) ` must be different from the characteristic of the base field.

(C2) ` must be coprime to the discriminant of the minimal polynomial of η.

(C3) There must exist αi ∈ pi as in Lemma 6 with norm nondivisible by `3 for i ∈ {1, 2, 3}.

(C4) The ideal `Z[η] must split completely.

The first 3 conditions eliminate only a finite number of `’s that depends only on η, while the last
one eliminates a constant proportion. The condition (C3) implies that there is a unique subgroup Gi of
order `2 in J [αi ] (our description of the algorithm could actually be adapted to handle the cases where
this is not true).

Algorithm 1 is a very natural extension of the one described in [11] for genus-2 curves with RM.
In [11], the action of the real endomorphism ψ = π +π∨ is studied on subspaces J [pi ] of the `-torsion,
and the corresponding eigenvalues are collected and used to reconstruct information modulo `. In genus 3,
we have three such 2-dimensional subspaces and eigenvalues to compute and recombine instead of two
in genus 2. The main differences between the present work and [11] are the way the `-torsion elements
are constructed with polynomial systems and the bounds on the coefficients of ψ . In both cases, going
from dimension 2 to 3 is not immediate.

2.3. Complexity analysis. The field Q(η) is of degree 3, so its Galois group has order at most 6 and by
Chebotarev’s density theorem the density of primes that split completely is at least 1/6. Therefore the
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main loop is done O(log q/ log log q) times, with primes ` that are in O(log q). All the steps that take
place in the number field take a negligible time. For instance, a small generator like the one in Lemma 6
can be found by exhaustive search: only O(`) trials are needed since we are searching over all elements
of the form a+ bη+ cη2, with |a|, |b|, |c| in O(`1/3).

The bottleneck of the algorithm is the computation of a nonzero element of order ` in the kernel J [αi ]

of αi . This part will be treated in detail in Section 3, where it is shown to be feasible in Õ(`4) operations
in Fq . The output is a divisor Di of order ` in J [αi ] that is defined over an extension field Fqδ , where δ
is in O(`2).

In order to check (2), we first need to compute π(Di ) and π2(Di ) which amounts to raising the
coordinates to the q-th power. The cost is Õ(`2 log q) operations in Fq . Then, each Jacobian operation
in the group generated by π(Di ) costs Õ(`2) operations in the base field, and we need O(

√
`) of them

to solve the discrete logarithm problem given by (2). The overall cost of finding ki , once Di is known is
therefore Õ(`2(

√
`+ log q)) operations in Fq .

Finally, the amount of work performed for each ` is Õ(`2(`2
+ log q)) operations in the base field Fq .

Summing up for all the primes, and taking into account the cost of the operations in Fq , we obtain a
global bit-complexity of Õ((log q)6).

3. Computing kernels of endomorphisms

3.1. Modeling the kernel computation by a polynomial system. Let α be an explicit endomorphism of
degree O(`2) on the Jacobian of C, which satisfies the properties of Lemma 6. In particular, α vanishes
on a subspace of J [`]. We want to compute a triangular polynomial system that describes the kernel J [α]
of α. This will provide us with a nice description of a subgroup of the `-torsion on which we will be
able to test the action of ψ = π +π∨ and deduce a, b, c such that ψ = a+ bη+ cη2 mod `.

We first model J [α] by a system of polynomial equations that we will then put in triangular form.
To do so, we consider a generic divisor D = P1 + P2 + P3 − 3∞, where Pi is an affine point of C of
coordinates (xi , yi ). We then write α(D)= 0, i.e, α(P1−∞)+α(P2−∞)=−α(P3−∞). Generically,
we expect each α(Pi −∞) to be of weight 3, and we write 〈ui , vi 〉 for its Mumford form. We derive
our equations by computing the Mumford form 〈u12, v12〉 of α(P1−∞)+α(P2−∞) and then writing
coefficient-wise the conditions u12 = u3 and v12 = −v3. The case where the genericity conditions are
not satisfied is discussed at the end of the section.

Similarly to the Schoof–Pila algorithm, we define polynomials — which are equivalent to Cantor’s
division polynomials — by the formulas

u12(X)= X3
+

2∑
i=0

d̃i (x1, x2, y1, y2)

d̃3(x1, x2)
X i , v12(X)=

2∑
i=0

ẽi (x1, x2, y1, y2)

ẽ3(x1, x2)
X i ,

u3(X)= X3
+

2∑
i=0

di (x3)

d3(x3)
X i , v3(X)= y3

2∑
i=0

ei (x3)

e3(x3)
X i .
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Lemma 2. For any i ∈ {1, 2, 3}, the degrees of d̃i , ẽi , di and ei are in O(`2/3).

Proof. Let us first remark that the d̃i ’s and ẽi ’s are obtained after adding two divisors 〈u1, v1〉 and 〈u2, v2〉

such that the coefficients of the ui and vi are, respectively, the d j/d3 and yi e j/e3 evaluated at xi . Thus,
since this application of the group law involves a number of operations that is bounded independently of
` and q , the degree stays within a constant multiplicative factor, which is captured by the O( ). Therefore
it is enough to prove the result for the di ’s and ei ’s.

Since the endomorphism α satisfies the properties of Lemma 6, it is a linear combination of 1, η
and η2 with coefficients of size O(`1/3). Using the same argument about the group law, we can further
reduce our proof to the case where α = nηk, with k ∈ {0, 1, 2} and n an integer in O(`1/3). But once
again, ηk does not depend on ` so that, provided we can prove that Cantor’s n-division polynomials have
degrees in O(n2), we have proven that nηk(P −∞)= ηk(n(P −∞)) have coefficients whose degrees
are in O(n2), and then so does α(P −∞). This quadratic bound on the degrees of Cantor’s division
polynomials is proven in Lemma 8 of Section 6 and the result follows. �

3.2. Solving the system with resultants. Typical tools for solving a polynomial system are the F4 algo-
rithm, methods based on geometric resolution, or homotopy techniques. To obtain reasonable complexity
bounds, they all require some knowledge of the properties of the system, and this might be hard to provide.
Since we have a system in essentially three variables (in fact, there are six variables x1, x2, x3, y1, y2, y3,
but the yi variables can be directly eliminated by using the equation defining the curve), we prefer to
stick to an approach based on resultants. It ends up having a complexity that is quasiquadratic in the
degree of the ideal, which is the best that can be hoped for anyway for all of the advanced techniques, and
the complexity analysis requires only elementary tools. A complication that can occur with resultants
is that Resx( f, g) is identically zero when f and g have a nonconstant GCD. This is not a problem
in our case since we can divide polynomials f and g by their GCD, by factoring them at the cost of
O(max(deg( f ), deg(g))ω) field operations — where ω ≤ 3 is the exponent of linear algebra — using the
bivariate recombination methods in [4] (the trivariate case can be reduced to the bivariate case by using
the techniques in [31, Section 21.2]). In what follows, the complexities of computing the resultants are
larger than O(max(deg( f ), deg(g))ω), so we can forget about this complication. We also note that since
the system is symmetric with respect to x1 and x2, it may be possible to decrease the degrees by rewriting
the system in terms of elementary symmetric polynomials in x1 and x2; however, we do not consider this
symmetrization process in the analysis since it may only gain a constant factor in the complexity.

Following our modeling, the equality of the u-coordinates gives three equations

d̃i (x1, x2, y1, y2)d3(x3)= d̃3(x1, x2)di (x3), for i ∈ {0, 1, 2}, (3)

of degree O(`2/3) in the xi ’s. By computing resultants with the equations y2
i = f (xi ), we derive three

equations Ei (x1, x2, x3)= 0 whose degrees are still in O(`2/3).
We then eliminate x1 by computing three trivariate resultants Ri (between the two equations E j

with j 6= i). We get three equations Ri (x2, x3)= 0 of degrees O(`4/3) within a complexity of Õ(`10/3)

field operations, as proven in Lemma 4 below.
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Then, we compute bivariate resultants Si (between the two equations R j with j 6= i) to eliminate x2.
From Lemma 3, we get three univariate equations Si (x3) = 0 of degree bounded by O(`8/3) for a
complexity of Õ(`4) field operations. And we compute the polynomial S(x3) as the GCD of the Si (x3),
which belongs to the ideal defined by our original system.

The bound on the degree of S is much larger than `2
− 1, the expected degree of the kernel. Although

we can expect the actual degree to be in O(`2), we need to add the constraints coming from the v-
coordinates to be able to prove it.

The polynomial system coming from v12 =−v3 has the same characteristics as the one coming from
the u-coordinates. Therefore, we can proceed in a similar way and deduce, at a cost of Õ(`4) operations
another univariate polynomial S̃(x3) belonging to the ideal. Now, since all the original equations have
been taken into account, all common roots of S and S̃ will correspond to a solution of the original system
for which we know that there are O(`2) solutions. Therefore taking the squarefree part of the GCD of S
and S̃ yields a polynomial of degree O(`2).

This univariate polynomial can be factored at a cost of Õ(`4) operations in Fq with standard algo-
rithms [30] (there exist asymptotically faster algorithms, but we already fit within our target complexity).
We then deal with each irreducible factor in turn, until one is found that leads to a genuine solution
of the original system. Let δ be the degree of such an irreducible factor φ(x3). In the field extension
Fqδ = Fq [x3]/φ(x3), we have by construction a root x3 of φ. We then solve again the original polynomial
system where x3 is instantiated with this root. This system is bivariate in x1 and x2 and there are O(1)
solutions, that possibly live in another finite extension Fqδ′ of Fqδ . Since the degrees of the bivariate
polynomials are in O(`2/3), by Lemma 3, solving this system costs Õ(`2) operations in Fqδ .

A solution obtained in this way must be checked, because it could come from a vanishing denominator
that has been cleared when constructing the system or from nongeneric situations. But given a set of
candidate coordinates for a Di element of J [αi ], it is cheap to check that this is indeed an element of the
Jacobian and that it is killed by αi . Also, if αi is not a generator of pi , it is necessary to check the order
of Di : if this is a multiple of `, then multiplying Di by the cofactor gives an order-` element. But it is
also possible to get an unlucky element of small order coprime to `, and then we have to take another
solution of the system.

Since an operation in Fqδ requires a number of operations in Fq that is quasilinear in δ, and since the
sum of all the degrees δ of the irreducible factors of GCD(S, S̃) is in O(`2), the amortized cost is Õ(`4)

operations in Fq to deduce a divisor Di in J [αi ].

3.3. Complexity of bi- and tri-variate resultants. In this section, the algorithms work by evaluation and
interpolation, and require that there be enough elements in the base field. If there were not, we would
simply take a field extension Fqδ of Fq , which would add a factor Õ(δ) to the complexity. The complexity
of the algorithms will be polynomial in the number of evaluation points; therefore, the final complexity
will be logarithmic in δ, so the cost of taking a field extension would be negligible in the Õ( ) notation.
We will therefore not mention this potential complication further.
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Another difficulty is that an evaluation / interpolation strategy assumes that the points of evaluation are
generic enough, so that all the degrees after evaluation are generic. This is again guaranteed by taking a
large enough base field. Still, the algorithm remains a Monte–Carlo one. However, the ultimate goal is to
construct kernel elements, which is an easily verified property. Turning this into a Las Vegas algorithm
can therefore be done with standard techniques.

Lemma 3 [30, Theorem 6.22 and Corollary 11.21]. Let P(x, y) and Q(x, y) be two polynomials whose
degrees in x and y are bounded by dx and dy respectively. Then, R(y)= Resx(P, Q) can be computed
in Õ(d2

x dy) field operations, and the degree of R is bounded by 2dx dy .

Lemma 4. Let P(x, y, z) and Q(x, y, z) be two polynomials whose degrees in each variable are bounded
by d. Then, R(y, z) = Resx(P, Q) can be computed in Õ(d5) field operations, and the degree of R in
each variable is bounded by 2d2.

Proof. The Sylvester matrix has at most 2d columns and its entries are bivariate polynomials whose
degrees in y and z are bounded by d. Thus, its determinant is a polynomial whose degrees in y and z
are bounded by 2d2.

We first perform a Kronecker substitution by considering P̃(x, y)= P(x, y, y2d2
+1) and Q̃(x, y)=

Q(x, y, y2d2
+1), which are polynomials of degrees ≤ d in x and ≤ 2d3

+ d in y. Note that the choice to
replace z by y2d2

+1 is made to be able to invert the Kronecker substitution after the resultant computation.
Next, we compute R̃(y) = Resx(P̃(x, y), Q̃(x, y)). By Lemma 3, it is a univariate polynomial of

degree at most 4d4
+2d2 and can be computed in Õ(d5) operations. We can then invert the Kronecker sub-

stitution to get R(y, z), which can be done in time linear in the number of monomials, that is, in O(d4). �

3.4. Nongeneric situations. Our analysis assumes in the first place that the `-torsion elements are generic
in a rather strong sense, see, e.g., [1, Definition 11] for details. This is expected to be the case with
overwhelming probability, when the base field is large enough and the curve is taken at random in a
large family. However, to obtain a proven complexity we must also consider the cases where there exist
`-torsion elements that are nongeneric. We follow the strategy of [1] where another polynomial system
is designed and solved for each nongeneric situation; for instance, the fact that an `-torsion divisor is of
weight less than 3, or that some points involved in the modeling are not distinct while they generically
are. We do not give all the details, but the number of polynomial systems to consider is bounded by a
constant, and each of these polynomial systems describes a situation that is smaller than the generic one
in the sense that it has either fewer variables or a lower degree, so the complexity bound is maintained.

4. Bounds on the coefficients of ψ

The system of equations (1) giving σ1, σ2 and σ3 in terms of a, b, c is homogeneous if we put weight 1/2
to a, b, c and σ1, weight 1 to q and σ2, weight 3/2 to σ3, and weight 0 to µ0, µ1, and µ2 so any polynomial
in a reduced Gröbner basis of the corresponding ideal will have the same property. Computing such a
Gröbner basis with the lexicographical ordering a > b > c > σ1 > σ2 > σ3 > µ0 > µ1 > µ2 > q (we did
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this computation with the Magma v2.23-4 software), we get a polynomial 9c of degree 6 in c that does
not involve a or b, and which has the form

9c(q, c, σ1, σ2, σ3, µ0, µ1, µ2)= D(µ0, µ1, µ2)
3 c6
+

5∑
i=0

ψ (i)c (q, σ1, σ2, σ3, µ0, µ1, µ2) ci ,

where D(µ0, µ1, µ2)=−27µ2
0+18µ0µ1µ2−4µ0µ

3
2−4µ3

1+µ
2
1µ

2
2 is the discriminant of the polynomial

T 3
+µ2 T 2

+µ1 T +µ0.
By computing Gröbner bases for other lexicographical orderings (with a> c> b>σ1>σ2>σ3>µ0>

µ1 >µ2 > q and b> c> a > σ1 > σ2 > σ3 >µ0 >µ1 >µ2 > q , respectively), we get that polynomials
of the following form also belong to the ideal generated by the polynomials in the system (1):

9b(q, b, σ1, σ2, σ3, µ0, µ1, µ2)= D(µ0, µ1, µ2)
3 b6
+

5∑
i=0

ψ
(i)
b (q, σ1, σ2, σ3, µ0, µ1, µ2) bi ,

9a(q, a, σ1, σ2, σ3, µ0, µ1, µ2)= D(µ0, µ1, µ2)
3 a6
+

5∑
i=0

ψ (i)a (q, σ1, σ2, σ3, µ0, µ1, µ2) ai .

The polynomials ψ (i)a , ψ (i)b and ψ (i)c are homogeneous of weighted degree 3− i/2 with respect to the
grading given above.

Lemma 5. The absolute values of the coefficients a, b, c of ψ = a + bη + cη2 are bounded above
by O(q1/2).

Proof. First, we consider the equation 9c = 0. We write c= c̃ q1/2, σ1 = σ̃1 q1/2, σ2 = σ̃2 q , σ3 = σ̃3 q3/2.
Since ψ (i)c is homogeneous and has weighted degree 3− i/2, a polynomial θ (i)c (σ̃1, σ̃2, σ̃3, µ0, µ1, µ2)

exists such that

ψ (i)c (q, σ1, σ2, σ3, µ0, µ1, µ2) · ci
= q3 c̃ i θ (i)c (σ̃1, σ̃2, σ̃3, µ0, µ1, µ2). (4)

Weil’s bounds imply that |σ̃i | = O(1) for i ∈ {1, 2, 3}. Therefore, for all i ∈ {0, . . . , 5}, we obtain that
|θ
(i)
c (σ̃1, σ̃2, σ̃3, µ0, µ1, µ2)| = O(1). For fixed µ0, µ1, µ2 ∈Q such that µ0+µ1T +µ2T 2

+ T 3 is the
minimal polynomial of a totally real algebraic number, the discriminant D(µ0, µ1, µ2) must be nonzero.
Equations 9c = 0 and (4) imply the following inequality:

|c̃|6−
5∑

i=0

|θ
(i)
c (σ̃1, σ̃2, σ̃3, µ0, µ1, µ2)|

|D(µ0, µ1, µ2)|3
|c̃|i ≤ 0.

Then |c̃| must be smaller than or equal to the largest root of this polynomial inequality, which can itself
be bounded, for instance, with Cauchy’s bound

|c̃| ≤ 1+ max
0≤i≤5

{
|θ
(i)
c (σ̃1, σ̃2, σ̃3, µ0, µ1, µ2)|

|D(µ0, µ1, µ2)|3

}
,

which shows that |c̃| = O(1), and hence |c| = O(q1/2). The proofs for the bounds on |a| and |b| are
similar, using the equations 9a = 0 and 9b = 0. �
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5. Small elements in ideals of Z[η]

We first recall that we consider only primes ` that do not divide the discriminant of the minimal polyno-
mial of η (condition (C2)). Hence, if Z[η] is not the maximal order of Q(η), this has no consequence on
the factorization properties of `.

Lemma 6. For any prime ` that splits completely in Z[η], each prime ideal pi above ` contains a nonzero
element αi of the form αi = ai +biη+ ciη

2, where |ai |, |bi | and |ci | are integers in O(`1/3), and the norm
of αi is in O(`).

Proof. The coefficients of the elements of the ideal pi represented by polynomials in η form a lattice. Ap-
plying Minkowski’s bound to this lattice, we obtain the existence of a nonzero element αi = ai+biη+ciη

2

in pi for which the L2-norm of (ai , bi , ci ) is in O(`1/3). From this bound on the L2-norm, we derive a
bound on the L∞-norm, and finally on the norm of αi as an algebraic number. At each step, the constant
hidden in the O( ) gets worse but still depends only on Z[η]. �

For any given η, it is not difficult to make the constants in the O( ) fully explicit. We do it in the
particular case of Z[η7], with η7 = 2 cos(2π/7), which is the RM used in our practical experiments.
Since Z[η7] is a principal ring, a more direct approach leads to bounds for a generator that are tighter
than what would be obtained by a naive application of Lemma 6.

Lemma 7. Every ideal pi of norm ` in Z[η7] has a generator αi of the form ai + biη7 + ciη
2
7, where

ai , bi , ci ∈ Z satisfy
|ai |< 2.415 · `1/3, |bi |< 1.850 · `1/3, |ci |< 1.764 · `1/3.

Proof. By abuse of notation, we identify Q(η7) with the algebraic number field Q[X ]/(X3
+X2
−2X−1)

and we let σ1, σ2, σ3 be the three real embeddings of Q(η7) in R. Let ε1 = 1− η2
7 and ε2 = 1+ η7 be a

pair of fundamental units, and let µi be a generator of pi . The logarithmic embedding

ϕ : x 7→ (log|σ1(x)|, log|σ2(x)|, log|σ3(x)|)

sends the set of generators of pi to the lattice generated by ϕ(ε1) and ϕ(ε2) translated by ϕ(µi ). Solving
a closest vector problem for the projection of ϕ(µi ) on the plane where the three coordinates sum-up
to 0, we deduce a unit ξi such that αi = ξiµi is a generator whose real embeddings are bounded by

|σ1(αi )| ≤ 2.247 · `1/3, |σ2(αi )| ≤ 1.803 · `1/3, |σ3(αi )| ≤ 2.247 · `1/3.

Writing αi = ai + biη7+ ciη
2
7, the real embeddings can also be expressed as (σ1(αi ), σ2(αi ), σ3(αi ))

T
=

V · (ai , bi , ci )
T, where V is the Vandermonde matrix of (σ1(η7), σ2(η7), σ3(η7)). A numerical evaluation

of its inverse allows the translation of the bounds on σ1(αi ), σ2(αi ), σ3(αi ) into the claimed bounds
on ai , bi , ci . �

6. Bounding the degrees of Cantor’s division polynomials in genus 3

The purpose of this section is to prove the following lemma on the Cantor’s division polynomials, which
are explicit formulas for the endomorphism corresponding to scalar multiplication [6].
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Lemma 8. In genus 3, the degrees of Cantor’s `-division polynomials are bounded by O(`2).

In [6], there are exact formulas for the degrees of the leading and the constant coefficients d3 and d0.
However, there is no formula or bound for the degrees of the other coefficients of the `-division polyno-
mials. Still, our proof strongly relies on [6] and we do not try to make it standalone: we assume that the
reader is familiar with that article, and all references to expressions, propositions or definitions in this
proof are taken from that paper.

For a polynomial P whose coefficients are themselves univariate polynomials, we denote by maxdeg(P)
the maximum of the degrees of its coefficients.

We first prove a bound on the degrees of the coefficients of the quantities αr and γr defined in [6],
from which the wanted bounds will follow. The key tools are the recurrence formulas (8.31) and (8.33)
that relate quantities at index r to quantities at index around r/2, in a similar fashion as for the division
polynomials of elliptic curves. More precisely, the following lemma shows that when the index r is
(roughly) doubled, maxdegαr and maxdeg γr are roughly multiplied by 4, which leads to the expected
quadratic growth.

Lemma 9. Let ` ≥ 12, and assume that for all i ≤ (`+ 9)/2 the degrees maxdegαi and maxdeg γi are
bounded by C , then maxdegα` and maxdeg γ` are bounded by 4C + 36`+ 108.

Proof. We first deal with the bound on maxdeg γ`. Let us consider r and s around `/2 such that ` =
r + s− 5: we take either r = s− 3= `/2+ 1 if ` is even, or r = s− 4= (`+ 1)/2 otherwise.

From (8.30) and (8.31), the degree of γ`[h]ψs−rψr−2ψs−2ψr−1ψs−1 is that of the determinant of the
matrix Ers[h], defined

Ers[h] =


αr−3αs[0] αr−3αs[1] ψr−3ψs γr−3γs[h]
αr−2αs−1[0] αr−2αs−1[1] ψr−2ψs−1 γr−2γs−1[h]
αr−1αs−2[0] αr−1αs−2[1] ψr−1ψs−2 γr−1γs−2[h]
αrαs−3[0] αrαs−3[1] ψrψs−3 γrγs−3[h]

.
Therefore we have an expression for the degrees of the coefficients of γ` in terms of objects at index

around r and s:
deg γ`[h] ≤ deg det Ers[h] − deg(ψr−2ψs−2ψr−1ψs−1).

In this last formula, the factor ψs−r has been omitted, because s− r is either 3 or 4, and by (8.17) this
has nonnegative degree in any case. Thus, we simply bounded it below by 0 in the previous inequality.
Before entering a more detailed analysis, we use (8.8) to rewrite the first column with expressions for
which we have exact formulas for the degree:

Ers[h] =


ψr−4ψs−1 αr−3αs[1] ψr−3ψs γr−3γs[h]
ψr−3ψs−2 αr−2αs−1[1] ψr−2ψs−1 γr−2γs−1[h]
ψr−2ψs−3 αr−1αs−2[1] ψr−1ψs−2 γr−1γs−2[h]
ψr−1ψs−4 αrαs−3[1] ψrψs−3 γrγs−3[h]

 .
The determinant of Ers[h] is the sum of products of four ψ factors and four α or γ factors. The

degrees of the former are explicitly known, while by hypothesis we have upper bounds on the latter,
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since all the indices are at most (`+ 9)/2. We can then deduce an upper bound on the degree of this
determinant. All the ψi have indices with i in the range [r − 4, s] (remember that r ≤ s), and since their
degrees increase with the indices, we can upper bound the degree of the products of the four ψ factors
by 4 degψs . Therefore we have

deg det Ers[h] ≤ 4(degψs +C).

In order to deduce an upper bound on maxdeg γ`, it remains to get a lower bound on the degree of the
deg(ψr−2ψs−2ψr−1ψs−1) term, and again by monotonicity of the degree in the index, we lower bound
it by 4 degψr−2. So finally, we get

maxdeg γ` ≤ 4C + (degψ4
s − degψ4

r−2).

Using (8.16) and (8.17), we deduce that for all k, we have deg(ψ2
k ) = 3(k2

− 9) and substituting this
value and the expression of r − 2 and s in terms of `, we obtain

degψ4
s − degψ4

r−2 =

{
30`+ 90 if ` is even,
36`+ 108 if ` is odd,

and the result follows for maxdeg γ`.
The proof for maxdegα` follows the same line. Using the matrix Frs[h] defined in (8.32) in a similar

way to which we used the matrix Ers[h], and with the help of the formula (8.33), we end up with the
bounds

maxdegα` ≤
{

4C + 30`− 30 if ` is even,
4C + 36`− 36 if ` is odd,

which are stricter than our target.
Finally, the bound `≥ 12 is necessary to ensure that the quantities r and s are at least 5, as required

in [6] to apply the formulas (8.31) and (8.33). �

We can now finish the proof of Lemma 8. We define two sequences (`i )i≥0 and (Ci )i≥0 as follows:
let `0 = 12 and let C0 be a bound on the degrees of the coefficients of all the αi and γi for i ≤ `0. Then
for all i ≥ 1, we define the sequences inductively by{

`i+1 = 2`i − 9,
Ci+1 = 4Ci + 36`i+1+ 108.

By Lemma 9, for all i and all ` ≤ `i , the degrees maxdegα` and maxdeg γ` are bounded by Ci . The
expression `i = (`0− 9)2i

+ 9 = 3 · 2i
+ 9 can be derived directly from the definition and substituted

in the recurrence formula of Ci+1 to get Ci+1 = 4Ci + 216 · 2i
+ 432. This recurrence can be solved by

setting 0i = Ci + 108 · 2i
+ 144, so that 0i+1 = 40i , and we obtain Ci = (C0+ 252) 4i

− 108 · 2i
− 144.

Finally, for any `, we select the smallest i such that ` ≤ `i . This value of i is dlog2((`− 9)/3)e. The
corresponding bound for maxdegα` and maxdeg γ` is then Ci , which grows like O(`2) (and we remark
that the effect of the ceiling can make the constant hidden in the O( ) expression grow by a factor of at
most 3).
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Using the expression (8.10), we have maxdeg δ` ≤maxdegα`+maxdeg γ`, and therefore the bound
O(`2) also applies to the degrees of the coefficients of δ`. Using the formula (8.13), the same holds for
the coefficients of ε`/y.

This concludes the proof of Lemma 8.

7. Experimental results

In order to evaluate the practicality of our algorithm, we have tested it on one of the families of genus-3
hyperelliptic curves having explicit RM given in [28, Theorem 1]. Formulas for their RM endomorphisms
are described in [20]: for t 6= ±2, the curve Ct with equation

y2
= x7
− 7x5

+ 14x3
− 7x + t,

admits an endomorphism given in Mumford representation by

η7(x, y)= 〈X2
+ 11 x X/2+ x2

− 16/9, y〉.

The fact that this expression has degree 2 while one would generically expect a degree 3 is no accident:
it comes from the construction in [28] of the endomorphism as a sum of two automorphisms on a double
cover of the curve. We have η3

7 + η
2
7 − 2η7 − 1 = 0, so the ring Z[η7] is isomorphic to the ring of

integers Z[2 cos(2π/7)] of the real subfield of the cyclotomic field Q(e2iπ/7). All the numerical data in
this section have been obtained for the parameter t = 42, on the prime field Fp with p = 264

− 59.
In our practical computations, the main differences to the theoretical description are the following:

we use Gröbner basis algorithms instead of resultants, we consider also small nonsplit primes ` and
small powers, and we finish the computation with a parallel collision search. The source code for our
experiments is available here: https://members.loria.fr/SAbelard/RMg3.tgz.

7.1. Computing modular information with Gröbner basis. Although the polynomial system resolution
using resultants has a complexity of Õ(`4), the real cost for small values of ` is already pretty large.
In the resolution method described in Section 3.2, each bivariate resultant is computed by evaluation
/ interpolation and hence requires the computation of many univariate resultants. We illustrate this
by counting the number of univariate resultants to perform and their degrees for the main step of the
resolution (the part that reaches the peak complexity). In the following table, we measure the cost of
such resultant computations using the NTL 10.5.0 and FLINT 2.5.2 libraries, both linked against GMP 6,
when the base field is F264−59. These costs do not include the evaluation / interpolation steps which might
also be problematic for large instances, because they are hard to parallelize.

` # res deg cost (NTL) cost (FLINT)

13 5.25 × 108 16,000 1,850 days 735 days
29 1.28 × 1010 80,000 310,000 days 190,000 days

We were more successful with the direct approach using Gröbner bases that we now describe. For
computing the kernel of a given endomorphism, we computed a Gröbner basis of (3) with some small

https://members.loria.fr/SAbelard/RMg3.tgz
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modifications. First, we observe that the only occurrences of y1 and y2 are within the monomial y1 y2.
Consequently, we can remove one variable by replacing each occurrence of y1 y2 by a fresh variable y.
Next, we need to make the system 0-dimensional by encoding the fact that d3(x3) and d̃3(x1, x2) are
nonzero. This is done by introducing another fresh variable t and by adding the polynomial S(x1, x2, x3)t−
1 to the system, where S(x1, x2, x3) is the squarefree part of d3(x3)d̃3(x1, x2). Finally, since each poly-
nomial is symmetric with respect to the transposition of the variables x1 and x2, we can rewrite the
equations using the symmetric polynomials s1 = x1+ x2 and s2 = x1 x2. This divides by 2 the degree in
x1 and x2 of the equations. We end up with a system in five variables.

The whole construction can be slightly modified to compute the preimage of a given divisor by the
endomorphism: to model α(D) = Q, we write D = P1 + P2 + P3 − 3∞ and solve for α(P1 −∞)+

α(P2−∞)= Q−α(P3−∞). In that case, the variable y3 gets involved in all the equations, so that we
get a system in six variables.

For `= 2, the 2-torsion elements are easily deduced from the factorization of f , and by computing a
preimage of a 2-torsion divisor, we get a point in J [4] from which we could deduce a, b, c mod 4. Divid-
ing again by 2 was too costly, due to the fact that the 4-torsion point was in an extension of degree 4. For
`= 3, which is an inert prime, we ran the kernel computation for the multiplication-by-3 endomorphism,
without using the RM property. The norm being 27, this is the largest modular computation that we
performed (and the most costly in terms of time and memory). The prime `= 7 ramifies in Z[η7] as the
cube of the ideal generated by α7=−2−η7+η

2
7. The kernel of α7 can be computed but it yields only one

linear relation in a, b, c mod 7. Dividing the kernel elements by α7 would give more information, but
this computation did not finish due to the field extension in which the divisors are defined. The first split
prime is `= 13. We use the following small generators: (13)= (2−η7−2η2

7)(−2+2η7+η
2
7)(3+η7−η

2
7),

which seem to produce the polynomial systems with the smallest degrees. For instance, the apparently
smaller element 1+ η2

7 of norm 13 yields equations of much higher degrees; 7, 71, 72, 73, 72. The next
split prime is 29, which would maybe have been feasible, but was not necessary for our setting. In the
following table, we summarize the data for these systems, which were obtained with Magma v2.23-4 on
a Xeon E7-4850v3 at 2.20GHz, with 1.5 TB RAM.1

mod `k #var degree of each eq. time memory a, b, c mod `k

2 — — — — 0, 0, 0
4 (inert2) 6 7, 7, 14, 15, 15, 10 1 min negl. 2, 2, 2
3 (inert) 5 7, 53, 54, 55, 26 14 days 140 GB 1, 2, 1
7= p3

1 5 7, 35, 36, 37, 36 3.5h 6.6 GB a+ 2b+ 4c ≡ 2
13= p1p2p3 5 7, 44, 45, 46, 52 3× 3 days 41 GB 12, 10, 9
29= p1p2p3 5 7, 92, 93, 94, 100 >3×2 weeks >0.8 TB —

1The F4 algorithm can be highly sensitive to the modeling of the problem and we refer to the source code. In particular,
thanks to serendipity, we saved a factor greater than 12 in the runtime for `= 7, 13 by forgetting to take the squarefree part of
the saturation polynomial. We have no explanation for this phenomenon.
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7.2. Parallel collision search for RM curves. The classical square-root-complexity search in genus 3
requires O(q) group operations [8]. For RM curves, this can be improved by searching for the coeffi-
cients a, b, c of ψ = π +π∨ in Z[η]. This readily yields a complexity of O(q3/4), using the equation
aD+ bη(D)+ cη2(D) = (q + 1)D, which must be satisfied for any rational divisor D. While a baby-
step, giant-step approach is straightforward to design, it needs O(q3/4) space and this is the bottleneck.
A low-memory, parallel version of this search can be obtained with the algorithm of [12]. There the
details are given only for a 2-dimensional problem, while here we have a 3-dimensional problem, but
we did not encounter any unexpected issues when adapting the parameters to our case. Also, just like
in [12], including some anterior modular knowledge is straightforward: if a, b, c are known modulo m,
the expected time is O(q3/4/m3/2).

We wrote a dedicated C implementation with a few lines of assembly to speed up the addition and mul-
tiplication in Fp, taking advantage of the special form of p. This implementation performs 10.7 million
operations in the Jacobian per second using 32 (hyperthreaded) threads of a 16-core bi-Xeon E5-2650
at 2 GHz. We used the knowledge of ψ modulo 156 but not of the known relation modulo 7 for simplicity
(there is no obstruction to using it and saving an additional 71/2 factor).

After computing about 190,000 chains of average length 32,000,000, we got a collision, from which
we deduced

ψ = 2551309006+ 2431319810 η7− 847267802 η2
7,

and the coefficients of the characteristic polynomial χπ of the Frobenius are then

σ1 = 986268198, σ2 = 35389772484832465583, σ3 = 10956052862104236818770212244.

The number of group operations that were done is slightly less than 43 (p3/4/1563/2). This factor 43
is close to the average that we observed in our numerous experiments with smaller sizes. Scaled on a
single (physical) core, we can estimate the cost of this collision search to be 105 core-days.
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Constructing Picard curves with complex multiplication
using the Chinese remainder theorem

Sonny Arora and Kirsten Eisenträger

We give a new algorithm for constructing Picard curves over a finite field with a given endomorphism
ring. This has important applications in cryptography since curves of genus 3 allow one to work over
smaller fields than the elliptic curve case. For a sextic CM-field K containing the cube roots of unity, we
define and compute certain class polynomials modulo small primes and then use the Chinese remainder
theorem to construct the class polynomials over the rationals. We also give some examples.

1. Introduction

For cryptographic protocols whose security relies on the difficulty of the discrete log problem, one often
wants to find a group whose order is divisible by a large prime. One option is the group of points of an
elliptic curve over a finite field, or more generally, the group of points on the Jacobian of a curve over
a finite field. Thus, we are interested in the problem of finding curves over finite fields whose Jacobian
has a given number of points.

For elliptic curves, Atkin and Morain showed in [3] that one can use the theory of complex multipli-
cation to solve this problem. The approach taken in [3] involves computing the Hilbert class polynomial
with respect to an imaginary quadratic field by evaluating modular j-invariants at certain values. An
alternative method to construct the Hilbert class polynomial, used in [9] and [1], is to compute the poly-
nomial modulo several small primes and then reconstruct the polynomial using the Chinese remainder
theorem. In the genus 2 case, analogous to the construction of the Hilbert class polynomial, one wishes
to construct the so-called Igusa class polynomials. In this case, one can again use a Chinese remainder
theorem approach to construct the Igusa class polynomials as shown in [11; 12].

If one wishes to construct genus 3 curves with a given number of points, less is known. Genus 3
curves fall into two classes: hyperelliptic curves and nonhyperelliptic plane quartics. One difficulty in
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the case of genus 3 curves is that there is no theory of invariants which works for all genus 3 curves.
However, invariants do exist for the classes of hyperelliptic curves and nonhyperelliptic plane quartics
separately. By making restrictions on the type of genus 3 curves considered, algorithms for constructing
genus 3 curves with complex multiplication have been presented in [36; 23; 25; 4; 21]. All these papers
take a complex analytic approach to constructing genus 3 curves similar to the method in [3]. The
papers [36; 4] deal with constructing hyperelliptic genus 3 curves with complex multiplication. The
paper [23] and its improvement [25] deal with constructing Picard curves with complex multiplication,
while [21] deals with constructing plane quartics defined over Q with complex multiplication. Due to the
numerous improvements to the Chinese remainder theorem approach in the elliptic curve case [5; 33], it
is of interest to try to implement a Chinese remainder theorem approach for the construction of genus 3
curves. This is the aim of this paper.

As in [23], we will restrict our attention to Picard curves. These are genus 3 curves of the form
y3
= f (x) where deg( f )= 4 and f has no repeated roots over the algebraic closure. One advantage to

using these curves is that it is very simple to generate representatives for all isomorphism classes of Picard
curves over a finite field. Also, if K is a sextic CM-field that contains the cube roots of unity, then, by [23,
Lemma 1], all simple, principally polarized abelian varieties of dimension 3 with complex multiplication
by OK arise as the Jacobians of Picard curves, so we can use Picard curves in a CRT approach.

Statement of theorem. Let K be a sextic CM-field containing the cube roots of unity. Fix a primitive
CM-type 8 on the field K. Our first step will be to define suitable class polynomials for (K ,8). For
this we will require invariants for Picard curves.

We work with the set of invariants for Picard curves j1, j2, j3 defined in [20]. They are discussed in
more detail in Section 3.

We now wish to introduce class polynomials for Picard curves. Recall, the Hilbert class polynomial for
an imaginary quadratic field K has as roots the j -invariants of elliptic curves with complex multiplication
by the full ring of integers OK of K. Analogous to this situation, we would like the class polynomials
we define, for a sextic CM-field K containing the cube roots of unity, to have as roots the invariants of
Picard curves with complex multiplication by OK . A complication that does not arise in the genus 1 case
is that we will need to restrict to Picard curves whose Jacobian has a given primitive CM-type on K. In
genus 2, a restriction on the CM-type for class polynomials was discussed in [26].

We would like our class polynomials to be defined over Q. This will allow us to multiply by a large
enough integer to clear denominators and hence use the Chinese remainder theorem on the resulting
polynomials modulo various primes. For an abelian variety A of CM-type (K ,8) and for σ ∈Gal(Q/Q),
Aσ is of type (K , σ8). Thus, we define class polynomials for i = 1, . . . , 3 as

H8
i :=

∏
(X − ji (C)),

where the product runs over all isomorphism classes of Picard curves C/C whose Jacobian has complex
multiplication by OK of type σ8 for some σ ∈ Gal(Q/Q). These polynomials will be defined over Q.
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Should one want to reconstruct a Picard curve C/C such that End(Jac(C))∼=OK from the roots of the
class polynomials, it is more convenient to work with a different set of class polynomials, introduced
in [14] in the genus 2 setting. This is discussed more in Section 4.

We have the following theorem:

Theorem 1.1. The following algorithm takes as input a sextic CM-field K containing the cube roots of
unity and a primitive CM-type 8 on K. Assuming the bound B in Theorem 5.4 is known, the algorithm
outputs the class polynomials H8

i , where i = 1, . . . , 3, corresponding to the type (K ,8).

(i) Construct a set of rational primes S which satisfy

(a) 2 6∈ S.
(b) Each p ∈ S splits completely in K .
(c) Each p ∈ S splits completely into principal ideals in K ∗, the reflex field for the type (K ,8).
(d)

∏
p∈S p > B where B is the bound in Theorem 5.4.

(ii) Form the class polynomials H8
i modulo p for every p ∈ S. Let Hi,p := H8

i mod p. Then

Hi,p =
∏
(X − ji (C)),

where the product is over all Fp-isomorphism classes of Picard curves that arise as the reduction
of a Picard curve over C whose Jacobian has complex multiplication by OK of type σ8 for some
σ ∈ Gal(Q/Q).

(iii) Form the polynomials H8
i from the Hi,p, p ∈ S, using the Chinese remainder theorem.

We review background from the theory of complex multiplication in Section 2 and prove some results
we will need. In Section 3 we review invariants of Picard curves. In Section 4, we discuss reducing class
polynomials modulo primes. In Section 5 we show how to compute H8

i modulo a prime p and we prove
Theorem 1.1. Section 6 discusses the endomorphism ring computation, and in Section 7 we give some
examples.

2. Results from complex multiplication

Definition 2.1 (CM-type). Let K be a CM-field of degree 2g and let � be an algebraically closed field
of characteristic 0. Denote by Hom(K , �) = {φ1, φ2, . . . , φ2g} the set of embeddings of K into �.
Furthermore, let ρ denote the automorphism inducing complex conjugation on K. Then any subset of
these embeddings 8 satisfying the disjoint union 8t ρ ◦8= Hom(K , �) is called a CM-type on K.

Injectivity of the reduction map.

Definition 2.2. Let A be an abelian variety over a field k with complex multiplication by the maximal
order OK in a CM-field K, and let a be an ideal in OK . A surjective homomorphism λa : A→ Aa,
to an abelian variety Aa, is an a-multiplication if every homomorphism a : A→ A with a ∈ a factors
through λa, and λa is universal for this property, in the sense that, for every surjective homomorphism
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λ′ : A→ A′ with the same property, there is a homomorphism α : A′→ Aa, necessarily unique, such that
α ◦ λ′ = λa.

For abelian varieties A and B defined over a number field and with good reduction modulo a prime P,
the next proposition gives a condition under which A and B will be isomorphic provided that their
reductions modulo P are isomorphic. The fact that the conditions below are sufficient for an isomorphism
to lift was given for dimension 2 in [11, Theorem 2]. Here we give a general proof of this fact.

Proposition 2.3. Let (A, ι), (B, ι′) be simple, abelian varieties of type (K ,8) defined over a number
field k. Furthermore, assume that P is a prime of k such that A and B have good reduction modulo P and
denote by Ã and B̃ their reductions modulo P, respectively. If Ã and B̃ are simple with endomorphism
ring isomorphic to OK and γ : Ã→ B̃ is an isomorphism over Fp, then A and B are isomorphic over k.

Proof. As (A, ι), (B, ι′) have the same type then, by [30, Chapter II, Proposition 16], they are isogenous
via an a-multiplication, which we denote by λa. After possibly taking a field extension and picking a
prime above P, we can assume that λa and all endomorphisms are defined over k. The reduction λ̃a is
also an a-multiplication [28, Proposition 7.30]. Define an embedding ι̃ :OK → End( Ã) by ι̃(a)= ι̃(a).
This map is an isomorphism. Let a ∈ OK be such that ι̃(a) = γ−1

◦ λ̃a ∈ End( Ã). As ι̃(a) factors
through λ̃a, a ∈ a by [28, Corollary 7.24]. Also, ι(a) must factor through the a-multiplication, λa, that
is, ι(a)= γ1 ◦ λa for γ1 some isogeny from B to A.

Reducing modulo P, ι̃(a) = γ̃1 ◦ λ̃a. As λa is surjective, this implies γ−1
= γ̃1. Similarly, we can

find a γ2 such that γ̃2 = γ . Then γ̃1 ◦ γ̃2 = γ
−1
◦ γ = id. As the reduction map is injective, γ1 ◦ γ2 = id

and γ2 ◦ γ1 = id, thus A and B are isomorphic. �

The congruence relation. Let (A, ι)/C be of type (K ,8) with End(A) ∼= OK . Denote by (K ∗,8∗)
the reflex of (K ,8). Let k be a field of definition for (A, ι). As the Hilbert class field H of K ∗ is
a field of definition for (A, ι) (see [15, Proposition 2.1]), we may assume that k ⊆ H. Take L to be
a Galois extension of Q containing the field of definition k and the field K. Recall k contains K ∗ by
[24, Chapter III, Theorem 1.1]. Let P be a prime of k at which A has good reduction. Let PK ∗ be
the prime of K ∗ below P. Pick a prime PL of L above P and write 8−1

L for the set of elements ψ of
Gal(L/Q) such that (ψ−1)|K ∈8.

Let π ∈OK be such that ι̃(π) is the Nk/Q(P)-th power Frobenius on the reduction Ã. In Section 5 we
will use the following proposition, which is an easy consequence of the Shimura–Taniyama congruence
relation, to obtain a bijection between abelian varieties with CM by OK of type 8 and abelian varieties
over a finite field satisfying certain properties.

Proposition 2.4. Assume that p splits completely in K and splits completely into principal ideals in K ∗.
Also, let M be the Galois closure of the compositum of K and K ∗ and let PM be a prime above PK ∗ .
Write 8−1

M for the set of elements γ of Gal(M/Q) such that (γ−1)|K ∈8. Then πOM =
∏
γ∈8−1

M
(PM)

γ.

Proof. As p splits completely into principal ideals in K ∗, p splits completely in the Hilbert class



CONSTRUCTING PICARD CURVES WITH COMPLEX MULTIPLICATION USING THE CRT 25

field H of K ∗. Thus, as mentioned above, p splits completely in the field of definition k. Therefore,
f (PL/P)= 1, and by [24, Chapter 3, Theorem 3.3] we obtain

πOL =
∏

ψ∈8−1
L

P
ψ

L OL .

Using the splitting conditions on p and intersecting with OM on both sides, we get the desired result. �

Thus the CM-type determines the ideal generated by Frobenius. We will also need a version of this
statement over Qp. Fix an algebraic closure Qp of Qp. Let

Hw = {φ ∈ Hom(K ,Qp) : φ factors through K → Kw},

where Kw is the completion of K at the place w.

Proposition 2.5. Let (A, ι) be an abelian variety with CM by the full ring of integers OK and of CM-
type 0. Moreover, assume (A, ι) has a model over the p-adic integers Zp. If p splits completely in K,
0 = {φ : φ ∈ Hv, where v |πOK }.

Proof. By [34, Lemme 5], v(π)/v(q) = Card(0 ∩ Hv)/[Kv :Qp]. If p splits completely in K, then
[Kv :Qp] = 1 for all v | p and q = p. This gives v(π)= Card(0 ∩ Hv).

Also, as p splits completely in K, there is only one embedding K → Kv for every v | p. Thus
Card(Hv)= 0 or 1, and Card(0 ∩ Hv)= 1 if and only if v(π)= 1. �

3. Invariants of Picard curves

In this section, we discuss invariants for Picard curves. Recall, if y3
= f (x) where deg( f ) = 4 and f

has no repeated roots over the algebraic closure, then this defines a smooth curve known as a Picard
curve. Assume L is a field of characteristic not 2 or 3, and let C be a Picard curve over L . We can
express the curve C in the form y3

= x4
+ g2x2

+ g3x + g4. This is called the normal form of the curve
[18, Appendix 1, Definition 7.6].

As in [20, Section 1], we define the following three invariants for a Picard curve in normal form as
j1 := g3

2/g2
3, j2 := g2g4/g2

3, j3 := g3
4/g4

3 .
We can write down a model for the curve with given invariants as follows:

Case 1: If j1 6= 0, then C : y3
= x4
+ j1x2

+ j1x + j1 j2.

Case 2: If j1 = 0, j3 6= 0, then C : y3
= x4
+ j2

3 x + j3
3 .

Case 3: If j1 = 0, j2 = 0, j3 = 0, then C : y3
= x4
+ x .

If g3 = 0, then C is a double cover of an elliptic curve (see [20, Lemma 2.1 and Theorem 2.4]).
Thus the invariants for a Picard curve C whose Jacobian is simple are always defined. This gives us the
following proposition.

Proposition 3.1. Let C be a Picard curve over a field L of characteristic not 2 or 3 with Jac(C) simple.
Assume that the three invariants ji (C) are defined over a subfield k of L. Then C has a model as a Picard
curve over k.
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Goren and Lauter showed that for genus 2 curves which have CM by a given primitive, quartic, CM-
field K one can bound the primes occurring in the denominators of the Igusa class polynomials in terms of
a value depending on K [16]. They obtain this bound by relating the primes occurring in the denominators
to primes of bad reduction of the curves. For genus 3 curves with CM by a sextic CM-field K, a bound
on the primes of bad reduction in terms of a value depending on K was obtained in [8; 22]. A bound on
the primes occurring in the denominators of the above invariants of Picard curves was obtained in [20].

We will need the following condition for Picard curves.

Proposition 3.2. Let K =Q(µ) be a sextic CM-field,8 be a primitive CM-type on K and p be a rational
prime that splits completely in K. Let C be a genus 3 curve defined over a number field M with CM by
the maximal order OK of K and with type 8. Let P be a prime of M above p. Then C has potential
good reduction at P. Moreover, if C is a Picard curve then vP( ji (C))≥ 0 for all invariants ji .

Proof. Assume C has geometrically bad reduction modulo a prime P of M above the rational prime p.
After possibly extending M, we may assume that C has a stable model over M and Jac(C) has good reduc-
tion over M. The stable reduction C̃ has at least two irreducible components [8, Proposition 4.2]. J̃ac(C)
is isomorphic as a polarized abelian variety to the product of the Jacobians of the irreducible components
of C̃ . That is, J̃ac(C) is isomorphic as a principally polarized abelian variety to E × A [8, Corollary 4.3],
where E is an elliptic curve and A is a two-dimensional principally polarized abelian variety. However,
as p splits completely in K, the reduction modulo P of Jac(C) must be simple with CM by K by
[30, Chapter 3, Theorem 2]. By [32, Theorem 1.2] J̃ac(C) is ordinary, so End(J̃ac(C))⊗Q is unchanged
after base extension by [35, Theorem 7.2]. Therefore J̃ac(C) is geometrically simple as the endomor-
phism ring tensored with Q is a field. This is a contradiction, so C must have potential good reduction.

Now assume that C is a Picard curve and that vP( ji (C)) < 0 for some ji . After possibly extending M,
we may assume that Jac(C) has good reduction modulo P. Then the reduction of Jac(C) modulo P has
two nontrivial abelian subvarieties by [20, Lemma 2.1]. However, as p splits completely in K, we again
obtain a contradiction. �

Remark 3.3. It was pointed out to the authors by some of the anonymous referees and by Marco Streng
that a condition similar to the above proposition was given in [21, Proposition 4.1] when the field K/Q
is cyclic Galois.

Remark 3.4. To generate representatives for all distinct isomorphism classes, we use the invariants
described in [23, Section 4]. To see that this enumerates all isomorphism classes of Picard curves with
no repetitions, see [18, Appendix 1, Section 7.5].

4. Reduction of class polynomials

Fix a sextic CM-field K containing the cube roots of unity and a primitive CM-type 8 on K. In the
introduction we defined class polynomials H8

i for i = 1, . . . , 3,

H8
i :=

∏
(X − ji (C)),
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where the product runs over all isomorphism classes of Picard curves defined over C whose Jacobian has
complex multiplication by OK and of type σ8 for some σ ∈ Gal(Q/Q).

Remark 4.1. If one wants to use the class polynomials above to construct Picard curves over C with
End(Jac(C)) ∼= OK , then one needs to match up the roots of the three polynomials to obtain a triple
of roots ( j1, j2, j3) that corresponds to such a curve. In genus 2, alternate class polynomials were
proposed based on Lagrange interpolation that prescribe which roots of the second and third Igusa class
polynomials to choose once the first has been chosen [14, Section 3]. These polynomials only work if
the first Igusa class polynomial has simple roots. For a discussion of resolving this issue in genus 2 see
[31, Chapter III, Section 5].

We will show that under suitable restrictions on the prime p, the reduction modulo p of these polyno-
mials H8

i is
Hi,p :=

∏
(X − ji (C)),

where the product runs over all Fp-isomorphism classes of Picard curves C which arise as the reduction
of Picard curves over C that have complex multiplication by OK and type σ8 for some σ ∈ Gal(Q/Q).

First we describe when a principally polarized abelian variety is the Jacobian of a Picard curve.
In the following, whenever we assume that a field F contains the cube roots of unity, it is also implied

that F does not have characteristic 3.

Lemma 4.2. Let (A, C) be a simple, principally polarized abelian variety of dimension 3 over a perfect
field H which contains the cube roots of unity. In addition, assume (A, C) has complex multiplication by
K with Q(ζ3) ⊂ K. Then (A, C) is geometrically the Jacobian of a Picard curve C which has a model
over H.

Proof. By [23, Lemma 1], (A, C) is the Jacobian of a Picard curve C after we base change to a finite
extension L of H. After possibly another finite extension, we may assume L is Galois over H. Let
σ ∈ Gal(L/H), then Jac(Cσ )∼=L Jac(C)σ. As Jac(C) has a model over H, Jac(Cσ )∼=L Jac(C).

Hence by Torelli’s theorem, C ∼=L Cσ. So ji (C) = ji (Cσ ) = ji (C)σ, i = 1, . . . , 3. Therefore the
invariants ji (C) are defined over H. As the invariants ji (C) are defined over H, Proposition 3.1 implies
that C has a model over H. �

Before we discuss reductions of our class polynomials, we need the following.

Proposition 4.3. H8
1 , H8

2 , H8
3 are polynomials defined over Q.

Proof. Every abelian variety with CM by K has a model over a number field. Thus, by [29, Theorem 4],
the curve C is also defined over a number field. So if σ ∈Gal(Q/Q) is an automorphism, then the tuple of
invariants ji (C)σ corresponds to the curve Cσ. But if Jac(C) has CM-type (K ,8) under some embedding
ι : K ↪→ End(Jac(C))⊗Q, then Jac(Cσ ) has CM-type (K , σ8) by [24, Chapter 3, Theorem 1.2]. The
number of roots of the H8

i is finite as there are only finitely many principally polarized abelian varieties
with endomorphism ring isomorphic to OK of type σ8 [24, Chapter 3, Corollary 2.7], so the H8

i are
polynomials defined over Q. �
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We will use the abbreviation p.p.a.v. for a principally polarized abelian variety. For a CM-field K of
degree 2g over Q, let

CMK ,8 = {C-isomorphism classes of simple p.p.a.v. with CM by OK of type 8}.

The abelian varieties in this set are of dimension g. By [15, Proposition 2.1], every p.p.a.v. (A, C)
representing an isomorphism class in CMK ,8 has a model over the Hilbert class field H of the reflex
field K ∗ which has good reduction modulo any prime P of H. By [28, Chapter II, Proposition 6.7], the
reduction of the polarization C is a polarization on the reduced variety Ã. If p splits completely into
principal ideals in K ∗ then p splits completely into principal ideals in H. Thus, the reduction (AP, CP)
of (A, C) modulo P has a model over Fp. Denote by C̃MK ,8 the set of Fp-isomorphism classes occurring
in this way. That is,

C̃MK ,8 = {Fp-isomorphism classes of p.p.a.v.’s (AP, CP)/Fp | (A, C) ∈ CMK ,8}.

Proposition 4.4. Let σ ∈ Gal(Q/Q). If 8γ = σ8 for some γ ∈ Aut(K/Q), then CMK ,8 and CMK ,σ8

are equal. Otherwise, CMK ,8 and CMK ,σ8 are disjoint.

Proof. For the first statement see [31, page 22]. The second statement follows from [31, Chapter I,
Lemma 5.6]. �

For a sextic CM-field K containing the cube roots of unity, define

C8 := {Picard curves C over C | Jac(C) ∈ CMK ,8}/isomorphism over C,

and
C̃8 := {Picard curves C over Fp | Jac(C) ∈ C̃MK ,8}/isomorphism over Fp.

Let p > 3 be a rational prime that splits completely in K and splits completely into principal ideals in K ∗.

Proposition 4.5. The reduction of the polynomials H8
i modulo a prime satisfying the above conditions

gives H8
i mod p ≡

∏
(X − ji (C)), where the product is over all C such that C is in C̃σ8 for some

σ ∈ Gal(Q/Q).

Proof. As p splits completely into principal ideals in K ∗, the reflex field for (K ,8), it splits completely
in H. Let P be a prime of H above p. By [15, Proposition 2.1], Jac(C) is defined over H for any
curve C in C8. Then C itself also has a model over H by Lemma 4.2. C has potential good reduction by
Proposition 3.2, so let L be a finite extension over which C obtains good reduction. Furthermore, let PL

be a prime above P. Thus, the reduction CPL of C modulo PL will be defined over a finite extension
of Fp. However, as the invariants of C belong to H, the invariants of CPL belong to Fp so CPL has a
model over Fp. Thus, we get a map from C8 to C̃8. For any σ ∈ Gal(Q/Q), let K ∗σ be the reflex field
for the type (K , σ8). One can check that the reflex fields K ∗ and K ∗σ are isomorphic over Q. Therefore,
p splits completely into principal ideals in the reflex field of K ∗σ , so we also get a map from Cσ8 to C̃σ8

induced by reduction modulo PL . It remains to show that the reduction map induces a bijection. Taking
Jacobians of elements in C8 and C̃8 gives bijective maps into CMK ,8 and C̃MK ,8, respectively.
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The map CMK ,8 to C̃MK ,8 induced by reduction modulo P is injective by Proposition 5.2. By
definition, the map from CMK ,8 to C̃MK ,8 is surjective, so it follows that C8 is in bijection with the set
C̃8 under the reduction map. The sets CMK ,8 and CMK ,σ8 are either equal or distinct by Proposition 4.4.
The elements in C̃MK ,8 are simple with CM by OK by Proposition 5.1. Thus, the sets C̃MK ,8 and
C̃MK ,σ8 are equal if and only if CMK ,8 and CMK ,σ8 are equal by Proposition 2.3. Therefore, bijectivity
of the map from C8 to C̃8 suffices to prove the proposition. �

5. Computing H8
i modulo p

Let (K ,8) be a primitive CM-type. Denote by (K ∗,8∗) the reflex of (K ,8). Let H be the Hilbert
class field of K ∗ and M the normal closure of the compositum of K and K ∗. Let L be the Galois closure
of the compositum of H and M over Q. Take p to be a rational prime which splits completely into
principal ideals in K ∗ and splits completely in K. Denote by P a prime of H above p, by PL a prime
of L above P and by PM a prime of M below PL . Denote by 8−1

M the set of elements ψi of Gal(M/Q)
such that (ψ−1

i )|K ∈8.

An equivalent definition of C̃MK,8. In this subsection, we give an equivalent definition of C̃MK ,8

in terms of a condition on the Frobenius of the abelian varieties in C̃MK ,8. This new definition is
more suitable for computations. In particular, we will use it in computing the set C̃8 which occurs
in the description of the class polynomials H8

i modulo p in Proposition 4.5. For a CM-field K with
[K :Q] = 2g, recall the definitions of CMK ,8 and C̃MK ,8 from Section 4.

We will now define a set CMFr
K ,8 which we will show is equal to the set C̃MK ,8. The main tool

that allows us to give this equivalent description will be the Shimura–Taniyama congruence relation,
specifically the statement in Proposition 2.4, which relates the CM-type of an abelian variety defined
over a number field with CM to the ideal generated by Frobenius of the reduction of the abelian variety
modulo P. In genus 2, this idea was used in [26] to describe the set we refer to as C̃MK ,8.

With notation as above, denote by CMFr
K ,8 the set of all Fp-isomorphism classes of ordinary, simple,

principally polarized abelian varieties (A, C) of dimension g defined over Fp with CM by OK satisfying
the following condition: For (A, C) a representative of an Fp class as above, there exists an embedding
ι of K ↪→ End(A)⊗Q such that, under this embedding, the element π for which ι(π) is the Frobenius
endomorphism on A satisfies

πOM =
∏

φ∈8−1
M

P
φ
M . (5-1)

Recall, in the beginning of the section, we fixed a prime PL of L above the prime P of H and define
PM =PL ∩M. One can easily check that C̃MK ,8 does not depend on the choice of PL above P. We
now wish to show that the sets CMFr

K ,8 and C̃MK ,8 are equal. First we show the following:

Proposition 5.1. Every element in C̃MK ,8 is ordinary and geometrically simple with endomorphism ring
isomorphic to OK .
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Proof. Let (A, C) be a representative of a class in CMK ,8 such that it has good reduction modulo P

as above. Let AP be the reduction of A modulo P. The reduction map gives an inclusion End(A) ↪→
End(AP) [24, Theorem 3.2], thus, OK embeds into End(AP). By [30, Chapter 3, Theorem 2], the
abelian variety AP is simple and End(AP) = OK . Also, AP is ordinary by [32, Theorem 1.2]. Thus,
End(AP)⊗Q is unchanged after base extension by [35, Theorem 7.2]. Hence AP is geometrically simple
as the endomorphism ring tensored with Q is a field. �

The following two results are a generalization to arbitrary dimension of the dimension 2 case treated
in [11, Theorem 2].

Proposition 5.2. The reduction map CMK ,8→ C̃MK ,8 is injective.

Proof. Every element in C̃MK ,8 is simple with CM by OK by Proposition 5.1. Thus, the proposition
follows from applying Proposition 2.3. �

Theorem 5.3. With notation as above, the set C̃MK ,8 is equal to the set CMFr
K ,8.

Proof. We first show that C̃MK ,8 ⊂ CMFr
K ,8. Let (A, C) be a representative of a class in C̃MK ,8. By

Proposition 5.1, A is ordinary and geometrically simple with End(A) ∼= OK . As we remarked above,
p splits completely into principal ideals in K ∗, so the Frobenius of A satisfies (5-1) by Proposition 2.4.
Hence Ã ∈ CMFr

K ,8. This shows C̃MK ,8 ⊂ CMFr
K ,8. It remains to show the reverse inclusion.

To do this, we will show that the two sets have the same cardinality. Both sets are finite as there are
only finitely many isomorphism classes of principally polarized abelian varieties defined over Fp. We
know from the previous proposition that CMK ,8→ C̃MK ,8 is an injection. Thus, we have the inequality
of cardinalities: |CMK ,8| ≤ |C̃MK ,8| ≤ |CMFr

K ,8|.
It suffices to show |CMFr

K ,8| ≤ |CMK ,8|. Therefore, we will show that there is an injective map from
CMFr

K ,8 into CMK ,8. We define the map as follows: Let (A0, C0) be an abelian variety representing a
class in CMFr

K ,8. Since A0 is ordinary, we can consider its Serre–Tate canonical lift [27, pages 172-173,
Theorem 3.3] to Zp which we will call (A, C).

As (A0, C0) ∈ CMFr
K ,8 we have πOM =

∏
φα∈8

−1
M
(PM)

φα. Let {ψw} be the set of all embeddings of M
into Qp induced by completion at a prime Pw for Pw |πOM . By Proposition 2.5, the embeddings
induced by completion at primes occurring in the decomposition of the ideal generated by π give the
CM-type of A. Under some embedding ρ : Qp ↪→ C, we can verify that ρ(A) has type (K , σ8) for
some σ ∈ Gal(M/Q). By [37, Theorem 7], modifying ρ by an automorphism of C, we can arrange that
ρ(A) has CM-type (K ,8). As the choice of ρ does not depend on A, this gives us the injection from
CMFr

K ,8 to CMK ,8. Hence CMFr
K ,8 = C̃MK ,8. �

Correctness proof for the main algorithm. We must now show that the Chinese remainder theorem may
be used to reconstruct the class polynomials from sufficiently many of the Hi,p. This is accomplished
by Theorem 5.4 whose proof is identical to that of [11, Theorem 3]:

Theorem 5.4. Let M be the least common multiple of the denominators of the class polynomials and
let N be the maximum absolute value of the coefficients of the class polynomials. Let B = 2NM. Then if
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S is a set of primes satisfying the conditions in Theorem 1.1, we can use the Chinese remainder theorem
on the polynomials {Hi,p}p∈S , with i from 1 to 3, to reconstruct the polynomials H8

i .

Remark 5.5. A definition of class polynomials for Picard curves and a bound on the primes occurring
in the denominators are given in [22, Theorem 1.3], and the class polynomials we define divide them. In
genus 2, bounds on the denominators of the Igusa class polynomials were obtained in [17].

Proof of Theorem 1.1. Using Proposition 4.5, we see that Hi,p :=
∏
(X − ji (C)), where the product runs

over representatives for elements in C̃σ8 for all σ ∈ Gal(Q/Q). We can enumerate all Fp isomorphism
classes of Picard curves defined over Fp using the invariants discussed in Remark 3.4. We can check
whether a curve is in C̃8 by checking whether Jac(C) is in CMFr

K ,8 by Theorem 5.3. This involves
checking that Jac(C) has complex multiplication by OK which can be accomplished using the algorithm
of Section 6. We then perform the CRT step using Theorem 5.4. �

6. Endomorphism ring computation

The algorithm of Theorem 1.1 requires us to check whether certain genus 3 curves C have complex
multiplication by a sextic CM-field K. An algorithm for checking whether the Jacobian of an ordinary
genus 2 curve (i.e., a curve whose Jacobian is ordinary) has complex multiplication by the full ring
of integers of a primitive quartic CM-field K was presented, under certain restrictions on the field K,
in [11]. Improvements to this algorithm were presented in [12] and [26]. We generalize these methods
to the genus 3 case.

Theorem 6.1. The following algorithm takes as input a sextic CM-field K and an ordinary genus 3
curve C over a field Fp where p splits completely in K. The algorithm outputs true if Jac(C) has
endomorphism ring the full ring of integers OK and false otherwise:

(i) Compute a list of all possible characteristic polynomials of Frobenius for ordinary, simple, abelian
varieties with complex multiplication by K. Output false if the characteristic polynomial of Jac(C)
is not in this list.

(ii) Compute a basis for OK .

(iii) For each element α of the basis in the previous step, use Proposition 6.2 to determine if it is an
endomorphism. If it is not, output false.

(iv) Output true.

The values for Frobenius in Step (i) satisfy ππ = p with π ∈OK , i.e., NK/K+(π)= p where K+ is
the maximal totally real subfield of K. This relative norm equation can be used to find all such values
of π . By the Honda–Tate theorem, every such π will arise as the Frobenius of some abelian variety A
over Fp. If the characteristic polynomial of π is irreducible, then A is simple and Q(π)∼= K. If p does
not divide the middle coefficient of the characteristic polynomial of Frobenius, then A is ordinary [19,
Definition 3.1]. By [34, page 97, Exemple b], the endomorphism ring of A is an order in K.
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Determining if an element is an endomorphism. Our approach in this subsection follows closely that
of [12, Section 3] and [26, Section 4] for genus 2. We discuss some changes which are required for
genus 3. To determine if End(Jac(C)) ∼= OK , we wish to check, for some Z-basis of OK , α1, . . . , α6,
whether each αi is an endomorphism. As Z[π ] is an order in K, for every α ∈OK , we can write

α = Pα(π)/n := (a0+ a1π + · · ·+ a5π
5)/n (6-1)

for some integer n. The next proposition lets us check if α ∈OK is an endomorphism of Jac(C):

Proposition 6.2. Let C be an ordinary curve of genus 3 over Fp with End(Jac(C)) ⊗ Q = K, and
suppose p splits completely in K. Let α = Pα(π)/n ∈OK with n =

∏
`

ei
i . Then α is an endomorphism

of Jac(C) if and only if Pα(π) is zero on the `ei
i -torsion for `i 6= p.

Proof. By [12, Lemma 3.2], it suffices to check that each Pα(π)/`
di
i is an endomorphism. If `i is coprime

to p, then by [11, Corollary 9], we can check whether Pα(π)/`
di
i is an endomorphism by determining if

Pα(π) is zero on the `di
i -torsion.

It remains to handle the case where `i = p. For a group A, denote the p-primary part of A by Ap.
Write [OK : Z[π ]] = [OK : Z[π, π ]] · [Z[π, π ] : Z[π ]]. It is not hard to see that [Z[π, π ] : Z[π ]] is a
power of p (see [12, Corollary 3.6]). As p splits completely in K, one can show, p - [OK : Z[π, π ]], thus
|(OK /Z[π ])p| = |(Z[π, π ]/Z[π ])p|. This follows from an argument similar to [12, Proposition 3.7].

But this implies for any β ∈ OK , if pkβ ∈ Z[π ] then β ∈ Z[π, π ]. Thus, any such element is an
endomorphism. �

Computing the `d-torsion and arithmetic. The algorithm of Couveignes [10] shows how to compute
the `d-torsion. Couveignes’ method works for a very general class of curves. However, we instead use
some algorithms specific to Picard curves. For a Picard curve C/k, where k is a finite field, Couveignes’
method requires the ability to choose random points in Jac(C)(k). This is easy to do if we represent
elements of Jac(C)(k) as formal sums of points on C . However, to do arithmetic on Jac(C)(k), it is
easier to represent elements as ideals in the affine coordinate ring of C . Thus, we need to be able to
switch between the two representations. First, we recall the following consequence of the Riemann–
Roch theorem:

Proposition 6.3. For C a Picard curve and P∞ the point at infinity for the affine model described above,
for any degree-0 divisor D there is a unique effective divisor E of minimal degree 0≤ m ≤ 3 such that
E −m P∞ is equivalent to D.

Proof. As Picard curves are nonsingular with a k-rational point, the proof follows from [13, Theorem 1]. �

We will call the unique divisor above the reduced representation of D. So to find a random point in
Jac(C)(k), we can just pick at most 3 random points on C .

A reduced divisor D for which all points in the effective part E lie in the same Gal(k/k)-orbit will be
called an irreducible divisor. Every degree-0 divisor can be expressed as a sum of irreducible divisors.
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We can also represent points on Jac(C) as elements of a particular class group. Denote the coordinate
ring k[x, y]/〈y3

− f (x)〉 of C by R. By [13, Proposition 2], R is the integral closure of k[x] in k(C).
Given an irreducible divisor P we can associate to it a prime ideal P of R. We can extend this to a

map ρ from effective divisors to ideals of R as

ρ
(∑

ni Pi

)
:=

∏
Pni

i ,

where the Pi are irreducible divisors and the Pi are the corresponding primes of R.

Proposition 6.4. For C a Picard curve over k and R the coordinate ring of C described above, the map ρ
induces an isomorphism Jac(C)(k)→ Cl(R), where Cl(R) is the class group of R.

Proof. This follows from applying [13, Proposition 3]. �

We refer to the image of a reduced divisor under the map ρ as a reduced ideal.

Proposition 6.5. Given a reduced divisor D, there is an algorithm to find generators u(x), w(x, y) for
the ideal ρ(D). Moreover, given an ideal I of R in the form I = 〈u(x), w(x, y)〉, we can compute ρ−1(I ).

Proof. As a reduced divisor is a sum of irreducible divisors, it suffices to associate to an irreducible
divisor Q the corresponding prime ideal. We can associate a prime ideal P in R by first considering the
polynomial u =

∏
(x − xi ), where the product is over all x-coordinates of points in Q. We then take a

polynomial w(x, y) such that the set of common roots of u, w is exactly the set of points of Q. If the xi

are all distinct, then we take the polynomial w = y− v(x), where v(x) is the polynomial interpolating
the points in Q. If the roots of u(x) are not distinct, then we can construct w in a way similar to the
interpolation polynomial. In the case where there are two distinct x-coordinates x1, x2, let y1 and y2 be
polynomials whose roots are the y-coordinates corresponding to x1 and x2, respectively. Then

w(x, y) :=
x − x2

x1− x2
y1(y)+

x − x1

x2− x1
y2(y).

If there is only a single x-coordinate, then we can write w(x, y) =
∏
(y − yi ), where the yi are the

y-coordinates in the Galois orbit. The corresponding prime ideal in R is then the ideal generated by u
and w.

We will now show how to explicitly find the inverse of ρ. Let D=
∏

Pni
i be the ideal decomposition of

D. Write Pi =〈u(x), w(x, y)〉. We can find the set of common zeroes of Pi by finding all roots xn of u(x)
and all roots yn,m of w(xn, y). Then the divisor (Pi ) equals

∑
(xn, yn,m). Thus we have constructed the

inverse of the map ρ on a prime divisor P. By linearity, we can explicitly find the inverse of any reduced
ideal D. �

There are several algorithms which perform arithmetic on Jac(C)(k) using the representation of points
on Jac(C)(k) as ideals in the class group, for example, [13; 2]. We will use the algorithm of [2] for the
examples we compute. To add two elements P, Q of Jac(C)(k), one multiplies the corresponding ideals
to get an ideal D. One then wishes to get a reduced ideal D′, to have a unique representative for the
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point D. The algorithm of [2] gives a function g such that D′ = D+ (g). The function g is necessary
for the computation of the Weil pairing in the algorithm of Couveignes for computing torsion.

7. Examples

All examples were run on a computer with four Intel Xeon quad-core processors and 64 GB of RAM.
Let K = K+(ζ3), where K+ is obtained by adjoining to Q a root of x3

− x2
− 2x + 1. We can verify

that K is Galois with Galois group Z/6Z and choose a primitive CM-type on K. All types on K are
equivalent, so our choice does not matter. We count the expected degree of our class polynomials using
[30, page 112, Note 3]. This is equivalent to counting the number of elements in the polarized class
group (see [6]), for which there is a function in the AVIsogenies package [7]. We find that the degree of
the class polynomials for K as above is 1. The first four primes satisfying the conditions of Theorem 1.1
are 13, 43, 97, 127. For p = 127, our algorithm took 7 hours and 9 minutes of clock time and found one
Picard curve in C̃8, that is, one Picard curve whose Jacobian is in CMFr

K ,8:

y3
= x4
+ 75x2

+ 37x + 103.

The Picard curve C with CM by OK , for K as above, was computed in [23]. However, the authors
of [23] could not verify that the curve they produce has CM by OK . Our output agrees with the result
of their paper reduced modulo 127. Furthermore, assuming the curve they compute is correct, we get
a bound as in Theorem 5.4 for the denominators and size of coefficients in the class polynomials H8

i .
In particular, N = 212 and M = 7 work for the values in Theorem 5.4. Using these values, we ran the
CRT algorithm of Theorem 1.1 to construct the class polynomials H8

i defined over Q. The algorithm
took 8 hours, 55 minutes to run. We only needed to reduce modulo the four primes 13, 43, 97, 127. Our
result agrees with the result of [23; 25]. Thus, our algorithm can compute the class polynomials H8

i

given that one can compute the bound in Theorem 5.4. If we compare the algorithms on the small
example we computed above, the algorithm in [25] performs much faster; it was able to compute the
class polynomials in seconds. However, since there are no known bounds, yet, on the denominators
of the class polynomials, no complexity analysis has been done for our algorithm or the algorithms in
[23; 25], so it is not clear how they would compare asymptotically.

Now let K = K+(ζ3), where K+ is the field obtained by adjoining to Q a root of x3
+ x2
− 3x − 1.

This field is non-Galois, and the Galois group of the normal closure over Q is S3×Z/2Z. We also pick a
CM-type 8 on K. Our computations predicted that our class polynomials would have degree 3 using the
polarized class group. We picked p = 67, which satisfies the conditions of Theorem 1.1. Our algorithm
ran in 2 hours and 23 minutes, and we got 3 Picard curves over Fp whose Jacobians lie in CMFr

K ,σ8 for
some σ ∈ Gal(Q/Q):

y3
= x4
+ 8x2

+ 64x + 61,

y3
= x4
+ 62x2

+ 25x + 6,

y3
= x4
+ 54x + 54.
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Computing zeta functions of cyclic covers in large characteristic

Vishal Arul, Alex J. Best, Edgar Costa, Richard Magner, and Nicholas Triantafillou

We describe an algorithm to compute the zeta function of a cyclic cover of the projective line over a
finite field of characteristic p that runs in time p1/2+o(1). We confirm its practicality and effectiveness by
reporting on the performance of our SageMath implementation on a range of examples. The algorithm
relies on Gonçalves’s generalization of Kedlaya’s algorithm for cyclic covers, and Harvey’s work on
Kedlaya’s algorithm for large characteristic.

1. Introduction

For C an algebraic curve of genus g over a finite field Fq of characteristic p and cardinality q = pn, the
zeta function of C is defined by

Z(C, t) := exp
( ∞∑

i=1

#C(Fq i )
t i

i

)
=

L(C, t)
(1− t)(1− qt)

,

where L(C, t) ∈ 1 + tZ[t] is a polynomial of degree 2g, with reciprocal roots of complex absolute
value q1/2, and satisfies the functional equation L(C, t)= qgt2g L(C, 1/(tq)). In this paper, we address
how to effectively compute Z(C, t) for a cyclic cover of P1 defined by yr

= F(x), where F(x) is square-
free and p is large in comparison to g, without any restrictions on r and deg F sharing a common factor.

For curves of small genus, Schoof’s method and its variants [Sch85; Pil90; GS04; GKS11; GS12]
can compute Z(C, t) in time and space polynomial in log q and exponential in the genus. However,
the practicality of these methods has only been shown for genus at most 2. These are known as `-adic
methods, as their efficiency derives from the realization of the `-adic cohomology of the variety via
torsion points.

The authors are grateful to the organizers of Sage Days 87, where this project began. We would also like to thank the reviewers
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Alternatively, Kedlaya [Ked01] showed that Z(C, t) can be determined in quasilinear time in p for
an odd hyperelliptic curve, i.e., r = 2 and deg F = 2g + 1, by computing an approximation of the
Frobenius matrix acting on p-adic cohomology (Monsky–Washnitzer cohomology). Kedlaya’s algorithm
and its variants are known as p-adic methods. In [Har07], Harvey improved the time dependence in p
to p1/2+o(1). In [Har14], this improvement plays a major role in Harvey’s algorithm for computing
the p-local zeta functions of an odd hyperelliptic curve over Z for all p up to some bound. Ked-
laya’s original algorithm has been subsequently generalized several times, for example to superelliptic
curves [GG01], Ca,b curves [DV06], even-degree hyperelliptic curves [Har12], and nondegenerate curves
[CDV06]. More recently, Gonçalves [Gon15] extended Kedlaya’s algorithm to cyclic covers of P1 and
Tuitman [Tui16; Tui17] to general covers. All these generalizations kept the quasilinear time dependence
in p. Minzlaff [Min10] improved Gaudry and Gürel’s algorithm for superelliptic curves by incorporat-
ing Harvey’s work, giving a p1/2+o(1) time algorithm. The algorithms described above are efficient in
practice, and have been integrated into the current versions of Magma [BCP97] and SageMath [Sag].

In this paper, we build upon the work of Gonçalves, Harvey, and Minzlaff to obtain a practical p1/2+o(1)

algorithm for cyclic covers of P1. We are aware of the existence of theoretical algorithms with such a
time dependence on p (and their average polynomial time versions) for arbitrary schemes (see [Har15]),
but these have never been implemented, and it is unclear if they can be made to work in practice. Our
algorithm improves the run-time with respect to the other parameters over these very general algorithms
and provides a step towards a practical average polynomial time in higher genus, analogous to the pro-
gression from p1/2+o(1) to average polynomial time for odd hyperelliptic curves by Harvey.

More recently, Tuitman [Tui19] combined Harvey’s ideas with a deformation approach to give a
p1/2+o(1) algorithm for computing zeta functions of generic projective hypersurfaces of higher dimension.
Tuitman’s algorithm has a similar theoretical dependence on the degree of the curve and the degree of
the field (over Fp) as our algorithm.

Throughout, we use a bit complexity model for computation and the notation Õ(x)=
⋃

k O(x logk(x)).
Our main result is then as follows:

Theorem 1.1. Let C be a cyclic cover of P1, of genus g, defined by

C : yr
= F(x),

where F ∈ Fq [x] is a squarefree polynomial of degree d. Let C̃ be the curve obtained from C by removing
the δ points at infinity and the d points on the x-axis corresponding to the zeros of F(x). Let Mε be
the matrix of Frobenius acting on Bε , where Bε is a basis of the Monsky–Washnitzer cohomology of C̃
defined in (2.6).

Let N ≥ 1, and assume
p > d(N + ε)r and r + d ≥ 5. (1.2)

Then the entries of M are in Zq and we may compute M modulo pN in time

Õ(p1/2 N 5/2dωrn+ N 4rd4n log p+ Nn2 log p)
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and space

O((p1/2 N 3/2
+ r N 2)d2n log p),

where ω is a real number such that the matrix arithmetic operations on matrices of size m ×m take
Õ(mω) ring operations.

With the goal of computing Z(C, t) we may apply Theorem 1.1 with N = O(nrd), for example as
in (6.1), and this gives the following result:

Theorem 1.3. In the same setup as Theorem 1.1, assume p > dr
( 1

2 gn+ logp(g)+ 2
)
. We can compute

the numerator of the zeta function of C in time

Õ(p1/2n7/2r7/2d5/2+ω
+ n5r5d8 log p)

and space O((p1/2
+ n1/2r3/2d1/2)n5/2r3/2d7/2 log p).

We also provide the following O(log p) space alternative to Theorem 1.1; see Remark 5.3 for more
details.

Theorem 1.4. In the same setup as Theorem 1.1, we may we may compute M modulo pN in time
Õ(prd3 N 3n+ n2 N log p) and space O(rd2 Nn log p).

In contrast with with Minzlaff’s work, in all the theorems above we do not put any restrictions on r and
deg(F) sharing a common factor. Theorem 1.4 reduces the space complexity of [Gon15, Proposition 5.1]
from quasilinear to logarithmic. Theorem 1.3 reduces both time and space complexity of [Gon15, Propo-
sition 5.1] from quasilinear in p to p1/2+o(1). Moreover, we provide a SageMath implementation of our
algorithm for computing zeta functions [ACMT16].

As with all adaptations of Kedlaya’s algorithm, the heart of our algorithm is a procedure for computing
a p-adic approximation to the action of Frobenius on a well-chosen basis for (a slight modification of)
the Monsky–Washnitzer cohomology of C. This is described in Lemma 3.1.

The remainder of the paper is organized as follows. In Section 2, we recall the relevant definitions
for Monsky–Washnitzer cohomology. In Section 3, we compute a “sparse” formula for the action of
Frobenius on the basis Bε . The formula from Section 3 includes terms of large positive x-degree and
large negative y-degree. Sections 4A and 4B show how to replace terms with cohomologous terms
with x- and y-degree closer to zero by “horizontal” and “vertical” reductions. Section 5 collects the
full algorithms, including complexity statements. We close by demonstrating the practicality of our
implementation in Section 6.

2. Setup and notation

Let p be a prime and let q = pn for some n ≥ 1. Let Fq and Fp be the finite fields with q elements and
p elements. We write Qq for the unramified extension of degree n of Qp, and Zq for its ring of integers.

We will work under the assumption that (1.2) holds.
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Let F(x) ∈ Fq [x] be a polynomial of degree d with no multiple roots. To F(x) we can associate an
r -cyclic cover of the projective line C defined by

C : yr
= F(x). (2.1)

Write δ := gcd(r, d). Then the genus of C is g = 1
2((d − 1)(r − 1)− (δ− 1)). The curve C is naturally

equipped with an automorphism of order r defined by

ρr : (x, y) 7−→ (x, ζr y), (2.2)

where ζr is a primitive r -th root of unity in a fixed algebraic closure of Fq .
As in Kedlaya’s original algorithm [Ked01] we pick an arbitrary lift F(x) ∈ Zq [x] of F(x), also of

degree d. Let C̃ be the curve obtained from C by removing the δ points at infinity and the d points on
the x-axis corresponding to the zeros of F(x). Let A = Fq [x, y, y−1

]/(yr
− F(x)) denote the coordinate

ring of C̃, and write

A = Zq [x, y, y−1
]/(yr

− F(x)) (2.3)

for the lift of A associated to F(x). Let A† be the weak completion of A, i.e.,

A†
= Z†

q [[x, y, y−1
]]/(yr

− F(x)), (2.4)

where Z†
q [[x, y, y−1

]] is the ring of power series whose radius of convergence is greater than one. We
lift the p-power Frobenius on Fq to A† as follows. On Zq , we take the canonical Witt vector Frobenius
and set σ(x) := x p. We then extend σ to A† by the formula

σ(y− j ) := y− j p
+∞∑
k=0

(
− j/r

k

)(
σ(F(x))− F(x)p)k y−kpr . (2.5)

The above series converges (because p divides σ(F(x))− F(x)p) and the definitions ensure that σ is a
semilinear (with respect to the Witt vector Frobenius) endomorphism of A†. We extend it to differential
forms by σ( f dg) := σ( f )d(σ (g)).

In the spirit of Kedlaya’s algorithm, we determine the zeta function of C by computing the Frobenius
action on the subspace of H 1

MW(̃C) spanned by the set

Bε =
{

x i dx
y j+εr : i ∈ {0, . . . , d − 2}, j ∈ {1, . . . , r − 1}

}
, where ε =

{
0 if δ = 1,
1 if δ > 1.

(2.6)

This subspace is Frobenius stable and 0 is the only element fixed by the induced automorphism ρr . When
δ > 1, using the basis B1 allows us to avoid divisions by zero while reducing differentials (cf. Lemma 4.6).
This is critical for generalizing Harvey’s work to this setting.

If η : 〈Bε〉 → H 1
MW(C) is the projection map, then we have

〈Bε〉 = H 1
MW(C)⊕ ker(η), (2.7)
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where ker(η) is a δ− 1 dimensional vector space stable under Frobenius. Thanks to Gonçalves’s work
[Gon15, proof of Theorem 7.5], we have an explicit description for the characteristic polynomial U (t) :=
det(t · id−Frobq | ker(η)) of Frobenius acting on ker(η):

U (t) := det(t · id−Frobq | ker(η))= det(t · id− P) · (t − 1)−1, (2.8)

where the matrix P represents the permutation induced by q-th power Frobenius action on the roots of
T δ
− fd , where fd is the leading term of F(x). In the case that F(x) is monic the expression above

simplifies to U (t) =
∏

i |δ,i>1
(
tki − 1

)ϕ(i)/ki, where ki is the order of q in
(
Z/ iZ

)×. Thus our goal is to
compute a p-adic approximation of the matrix Mε representing σ with respect to Bε .

3. The Frobenius action on differentials

We now rewrite the Frobenius expansion of a basis element in a sparse way where the number of terms
does not depend on p. This is a generalization of [Har07, Proposition 4.1] and [Min10, Proposition 4.1],
which is made possible due to the analysis performed by Gonçalves in [Gon15, §6].

Lemma 3.1. Let N > 0 be a positive integer, 0 ≤ i ≤ d − 2 and εr + 1 ≤ j ≤ (1+ ε)r − 1. Suppose
p > d(N + ε)r and x i y− j dx ∈ Bε . For 0≤ ` < N, write

D j,` :=

N−1∑
k=`

(−1)k−`
(
− j/r

k

)(
k
`

)
and µ j,`,b := pD j,`σ(F)`b, (3.2)

where σ(F)`b is the coefficient of x pb in σ(F(x))`. The differentials σ(x i y− j dx) and

T(i, j) := x p(i+1)−1 y− j p
N−1∑
`=0

d∑̀
b=0

µ j,`,bx pb y−`pr dx (3.3)

differ in cohomology by an element of pN spanZq
(Bε).

Proof. From (2.5) we obtain

σ(x i y− j dx)=
+∞∑
k=0

px p(i+1)−1
(
− j/r

k

)(
σ(F(x))− F(x)p)k y−p( j+kr)dx (3.4)

Let Uk be the k-th summand of the above sum. We claim that for k ≥ N the reductions of Uk lie in
pN spanZq

(Bε).
To show this we start by rewriting Uk . Since p divides σ(F(x))− F(x)p, we have

Uk = pk+1 H(x)y−p( j+kr)dx, (3.5)

where H(x) ∈ Zq [x] is of degree at most pi + p− 1+ dkp < pd(k+ 1). Define

L =

{
p(k+ 1)− 1 if ε = 0⌊ p( j+kr)

r

⌋
− ε if ε > 0.

(3.6)
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Now we will expand H(x) F-adically to L terms. Taking j ′∈ [1, r ] congruent to pj mod r , and applying
the relation F(x)= yr, we have

Uk = pk+1
(

G(x)y−εr− j ′
+

L∑
`=0

G`(x)yr`−p( j+kr)
)

dx, (3.7)

where each G`(x) ∈ Zq [x] has degree at most d − 1 and G(x) has degree at most

pd(k+ 1)− 1− d L ≤
{

d − 1 if ε = 0,
0 if ε > 0.

(3.8)

Taking ν = blogp p( j + kr)− r`c ≤ 1+ blogp(k + 1+ ε)rc, Gonçalves [Gon15, Proposition 6.1]
shows that the reduction of pνG`(x)yr`−p( j+kr)dx lies in spanZq

(Bε).
Similarly, [Gon15, Proposition 6.2] says that taking

µ= blogp((r(deg(G)+ 1)− (εr + j ′)d)/δ)c ≤ 1+blogp(rd)c, (3.9)

the reduction of pµG(x)y−εr− j ′dx lies in spanZq
(Bε).

Since p > d(N + ε)r , both µ = 1 and ν ≤ 1 + k − N, so the reductions of Uk for k ≥ N lie in
pN spanZq

(Bε).
The lemma follows by the rearranging the truncated series as follows:

N−1∑
k=0

(
− j/r

k

)(
σ(F(x))− y pr)k y−kpr

=

N−1∑
k=0

k∑
`=0

(−1)k−`
(
− j/r

k

)(
k
`

)
σ
(
F(x)

)`y pr(k−`)y−prk

=

N−1∑
`=0

d∑̀
b=0

D j,`σ(F)`bx pb y−`pr . �

4. Reducing differentials

The powers of x and y appearing in T(i, j) (as in Lemma 3.1) are much larger than those appearing in our
choice of representatives for the basis Bε . We use relations (coboundaries) coming from the differentials
of functions on our curve to “reduce” the terms from T(i, j) to linear combinations of elements of Bε . We
proceed in two-stages. Horizontal reduction reduces the x-degree while leaving the y-pole order constant.
Vertical reduction decreases the y-pole order without increasing the x-degree. Given a differential ω, we
call the unique cohomologous differential ω′ ∈ span(Bε) the reduction of ω. We may also abuse notation
and call intermediate products of the vertical/horizontal reduction process reductions of ω.

Organizing our work carefully, we can compute the reduction of ω modulo pN by performing inter-
mediate steps modulo pN+1.

4A. Horizontal reductions. We follow the steps of Harvey and Minzlaff. Decompose F(x) as F(x)=
fd xd
+ P(x), where P(x) has degree at most d − 1.

Definition 4.1. For s ∈ Z≥−1 and t ∈ Z≥0 define the vector space

Ws,t = {G(x)x s y−t dx : deg G ≤ d − 1} (4.2)
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equipped with the standard monomial basis.
Let M t

H (s) : Ws,t →Ws−1,t be the linear map given by the matrix

M t
H (s)=


0 0 · · · 0 C t

0(s)
Dt

H (s) 0 · · · 0 C t
1(s)

0 Dt
H (s) · · · 0 C t

2(s)
...

. . .
...

0 0 · · · Dt
H (s) C t

d−1(s)

, (4.3)

where Dt
H (s)= (d(t − r)− rs) fd and where C t

h(s) is the coefficient of xh in the polynomial C t(x, s)=
rs P(x)− (t − r)x P ′(x). Moreover, for s0 < s1 we write

Dt
H (s0, s1) := Dt

H (s0+ 1)Dt
H (s0+ 2) · · · Dt

H (s1);

M t
H (s0, s1) := M t

H (s0+ 1)M t
H (s0+ 2) · · ·M t

H (s1).
(4.4)

Lemma 4.5. For s ∈ Z≥0, t ∈ Z≥0, and ω ∈Ws,t , we have Dt
H (s)ω ∼ M t

H (s)ω in cohomology.

Proof. See [Har07, Proposition 5.4] or [Min10, Proposition 5.1]. The same algebraic manipulations hold
in the cyclic cover setting, as long we do not divide by Dt

H (s), as this might be zero. �

In the case that d and r share a common factor, i.e., δ > 1 and ε = 1, then Dt
H (s) might be identically

zero. The next lemma ensures this cannot happen due to our choice of basis Bε .

Lemma 4.6. We have Dt
H (s) 6= 0, while applying horizontal reductions to T(i, j), for 0≤ i ≤ d − 2 and

1+ εr ≤ j ≤ (1+ ε)r − 1.

Proof. By inspecting the Frobenius formula (3.3) for a fixed value of `, we see the pole order of y is
t = p( j+r`), where 1+εr ≤ j ≤ (1+ε)r−1, and the largest power of x is at most p(d`+ i+1)−1≤
pd(` + 1) − 1. Since the largest power of x in Ws,t is s + d − 1, we need only consider the case
s+ d − 1≤ pd(`+ 1)− 1.

If δ = 1, then ε = 0 and d(t − r)− rs ≡ d jp 6≡ 0 mod r .
If δ > 1, then ε = 1, so j ≥ 1+ r and t ≥ p(1+ r(`+ 1)). Using s+ d < pd(`+ 1),

d(t − r)− rs = dt − r(s+ d)≥ dp(1+ r(`+ 1))− r(pd(`+ 1))= dp > 0. (4.7)

This concludes the proof. �

Corollary 4.8. In the same setting as Lemma 4.6, Dt
H (s)≡ 0 mod p if and only if s ≡−d mod p.

Proof. As in Lemma 4.6, the pole order of y is t = p( j + r`), thus

Dt
H (s) := (d(t − r)− rs) fd ≡−r(d + s) fd mod p. (4.9)

By assumption, neither r nor fd is divisible by p, so we only divide by p exactly when s ≡−d mod p. �

Lemma 4.10. Suppose p > d(N + ε)r and s ≡−1 mod p. Then Dt
H (s− (d − 1)) is divisible by p, but

it is not divisible by p2.
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Proof. As s− (d − 1)≡−d mod p, we know this denominator is divisible by p. It equals

fd(d(t − r)− r(s− (d − 1)))= fd(dt − rs− r).

Since fd is coprime to p, we analyze the piece dt − r(s+ 1). Inspecting the Frobenius formula (3.3) and
considering that horizontal reduction decreases the exponent of x , we see

p− 1≤ s ≤ p(i + 1)− 1+ pd(N − 1), 0≤ i ≤ d − 2,

0≤ t ≤ j p+ (N − 1)pr, εr + 1≤ j ≤ (1+ ε)r − 1,
(4.11)

where ε ∈ {0, 1}. From these inequalities we obtain

|dt − r(s+ 1)| ≤max{dt, r(s+ 1)}< dp(N + ε)r < p2, (4.12)

thus the denominator has p-valuation exactly 1. �

Now we describe the horizontal reduction procedure in a fashion similar to that in [Har07, §7.2].
Following the notation of (3.3), let v` be a vector representing a differential form in Wp`−1,t that is
cohomologous to

dk∑
b≥`

µ j,k,b−i−1x pb−1 y−t dx, where t = p(kr + j). (4.13)

As in [Har07, §7.2], we say a vector is 1-correct if the first coordinate (corresponding to the high-
est power of x) is both 0 modulo p and correct modulo pN+1, and the other coordinates are correct
modulo pN.

Given v` which is 1-correct, we show how to compute v`−1 which is also 1-correct. First we get down
to W`p−d−1,t , by doing the first d reductions modulo pN+1, as follows:

v
(1)
` = v` ∈W`p−1,t

v
(2)
` = Dt

H (`p− 1)−1 M t
H (`p− 1)v(1)` ∈W`p−2,t

...
...

v
(d+1)
` = Dt

H (`p− d)−1 M t
H (`p− d)v(d)` ∈W`p−d−1,t .

(4.14)

Then we get down to W(`−1)p,t via

v′` = Dt
H ((`− 1)p, `p− d − 1)−1 M t

H ((`− 1)p, `p− d − 1)v(d+1)
` , (4.15)

and then finally

v`−1 = µ j,`,(`−1)−i−1x p(`−1)−1 y−t dx + Dt
H ((`− 1)p)−1 M t

H ((`− 1)p)v′`. (4.16)

An analysis similar to [Har07, §7.2.2] shows that all coefficients of M t
H (`p− d)v(d)` are divisible by p

and correct modulo pN+1. Then, Lemma 4.10 implies that v(d+1)
` is correct modulo pN. By Corollary 4.8,

v′` is correct modulo pN. Since the first row of M t
H ((`− 1)p) is zero modulo p, the vector v`−1 is 1-

correct.
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We may also speed up the evaluation of M t
H ((`−1)p,`p−d−1) and Dt

H ((`−1)p,`p−d−1) by p-
adically interpolating the remaining values from the first N values. See [Har07, §7.2.1] and Section 5
for more details.

4B. Vertical reductions. Vertical reduction replaces differentials with cohomologous differentials with
smaller pole order in y. While we performed horizontal reductions by working with d-dimensional
vector spaces of differential forms, vertical reductions arise most naturally on (d−1)-dimensional vector
spaces.

Definition 4.17. For t ∈ Z≥0 and j ∈ {1, . . . , r − 1}, define the vector space

V j
t :=W−1,r t+ j ∩W0,r t+ j , (4.18)

equipped with the standard monomial basis.

Vertical reduction operates via a series of maps V j
t → V j

t−1 which are identity maps in cohomology.
To define the maps, we need a lemma.

Lemma 4.19. Let A ∈Zq [x] be a polynomial with deg(A) < 2d−1. Then, there exist unique polynomials
R, S ∈ Zq [x] such that deg(R) < d − 1, deg(S) < d , and A(x)= R(x)F(x)+ S(x)F ′(X).

Proof. Since F is separable and F is squarefree, we can find R0 and S0 such that 1= R0 F + S0 F ′ by the
Euclidean algorithm. Then A= (AR0)F+ (AS0)F ′. There is a unique S and T satisfying AS0 = T F+ S
and deg(S) < d. Set R = AR0− T F ′. Since deg(A) < 2d − 1 and deg(SF ′) < 2d − 1, it follows that
deg(RF) < 2d − 1, so deg(R) < d − 1.

Uniqueness follows immediately, since the vector spaces of polynomials of degree less than 2d − 1
and of pairs of polynomials of degrees less than d − 1 and less than d both have dimension 2d − 1. �

We may now define the vertical reduction maps.

Definition 4.20. For each i ∈ {0, . . . , d − 2}, let Ri and Si in Zq [x] be the unique polynomials with
deg(Ri ) < d − 1 and deg(Si ) < d , respectively, such that

x i
= Ri (x)F(x)+ Si (x)F ′(x). (4.21)

Write (r t − r + j)Ri (x)+ r S′i (x)= γi,0+ γi,1x + · · ·+ γi,d−2xd−2. Define M j
V (t) and D j

V (t) by

M j
V (t) :=


γ0,0 γ1,0 · · · γd−2,0

γ0,1 γ1,1 · · · γd−2,1
...

. . .
...

γ0,d−2 γ1,d−2 · · · γd−2,d−2

 ,
D j

V (t) := r t − r + j.

(4.22)

Further define
M j

V (t1, t2) := M j
V (t1+ 1) ·M j

V (t1+ 2) · · ·M j
V (t2),

D j
V (t1, t2) := D j

V (t1+ 1) · D j
V (t1+ 2) · · · D j

V (t2).
(4.23)
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Lemma 4.24. Consider M j
V (t) as a linear map from V j

t to V j
t−1 with respect to their standard bases.

Then, for any ω ∈ V j
t ,

D j
V (t)ω ∼ M j

V (t)ω (4.25)

in cohomology. More generally, considering M j
V (t1, t2) as a linear map from V j

t2 to V j
t1 with respect to

their standard bases, for any ω ∈ V j
t2 ,

D j
V (t1, t2)ω ∼ M j

V (t1, t2)ω. (4.26)

Proof. For any S(x) ∈Qq [x],

0∼ d
(
−r

r t − r + j
S(x)y−(r t−r+ j)

)
= S(x)F ′(x)y−(r t+ j)dx +

−r
r t − r + j

S′(x)y−(r t−r+ j)dx . (4.27)

So, writing x i
= Ri (x)F(x)+ Si (x)F ′(x) as in (4.21), we have

x i y−(r t+ j)dx = Ri (x)F(x)y−(r t+ j)dx + Si (x)F ′(x)y−(r t+ j)dx
∼ Ri (x)y−(r t−r+ j)dx +

r
r t − r + j

S′i (x)y
−(r t−r+ j)dx

=
(r(t − 1)+ j)Ri (x)+ r S′i (x)

r(t − 1)+ j
y−(r(t−1)+ j)dx

= (D j
V (t1, t2))−1(γi,0+ γi,1x + · · ·+ γi,d−2xd−2)y−(r(t−1)+ j)dx .

From this, (4.25) follows by linearity. Then (4.26) is immediate from (4.25). �

Remark 4.28. If we could work at infinite (or even very large) precision without it costing us compu-
tation time, this would be sufficient. However, in practice (and in theory), working with fewer extra
bits results in significant time savings. Fortunately, we will see that when p is sufficiently large, the
valuations of the coefficients of D j

V (t1, t2)−1 M j
V (t1, t2) are never less than −1. As a result, given any

element of V j
t , we will be able to compute a cohomologous element of V j

0 while only losing a single
digit of p-adic absolute precision.

Now, we follow Harvey’s lead and study the coefficients of the matrices M j
V (t1, t2) and scalars

D j
V (t1, t2). Lemma 4.29 will be our main technical tool.

Lemma 4.29. Suppose A ∈ Zq [x] and B,G−t2+1, . . . ,G−t1 ∈Qq [x] satisfy

A(x)y−r t2− j dx = B(x)y−r t1− j dx + d
( −t1∑

t=−t2+1

G t(x)yr t− j
)
. (4.30)

Fix C ∈ Zq . If
C

rt1+ j
,

C
r(t1+1)+ j

, . . . ,
C

r(t2−1)+ j
∈ Zq

then C · B(x) ∈ Zq [x].

Remark 4.31. In our setting, r t1 + j ≤ r t2 + j < p2, so we may take C = p. Applying Lemma 4.29
with A(x)= 1, x, . . . , xd−1, the coefficients of pD j

V (t1, t2)−1 M j
V (t1, t2) all belong to Zq .
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We defer the proof of Lemma 4.29 to the end of the section, and collect the consequences needed for
our main algorithm.

Lemma 4.32. If r(t − 1)≡− j mod p, then M j
V (t)

−1 is integral.

The proof is identical to the proof of [Har07, Lemma 7.7] after replacing each occurrence of 2g with
d − 1. Indeed, the matrices are the same, up to multiplication by a unit.

Lemma 4.33. If r t1 ≡− j mod p, then M j
V (t1, t1+ p) is zero modulo p.

Proof. Here, the proof generalizes [Har07, Lemma 7.9]. By Lemma 4.29,

X := pD j
V (t1, t1+ p+ 1)−1 M j

V (t1, t1+ p+ 1) (4.34)

has integral coefficients. By a computation similar to Lemma 4.10, D j
V (t1, t1+ p+ 1)= p2

· u for some
unit u ∈ Z×q , since the first and last terms contribute exactly one power of p and no other terms contribute.
Then,

M j
V (t1, t1+ p)= p−1 D j

V (t1, t1+ p+ 1)X M j
V (t1+ p+ 1)−1

= pu X M j
V (t1+ p+ 1)−1.

Lemma 4.32 implies M j
V (t1+ p+ 1)−1 is integral, so M j

V (t1, t1+ p)≡ 0 mod p. �

Lemma 4.33 implies that the matrix Y := D j
V (t1, t1 + p)−1 M j

V (t1, t1 + p) is integral when r t1 ≡
− j mod p. Hence the denominators of “vertically reductions” of differentials do not grow, at least if we
reduce in appropriate batches of p steps.

Unfortunately, we may not start with t1 satisfying r t1 ≡ − j mod p. Reducing to this case involves
dividing by p at most once. To compensate, we must compute Y to one extra digit of p-adic precision.

Having collected our results, we now prove Lemma 4.29. Much like Kedlaya’s proof of [Ked01,
Lemma 2], we compare power series expansions of differentials in the uniformizer y near (θi , 0) for all
roots θi of F. We give a full proof for clarity. The argument relies heavily on the following lemma:

Lemma 4.35. Let G ∈ Qq [x] be a polynomial which has deg(G) < d. View G as an element of
Qq [x, y]/(yr

− F(x)). Let θ1, . . . , θd be the roots of F. Let Ki ∼= Qq((y)) be the fraction field of the
completion of the local ring at (θi , 0). The following are equivalent:

(i) G has integral coefficients as a polynomial.

(ii) G has integral coefficients as a power series in Ki for all i .

(iii) The coefficient of y0 of G as a power series in Ki is integral for all i .

Proof. It is trivial that (ii) implies (iii).

(iii)⇒ (i) This follows immediately from the observation that the coefficient of y0 of G as a power
series in Ki is equal to G(θi ). Since deg(G) < d and the roots of F are distinct mod p, the Lagrange
interpolation formula shows that G ∈ Zq [x].

(i)⇒ (ii) This follows immediately from the fact that F has distinct roots mod p, so expanding x as
a power series in y in Ki never requires division by a nonunit. �
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With Lemma 4.35, the proof of Lemma 4.29 follows from the observation that the map d commutes
with passage to the local ring.

Proof of Lemma 4.29. Note that F ′(θi ) ∈ Z×q for all roots θi of F, since F is separable. Then, as power
series in y (near (θi , 0)),

A(x)yr(−t2)− j dx = r A(x)yr(−t2+1)− j−1 F ′(x)−1dy =
∞∑

t=−t2+1

ai,t yr t− j−1dy,

B(x)yr(−t1)− j dx =
∞∑

t=−t1+1

bi,t yr t− j−1dy,

where the ai,t are integral by Lemma 4.35, but we have no bounds (yet) on the bi,t . Then,

d
( −t1∑

t=−t2+1

G t(x)yr t− j
)
=

−t1∑
t=−t2+1

ai,t yr t− j−1dy+
∞∑

t=−t1+1

(ai,t − bi,t)yr t− j−1dy.

Integrating term by term,
−t1∑

t=−t2+1

G t(x)yr t− j
=

−t1∑
t=−t2+1

ai,t

r t − j
yr t− j

+

∞∑
t=−t1+1

ai,t − bi,t

r t − j
yr t− j . (4.36)

In particular, if C satisfies C/(r · t + r − j) ∈ Zq , for all t ∈ {−t2, . . . ,−t1− 1}, then the coefficients of
yr(−t2+1)− j , yr(−t2+2)− j , . . . , yr(−t1−1)− j , yr(−t1)− j in all of the power series expansions at points (θi , 0)
of
∑
−t1
t=−t2+1 C ·G t(x)yr t− j are integral.

In particular, C ·G−t2+1 satisfies (iii) of Lemma 4.35. Then the series expansions of C ·G−t2+1(x) are all
integral by condition (ii). Subtracting off C ·G−t2+1, we see C ·G−t2+2 satisfies (iii) of Lemma 4.35, hence
condition (ii) and so on, so that all of the coefficients in all of the expansions of

∑
−t1
t=−t2+1 G t(x)yr t− j

are integral. They remain integral upon differentiating.
Rearranging (4.30), the expansions of C · B(x)y−r t1+ j dx at each (θi , 0) as Laurent series in Qq((y))dy

are integral. Replacing dy with F ′(x)y1−r/rdx preserves integrality. A final application of Lemma 4.35
shows that C · B(x) is integral. �

5. Main algorithm

We now combine the techniques of the previous sections to compute the matrix representing the p-th
power Frobenius action with respect to 〈Bε〉 ⊂ H 1

MW(̃C) modulo pN. We summarize the procedure in
Algorithm 1, where we take all intervals to be discrete, i.e., intersected with Z.

We now analyze the time and space complexity of Algorithm 1. First, we recall that all our un-
derlying ring operations are done in Zq/pN or Zq/pN+1. Using bitstrings of length O(Nn log p) to
represent elements of these rings, the basic ring operations (addition, multiplication, and inversion) have
bit complexity Õ(Nn log p), the matrix arithmetic operations on matrices of size m×m have bit com-
plexity Õ(mωNn log p), and polynomial multiplication of polynomials of degree m has bit complexity
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Algorithm 1: computes the matrix representing the p-th power Frobenius action with respect to
〈Bε〉 ⊂ H 1

MW(̃C) modulo pN

1 for k ∈ [0, N − 1], i ∈ [0, d − 2], j ∈ [1+ εr, (1+ ε)r − 1], ` ∈ [0, dk+ i + 1] do
2 T(i, j),k,`← µ j,k,`−i−1x p`−1 y−p(kr+ j) // see Lemma 3.1

// Horizontal reductions:
3 for k ∈ [0, N − 1], j ∈ [1+ εr, (1+ ε)r − 1] do
4 t← p(kr + j)
5 L←min(N − 1, dk+ d − 2)

// Horizontal reductions modulo pN, by linear recurrences:
6 for ` ∈ [0, L] do
7 D(`),M(`)← DH (p`, p(`+ 1)− d − 1),MH (p`, p(`+ 1)− d − 1)

// Deduce the remaining M(`) modulo pN, by interpolation:
8 for ` ∈ [L + 1, dk+ d − 2] do
9 D(`),M(`)← DH (p`, p(`+ 1)− d − 1),MH (p`, p(`+ 1)− d − 1)

// Reduce T(i, j),k horizontally:
10 for i ∈ [0, d − 2] do
11 v← T(i, j),k,dk+i+1 // v ∈Wp(dk+i+1)−1,t

12 for `= dk+ i to 0 do
13 for e ∈ [1, d] do // Wp(`+1)−1,t →Wp`−1,t

14 v← Dt
H (p(`+ 1)− e)−1(M t

H (p(`+ 1)− e) · v)
15 v← T(i, j),k,l + (Dt

H (p`)
−1 M t

H (p`)) · (D(`)
−1 M(`)) · v

16 w(i, j),k← v // w(i, j),k ∈W−1,t

// Vertical reductions:
17 for j ∈ [1+ εr, (1+ ε)r − 1] do

// p(kr + j)= r(pk+α)+β = pr(k+ λ)+ rγ + rε+β
18 α, β←bpj/rc, pj mod r
19 λ, γ ←b(α− ε)/pc, (α− ε) mod r
20 δ← γ + ε

// Vertical reductions modulo pN+1, by linear recurrences:
21 M(0)← Dβ

V (ε, δ)
−1 Mβ

V (ε, δ)

22 for ` ∈ [1, λ+ N − 1] do
23 M(`)← Dβ

V (δ+ p(`− 1), δ+ p`)−1 Mβ

V (δ+ p(`− 1), δ+ p`)
24 for i ∈ [0, d − 2] do
25 v← w(i, j),N−1+λ // v ∈ V β

p(N−1+λ)+δ

26 for k = N − 1+ λ to 1 do // V β

pk+δ→ V β

p(k−1)+δ

27 if k ≥ λ then
28 v← w(i, j),k−λ+M(k)v
29 else
30 v← M(k)v
31 w(i, j)← M(0) · v
3333 return w(i, j), i ∈ [0, d − 2], j ∈ [1+ εr, (1+ ε)r − 1]
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Õ(m Nn log p). Applying Frobenius to such an element has complexity Õ(n log2 p+ nN log p) [Hub10,
Corollary 3].

For p sufficiently large, the dominant steps are the horizontal and vertical reductions, i.e., lines 7
and 23 in Algorithm 1. In either case, we apply a modification of [BGS07, Theorem 15] to achieve the
p1/2+o(1) time dependence.

Proposition 5.1 (linear recurrences method, [Har07, Theorem 6.1]). Let R = Zq/pN or Zq/pN+1, and
M(x) := M0+ x M1 ∈ R[x]m×m. Let 0 ≤ α1 < β1 ≤ α2 < β2 ≤ · · · ≤ αh < βh ≤ K be integers. Assume
h <
√

K < p− 1 and write M(α, β) := M(α + 1) · · ·M(β). Then M(αi , βi ) for i = 1, . . . , h can be
computed using Õ(mω

√
K ) ring operations in space O(m2

√
K ).

For the horizontal reductions, we apply Proposition 5.1 once for each pair

(k, j) ∈ [0, N − 1]× [1+ εr, (1+ ε)r − 1],

with K = O(pN ) and m = O(d). For the vertical reductions, we apply Proposition 5.1 once for each j,
again with K = O(pN ) and m = O(d). This adds up to Õ(p1/2 N 3/2rdω) ring operations in space
O(p1/2 N 1/2d2).

Now we bound the time for the remaining steps. We will see that the number of ring operations for the
remaining steps is independent of p, so that they contribute at most a log p term to the bit complexity.

To compute µ j,`,b we start by replacing the coefficients of F(x) by their images under σ . We then
calculate all σ(F)`b in O(d2 N 2) ring operations. Evaluating all the binomial coefficients and finding the
D j,` uses O(r N 2) ring operations. In total, we compute all the µ j,`,b in O(rd2 N 2) ring operations plus
O(d) Frobenius substitutions.

We also use the p-adic interpolation method introduced by Harvey [Har07, §7.2.1] and attributed to
Kedlaya. This allows us to reduce the number of matrix products that must be computed using the linear
recurrence algorithm. The rest can then be obtained by solving a linear system involving a Vandermonde
matrix. In our setting, an analogous complexity analysis holds, and the total number of ring operations
required is O(rd3 N 3), where the extra r factor is due to the j loop.

The matrix M t
H (s) is sparse; for each t , it requires O(d) ring operations to compute. We need to do

this O(r N ) times, thus the total is O(rd N ).
During the horizontal reduction, for each ` we do O(d) sparse vector-matrix multiplications and one

dense vector-matrix multiplication. This requires O(d2) ring operations per `. Hence, lines 10–16 add up
to O(rd4 N 2) ring operations. The number of vector-matrix multiplications during the vertical reduction
is O(d N ), thus negligible in comparison with the horizontal phase.

Computing all the Ri and Si requires O(d3) total ring operations. Then for each j ∈[rε+1, (1+ε)r−1],
the matrix M j

V (t) can be computed in O(d2) ring operations. The total number of ring operations for
these steps is O(rd2

+ d3).
The total number of operations is O(p1/2 N 3/2rdω+ rd4 N 3) plus O(d) Frobenius substitutions. Con-

verting this to bit complexity, our algorithm runs in time

Õ(p1/2 N 5/2rdωn+ N 4rd4n log p+ Ndn2 log p). (5.2)
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In addition to the space required by Proposition 5.1, we use O(rd2 N ) space for the interpolation, to
store w(i, j),k and to do the vector-matrix multiplications. This adds up to O((p1/2 N 3/2

+ r N 2)d2n log p)
space, and Theorem 1.1 follows.

Remark 5.3. Under certain conditions, the time-space tradeoff provided by Proposition 5.1 might not
be ideal or possible. In those cases, one can instead do the reductions one step at a time with naive
vector-matrix multiplications. The horizontal phase amounts to O(prd2 N 2) sparse matrix-vector multi-
plications of size O(d) in space O(rd2 N ). The vertical phase amounts to O(prd N ) dense matrix-vector
multiplications of the same size, and no extra space is required. With the single exception of the O(d)
Frobenius substitutions, all the other steps are negligible in comparison. In terms of bit complexity, this
amounts to Õ(prd3 N 3n+ n2 N log p) time and O(rd2 Nn log p) space, and Theorem 1.4 follows.

6. Sample computations

We have implemented both versions of our method using SageMath. However, the p1/2+o(1) version,
i.e., Theorem 1.3 and Algorithm 1, is only implemented for the case n = 1, as we rely on Harvey’s
implementation of Proposition 5.1 in C++. Our implementation is on track to be integrated in one of the
upcoming versions SageMath [ACMT16]. An example session:

sage: x = PolynomialRing(GF(10007),"x").gen();
sage: CyclicCover(5, x^5 + 1).frobenius_polynomial()
x^12 + 300420147*x^8 + 30084088241167203*x^4 + 1004207356863602508537649

Our examples were computed on one core of a desktop machine with an Intel Core i5-4590
3.30 GHz processor. In all the examples, we took

N =max
{⌈

logp(4g/ i)+ ni/2
⌉
: i = 1, . . . , g

}
, (6.1)

and thus by employing Newton identities we can pinpoint the numerator of Z(C, t); see, for example,
[Ked13, slide 8]. In practice, we may even work with lower N, and then hopefully verify that there
is only one possible lift that satisfies the Riemann hypothesis and the functional equation in the Weil
conjectures; see [Ked08].

In Table 1 we present the running times for computing Z(C, t) for three examples where (g, d, r)=
(6, 5, 5), (25, 6, 12), and (45, 11, 11), over a range of p values. This sample of running times confirms
the practicality and effectiveness of our method for a wide range of p and tuples (d, r). We are not aware
of any other alternative method that can handle p and g in these ranges.

Our implementation is also favorable when compared with Minzlaff’s implementation (in Magma
2.24-1), which deals only with superelliptic curves, rather than arbitrary cyclic covers. For example,
consider the superelliptic curve,

C : y7
= x3
+ 4 x2

+ 3 x − 1.
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p time p time p time

214
− 3 1.21s 222

− 3 21.7s 230
− 35 5m 58s

216
− 15 3.05s 224

− 3 40.9s 232
− 5 11m 36s

218
− 5 5.74s 226

− 5 1m 23s 234
− 41 32m 59s

220
− 3 10.9s 228

− 57 2m 54s 236
− 5 1h 7m

Genus 6 curve C : y5
= x5
− x4
+ x3
− 2x2

+ 2x + 1 with N = 4

p time p time p time

210
+ 45 4m 37s 218

− 5 12m 2s 226
− 5 2h 38m

212
− 3 5m 31s 220

− 3 21m 34s 228
− 57 5h 24m

214
− 3 6m 20s 222

− 3 37m 21s 230
− 35 12h 12m

216
− 15 8m 15s 224

− 3 1h 13m 232
− 5 23h 35m

Genus 25 curve C : y6
= x12

+ 10x11
+ x10

+ 2x9
− x7
− x5
− 4x4

+ 31x with N = 13

p time p time p time

212
− 3 24m 1s 218

− 5 1h 2m 224
− 3 7h 21m

214
− 3 29m 50s 220

− 3 1h 52m 226
− 5 16h 24m

216
− 15 37m 14s 222

− 3 3h 22m 228
− 57 33h 17m

Genus 45 C : y11
= x11

+ 21x9
+ 22x8

+ 12x7
+ 5x4

+ 15x3
+ 6x2

+ 99x + 11 with N = 23

Table 1. Running times for three curves, for various p. Each row represents a (roughly) four-fold increase
in p and a doubling in running time, compared to the row preceding it, confirming that our implementation
has a p1/2+o(1) running time.

If we wish to compute all L polynomials of C for p < 224 using our implementation we estimate that this
will take about 6 months on one core (on the same desktop mentioned above), whereas with Minzlaff’s
it would take around 3 years. The curve C has some interesting properties and it arose recently in some
in progress work of D. Roberts, F. Rodriguez-Villegas, and J. Voight.
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Computing normalizers of tiled orders in Mn(k)

Angelica Babei

Tiled orders are a class of orders in matrix algebras over a non-Archimedean local field generalizing
maximal and hereditary orders. Normalizers of tiled orders contain valuable information for finding type
numbers of associated global orders. We describe an algorithm for computing normalizers of tiled orders
in matrix algebras.

1. Introduction

Let k be a non-Archimedean local field, R its valuation ring with maximal ideal p, and B = Mn(k). An
order 0 in B is a full R-lattice that is also a subring containing 1B such that 0⊗R k= B. Orders of the form
0 = (pνi j )⊆ Mn(k) containing a conjugate of diag(R, R, . . . , R) have been of interest in many contexts.
Such orders generalize maximal and hereditary orders and are known as the graduated orders studied by
Plesken in [11], the tiled orders studied by Fujita and Yoshimura in [2; 4], or the split orders studied by
Hijikata in [7] and Shemanske in [13]. We will use the term “tiled order” for the rest of the paper.

The goal of this paper is finding ways to compute the normalizer N (0)= {ξ ∈ GLn(k) | ξ0ξ−1
= 0}.

Clearly k×0× ⊆N (0), and the question we address in this paper is how to describe N (0)/k×0× as a
subgroup of Sn .

When n = 2, Hijikata [7] used knowledge of N (0)/k×0× to compute the trace formula of Hecke
operators. Analogously, when one derives a trace formula for Brandt matrices [10], one obtains as a
byproduct a means to compute class numbers of certain orders in quaternion algebras, some of whose
localizations are tiled orders. More generally, given a central simple algebra over a global field and
an order 0 in such an algebra, one can use information about the normalizer N (0ν) at each of the
completions to compute the type number of the global order.

There has been some work describing the normalizer of tiled orders. In particular, for a tiled order 0,
Haefner and Pappacena [6] describe N (0)/k×0× as a subgroup of the automorphisms of a directed
multigraph. We will give a more complete description of the normalizer as the group of automorphisms
of a certain valued quiver, as described by Roggenkamp and Wiedemann in [15], with an equivalent
definition by Müller in [9].

MSC2010: 11H06, 11S45.
Keywords: tiled order, normalizer, Bruhat–Tits building, Link graph, quiver.
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Our algorithm for finding the normalizer of a tiled order 0 consists of five parts. First, we associate to 0
a new “centered” tiled order 00, which reveals the structure of the normalizer more transparently. Second,
we compute the valued quiver Qv(00) for the centered tiled order 00 and we identify N (0)/k×0× with
the automorphism group Aut(Qv(00)). We then partition the vertices of the valued quiver Qv(00) into
sets with the same weights for incoming and outgoing arrows. This partition allows us to embed the
automorphism group of the valued quiver in a product of symmetric groups Sl1 × Sl2 × · · · × Slr ⊆ Sn .
Finally, the normalizer N (0)/k×0× is given by the elements in this product that permute the weights
of the arrows.

2. Preliminaries

As we have said, an order 0 in B = Mn(k) is a full R-lattice that is also a subring containing 1B such
that 0⊗R k = B. It is known [12, Theorem 17.3] that every maximal order 3 in B is conjugate by an
element in B× to Mn(R). The orders we are interested in are defined as follows.

Definition 1. We say 0 is a tiled order if it contains a conjugate of the ring diag(R, R, . . . , R).

We want to introduce a geometric framework in which a tiled order 0 is realized as a convex polytope
C0 in a Euclidean space. This geometric realization will give a correspondence between the symmetries
of the polytope C0 and elements of the normalizer. To do so, we now introduce a bit of the theory of
affine buildings and how it relates to tiled orders as described in [13]. For further details the reader may
wish to consult [1; 5].

Let V be an n-dimensional vector space over k; so we identify B with Endk(V ). Fixing a basis
{e1, e2, . . . , en} for V and letting L0 be the free R-lattice generated by this basis, we can identify
EndR(L0) with the maximal order 30 = Mn(R). For any maximal order 3, we have 3 = ξ30ξ

−1

for some ξ ∈ B×, so we can identify 3 with EndR(ξL0).
We say that two full R-lattices L1 and L2 in V are homothetic if L1= aL2 for some a ∈ k×. Homothety

of lattices is an equivalence relation, and we denote the homothety class of L by [L]. It is easy to see that
[L1] = [L2] if and only if EndR(L1)= EndR(L2), so we can identify each homothety class of a lattice
with a maximal order.

We construct the affine building for SLn(k) as follows. The vertices are the homothety classes of
lattices, so by the remarks above we have identified homothety classes of lattices, vertices in the building,
and maximal orders in B. Fixing a uniformizer π ∈ R, there is an edge between two vertices if there
are lattices L1 and L2 in their respective homothety classes such that πL1 ( L2 ( L1. The vertices of
an m-simplex correspond to chains of lattices of the form πL1 ( L2 ( · · ·( Lm+1 ( L1. The maximal
(n−1)-simplices are called chambers.

Given a basis {e1, e2, . . . , en} as above, we have an associated subcomplex of the affine building for
SLn(k), called an apartment. The vertices of the apartment are homothety classes of lattices of the form
L = Rπm1e1⊕ Rπm2e2⊕ · · · ⊕ Rπmn en , mi ∈ Z, which we encode by [L] = [m1,m2,m3, . . . ,mn] =

[0,m2−m1, . . . ,mn −m1]. Each apartment is an (n−1)-complex and a tessellation of Rn−1.



COMPUTING NORMALIZERS OF TILED ORDERS IN Mn(k) 57

Note that while conjugation changes bases and therefore the apartment we are working with, it doesn’t
change the structure of the normalizer. Conjugating if necessary, from now on we may and will assume
that 0 actually contains diag(R, R, . . . , R) and that we are in the apartment where [0, 0, . . . , 0] corre-
sponds to 30 = Mn(R). In this case, by Proposition 2.1 in [13], 0 = (pνi j ), where

νi j + ν jk ≥ νik for all i, j, k ≤ n, νi i = 0. (1)

We denote by M0 = (νi j ) the exponent matrix of 0. Let [Pi ] = [ν1i , ν2i , . . . , νni ] be the homo-
thety class with entries the i-th column of M0. By [11, Remark II.4], the set {Pi }

n
i=1 represents a

complete set of isomorphism classes of projective indecomposable left 0-lattices. Similarly, define
[Ri ] = [−νi1,−νi2, . . . ,−νin], the homothety class with entries the i-th row of −M0. Analogously,
the set {Ri }

n
i=1 is a complete set of injective indecomposable 0-lattices. We will observe this duality in

other instances later in the paper.
For the sake of brevity, for the majority of the paper we will consider nondegenerate tiled orders, that

is, tiled orders whose n columns correspond to n different homothety classes. The algorithm for finding
elements of the normalizers for other orders is almost identical, and we will mention the modifications
at the end of Section 4.

Recall our setting, where 0 = (pνi j ) is a tiled order containing diag(R, R, . . . , R). We associate to
0 a polytope C0 in the apartment in the following way. The equations of the form xi − x j = ν ∈ Z,
1≤ i, j ≤ n, determine hyperplanes in Rn−1, and the hyperplanes Hi j := xi − x j = νi j with νi j given by
the exponents of the tiled order are the bounding hyperplanes of a convex polytope, which we denote
by C0. In addition, the vertices given by P1, P2, . . . , Pn defined above are extremal points on C0, and
they uniquely determine 0 [14, Proposition 2.2]. From now on, we will refer to the homothety classes
[Pi ] = [ν1i , ν2i , . . . , νni ] = [0, ν2i − ν1i , . . . , νni − ν1i ] as the distinguished vertices of C0.

Example 1. Let 0 be the tiled order with exponent matrix

M0 =

0 1 4
2 0 3
2 2 0

 .
In Figure 1 we see the associated convex polytope C0 as determined by

−2≤ x1− x2 ≤ 1, −2≤ x1− x3 ≤ 4, −2≤ x2− x3 ≤ 3,

or also as the convex hull of its distinguished vertices

[P1] = [0, 2, 2], [P2] = [0,−1, 1] = [1, 0, 2], [P3] = [0,−1,−4] = [4, 3, 0].

Likewise, C0 is also the convex hull of the vertices given by the negatives of the rows:

[R1] = [0,−1,−4], [R2] = [0, 2,−1] = [−2, 0, 3], [R3] = [0, 0, 2] = [−2,−2, 0].

As described in [13] and expanded in [14], the vertices in C0 give an additional description of 0:



58 ANGELICA BABEI

[0,2,-3] [0,2,-2] [0,2,-1] [0,2,0] [0,2,1] [0,2,2] [0,2,3]

[0,1,-3] [0,1,-2] [0,1,-1] [0,1,0] [0,1,1] [0,1,2]

[0,0,-4] [0,0,-3] [0,0,-2] [0,0,-1] [0,0,0] [0,0,1] [0,0,2]

[0,-1,-4] [0,-1,-3] [0,-1,-2] [0,-1,-1] [0,-1,0] [0,-1,1]

[0,-2,-5] [0,-2,-4] [0,-2,-3] [0,-2,-2] [0,-2,-1] [0,-2,0] [0,-2,1]

Figure 1. Convex polytope C0 from Example 1.

Lemma 2 (Shemanske, [13; 14]). Let 0 be a tiled order with convex polytope C0. Then 0 is the inter-
section 0 =

⋂
v∈C0 3v of maximal orders corresponding to the vertices in C0 . In addition, 0 =

⋂n
i=13i ,

where 3i are the maximal orders corresponding to the distinguished vertices of C0.

Proof. For the first assertion, see [13]. For a fixed ` ≤ n, we get [P`] = [ν1`, ν2`, . . . , νn`] and the
associated maximal order is 3` = (pνi`−ν j`) by [13, Corollary 2.3]. Since νi j + ν j` ≥ νi`, we can easily
check that indeed 0 =

⋂n
i=13i . �

Therefore, given a tiled order 0, we can obtain its convex polytope C0 , and in small enough dimensions,
we can visualize it and use geometric intuitions to find elements of the normalizer. We summarize the
arguments in [14, Sections 2 and 3] that describe N (0)/k×0× as the symmetries of C0 in the following:

Proposition 3 (Shemanske, [14]). There is a homomorphism φ :N (0)→ Sn with ker(φ)= k×0×.

Proof. By [11, Remark II.4], the columns of 0 are a complete set of isomorphism classes of indecom-
posable projective left 0-lattices. Therefore, ξ ∈N (0) will permute them, so N (0) acts on the set of n
distinguished vertices. This gives the homomorphism φ :N (0)→ Sn . Next we show that ker(φ)= k×0×.
It follows easily from Lemma 2 that k×0× ⊆ kerφ.

On the other hand, if ξ fixes each distinguished vertex P1, P2, . . . , Pn , then ξ normalizes each maximal
order31,32, . . . , 3n corresponding to each distinguished vertex, so ξ ∈

⋂n
i=1 N (3i )=

⋂n
i=1 k×3×i . We

claim that
⋂n

i=1 k×3×i = k×
⋂n

i=13
×

i = k×0×, with the latter equality following from 0×=
(⋂n

i=13i
)×.

We proceed to prove the first equality. Clearly k×
⋂n

i=13
×

i ⊆
⋂n

i=1 k×3×i . To show the nontrivial
containment, suppose ξ ∈

⋂n
i=1 k×3×i . Then we can write ξ = πν1λ1 = π

ν2λ2 = · · · = π
νnλn , where

each λi ∈ 3
×

i . Taking the reduced norm, we get N (λi ) = 1 for all i ≤ n. Therefore N (ξ) = πnν1 =

πnν2 = · · · = πnνn , so ξ = πνλ, where ν := ν1 = ν2 = · · · = νn and λ ∈
⋂n

i=13
×

i . Then
⋂n

i=1 k×3×i ⊆
k×
⋂n

i=13
×

i and the proposition holds. �
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[0,2,-1] [0,2,0] [0,2,1] [0,2,2] [0,2,3]

[0,1,-2] [0,1,-1] [0,1,0] [0,1,1] [0,1,2] [0,1,3]

[0,0,-2] [0,0,-1] [0,0,0] [0,0,1] [0,0,2]

[0,-1,-3] [0,-1,-2] [0,-1,-1] [0,-1,0] [0,-1,1] [0,-1,2]

Figure 2. Polytope from Example 2.

By Proposition 3 we may view N (0)/k×0× as a subgroup of Sn . Moreover, Fujita and Yoshimura
show in the proof of their main theorem in [4] that every coset in N (0)/k×0× has a monomial repre-
sentative. Their argument goes as follows.

Let {ei i | 1≤ i ≤ n} be the set of n primitive orthogonal idempotents of 0, where ei i is the n×n matrix
with 1 in the (i, i) position and zero everywhere else. Given an automorphism ϕ : 0→ 0 acting by
conjugation, i.e., ϕ(x) = ξ xξ−1 for some ξ ∈ Mn(k), by [8, Proposition 3, p. 77] there exists a unit
u ∈ 0× and a permutation matrix w such that ξei iξ

−1
= (uw)ei i (uw)−1. Fujita and Yoshimura then

proceed to find a diagonal matrix d such that (dw)0(dw)−1
= 0, where ξ and dw represent the same

coset in N (0)/k×0×.

Therefore, each coset in N (0)/k×0× has a monomial representative. Geometrically, conjugation by
this monomial matrix corresponds to a product of reflections of the convex polytope C0 across hyper-
planes in the apartment, so each element of N (0)/k×0× permutes the distinguished vertices of C0 by
rigid motions. We will refer to elements of N (0)/k×0× as the “symmetries of C0”, and we associate
to ξ ∈N (0)/k×0× the element σξ := φ(ξ) ∈ Sn .

For n = 3, C0 is 2-dimensional with symmetries a subgroup of S3 as illustrated below.

Example 2. For

M01 =

0 0 0
1 0 0
2 1 0


we have the polytope in Figure 2. We see the symmetries correspond to a fold, so N (01)/k×01

×∼=Z/2Z.

Example 3. For

M02 =

0 0 0
2 0 0
2 2 0


we have the polytope in Figure 3. We see the symmetries correspond to a group of rotations of order 3,
so N (0)/k×0× ∼= A3 ∼= Z/3Z.
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[0,2,-1] [0,2,0] [0,2,1] [0,2,2] [0,2,3]

[0,1,-2] [0,1,-1] [0,1,0] [0,1,1] [0,1,2] [0,1,3]

[0,0,-2] [0,0,-1] [0,0,0] [0,0,1] [0,0,2]

[0,-1,-3] [0,-1,-2] [0,-1,-1] [0,-1,0] [0,-1,1] [0,-1,2]

Figure 3. Polytope from Example 3.

In unpublished work [16] (see [11]), Zassenhaus introduced a set of structural invariants for tiled
orders, defined by

mi jk = νi j + ν jk − νik for 1≤ i, j, k ≤ n.

Note that since for any tiled order νi j + ν jk ≥ νik , structural invariants are nonnegative. In [14], these
structural invariants encode the geometry of the convex polytope C0. When n = 3, they correspond to
side lengths of C0 and gaps between opposite sides; for instance, in Example 2 we get m231 = m312 =

m132 = m213 are the four sides of length 1, and in Example 3 we see that m213 = m321 = m132 = 2 gives
us the three sides of length 2.

In the general case, the mi jk still encode geometric data.

Lemma 4. Fix 1≤ i ≤ n. Then the distinguished vertex Pi is at the intersection of the (affine) hyperplanes⋂
j 6=i H j i , where H j i is given by the equation x j − xi = ν j i when j 6= i .

Proof. Since Pi = [ν1i , ν2i , . . . , νni ] ∼ [0, ν2i − ν1i , . . . , νni − ν1i ], Pi lies on each of the hyperplanes
xi − x j = (νi i − ν1i )− (ν j i − ν1i )=−ν j i , which are exactly our H j i . �

Proposition 5. For i 6= j , mi jk is the number of hyperplanes between the vertex Pk and Hi j .

Proof. Fix i, j ≤ n. Pk is on the hyperplane xi − x j = (νik − ν1k)− (ν jk − ν1k)= νik − ν jk . Since 0 is an
order, we have νi j + ν jk ≥ νik , so νik − ν jk ≤ νi j . Thus, the number of hyperplanes between Hi j (given
by xi − x j = νi j ) and Pk is νi j − (νik − ν jk)= νi j − νik + ν jk = mi jk .

In particular, if j = k then mi jk = 0, and by Lemma 4 Pk already is on Hik , so the claim holds. �

Since the structural invariants encode geometric data, they determine the “shape” of the polytope, and
in fact, in [16] (see [11, Proposition II.6]), Zassenhaus shows that the structural invariants (and therefore
the “shape” of C0) also encode the isomorphism class of the tiled order. Two tiled orders are isomorphic
if they have the same structural invariants up to a permutation in Sn:

Proposition 6 (Zassenhaus, [16]). Let 0,0′ be two tiled orders containing diag(R, R, . . . , R), and let
mi jk and respectively m′i jk be their structural invariants. Then 0 and 0′ are isomorphic if and only if
there exists σ ∈ Sn such that m′i jk = mσ(i)σ ( j)σ (k) for all 1≤ i, j, k ≤ n.



COMPUTING NORMALIZERS OF TILED ORDERS IN Mn(k) 61

Proof. This result is a particular case of Zassenhaus’ result as described in [11, Proposition II.6]. Suppose
the two orders are isomorphic. By the main theorem in [4, p. 107], there exists a monomial matrix ξ ∈ B×

with 0′ = ξ0ξ−1, where ξ = (παi δσ(i) j ) for some σ ∈ Sn , αi ∈ Z, and δi j the Kronecker delta. Let
0 = (pνi j ), 0′ = (pν

′

i j ). Conjugating by ξ we deduce

ν ′i j = αi −αj + νσ(i)σ ( j).

Therefore,

m′i jk = ν
′

i j + ν
′

jk − ν
′

ik

= αi −αj + νσ(i)σ ( j)+αj −αk + νσ( j)σ (k)−αi +αk − νσ(i)σ (k)

= mσ(i)σ ( j)σ (k).

Conversely, suppose we have τ ∈ Sn such that m′i jk = mτ(i)τ ( j)τ (k) for all 1 ≤ i, j, k ≤ n. Then let
αi = ν

′

i1− ντ(i)τ (1), i ≤ n. Note that α1 = 0, and that also αi = ντ(1)τ (i)− ν
′

1i , since

ν ′i1+ ν
′

1i = m′i1i = mτ(i)τ (1)τ (i) = ντ(i)τ (1)+ ντ(1)τ (i).

If we let ξi j = π
αi δτ(i) j , then the exponents of ξ0ξ−1 are αi −αj + ντ(i)τ ( j), which gives

αi −αj + ντ(i)τ ( j) = ν
′

i1− ντ(i)τ (1)− ντ(1)τ ( j)+ ν
′

1 j + ντ(i)τ ( j)

= ν ′i1+ ν
′

1 j − ν
′

i j + ν
′

i j − ντ(i)τ (1)− ντ(1)τ ( j)+ ντ(i)τ ( j)

= m′i1 j + ν
′

i j −mτ(i)τ (1)τ ( j)

= ν ′i j ,

and therefore ξ0ξ−1
= 0′, so the two orders are isomorphic. �

Therefore, the structural invariants determine the isomorphism class of an order. We can find the
symmetries of a given isomorphism class, and more specifically the representatives of these symmetries
in the normalizer for a given tiled order from its structural invariants as follows:

Proposition 7. Let 0 = (pνi j ) be a tiled order, {mi jk | i, j, k ≤ n} its set of structural invariants, and
φ : N (0)→ Sn the homomorphism defined earlier. If , for some σ ∈ Sn , mi jk = mσ(i)σ ( j)σ (k) for all
i, j, k ≤ n, then ξσ = (παi δσ(i) j ) ∈ N (0), where δi j is the Kronecker delta and αi = νi1 − νσ(i)σ (1).
Furthermore, φ(ξσ )= σ .

Conversely, given ξ ∈N (0), we have mi jk = mσξ (i)σξ ( j)σξ (k) for all i, j, k ≤ n where σξ := φ(ξ).

Proof. Suppose that for some σ ∈ Sn , we have mi jk = mσ(i)σ ( j)σ (k) for all i, j, k ≤ n. Setting ξσ =
(παi δσ(i) j ), where αi = νi1 − νσ(i)σ (1), we get ξσ0ξ−1

σ = (p
ν′i j ), where ν ′i j = αi − αj + νσ(i)σ ( j). The

second step in the proof of Proposition 6 then gives

ν ′i j = αi −αj + νσ(i)σ ( j) = νi j ,
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so indeed 0 = ξσ0ξ−1
σ and ξσ ∈ N (0). Since ξσ is a monomial matrix, the action of ξσ on the dis-

tinguished vertices of the convex polytope C0 is determined by reflections across affine hyperplanes as
determined by σ , and therefore φ(ξσ )= σ .

Now suppose ξ ∈N (0). By the discussion after Proposition 3, we have a monomial matrix η ∈N (0)
that permutes the n distinguished vertices the same way ξ does, so define σ = σξ := φ(ξ)= φ(η). Since
η is monomial, we can write it as η= (παi δσ(i) j ), where δi j is the Kronecker delta and αi ∈ Z. The calcu-
lation in the first step in the proof of Proposition 6 shows that mi jk = mσ(i)σ ( j)σ (k) for all i, j, k ≤ n. �

Naive algorithm. Based on Proposition 7, a naive algorithm to find elements in the normalizer is to
test each element of Sn to see whether mi jk = mσ(i)σ ( j)σ (k) for all i, j, k ≤ n. However, this method
doesn’t reveal much about the structure of the normalizer, or which subgroups of Sn are realizable as
the normalizer N (0)/k×0×. Our goal for the remainder of the paper is to develop an algorithm which
in addition to computing elements of the normalizer, also reveals information about the structure of
N (0)/k×0× as a subgroup of Sn .

3. Centered orders

We now proceed to refine the naive algorithm above. We begin by introducing some geometric motivation
for the construction of the tiled centered order 00 in Theorem 8.

Suppose we have σ ∈ Sn a symmetry of C0 for a tiled order 0 = (pνi j ). As discussed in the previous
section, defining ξσ = (παi δσ(i) j ), where αi = νi1 − νσ(i)σ (1), gives ξσ a monomial matrix such that
0 = ξσ0ξ

−1
σ . Since ξσ is monomial, ξσ has a decomposition ξσ = d ·wσ , where d is a diagonal matrix

and wσ is a permutation matrix. Geometrically, conjugation of 0 by a diagonal matrix amounts to a
translation of C0, while conjugation by a permutation matrix corresponds to a product of reflections of
C0 across hyperplanes going through the origin [0, 0, . . . , 0].

Suppose we have a tiled order 00 such that each monomial representative ξσ ∈N (00)/k×0×0 has a
decomposition ξ = d ·wσ with d ∈ k× a scalar. By the discussion above, the origin [0, 0, . . . , 0] is fixed
under each symmetry of C00 , in which case we say that 00 is centered. The following theorem shows
how given any tiled order 0, we can associate to it a centered tiled order 00 whose convex polytope C00

has the same symmetries in Sn as C0 . The advantage of this choice of centered tiled order is that we need
only check relations between exponents in M00 instead of checking relations between the n3 structural
invariants {mi jk} to find all the symmetries. Since there are only n2

− n off-diagonal exponents, this will
be a small step refining our algorithm.

Theorem 8. Given a tiled order 0= (pνi j ) with structural invariants {mi jk=νi j+ν jk−νik |1≤ i, j, k≤n},
define 00 = (p

µi j ) where µi j =
∑n

k=1 mi jk . Then 00 is a centered tiled order with structural invariants
m̃i jk = n ·mi jk for all 1≤ i, j, k ≤ n, and σ ∈ Sn is a symmetry of C0 if and only if µi j = µσ(i)σ ( j).

Proof. First we show 00 is also a tiled order. Note that

µi i =

n∑
k=1

mi ik =

n∑
k=1

(νi i + νik − νik)= 0.
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00 has structural invariants {m̃i jl | 1≤ i, j, l ≤ n} given by

m̃i jl = µi j +µ jl −µil =

n∑
k=1

mi jk +

n∑
k=1

m jlk −

n∑
k=1

milk =

n∑
k=1

(mi jk +m jlk −milk)

=

n∑
k=1

(νi j + ν jk − νik + ν jl + νlk − ν jk − νil − νlk + νik)

=

n∑
k=1

(νi j + ν jl − νil)= n ·mi jl ≥ 0,

and since 0 itself is a tiled order and mi jl ≥ 0, it follows that 00 is also a tiled order.
Next, we establish the bijection between the symmetries of C0 and the elements in Sn such that

µi j = µσ(i)σ ( j). By Proposition 7 we need to show that

mi jk = mσ(i)σ ( j)σ (k) for all i, j, k ≤ n ⇐⇒ µi j = µσ(i)σ ( j) for all i, j ≤ n.

Suppose σ ∈ Sn such that mi jk = mσ(i)σ ( j)σ (k) for all i, j, k ≤ n. Then

µσ(i)σ ( j) =

n∑
k=1

mσ(i)σ ( j)k =

n∑
σ(k)=1

mσ(i)σ ( j)σ (k) =

n∑
σ(k)=1

mi jk =

n∑
k=1

mi jk = µi j .

Conversely, if µi j = µσ(i)σ ( j), then

n ·mi jk = m̃i jk = m̃σ(i)σ ( j)σ (k) = n ·mσ(i)σ ( j)σ (k),

so by Proposition 7, σ is a symmetry of C0.

Finally, we show that 00 is centered. To show that the origin [0, 0, . . . , 0] is within the convex polytope
C00 is almost immediate, since the origin sits on each hyperplane xi − x j = 0. Each such hyperplane satis-
fies the condition −µ j i ≤ xi − x j ≤ µi j because µi j , µ j i ≥ 0 as sums of nonnegative structural invariants.

Now we want to show that each symmetry of C00 fixes the origin. Note that since m̃i jk = n ·mi jk ,
the symmetries of C0 are the same as the symmetries of C00 . Given a symmetry σ ∈ Sn of C00 , by
Proposition 7 we obtain a representative ξσ ∈N (00), where ξσ = (παi δσ(i) j ) and αi =µi1−µσ(i)σ (1)= 0,
since we have just shown that µi j = µσ(i)σ ( j) for all i, j ≤ n. Therefore, ξσ is a permutation matrix and
ξ ∈ Mn(R)×. Hence by [12], ξσ ∈ Mn(R)× ⊆ k×Mn(R)× = N (Mn(R)). Conjugation by ξσ will fix
Mn(R), and therefore the σ will fix the vertex [0, 0, . . . , 0] associated to Mn(R). Since this holds for
every symmetry of C00 , we know 00 is by definition centered. �

Example 4. Let 0 be the tiled order with

M0 =

0 0 −2
1 0 −2
3 3 0

 ,
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[0,2,-1] [0,2,0] [0,2,1] [0,2,2] [0,2,3]

[0,1,-2] [0,1,-1] [0,1,0] [0,1,1] [0,1,2] [0,1,3]

[0,0,-2] [0,0,-1] [0,0,0] [0,0,1] [0,0,2]

[0,-1,-3] [0,-1,-2] [0,-1,-1] [0,-1,0] [0,-1,1] [0,-1,2]

Figure 4. Polytopes from Example 4, with C0 shown in blue and C00 in red.

with C0 depicted in Figure 4 in blue. By Proposition 7, a representative ξσ in the normalizer of 0 is

ξσ =

 0 1 0
0 0 π−2

π3 0 0

=
1 0 0

0 π−2 0
0 0 π3

0 1 0
0 0 1
1 0 0

 .
The associated tiled order is 00 with

M00 =

0 1 2
2 0 1
1 2 0

 ,
with convex polytope depicted in Figure 4 in red. Since ν12 = ν23 = ν31, ν13 = ν21 = ν32, we get a
representative of the normalizer

ξσ =

0 1 0
0 0 1
1 0 0

 .
For n = 2, Hijikata [7] showed that if 0 is nonmaximal, then N (0)/k×0× ∼= Z/2Z. For n = 3,

N (0)/k×0× ⊆ S3 and in fact all subgroups of S3 are realizable as symmetry groups of convex polytopes
of tiled orders; we have seen two such subgroups in Examples 2 and 3. As n increases, there are however
a number of subgroups of Sn that are not realizable as the symmetry group of C0 . In particular, we have
the following easy corollary to Theorem 8:

Corollary 9. Suppose we have a tiled order 0 and φ :N (0)→ Sn the homomorphism defined earlier. If
H is a 2-transitive subgroup of Sn , then H ⊆ φ(N (0)) implies N (0)/k×0× ∼= Sn .

Proof. Let 00 = (p
µi j ) be the associated centered order of 0. H being 2-transitive means that given any

pairs (i, j), (k, l) with i 6= j and k 6= l, there exists σ ∈ H such that σ(i) = k and σ( j) = l. Since H
is contained in the image of the normalizer, µi j = µσ(i)σ ( j) = µkl . Therefore, all of the off-diagonal
exponents are equal and µi j = µσ(i)σ ( j) for all σ ∈ Sn , so N (00)/k×0×0 ∼=N (0)/k×0× ∼= Sn . �

In this section we have shown that we can completely determine the normalizer of a tiled order by
examining the exponents of its associated centered order. By Theorem 8, a refined algorithm to find
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elements in the normalizer is to go through the n2
− n off-diagonal elements to check for which σ ∈ Sn

we have µi j =µσ(i)σ ( j). This is of course a very small improvement, since we still have to check the above
relations for elements σ ∈ Sn . In the next section we realize the symmetries of C0 as the automorphism
group of a directed valued multigraph, which can add to the efficiency of the above algorithm.

4. The normalizer as the automorphisms of a valued quiver

For our main algorithm, we will make use of a realization of the normalizer of a centered tiled order as
the automorphism group of a certain valued directed multigraph, also known as a valued quiver.

We construct the link graph of 0 = (pνi j ) as defined by Müller in [9]. Let M1,M2, . . . ,Mn be the
maximal 2-sided ideals of 0. It can be shown that M` = (p

ri j ), where ri j = νi j if ` 6= i, j , and r`` = 1.
The vertices of the link graph are labeled by the set {1, 2, . . . , n}, and there is an arrow α : i→ j when
Mj Mi 6= Mj ∩Mi and the value associated to the arrow α is v(α)= νi j .

Remark. There is an equivalent way to define the link graph, by projective covers of the Jacobson
radicals for the projective left 0-lattices. However, these directed multigraphs have the arrows pointed
the opposite direction. For more information, see [15] for the construction of the graphs and [2] for the
proof of the equivalence of the two constructions.

To compute the link graph, we reproduce the following result from [3]:

Lemma 10 (Fujita, Oshima [3]). Given a tiled order 0, there is an arrow i → j in Qv(0) if m jki > 0
for all k 6= i, j , and there is an arrow i→ i if miki > 1 for all k 6= i .

Proof. See [3, p. 578]. However, note that Fujita and Oshima follow a convention where the arrows are
pointed in the opposite direction. �

In [6, Lemmas 1 and 3], Haefner and Pappacena identify a subgroup of the automorphisms of the
unvalued quiver Q(0) with monomial representatives of N (0)/k×0×, which we have already found to
be in bijection with the symmetries of C0. In [6, Theorem 5], they prove that σ ∈ Aut(Q(0)) ⊆ Sn is
liftable to a symmetry of C0 if the system

xi − x j = νi j − νσ(i)σ ( j), i < j,

has a solution x = (x1, . . . , xn) ∈ Zn.
We can instead consider automorphisms of the valued quiver Qv(0). While as shown in [6, Exam-

ple 2], the symmetries of C0 don’t always give us an automorphism of Qv(0), they do when we have a
centered tiled order:

Theorem 11. Given a centered tiled order 00 = (p
νi j ), there is a bijection between Aut(Qv(00)) and the

symmetries of C00 .

Proof. Let σ ∈ Aut(Qv(00)). Then σ ∈ Aut(Q(00)) is also an automorphism of the unvalued quiver, and
Haefner and Pappacena have shown in [6, Theorem 5] that σ is liftable to a symmetry of C00 if and only
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if the linear system
xi − x j = νi j − νσ(i)σ ( j), i < j,

has a solution x = (x1, . . . , xn) ∈ Zn. Since σ ∈Aut(Qv(00)), for any valued arrow α : i→ j , there is an
arrow β : σ(i)→ σ( j), and its value is v(β)= v(α). Since v(α)= νi j and v(β)= νσ(i)σ ( j), this implies
νi j = νσ(i)σ ( j) for all i, j ≤ n, so the system above has a solution (0, 0, . . . , 0) ∈ Zn. Therefore, by [6],
σ lifts to a symmetry of C00 .

Now suppose σ is a symmetry of C00 . By [6, Lemma 1], σ is an automorphism of the unvalued quiver
Q(00), so for a given arrow α : i → j , there is an arrow β : σ(i)→ σ( j). To show that σ is also an
automorphism of the valued quiver Qv(00), we need in addition that v(β)= v(α). Since 00 is centered,
we have from Theorem 8 that νi j = νσ(i)σ ( j). But v(α)= νi j and v(β)= νσ(i)σ ( j), so the result follows. �

As described in Theorem 11, given the valued quiver of a centered order, we can determine the symme-
tries of C0 and therefore representatives of the normalizer N (0)/k×0× by finding the automorphisms
of the valued quiver. First note that given two vertices i and j , an automorphism of the quiver can only
permute them if the incoming arrows of i have the same values as the incoming arrows of j , and the
same holds for outgoing arrows. Therefore, for each vertex i , we can associate two multisets, one with
values for incoming arrows, and the other with values for outgoing arrows. Then we need only look for
elements in Sn that would permute both multisets when permuting vertices.

Finally, we summarize the algorithm, where given a tiled order0= (pνi j )⊆Mn(k), we find N (0)/k×0×

as a subgroup of Sn . We illustrate each step with an example.

Algorithm. (1) For a given tiled order 0 with exponent matrix M0 = (νi j ) and structural invariants
{mi jk}1≤i, j,k≤n , compute its associated centered order 00 with exponent matrix M00 = (µi j ), where
µi j =

∑n
k=1 mi jk .

Example 5. Let 0 have exponent matrix

M0 =


0 1 3 3 1
2 0 2 3 1
0 0 0 2 1
0 1 1 0 1
2 2 2 2 0

 .
00 is given by

M00 = (µi j )=


0 5 10 10 5
10 0 5 10 5
5 5 0 10 10
5 10 5 0 10
10 10 5 5 0

 .
(2) Find the valued quiver of 00:

(a) The vertices are 1, 2, . . . , n.
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(b) Let m̃ik j = µik +µk j −µi j = n ·mik j . For i 6= j , there is an arrow α : i → j if m̃ik j > 0 for all
k 6= i, j . There is an arrow α : i→ i if m̃iki > 1 for all k 6= i .

(c) Given an arrow α : i→ j , set v(α)= µi j .

We can represent Qv(00) by the n× n matrix M(Qv(00)) = (ai j ), where ai j is blank if there is no
arrow from i to j , and ai j = µi j if there is an arrow α : i→ j and v(α)= µi j .

Example 5 (continued). The quiver Qv(00) is given by the matrix
0 10 10
10 0 5

5 0 10 10
5 0 10

10 10 0

 .
(3) For each vertex i , let Ii be the multiset of incoming arrow values and Oi be the multiset of outgoing
arrow values. Partition the sets {Ii }

n
i=1 and {Oi }

n
i=1 into equal multisets.

Example 5 (continued). The multisets Ii are the columns of the above matrix, and the multisets Oi are
the rows. Note that

I1 = I4 = I5 = {0, 10, 10}, I2 = {0, 5, 10} and I3 = {0, 5, 5, 10},

so we partition the Ii ’s into {I1, I4, I5}, {I2} and {I3}. Since

O1 = O5 = {0, 10, 10}, O2 = O4 = {0, 5, 10} and O3 = {0, 5, 10, 10},

we partition the Oi ’s into {O1, O5}, {O2, O4} and {O3}.

(4) Consider the partition of the Ii ’s. An automorphism of the quiver can only permute vertices with the
same values for incoming arrows, so if the sets in the partition have lengths l1, l2, . . . , lq ,

∑q
j=1 lj = n,

then the normalizer N (0)/k×0× is a subgroup of Sl1 × Sl2 × · · ·× Slq ⊆ Sn , where each Sli is a copy of
the symmetric group on li elements.

Now consider the partition of the Oi ’s. Similarly, an automorphism of the quiver can only permute ver-
tices with the same values for outgoing arrows, so N (0)/k×0× is a subgroup of St1× St2×· · ·× Str ⊆ Sn ,
where t1, t2, . . . , tr are the lengths of the sets in the partition of the Oi ’s and

∑r
j=1 tj = n.

Therefore, the normalizer N (0)/k×0× is a subgroup of (Sl1 × Sl2 ×· · ·× Slq )∩ (St1 × St2 ×· · ·× Str ).

Example 5 (continued). From the partitions in (4), we get that N (0)/k×0× ⊆ S{1,4,5}, where as usual
S{1,4,5} is the symmetric group on the set {1, 4, 5}. Similarly, we get N (0)/k×0× ⊆ S{1,5} × S{2,4}.
Therefore,

N (0)/k×0× ⊆ S{1,4,5} ∩ (S{1,5}× S{2,4})= S{1,5}.

(5) Check for which elements σ in the intersection found in (4) we have ai j = aσ(i)σ ( j), where ai j are
the entries in the matrix defined in (2). The union of these elements is the normalizer N (0)/k×0×.
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Example 5 (continued). We need to check whether ai j = aσ(i)σ ( j) for σ = (1, 5). Since a15 is blank,
but a51 = 10, we conclude that σ is not a symmetry of C0, so N (0)/k×0× has to be trivial.

Remark. We now describe the modifications of our algorithm when 0 is degenerate, so some of the
columns correspond to the same homothety classes of lattices. When we create the valued quiver in
step (2), if columns Pi and Pj correspond to the same homothety class, we identify vertices i and j
together. Therefore, after computing in step (5) the subgroup H = {σ ∈ Sn | ai j = aσ(i)σ ( j)}, where ai j

are the entries in M(Qv(00)), the normalizer N (0)/k×0× is the quotient of H by the product of the
symmetric groups that permute each set of equivalent vertices.
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Computation of triangular integral bases

Jens-Dietrich Bauch and Ha Thanh Nguyen Tran

Let A be a Dedekind domain, K the fraction field of A, and f ∈ A[x] a monic irreducible separable
polynomial. For a given nonzero prime ideal p of A we present in this paper a new algorithm to
compute a triangular p-integral basis of the extension L of K determined by f . This approach can be
easily adapted to compute a triangular p-integral basis of fractional ideals I of the integral closure of
A in L . Along this process one can compute p-integral bases for a family of ideals contained in I as a
by-product.

Introduction

In computational number theory one of the most important examples for a Dedekind domain is the ring
of integers O of a number field L =Q(θ), where θ is the root of a monic irreducible polynomial f over Z

of degree n. In that context a set (b0, . . . , bn−1) is called a triangular basis of O if it generates O as a
Z-module and

b0 = 1 and bi =
θ i
+
∑

j<i λi, jθ
j

hi
,

where λi, j , hi ∈ Z and 1 ≤ i ≤ n − 1. For a module over a PID, a triangular basis always exists. For
instance, in the case L =Q(

√
5) we have

O =
〈
1,

√
5+ 1
2

〉
Z

.

Let p be a prime and let p= pZ be the prime ideal generated by p. A triangular p-integral basis of O
is a triangular basis of O considered as module over the localization of Z at p. In the latter example we
see a p-integral triangular basis of O with p= 2Z, which is already an integral basis.

In [5, p. 217] the computation of an integral basis of a number field L is considered one of the five
main computational problems in number theory. Let Disc( f ) = L · S2 be the discriminant of f with
L,S ∈ Z and let L be square-free. Denote by p a prime dividing S and set p= pZ. One can distinguish
in general two approaches for the computation of an integral basis. The first approach is based on the idea
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of computing kernels of linear maps in order to compute a p-radical of the order O and is known as the
round two algorithm due to Pohst and Zassenhaus [12]. The second approach is based on constructing
certain elements in O of maximal valuation at the prime ideals lying over p. The most famous algorithms
are the round four algorithm [6; 12], those which are based on the OM-representation [8; 16; 1], and in the
context of the computation of integral bases of algebraic function fields those using Puiseux expansion
[17; 4]. In general, the second approach needs a prime factor of S as input. However, Guàrdia and Nart
found in [9] a p-adic algorithm, which does not require a prefactorization of S.

Our algorithm follows the approach from [16] and is based on simple linear algebra after a p-adic
initialization step.

Let A be a Dedekind domain, K the fraction field of A, and p a nonzero prime ideal of A. By Ap we
denote the localization of A at p and we set kp = A/p. Let π ∈ p be a prime element of p.

Denote by θ ∈ K sep a root of a monic irreducible separable polynomial f ∈ A[x] of degree n and
L = K (θ) the finite separable extension of K generated by θ . Let O be the integral closure of A in L
and Op be the integral closure of Ap in L . A p-integral basis of O is an Ap-basis of Op. In order to
determine a p-integral basis, we compute, for 0≤ i ≤ n− 1, monic polynomials gi (x) ∈ A[x] of degree i
such that gi (θ) has maximal value with respect to a pseudovaluation ω on L (see equation (1) below).
Then a triangular p-integral basis is obtained by (gi (θ)/π

w(gi (θ)) | 0 ≤ i ≤ n − 1). The computation
of the gi ’s can be deduced by straightforward linear algebra, which results in a simple algorithm. The
theoretical complexity (counted in the operations in kp, see Section 2D) is slower than the current state-of-
the-art methods presented in [8; 16; 1]. The running time of the current methods is asymptotically n2+ε,
whereas the one of our method is cubic in n. However, after an initialization step the running time drops
to n2. One advantage of our algorithm is that it can be adapted to compute integral bases of families
of fractional ideals. That is, for calling once our algorithm for a fractional ideal I of O with I ⊃ O
we can determine with no extra time p-integral bases for certain fractional ideals I ′ contained in I (see
Section 3).

In Section 1 we introduce the notation which is needed to explain the main idea of our algorithm in
Section 2. Further on we describe the details of our new methods, give an example, and analyze the
running time. Finally an application of our algorithm for the computation of p-integral bases of families
of fractional ideals is presented in Section 3.

1. Notation

We keep the notation from the Introduction. Every prime ideal p induces a discrete valuation vp : A→
Z∪ {∞}. We denote the completion of K at p by Kp. The valuation vp extends in an obvious way to Kp.
Denote by Âp the valuation ring of vp. Let S = {P1, . . . ,Ps} be the set of all prime ideals of O lying
over p. For each Pi ∈ S we define LPi to be the completion of L at Pi and OPi to be the integral closure
of Âp in LPi .

By the classical theorem of Hensel [11] the prime ideals Pi are in one-to-one correspondence with
the monic irreducible factors fPi of f in Âp[x]. For each i ∈ {1, . . . , s} denote by θi a root and by ni
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the degree of fPi . Then we can represent LPi as LPi = Kp(θi ) and define the injection ιi : L→ LPi via
θ 7→ θi . In particular,

∑
1≤i≤sni = n since f =

∏
1≤i≤s fPi ∈ Âp[x].

Denote by Max(O) the set of all maximal ideals of O. As O is a Dedekind domain every nonzero
fractional ideal I of O can be factored into a finite product of prime ideals,

I =
∏

P∈Max(O)

PaP,

with integer exponents aP. Any fractional ideal can be considered as a free A-module of rank n.

Definition 1.1 (index). Let M and M ′ be two free A-modules of rank n. The index [M : M ′] is defined
to be the nonzero fractional ideal generated by the determinant of the transition matrix from an A-basis
of M ′ to one of M.

2. Computation of p-integral bases

The goal of this section is to describe an algorithm that computes a triangular p-integral basis of O
for a fixed nonzero prime ideal p of A. In particular, we compute b0, . . . , bn−1 in L such that Op =

〈b0, . . . , bn−1〉Ap and

bi =
gi (θ)

πmi

for some monic polynomial gi ∈ A[x] of degree i and mi ∈ Z≥0.

2A. The algorithm. For Pi ∈ S, let ePi be the ramification index of Pi over p and vPi be the induced
discrete valuation on L . Then we define a pseudovaluation on L as

ω =

⌊
min

1≤i≤s

{
vPi

ePi

}⌋
. (1)

Definition 2.1. The monic polynomial g(x) ∈ A[x] of degree i < n is called i-maximal if ω(g(θ)) ≥
ω(h(θ)) for all monic polynomials h ∈ A[x] having the same degree as g.

Our algorithm is based on the following theorem [16, Theorem 1.4]:

Theorem 2.2. Let b0, . . . , bn−1 ∈ L , where

bi =
gi (θ)

πω(gi (θ))
, gi is i -maximal. (2)

Then (b0, . . . , bn−1) is a triangular p-integral basis.

In particular the theorem guarantees the existence of a triangular p-integral basis.
According to Theorem 2.2 we have to determine i-maximal polynomials gi (x) ∈ A[x] for 0 ≤ i ≤

n− 1. We start with gi = x i and successively replace gi by a monic polynomial g′i having degree i with
ω(g′i (θ)) > ω(gi (θ)). One can compute g′i by applying an augmentation-step defined as follows. Let
R⊂ A be a fixed system of representatives of kp = A/p.
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Definition 2.3. Let c0, . . . , cm be in L , ordered by nondecreasing ω-value, and λ1, . . . λm ∈R such that

ω

(
cm +

m−1∑
j=0

λjπ
ω(cm)−ω(cj )cj

)
> ω(cm).

Then we call c∗m = cm +
∑m−1

j=0 λjπ
ω(cm)−ω(cj )cj an augmentation-step.

In particular an augmentation-step increases the module spanned by the vectors:〈
c0

πω(c0)
, . . . ,

c∗m
πω(c

∗
m)

〉
Ap

)
〈

c0

πω(c0)
, . . . ,

cm

πω(cm)

〉
Ap

.

The process is as follows: As an initial step we set b0 = 1 and consider the vectors b0, θ . Next, we
determine λ0 ∈R to perform an augmentation-step: d1,0 = θ + λ0. If x + λ0 is not 1-maximal, one finds
λ1 ∈R such that d1,1 = d1,0+λ1 realizes an augmentation-step. After finitely many steps, one can obtain
some d1 = g1(θ) such that g1 is 1-maximal. We set b1 = d1/π

ω(d1).
Let 1 ≤ i ≤ n− 1 and assume we already have computed b0, . . . , bi−1 satisfying (2). After finitely

many augmentation-steps we deduce λi,0, . . . , λi,i−1 ∈R such that di = θ
i
+
∑

j<i λi, j bj = gi (θ), where
gi is i-maximal. Let bi = di/π

ω(di ). Then b0, . . . , bi are the first i + 1 vectors in a triangular p-integral
basis. After n− 1 steps this leads to a triangular p-integral basis.

We summarize this idea with the pseudocode given in Algorithm 1.
Henceforth we explain how to perform an augmentation-step. We adopt the reduction algorithm from

[13; 2] which is used for the computation of Riemann–Roch spaces in the context of algebraic function
fields. Because the ω-value is strictly increased at any step, we prefer to use the word augmentation
rather than reduction as in [2].

Denote by Bi an Âp-basis for OPi , which is in particular a Kp-basis for LPi . In addition, denote by
v the p-adic valuation vp extended to a fixed algebraic closure of Kp such that v(x)= 1 for all x ∈ A∗p.
Since Pi lies over p with ramification index ePi , the valuation vPi is an extension of vp and relates to
the extension v as follows: vPi (z)= v(ιi (z))ePi for any z ∈ L . See [15] for more details.

Algorithm 1: Triangular p-integral basis

Input :(1, θ, . . . , θn−1)

Output :A triangular p-integral basis
1 b0← 1, B← (b0) for i = 1, . . . , n− 1 do
2 bi ← θ i while possible do
3 bi ← bi +

∑
j<i λjπ

ω(bi )−ω(bj )bj (augmentation-step)
4 B← Append(B, bi/π

ω(bi ))

5 return B
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For α ∈ LPi we define by Ci (α) ∈ K ni
p the coordinate vector of α with respect to the basis Bi and

ι= (Ci ◦ ιi )1≤i≤s : L→ K n
p .

Lemma 2.4. For z ∈ L it holds that

ω(z)= min
1≤i≤n
{v(ζi ) | ι(z)= (ζ1, . . . , ζn)}.

Proof. For 1≤ i ≤ s we set wPi = vPi /ePi . By definition ω(z)=min1≤i≤sbwPi (z)c; thus it is sufficient
to show that

bwPi (z)c =min
b∈Bi
{v(ζb)}, with ιi (z)=

∑
b∈Bi

ζbb,

for each 1 ≤ i ≤ s. As vPi (z) = v(ιi (z))ePi , one has wPi (z) = vPi (z)/ePi = v(ιi (z)). Since Bi is an
integral basis of OPi by [1, Theorem 3.2] it holds that Bi is v-semiorthonormal; that is, bv(ιi (z))c =⌊
v
(∑

b∈Bi
ζbb
)⌋
=minb∈Bi {v(ζb)}. �

Each λ ∈ Kp can be written as λ =
∑
∞

j=m λjπ
j, where m = v(λ) and λj ∈R. For an integer r ≥ m,

we set

ltr (λ)=
{
λm if r = m,
0 else

and call it the lower term of λ at r .

Definition 2.5. Let ψ be a map from L to K n
p . For z ∈ L and r ≥ ω(z) we define the lower-term vector

of z at r (with respect to ψ) by

LTr (ψ(z))= (ltr (zi ))1≤i≤n ∈ kn
p ,

where ψ(z)= (z1, . . . , zn).

Recall that R⊂ A is a set of representatives of kp = A/p.

Lemma 2.6. Let c0, . . . , cm ∈ L , ordered by nondecreasing ω-value, and α0, . . . , αm ∈R, with αm 6= 0,
be such that ∑

0≤i≤m

αi LTω(ci )(ι(ci ))= 0. (3)

Then, c∗m = cm +
∑m−1

j=0 (αj/αm)π
ω(cm)−ω(cj )cj realizes an augmentation-step.

Moreover, if the LTω(ci )(ι(ci )) are kp-linearly independent, then no augmentation-step is applicable.

Proof. We write ι(cj ) = (cj,1, . . . , cj,n), for j = 0, . . . ,m. By Lemma 2.4 it holds that ω(cj ) =

min1≤i≤n{v(cj,i )}. By construction, one can write

ι(cj )= LTω(cj )(ι(cj ))π
ω(cj )+

∑
i>ω(cj )

vi, jπ
i ,
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with vi, j ∈ kn
p . If we identify kp with R, then ι becomes kp[π ]-linear. That is,

ι(c∗m)= ι(cm)+

m−1∑
j=0

αj

αm
πω(cm)−ω(cj )ι(cj ).

The fact that
∑

0≤i≤m αi LTω(ci )(ι(ci ))= 0 implies

ι(c∗m)=
∑

i>ω(cm)

viπ
i
= (c∗m,1, . . . , c∗m,n),

with vectors vi ∈ kn
p . Accordingly, for ι(c∗m) = (c

∗

m,1, . . . , c∗m,n) it holds that v(c∗m,i ) > ω(cm) for i =
1, . . . , n. Therefore ω(c∗m) > ω(cm) by Lemma 2.4.

On the other hand, any augmentation-step implies that {LTω(ci )(ι(ci ))}i=0,...,m are kp-linearly depen-
dent. �

Theorem 2.7. Algorithm 1 terminates after a finite number of steps and computes a triangular p-integral
basis.

Proof. Any augmentation-step in Algorithm 1 is performed such that the resulting element bi is of the
form gi (θ)/π

mi with gi (x) ∈ A[x] monic of degree i and mi = ω(gi (θ)) for 0 ≤ i ≤ n− 1. After any
augmentation-step, one of the mi strictly increases. Every mi is bounded by the p-valuation of the index
[O : A[θ ]]; hence after finitely many steps gi is i-maximal for 0≤ i ≤ n− 1. Consequently, Algorithm
1 outputs (gi (θ)/π

mi )0≤i≤n−1, which is a triangular p-integral basis according to Theorem 2.2. �

2B. Algorithmic details. In this subsection we give a detailed realization of Algorithm 1. The bottleneck
is the computation of ι(θ j ) ∈ K n

p for j = 0, . . . , n− 1. The components of the vector ι(θ j ) are in general
infinite power series in π with coefficients in kp and cannot be exactly represented in the machine. It is
however sufficient to work with approximations. In fact one can write

ι(θ j )=

∞∑
i=ω(θ j )

viπ
i ,

where vi ∈ kn
p and vω(θ j ) = LTω(θ j )(ι(θ

j )). In practice we work with ι(θ j ) (mod πν) ≡
∑ν−1

i=ω(θ j )
viπ

i,
where ν > ω(θ j ) has to be chosen such that Algorithm 1 still outputs a triangular p-integral basis.

First we consider a realization of the computation of ι(θ j ) (mod πν) and later we discuss how to
choose ν.

Let 8i (x) ∈ A[x] be an approximation to fPi (x) with precision ν ∈ Z; that is, 8i is monic and
irreducible (over Âp) such that

fPi ≡8i (mod πν). (4)

Moreover, every approximation 8i defines a finite extension L8i of K . We denote by θ̃i a root of 8i

such that L8i = K (θ̃i ) and define the map ιi,ν via θ 7→ θ̃i .
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Recall that Bi denotes an integral basis for the completion LPi . Every b ∈ Bi can be written as
b = g(θi )/π

lb , with g(x) ∈ Âp[x] and lb ∈ Z minimal. Let gν(x) ∈ A[x] be the polynomial obtained by
reducing the coefficients of g modulo πν. This allows us to define bν = gν(θ̃i )/π

lb ∈ L8i .

Lemma 2.8. For ν >max{lb | b ∈ Bi }, the set Bi,ν = {bν | b ∈ Bi } is a p-integral basis of L8i .

Proof. Denote by Oi the integral closure of A in L8i . Since 8i is irreducible over Âp there exists only
one prime ideal P̃i of Oi over p. Here b = g(θi )/π

lb for all b ∈ Bi as above. By the choice of ν we have
vP̃i
(gν(θ̃i )/π

lb)≥ 0 and bν is integral. As a consequence Bi,ν ⊂Oi . Now it is enough to show that Bi,ν

generates Oi but this is directly inherited from Bi . �

For z ∈ L8i we denote by CBi,ν (z) ∈ K ni the coordinate vector of z with respect to the basis Bi,ν . Then
we can define the map

ι̃ν : L→ K n, z 7→ (CBi,ν (ιi,ν(z)))1≤i≤s .

Lemma 2.9. For z ∈ L and a positive integer ν it holds

ι(z) (mod πν)≡ ι̃ν(z).

Proof. The elements bν in Bi,ν are obtained by taking the coefficients of b ∈ Bi modulo πν. Therefore,
it is sufficient to show that ιi (z) and ιi,ν(z) are the same modulo πν for all z ∈ L , for all 1≤ i ≤ s. Any
element z ∈ L can be written as z = g(θ)/h with g(x) ∈ A[x] and h ∈ A. Thus, we may restrict our
consideration to elements g(θ).

Given an index i and a polynomial g(x) ∈ A[x], we will show that ιi (g(θ))= g(θi ) and ιi,ν(g(θ))=
g(θ̃i ) coincide modulo πν. We consider g(θi ) to be the class of g in Ap[x]/ fPi Ap[x] and g(θ̃i ) to be the
one of g in Ap[x]/8i Ap[x]. Then the statement follows immediately by the fact that

fPi (mod πν)≡8i

by the definition of the approximation 8i . �

Theorem 2.10. Let ν be an integer with ν ≥ vp([O : A[θ ]]). If we replace in the augmentation-steps
along Algorithm 1 the map ι by ι̃ν then the algorithm outputs a triangular p-integral basis and needs at
most vp([O : A[θ ]]) augmentation-steps.

Proof. For a triangular p-integral basis (b0, . . . , bn−1) with bi = gi (θ)/π
ω(gi (θ)) we have∑

0≤i≤n−1

ω(gi (θ))= vp([O : A[θ ]]).

Algorithm 1 produces bi with gi being i-maximal by applying augmentations-steps. Note that any of
these steps increases the ω-value by at least 1. Consequently, after maximally vp([O : A[θ ]]) steps, the
algorithm outputs a p-integral basis.

For the first statement we assume that the precision ν ≥ vp([O : A[θ ]]) is not sufficient. That is
Algorithm 1 outputs b0, . . . , bn−1, which is not a p-integral basis, at precision ν ≥ vp([O : A[θ ]]). Hence
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there are still augmentation-steps applicable to b0, . . . , bn−1, which have not been detected because of
the too-low precision. This implies that the lower-term vectors

LTω(b0)(ι̃ν(b0)), . . . ,LTω(bn−1)(ι̃ν(bn−1))

are linearly dependent by Lemma 2.6. In particular, for at least one 0≤ i ≤ n− 1 the lower-term vector
LTw(bi )(ι̃ν(bi )) is zero. Then bi = gi (θ)/π

w(gi (θ)) satisfies

ι(gi (θ))=
∑
j≥ν

vi, jπ
j , vi, j ∈ kn

p .

In particular we have ω(gi (θ))≥ ν, which leads to the contradiction

ν ≥ vp([O : A[θ ]]) > vp([〈b0, . . . , bn−1〉A : A[θ ]])=
∑

0≤i≤n−1

w(gi (θ))≥ ν. �

2C. Example. Let f = x4
+ 4x3

+ (4t2
+ 4)x2

+ 8t2x + 2t8
+ 4t4

+ 8t2
∈ A[x] with A = F13[t] and let

L be the function field defined by f . Then Disc( f )= L ·S2 with S = t2(t3
+ 3)(t3

+ 10). Let π = t and
p= π · A. Then we want to compute a p-integral basis. Here pO =P1 ·P2, and the ramification indices
satisfy eP1 = eP2 = 1. Moreover f splits into f = fP1 · fP2 over Âp= F13[[t]] with deg fP1 = deg fP2 = 2.
First, one can compute approximations 81 = x2

+ 2t2 and 82 = x2
+ 4x + 2t2

+ 4 of fP1 and fP2 with
precision ν = 8 using the Montes algorithm [10]. This precision is sufficient according to Theorem 2.10
because ν = 8> vp(Disc( f ))= 4≥ vp([O : A[θ ]]). Let θi be a root of fPi and θ̃i be one root of 8i for
i = 1, 2 respectively.

Next, we compute

B1 = (1, θ̃1/t), B2 = (1, (θ̃2+ 2)/t),

p-integral bases for L81 and L82 , respectively, as explained in [7]. Note that (1, θ1/t) and (1, (θ2+2)/t)
are integral bases for LP1 and LP2 . We compute ι̃ν(θ j ) for 0≤ j ≤ 3 as follows. First, we obtain ιi,ν(θ j )

by computing x j (mod8i ). Second, we evaluate it in θ̃i and take its coefficients with respect to Bi for
i = 1, 2. This process leads to the following matrix:

B1 B2 ω

ι̃ν(1) 1 0 1 0 0
ι̃ν(θ) 0 t 11 t 0
ι̃ν(θ

2) 11t2 0 11t2
+4 9t 0

ι̃ν(θ
3) 0 11t3 12t2

+5 11t3
+12t 0

The rows of the 4× 4 submatrix represent the vectors ι̃ν(θ j ) for j = 0, . . . , 3. The last column shows
the value ω(θ j ). The underlined entries of the submatrix are those which attain the minimum; that is,
their vt -valuation coincides with the ω-value of the corresponding row.
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We consider the lower-term vectors in order to perform augmentation-steps:

M =

 LT0(ι̃ν(1))
...

LT0(ι̃ν(θ
3))

=


1 0 1 0
0 0 11 0
0 0 4 0
0 0 5 0

 ∈ F4×4
13 .

Since rank(M)= 2< 4, one can apply augmentation-steps. We have LT0(ι̃ν(θ
2))+2LT0(ι̃ν(θ))= 0∈ F4

13

and LT0(ι̃ν(θ
3))+ 9LT0(ι̃ν(θ))= 0 ∈ F4

13. By Lemma 2.6 we can read out the augmentation-steps from
M and deduce b∗2 = θ

2
+ 2θ and b∗3 = θ

3
+ 9θ . This results in

B1 B2 ω

ι̃ν(1) 1 0 1 0 0
ι̃ν(θ) 0 t 11 t 0
ι̃ν(b∗2) 11t2 2t 11t2 11t 1
ι̃ν(b∗3) 0 11t3

+ 9t 12t2 11t3
+ 8t 1

(5)

with ω(b∗2)= ω(b
∗

3)= 1. We again check the lower-term vectors in order to see if another augmentation-
step can be applied:

M =


LT0(ι̃ν(1))
LT0(ι̃ν(θ))

LT1(ι̃ν(b∗2))
LT1(ι̃ν(b∗3))

=


1 0 1 0
0 0 11 0
0 2 0 11
0 9 0 8

 .
Now rank(M)= 4, so no further augmentation is applicable. That is,(

1, θ,
θ2
+ 2θ
t

,
θ3
+ 9θ
t

)
is a p-integral basis.

2D. Complexity. For the subsequent complexity analysis we define δ := vp(Disc f ), the p-valuation of
the discriminant of f . Furthermore we admit fast multiplication techniques of Schönhage and Strassen [14].
Let R be a ring and g1, g2 ∈ R[x] be two polynomials whose degrees are bounded by d1 and d2, respec-
tively. Then, the multiplication g1 · g2 requires O(max{d1, d2}

1+ε) operations in R. Algorithm 1 works
well with precision ν = δ by Theorem 2.10. Thus, one may consider the elements in A to be finite π -adic
developments whose length is equal to O(δ). We fix a system of representatives R of kp= A/p and call an
operation in A p-small if it involves two elements belonging to R. Hence, any multiplication in A can be
performed with O(δ1+ε) p-small operations. We assume the residue field A/p is finite with q elements.

The total cost of Algorithm 1 is obtained by adding all the costs from Lemma 2.14 and 2.15 as below.

Theorem 2.11. Algorithm 1 requires

O(n3δ+ n2δ2
+ n1+εδ log q + n1+εδ2+ε)

p-small operations. In particular, the running time after the initialization is equal to O(n2δ2) p-small
operations.
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Although the complexity depends asymptotically on n3, in practice the running time is less pessimistic.
The factor n3 is due to the Gaussian elimination process in the initialization step (1b). We have to invert
an n× n matrix T ′ with entries in A (see Lemma 2.13 for more details). If pO is a prime ideal then T ′

is a triangular matrix. In fact the less factors pO has, the more T ′ looks like a triangular matrix. In that
case inverting T ′ can be performed quickly and the algorithm is practical for large n.

The following steps dominate the running time of Algorithm 1:

(1) Initialization:

(a) Computation of approximations 8i and local bases Bi for 1≤ i ≤ s.
(b) Computing the vectors (CBi (ιi,ν(θ

j )))1≤i≤s for 0≤ j ≤ n− 1.

(2) Realization of augmentation-steps:

(a) Determining the coefficients in the linear relation from (3).
(b) Performing the augmentation-step.

For the initialization step we use the Montes algorithm [3; 7] to compute approximations 8i and the
p-integral basis Bi of L8i . Details can be found in [10; 1].

2D1. Initialization. (a) The Montes algorithm has a cost of O(n2+ε
+n1+εδ log q+n1+εδ2+ε) operations

[3]. Once we have called the Montes algorithm we determine the bases Bi as explained in [1]. The
complexity of computing all bases is equal to O(n2+εδ1+ε) p-small operations.

According to [3, Theorem 5.16], the cost of the computation of an approximation 8i of fPi with
precision ν is given by

O(nniν
1+ε
+ nδ1+ε)

p-small operations, where ni = deg8i . As a result of Theorem 2.10 a sufficient precision is equal to O(δ).
Since

∑s
i=1ni = n, the cost of computing all approximations is equal to O(n2δ1+ε).

(b) Let T be the matrix with rows given by ι̃ν(θ i ). We analyze the cost of determining T. First we
consider ιi,ν(θ j ) for 1 ≤ i ≤ s and 0 ≤ j ≤ n− 1, and then CBi (ιi,ν(θ

j )). Recall that θ̃i is a root of 8i

such that L8i = K (θ̃i ) for 1≤ i ≤ s.

Lemma 2.12. The cost of computing ιi,ν(θ j ) for 1 ≤ i ≤ s and 0 ≤ j ≤ n − 1 is equal to O(n2δ1+ε)

p-small operations.

Proof. Clearly, ιi,ν(θ j ) is equal to x j (mod8i ) evaluated in θ̃i . For j < ni = deg8i we have ιi,ν(θ j )= θ̃
j

i .
When j = ni , let ψni = xni −8i . Then xni = ψni +8i . Therefore ιi,ν(θni ) = ψn(θ̃i ), which can be

computed at no cost.
Assume j ≥ni and that we have computedψj =αni−1xni−1

+· · ·+α0 ∈ A[x], whereψj ≡ x j (mod8i ).
In particular, x j

= ψj + rj8i with rj ∈ A[x]. Then it holds

x j+1
= x(ψj + rj8i )= αni−1xni + · · ·+α0x + xrj8i

= αni−1(ψni +8i )+αni−2xni−1
+ · · ·+α0x + xrj8i

= ψj+1+ rj+18i ,
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where ψj+1 = αni−1ψni + αni−2xni−1
+ · · · + α0x and rj+1 = (αni−1 + xrj )8i . As a consequence,

one can compute ψj+1 with at most ni multiplications and additions in A. Then ιi,ν(θ j+1)= ψj+1(θ̃i ).
Since the precision is ν = O(δ), it is enough to perform this computation modulo πν. For this reason,
the computation of ιi,ν(θ j ) for j = 0, . . . , n − 1 can be performed in O(nniδ

1+ε) p-small operations.
Because i runs from 1 to s and ni = deg(8i ) satisfies

∑s
i=1 ni = n, computing ιi,ν(θ j ) for 1≤ i ≤ s and

0≤ j ≤ n− 1 can be done in O(n2δ1+ε) p-small operations. �

Lemma 2.13. The cost of computing the coordinates of the vectors ιi,ν(θ j ) with respect to the basis Bi

is equal to O(n3δ) p-small operations.

Proof. Let W =
∏s

i=1 L8i and κi : L8i →W be the canonical embedding of L8i into W :

z 7→ (0, . . . , 0, z︸︷︷︸
i-th

, 0, . . . , 0).

Then B=
⋃

i=1,...,s κi (Bi ) and B′ = {κi (θ̃
j

i ) | 1≤ i ≤ s, 0≤ j ≤ ni } are both K -bases of W. In particular,
T is the basis change matrix from B′ to B. Since ni = deg8i and

∑
i ni = n, the bases B and B′ both

have n elements. In particular T is an n× n matrix. One computes T by inverting T ′, the matrix whose
rows are the coefficients of the vectors in B with respect to B′. Clearly T ′ can be computed at zero cost
since it can be read off from the coefficients of the elements in Bi .

As we work with precision ν = O(δ) we may assume that the coefficients of ιi,ν(θ j ) ∈ A[θ̂i ] are
polynomials in kp[π ] of degree O(δ) for 0≤ j ≤ n−1. Accordingly inverting T ′ can be done by O(n3δ)

p-small operations by Gaussian elimination. �

Adding all the costs leads to the following result.

Lemma 2.14. The cost for the initialization step is

O(n3δ+ n2δ1+ε
+ n1+εδ log q + n1+εδ2+ε) (6)

p-small operations.

2D2. Augmentation-steps.

Lemma 2.15. The cost of the augmentation-steps is O(n2δ2) p-small operations.

Proof. Let B be the set manipulated along Algorithm 1. We determine the coefficients αb for b ∈ B from
(3) by solving a system of linear equations over kp represented by the lower-term matrix M whose rows
are given by LTω(b)(ι̃ν(b)) for b ∈ B. Note that one can obtain M by taking the lower-term matrix M ′

from the previous augmentation-step and refreshing or replacing the last row. Both matrices have at most
n rows and n columns with entries in kp. If we have stored M ′ in row echelon form we can transform
M into row echelon form and read out the coefficients for the augmentation-steps in O(n2) operations.
After determining the coefficients αb for b ∈ B from (3), one will apply the augmentation-steps to B
and T ; that is, one computes a linear combination of the form

∑
b∈B αbπ

rb b with rb ∈ Z≥0 and then
applies the same combinations to the corresponding rows of T. We assume that the coefficients of the
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elements in B and the entries in T are represented π-adicly. Then, the multiplication by a π-power is
just a shift of the coefficients and its cost can be neglected. Consequently, an augmentation-step can be
seen as a kp-linear combination of the vectors in B or the rows of T, respectively.

By Theorem 2.10 we can work out all computations with precision ν = O(δ). Thus the entries in T
can be considered modulo πν and therefore as polynomials in kp[π ] of degree bounded by δ. Moreover
the elements b ∈B are given by b= g(θ)/πω(g(θ)) with g(x)∈ (A/π δA)[x]. Therefore any augmentation-
step can be performed by O(n2δ) p-small operations. By Theorem 2.10 the number of all augmentation-
steps is bounded by δ. As the result, the total cost of all augmentation-steps is equal to O(n2δ2) p-small
operations. �

3. Computing p-integral bases of families of fractional ideals

Let I be a fractional ideal of O. Since O is a Dedekind domain, I can be factored into a finite product of
prime ideals I =

∏
P∈Max(O)P

aP with integer exponents aP. We denote by Ip =
∏

1≤i≤s P
aPi
i the p-part

of I. Clearly I and Ip are rank-n modules over A. The set {b0, . . . , bn−1} ⊂ I is called a p-integral basis
of I if {b0, . . . , bn−1} forms an Ap-basis of Ip.

In this section we generalize the idea of the computation of a p-integral basis of O to the computation
of a p-integral basis of fractional ideals. For any fractional ideal I there exists a maximal integer aI ≤ 0
such that the ideal (paI Ip)−1 is integral. We call I ∗p = paI Ip the normalization of Ip and I p-normalized
if I ∗p = Ip. Clearly if {b0, . . . , bn−1} is an Ap-basis of I ∗p then {π−aI b0, . . . , π

−aI bn−1} is a p-integral
basis of I. Hence it is sufficient to consider only p-normalized fractional ideals.

3A. Basis computation of fractional ideals. Let I =
∏

P∈Max(O)P
aP be a p-normalized fractional ideal.

We define for z ∈ L

ωI (z)=
⌊

min
1≤i≤s

{
vPi (z)− aPi

ePi

}⌋
.

Let g(x) ∈ A[x] be a monic polynomial of degree i < n. Then g is called i-maximal in I (or just
i-maximal) if ωI (g(θ))≥ ωI (h(θ)) for all monic h ∈ A[x] having the same degree as g.

One can generalize Theorem 2.2 to the following.

Theorem 3.1. Let b0, . . . , bn−1 ∈ L with

bi =
gi (θ)

πωI (gi (θ))
, gi is i -maximal in I ;

then (b0, . . . , bn−1) is a triangular p-integral basis of I.

Analogous to Definition 2.3, one can generalize an augmentation-step by replacing ω by ωI . Then
Algorithm 1 can be adapted to compute a p-integral basis of I with a minor adjustment of the realization
of an augmentation-step. Let Ip=

∏
1≤i≤s P

aPi
i . For 1≤ i ≤ s denote by Bi an Âp-basis of ιi (P

aPi
i )⊂ LPi .

In particular Bi is a Kp-basis of LPi . We define by CBi (α) ∈ K ni
p the coordinate vector of α ∈ LPi with

respect to Bi and
ιI = (CBi ◦ ιi )1≤i≤s : L→ K n

p .
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Then Lemma 2.6 and Theorem 2.7 can be stated by replacing ι by ιI . Similar to Section 2B, one should
work with approximations 8i ∈ A[x] of the irreducible p-adic factors fPi of f of precision ν ∈ Z>0.
Analogously we define

ιI,ν : L→ K n, z 7→ (CBi,ν (ιi,ν(z)))1≤i≤s, (7)

where Bi,ν denotes a p-integral basis of the fractional ideal ιi,ν(P
aPi
i ). One can prove analogously to

Lemma 2.9 that ιI (z) (mod πν) ≡ ιI,ν(z) for all z ∈ L . Let 1 ≤ i ≤ s and denote by B′i,ν a p-integral
basis of L8i the finite extension of K defined by the approximation 8i . Then one can easily derive Bi,ν

from B′i,ν : We consider the fractional ideal ιi,ν(P
aPi
i ) and write

aPi = ãPi + li (−ePi ) with li ∈ Z≥0 and − ePi < ãPi ≤ 0. (8)

Define P̃i = ιi,ν(Pi ). Let γi ∈ L8i be such that vP̃i
(γi )= ãPi . Then, Bi,ν = γiπ

−li ·B′i,ν is a p-integral
basis of ιi,ν(P

aPi
i ). Note that one can choose γi = ιi,ν(πi )

ãPi for a uniformizer πi of Pi , which can be
computed along the Montes algorithm as a by-product.

Theorem 3.2. Let δI = vp([I : A[θ ]]) and ν be an integer with ν ≥ δI . If we replace the map ι by ιI,ν in
the augmentation-steps along Algorithm 1, then the algorithm outputs a triangular p-integral basis of I
and needs at most δI augmentation-steps. In particular this basis can be computed in

O(n3δI + n2δ2
I + n1+εδI log q + n1+εδ2+ε

I )

p-small operations.

Proof. Analogous to the proof of Theorem 2.10 one proves the first statement by replacing δ by δI . For
the complexity statement one proceeds exactly as in Section 2D taking into account that the cost for the
computation of Bi,ν can be neglected as mentioned above. �

3B. Computation of bases of families of fractional ideals. Let I and I ′ be two p-normalized fractional
ideals of L with I ′p ⊂ Ip. In particular, let Ip =

∏
1≤i≤s P

aPi and I ′p =
∏

1≤i≤s P
a′Pi with

aPi ≡ a′Pi
(mod ePi ), 1≤ i ≤ s. (9)

We explain how to determine a p-integral basis BI ′ of I ′ along the process of computing a p-integral
basis BI of I. The basic idea is to run Algorithm 1 with precision δI to compute first BI ′ . Then one just
keeps on running the algorithm until BI is obtained as below.

Assume that approximations 8i with precision ν = δI have been computed. Then we determine
p-integral bases B′i,ν for ιi,ν(P

a′Pi ) as explained above. Let ιI ′,ν be defined as in (7) with respect to
the bases B′i,ν . Now we can compute the vectors ιI ′,ν(θ j ) for 1 ≤ j ≤ n − 1 and apply maximally
δI ′ = vp([I ′ : O]) augmentation-steps until obtaining BI ′ . That is we run Algorithm 1 to compute BI ′

with precision δI ≥ δI ′ . Now one has to calculate ιI,ν(b) for b ∈ BI ′ and apply further augmentation-steps
until receiving BI . By (9), any basis Bi,ν for ιi,ν(P

aPi
i ) can be deduced by

Bi,ν = π
li ·B′i,ν,
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with li such that aPi = a′Pi
+ li ePi . In other words the basis Bi,ν is up to a π -power equal to the basis B′i,ν .

Denote by T the matrix with rows given by ιI,ν(b) for b ∈ BI ′ and let T ′ be the matrix with rows given
by ιI ′,ν(b) for b ∈ BI ′. Then T is obtained from T ′ by multiplying it with a diagonal matrix whose
diagonal entries are of the form π li . Because we represent the entries in T and T ′ as polynomials in
kp[π ], computing T can be done at no cost by shifting the coefficients of the elements in T ′ adequately.
Thus, BI can be determined after maximally δI − δI ′ augmentation-steps.

Clearly, the computation of both, a p-integral basis BI ′ for I ′ and BI for I, has the same complexity
as computing just BI .

Lemma 3.3. Let Ip =
∏

1≤i≤s P
aPi
i with ri = b−aPi / ePi c. One can compute at the cost of

O(n3δI + n2δ2
I + n1+εδI log q + n1+εδ2+ε

I )

p-small operations triangular p-integral bases of
∑

1≤i≤sri + 1 fractional ideals I ′ contained in I satis-
fying (9).

Proof. Let us show that there are
∑

1≤i≤sri + 1 many ideals contained in I satisfying (9). Define
I0=

∏
1≤i≤s P

ãPi
i , where the ãPi satisfy (8). We define I1,l = I0 ·P

−leP1
1 with l = 1, . . . , r1. Additionally,

we set I1 = I1,r1 and

I2,l = I1 ·P
−leP2
2 ,

with l = 1, . . . , r2. Inductively, let Is−1 = Is−1,rs−1 and

Is,l = Is−1 ·P
−lePs
s ,

with l = 1, . . . , rs . Thus, for each 1≤ i ≤ s there are exactly ri ideals contained in I satisfying (9) and I0,
which can be computed as a by-product while computing a p-integral basis of I with Algorithm 1. �

3C. Example. We go back to Section 2C, where we computed the p-integral basis BI ′= (1, θ, b∗2/t, b∗3/t)
for I ′ =O, with b∗2 = θ

2
+ 2θ and b∗3 = θ

3
+ 9θ . Using that data, one can compute a p-integral basis BI

for the fractional ideal I =P−1
1 . Clearly, [I : A[θ ]] = [I :O] · [O : A[θ ]] = NL/K (P1) · [O : A[θ ]]. The

residual degree of P1 is 2 and vp([O : A[θ ]])= 2. It follows that

vp([I : A[θ ]])= 4.

The approximations81 and82 are computed with precision ν = 8, which is sufficient for the computation
of BI by Theorem 3.2. The ramification index of P1 satisfies eP1 = 1, so we are now in the situation
of (8). Therefore a p-integral basis B1,ν for ι1,ν(P1) is given by π−1B1 = (1/t, θ̃1/t2). Clearly B2,ν = B2.
Then one can compute the matrix T , whose rows represent ιI,ν(b) for b ∈ BI ′ , by manipulating the matrix
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from (5). Since we obtained B1,ν by dividing the elements in B1 by t , the matrix T is given by

B1,ν B2,ν ω

ιI,ν(1) t 0 1 0 0
ιI,ν(θ) 0 t2 11 t 0
ιI,ν(b∗2/t) 11t2 2t 11t 11 0
ιI,ν(b∗3/t) 0 11t3

+9t 12t 11t2
+8 0

(10)

We consider the lower-term vectors in order to check if augmentation-steps are applicable:

M =


LT0(ιI,ν(1))
LT0(ιI,ν(θ))

LT0(ιI,ν(b∗2/t))
LT0(ιI,ν(b∗3/t))

=


0 0 1 0
0 0 11 0
0 0 0 11
0 0 0 8

 .
As rank(M)= 2, once can still apply augmentation-steps. According to Lemma 2.6 we can read out the
augmentation-steps from M and deduce b′1 = θ + 2 and b′3 = b∗3/t + 4b∗2/t . This results in

B1,ν B2,ν ω

ιI,ν(1) t 0 1 0 0
ιI,ν(b′1) 2t t2 0 1 t 1
ιI,ν(b∗2/t) 11t2 2t 11t 11 0
ιI,ν(b′3) 5t2 11t3

+4t 4t 11t2 1

(11)

with the lower-term matrix

M =


LT0(ιI,ν(1))
LT0(ιI,ν(b′1))

LT0(ιI,ν(b∗2/t))
LT0(ιI,ν(b′3))

=


0 0 1 0
2 0 0 1
0 0 0 11
0 4 4 0

 .
Since rank(M)= 4 no further augmentation-steps are applicable and

BI =

(
1,

b′1
t
,

b∗2
t
,

b′3
t

)
=

(
1,
θ + 2

t
,
θ2
+ 2θ
t

,
θ3
+ 4θ2

+ 4θ
t2

)
is a p-integral basis of I. Thus we computed BI from computing BI ′ . In other words we first computed
BI and BI ′ is implied as a by-product.
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Explicit Coleman integration in larger characteristic

Alex J. Best

We describe a more efficient algorithm to compute p-adic Coleman integrals on odd degree hyperelliptic
curves for large primes p. The improvements come from using fast linear recurrence techniques when
reducing differentials in Monsky–Washnitzer cohomology, a technique introduced by Harvey when com-
puting zeta functions. The complexity of our algorithm is quasilinear in

√
p and is polynomial in the

genus and precision. We provide timings comparing our implementation with existing approaches.

1. Introduction

In 2001, Kedlaya introduced an algorithm for computing the action of Frobenius on the Monsky–Washnitzer
cohomology of odd degree hyperelliptic curves over Qp [Ked01]. This has been used to compute zeta
functions of the reduction modulo p of such curves, and, starting with the work of Balakrishnan, Brad-
shaw and Kedlaya [BBK10], to evaluate Coleman integrals between points on them. Computation of
Coleman integrals requires more information to be retained throughout the execution of the algorithm
than is needed to compute only the way Frobenius acts on cohomology, which is all that is needed to
compute zeta functions.

Harvey [Har07] introduced a variant of Kedlaya’s algorithm; its run time in terms of p alone is
Õ(
√

p ) := O(
√

p logk√p ) for some k ∈ Z. In [BBK10] the authors asked if it is possible to use
Harvey’s techniques when computing Coleman integrals.

Here we show that one can obtain the same efficiency improvements in Kedlaya’s algorithm as Harvey
did, whilst retaining enough information to compute Coleman integrals. Specifically, we obtain the
following result.
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Theorem 1.1. Let X/Zp be a genus g, odd degree hyperelliptic curve. Let M be the matrix of Frobe-
nius acting on H 1

dR(X), using the basis {ωi = x i dx/2y}2g−1
i=0 , and N ∈ N be such that X and points

P, Q ∈ X (Qp) are known to precision pN . Assume p > (2N −1)(2g+1). Then, if multiplying two g× g
matrices requires O(gω) ring operations, the vector of Coleman integrals

(∫ Q
P ωi

)2g−1
i=0 can be computed

in time Õ
(
gω
√

pN 5/2
+ N 4g4 log p

)
to absolute p-adic precision N − vp(det(M − I )).

As surveyed in [BBK10] there are many applications of Coleman integration in arithmetic geometry,
notably they are central to the method of Chabauty, Coleman and Kim. This method has been made
explicit in some cases, such as in [BD18, Example 2]. There, and in general, when working over number
fields it is useful to work only with p that split. This is an additional condition on p, which often results
in having to take larger p, which gives one motivation for the current work.

In Section 2 and Section 3 we recall the setup for Coleman integration, and, most importantly, exactly
what data is needed to compute Coleman integrals on hyperelliptic curves. In Section 4 we examine
the reduction procedure used by Harvey in more detail. We then come to our main new ideas, creating
an appropriate recurrence that computes the data necessary for Coleman integration. In Section 5 we
introduce a modification of the linear recurrence algorithm used by Harvey, which is specialised to
the type of recurrences we obtained. This is useful when computing Coleman integrals between many
endpoints simultaneously. In Section 6 we describe the main algorithm in detail. In Section 7 and
Section 8 we analyse its correctness and complexity. Finally in Section 9 and Section 10 we give some
timings and examples obtained with a SageMath/C++ implementation, showing its practical use.

2. Setup and notation

Throughout we work with a fixed prime p and an odd degree hyperelliptic curve X/Zp, of genus g ≥ 1,
given as y2

= Q(x) with Q(x) ∈ Zp[x], where Q(x)= x2g+1
+ P(x) with deg(P)≤ 2g. We assume that

the reduction of Q(x) to Fp[x] has no multiple roots. We fix a desired p-adic precision N ≥ 1 such that

p > (2N − 1)(2g+ 1). (2-1)

Let ι denote the hyperelliptic involution, given on the finite affine chart as (x, y) 7→ (x,−y); the fixed
points of this involution are called Weierstrass points.

We will make use of several notions from rigid geometry. Points of X (Qp) which reduce to the same
point in XFp(Fp) are said to lie in the same residue disk. A residue disk that contains a Weierstrass point
is a Weierstrass residue disk.

3. Coleman integration

Coleman integration is a p-adic (line) integration theory developed by Robert Coleman in the 1980s
[Col82; Col85; CdS88]. Here we briefly summarise the setup for this theory (for more precise details,
see, for example, [Bes12]). We also recall the key inputs, which are obtained from Kedlaya’s algorithm,
for performing explicit Coleman integration on hyperelliptic curves, as described in [BBK10].
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The setting for Coleman integration as we will use it is via the Monsky–Washnitzer weak completion of
the coordinate ring of the curve minus its Weierstrass points. So, letting A = Zp[x, y, y−1

]/(y2
− Q(x)),

its weak completion is the space A† of series
∑
∞

i=−∞ Ri (x)y−i with Ri ∈ Zp[x], deg Ri ≤ 2g subject
to the condition that lim inf|i |→∞ vp(Ri )/|i |> 0. The p-power Frobenius on A = A/p can be lifted to
a function φ : A†

→ A† by sending x 7→ x p and y 7→ y−p ∑∞
k=0

(
−1/2

k

)
(φ(Q(x))− Q(x)p)k/y2pk . We

will consider differentials in �1
A† = A† dx ⊕ A† dy/(2y dy− Q′(x) dx)) with d the exterior derivative

d : A†
→�1

A†;

∞∑
i=−∞

Ri (x)
yi 7→

∞∑
i=−∞

R′i (x)y
−i dx − Ri (x)iy−i−1 dy. (3-1)

We will say that f is a primitive of the exact differential d f . We then define the Monsky–Washnitzer
cohomology of A to be H 1

MW(A) = �
1
A† ⊗Qp/ d(A†

⊗Qp). The action of Frobenius and of the hy-
perelliptic involution can be extended to �1

A† and to H 1
MW(A) and the actions of φ and ι commute. In

particular we have an eigenspace decomposition of all of these spaces under ι into even and odd parts;
the odd part will be denoted with a − superscript. Let Aloc(X) denote the Qp-valued functions on X (Qp)

which are given by a power series on each residue disk.

Theorem 3.1 (Coleman). There is a unique (up to a global constant of integration) Qp-linear integration
map

∫
:�1

A† ⊗Qp→ Aloc(X) satisfying

(1) Frobenius equivariance,
∫
φ∗ω = φ∗

∫
ω,

(2) the fundamental theorem of calculus, d ◦
∫

is the identity on �1
A† ⊗Qp,

(3) and
∫
◦ d is the natural map A†

→ Aloc/(constant functions).

Given points P, Q ∈ X (Qp) the definite integral
∫ Q

P ω is then defined as
(∫
ω
)
(Q)−

(∫
ω
)
(P), which is

a well-defined function of P, Q.

After fixing a basis {ωi }
2g−1
i=0 of H 1

MW(A)
−
= H 1

dR(X), any 1-form of the second kind ω ∈�1
A† can be

expressed as ω = d f +
∑2g−1

i=0 aiωi , f ∈ A†, so by Theorem 3.1 we see that for some ai ∈Qp,∫ Q

P
ω = f (Q)− f (P)+

2g−1∑
i=0

ai

∫ Q

P
ωi . (3-2)

We can therefore reduce to the case of integrating only the basis differentials ωi and evaluating the
primitive f . The complexity of reducing to this case depends on how ω is presented. For example, if ω
has many terms, the total run time can be dominated by finding f and evaluating f (Q)− f (P) in the
above. So we will focus on computing

{∫ Q
P ωi

}2g−1
i=0 . In many applications, all that we need to integrate

are Qp-linear combinations of the basis differentials.
The work of Balakrishnan, Bradshaw and Kedlaya [BBK10] describes how to explicitly compute

Coleman integrals for differentials on odd degree hyperelliptic curves. They describe how to reduce the
problem of computing general Coleman integrals between two points to that of finding a matrix M and
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fi ∈ A† such that
φ∗ωi = d fi +

∑
j

Mi jω j ∈�
1
A† . (3-3)

Before stating a form of their algorithm, we recall a useful result which allows us to deal with the
difficulties arising when the endpoints of the integral are Weierstrass. This can be problematic, as we
need to evaluate primitives as in (3-2); if the endpoints are in Weierstrass residue disks, these power
series may not converge.

Lemma 3.2 [BBK10, Lemma 16]. Let P, Q ∈ X (Qp) with Q Weierstrass and let ω ∈ �1,−
A† be an odd

differential without poles at P, Q. Then
∫ Q

P ω = 1
2

∫ ι(P)
P ω.

In particular, if P is also a Weierstrass point, then the integral is zero.

Lemma 3.2 allows us to express general integrals as linear combinations of integrals between two
points in non-Weierstrass residue disks and integrals between two points in the same residue disk (known
as tiny integrals). Evaluating tiny integrals uses formal integration of power series; see [BBK10, Algo-
rithm 8].

Note that∞ is a Weierstrass point so Lemma 3.2 applies with Q =∞; integrals based at∞ can be
rewritten as a linear combination of a tiny integral and an integral between two non-Weierstrass points.
Specifically, for a Teichmüller point P , if we know the matrix M expressing the action of Frobenius on
the basis differentials ωi , we can use the Frobenius equivariance of the Coleman integral to deduce

...∫
∞

P ωi
...

= 1
2


...∫ ι(P)

P ωi
...

= (M − I )−1

2


...

fi (P)− fi (ι(P))
...

= (M − I )−1


...

fi (P)
...

 . (3-4)

The last equality holds as we are using odd differentials, so the d fi must also be odd, so from the
expansion of (3-1) we see that the fi must also be odd (up to the constant term, which cancels).

So we will fix∞ as our basepoint and compute only integrals of the form
∫
∞

P ω; general integrals
can be obtained by subtracting two of the above type. We will use the following algorithm; see [BBK10,
Remark 15].

Algorithm 3.3. Input: P ∈ X (Qp), the matrix of Frobenius M , and if P is not in a Weierstrass residue
disk, { fi (P ′)}

2g−1
i=0 for the unique Teichmüller point P ′ in the same residue disk as P , and fi as in (3-3).

Output:
{∫
∞

P ωi
}

for 0≤ i ≤ 2g− 1.

(1) If P is in a Weierstrass residue disk: Let P ′ be the Weierstrass point in the same residue disk, so
that

∫
∞

P ′ ωi = 0 for all i .
Else: Let P ′ be the (unique) Teichmüller point in the same residue disk as P . Then compute the
vector of

∫
∞

P ′ ωi using (3-4).

(2) For each i , compute the tiny integral
∫ P ′

P ωi , as in [BBK10, Algorithm 8].

(3) For each i , sum the result of Steps 1 and 2 to get
∫
∞

P ωi =
∫ P ′

P ωi +
∫
∞

P ′ ωi .
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Variants of this algorithm are possible; see [BBK10, Algorithm 11]. From the version stated above, it
is clear that, beyond solving a linear system and computing tiny integrals, the matrix of Frobenius and
evaluations of the primitives fi at Teichmüller points in non-Weierstrass residue disks are all the input
data that is needed to compute arbitrary Coleman integrals. We shall refer to this data as the Coleman
data. To compute Coleman integrals efficiently, we require an efficient way of computing this data,
possibly for several disks of interest.

Remark 3.4. We do not need to compute the fi themselves to compute integrals, only evaluations at
Teichmüller points in prescribed non-Weierstrass residue disks. This simplification is key to our ability
to write down a suitable recurrence. Moreover, once the Coleman data is computed, it can be saved and
will not need to be recomputed if integrals between other points in the same residue disks are required.

4. Reductions in cohomology

Kedlaya’s algorithm and Harvey’s work. Kedlaya’s algorithm computes the action of Frobenius on
Monsky–Washnitzer cohomology up to a specified precision. The general strategy is to begin with a finite
p-adic approximation of φ∗ω as a (Laurent) polynomial in x and y multiplied by the differential dx/2y.
This is reduced step-by-step via cohomologous differentials of lower polynomial degree, by subtracting
appropriate exact forms dg for polynomials g. This process is continued until one is left with a Qp-linear
combination of basis elements, and we have an expression of the form (3-3). For a given basis {ωi } of
H 1

MW(A)
−, writing each φ∗ωi in terms of this basis results in a matrix of Frobenius acting on H 1

MW(A)
−.

The innovation in [Har07] is to express the reduction process as a linear recurrence, where the coeffi-
cients are linear polynomials in the index of the recurrence. A term several steps later in such recurrences
can then be found more efficiently than the straightforward sequential approach, via the algorithm of
Bostan, Gaudry and Schost [BGS07, Theorem 15]. Here we also ultimately appeal to these methods,
and so we must examine in more detail the polynomials g used in the reduction steps. We will describe
the sum of the evaluations of these g at points of interest as a linear recurrence, so that they may be
computed along with the reductions.

We use the basis of H 1
MW(A)

− consisting of ωi = x i dx/2y for 0≤ i ≤ 2g−1. This differs by a factor
of 2 from the basis used by Harvey and Kedlaya; this choice reduces the number of 2’s appearing in our
formulae and so appears more natural here. Changing the basis by a scalar multiple has no effect on the
matrix of Frobenius, only the exact differentials. An approximation to φ∗ωi is given in [Har07, (4.1)] by
letting C j,r be the coefficient of xr in Q(x) j and

B j,r = pφ(C j,r )

N−1∑
k= j

(−1)k+ j
(
−1/2

k

)(
k
j

)
∈ Zp,

so that

φ∗ωi ≡

N−1∑
j=0

(2g+1) j∑
r=0

B j,r x p(i+r+1)−1 y−p(2 j+1)+1 dx
2y

(mod pN ). (4-1)
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In (4-1), there are only

(2g+ 1)N (N−1)
2

+ N

terms in total and the exponents of x and y that appear are always congruent to −1 or 1 mod p, respec-
tively.

As in [Har07, Section 5], we work with finite-dimensional vector spaces over Qp,

Ws,t =

{
f (x)x s y−2t dx

2y
: deg f ≤ 2g

}
=

〈
x i x s y−2t dx

2y

〉2g

i=0
(4-2)

for s ≥ −1, t ≥ 0, where, in addition, we restrict W−1,t to be the subspace of the above for which the
coefficient of x−1 is zero (i.e., for which f (0)= 0).

Notice that W−1,0 is naturally identified with H 1
MW(A)

− with the basis chosen above, so that ωi is
the i-th basis element of W−1,0. In order to derive an expression for φ∗ωi as a linear combination of
the other basis elements, we begin with the approximation of φ∗ωi from (4-1). Then starting with the
terms of highest degree in x , which are each inside of some Ws,t , we reduce “horizontally”, finding a
cohomologous element of Ws−1,t by subtracting an appropriate exact differential. This process is repeated
until s =−1, but whenever we reach a space Ws,t containing a term from (4-1), we add it to the current
differential under consideration. We do this for each t appearing as an exponent for a monomial in the
original approximation, and for each such t we obtain an element of W−1,t . We then reduce “vertically”:
beginning with the largest t we have, we subtract appropriate exact differentials to reduce the element
of each W−1,t to a cohomologous one in W−1,t−1 while t ≥ 1. This is continued until we have reduced
everything to the space W−1,0, and we have obtained a linear combination of the basis differentials that
is cohomologous to φ∗ωi up to the specified precision.

Note that many horizontal rows will not be considered at all. When p is large enough, most steps
simply involve reducing terms we already have, as there are comparatively few terms in (4-1) compared
to the total degree. Doing multiple reduction steps quickly will therefore improve the run time of this
procedure, even though we have to add new terms occasionally. This is where Harvey applies linear
recurrence techniques to speed up this reduction process. We now state the reductions we will use;
compared to [Har07, (5.2) and (5.3)] we must be more explicit about the exact form we are subtracting,
as this data is important for us.

Horizontal reduction. To reduce horizontally from Ws,t to Ws−1,t , we express the highest order basis el-
ement x2gx s y−2t dx/2y ∈Ws,t as a cohomologous term in Ws−1,t . The other basis elements are naturally
basis elements for Ws−1,t just with their indices shifted by 1.

Lemma 4.1 (horizontal reduction). We have

x2gx s y−2t dx
2y
−

−1
(2t − 1)(2g+ 1)− 2s

d(x s y−2t+1)=
2s P(x)− (2t − 1)x P ′(x)
(2t − 1)(2g+ 1)− 2s

x s−1 y−2t dx
2y

∈Ws−1,t . (4-3)
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Proof. We directly compute

d(x s y−2t+1)

= sx s−1 y−2t+1 dx + (−2t + 1)x s y−2t dy

=

(
sx s−1 y−2t+1

+
1
2
(−2t + 1)x s y−2t−1 Q′(x)

)
dx

= (2s Q(x)− (2t − 1)x Q′(x))x s−1 y−2t dx
2y

= (2s− (2t − 1)(2g+ 1))x2g+1x s−1 y−2t dx
2y
+ (2s P(x)− (2t − 1)x P ′(x))x s−1 y−2t dx

2y
. (4-4)

Therefore, by subtracting
1

2s− (2t − 1)(2g+ 1)
d(x s y−2t+1)

from x2gx s y−2t dx/2y, the remaining terms are all as stated, and of lower degree. �

Vertical reduction. In order to reduce vertically from W−1,t to W−1,t−1, we express the 2g basis elements
x i y−2t dx/2y ∈W−1,t as cohomologous terms in W−1,t−1.

Lemma 4.2 (vertical reduction). Let Ri (x), Si (x) ∈ Zp(x) be such that x i
= Ri (x)Q(x)+ Si (x)Q′(x)

with deg Ri ≤ 2g− 1, deg Si ≤ 2g. Then

x i y−2t dx
2y
−
−1

2t−1
d(Si (x)y−2t+1)=

(2t − 1)Ri (x)+ 2S′i (x)
2t − 1

y−2(t−1) dx
2y
∈W−1,t−1.

Proof. We have that

x i y−2t dx
2y
= (Ri (x)Q(x)+ Si (x)Q′(x))y−2t dx

2y
= Ri (x)y−2t+2 dx

2y
+ Si (x)y−2t dy,

and also that d(Si (x)y−2t+1) = S′i (x)y
−2t+1 dx + (−2t + 1)Si (x)y−2t dy. Therefore, by subtracting

1
−2t+1 d(Si (x)y−2t+1) from x i y−2t dx/2y, we see that

x i y−2t dx
2y
∼ Ri (x)y−2t+2 dx

2y
+

1
2t−1

S′i (x)y
−2t+1 dx =

(2t − 1)Ri (x)+ 2S′i (x)
2t − 1

y−2(t−1) dx
2y
, (4-5)

as required. �

Towards a faster algorithm. In order to make use of the same linear recurrence techniques as Harvey,
we express the reduction process as we descend through the indices s, t as a linear recurrence with
coefficients linear polynomials in s, t . We describe such a recurrence that retains enough information to
compute Coleman integrals. By working with a number of evaluations of the primitives on prescribed
points on the curve, rather than the primitives themselves as power series, we only have to deal with a
vector of fixed size at each step. This is preferable to maintaining a power series as we reduce, adding
terms at each step.
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We will now give an idea of the approach, giving the details in the next section. Let us first consider
the end result of one row of the horizontal reduction process. Fixing a row t , after the reduction we have
an equality of the form

∑
s≥0

as x s y−2t dx
2y
− d

(∑
s≥0

cs x s y−2t+1
)
=

2g−1∑
i=0

mi x i y−2t dx
2y
∈W−1,t , (4-6)

in which the terms of the exact differential were found in decreasing order as the reductions are performed.
Unfortunately, adding each new term as it is obtained is not a linear recurrence in the index s, as we
have s appearing in the exponent of x in each term. Instead we observe that we can express the exact
differential as

d
(
(c0+ x(c1+ x(· · · + x(cr ))))y−2t+1). (4-7)

In essence, we are applying the Horner scheme for polynomial evaluation.
Now we specialise to the case of computing the evaluation fi (P) of the primitive for some point

P = (x(P), y(P)). We can, at each step, compute a further bracketed term starting from the innermost;
using the given x, y values, we get a recurrence whose final term is the same as the original evaluation.
So we can compute the terms of a recurrence of the form

fi,0 = 0, fi,n = x(P) fi,n−1−
1

(2t − 1)(2g+ 1)− 2s
di,n, (4-8)

where s= smax−n decreases from its maximum value, and di,n is the coefficient of the monomial removed
in the n-th step of the reduction process. Multiplying the result of this recurrence by the factor y−2t+1

(which is constant along the row) will result in the evaluation of the primitive for the row. At each step
we will no longer have an evaluation of the primitive so far, it is only after completing all the reduction
steps that each term will have the correct power of x .

We may use the same technique for the vertical reductions; here we have

∑
t≥0

2g−1∑
i=0

mi x i y−2t dx
2y
− d

(∑
t≥1

2g∑
i=0

dti Si (x)y−2t+1
)
=

2g−1∑
i=0

Mi x i dx
2y
∈W−1,0,

where now writing dt =
∑2g−1

i=0 dt,i Si (x), the exact differential can be expressed as

d
(
y−1(d1+ y−2(d2+ y−2(· · · (dr−1+ y−2(dr )) · · · )))

)
. (4-9)

Remark 4.3. The factor y−2t+1 appears in every term in the primitive in row t . It is the same factor in
the primitive for the vertical reduction from row t to row 0. So we can initialise the vertical recurrence
from W−1,t with both the differential and the evaluations obtained from horizontal reduction along row t ,
and let the vertical reduction steps multiply the evaluation of the row primitives by this factor.

Now we write down the recurrences for both horizontal and vertical reductions precisely using matrices
acting on appropriate vector spaces.
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The recurrence. We will now switch to working with a Qp vector ht(s)∈Ws,t×QL
p of length 2g+1+L

in the horizontal case, and v(t) ∈ W−1,t ×QL
p of length 2g + L in the vertical case. The first entries

represent the current differential we have reduced to, with respect to the basis given in (4-2). The last L
entries will contain the evaluations of the terms of the primitive picked up so far, one for each of the L
points P1, . . . , PL ∈ X (Qp) we want evaluations at.

When we horizontally reduce, using the result of Lemma 4.1, the two terms we are interested in, the
exact differential and the reduction, have a common denominator of Dt

H (s) = (2t − 1)(2g + 1)− 2s.
Similarly, in the vertical case, the two terms of interest in Lemma 4.2 have a common denominator
of DV (t)= 2t − 1.

Writing out the result of a single reduction step in terms of these vectors, we see that we need to
compute the terms of the recurrence given by ht(s) = Rt

H (s + 1)ht(s + 1) in the horizontal case, for
Rt

H (s) defined by

Dt
H (s)R

t
H (s)= M t

H (s)=



0 · · · 0 pt
0

Dt
H (s) · · · 0 pt

1
...

. . .
...

...

0 · · · Dt
H (s) pt

2g

0 · · · 0 −1 x(P1)Dt
H (s) · · · 0

...
. . .

...
...

...
. . .

...

0 · · · 0 −1 0 · · · x(PL)Dt
H (s)


, (4-10)

where pt
i is the linear function of s obtained as the coefficient of x i in 2s P(x)− (2t − 1)x P ′(x). To

divide through by Dt
H (s) we must multiply some terms by Dt

H (s).
For the vertical reductions we use RV (t) defined by DV (t)RV (t)= MV (t), where MV (t) is

(2t−1)r0,0+2s ′0,0 · · · (2t−1)r2g−1,0+2s ′2g−1,0
...

. . .
...

(2t−1)r0,2g−1+2s ′0,2g−1 · · · (2t−1)r2g−1,2g−1+2s ′2g−1,2g−1

−S0(x(P1)) · · · −S2g−1(x(P1)) y(P1)
−2 DV (t) · · · 0

...
. . .

...
...

. . .
...

−S0(x(PL)) · · · −S2g−1(x(PL)) 0 · · · y(PL)
−2 DV (t)


, (4-11)

where ri, j is the coefficient of x j in Ri (x) and s ′i, j is the coefficient of x j in S′i (x). Once again we have
multiplied the rightmost block by DV (t) to extract the common denominator. We do this to express the
reduction steps as linear recurrences with linear polynomial coefficients, rather than rational function
coefficients.

Introducing the notation

M t
H (a, b)= M t

H (a+ 1) · · ·M t
H (b− 1)M t

H (b)

(and the analogous MV (a, b)), we can write the upshot of the above in the following theorem.
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Theorem 4.4. Let ht(s) = (ω, 0) ∈ Ws,t ×QL
p , and f : X (Qp)→ Qp. Write c( f ) for the correction

factor, the linear endomorphism of Ws,t ×QL
p that is the identity on Ws,t and scales each component of

QL
p by f (P`) for the corresponding P`. Then the reduced vector

c(y−1)RV (0, t)c(y2)Rt
H (−1, s)ht(s) ∈W−1,0×QL

p

is such that the projection onto W−1,0 is some ω̃ with ω̃ = ω− d(g) for some g ∈ A†, and the projection
onto QL

p is (g(P1), . . . , g(PL)).

As the approximation in (4-1) has summands that occur in several different Ws,t ’s, we cannot simply
find the product matrix and apply it to a single vector. Instead, we must work through the various
subspaces doing as many reductions as possible before we reach a new monomial from the original
approximation. As DH and DV are scalar matrices, we can commute them past the MV ’s and MH ’s.
This separates out the components so we can work just with products of matrices of linear polynomials.
This reduces the problem to finding several of the products MV (a, b) and M t

H (a, b). In practice, to use
as little p-adic precision as we can, we must not allow too many runs of multiplications by p and then
divisions by p, so that the relative precision stays as large as possible. This will be addressed in Section 7.

5. Linear recurrence algorithms

In this section, we recall and adapt some methods for finding subsequent terms of linear recurrences with
linear polynomial coefficients. The setup is that we are given an m×m matrix M(x) with entries that
are linear polynomials over a ring R and wish to obtain several products

M(x, y)= M(y)M(y− 1) · · ·M(x + 1)

for x < y integers. We let MM(m, n) be the number of ring operations used when multiplying an n×m
matrix by an m×m matrix, both with entries in R. Then MM(m)=MM(m,m) is the cost of multiplying
two m ×m matrices. We will not say much about these functions here, as modern theoretical bounds
for these functions do not affect the point of our main result; however, see [LG12] for some recent
work on the topic. Using naive matrix multiplication, we have MM(m, n)= O(m2n), which cannot be
improved upon asymptotically if m2

= o(n). Whenever n ≥ m we can partition an n×m matrix into
roughly n/m blocks each of size m×m. These blocks can then be multiplied individually for a run time
of MM(m, n) = O(MM(m)n/m). We will also let M(n) be the number of ring operations needed to
multiply two polynomials of degree n with coefficients in R.

The method of Bostan, Gaudry and Schost requires that certain elements of R be invertible. Moreover,
they assume as input a product D(α, β, k) of several of these inverses. We will apply these methods in
Z/pN Z, where the cost of computing inverses is negligible compared to the rest of the algorithm, so we
will take this step for granted; see [BGS07] for more details.

With the above setup, Harvey [Har07, Theorem 6.2] adjusts the algorithm of Bostan, Gaudry and
Schost [BGS07, Theorem 15] to prove the following theorem.
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Theorem 5.1. Let M(x) be an m × m matrix with entries that are linear polynomials in R[x], let
0 ≤ K1 < L1 ≤ K2 < L2 ≤ · · · ≤ Kr < Lr ≤ K be integers, and let s = blog4 K c. Suppose
that 2, 3, . . . , 2s

+ 1 are invertible in R. Suppose also that r < K (1/2)−ε , with 0 < ε < 1/2. Then
M(K1, L1), . . . ,M(Kr , Lr ) can be computed using O(MM(m)

√
K +m2M(

√
K )) ring operations in R.

In order to apply this theorem to the above recurrences for computing the Coleman data, we introduce
a variant better suited to the recurrences we obtained in Section 4. If we simply applied the same
algorithm/result as Harvey naively, we would not get as good a run time in general.

Theorem 5.2. Assume the same setup as in Theorem 5.1, except that now let M(x) be instead an
(m + n)× (m + n) block lower triangular matrix with 4 blocks, with top left block an m ×m matrix
and bottom right block a diagonal matrix 

A 0

B
d1

. . .

dn

 . (5-1)

Then the interval products M(K1, L1), . . . ,M(Kr , Lr ) can be computed using only

O
(
(MM(m)+MM(m, n))

√
K + (m2

+mn)M(
√

K )
)

ring operations in R.

Proof. The algorithm to do this is the same as the one given for Theorem 5.1 in [Har07, Theorem 6.2],
only adjusted to take advantage of the fact that the matrices used are of a more restricted form as follows.

First, note that a product of matrices of the assumed form is again of the same shape, so one can work
only with matrices of this form throughout. Such matrices should then be stored without keeping track
of the entries that are always 0, as a pair of matrices A, B of size m ×m and n×m respectively, and
a list containing the n bottom right diagonal entries. Now the algorithm of Harvey and Bostan, Gaudry
and Schost should be applied using this fixed representation.

The complexity of this algorithm is dominated by two main subtasks: shifting evaluations of the matri-
ces and matrix multiplication. During the shifting step, we need only interpolate the nonzero entries; there
are (m+n)m+n of these. The number of ring operations required for this is then O((m2

+mn)M(
√

K )).
For the matrix multiplication steps, the restricted form of the matrix once again allows us to use a

specialised matrix multiplication routine. Here we can evaluate the block matrix product more efficiently,
multiplying only the nonzero blocks, and using the fact that multiplying an n×m matrix on the right by
a square diagonal matrix stored as a list uses only O(nm) operations. Therefore the total complexity of
multiplying two matrices of this form is O(MM(m, n)+MM(m)). As we do not modify the algorithm
in any other way, the result follows. �
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The conditions on the matrix in Theorem 5.2 are precisely those satisfied by the matrices M t
H (s)

and MV (t) from Section 4. So we may use this algorithm for computing block horizontal and vertical
reductions for certain intervals.

Remark 5.3. As well as utilising the polynomial structure of our matrices, for any row with sufficiently
many terms compared to the desired precision, it is also possible to interpolate p-adically. This idea is
due to Kedlaya and is explained in [Har07, Section 7.2.1]. Using this allows us to compute fewer interval
products using Theorem 5.2 by interpolating the remaining ones.

If we could compute to infinite precision, it would be optimal to reduce as far as possible at each
reduction step, i.e., until we get to index of a new term that needs adding. However, in practice, we
should divide by p as soon as possible, in order to reduce the number of extra p-adic digits needed
throughout. Therefore analysing when divisions by p occur informs which interval products are found.

6. The algorithm

In this section we describe the complete algorithm derived in the previous sections. The flow of the
algorithm is the same as that of Harvey, only we use our larger matrices throughout and have to make
some small adjustments to the evaluations. Care should be taken in all steps where division occurs; see
Section 7.

Algorithm 6.1 (computation of Coleman data).

Input: A list of points {P`}1≤`≤L in non-Weierstrass residue disks, precision N .

Output: The matrix of Frobenius M , modulo pN , such that ωi = d fi +
∑

j Mi jω j , evaluations fi (P`)
modulo pN for all i, ` also.

(1) For each row index t = (p(2 j + 1)− 1)/2 for 0≤ j ≤ N − 1 do:

(a) Compute the horizontal reduction matrices

M t
H ((k− 1)p, kp− 2g− 2), Dt

H ((k− 1)p, kp− 2g− 2)

for 0 ≤ k ≤ (2g+ 1)( j + 1)− 1 using Theorem 5.2, and the p-adic interpolation outlined in
[Har07, 7.2.1], for k > N .

(b) For each basis differential ωi , 0≤ i ≤ 2g− 1 do:

(i) Initialise a vector hi j ∈ (Z/pN+1Z)
2g+1+L .

(ii) For each column index s = p(i + r + 1)− 1 for r = (2g+ 1) j down to 0 do:

(A) Add the x s y−2t term of (4-1) to hi j .
(B) Set hi j = Rt

H (kp− 2g− 2, kp)hi j by doing 2g+ 2 matrix-vector products.
(C) Set hi j = Rt

H ((k− 1)p, kp− 2g− 2)hi j .
(D) Set hi j = Rt

H ((k− 1)p)hi j .

(2) Initialise a 2g× L matrix for the evaluations E and a 2g× 2g matrix for the action of Frobenius M .
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(3) Compute the vertical reduction matrices

MV (0, (p− 1)/2), MV ((p− 1)/2+ j p, (p− 1)/2+ ( j + 1)p)

for 1 ≤ j < N and the corresponding DV (t)’s to precision pN+1 using Theorem 5.2, and divide
through to obtain the corresponding RV ’s; label them R j .

(4) For each basis differential ωi , 0≤ i ≤ 2g− 1:

(a) Initialise a zero vector vi ∈ (Z/pN Z)2g+L .
(b) For each row index t = (p(2 j + 1)− 1)/2 for j = N − 1 down to 0 do:

(i) Add the last 2g+ L entries of hi j to vi , correcting the last L entries as in Theorem 4.4.
(ii) Set vi = R jvi .

(c) Set the i-th column of M to be the first 2g entries of vi .
(d) Set the i-th row of E to be the last L entries of vi , correcting them to be evaluations as in

Theorem 4.4.

(5) Output the matrix of Frobenius M and the matrix of evaluations E .

Remark 6.2. We have not used the fact that in Algorithm 3.3 we only needed to evaluate at Teichmüller
points. Using Teichmüller points only serves to make the description of Coleman integration a little
simpler, and provides a convenient set of points corresponding to residue disks. This allows one to store
the output of Algorithm 6.1 for further computations involving the same set of residue disks.

One simpler variant of this algorithm is to compute evaluations for one point at a time, rerunning the
whole procedure including finding the matrix of Frobenius once for each point. The advantage of this
method is not needing a specialised version of the linear recurrence algorithms as in Theorem 5.2. While
this would result in the same theoretical run time if g2

∈ o(p), recomputing the matrix of Frobenius
would be a duplication of work and inefficient in many parameter ranges.

7. Precision

In this section we examine the level of p-adic precision that needs to be maintained throughout, in
order to compute the matrix of Frobenius and evaluations of primitives to precision O(pN ). We follow
Harvey’s approach in [Har07, Section 7] and prove that analogous results hold for our recurrence.

Lemma 7.1. During horizontal reduction, the evaluations of the primitives remain integral. Moreover,
if the calculations are performed with initial data known to absolute precision pN and intermediate com-
putations are performed with an absolute precision cap of pN+1, then whenever division by p occurs, the
dividend is known to absolute precision pN+1, so that the quotient is known to absolute precision O(pN ).

Proof. As we begin with evaluation 0, we must show that if the evaluations are integral, they remain
so after several reduction steps. Any point P = (x, y) that we are evaluating at is assumed to not be in
a Weierstrass residue disk and in particular not in the residue disk at infinity. Hence x is integral and
multiplication by it will never reduce p-adic valuation.
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In the horizontal reduction matrix (4-10), the only nonzero terms in the bottom left block are the −1’s
in the rightmost column, which will not disturb integrality.

When Dt
H (s)≡ 0 (mod p), it is shown in [Har07, Claim 7.3], using the assumptions on p in (2-1), that

the vector currently being reduced has its (2g+ 1)-component divisible by p and is correct to absolute
precision pN+1. Thus this can be divided by Dt

H (s) while keeping absolute precision pN . Every column
of M t

H (s) other than the (2g+ 1)-st has Dt
H (s) as a factor, so the division can be performed.

All other steps follow directly from the work of Harvey. �

Lemma 7.2. During vertical reduction, the evaluations of the primitives remain integral. Moreover, if
the calculations are performed with initial data known to absolute precision pN and intermediate com-
putations are performed with an absolute precision cap of pN+1, then whenever division by p occurs, the
dividend is known to absolute precision pN+1, so that the quotient is known to absolute precision O(pN ).

Proof. Any point P = (x, y) that we are evaluating at is assumed not to be in a Weierstrass residue disk
and in particular not in the residue disk at infinity. Hence y is a unit and multiplying or dividing by it
will not change p-adic valuation.

We check that the analysis in [Har07, Lemmas 7.7 and 7.9] may be adjusted to apply with our ex-
tended MV (t). Assume that t ≡ 1/2 (mod p) so that DV (t) ≡ 0 (mod p); in this case vp(DV (t)) = 1,
as (2-1) implies DV (t) < p2. Unlike in [Har07, Lemma 7.7], our matrix MV (t) will not have integral
inverse as DV (t) appears in the bottom right block, so MV (t) is singular mod p. Instead, the inverse of
the block lower triangular MV (t) has integral top left block, and the bottom two blocks have valuation
at least −1. Now letting t0 = (p − 1)/2 and X = DV (t0, t0 + p + 1)−1 MV (t0, t0 + p + 1), the argu-
ment in [Ked01, Lemma 2] implies that pX is integral. The argument says that taking ω ∈W−1,t0+p+1

with integral coefficients, the primitive g of Xω− ω becomes integral after multiplication by p, and
hence the evaluation of pg at a point in a non-Weierstrass residue disk is integral. The entries in
the bottom left block of X are evaluations of this form up to a power of y(P), which will not affect
integrality. The bottom right block of X is integral already as it is simply a power of the diagonal
matrix diag((y(P`)−2)`). So each term of the block matrix product (pX)MV (t0+ p+ 1) is integral, and
MV (t0, t0+ p)= DV (t0, t0+ p+ 1)X MV (t0+ p+ 1)−1 is divisible by p. �

Remark 7.3. Multiplying by (M − I )−1, as in (3-4), will lose vp(det(M − I )) digits of absolute p-adic
precision. As vp(det(M − I )) = vp(Jac(X)(Fp)[p]), this is at most g in the anomalous case, and in
general we expect that it is 0, so if g = O(N ) the whole computation can be repeated with the extra
precision required at no extra asymptotic cost.

8. Run time analysis

Having described the algorithm in detail, we now analyse its run time, in order to prove Theorem 1.1.
First of all we analyse each step of Algorithm 6.1.

The main step is the computation of the reduction matrices via Theorem 5.2. In this case, we have
m = 2g (+1 in the horizontal case) and n = L . When reducing horizontally, for each row the largest
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index is bounded by K = O(Np). When reducing vertically our index is also at most O(Np). As there
are N rows in total, we obtain a total of

O
(
N
(
(MM(g)+MM(g, L))

√
Np+ (g2

+ gL)M(
√

Np )
))

(8-1)

ring operations to compute the matrices. Using that M(d)∈ Õ(d), that MM(m)=mω for some 2≤ω≤ 3,
and the above discussion of MM(m, n), we simplify to O

(
(gω + Lgω−1)

√
pN 3/2

)
ring operations, bit

complexity Õ
(
(gω+ Lgω−1)

√
pN 5/2

)
.

The remaining operations are exactly as analysed by Harvey in [Har07, Section 7.4]. With our larger,
but still sparse, horizontal reduction matrices, each reduction step without Theorem 5.2 uses O(g+ L)
rather than O(g) ring operations, for a total of O(N 3g3(g+L)) ring operations, or Õ(N 4g3(g+L) log p)
bit operations. We then have a total time complexity of

Õ
(
(gω+ Lgω−1)

√
NpN 2

+ N 4g3(g+ L) log p
)
. (8-2)

Now we turn to the algorithm for computing Coleman integrals, obtained by running Algorithm 6.1
once and then Algorithm 3.3 once for each point. The analysis here is the same as that in [BBK10, Sec-
tion 4.2], where, by using Algorithm 6.1 instead of Kedlaya’s algorithm, we may replace the Õ(pN 2g2)

in their complexity analysis with (8-2). The remaining steps to complete the Coleman integration are
logarithmic in p and are dominated by the logarithmic in p term of (8-2).

If L is fixed (for example L = 2 when computing integrals between two points) the complexity is as
in [Har07, Theorem 1.1]. This finishes the proof of Theorem 1.1.

Remark 8.1. The version of Kedlaya’s algorithm used in [BBK10, Algorithm 10] seems to have an
advantage in that it outputs the power series of the fi ’s. This could of course be reused later to evaluate
at further points without rerunning Kedlaya’s algorithm. However, for p large enough, this series has so
many terms that it is faster asymptotically to recompute everything with the algorithm given here, than
it is to evaluate the power series at one point.

9. Implementation

We have implemented this algorithm in C++ as an extension of David Harvey’s hypellfrob package.
This extension has been wrapped and can be easily used from within Sage [Sag18]. The implementation
is included as part of the supplementary materials to this paper. This implementation uses naive matrix
multiplication (for which ω = 3) and does not take into account the special form of the matrices, as in
Theorem 5.2; so the run time of this implementation will not have the asymptotic behaviour stated in
(8-2) for the parameter L .

In Table 1, we list some timings obtained using this implementation in genus 3, for various primes p
and p-adic precision bounds N . For comparison, we also list timings for the functionality for comput-
ing Coleman integrals in Sage 8.0. The implementation in Sage is written in Python, rather than C++,
so we would expect some speed-up even if a superior algorithm was not used. Specifically we have
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p N = 1 N = 3 N = 5 N = 7 N = 9

131 1.14/0.01 3.67/0.02 9.36/0.07 16.90/0.12 20.06/0.49
257 1.96/0.01 8.90/0.03 20.83/0.07 30.91/0.18 63.14/0.68
521 4.73/0.01 19.23/0.03 39.18/0.08 86.49/0.62 162.81/0.91

Table 1. Timings for genus 3: Sage 8.0 time/new time (sec).

compared the time to compute the Coleman data only, and do not include any of the time spent doing
the linear algebra and tiny integral steps of Coleman integration, which should be comparatively fast.
As such, we only time the components that will differ between the old and new approaches. For the
existing Sage code we have timed both finding the matrix of Frobenius and the primitives (by calling
monsky_washnitzer.matrix_of_frobenius_hyperelliptic), and the time to evaluate the result-
ing primitive at one point. This is compared with the time taken by the new implementation, called from
its Sage wrapper with one point specified; this outputs the matrix of Frobenius and the evaluations at that
point. All timings and examples are on a single 16 AMD Opteron 8384 2.7 GHz processor on a machine
with 16 cores and 82 GB RAM. While this table is mostly intended to show practicality, in the N = 9
column the square root dependence on p can be seen. The large jump in the timings between p ≈ 256
and p ≈ 512 for N = 7 could be explained by the fact that this is the cut off between when an element
of Z/pN Z is representable in one machine word.

10. Examples

In this section we give an explicit example of a computation we can perform with this technique, demon-
strating how large we can feasibly take the parameters. We compare our implementation to the existing
functionality for Coleman integration in Sage 8.0 for this example.

The current implementation uses the basis x i dx/y, to remain consistent with Harvey’s notation. As
the existing functionality for Coleman integration in Sage 8.0 uses the basis x i dx/2y for cohomology, we
must divide the obtained evaluations by 2 to compare them to those returned by Sage or Algorithm 6.1.

Example 10.1. Let C : y2
= x5

+
33
16 x4
+

3
4 x3
+

3
8 x2
−

1
4 x + 1

16 be Leprévost’s curve, as in [BBK10,
Example 21]. Then letting P = (−1, 1), Q =

(
0, 1

4

)
and p = 245

+ 59 = 35184372088891, using our
implementation we can compute the matrix of Frobenius M to 1 p-adic digit of precision, and also that

f0(P)− f0(Q)= O(p), f1(P)− f1(Q)= O(p),

f2(P)− f2(Q)= 7147166195043+ O(p), f3(P)− f3(Q)= 9172338112529+ O(p).

Computing this (and finding (M − 1)−1) takes a total of 27.8 minutes (with a peak memory usage of
2.9 GB). Evaluating Coleman integrals for such a large prime is far out of the range of what was possible
to compute in a reasonable amount of time using the previous implementation. In fact, even when
p = 214

+ 27, the existing Sage functionality takes 53.2 minutes, and uses a larger volume of memory
(12 GB).
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As we have used only 1 digit of p-adic precision, the points P and Q are congruent up to this pre-
cision to the corresponding Teichmüller point in their residue disk. So, for this example, we do not
need to worry about computing tiny integrals; the vector of Coleman integrals

∫ P
Q ωi can be obtained

from the above vector of evaluations by multiplying by (M − 1)−1. Doing this gives us the vector
(O(p), O(p), 9099406574713+ O(p), 7153144612900+ O(p)) reflecting the holomorphicity of the
first two basis differentials only. We have also run the same example with precision N = 3; this took
22.5 hours and used a peak of 50 GB of memory.

11. Future directions

The assumptions on the size of p allow us to use at most one extra digit of p-adic precision; it should
be possible to relax this assumption somewhat, using a more complicated algorithm instead. Similarly it
should be possible to work over extensions of Qp, or remove the assumption that Q(x) is monic.

Kedlaya’s algorithm has been generalised to other curves and varieties, e.g., [Har12; GG01; Gon15;
Tui17] and Harvey’s techniques have also been generalised to some of these cases [Min10; ABC+18].
Moreover, explicit Coleman integration has also been carried out in some of these settings, for even
degree hyperelliptic curves [Bal15], and for general curves [BT17]. It would be interesting to adapt
our techniques to those contexts. Iterated Coleman integrals are also of interest and have been made
computationally effective [Bal13]. Extending the algorithm presented here to compute iterated integrals
is another natural next step. Harvey has also described an average polynomial time algorithm for dealing
with many primes at once [Har14]. The author plans to explore the feasibility of analogous techniques
when computing Coleman integrals.
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Fast multiquadratic S-unit computation
and application to the calculation of class groups

Jean-François Biasse and Christine Van Vredendaal

Let L =Q(
√

d1, . . . ,
√

dn) be a real multiquadratic field and S be a set of prime ideals of L . In this paper,
we present a heuristic algorithm for the computation of the S-class group and the S-unit group that runs
in time Poly(log(1),Size(S))eÕ(

√
ln d) where d =

∏
i≤n di and 1 is the discriminant of L . We use this

method to compute the ideal class group of the maximal order OL of L in time Poly(log(1))eÕ(
√

log d).
When log(d) ≤ log(log(1))c for some constant c < 2, these methods run in polynomial time. We
implemented our algorithm using Sage 7.5.1.

1. Introduction

Let L =Q(
√

d1, . . . ,
√

dn) be a real multiquadratic number field, and S be a set of prime ideals of L . The
S-unit group US of L is the set of elements α ∈ L such that there is Ee ∈ Z|S| satisfying αOL =

∏
p∈S p

ep

where OL is the maximal order of L . The computation of the S-unit group is a fundamental problem in
computational number theory with many applications.

In this paper, we present an original algorithm for the computation of certain S-unit groups in real
multiquadratic fields. The main motivation for the development of this algorithm is the computation of
the ideal class group of OL . The computation of Cl(OL) can be trivially deduced from the knowledge of
an S-unit group where the classes of the elements of S generate Cl(OL). The computation of the ideal
class group is one of the four major tasks in computational number theory postulated by Zassenhaus [23,
p. 2] (together with the computation of the unit group, the Galois group, and the ring of integers). In
1968, Shanks [26; 27] proposed an algorithm relying on the baby-step giant-step method to compute
the class number and the regulator of a quadratic number field in time O(|1|1/4+ε), or O(|1|1/5+ε)
under the extended Riemann hypothesis [21]. Then, a subexponential strategy for the computation of the

This work was supported by the U.S. National Science Foundation under grant 1839805, by the National Institute of Standards
and Technology under grant 60NANB17D184, and by the Simons Foundation under grant 430128.
MSC2010: primary 11R04, 11R29, 11R65, 11Y99; secondary 11R11, 11R16, 11S20, 11Y50.
Keywords: ideal class group, S-unit group, multiquadratic fields.
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group structure of the class group of an imaginary quadratic field was described in 1989 by Hafner and
McCurley [20]. The expected running time of this method is

L1(1/2,
√

2+ o(1))= e(
√

2+o(1))
√

ln|1| ln ln|1|.

Buchmann [15] generalized this result to the case of infinite classes of number fields with fixed degree.
Practical improvements to Buchmann’s algorithm were presented in [18] by Cohen, Diaz y Diaz, and
Olivier. Biasse [6] described an algorithm for computing the ideal class group and the unit group of
O = Z[θ ] in heuristic complexity bounded by L1(1/3, c) for some c > 0 valid in certain classes of
number fields. In [7; 10], Biasse and Fieker showed that there was a heuristic subexponential algorithm
for the computation of the ideal class group in all classes of number fields. The methods of [10] can be
specialized to the case of cyclotomic fields for a better asymptotic complexity [8]. The computation of
the ideal class group is also the subject of study in the context of quantum computing. It was recently
proved (under the GRH) by Biasse and Song that there is a quantum polynomial time algorithm for the
computation of the ideal class group of an arbitrary field [13]. The most efficient practical implementa-
tions of algorithms for the computation of the ideal class group are either based on the quadratic sieve [12;
5; 4; 11] for quadratic fields or on the number field sieve [9] for number fields of higher degree.

The computation of S-units is also instrumental in the resolution of norm equations [28]. Indeed, it is
the bottleneck of the resolution in x of NL/K (x)= a for a given a ∈ K where L/K is a Galois extension.
This computational problem is closely related to Hilbert’s 10th problem, for which there is no efficient
general solution.

Contributions. Let L =Q(
√

d1, . . . ,
√

dn) be a real multiquadratic number field. We define d =
∏

i≤n di

and 1= disc(L).

• We describe an algorithm to compute Cl(OL) in heuristic complexity Poly(log(1))eÕ(
√

log d).

• We describe a heuristic algorithm for the computation of the S-class group and the S-unit group
of L in time Poly(log(1),Size(S))eÕ(

√
log d).

• We report on the performance of an implementation of our algorithms.

Our recursive approach is based on the unit group computation of [3] which we extended to the more
general problem of the computation of the S-unit group. In the case where d is small compared to 1,
our method for computing class groups, S-class groups, and S-unit groups runs in heuristic polynomial
time in log(1) (and in the size of S) where log(x) is the bit size of the integer x . This is ensured when
log(d)≤ log(log(1))c for some constant c < 2. For example, this is the case when the di are the first n
consecutive primes. This is the first nonquantum algorithm that runs in polynomial time on infinite classes
of number fields. The main ingredient of our recursion strategy is not restricted to multiquadratic fields.
We can take advantage of computations in subfields whenever there are two different σ, τ ∈ Gal(L/Q)
of order two. General subfields might not enjoy the same general recursive structure as multiquadratic
fields, but we expect that the reduction to the computation in subfields will improve the performance of
class group algorithms. The application of these methods to more general fields was left for future work.
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2. Preliminaries

2A. Number fields. A number field K is a finite extension of Q. Its ring of integers OK has the structure
of a lattice of degree n = [K :Q]. A number field has r1 ≤ n real embeddings (σi )i≤r1 and 2r2 complex
embeddings (σi )r1<i≤2r2 (coming as r2 pairs of conjugates). The pair (r1, r2) is the signature of K . The
field K is isomorphic to OK ⊗Q. The norm of an element x ∈ K is defined by N (x)=

∏
i σi (x). Let

(αi )i≤n such that OK =
⊕

i Zαi ; then the discriminant of K is 1(K ) := det2(T2(αi , α j )), where T2 is
defined by T2(x, x ′) :=

∑
i σi (x)σi (x ′). When there is no ambiguity, we simply denote it by 1.

2B. Units of OK . Elements u ∈OK that are invertible in OK are called units. Equivalently, they are the
elements u ∈ K such that (u) := (u)OK =OK . The unit group of OK where K is a real multiquadratic field
has rank r =n−1 and has the form O∗K =µ×〈ε1〉×· · ·×〈εr 〉where µ are roots of unity (torsion units) and
the εi are nontorsion units. Such (εi )i≤r are called a system of fundamental units of OK . Units generate
a lattice L of rank r in Rr+1 via the embedding x ∈ K 7→Log(x) := (ln(|σ1(x)|), . . . , ln(|σr+1(x)|)). The
volume R of L is an invariant of K called the regulator. The regulator R and the class number h satisfy
h R = (|µ|

√
|1|/(2r1(2π)r2)) lims→1((s− 1)ζK (s)), where ζK (s)=

∑
a 1/N (a)s is the usual ζ -function

associated to K and |µ| is the cardinality of µ the group of torsion units. This allows us to derive a
bound h∗ in polynomial time under GRH that satisfies h∗ ≤ h R < 2h∗ [2].

2C. Multiquadratic fields. In this paper, we focus on towers of quadratic extensions.

Definition 2.1. Let d1, . . . , dn be squarefree integers that are multiplicatively independent modulo squares
(i.e., they are independent in Q×/(Q×)2). Then L =Q(

√
d1, . . . ,

√
dn) is called a multiquadratic field

and N := [L :Q] = 2n . Its Galois group Gal(L/Q) := {Automorphisms of L that fix Q} is isomorphic
to (Z/2Z)n .

When n = 1, the field L = Q(
√

d1) is simply called a quadratic field. In this paper, we focus on
real multiquadratic fields, that is, those that satisfy di > 0 for all i ≤ n. The discriminant of a real
multiquadratic field is given to us by an explicit formula. This is useful for the computation of its
maximal order.

Lemma 2.2. Let L =Q(
√

d1, . . . ,
√

dn) a multiquadratic field as given above and
∏s

j=1 pm j
j with p1 <

p2 < · · ·< ps be the factorization of
∏n

i=1 di . Then 1(L)= (2a p1 · p2 · · · ps)
2n−1

where

a =


0 if di ≡ 1 mod 4 (for all 1≤ i ≤ n),
2 if p1 = 2 and pi ≡ 1 mod 4 (for all 2≤ i ≤ n),

or p1 6= 2 and there exists i such that pi ≡ 3 mod 4,
3 otherwise.

Proof. This follows from Theorem 2.1 of [25]. �

If we take d1, d2, . . . , dn to be the first n primes, then their product is the primorial pn#≈ e(1+o(1))n log n .
Combining this with Lemma 2.2 gives ln1(L)≈ 1

2 Nn log n = 1
2 N log N log log N .
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2D. Class groups. Elements of the form I/d where I⊆OK is an ideal of the ring of integers of K and
d > 0 are called fractional ideals. Ideals of OK are also referred to as integral ideals. Fractional ideals
have the structure of a Z-lattice of degree n = [K :Q], and they form a multiplicative group I. Elements
of I admit a unique decomposition as a product of nonzero prime ideals of OK (with possibly negative
exponents). The norm of integral ideals is given by N (I) := [OK : I], which extends to fractional
ideals by N (I/J) :=N (I)/N (J). The norm of a principal (fractional) ideal agrees with the norm of its
generator N (xOK )= |N (x)|. The principal fractional ideals P of K are a subgroup of I and the ideal
class group of OK is defined by Cl(OK ) := I/P . We denote by [a] the class of a fractional a in Cl(OK )

and by h the cardinality of Cl(OK ) which is a finite group. Let a, b be two fractional ideals of K . We
have [a] = [b] if and only if there is α ∈ K such that a= (α)b. We also denote this property by a∼ b.

2E. How to compute class groups. The best asymptotic algorithms to compute the ideal class group
of OK follow the general framework deriving from the algorithm of Hafner and McCurley [20] (subse-
quently generalized by Buchmann [15] and Biasse and Fieker [10]). Let B > 0 be a bound and define
a factor base as B := {nonzero prime ideals p with N (p)≤ B}. We refer to B as the smoothness bound.
We compute a generating set of the lattice 3 of all the vectors (e1, . . . , em) ∈ Zm with m := |B| such that
there exists α ∈ K with (α)= pe1

1 · · · p
em
m .

Definition 2.3 (relations). Let S = {p1, . . . , ps} be a set of nonzero prime ideals of K . For each S-
unit α ∈ K with Ee = (e1, . . . , es) such that (α) =

∏
i p

ei
i , we define the relation associated with α by

RS,K (α) := (α, Ee). The relations of K for the set S form a group denoted by RelS(K ).

When B > 12 ln2
|1|, the classes of ideals in B generate Cl(OK ) under the GRH [1, Theorem 4].

Therefore, (B,3) is a presentation of the group Cl(OK ) and the search for a generating set of the relations
RelS(K ) for S = B is equivalent to computing the group structure of Cl(OK ). Indeed, the morphism

Zm ϕ
−→ I π

−→ Cl(OK ),

(e1, . . . , em) −→
∏
i
pei

i −→
∏
i
[pi ]

ei

is surjective, and the class group Cl(OK ) is isomorphic to Zm/ ker(π ◦ϕ)= Zm/3.

2F. S-class groups and S-unit groups. Let S= {p1, . . . , ps} be a finite set of prime ideals of the number
field K . We say that x ∈ K is an S-integer if vp(x) ≥ 0 for all p /∈ S. The set of S-integers is a ring
denoted by OK ,S . We define the S-unit group UK ,S (or US if the field of definition is understood) as
the elements x ∈ K such that vp(x) = 0 for all p /∈ S. The group of S-units is finitely generated:
US = µ(K )×〈η1〉× · · · × 〈ηr+s〉 where µ(K ) is the set of the roots of unity of K , and η1, . . . , ηs+r are
torsion-free generators. The rank of its torsion-free part equals r + s where r is the rank of the torsion-
free part of the unit group UK . Let IS be the group of fractional ideals of OK ,S , and PS its subgroup of
principal ideals. We define the S-class group by ClS(OK ,S)= IS/PS .
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3. S-units of quadratic fields

In this section, we assume that L = Q(
√

d) for d > 0 a squarefree integer. The calculation of the
S-unit group for S a set of prime ideals of L is done by using the approach of Simon [28, §I.1.2].
Together with the subexponential strategy for computing the ideal class group derived from the Hafner–
McCurley algorithm [20], the S-unit group of L can be computed in time Poly(Size(S)) · eÕ(

√
log d).

These algorithms have been extensively studied, in particular in [20; 15; 10; 28]. Therefore, we only
give a brief sketch of the algorithm and will focus on the run time and the format of the output.

3A. Computing the class group. First, let B ∈ eÕ(
√

log d) be a large enough smoothness bound such that
the nonzero prime ideals p1, . . . , pk of L with norm less than B generate Cl(OL). Note that k ∈ eÕ(

√
log d).

The computation of Cl(OL) starts with the collection of δ1, . . . , δl for some l ∈ Õ(k) such that for all
i ≤ l there exist (ai,1, . . . , ai,k) with (δi )=

∏
j p

ai, j
j . The δi and the ai, j are all polynomial size in log(d).

Then there are unimodular matrices U ∈ GLl(Z) and V ∈ GLk(Z) such that

SNF(A)=U AV =



d1 (0)
. . .

(0) dk

(0)


,

where SNF(A) denotes the Smith normal form of A. The unimodular matrices U, V can be found in
polynomial time [29] (in the dimension and the bit size of the entries of A), and their entries have polyno-
mial size in the dimension of A and the bit size of its coefficients. This means that log(|U |), log(|V |) ∈
eÕ(
√

log d) where |U | denotes a bound on the absolute values of the entries of U . Let L⊆ Zk be the lattice
generated by the rows of A. Then

Cl(OL)' Zk/L' Z/d1Z⊕ · · ·⊕Z/dkZ.

Let g j :=
∏

i≤k p
vi, j
i ; we have Cl(OL)' 〈[g1]〉× · · · × 〈[gk]〉. In addition, let βi :=

∏
j≤l δ

ui, j
j , for i ≤ k.

We do not evaluate this product. We have gdi
i = (βi ). Overall, the complexity of this calculation is in

eÕ(
√

log d).

3B. Computing the S-unit group. Let S be a set of primes q1, . . . , qs of L . To get the S-class group
and the S-unit group we add extra relations to L. More specifically, we need to identify the classes of
Cl(OL) that are represented by a product of primes in S with the trivial class of ClS(OL ,S). The ideal
class of each of the elements of S can be represented as a product of the classes of the gi . In time
eÕ(
√

log d) (and polynomial in log(N (qi ))), one can find polynomial size x1, . . . , xk and βi+k ∈ L such
that qi = (βi+k)

∏
j p

x j
j with standard methods derived from [20]. Then for each j , p j =

∏
i≤k g

v′i, j
i where

the v′i, j are the coefficients of V−1, we readily find vectors Eei ∈ Zk with entries having polynomial size
in k (that is in eÕ(

√
log d)) such that qi = (βi+k)

∏
j≤k g

ei, j
j . The vectors Eei are precisely the new additions
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needed to expand L. We get a new relation matrix

B =



d1 (0)
. . .

(0) dk

e1,1 . . . e1,k
...

...

es,1 . . . es,k


.

As for the computation of Cl(OL), the SNF of B gives the elementary divisors of the cyclic decomposition
of ClS(OK ,S). Meanwhile, let Ew1, . . . , Ew1+s be a basis for the left kernel of B (in general the dimension
is r + s where r is the rank of the unit group of L). This kernel is found in polynomial time in the
dimension of B and the size of its entries, that is in time Poly(s) · eÕ(

√
log d). The entries of the kernel

vectors have size in Poly(s) ·eÕ(
√

log d), and US =µ×〈γ1〉×· · ·×〈γ1+s〉 where µ= {±1} are the torsion
units of OL and γi :=

∏
j≤k+s δ

wi, j
j .

Proposition 3.1. Let d > 0 be a squarefree integer, L = Q(
√

d), and S be a set of prime ideals of L
with |S| = s. Then the S-unit group algorithm of [28, §I.1.2] returns l ∈ eÕ(

√
log d) polynomial size

elements δi ∈ L and s + 1 vectors Eci with entries of size in Poly(s) · eÕ(
√

log d) such that the s + 1
elements γi :=

∏
j≤l δ

ci, j
j generate the S-unit group of L. The overall complexity of this procedure is in

Poly(Size(S)) · eÕ(
√

log d) where the size of S is in O(s ·maxp∈S log(N (p))).

4. Recursive computation of S-units

Let S be a set of nonzero prime ideals in L that is invariant under the action of Gal(L/Q) (that is, for
all p ∈ S and all σ ∈ Gal(L/Q), pσ ∈ S). In this section, we introduce a recursive method for finding
a generating set of RelS(L) which is the group of elements of the form RS,L(α) = (α, Ee) such that
(α) =

∏
pi∈S p

ei
i . Our strategy consists of deriving the S-unit group in L from that of three subfields

of L . When we reach the leaves of this recursion tree, we use the methods of Section 3 for computing
the S-unit group directly on the quadratic field.

4A. High-level description of the algorithms. Let L be a multiquadratic number field and let σ, τ be
two distinct nontrivial automorphisms of L . Let στ := σ ◦ τ and K` be the subfield of L fixed by
` ∈ {σ, τ, στ }. Let S be a set of prime ideals of the ring of integers OL with L stable by the action of
Gal(L/Q), and for each ` ∈ {σ, τ, στ } let us define S` := {p∩K` | p ∈ S}. We recover a generating set of
RelS(L) from generating sets of RelSσ (Kσ ), RelSτ (Kτ ), and σ(RelSστ (Kστ )). Our result follows from
two crucial observations.

(1) The subgroup U of RelS(L) generated by the lifts of RelSσ (Kσ ), RelSτ (Kτ ), and σ(RelSστ (Kστ ))

contains all the squares of relations in RelS(L).

(2) There is an algorithm that efficiently produces elements of U that are square of relations in RelS(L),
and then computes their square root.
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Algorithm 1: High-level description of recursive S-unit computation of L

Input: Real multiquadratic field L , ring of integers OL of L , set of primes S of OL stable under the action
of Gal(L/Q).

Result: A basis for RelS(L).
1 if [L :Q] = 2 then
2 Use the method of [28, §I.1.2] to compute a basis 3 of RelS(L).
3 return 3
4 σ, τ ← distinct nonidentity automorphisms of L .
5 for ` ∈ {σ, τ, στ } do
6 K`← fixed field of `.
7 3`← basis of RelS`(K`).
8 3←3σ ∪3τ ∪ σ(3στ ).
9 Find a basis 32 of the lattice of relations generated by 3 that are squares.

10 32← square roots of the elements in 32.
11 3← basis of the lattice generated by 3∪32.
12 return 3

When the recursive tree reaches a quadratic subfield K` of L , it uses the subexponential algorithm of
Simon [28, §I.1.2] to return the S`-unit group. The high-level description of this strategy is summarized
in Algorithm 1. Note that the ring of integers OL is part of the input. In general, the computation of OL

is as hard as the factorization of the discriminant of L , but in the particular case of multiquadratic fields,
there is an efficient algorithm for this task [17].

4B. Lifting relations. To compute RelS(L), we use the relations from RelSσ (Kσ ), RelSτ (Kτ ), and
σ(RelSστ (Kστ )) where σ, τ ∈Gal(L/Q) and S`, K` are defined in Section 4A. Therefore, given relations
in a subfield Kσ of L , we need to be able to efficiently compute the corresponding relations in L .

Theorem 4.1. Let L = Q(
√

d1, . . . ,
√

dn) be a multiquadratic field. Let Kσ be the (multi)quadratic
subfield of L fixed by σ ∈ Gal(L/Q), Sσ = {pi }i≤s where pi are prime ideals of Kσ , and S = {Pk ⊂ L |
there exists i ≤ s such that Pk ∩ Kσ = pi }. Let RSσ ,Kσ

(α) = (α, Ee) be a relation in RelSσ (Kσ ). Then
(α, EeL) :=RS,L(α) ∈RelS(L) with EeL = (e1 Ef1 | e2 Ef2 | · · · | es Efs), where Efi satisfy piOL =

∏
j≤gi

P
fi, j
ki, j

.

Proof. Let α ∈ Kσ such that (α)=
∏

pi∈S p
ei
i . Each prime ideal pi ∈ Kσ factors as piOL =

∏
j≤gi

P
fi, j
ki, j

,
where the Pki, j are the prime ideals of L such that Pki, j ∩ Kσ = pi and the fi, j are the corresponding
ramification indices. Therefore, we have

(α)OL =
∏
pi∈S

pei
i OL =

∏
pi∈S

∏
j≤gi

P
ei fi, j
ki, j

.

Thus, (α, (e1 Ef1 | e2 Ef2 | · · · | es Efs)) is the relation corresponding to α in RelS(L). �
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Given the straightforward correspondence between RSσ ,Kσ
(α) ∈RelS(Kσ ) and its lift in RelS(L), we

identify these two elements. The set RelS(L) is also equipped with a natural group structure given by
(α1, Ee1)+ (α2, Ee2) := (α1 ·α2, Ee1+ Ee2). We define the index of a subgroup U of RelS(L) as that of the
subgroup of US of the α such that there exists Ee with (α, Ee) ∈U .

Lemma 4.2. Let L = Q(
√

d1, . . . ,
√

dn) be a multiquadratic field and let S be a set of prime ideals
of L that is invariant under the action of Gal(L/Q). Let σ, τ ∈ Gal(L/Q) be two different nonidentity
isomorphisms, and define S`, K` of ` ∈ {σ, τ, στ } as in Section 4A. Let U be the group generated by
RelSσ (Kσ )∪RelSτ (Kτ )∪ σ(RelSστ (Kστ )) where

σ(RelSστ (Kστ )) := {RSτ ,Kτ
(σ (α)) | there exists Ee such that (α, Ee) ∈RelSστ (Kστ )}.

Then (RelS(L))2 ⊆ U ⊆ RelS(L), where (RelS(L))2 denotes the relations of the form (α2, 2Ee) where
(α, Ee) ∈RelS(L).

Proof. From Theorem 4.1, we know that the relations in RelSσ (Kσ ), RelSτ (Kτ ), and RelSστ (Kστ ) lift
naturally to relations in RelS(L). Moreover, σ maps elements of Kστ to Kτ , and since S is invariant
under the action of σ , a relation is mapped to another relation (modulo a permutation of the coefficients
of the exponent vector). So the action of σ on RelSστ (Kστ ) is well defined, and U ⊆RelS(L).

For the other inclusion, let (α, Ee) ∈RelS(L). For each ` ∈ {σ, τ, στ }, α ·`(α) decomposes as a product
of ideals in S`. Therefore, there are vectors Ee` such that for each `, (α · `(α), Ee`) ∈RelS`(K`). Moreover,

NL:Kσ
(α)NL:Kτ

(α)

σ (NL:Kστ
(α))

=
α · σ(α) ·α · τ(α)

σ (α · στ(α))
= α2
;

hence, (α2, 2Ee) = (σ (α), Eeσ ) + (τ (α), Eeτ ) − σ((στ)(α), Eeστ ) is a linear combination of relations in
Rel(Kσ ),Rel(Kτ ) and σ(Rel(Kστ )), so (Rel(L))2 ⊆U . �

4C. Representation of elements and square roots. The lift U of the relations in three different subfields
yields a set of relations containing all the squares of the relations in RelS(L). We need to solve two tasks:

(1) identification of a generating set of the squares of U and,

(2) for each square (α2, 2Ee) found in (1), computation of (α, Ee).

p-th roots with saturation. Let us identify U ⊆RelS(L) with the elements α ∈US such that there exists Ee,
(α, Ee)∈U . Let b> 0 such that (US :U )= b. For any prime p | b there is some α ∈US\U such that α p

∈U .
The saturation technique of Biasse and Fieker [9] can be used to find elements in US that are not in U .
Let us fix the prime p. For any residue degree 1 prime ideal Q /∈ S with Q :=N (Q) such that p | Q− 1
we define the map φQ :U→ F∗Q/(F

∗

Q)
p mapping S-units into the multiplicative group of the residue class

field FQ :=OL/Q modulo p-th powers. The Chebotarev theorem [31] guarantees that if α ∈U is not a p-
th power, there will be some Q such that φQ(α) is nontrivial, i.e., α is not a p-th power modulo Q. To find
p-th powers, we now simply intersect kerφQ for sufficiently many Q. The elements α ∈U/

(⋂
kerφQ

)
will have a p-th root in US but not in U . Suppose (α, Ee) ∈U with α ∈U/

(⋂
kerφQ

)
; then ( p

√
α, Ee/p)

is a new relation that reduces the index of the lattice of currently found relations in RelS(L).
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Using quadratic characters for p = 2. When looking for square roots, we can use quadratic characters
to find elements in elements α ∈U/

(⋂
kerφQ

)
by following the approach of [3]. More specifically, in [3,

§4.1], the map

φQ : Z[x1, . . . , xn]/(x2
1 − d1, . . . , x2

n − dn)' Z[
√

d1, . . . ,
√

dn] → FQ,

where Q is a residue degree 1 prime ideal and Q = N (Q), is defined by xi 7→ si where si is a square
root of di modulo Q. Elements of US have nonnegative valuation at Q since it satisfies Q /∈ S. We can
use the characters defined in [3, §4.1] by χQ(α) := (φQ(α)/Q) ∈ {−1, 0, 1}. When α is a square, we
have χQ(α) = 1. To find squares, we find the α ∈ U such that χQi (α) = 1 for i ≤ m where m is large
enough. This boils down to the search for a kernel element of the linear map

US
X
−−→ Z/2Z× · · ·×Z/2Z,

α −−→ (log−1(χQ1(α)), . . . , log−1(χQm (α))),

where for each x ∈ {−1, 1}, log−1(x) denotes the discrete logarithm of x in base −1. If α is a square, then
necessarily X (α)= (0, . . . , 0). On the other hand, if X (α)= (0, . . . , 0), there is a nonzero probability
that α might not be a square. Given generators α1, . . . , αk of U , we can find a generating set of the squares
of elements of US . This contains the squares of elements αk+1, . . . , αk+l of US such that α1, . . . , αk+l

generate US . We obtain these squares by finding the kernel of the matrix A = (X (αi )) ∈ Zk×m .

Representation of the elements. We compute S-units in the quadratic fields by directly applying the
subexponential algorithm of [28, §I.1.2]. As we saw in Section 3, the output of the computation in each
quadratic field Kl :=Q(

√
dKl ) for l ≤ 2n

:= N is a set of s+1 elements γi that are represented by vectors
of exponents Eei and k elements α j such that γi =

∏
j≤k δ

ei, j
j . The δ j have polynomial size in log(dKl ),

while k ∈ eÕ(
√

log(dKl )) and the entries of Eei have size in Poly(s) · eÕ(
√

log(dl )). In our algorithm these
products are never evaluated in L . Indeed, the representation of such elements on the integral basis has
exponential size, thus making any calculation on them prohibitively expensive.

To avoid this issue, we use the so-called compact representation described by Thiel [30]. Given η ∈ K ,
we can find polynomial size (in the logarithm of the field discriminant) elements η0, η1, . . . , ηv such that
η = η0η

2
1 · · · η

2v
v . Given an element η in compact representation, we can easily perform the operations

• compute X (η)= X (η0),

• compute
√
η =±

√
η0 · η1 · η

2
2 · · · η

2v−1

v , and

• compute σ(η)= σ(η0)σ (η1)
2
· · · σ(ηv)

2v for σ ∈ Gal(L/Q).

The original compact representation of Thiel [30] can be adapted to run in polynomial time with respect
to the input. In particular, if η is given as a product η = η′1

e1
· · · η′v′

ev′ , then we can find a compact
representation of η in polynomial time in maxi (Size(η′i )), maxi log(ei ), and v′ [10, §5; 19, §4.4]. We
compute the compact representation of the γi at the beginning of the recursion, and after each subsequent
operation.
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Algorithm 2: SUnitGivenSubgroup(K , α1, . . . , αk)

Input: Real multiquadratic field K ⊆Q(
√

d1, . . . ,
√

dn), α1, . . . , αk such that U 2
K ,S ⊆ 〈α1, . . . , αk〉.

Result: Generators of UK ,S/{±1}.
1 χ1, . . . , χm← characters defined by Qi for i ≤ m.
2 A← [log−1(χi (α j ))]i≤m, j≤k ∈ Fm×k

2 .
3 V ← basis of the left kernel of A.
4 for i = 1, . . . , #V do
5 vi ←

∏
j α

Vi j
j .

6 βi ←
√
vi .

7 return α1, . . . , αk, β1, . . . , β#V

By linearity, one can evaluate the characters X (γi )=
∑

j≤k ei, j X (δ j ) in time k ·Poly(maxi, j Size(ei, j ))·

Poly(maxi Size(X (δ j ))). As Size(X (δ j )) is bounded by m ·maxi log(N (Qi )), the resulting complexity

is in Poly(s,m, log Q) ·eÕ(
√

log(d)) where Q :=maxi N (Qi ) and d :=
∏

l≤n dl . Using the compact repre-
sentation, the product of two elements, the image under a morphism σ ∈ Gal(L/Q), and the computation
of the square root are straightforward operations with complexity in Poly(s, log(1)) · eÕ(

√
log(d)).

In the description of Algorithm 2, we identify field elements and their representation described above.
As previously mentioned, all squares must map to elements of LeftKernel(A), but there is a chance that
elements from LeftKernel(A) do not arise as the map of a square in K . In this case, the element si

calculated in Step 5 is not a square, and the (formal) square root computed in Step 6 does not correspond
to any element in K . The probability of success of Algorithm 2 is derived from a standard heuristic
used for the computation of square roots in the number field sieve algorithm [16, §8]. This argument
was also used for computing units of multiquadratic fields in [3, §4.2]. Let U := 〈α1, . . . , αk〉/{±1}.
The rank of U/(U ∩ K 2) is at most s + r where r is the rank of the unit group of K and s := |S|.
Therefore, the dual Hom(U/(U ∩ K 2), F2) is an F2 vector space of dimension at most r + s. Assuming
that log−1 χQ1, . . . , log−1 χQm are independent uniform random elements of this dual, they span the dual
with probability at least 1− 1/2m−r−s by [16, Lemmma 8.2]. In that case, X (α)= 0 implies α ∈U ∩ K 2.

Heuristic 4.3. Let K be a multiquadratic subfield of L = Q(
√

d1, . . . ,
√

dn), and let S be a set of
prime ideals of K . Let α1, . . . , αk be elements generating U 2

K ,S and let U := 〈α1, . . . , αk〉/{±1} Then
morphisms of the form log−1 χQi are uniformly distributed in Hom(U/(U ∩ K 2), F2).

Proposition 4.4. Let K be a multiquadratic subfield of L = Q(
√

d1, . . . ,
√

dn), and let S be a set of
prime ideals of K . Let α1, . . . , αk be elements generating U 2

K ,S . Let r be the rank of the unit group of K

and let s := |S|. Then the run time of Algorithm 2 is in Poly(s,m, log(1), log Q) · eÕ(
√

log d) where m is
the number of characters, N = 2n , Q =maxi≤m Qi , and d =

∏
i≤n di . Algorithm 2 returns a generating

set of UK ,S with probability at least 1− 1/2m−r−s under Heuristic 4.3.
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Remark 4.5. The only subroutine that we have not formally analyzed is the creation of the χ1, . . . , χm .
For that, we directly rely on the algorithm GoodPrime of [3]. It returns each prime in time O(N ). Thus,
the calculation of χ1, . . . , χm is in O(m N ).

4D. Overall procedure. We now have all the ingredients to specify the details of our recursive method
to compute the S-unit group of L = Q(

√
d1, . . . ,

√
dn) for a set of prime ideals S invariant under the

action of the Galois group of L .

Theorem 4.6. Let L = Q(
√

d1, . . . ,
√

dn) be a real multiquadratic field of degree N and S be a set
of prime ideals of L stable under Gal(L/Q) that does not contain any ideal above 2. Then under
Heuristic 4.3, the elements β1, . . . , βr+s returned by Algorithm 3 generate the torsion-free part of US with
probability 1− 1/2N . The asymptotic complexity of Algorithm 3 is in Poly(Size(S), log(1)) · eÕ(

√
log d)

where Size(S)= s ·maxp∈S log(N (p)), 1= disc(L), and d :=
∏

i≤n di .

Proof. Algorithm 3 is called 3n
∈ Poly(N ) times. The run time of Algorithm 3 is essentially ruled by that

of Algorithm 2 and by the cost of Steps 12 and 14. Moreover, the cost of the ideal arithmetic involved in
the lifting of the relations is in Poly(Size(S), log(1)). The probability of success of the overall algorithm
is at least (1− 1/2m−r−s)N

∼ 1− N/2m−r−s where r is the rank of the unit group of L . Therefore, a
choice of m ∈ Poly(N , s) can ensure that the probability of success is at least 1− 1/2N . With such

Algorithm 3: MQSUnits for S stable under Gal(L/Q)

Input: Real multiquadratic field L , ring of integers OL of L , and set of prime ideals S of OL stable under
Gal(L/Q).

Result: A basis of the relations RelS(L).
1 S0← {p1, . . . , ps} where for all i ≤ s, there exists p ∈ S such that pi | p.
2 if [L :Q] = 2 then
3 3← basis of RelS(L) using [28, Algorithm I.1.2].
4 return 3
5 σ, τ ← distinct nonidentity automorphisms of L .
6 for ` ∈ {σ, τ, στ } do
7 K`← fixed field of `.
8 S← {p⊆ K` | there exists e ∈ Z and p ∈ S0 such that N (p)= pe

}.
9 3`←MQSUnits(K`, S).

10 3U ←3σ ∪3τ ∪ σ(3στ ).
11 3 := {(α1, Ee1), . . . , (αk, Eek)} ← SUnitGivenSubgroup(L ,3U ) (Algorithm 2).
12 A← (Eei )i≤k . Compute U ∈ GLk(Z) such that U A =

( H
(0)

)
is the HNF of A.

13 For i = 1, . . . , s: βi ←
∏

j≤k α
Ui, j
j .

14 Compute a basis Ew1, . . . , Ewr of the left kernel of A.
15 For i = 1, . . . , r , βs+i ←

∏
j≤k α

wi, j
j .

16 return (β1, EH1), . . . , (βs, EHs), (βs+1, E0), . . . , (βs+r , E0)
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a choice of m, we can also ensure that Q ∈ Poly(N , s). Finally, in Steps 12 and 14, the coefficients
of U and of the Ewi are in Poly(s, log(1)) · eÕ(

√
log d). This allows us to bound the run time of the field

operations of Steps 13 and 15 (in compact representation). Moreover, the run time of Steps 12 and 14 is
also in Poly(s, log(1)) · eÕ(

√
log d), which proves the statement. �

The result of Algorithm 3 can be certified in polynomial time under the generalized Riemann hypoth-
esis if the prime ideals in S generate the ideal class group of L . This is the case in all the applications
that are considered in Section 5, including the computation of arbitrary S-unit groups. The only way
Algorithm 3 can fail is if Algorithm 2 identifies nonsquares as squares. If this is the case, then the set of
relations returned by Algorithm 3 contains elements that are not in RelS(L). Let h0 := det(H) and R0

be the volume of the lattice generated by Log(βi ) for i = s+ 1, . . . , s+ r . If the result is correct, then
h0 = h the class number of OL while R0 = R the regulator of L . If not, then h0 R0 ≤

1
2 h R (i.e., RelS(L)

is a finite index subgroup of the output of Algorithm 3). An estimate for h R can be found in polynomial
time under the GRH by using the methods of [2].

Proposition 4.7. Under the GRH, the result of Algorithm 3 can be certified in polynomial time if S
includes a generating set of the ideal class group of OL .

5. Applications of the S-unit computation algorithm

The S-unit group computation of Section 4 can be used to compute ideal class groups, S-class groups,
and (arbitrary) S-unit groups.

5A. Ideal class group computation. As explained in Section 2E, the computation of Cl(OL) can be
done by searching for a basis of the relations between a generating set of the classes of Cl(OL). Once
such a generating set is found, then the strategy is the same as in [20], which was sketched in Section 3.

Proposition 5.1. Let L =Q(
√

d1, . . . ,
√

dn) be a real multiquadratic field of degree N an discriminant1.
Under the GRH, Algorithm 4 successfully returns the ideal class group of OL with probability 1−1/2N in
time Poly(log(1)) ·eÕ(

√
log d) where d =

∏
i≤n di . The result of Algorithm 4 can be certified in polynomial

time in log(1).

Algorithm 4: Computation of Cl(OL)

Input: Ring of integers OL of a real multiquadratic field L of degree N and discriminant 1.
Result: Class group of OL .

1 Compute S := {p |N (p)≤ 12 ln2(1)}.
2 (α1, EH1), . . . , (αs, EHs), (αs+1, E0), . . . , (αs+r , E0)← output of Algorithm 3.
3 diag(d1, . . . , ds)← SNF(H).
4 return Z/d1Z× . . .×Z/dsZ
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[L :Q] Algorithm 4 Magma Sage Cl(OL)

8 81.3 1.18 0.02 trivial
16 455 14.4 0.87 C4×C4

32 3738 3971 68.9 C2×C4×C4
8

64 3.79 · 104 > 8.5 · 105 C9
2 ×C3

4 ×C8×C4
16×C48×C240

128 5.42 · 105 C10
2 ×C16

4 ×C13
8 ×C2

16×C6
48×C3

96×C48×C960

Table 1. Comparison of class group routine run time.

Corollary 5.2. When d=
∏

i≤n di satisfies log(d)< log(log(1))c for some constant c<2, then Algorithm
4 returns the ideal class group of OL with probability 1− 1/2N in polynomial time in log(1).

We showcase the effect of our algorithm on classes of multiquadratic fields with small di by computing
the class group of the degree 128 multiquadratic field L =Q(

√
5,
√

13,
√

17,
√

29,
√

37,
√

41,
√

53) and
its subfields

Q(
√

5,
√

13,
√

17), . . . ,Q(
√

5,
√

13,
√

17,
√

29,
√

37,
√

41).

We implemented Algorithm 4 and ran experiments on a single core of an Intel Xeon E5-2650 v3 2.30 GHz
processor with 512 GB of RAM running version 7.5.1 of Sage [24]. For the low level multiquadratic
arithmetic, we used the methods of [3]. For the Sage experiments the class_group(proof = False) method
was used. Note that Sage’s class group routine directly calls that of Pari/GP [22]. We also ran the class
group routine of Magma V.2.24 on the same fields. Magma [14] works at a higher level of rigor by only re-
turning results that are at least certified under GRH (we ran the command ClassGroup(K:Proof:="GRH")).
Therefore, the comparison with Sage is not entirely relevant. In degree 64, the computation with Magma
had to be terminated after 24 hours since it had exhausted the machine’s memory.

Although slower for small degrees, our method is the only implementation that is able to compute the
class group of multiquadratic fields of degree more than 32. We can see on Table 1 that the run time
(in CPU seconds) of Algorithm 4 is consistent with a polynomial run time in log(1). Our algorithm is
parallelizable on several levels: subtrees of the recursion tree are independent, as well as computations
modulo the (Qi )i≤m . Therefore, we anticipate that a parallel version of our algorithm could reach degrees
256 and 512.

5B. S-class group and S-unit group computation. Algorithm 3 computes the S-unit group with the
restriction that S contains all conjugates of any p ∈ S under the action of Gal(L/Q). As shown in
Section 3, the S-class group boils down to the search for the lattice of relations between the generators
(gi )i≤s0 of Cl(OL) which we enlarge with new relations of the form q j ∼

∏
i≤s0

g
xi, j
i . The SNF of this

enlarged relation lattice gives the elementary divisors of the S-class group while its kernel reveal the
S-unit group.
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Algorithm 5: S-class group and S-unit group computation

Input: Real multiquadratic field L of degree N , ring of integers OL of L , and a set S of prime ideals of OL .
Result: S-unit group and S-class group of L .

1 Compute S0 := {p |N (p)≤ 12 ln2(1)} for 1= disc(L).
2 S0← S ∪ {qσ | q ∈ S, σ ∈ Gal(L/Q)}.
3 (α1, EH1), . . . , (αs0 ,

EHs0), (αs0+1, E0), . . . , (αs0+r , E0)← output of Algorithm 3.
4 Compute U, V such that U

( H
(0)

)
V =

( SNF(H)
(0)

)
with SNF(H)= diag(di )i≤s0 .

5 For j ≤ s0, define g j :=
∏

i≤s0
p

Vi, j
i (here, Cl(OL)'

⊕
i≤k〈[gi ]〉).

6 V ′← V−1.
7 For each j ≤ s, find j0 ≤ s0 such that q j = p j0 .

8 Ex j ← (V ′1, j0
, . . . , V ′s0, j0

) (here q j =
∏

i≤s0
g

xi, j0
i ).

9 Let M =
( H
(Exi )i≤s

)
.

10 diag(d ′i )i≤s0 ← SNF(M). Compute a basis Ew1, . . . , Ews of the left kernel of M .
11 For i ≤ s, α′i ←

∏
j≤s0

α
wi, j
j .

12 For 1≤ i ≤ r , α′i+s← αs0+i (the (α′i )s<i≤r+s generate UL ).
13 return 〈α′1〉× · · · × 〈α

′
s+r 〉,Z/d ′1Z⊕ · · ·⊕Z/d ′s0

.

Proposition 5.3. Algorithm 5 is correct and returns the S-class group and the S-unit group with prob-
ability 1− 1/2N where N = [L;Q] in time Poly(Size(S), log(1)) · eÕ(

√
log d) where 1 = disc(L), and

d :=
∏

i≤n di .
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Fast coefficient computation for algebraic power series
in positive characteristic

Alin Bostan, Xavier Caruso, Gilles Christol, and Philippe Dumas

We revisit Christol’s theorem on algebraic power series in positive characteristic and propose yet another
proof for it. This new proof combines several ingredients and advantages of existing proofs, which make
it very well-suited for algorithmic purposes. We apply the construction used in the new proof to the
design of a new efficient algorithm for computing the N -th coefficient of a given algebraic power series
over a perfect field of characteristic p. It has several nice features: it is more general, more natural and
more efficient than previous algorithms. Not only is the arithmetic complexity of the new algorithm
linear in log N and quasilinear in p, but its dependency with respect to the degree of the input is much
smaller than in the previously best algorithm. Moreover, when the ground field is finite, the new approach
yields an even faster algorithm, whose bit complexity is linear in log N and quasilinear in

√
p.

1. Introduction

Given a perfect field k of characteristic p > 0, we address the following question: how quickly can one
compute the N -th coefficient fN of an algebraic power series

f (t)=
∑
n≥0

fntn
∈ k[[t]],

where N is assumed to be a large positive integer? This question was recognized as a very important one
in complexity theory, as well as in various applications to algorithmic number theory: Atkin–Swinnerton-
Dyer congruences, integer factorization, discrete logarithms and point-counting [10; 3].

As stated, the question is rather vague; both the data structure and the computation model have to be
defined more precisely. The algebraic series f will be specified in k[[t]] as some root of a polynomial
E(t, y) in k[t, y], of degree d = degy E ≥ 1 and of height h = degt E . To make this specification
unequivocally, we will need several assumptions. First, we assume that E is separable, that is, E and
its derivative Ey = ∂E/∂y are coprime in k(t)[y]. Second, we assume that E is irreducible1 in k(t)[y].

MSC2010: 11Y16, 11YXX, 12Y05, 68W30.
Keywords: algebraic power series, Christol’s theorem, algorithm, complexity.

1The first assumption is not always implied by the second one, as exemplified by E = y p
− t ∈ Fp[t, y], and in general by

any irreducible polynomial E in k[t, y p
].
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Note that both assumptions are satisfied if E is assumed to be the minimal polynomial of f and that
irreducibility implies separability as soon as we know that E has at least one root in k[[t]]. The polynomial
E might have several roots in k[[t]]. In order to specify uniquely its root f , we further assume that we
are given a nonnegative integer ρ together with f0, . . . , f2ρ in k such that

E(t, f0+ f1t + · · ·+ f2ρ t2ρ)≡ 0 (mod t2ρ+1),

Ey(t, f0+ f1t + · · ·+ fρ tρ) 6≡ 0 (mod tρ+1).

In other words, the data structure used to represent f is the polynomial E together with the initial coeffi-
cients f0, . . . , f2ρ . (Actually ρ+1 coefficients are enough to ensure the uniqueness of f . However 2ρ+1
coefficients are needed to ensure its existence; for this reason, we will always assume the coefficients of
f are given up to index 2ρ.) We observe that it is always possible to choose ρ less than or equal to the
t-adic valuation of the y-resultant of E and Ey , hence, a fortiori, ρ ≤ (2d−1)h.

Under these assumptions, the classical Newton iteration [16] allows the computation of the first N
coefficients of f in quasilinear complexity Õ(N ). Here, and in the whole article (with the notable
exception of Section 4), the algorithmic cost is measured by counting the number of basic arithmetic
operations (+,−,×,÷) and applications of the Frobenius map (x 7→ x p) and of its inverse (x 7→ x1/p)
in the ground field k. The soft-O notation Õ(·) indicates that polylogarithmic factors in the argument are
omitted. Newton’s iteration thus provides a quasioptimal algorithm to compute f0, . . . , fN . A natural
and important question is whether faster alternatives exist for computing the coefficient fN alone.

With the exception of the rational case (d = 1), where the N -th coefficient can be computed in com-
plexity O(log N ) by binary powering [13], the most efficient algorithm currently known to compute fN

in characteristic 0 has complexity Õ(
√

N ) [9]. It relies on baby step / giant step techniques, combined
with fast multipoint evaluation.

Surprisingly, in positive characteristic p, a radically different approach leads to a spectacular complex-
ity drop to O(log N ). However, the big-O term hides a (potentially exponential) dependency in p. The
good behavior of this estimate with respect to the index N results from two facts. First, if the index N
is written in radix p as (N`−1 · · · N1 N0)p, then the coefficient fN is given by the simple formula

fN = [(SN`−1 · · · SN1 SN0 f )(0)]p
`

, (1)

where the Sr (0≤ r < p) are the section operators defined by

Sr

∑
n≥0

gntn
=

∑
n≥0

g1/p
pn+r tn. (2)

Note that for the finite field Fp the exponents p` in (1) and 1/p in (2) are useless, since the Frobenius
map x 7→ x p is the identity map in this case.

Second, by Christol’s theorem [6; 7; 15], the coefficient sequence of an algebraic power series f over
a perfect field k of characteristic p > 0 is p-automatic: this means that f generates a finite-dimensional
k-vector space under the action of the section operators. Consequently, with respect to a fixed k-basis of
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this vector space, one can express f as a column vector C , the section operators Sr as square matrices Ar

(0≤ r < p), and the evaluation at 0 as a row vector R. Formula (1) then becomes

fN = [R AN`−1 · · · AN1 AN0C]p
`

. (3)

Since ` is about log N, and since the size of the matrices Ar does not depend on N, (3) yields an algo-
rithm of complexity O(log N ). This observation (for any p-automatic sequence) is due to Allouche and
Shallit [1, Corollary 4.5]. However, this last assertion hides the need to first find the linear representation
(R, (Ar )0≤r<p,C). As shown in [2, Example 5], already in the case of a finite prime field, translating
the p-automaticity in terms of linear algebra yields matrices Ar whose size can be about d2hp2d. Thus,
their precomputation has a huge impact on the cost with respect to the prime number p.

In the particular case of a prime field k = Fp, and under the assumption Ey(0, f0) 6= 0, this was
improved in [2] by building on an idea originally introduced by Christol in [6]: one can compute fN in
complexity Õ((h+ d)5hp)+ O((h+ d)2h2 log N ). Before now, this was the best complexity result for
this task.

Contributions. We further improve the complexity result from [2] down to Õ(d2hp+dωh)+O(d2h2 log N )
(Theorem 3.4, Section 3B). Here ω is the exponent of matrix multiplication. In the case where k is a
finite field, we propose an even faster algorithm, with bit complexity linear in log N and quasilinear
in
√

p (Theorem 4.1, Section 4). It is obtained by blending the approach in Section 3B with ideas and
techniques imported from the characteristic zero case [9]. All these successive algorithmic improvements
are consequences of our main theoretical result (Theorem 2.2, Section 2B), which can be thought of as
an effective version of Christol’s theorem (and in particular reproves it).

2. Effective version of Christol’s theorem

We keep the notation of the introduction. Christol’s theorem is stated as follows.

Theorem 2.1 (Christol). Let f (t) in k[[t]] be a formal power series that is algebraic over k(t), where k
is a perfect field with positive characteristic. Then there exists a finite-dimensional k-vector space con-
taining f (t) and stable by the section operators.

The aim of this section is to state and to prove an effective version of Theorem 2.1, on which our
forthcoming algorithms will be built. Our approach follows the initial treatment by Christol [6], which
is based on Furstenberg’s theorem [14, Theorem 2]. For the application we have in mind, it turns out
that the initial version of Furstenberg’s theorem will be inefficient; hence we will first need to strengthen
it, considering residues around the moving point f (t) instead of residues at 0. Another new input we
shall use is a globalization argument allowing us to compare section operators at 0 and at f (t). This
argument is formalized through Frobenius operators and is closely related to the Cartier operator used
in a beautiful geometric proof of Christol’s theorem due to Deligne [11] and Speyer [18], and further
studied by Bridy [5].
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2A. Frobenius and sections. Recall that the ground field k is assumed to be a perfect field of prime
characteristic p, for example a finite field Fq , where q = ps. Let K = k(t) be the field of rational
functions over k and let L = K [y]/(E).

Since k is a perfect field, the Frobenius endomorphism F : k→ k defined by x 7→ x p is an automorphism
of k. It extends to a ring homomorphism, still denoted by F, from L[t1/p

] to L which raises an element
of L[t1/p

] = L1/p to the power p. This homomorphism is an isomorphism and its inverse is denoted

F−1
=

p−1∑
r=0

tr/p Sr , (4)

where each Sr , with 0≤ r < p, maps L onto itself.
The use in (4) of the same notation as in (2) is not a mere coincidence. The algebraic series f provides

an embedding of L into the field of Laurent series k((t)), which is the evaluation of an element P(y)
of L at the point y = f (t). We will call eval f : L→ k((t)) the corresponding map, which sends P(y)
to P( f (t)). The Frobenius operator extends from L to k((t)), and the same holds for the sections Sr

(0≤ r < p). These extensions are exactly those of (2). The Sr ’s in (4) then appear as global variants of
the Sr ’s in (2). Moreover, global and local operators are compatible, in the sense that they satisfy

F ◦ eval f = eval f ◦ F, Sr ◦ eval f = eval f ◦ Sr . (5)

As for rational functions, the Frobenius operator and the section operators induce, respectively, a
ring isomorphism F from K [t1/p

] onto K and maps σ r (0 ≤ r < p) from K onto K such that F−1
=∑p−1

r=0 tr/p σ r . The operators F and Sr (0 ≤ r < p) are not K -linear but only k-linear. More precisely,
for any λ in K [t1/p

], µ in K , and z in L ,

F(λz)= F(λ) F(z) and Sr (µz)=
p−1∑
s=0

tb
r+s

p cσ s(µ) Sr−s(z). (6)

In other words both F and F−1 are actually semilinear.

2B. The key theorem. Let k[t, y]<h,<d be the set of polynomials P ∈ k[t, y] such that degt P < h and
degy P < d .

Theorem 2.2. For P ∈ k[t, y]<h,<d and for 0 ≤ r < p, there exists a (unique) polynomial Q in
k[t, y]<h,<d such that

Sr

( P
Ey

)
≡

Q
Ey

(mod E). (7)

The rest of this subsection is devoted to the proof of Theorem 2.2. Although mainly algebraic, the
proof is based on the rather analytic remark that any algebraic function in k(t)[ f ] can be obtained as
the residue at T = f of some rational function in k(t, T ) (see Lemma 2.3). This idea was already used
in Furstenberg [14], whose work has been inspiring for us. The main new insight of our proof is the
following: we replace several small branches around zero by a single branch around a moving point.
In order to make the argument work, we shall also need to relate the behavior of the section operators
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around 0 and around the aforementioned moving point. This is where the reinterpretation of the Sr ’s in
terms of Frobenius operators will be useful.

We consider the ring H = k((t))[[T ]] of power series over k((t)). Its fraction field is the field K =
k((t))((T )) of Laurent series over k((t)). There is an embedding k((t))[y] →H taking a polynomial in
y to its Taylor expansion around f . Formally, it is simply obtained by mapping the variable y to f+T.
It extends to a field extension k((t))(y)→ K. We will often write P(t, f+T ) for the image of P(t, y) ∈
k((t))(y) in K. The field K is moreover endowed with a residue map res : K → k((t)), defined by
res
(∑

∞

i=v ai T i
)
= a−1 (by convention, a−1 = 0 if v >−1). It is clearly k((t))-linear.

Lemma 2.3. For any polynomial P ∈ k((t))[y], the following equality holds:

res
(

P(t, f+T )
E(t, f+T )

)
=

P(t, f )
Ey(t, f )

.

Proof. Since f is a simple root of E , the series E(t, f+T ) has a simple zero at T = 0. This means that
it can be written E(t, f+T )= T · q(T ) with q ∈H, q(0) 6= 0. Taking the logarithmic derivative with
respect to T gives

Ey(t, f+T )
E(t, f+T )

=
1
T
+

q ′(T )
q(T )

,

akin to [14, Formula (15), p. 276], from which we derive

P(t, f+T )
E(t, f+T )

=
g(T )

T
+ g(T )

q ′(T )
q(T )

,

where g(T ) = P(t, f+T )/Ey(t, f+T ). Since Ey(t, f+T ) does not vanish at T = 0, the series g(T )
has no pole at 0. Therefore, the residue of g(T )/T is nothing but g(0). Besides the residue of the second
summand g(T ) q ′(T )/q(T ) vanishes. All in all, the residue of P(t, f+T )/E(t, f+T ) is g(0)+ 0 =
P(t, f )/Ey(t, f ). �

We now introduce analogues of section operators over K. For this, we first observe that the Frobenius
operator x 7→ x p defines an isomorphism F : K[t1/p, T 1/p

] → K. Moreover K[t1/p, T 1/p
] is a field

extension of K of degree p2. A basis of K[t1/p, T 1/p
] over K is, of course, (tr/p T s/p)0≤r,s<p, but it will

be more convenient for our purposes to use a different one. It is given by Lemma 2.4.

Lemma 2.4. The family (tr/p ( f+T )s/p)0≤r,s<p is a basis of K[t1/p, T 1/p
] over K.

Proof. For simplicity, we set y = f+T ∈ K. We have:(
1 y1/p

· · · y(p−1)/p
)
=
(
1 T 1/p

· · · T (p−1)/p
)
·U,

where U is the square matrix whose (i, j) entry (for 0≤ i, j < p) is
( j

i

)
f i/p. In particular, U is upper

triangular and all its diagonal entries are equal to 1. Thus U is invertible and the conclusion follows. �
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For r and s in {0, 1, . . . , p−1}, we define the section operators Sr,s : K→ K by

F−1
=

p−1∑
r=0

p−1∑
s=0

tr/p( f+T )s/p Sr,s .

(These operations look like those used in [2, §3.2], but they are not exactly the same.) Clearly Sr,0 extends
the operator Sr : k((t))→ k((t)) defined by (2) and Sr,s(g

p
1 g2)= g1 Sr,s(g2) for all g1, g2 ∈K. We observe

moreover that the Sr,s’s stabilize the subrings k((t))[y] and k[t, y], since y corresponds to f+T.

Proposition 2.5. The following commutation relation holds over K:

Sr ◦ res= res ◦ Sr,p−1 .

Proof. Let us write g ∈K as g =
∑
∞

i=v ai T i with v ∈ Z and ai ∈ k((t)) for all i ≥ v. Its image under F−1

can be expressed in two different ways as follows:

F−1(g)=
∞∑

i=v

F−1(ai ) T i/p
=

p−1∑
r=0

p−1∑
s=0

tr/p( f+T )s/p Sr,s(g).

We identify the coefficient in T−1/p. To do so, we observe that the terms obtained with s < p− 1 do not
contribute, while the contribution of the term tr/p( f+T )(p−1)/p Sr,p−1(g) is the residue of tr/p Sr,p−1(g).
We then get

F−1(a−1)=

p−1∑
r=0

res ◦ Sr,p−1(g) · tr/p.

Returning to the definition of Sr , we derive Sr (a−1)= res ◦ Sr,p−1(g), from which the lemma follows. �

Proof of Theorem 2.2. Let P ∈ k[t, y] and 0≤ r < p. We set Q = Sr,p−1(P E p−1) ∈ k[t, y]. Combining
Lemma 2.3 and Proposition 2.5, we derive the following equalities:

Sr

(
P(t, f )
Ey(t, f )

)
= Sr ◦ res

(
P(t, f+T )
E(t, f+T )

)
= res ◦ Sr,p−1

(
P(t, f+T )
E(t, f+T )

)
= res

(
Q(t, f+T )
E(t, f+T )

)
=

Q(t, f )
Ey(t, f )

(compare with [2, §3.2]). The stability of k[t, y]/E(t, y) under Sr follows using the fact that E is the
minimal polynomial of f over K = k(t). If we know in addition that P lies in k[t, y]<h,<d then P E p−1

is in k[t, y]<ph,≤p(d−1) and, therefore, Q falls in k[t, y]<h,<d as well. Theorem 2.2 is proved. �

Remark 2.6. It is possible to slightly vary the bounds on the degree and the height, and to thus de-
rive other stability statements. For example, starting from a polynomial P(t, y) with degt P ≤ h and
degy P ≤ d , we have:

Sr
P(t, f )
Ey(t, f )

=
Q(t, f )
Ey(t, f )

,

with degt Q ≤ h and degy P < d. Moreover degt Q < h provided that r > 0.
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Furthermore, if P has degree at most d−2, the section Sr,p−1(P E p−1) has degree at most d−2 for
any r ∈ {0, 1, . . . , p−1}. Indeed, P E p−1 has degree at most pd − 2< p(d−1)+ p− 1. In other words,
the subspace k[t, y]<h,≤d−2 is stable by the section operators Sr (0≤ r < p).

3. Application to algorithmics

Theorem 2.2 exhibits an easy-to-handle finite dimensional vector space which is stable under the section
operators. In this section, we derive from it two efficient algorithms that compute the N -th term of f
in time linear in log N. The first is less efficient, but easier to understand; we present it mainly for
pedagogical purposes.

3A. First algorithm: modular computations. The first algorithm we will design follows rather straight-
forwardly from Theorem 2.2. It consists of the following steps:

(1) Compute the matrix giving the action of the Frobenius F with respect to the “modified monomial
basis” B = (y j/Ey)0≤ j≤d−1.

(2) Deduce the matrix of F−1 with respect to B.

(3) Extract from it the matrices of the section operators Sr .

(4) Compute the N -th coefficient of f using (1).

Let us be a bit more precise (though we will not give full details because we will design in Section 3B
an even faster algorithm). Let M be the matrix of F in the basis B; its j -th column contains the coordinates
of the vector F(y j/Ey) = y pj/E p

y in the basis B, which are also the coordinates of y pj/E p−1
y in the

monomial basis (1, y, . . . , yd−1). It is easily seen that the matrix of F−1 with respect to B is F−1(M−1),
which is, by definition, the matrix obtained by applying F−1 to each entry of M−1.

We now discuss the complexity of the computation of M−1. Thanks to Theorem 2.2 and (4), we know
that its entries are polynomials of degree at most h(p−1). However, this bound is not valid for the entries
of M. Indeed, in full generality, the latter are rational fractions whose numerators and denominators have
degrees of magnitude dhp. In order to save the extra factor d , we rely on modular techniques: we choose
a polynomial B of degree h(p−1)+ 1 and perform all computations modulo B. To make the method
work, B must be chosen in such a way that both M and M−1 make sense modulo B, i.e., B must be
coprime with the denominators of the entries of M. The latter condition discards a small number of
choices, so that a random polynomial B will be convenient with high probability.

Using fast polynomial and matrix algorithms, the computation of M modulo B can be achieved within
Õ(d2hp) operations in k, while the inversion of M modulo B requires Õ(dωhp) operations in k, where
ω ∈ [2, 3] is the matrix multiplication exponent. Since we count an application of F−1

: k→ k as a unique
operation, the cost of the first two steps is Õ(dωhp) as well. The third step is free as it only consists
in reorganizing coefficients. As for the evaluation of (1), each application of Sr has a cost of O(d2h2)

operations in k. The total complexity of our algorithm is then Õ(dωhp)+O(d2h2 log N ) operations in k.
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M =


1+2t4

+4t5
+3t6

+2t7
+2t8

+2t12
+4t13

+3t14
+t15
+2t16

· · ·

t+2t2
+3t3

+4t5
+4t6

+3t7
+3t8

+3t9
+t10
+4t11

+t13
+2t15

+t16
· · ·

1+2t+3t2
+3t5

+2t6
+2t7

+t8
+t9
+3t10

+t11
+3t12

+3t14
+4t15

+3t16
· · ·

0 · · ·

 (mod t17)

M−1
=


1+3t4

+t8
+t12
+t13
+t16 t4

+2t8 t8
+t12 t12

2+2t+· · ·+t9
+3t12 3+2t+· · ·+2t13

+t16 3+4t+t5
+t8 1+4t4

+3t5
+2t9

+2t12

4+2t+· · ·+2t9
+4t12 4+2t+· · ·++2t9

+4t12 1+2t+· · ·+3t13
+t16 2+4t+· · ·+4t5

+2t8

0 0 0 1+4t+· · ·+4t13
+t16


Figure 1. Frobenius and its inverse in the “modified monomial basis”.

Remark 3.1. We do not actually need to apply the Frobenius inverse F−1
: k → k since, at the end

of the computation, we raise the last intermediate result to the power p`. The complexity Õ(dωhp)+
O(d2h2 log N ) can then be reached even if we do not count an application of F−1 as a single operation.

A detailed example. Consider k = F5 and the polynomial

E = (t4
+ t + 1)y4

+ y2
+ y− t4

∈ k[t, y].

It admits a unique root f in k[[t]] which is congruent to 0 modulo t .
The matrix M of the Frobenius F with respect to the basis B= (1/Ey, y/Ey, y2/Ey, y3/Ey) is written

as D−1
· M̃, where D and the largest entry of M̃ have degrees 55 and 39, respectively. However, by

Theorem 2.2, we know that M−1 has polynomial entries of degree at most 16. Noticing that 0 is not
a root of the resultant of E and Ey , we can compute M and its inverse modulo B(t) = t17. The result
of this computation is displayed partly in Figure 1. We observe that the maximal degree of the entries
of M−1 is 16 and reaches our bound h(p−1) (which is then tight for this example). We furthermore
observe that M is block triangular, as expected after Remark 2.6.

Let us now compute the images of y ∈ L under the section operators. Write y = E−1
y · (4t4

+2y+3y2)

in L . We then have to compute the product M−1
· (4t4 2 3 0)T. As a result, we obtain

t4
+4t8
+2t12

+4t16
+4t17

+4t20

t+3t4
+2t5
+t8
+3t9
+4t10

+3t12
+3t13

+4t16

1+2t2
+3t3
+4t4
+t5
+t6
+4t7
+4t8
+3t9
+2t10

+2t13
+4t16

0

 .
Rearranging the terms, we finally find that

S0(y)= E−1
y · (4t4

+ (2t + 4t2)y+ (1+ t + 2t2)y2),

S1(y)= E−1
y · (4t3

+ (1+ 4t3)y+ (t + 4t3)y2),

S2(y)= E−1
y · ((2t2

+ 4t3)+ 3t2 y+ (2+ 4t)y2),

S3(y)= E−1
y · (4t + (t + 3t2)y+ (3+ 4t + 2t2)y2),

S4(y)= E−1
y · (1+ (3+ 3t)y+ (4+ 3t)y2).
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To conclude this example, suppose that we want to compute the 70-th coefficient of f . Applying (1), we
find that it is equal to the constant coefficient of S2 S4 S0 f . Therefore we have to compute S2 S4 S0 y.
Repeating twice what we have done before, we end up with

S2 S4 S0 y = E−1
y · ((2+ t2)+ (4+ 3t + 3t3)y+ (2+ 4t2

+ 2t3)y2).

Plugging y = f into the above equality, we get S2 S4 S0 f = 2+ O(t), from which we conclude f70 = 2.

Remark 3.2. In the above example, only the constant coefficient of f was needed to carry out the
whole computation. This is related to the fact that Ey( f (t)) has t-adic valuation 0. More generally, if
Ey( f (t)) has t-adic valuation ρ, we will need the first ρ+1 coefficients of f since the final division by
Ey will induce a loss of t-adic precision of ρ “digits”. This does not change the complexity bound, since
ρ ≤ degt Resy(E, Ey) ∈ O(dh).

3B. Second algorithm: Hermite–Padé approximation. For obvious reasons related to the size of the
computed objects, we cannot hope to achieve a complexity lower than linear with respect to p using the
approach of Section 3A. However, the exponent on d still can be improved. In order to achieve this, we re-
turn to Theorem 2.2. The key idea is to leap efficiently from the polynomial P to the polynomial Q in (7).

Let P =
∑d−1

i=0 ai (t)yi in k[t, y]<h,<d and 0≤ r < p. By Theorem 2.2, there exists Q =
∑d−1

i=0 bi (t)yi

in k[t, y]<h,<d such that Sr (P/Ey)≡ Q/Ey (mod E), or, equivalently,

Sr

( d−1∑
i=0

ai (t)
f (t)i

Ey(t, f (t))

)
=

d−1∑
j=0

b j (t)
f (t) j

Ey(t, f (t))
. (8)

The algorithmic question is to recover efficiently the bi ’s starting from the ai ’s. Identifying coefficients
in (8) yields a linear system over k in the coefficients of the unknown polynomials bi . This system has
hd unknowns and an infinite number of linear equations. The point is that a truncated version of (8),

Sr

(d−1∑
i=0

ai (t)
f (t)i

Ey(t, f (t))

)
≡

d−1∑
j=0

b j (t)
f (t) j

Ey(t, f (t))
(mod t2dh), (9)

is sufficient to uniquely determine Q. This is a direct consequence of the following.

Lemma 3.3. If Q in k[t, y]<h,<d satisfies (Q/Ey)(t, f (t))≡ 0 (mod t2dh), then Q = 0.

Proof. The resultant r(t) of E(t, y) and Q(t, y) with respect to y is a polynomial of degree at most
d(h−1)+ h(d−1). On the other hand, we have a Bézout relation,

E(t, y) u(t, y)+ Q(t, y) v(t, y)= r(t),

where u(t, y) and v(t, y) are bivariate polynomials in k[t, y]. By evaluating the previous equality at
y = f (t) it follows that

r(t)≡ Q(t, f (t)) v(t, f (t))≡ 0 (mod t2dh)

holds in k((t)), and therefore r = 0. Thus E and Q have a nontrivial common factor; since E is irreducible,
it must divide Q. But degy Q < degy E , so Q = 0. �
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Solving (9) amounts to solving a Hermite–Padé approximation problem. In terms of linear algebra,
it translates to solving a linear system over k in the coefficients of the unknown polynomials bi . This
system has dh unknowns and N = 2dh linear equations. Moreover, it has a very special shape: it has
a quasi-Toeplitz structure, with displacement rank 1 = O(d). Therefore, it can be solved using fast
algorithms for structured matrices [17; 4] in Õ(1ω−1 N )= Õ(dωh) operations in k. These algorithms
first compute a (quasi)-inverse of the matrix encoding the homogenous part of the system, using a compact
data-structure called a displacement generator (or, 6LU representation); then, they apply it to the vector
encoding the inhomogeneous part. The first step has complexity Õ(1ω−1 N )= Õ(dωh), the second step
has complexity Õ(1N )= Õ(d2h).

In our setting, we will need to solve log N systems of this type, each corresponding to the current digit
of N in radix p. An important feature is that these systems share the same homogeneous part, which
only depends on the coefficients of the power series s j (t)= f j/(Ey(t, f (t))) occurring on the right-hand
side of (9). Only the inhomogeneous parts vary: they depend on the linear combination

∑d−1
i=0 ai (t)si (t).

Putting these facts together yields Algorithm A and the complexity result in Theorem 3.4.

Algorithm A: N-th coefficient via Hermite–Padé

Input: a polynomial E(t, y)= ed(t)yd
+ · · ·+ e0(t) and a truncation g = f0+ · · ·+ O(tρ+1) of a series f

such that E(t, g)= O(tρ+1)

Output: the N -th coefficient fN of the series f
1. Precompute the first 2pdh coefficients of the series expansions s j of f (t) j/Ey(t, f ), 0≤ j < d.
2. Precompute the quasi-inverse of the Toeplitz matrix corresponding to the Hermite–Padé
approximation problem.
3. Expand N = (N`−1 · · · N0)p with respect to the radix p.
4. Set g = y ∈ L written as E−1

y · (−de0− (d−1)e1 y− · · ·− ed−1 yd−1).

5. for i = 0, 1, . . . , `− 1 do
(a) Write g = P(t, f )/Ey(t, f ) as a linear combination of the s j ’s.
(b) Compute the section SNi (g) at precision O(t2dh).
(c) Recover Q such that SNi (g)= Q/Ey by Hermite–Padé.
(d) Redefine g as Q/Ey .

6. Replace y by f (t) in g and call g(t) the obtained result.
7. Expand g(t) at precision O(t).
8. Set g0 to the constant coefficient of g(t).
9. Return g p`

0 .

Theorem 3.4. Let k be a perfect field with characteristic p > 0. Let E(t, y) be an irreducible polynomial
in k[t, y] of height h and degree d. We assume that we are given a nonnegative integer ρ and a polynomial
f (t) such that E(t, f (t))≡ 0 (mod t2ρ+1) and Ey(t, f (t)) 6≡ 0 (mod tρ+1).

There exists a unique series f (t) congruent to f (t) modulo tρ+1 for which E(t, f (t))= 0. Moreover,
Algorithm A computes the N-th coefficient of f for a cost of Õ(d2hp+dωh)+O(d2h2 log N ) operations
in k.
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Proof. The first assertion is Hensel’s Lemma [12, Theorem 7.3].
The precomputation of s j (t) = f (t) j/(Ey(t, f (t))) modulo t2dhp for 0 ≤ j < d can be performed

using Newton iteration, for a total cost of Õ(d2hp) operations in k. As explained above, this is enough
to set up the homogeneous part of the quasi-Toeplitz system; its inversion has cost Õ(dωh).

Let us turn to the main body of the computation, which depends on the index N. For each p-digit
r = Ni of N, we first construct the inhomogeneous part of the system. For this, we extract the coefficients
of t pj+r in

∑d−1
i=0 ai (t)si (t), for 0 ≤ j < d, for a total cost of O(d2h2) operations in k. We then apply

the inverse of the system to it, for a cost of O(d2h2) (using a naive matrix vector multiplication2 ). This
is done `≈ log N times. The other steps of the algorithm have negligible cost. �

4. Improving the complexity with respect to p

As shown in Theorem 3.4, Algorithm A has a nice complexity with respect to the parameters d, h and
log N : it is polynomial with small exponents. However, the complexity with respect to p is not that
good, as it is exponential in log p, which is the relevant parameter. Thus, when p is large (say > 105),
Algorithm A runs slowly and is no longer usable.

For this reason, it is important to improve the complexity with respect to p. In this section, we
introduce some ideas to achieve this. More precisely, our aim is to design an algorithm whose complexity
with respect to p and N is Õ(

√
p) · log N, and remains polynomial in all other relevant parameters. In the

current state of knowledge, it seems difficult to decrease further the exponent on p; indeed, the question
addressed in this paper is related to other intensively studied questions (e.g., counting points via p-adic
cohomologies) for which the barrier Õ(

√
p) has not been overcome yet.

Notation and assumptions. We keep the notation of previous sections. We make one additional hypoth-
esis: the ground field k is a finite field. We assume that k is represented as (Z/pZ)[X ]/π(X) where π is
an irreducible monic polynomial over Z/pZ of degree s. We choose a monic polynomial π̂ ∈ Z[X ] of
degree s lifting π . We set W = Zp[X ]/π̂(X) where Zp is the ring of p-adic integers.

The algorithm we are going to design is not algebraic in the sense that it does not only perform
algebraic operations in the ground field k, but will sometimes work over W (or, more exactly, over finite
quotients of W ). For this reason, throughout this section, we will use bit complexity instead of algebraic
complexity.

We use the notation poly(n) to indicate a quantity whose growth is at most polynomial in n. The
precise result we will prove reads as follows.

Theorem 4.1. Under the assumptions of Theorem 3.4 and the above extra assumptions, there exists an
algorithm of bit complexity poly(dh)Õ(s

√
p) log N that computes the N-th coefficient of f .

If p is bounded by a (fixed) polynomial in d and h, then Theorem 4.1 has been proved already. In the
sequel, we will then always assume that p� d, h.

2One can actually achieve this step for a cost of Õ(d2h) operations in k using the quasi-Toeplitz structure; however this is
not that useful since the cost of the previous step was already O(d2h2).
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Overview of the strategy. We reuse the structure of Algorithm A but speed up the computation of the
SNi (g)’s. Precisely, in Algorithm A, the drawback was the computation of the f j/(Ey(t, f ))’s or, almost
equivalently, the computation of g = P(t, f )/(Ey(t, f )) at sufficient precision. However, only a few
(precisely 2dh) coefficients of g are needed, since we are only interested in one of its sections. A classical
method for avoiding this overhead is to find a (small) recurrence on the coefficients on g =

∑
∞

n=0 gi t i of
the form:

br (i)gi+r + br−1(i)gi+r−1+ · · ·+ b1(i)gi+1+ b0(i)gi = 0. (10)

We then unroll it using matrix factorials (for which fast algorithms are available in the literature [9]).
Unrolling the recurrence is straightforward as soon as the leading coefficient br (i) does not vanish. In
fact, when br (i)= 0, the value of gi+r cannot be deduced from the previous ones. Unfortunately, it turns
out that br (i) does sometimes vanish in our setting.

We tackle this issue by lifting everything over W and performing all computations over this ring.
Divisions by p then become possible but induce losses of precision. We then need to control the p-adic
valuation of the denominators, that are the p-adic valuations of the br (i)’s. We cannot expect to have
a good control on them in full generality; even worse, we can build examples where br (i) vanishes in
W for some i . There exists nevertheless a good situation — the so-called ordinary case — where we can
say a lot about the br (i)’s. With this extra input, we are able to lead our strategy to its end.

The general case reduces to the ordinary one using a change of origin, i.e., replacing t by u+α for
some α ∈ k. This change of origin does not seem to be harmless a priori. Indeed the Taylor expansion
of g around α (the one we shall compute) has in general nothing to do with the Taylor expansion of g
around 0 (the one we are interested in). The sections are nevertheless closely related (see Proposition 4.3).
This “miracle” is quite similar to what we have already observed in Proposition 2.5 and again can be
thought of as an avatar of the Cartier operator.

4A. From algebraic equations to recurrences. We consider a bivariate polynomial P(t, y) ∈ k[t, y]
with degt P < h and degy P < d. We fix an integer r in the range [0, p−1]. Our aim is to compute
Sr (P(t, f )/(Ey(t, f ))) at precision O(t2dh). Set g = P(t, f )/(Ey(t, f )) and write g =

∑
∞

i=0 gi t i. By
definition Sr (g)=

∑
∞

j=0 g1/p
r+pj t

j, so we have to compute the coefficients gr+pj for j < 2dh.
We let L be the leading coefficient of E(t, y) and R be the resultant of E and Ey . To begin with, we

make the following assumption (which will be relaxed in Section 4C):

(H1) Both L and R have t-adic valuation 0.

As explained above, we now lift the situation over W. We choose a polynomial Ê ∈ W [t, f ] of
bidegree (h, d) lifting E . We define Êt = ∂ Ê/∂t , Êy = ∂ Ê/∂y. The assumption (H1) implies that the
series f lifts uniquely to a series f̂ ∈W [[t]] such that Ê(t, f̂ )= 0. We define L̂ as the leading coefficient
of Ê(t, y) and set R̂ = Res(Ê, Êy). We introduce the ring WK =W [t, (L̂ R̂)−1

]. By (H1), WK embeds
canonically into W [[t]]. We pick a polynomial P̂ ∈W [t, y] lifting P such that degt P̂ < h and degy P̂ < d .
We set ĝ = P̂(t, f̂ ).
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We now compute a linear differential equation satisfied by ĝ. For this, we observe that the derivation
∂/∂t : W [[t]] → W [[t]] stabilizes the subring WL = WK [ f̂ ]. Indeed from the relation Ê(t, f̂ ) = 0, we
deduce that ∂ f̂ /∂t = −Êt(t, f̂ )/(Êy(t, f̂ )). Thus ∂ f̂ /∂t ∈ WL because Êy(t, f̂ ) is invertible in WL

thanks to (H1). Using additivity and the Leibniz relation, we finally deduce that ∂/∂t takes WL to itself.
In particular, all the successive derivatives of ĝ lie in WL . On the other hand, we notice that WL is free
of rank d over WK with basis (1, f̂ , . . . , f̂ d−1). Let M be the d × d matrix whose j-th column (for
0≤ j < d) contains the coordinates of ∂ j ĝ/∂t j with respect to the above basis. Similarly let C be the
column vector whose entries are the coordinates of ∂d ĝ/∂td . Let 1d = det M. We solve the system
M X = C using Cramer’s formulae and thus find a linear differential equation of the form:

1d
∂d ĝ
∂td +1d−1

∂d−1ĝ
∂td−1 + · · ·+11

∂ ĝ
∂t
+10ĝ = 0,

where the other 1i ’s are defined as determinants as well. In particular, they all lie in WK . Multiplying
by the appropriate power of L̂ R̂, we end up with a differential equation of the form:

âd
∂d ĝ
∂td + âd−1

∂d−1ĝ
∂td−1 + · · ·+ â1

∂ ĝ
∂t
+ â0ĝ = 0, (11)

where the âi ’s are polynomials in t . We can even be more precise. Indeed, following the above con-
structions, we find that all entries of M and C are rational functions whose degrees (of numerators
and denominators) stay within poly(dh). We then deduce that the degrees of the 1̂i ’s and âi ’s are in
poly(dh) as well. Furthermore, they can be computed for a cost of poly(dh) operations in k, that is
poly(dh)Õ(s log p) bit operations (recall that s denotes the degree of k over Fp)

We write ĝ =
∑
∞

i=0 g̃i t i/i !. The differential equation (11) translates to a recurrence relation on the
g̃i ’s of the form:

b̃0(n)g̃n + b̃1(n)g̃n−1+ b̃2(n)g̃n−2+ · · ·+ b̃r (n)g̃n−r = 0, for all n ≥ r, (12)

where the b̃i ’s are polynomials in n over W whose degrees are in poly(dh). Moreover r is at most
d +maxi deg âi . In particular, r ∈ poly(dh). Finally it is easy to write down explicitly b̃0: it is the
constant polynomial with value âd(0).

4B. The ordinary case. In order to take advantage of (12), we make the following extra assumption,
corresponding to the so-called ordinary case:

(H2) The value âd(0) does not vanish modulo p.

Under (H2), b̃0(n)= âd(0) is invertible in W and there is no obstruction to unrolling the recurrence (12).
Let us be more precise. We recall that we want to compute the values of gr+pj for j up to 2dh. Clearly
gn is the reduction modulo p of g̃n/n!. In order to get gr+pj , we need to compute g̃r+pj modulo pv+1

where v is the p-adic valuation of (r + 2dhp)!. Under our assumption that p is large enough compared
to d and h, we get v = 2dh. We will then work over the finite ring W ′ =W/p2dh+1W.
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We first compute the r first coefficients of f̂ modulo p2dh+1 by solving the equation Ê(t, f̂ ) = 0
(using a Newton iteration for example). Since r ∈ poly(dh), this computation can be achieved for a cost
of poly(dh) operations in W ′, that is, poly(dh)Õ(s log p) bit operations. We then build the companion
matrix:

M(n)=


1

. . .

1

−b̃r (n)
âd(0)

−b̃r−1(n)
âd(0)

· · ·
−b̃1(n)
âd(0)

 ∈ (W ′[n])r×r.

Obviously, (
g̃n−r+1 g̃n−r+2 · · · g̃n

)T
= M(n) ·M(n−1) · · ·M(r) ·

(
g̃0 g̃1 · · · g̃r−1

)T
,

and computing g̃n reduces to evaluating the matrix factorial M(n) ·M(n−1) · · ·M(r). Using [9], the latter
can be computed within poly(dh)Õ(

√
n) operations in W ′, that is, poly(dh)Õ(

√
n ·s log p) bit operations.

All in all, we find that the gr+pj ’s (0≤ j < 2dh) can all be computed for a cost of poly(dh)Õ(s
√

p) bit
operations.

Plugging this input into Algorithm A, we get an algorithm of bit complexity poly(dh)Õ(s
√

p) log N.
Theorem 4.1 is thus proved under the extra assumptions (H1) and (H2).

4C. Reduction to the ordinary case. We finally explain how (H1) and (H2) can be relaxed. The rough
idea is to translate the origin at some point where these two hypotheses hold simultaneously.

The case of complete vanishing. Before proceeding, we need to deal with the case where the whole
polynomial âd vanishes modulo p. This case is actually very special; this is shown by the next lemma,
whose proof relies on the fact that for a generic g, the minimal-order (homogeneous) linear differential
equation over k(t) satisfied by g has order exactly d [8].

Lemma 4.2. For a generic g ∈ L = k(t)[y]/E(t, y), the reduction of âd modulo p does not vanish.

We say that an element g ∈ L is good if the corresponding âd does not vanish modulo p. Lemma 4.2
ensures that goodness holds generically. It then holds with high probability since we have assumed that
the ground field k has a large cardinality. Consequently, even if we were unlucky and g was not good,
we could produce with high probability a decomposition g = g1+ g2 where g1 and g2 are both good (just
by sampling g1 at random). Since the section Sr is additive, we can recover Sr (g) as Sr (g1)+ Sr (g2).

For this reason, in what follows we will assume safely that g is good.

Change of origin. Let α̂ ∈W be such that L̂(α̂) 6≡ 0 (mod p), R̂(α̂) 6≡ 0 (mod p), âd(α̂) 6≡ 0 (mod p).
Such an element exists (since k is assumed to be large) and can be found for a cost of poly(dh) operations
in k (e.g., by enumerating its elements).

We denote by α ∈ k the reduction of α̂ modulo p and assume that α 6= 0 (otherwise, we are in the
ordinary case). We perform the change of variable τα : t 7→ u+α. Note that τα induces isomorphisms
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k(t)→ k(u) and k(t)[y]/E(t, y)→ k(u)[y]/E(u−α, y). Furthermore, the polynomial E(α, y)= 0 has d
simple roots in an algebraic closure of k. Let fα,0 be one of them. By construction, fα,0 lies in a finite
extension ` of k of degree at most d. Moreover, by Hensel’s Lemma, fα,0 lifts uniquely to a solution,

fα = fα,0+ fα,1u+ · · ·+ fα,i ui
+ · · · ∈ `[[u]],

to the equation E(u−α, y)= 0. We emphasize that the morphism k(t)[y]/E(t, y)→ k(u)[y]/E(u−α, y)
does not extend to a mapping k((t))→ `((u)) sending f to fα. The previous discussion is summarized
in the following diagram:

k(t) k(u)

k(t)[y]
E(t, y)

k(u)[y]
E(u−α, y)

k((t)) `((u))

τα

τα

Sr Sr,u

Here Sr and Sr,u refer to the section operators defined in the usual way. We observe that they stabilize
the subfields k(t)[y]/(E(t, y)) and k(u)[y]/(E(u+α, y)), respectively, since they can alternatively be
defined by the relations

F−1
=

p−1∑
r=0

tr/p Sr over
k(t)[y]
E(t, y)

,

F−1
=

p−1∑
r=0

ur/p Sr,u over
k(u)[y]

E(u−α, y)
,

(13)

where F is the Frobenius map (see also (4)).

Proposition 4.3. The commutation Sp−1,u ◦ τα = τα ◦ Sp−1 holds over k(t)[y]/(E(t, y)).

Proof. Clearly τα commutes with the Frobenius because it is a ring homomorphism. From the relations
in (13), we then derive

∑p−1
r=0 ur/p Sr,u ◦ τα =

∑p−1
r=0 (u+α)

r/p τα ◦ Sr . Identifying the coefficients in
u(p−1)/p, we get the announced result. �

We emphasize that the other section operators Sr,? (with r < p−1) do not commute with τα: the above
phenomenon is specific to the index p−1. However, we can relate Sr and Sp−1,u as follows.

Corollary 4.4. For all g ∈ k(t)[y]/(E(t, y)), we have Sr (g)= τ−1
α ◦ Sp−1,u ◦ τα(t p−1−r g).

Proof. This follows from Proposition 4.3 and from Sr (g)= Sp−1(t p−1−r g). �

A modified recurrence. In order to use Corollary 4.4, we need to check that τα(t p−1−r g) fits the ordinary
case. Recall the differential equation satisfied by ĝ,

âd
∂d ĝ
∂td + âd−1

∂d−1ĝ
∂td−1 + · · ·+ â1

∂ ĝ
∂t
+ â0ĝ = 0.
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We set r ′ = p− 1− r and Ĝ = tr ′ ĝ. Applying Leibniz’s formula to ĝ = t−r ′ Ĝ, we get

∂ j ĝ
∂t j =

j∑
i=0

(−1)i
(

j
i

)
r ′(r ′+ 1) · · · (r ′+ i − 1)t−r ′−i ∂

j Ĝ
∂t j−i ,

from which we derive the following differential equation satisfied by Ĝ:∑
0≤i≤ j≤d

(−1)i â j

(
j
i

)
r ′(r ′+ 1) · · · (r ′+ i − 1)t−r ′−i ∂

j−i Ĝ
∂t j−i .

Reorganizing the terms and multiplying by tr ′+d, we end up with

d∑
j=0

d− j∑
i=0

(−1)i âi+ j

(
i+ j

i

)
r ′(r ′+ 1) · · · (r ′+ i − 1)td−i ∂

j Ĝ
∂t j . (14)

Set WL ,u =W [u, y]/Ê(u+α, y) and define the ring homomorphism τα̂ :WL→WL ,u , t 7→ u+α̂, y 7→ y.
Clearly τα̂ lifts τα. Applying τα̂ to (14) and noticing that ∂/∂t = ∂/∂u, we obtain

d∑
j=0

d− j∑
i=0

(−1)i τ̂α̂(ai+ j )
(

i+ j
i

)
r ′(r ′+ 1) · · · (r ′+ i − 1)(u+α̂)d−i ∂

jτα̂(Ĝ)
∂u j .

Conclusion. The leading term of the latter differential equation (obtained only with j = d and i = 0) is
τα̂(âd) (u+α̂)d. Its value at u = 0 is then âd(α̂) α̂

d, which is not congruent to 0 modulo p by assumption.
Moreover the other coefficients are polynomials in u whose degrees stay within poly(dh). Therefore,
we can apply the techniques of Section 4B and compute Sp−1,u(ταG) at precision O(u2dh) for a cost
of poly(dh)Õ(s

√
p) bit operations. As explained in Section 3B, we can reconstruct Sp−1,u(ταG) as an

element of k[u, y]/E(u+α, y) for a cost of poly(dh) operations in k using Hermite–Padé approximations.
Thanks to Corollary 4.4, it now just remains to apply τ−1

α to get Sr (g). This last operation can be
performed for a cost of poly(dh) operations in k as well. All in all, we are able to compute Sr (g) for a
total bit complexity of poly(dh)Õ(s

√
p). Repeating this process log N times, we obtain the complexity

announced in Theorem 4.1.
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Explicit computations in Iwasawa theory

Reinier Bröker, David Hubbard, and Lawrence C. Washington

We give two algorithms to compute layers of the anticyclotomic Z3-extension of an imaginary quadratic
field. The first is based on complex multiplication techniques for nonmaximal orders; the second is based
on Kummer theory. As an illustration of our results, we use the mirroring principle to derive results on
the structure of class groups of nonmaximal orders.

1. Introduction

Let K be an imaginary quadratic field, with fixed algebraic closure K , and for a fixed odd prime p,
let K p

⊂ K be the compositum of all Zp-extensions. The Galois group of K p/K is isomorphic to Z2
p,

and there are two “natural” Zp-extensions of K inside K p. The cyclotomic Zp-extension K cycl
p is the

p-part of the extension
⋃

n≥1 K (ζpn ) ⊂ K . The extension K cycl
p /Q is procyclic. The anticyclotomic

Zp-extension K anti
p is implicitly defined by the property that K anti

p ⊂ K is the unique Zp-extension of K
that is prodihedral over Q, meaning that we have

Gal(K anti
p /Q)∼= Zp oZ/2Z,

where the generator of Gal(K/Q)∼= Z/2Z acts by inversion on Zp.
The fields K cycl

p and K anti
p are linearly disjoint over K , and their compositum equals K p. Since both

have Galois group Zp, both extensions are unramified outside of p by [16, Proposition 13.2]. This article
focuses on explicitly computing layers of K anti

3 for the case where 3 is ramified in K . By computing, we
mean that on input of a positive integer k, we want to compute an irreducible polynomial f ∈ K [x] of
degree 3k with

Kk = K [x]/( f (x))⊂ K anti
3 .

The Galois group Gal(Kk/K ) is cyclic of order 3k .
Although we believe that most of our techniques can be generalized to arbitrary p and arbitrary split-

ting behavior of p, our restrictions to p = 3 and to the case that 3 ramifies in K allow us to highlight
the technical considerations that arise in those cases. Furthermore, we can use the mirror principle (see
Section 5) to obtain a criterion for when the 3-parts of certain class groups are cyclic.

MSC2010: primary 11R23; secondary 14K22.
Keywords: anticyclotomic, Iwasawa theory, nonmaximal order.
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The main result of this paper is that we have explicit algorithms to compute Kk . We use complex
multiplication (CM) techniques in Sections 2 and 3, and Kummer techniques in Section 6. The CM
technique works for any K ; the Kummer technique is more restricted.

Previous attempts to compute initial layers of anticyclotomic Zp-extensions of an imaginary quadratic
field include [3; 6; 11; 15]. These papers use a mix of class field theory and decomposition laws of primes.

Perhaps not surprisingly, the run times of our algorithms are inherently exponential. Not only are the
outputs of the algorithms polynomials of degree 3k , but the CM approach computes, as intermediate step,
a polynomial whose degree and logarithmic height of its coefficients are both Õ(|disc(K )|1/23k). For the
Kummer approach, we need a polynomial of degree O(3k) over an auxiliary extension of degree O(3k);
furthermore, the coefficients are themselves symmetric expressions in O(3k

|disc(K )|) terms.
Both approaches have their merits. Indeed, whereas the CM method requires the full class group of K

as intermediate step, the Kummer method only looks at the prime 3. If the class group is large, then the
Kummer method is better for small n. However, the Kummer method requires working over auxiliary
extensions and this makes the method slower for larger n.

We detail various techniques we can use to reduce the size of the generating polynomial for Kk in
Section 4. We illustrate our techniques with a variety of examples. All examples were done using the
computer algebra package Magma [2] and the CM software package [9].

2. Anticyclotomic extension and ring class fields

Throughout this section, let K = Q(
√

D) be a fixed imaginary quadratic field of discriminant D in
which 3 is ramified. We let O be the maximal order of K . For any integer k ≥ 1, the k-th layer Kk of the
anticyclotomic Z3-extension of K is a generalized dihedral extension of Q. Hence, by Bruckner’s result
(see [5] or [8, Theorem 9.18]), we know that Kk is contained in a ring class field for K . Since Kk is
unramified outside 3, it follows that Kk is contained in a ring class field for an order ON = Z+ 3N O of
index 3N for some N ≥ 1.

In order to bound the exponent, we analyze ring class fields. We let HN be the ring class field for the
order ON . With this notation, H0 is the Hilbert class field of K . The extension HN/K is abelian and
unramified outside 3. The Artin map gives an isomorphism Pic(ON )−→

∼ Gal(HN/K ), with Pic(ON ) the
Picard group of ON . We have a natural exact sequence

1→ (O/3N O)∗/ Im(O∗)(Z/3N Z)∗→ Pic(ON )→ Pic(O)→ 1,

where the last map is given by [I ] 7→ [I · O]. The kernel of the map Pic(ON )→ Pic(O) is naturally
isomorphic to Gal(HN/H0); the following lemma gives the structure of this group.

Lemma 2.1. With the notation from the previous paragraph, we have

Gal(HN/H0)∼=


Z/3N−1Z if D =−3,
Z/3Z×Z/3N−1Z if D 6= −3 and D ≡−3 mod 9,
Z/3N Z if D ≡ 3 mod 9

for N ≥ 1.
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Proof. Let p | (3) be the ideal of norm 3 in O. We have (O/p2N )∗ ∼= (A/p2N )∗, where A denotes the
completion of O at p. The ring A is a tamely ramified quadratic extension of Z3, and it well known that
there are only two such rings up to isomorphism. For D ≡−3 mod 9, we have A = Z3[

√
−3] = Z3[ζ3],

and A = Z3[
√

3] for D ≡ 3 mod 9. We analyze both cases separately.
The unit group of A = Z3[ζ3] equals

A∗ = 〈−ζ3〉× (1+ p2),

and 1+ p2 is torsion free. Hence, 1+ p2 is a free Z3-module of rank 2. We get

(A/3N A)∗ ∼= 〈−ζ3〉× (1+ p2)/(1+ p2N )∼= Z/6Z× (Z/3N−1Z)2,

and hence

(A/3N A)∗/(Z/3N Z)∗ ∼= Z/3Z×Z/3N−1Z.

For A = Z3[
√

3], we have

A∗ = 〈−1〉× (1+ p),

and since ζ3 is not contained in A, the Z3-module 1+ p is torsion free and hence a free rank 2 module.
By iteratively applying the “cubing isomorphism” 1+ pk

−→∼ 1+ pk+2 we see that

(A/3N A)∗ ∼= 〈−1〉× (1+ p)/(1+ p2N )∼= Z/2Z×Z/3N Z×Z/3N−1Z

holds. Since the module 1+ p is generated over Z3 by 1+ 3 and 1+
√

3, we get

(A/3N A)∗/(Z/3N Z)∗ ∼= Z/3N Z.

We have O∗ = {±1} for D <−3, and the only case where the local cube root of unity exists globally
is D =−3. Quotienting by Im(O∗) gives the lemma. �

For D ≡−3 mod 9 with D <−3, we let αN ∈ O be an element that is congruent to ζ3 ∈ A modulo 3N .
(As in the proof of Lemma 2.1, A denotes the completion of O at p.) This element αN determines an
Artin symbol

(
αN

HN /H0

)
∈ Gal(HN/H0). We let H ′N be the fixed field of the order 3 subgroup

〈(
αN

HN /H0

)〉
and put

H∞ =
{⋃

N≥1 H ′N/H0 for D ≡−3 mod 9 and D 6= −3,⋃
N≥1 HN/H0 otherwise.

Theorem 2.2. Let Kk be the k-th layer of the anticyclotomic Z3-extension of K . Then Kk is contained
in the ring class field for the order Ok+1 = Z+ 3k+1O of index 3k+1.

Proof. It is clear that HN/Q is generalized dihedral. From Lemma 2.1 and the relation

ON ⊆ OM =⇒ HM ⊆ HN

from class field theory, also known as the Anordnungssatz for ring class fields, we see that

Gal(H∞/H0)∼= Z3.

An inspection of the sizes in Lemma 2.1 now gives that the compositum Kk H0 is contained in Hk+1. The
theorem follows. �
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The theory of complex multiplication provides us with a means of explicitly computing the extension
HN/K . This theory is usually only developed for maximal orders, but it generalizes to nonmaximal
orders without too much difficulty. Indeed, by [8, Theorem 11.1] we know that

HN = K [x]/( fN (x)),

with fN ∈ Z[x] the minimal polynomial of the j -invariant of the complex elliptic curve C/ON . There are
various algorithms to compute fN ; we refer to [1] and the references therein for an overview. However,
since the proven upper bound Õ(|disc(ON )

2
|) (see, e.g., [1, §5]) on the bit size of fN is believed to

be the actual size of fN , these algorithms are inherently exponential. We will give various practical
improvements in Section 4 to this basic approach.

3. Selecting the right subfield

As before, let K be a fixed imaginary quadratic field in which 3 is ramified. We have seen that the k-th
layer Kk of the anticyclotomic Z3-extension of K is contained in the ring class field Hk+1. In this section
we explain a method to compute Kk as a subfield of Hk+1. To keep the sizes of the generating polyno-
mials small, the examples given in this section already use the algorithmic improvements explained in
Section 4. The online supplement at http://msp.org/obs/2019/2-1/obs-v2-n1-x09-Examples.txt provides
Magma code to compute the examples.

We first assume that K has trivial 3-Hilbert class field. In this case, we have

[Hk : Kk] = # Pic(O) for D ≡ 3 mod 9

and Kk is the unique subfield of Hk that has degree 3k over K . For K = Q(
√
−3), Kk is the unique

subfield of degree 3k of Hk+1. For other D ≡ −3 mod 9, we proceed as follows. As in the discussion
preceding Theorem 2.2, we let αk+1 ∈ O be locally congruent to ζ3 modulo 3k+1. The fixed field H ′k+1

of the automorphism
(

αk+1
Hk+1/H0

)
has a unique subfield of degree 3k over K ; this field is the field Kk that

we are after.

Example 3.1. The field K = Q(
√
−21) has class group isomorphic to (Z/2Z)2. The index 4 subfield

of the ring class field H1 is generated by a root of x3
− 6x − 12, but it is not part of the anticyclotomic

Z3-extension.
The index 4 subfield K̃1 of the ring class field H2 is obtained by adjoining a root of

x9
+ 12x6

+ 81x5
+ 144x4

+ 30x3
− 324x2

− 504x − 336

to K . The Galois group K̃1/K is isomorphic to (Z/3Z)2. To obtain the first layer, we compute that
α2 = 1 +

√
−21 is locally congruent to ζ3 modulo 9. We take the fixed field of the Artin symbol

corresponding to α2. We find that K1 is generated by a root of

x3
+ 9x − 12

over K .

http://msp.org/obs/2019/2-1/obs-v2-n1-x09-Examples.txt
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For the general case, we let H0,3 be the 3-Hilbert class field of K . The extension H∞/H0 naturally
defines a Z3-extension H∞,3/H0,3. The sequence

1→ Gal(H∞,3/H0,3)→ Gal(H∞,3/K )→ Gal(H0,3/K )→ 1 (1)

need not split in general. If it does split, then H0,3 is not contained in the anticyclotomic Z3-extension and
finding the layers proceeds as before. Determining whether the sequence splits is often easy. In Section 5,
we will give a simple criterion (Theorem 5.1) under which H0,3 is not contained in the anticyclotomic Z3-
extension. Furthermore, the following examples show that it is computationally very easy to determine
if H0,3 lies in the anticyclotomic Z3-extension or not.

Example 3.2. Fix K =Q(
√
−87). The class group of O is cyclic of order 6. The order O1 of index 3 has

cyclic Picard group of order 18. We may replace H∞,3 with H1,3 in sequence (1) to obtain the nonsplit
sequence

1→ Z/3Z→ Z/9Z→ Z/3Z→ 1.

Hence, the 3-part of the Hilbert class field of K is the first layer of the anticyclotomic Z3-extension.
Explicitly, we have

K1 = K [x]/(x3
− x2
+ 2x + 1).

The index 2 subfield of the ring class field for O1 gives the second layer of the anticyclotomic Z3 extension.
It is generated by a root of

x9
+ 3x8

+ 6x7
+ 14x6

+ 9x5
+ 21x4

+ 6x3
+ 12x2

+ 3.

For K =Q(
√
−771) we obtain the split sequence

1→ Z/3Z→ Z/3Z×Z/3Z→ Z/3Z→ 1

and the Hilbert class field is not contained in the anticyclotomic Z3-extension.

If the 3-part of Pic(O) is different from Z/3Z, the situation is slightly more involved. In the remainder
of this section we explain how to split the 3-part Pic(O)3 into a part “inside” and a part “outside” of the
anticyclotomic Z3-extension.

We let Smax ⊆ Pic(O)3 be the largest subgroup (with respect to inclusion) for which the sequence

1→ Gal(H∞,3/H0,3)→ Gal(H∞,3/H Smax
0,3 )→ Smax→ 1

splits. Here, H Smax
0,3 is the fixed field of H0,3 for Smax. This fixed field is the largest subfield of H0,3 that

is contained in the anticyclotomic Z3-extension.
For ease of notation, we restrict to the case D ≡ 3 mod 9 so H∞,3 is the inverse limit of the 3-parts

Pic(ON )3 of the ring class field for ON . Let 〈p〉 ⊂ Pic(O)3 be a subgroup of 3-power order with p coprime
to 3. The ideal p∩ON is an invertible ON -ideal whose class in Pic(ON )3 maps to the class of p in Pic(O)3.
The other preimages are (p∩ON )I , with I ranging over the kernel of Pic(ON )3→ Pic(O)3. We compute
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the order inside Pic(ON )3 for each of the preimages of p, and check if one of those equals the order of
[p] ∈ Pic(O)3. If it does, the sequence

1→ Gal(HN ,3/H0,3)→ Gal(HN ,3/H 〈p〉0,3)→ 〈p〉 → 1

splits; otherwise it does not.

Example 3.3. Fix K =Q(
√
−6789). We have Pic(O)∼= Z/2Z×Z/6Z×Z/6Z and Pic(O1)∼= Z/2Z×

Z/6Z×Z/18Z. The kernel of the map Pic(O1)→ Pic(O) is generated by the class of the O1-ideal

I = O1(9, 3
√
−6789− 3)

of norm 9. There are four subgroups of Pic(O) of index 3; elements of order 6 in these subgroups are
ideals of norm 5, 7, 11, and 97, respectively. The ideal p5 has order 6 in Pic(O), but I k(p ∩ O1) has
order 18 for k = 0, 1, 2 and likewise for p7 and p97. On the other hand, the ideal (p11 ∩O1) has order 6.

The fixed field of H0 under the subgroup of Pic(O) generated by p11 (of order 6), p3
5 (of order 2), and

p2 = O1(2, 3
√
−6789+ 1) (of order 2) equals the first layer K1 of the anticyclotomic Z3-extension of K .

To find a generating polynomial, we compute the maximal real subfield of H0 using CM theory and
compute its 4 degree 3 subfields L1, . . . , L4. We now check whether the Artin symbol corresponding to
p11 acts trivially on K L i/K . As expected, it does so for a unique field. In the end, we find that a root of

x3
− x2
+ 8x + 124

generates K1/K .

4. Practical improvements

The techniques described yield generating polynomials that are much larger than necessary. The reason
for this is that the j-function is not the right function to use from a practical perspective to compute a
ring class field. For every given discriminant, a suitably chosen class invariant can be used instead. The
use of class invariants dates back to Weber’s days, and modern treatments rely on Shimura reciprocity.
We refer to [14; 12] for good descriptions and give the main result that we need.

Theorem 4.1. Let D < 0 be a discriminant, and choose a quadratic generator τ for the imaginary order
of discriminant D. Then there exists a modular function f of level n > 1 such that f (τ ) generates the ring
class field; furthermore, the minimal polynomial of f (τ ) over K =Q(

√
D) can be explicitly computed

in time Õ(|D|).

Proof. We refer to [12, Theorem 4; 10, Corollary 3.1] for two classes of functions. �

The size of the generating polynomial for the ring class field depends on the choice of the function f
in the theorem. To compute the “reduction factor”, we let 9( j, f ) = 0 be the irreducible polynomial
relation between j and f and put

r( f )=
deg f (9( f, j))

deg j (9( f, j))
∈Q>0.
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As in [4, §4], we expect the logarithmic height of the coefficients of the minimal polynomial of f (τ ) to
be a factor r( f ) smaller than the corresponding coefficients for j (τ ). By [4, Theorem 4.1], we have

r( f )≤ 800/7≈ 114.28.

If 2 splits in O, then the cube of the Weber-f can be used. This function satisfies (f24
− 16)3− j f24

= 0
and has reduction factor 72/3= 24. If 2 is inert, we can use a suitably chosen double η-quotient. The
exact reduction factor depends on the choice of the η-quotient; we refer to [10] for details. We can use
the CM software package [9] by Enge to compute the necessary ring class fields. This package can select
the modular function, so that only the discriminant D is required.

Example 4.2. Let K =Q(
√
−3). To obtain the first nontrivial layer of the anticyclotomic Z3-extension,

we compute the ring class field for the order O2. If we use the j-function, we obtain a cubic polynomial
with constant term

245
· 3 · 59

· 113
· 233.

In this case, a suitably chosen double η-quotient yields a class invariant. Using the package [9], we
obtain the polynomial

x3
− 12x2

− 6x − 1.

We stress that by class invariants, we can only gain a constant factor in the size of the coefficients,
and that our method is inherently exponential in log|D|. To push the range of examples further, we
can employ lattice basis reduction. Indeed, if we have computed a polynomial f (x) that generates the
ring class field, we can view the order defined by f as a lattice in Euclidean space. If the degree and
the coefficients of f are not too big, we can compute a short basis for this lattice and obtain a “better”
polynomial.

Example 4.3. For K =Q(
√
−3), the polynomial f ∈ Z[x] for O3 given by Enge’s program has coeffi-

cients between −24930 and 29559. We view Z[x]/( f ) as a lattice and after lattice basis reduction, we
obtain the polynomial

x9
+ 9x6

+ 27x3
+ 3.

Using the same technique, we find the polynomial

x27
+ 27x24

+ 324x21
+ 1980x18

+ 5022x15
− 8262x12

− 30348x9
+ 304236x6

+ 1365417x3
+ 3

for the third layer of the anticyclotomic Z3-extension.

5. Mirror principle

In this section we give an application of the mirror principle that relates the class groups of the imaginary
quadratic field Q(

√
D) and the real quadratic field Q(

√
−D/3). This allows us to prove the following

theorem that was alluded to in Example 3.2.
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Theorem 5.1. Let D ≡ 3 mod 9 be a negative discriminant, and assume that 3 does not divide the class
number of the real quadratic field Q(

√
−D/3). Then the 3-Hilbert class field of K =Q(

√
D) is contained

in the anticyclotomic Z3-extension of K .

The proof of the theorem relies on the following lemma. The proof of this lemma is very similar to
the proof of Scholz’s mirror theorem [13].

Lemma 5.2. Let D ≡ 3 mod 9 be a negative discriminant, and assume that 3 does not divide the class
number of the real quadratic field Q(

√
−D/3). Then, there exists exactly one degree 3 extension of

Q(
√

D) that is unramified outside 3 and dihedral over Q.

Proof. Let K =Q(
√

D) and let L/K be a degree 3 extension that is unramified outside 3 and dihedral
over Q. The field L fits inside

L(ζ3)

L V = K (ζ3)

K Q(ζ3) F =Q(
√
−D/3)

Q

τ

τ

ϕ

σ

σ ϕ

This diagram also defines automorphisms τ , σ , and ϕ. By abuse of notation, τ denotes both a generator
of Gal(L/K ) and its unique lift to Gal(L(ζ3)/V ) and likewise for σ and ϕ. Because L(ζ3)/V is a
Kummer extension, we can write L(ζ3)= V ( 3

√
α) with α ∈ V .

Any such L(ζ3) will have ϕ acting trivially on the corresponding τ as well as have σ acting as −1 on τ .
Our proof proceeds by showing that both the field of definition and the norm of α are very restricted.

First we show that α can be taken to lie in the real quadratic field F = Q(
√
−D/3). The Kummer

pairing
〈α〉/〈α3

〉× 〈τ 〉 → µ3

is Galois equivariant, and since σ acts on ζ3 as −1 and on τ as −1, we see that σ acts as +1 on
α mod (V ∗)3. We deduce that σ(α)= α ·β3 for some β ∈ V ∗, and hence

NV/F (α)= ασ(α)≡ α
2 mod cubes.

Since α and α2 generate the same extension, this shows that we may assume that α lies in F .
Since the extension L(ζ3)/V is unramified outside 3, we have (α) = I J 3 for ideals I, J with I a

product of primes lying over (3)⊂ Z. The assumption that 3 does not divide the class number of F now
implies that we may assume that α is 3-unit. Furthermore, the assumption D ≡ 3 mod 9 implies that 3 is
inert in Q(

√
−D/3). We get that α is a unit times 3a for some a. Since ϕ(α) is congruent to α−1 modulo

cubes, we must have a ≡ 0 mod 3. Therefore, we may take α =±ε, with ε a fundamental unit of F . �
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Proof of Theorem 5.1. Since K has a unique cubic extension that is unramified outside 3 and dihedral
over Q, the class group of O has 3-rank at most 1. We write Pic(O)3 = Z/3nZ for some n ≥ 0. We need
to prove that the 3-Hilbert class field H3(K ) coincides with the n-th level Kn .

Suppose that we have H3(K ) ∩ Kn = Kk for some k < n. The Galois group of the compositum
H3(K )Kn over K then has 3-rank 2. This means that there is more than one cubic extension of K
contained in H3(K )Kn . All these extensions are unramified outside 3 and dihedral over Q however,
which is a contradiction. �

Lemma 5.2 allows us to deduce a simple sufficient criterion for when the 3-parts Pic(ON )3 are cyclic.

Theorem 5.3. Assume that 3 does not divide the class number of the real quadratic field Q(
√
−D/3).

For D ≡ 3 mod 9, the 3-part Pic(ON )3 is cyclic for all N ≥ 0.

Proof. By Theorem 5.1, the sequence

1→ (O/3N O)∗/ Im(O∗)(Z/3N Z)∗→ Pic(ON )3→ Pic(O)3→ 1

does not split for any N . Since the first and last terms are cyclic, this means that the middle term is
cyclic. �

6. Generators via Kummer theory

In computational class field theory, the “standard” way to compute an abelian extension of prescribed
conductor of a number field K depends on whether K has the appropriate roots of unity. If it does, we
can use Kummer theory. If it does not, we adjoin the right root of unity ζn to K and compute the right
abelian extension of K (ζn) first. Afterwards, we “descend” down to K . We refer to [7] for a detailed
description.

If K is imaginary quadratic, we can use complex multiplication techniques instead and bypass the
general method. This is the technique we used in Section 2. However, we can make the Kummer theory
approach very explicit in our setting. As before, K =Q(

√
D) is an imaginary quadratic field in which

3 ramifies. Throughout this section, we assume 3 does not divide the class number of the real quadratic
field F = Q(

√
−D/3); we also assume that 3 remains inert in F . This last restriction is essential in

Lemma 6.4; the split case appears to be much harder.

Theorem 6.1. Assume that 3 ramifies in K = Q(
√

D) and that 3 is inert in F = Q(
√
−D/3). If ,

furthermore, 3 does not divide the class number of F , then the expression for κn given in Definition 6.7
gives a Kummer generator for Kn(ζ3n )/K (ζ3n ) for n ≥ 1.

Once κn is computed, we can use the technique from [7, pp. 514–515] to descend from Kn(ζ3n )/K (ζ3n )

down to Kn/K .
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The following diagram defines the various fields we will work in and explains the inclusion relations
between them:

Kn(ζ3n ) L =Q(ζ3nd)

K (ζ3n )

Kn Fn = K (ζ3n )+ Q(ζ3n )

Tn =Q(ζ3n )+

K =Q(
√

D) F =Q(
√

d)

Q

〈σc〉

〈σc〉

In this diagram, the + notation indicates the maximal real subfield. We write d =−D/3, so that F =Q

for D = −3 and F is real quadratic otherwise. If F is quadratic, we let χ be the associated quadratic
character of conductor d .

All the base fields we consider are subfields of L =Q(ζ3nd); we identify Gal(L/Q) with (Z/3ndZ)∗

and for an integer b with gcd(b, 3d)= 1, we let σb be the automorphism satisfying σb(ζ3nd)= ζ
b
3nd . For

d 6= 1, we fix an integer c ≡−1 mod 3n with χ(c)=−1; we identify Gal(Fn/Tn)∼= Gal(F/Q)∼= 〈σc〉

in this case. (For d = 1, all statements about σc play no role and should be ignored.)

Lemma 6.2. The class number of Fn is coprime to 3.

Proof. By assumption, 3 remains inert in F/Q. As the extension Fn/F has only one ramified prime and
is totally ramified, the lemma follows from [16, Theorem 10.4]. �

The techniques of the proof of Lemma 5.2 show that we may assume that the desired element κn lies
in Fn . Furthermore, since the class number of Fn is coprime to 3, this proof also shows that κn is a 3-unit
in Fn .

Furthermore, we claim that we may assume that σc inverts κn . To see this, note that K (ζ3nd)/K is
disjoint from K∞/K , and σc therefore acts trivially on Gal(Kn(ζ3n )/K (ζ3n )). It also acts by inversion
on ζ3n . Therefore, the Kummer pairing tells us that σc acts by inversion on κn modulo 3n-th powers;
i.e., we have κσc

n = κ
−1
n γ 3n

for some γ . But then κ1−σc
n = κ2

nγ
−3n

generates the same extension and is
inverted by σc since σ 2

c = 1 on K (ζ3n ).
Let En be the group of 3-units of Fn . Let E−n denote the subgroup consisting of elements that are

inverted by σc, and E+n denote those that are fixed (and hence lie in Tn). We compute a valid κn as a
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product of suitably chosen 3-units in E−n . For n ≥ 1, we define

ξn =
∏

1≤a≤3nd
a≡±1 mod 3n

(a,d)=1

(1− ζ a
3nd)

χ(a).

The product is over values of a representing elements of Gal(L/Tn). We claim that ξn lies in Fn . Indeed,
for σb ∈ Gal(L/Fn) we have b ≡±1 mod 3n and χ(b)= 1. The computation

σb(ξn)=
∏

1≤a≤3nd
a≡±1 mod 3n

(a,d)=1

(1− ζ ab
3nd)

χ(a)
=

∏
1≤a≤3nd

a≡±1 mod 3n

(a,d)=1

(1− ζ a
3nd)

χ(a/b)
= ξn

gives ξn ∈ Fn .

Lemma 6.3. (a) ξn ∈ E−n .

(b) The norm of ξn from Fn to Fn−1 is ξn−1.

Proof. For part (a), a simple computation shows that σc(ξn)= ξ
−1
n . If d 6= 1, every factor 1− ζ a

3nd is a
unit, so ξn is a unit. If d = 1, then each factor is a 3-unit. Therefore, ξn ∈ E−n .

For (b), we note that the Galois conjugates of ζ3n for L/Q(ζ3n−1d) are ζ3nζ i
3 for i = 0, 1, 2. Therefore,

the norm of the factor (1− ζ a
3nd) is∏
i=0,1,2

(1− ζ a
3ndζ

i
3)= (1− ζ

3a
3nd)= (1− ζ

a
3n−1d),

and the result follows. �

Lemma 6.4. The σ j (ξn) for σ j ∈ Gal(Fn/F) are independent 3-units and generate a subgroup of E−n of
index prime to 3.

Proof. We need some preliminary work. Since keeping track of powers of 2 is irrelevant for what we do,
for numbers a and b we use the notation a ≈ b to say that a/b is a power of 2, up to sign. When a, b are
groups, a ≈ b means that a and b are subgroups of some larger group G with [G : a]/[G : b] equal to a
power of 2.

Since σ 2
c = 1 on Fn , the identity x2

= x1−σc x1+σc implies

En ≈ E−n ⊕ E+n .

Let {u1, . . . , u3n−1} be a basis for E−n and {v1, . . . , v3n−1−1} be a basis for E+n mod {±1}. The Galois
group of Fn/Q is given by the elements σ j and σcσ j , where σ j runs through Gal(Fn/F). These can be
used to calculate the regulator Rn of Fn , up to powers of 2. Let

R−n = (log|σ j (ui )| j,i ) and R+n = (log|σ j (vi )| j,i ).
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Then Rn , up to powers of 2, is the absolute value of the determinant of the matrix(
R−n R+n
−R−n R+n

)
with the last row deleted. Adding the top rows to the corresponding bottom rows yields a 0-block in the
lower left and twice R+n in the lower right. Therefore,

Rn ≈ det(R−n ) det(R+n ).

Note that det(R+n ) is, up to powers of 2, the regulator of Tn .
We define the regulator

Rξn = |det(log|σ jσ
−1
i ξn|)|, i, j ∈ Gal(Fn/F),

of the Gal(Fn/F)-conjugates of ξn . We claim that

det(R−n )≈
h(Fn)Rξn

h(Tn)

holds. (Here, h( · ) denotes the class number.) Since Rξn/ det(R−n ) is the index in E−n of the subgroup
generated by the conjugates of ξn , the lemma then follows from the observation that both Tn and Fn have
class number coprime to 3.

The value Rξn is a group determinant, and by [16, Lemma 5.26] we have

Rξn =±

∏
ψ

∑
j

ψ(σ j ) log|σ jξn|,

where ψ ranges over the Dirichlet characters for Gal(Fn/F)'Gal(Tn/Q), and σ j ranges over Gal(Fn/F).
We have ∑

j

ψ( j) log|σ jξn| =
∑

j

ψ( j)
∑

a

χ(a) log|1− ζ aj
3nd |,

where 1≤ a ≤ 3nd , (a, d)= 1, and a ≡±1 mod 3n . This equals∑
1≤a≤3nd, (a,3d)=1

ψ(a)χ(a) log|1− ζ a
3nd |.

Recall that if ψ has conductor 3m with m ≥ 1, then

L(1, ψχ)=−
g(ψχ)

3md

∑
1≤a≤3md, (a,3d)=1

ψ(a)χ(a) log|1− ζ a
3md |,

where g(ψχ) is a Gauss sum. Since the values of ψ(a) depend only on a mod 3m , we have, for fixed a0

with 3 - a0, ∑
1≤a≤3nd

a≡a0 mod 3md

ψ(a) log|1− ζ a
3nd | = ψ(a0) log|1− ζ a0

3md |,
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where we have used the identity
∏
ω3n−m

=1(1−ωx)= 1− x3n−m
. Therefore,∑

j

ψ( j) log|σ jξn| =
3md

g(ψχ)
L(1, ψχ).

If ψ is trivial, then ∑
j

log|σ jξn| = log|NormFn/F1ξn| = log|ξ1|

=

∑
1≤a≤3d
(a,3d)=1

χ(a) log|1− ζ a
3d |.

For fixed a0, ∑
a≡a0 mod d

1≤a≤3d, (a,3d)=1

log|1− ζ a
3d | = log|1− ζ 3a0

3d | − log|1− ζ 3a1
3d |,

where 3a1 ≡ a0 mod d and 1≤ 3a1 ≤ 3d . Therefore,∑
j

log|σ jξn| =
∑

1≤a0≤d
(a0,d)=1

χ(a0) log|1− ζ a0
d | −

∑
1≤a1≤d
(a1,d)=1

χ(3a1) log|1− ζ a1
d |

= (1−χ(3))
−d

g(χ)
L(1, χ).

Using that 3 is inert in F/Q, we compute 1−χ(3)= 2.
From the analytic class number formula, we derive

h(Fn)Rn
√

disc(Fn)

√
disc(Rn)

h(Tn)R+n
≈

∏
ψ

L(1, ψχ),

where h denotes the class number of the indicated field. By [16, Theorem 3.11 and Corollary 4.6], the
Gauss sums, the discriminants, and the conductor 3md factors cancel, and we obtain

det(R−n )≈
h(Fn)Rξn

h(Tn)
. �

As a byproduct of the calculation with ψ = 1, we obtain the following:

Lemma 6.5. If d 6= 1, then ξ1 = ε
−4h(F)
0 , where h(F) and ε0 are the class number and fundamental unit

of F. If d = 1, then ξ1 = 3.

Proof. Up to sign, the case d 6= 1 results from keeping track of the factors of 2. In the definition of ξ1,
we can pair the factors for a and 3d − a to see that ξ1 is totally positive. When d = 1, the result follows
directly from the definition of ξ1. �

We have almost done all the preparatory work to construct κn . Indeed, by Lemma 6.4 we know that κn

is a product of Galois conjugates of ξn . To pin down the product, we need the following standard result.
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Lemma 6.6. Let m ≥ 1. Let M be a number field, let ζm be a primitive m-th root of unity, and let
α ∈ M(ζm)

×. Let M(ζm, α
1/m)/M(ζm) be a cyclic extension of degree m. Define a map

ω : Gal(M(ζm)/M)→ Z/mZ

by τ(ζm)= ζ
ω(τ)
m . Then F(ζm, α

1/m)/M is Galois with abelian Galois group if and only if

ατ−ω(τ) ∈ (M(ζm)
×)m

holds for all τ ∈ Gal(M(ζm)/M).

Proof. The proof is a standard calculation with the Kummer pairing. See for instance the proof of [16,
Theorem 14.7]. �

Choose τ ∈ Gal(Fn/F) satisfying τ(ζ3n )= ζ 4
3n . We have

κn =

3n−1
−1∏

j=0

τ j (ξn)
c j ,

for some integers c j . Therefore, taking indices mod 3n−1, we have

κτn =

3n−1∏
j=1

τ j (ξn)
c j−1 .

Lemma 6.6 says that κτ−4
n is a 3n-th power, and since the elements τ j (ξn) are multiplicatively indepen-

dent, we must have

c j−1− 4c j ≡ 0 mod 3n, 1≤ j ≤ 3n−1.

This implies that each c j is uniquely determined mod 3n by the value of c0. Therefore, κn is uniquely
determined up to an integral power and mod 3n-th powers. Therefore, if we find κn ∈ Fn such that

(1) κτ−4
n is a 3nth power and

(2) κn is not a cube in Fn ,

then we have a Kummer generator for Kn(ζ3n )/K (ζ3n ).
For i ≥ 1, define

Bi =

i−1∏
j=1

(
1+ 43 j−1

+ 163 j−1

3

)
.

Let

bi = (1− Bi )/3,

which is an integer for all i ≥ 1. Finally, for i ≥ 2, let

Di (x)=
3(bi (x − 1)− 1)− (1+ x3i−1

+ x2·3i−1
)(bi−1(x − 1)− 1)

x − 4
.
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Note that the numerator of Di (x) evaluated at x = 4 is

3(3bi − 1)− (1+ 43i−1
+ 163i−1

)(3bi−1− 1)= 3(−Bi )+ (1+ 43i−1
+ 163i−1

)Bi−1 = 0,

so Di has integer coefficients. For example, D2(x)= x − 1.
Let

δi = ξ
Di (τ )
i for i ≥ 2, βi = ξ

bi (τ−1)−1
i for i ≥ 1.

Then ξi , βi , δi ∈ Fi , and

δτ−4
i =

β3
i

βi−1

for i ≥ 2. Moreover,

β1 = ξ
b1(τ−1)−1
1 = ξ−1

1 .

Definition 6.7. Let κ1 = ξ1, and for n ≥ 2 let

κn = ξ1δ
3
2 · · · δ

3n−1

n ∈ Fn ⊂ K (ζ3n ).

We have

κτ−4
n = ξ−3

1
β9

2

β3
1

β27
3

β9
2

· · ·
β3n

n

β3n−1

n−1

= β3n

n .

Lemma 6.8. κn is not a cube in K (ζ3n ).

Proof. The lemma is equivalent to ξ1 not being a cube in Q(ζ3n ). Our assumption 3 - h(F) implies that
ξ1 = ε

−4h(F)
0 is not a cube in F (when d 6= 1; the case d = 1 is trivial), so x3

− ξ1 generates a non-Galois
cubic extension of F that must be disjoint from every abelian extension. Therefore, 3

√
ξ1 6∈ K (ζ3n ). �

Proof of Theorem 6.1. Lemma 6.8 implies that

K (ζ3n )( 3n√
κn)/K (ζ3n )

is cyclic of order 3n . Since κτ−4
n is a 3n-th power and κn is real, it is the desired Kummer generator for

Kn(ζ3n )/K (ζ3n ). �

Example 6.9. For K =Q(
√
−3), we have κ1 = 3 and hence K1 =Q(

√
−3, 31/3).

To obtain the second layer, we compute D2(x)= x − 1 and

κ2 = 3
(
(1− ζ 4

9 )(1− ζ
−4
9 )

(1− ζ9)(1− ζ−1
9 )

)3

= 3
(

1− cos(8π/9)
1− cos(2π/9)

)3

.

We compute that κ2 is a root of x3
− 1710x2

+ 513x − 27, and κ1/9
2 is therefore a root of

x27
− 1710x18

+ 513x9
− 27.
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Having found the extension K (ζ9)(κ
1/9
2 )/K (ζ9), we proceed as in [7, pp. 514–515] to descend to the

extension K2/K . We compute that K2 is generated over K by a root of

x9
− 59049x3

+ 4251528
√
−3.

Example 6.10. Fix K =Q(
√
−87). For the first layer, we compute that κ1 is a root of x2

− 727x + 1.
Instead of following the descent procedure from [7], we can also use the following argument to compute
K1/K . We replace x by x3 and take the compositum with x2

+3 to obtain a degree 12 polynomial defining
K (ζ9)(κ

1/3
1 )/Q. This field has 7 subfields of degree 6. We test these fields pairwise for isomorphism,

and compute that there is a unique field that is not isomorphic to another field. Hence, this is the unique
field that is Galois over Q and must equal K1. Applying lattice basis reduction to the default generator
of K1/Q gives the polynomial

x6
− 3x5

+ 13x4
− 21x3

+ 43x2
− 33x + 9.

To obtain K2, we compute that κ2 is a root of

x6
− 3298753006106830814034741x5

+ 8591489279598602990016127145116806x4

− 28320363968461011184065689777889416199793x3

+ 8591489279598602990016127145116806x2

− 3298753006106830814034741x + 1.

The same technique as for K1 gives that there are two subfields of K1(ζ9)(κ
1/9)/Q that are Galois over Q.

Since one of them is the known field K1T1, we select the field K2 to be the other subfield that is Galois
over Q. A generating polynomial is given in Example 3.2.
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Numerical computation of endomorphism rings of Jacobians

Nils Bruin, Jeroen Sijsling, and Alexandre Zotine

We give practical numerical methods to compute the period matrix of a plane algebraic curve (not
necessarily smooth). We show how automorphisms and isomorphisms of such curves, as well as the
decomposition of their Jacobians up to isogeny, can be calculated heuristically. Particular applications
include the determination of (generically) non-Galois morphisms between curves and the identification
of Prym varieties.

1. Introduction

Let k be a field of characteristic 0 that is finitely generated over Q. We choose an embedding of k into C.
In this article, we consider nonsingular, complete, absolutely irreducible algebraic curves C over k of
genus g. We represent such a curve C by a possibly singular affine plane model

C̃ : f (x, y)= 0, where f (x, y) ∈ k[x, y]. (1-1)

Associated to C is the Jacobian variety J = Jac(C) representing Pic0(C). Classical results by Abel and
Jacobi establish

J (C)∼= H0(CC, �
1
C)
∗/H1(C(C),Z)∼= Cg/�Z2g,

for a suitable g× 2g matrix �, called a period matrix of C .
Let J1 = Jac(C1) and J2 = Jac(C2) be two such Jacobian varieties. The Z-module Homk(J1, J2) of

homomorphisms defined over the algebraic closure k of k is finitely generated and can be represented
as the group of C-linear maps Cg1 → Cg2 mapping the columns of �1 into �2Zg2 . As described in [10,
§2.2], we can heuristically determine homomorphism modules, along with their tangent representations,
from numerical approximations to �1, �2. These can then serve as input for rigorous verification as in
[loc. cit.].

In this article we consider the problem of computing approximations to period matrices for arbitrary
algebraic curves for the purpose of numerically determining homomorphism modules and endomorphism

The research of Bruin and Zotine is partially supported by NSERC, and Sijsling is supported by a Juniorprofessurprogramm of
the Science Ministry of Baden-Württemberg.
MSC2010: 14H40, 14H37, 14H55, 14Q05.
Keywords: curves, Riemann surfaces, period matrices, automorphisms, endomorphisms, isogeny factors.
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rings. We also describe how to identify the (finite) symplectic automorphism groups in these rings,
and with that the automorphism group of the curve. We give several examples of how the heuristic
determination of such objects can be used to obtain rigorous results.

There is extensive earlier work on computing period matrices for applications in scientific computing
to Riemann theta functions and partial differential equations. For these applications, approximations that
fit in standard machine precision tend to be sufficient. Number-theoretic applications tend to need higher
accuracy and use arbitrary-precision approximation. Hyperelliptic curves have received most attention;
see for instance van Wamelen’s [28] implementation in Magma. In practice it is limited to about 2000
digits. Recent work by Molin and Neurohr [23] can reach higher accuracy and also applies to superelliptic
curves.

For general curves, a Maple package based on work by Deconinck and van Hoeij [12] computes period
matrices at system precision or (much more slowly) at arbitrary precision. Swierczewski’s reimplementa-
tion in SageMath [26] only uses machine precision and no high-order numerical integration. During the
writing of this article, another new and fast Magma implementation was developed by Neurohr [24]. See
the introduction of [24] for a more comprehensive overview of the history and recent work on the subject.

Our approach is similar to the references above (in contrast to, for instance, the deformation approach
taken in [25]) in that we basically use the definition of the period matrix to compute an approximation.

Algorithm 1-2 (compute approximation to period matrix).

Input: f as in (1-1) over a number field and a given working precision.

Output: Approximation of a period matrix of the described curve.

(1) Determine generators of the fundamental group of C (Section 2C).

(2) Derive a symplectic basis {α1, . . . , αg, β1, . . . , βg} of the homology group H1(C(C),Z) (Section 2D).

(3) Determine a basis {ω1, . . . , ωg} of the space of differentials H0(CC, �
1
C) (Section 3A).

(4) Approximate the period matrix �=
(∫
α j
ωi ,

∫
β j
ωi
)

i, j using numerical integration (Section 3B).

We list some notable features of our implementation.

(a) We use certified homotopy continuation [19] to guarantee that the analytic continuations on which
we rely are indeed correct. This allows us to guarantee that increasing the working precision suffi-
ciently will improve accuracy.

(b) We base our generators of the fundamental group on a Voronoi cell decomposition to obtain paths
that stay away from critical points. This is advantageous for the numerical integration.

(c) We determine homotopy generators by directly lifting the Voronoi graph to the Riemann surface
via analytic continuation and taking a cycle basis of that graph. This avoids the relatively opaque
procedure [27] used in [12; 24].

(d) We provide an implementation in a free and open mathematical software suite (SageMath version
8.0+), aiding verification of the implementation and adaptation and extension of its features.
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We share the use of Voronoi decompositions with [28]. This is no coincidence, since Bruin suggested
its use to van Wamelen at the time, while sharing an office in Sydney, and was eager to see its use tested for
general curves. Dealing with hyperelliptic and superelliptic curves, [28; 23] use a shortcut in determining
homotopy generators. The explicit use of a graph cycle basis in feature (c) above, while directly suggested
by basic topological arguments, is to our knowledge new for an implementation in arbitrary precision.

The runtime of these implementations is in practice dominated by the numerical integration. The
complexity for all these methods is essentially the same; see [24, §4.8] for an analysis, as well as a fairly
systematic comparison. For a rough idea of performance we give here some timings for the computation
of period matrices of the largest genus curves in each of our examples. Timings were done using Linux
on a Intel Core i7-2600 3.40 GHz processor, at working precision of 30 decimal digits, 100 binary digits:

curve Maple 2018 SageMath 8.3.beta0

C from Example 5A 99.6 sec 45.5 sec
C from Example 5B 133.2 sec 8.59 sec
D from Example 5C 119.2 sec 12.8 sec

With recent work on rigorous numerical integration [17], which is now also available in SageMath, it
would be possible to modify the program to return certified results. While this is worthwhile and part of
future work, rigorous error bounds would make little difference for our applications, since we have no
a priori height bound on the rational numbers we are trying to recognize from floating point approxima-
tions. One of our objectives is to provide input for the rigorous verification procedures described in [10].

Our main application is to find decompositions of Jac(C) via its endomorphism ring End(J ) =
Endk(J )= Homk(J, J ). Idempotents of End(J ) give rise to isogenies to products of lower-dimensional
abelian varieties [5, Chapter 5; 18]. Furthermore, since End(J ) has a natural linear action on H0(C, �1

C)
∗,

idempotents induce projections from the canonical model of C in PH0(C, �1
C)
∗ to projective spaces of

smaller dimension. For composition factors arising from a cover φ :C→ D, the corresponding projection
factors through φ, so we can recover φ from it. In the process, we verify φ rigorously, as well as the
numerically determined idempotent.

Finally, having determined End(J ), we can compute the finite group automorphisms of J that are fixed
by the Rosati involution. Its action on H0(C, �1

C)
∗ gives, via the Torelli theorem [21, Theorem 12.1],

a representation of the automorphism group Aut(C) = Autk(C) of C on a canonical model. There
are other approaches to computing automorphism groups of curves, for instance [15]. The approach
described here naturally finds a candidate for the geometric automorphism group (members of which
are readily rigorously verified to give automorphisms) whereas more algebraically oriented approaches,
such as the one in [15], tend only to find the automorphisms defined over a given base field or have
prohibitive general running times. We describe the corresponding algorithm in Section 4B.

These results are applied to numerically identify some Prym varieties in higher genus. In particular,
we find isogeny factors Jac(D) of Jacobians Jac(C) that do not come from any morphism C→ D, or
come from a morphism that is not a quotient by automorphisms of C .
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2. Computation of homology

We compute a homology basis for C(C) from its fundamental group. We obtain generators for this group
by pulling back generators of the fundamental group of a suitably punctured Riemann sphere covered
by C . Such pullbacks can be found by determining the analytic continuations of appropriate algebraic
functions. In order to make these continuations amenable to computation, we use paths that stay away
from any ramification points.

The function x on C̃ induces a morphism x : C→ P1 and therefore expresses C as a finite (ramified)
cover of P1 of degree n say. We collect terms with respect to y and write

f (x, y)= fn(x)yn
+ fn−1(x)yn−1

+ · · ·+ f0(x),

where f0(x), . . . , fn(x) ∈ k[x], with fn(x) 6= 0. We write P1(C)= C∪{∞}, and define the finite critical
locus of x as

S = {x ∈ C : discy( f )(x)= 0}.

We set S∞ = S ∪ {∞}, so that x induces an unramified cover C − x−1(S∞) of C− S.

2A. Fundamental group of C− S. We describe generators of the fundamental group of C− S by cycles
in a planar graph that we build in the following way.

We approximate the circle with center c0 = (1/#S)
∑

s∈S s and radius 2 maxs∈S|s− c0| using a regular
polygon with vertices, say, s ′1, . . . , s ′6. Then we compute the Voronoi cell decomposition (see, e.g., [2])
of C with respect to S′ = S ∪ {s ′1, . . . , s ′6}. This produces a finite set of vertices V = {v1, . . . , vr } ⊂ C

and a set E of line segments ei j between vi , v j ∈ V such that the regions

Fs = {x ∈ C : |x − s| ≤ |x − s ′| for any s ′ ∈ S′−{s}}

have boundaries consisting of ei j , together with some rays for unbounded regions. We define F∞ =⋃
s∈S′−S Fs . Then we see that Fs for s ∈ S∞ has a finite boundary, giving a loop separating s from the

rest of S∞. See Figure 1 for an illustration of the resulting graph for the curve C : y2
= x3
− x − 1. It

illustrates the set S = s1, s2, s3, together with the additional points s ′1, . . . , s ′6, and the vertices v0, . . . , v11

and edges between them, bounding the Voronoi cells Fs .

Lemma 2-1. (i) The boundaries of the regions Fs for s ∈ S∞ provide cycles that generate H1(C− S,Z).

(ii) The fundamental group π1(C− S, vi ) is generated by cycles in the graph (V, E).

Proof. The first claim follows because the boundaries exactly form loops around each individual point s.
The second claim follows because the graph is connected. Hence, we can find paths that begin and end
in vi and (because of the first claim) provide a simple loop around a point s ∈ S∞. �

2B. Lifting the graph via homotopy continuation. Each of our vertices vi ∈ C has exactly n preimages
v
(1)
i , . . . , v

(n)
i , determined by the n distinct simple roots of the equation f (vi , y)= 0. We can parametrize



NUMERICAL COMPUTATION OF ENDOMORPHISM RINGS OF JACOBIANS 159

v0

v1

v2

v3v4

v5

v6

v7v10

v11

s ′1

s ′2s ′3

s ′4

s ′5 s ′6

s1

s2

s3

Figure 1. Paths for C : y2
= x3

− x − 1. The dots marking the edges indicate the step size used for the
certified homotopy continuation.

each edge ei j from our graph by x(t) = (1− t)vi + tv j for t ∈ [0, 1]. We lift ei j to paths e(1)i j , . . . , e(n)i j

using the branches y(k)(t) defined by

f (x(t), y(k)(t))= 0 and y(k)(0)= y(v(k)i ).

Since ei j stays away from the critical locus, the function y(k)(t) is well defined by continuity. Moreover,
it is analytic in a neighborhood of e(k)i j .

Given k, we have y(k)(1)= vk′
j for some k ′. Hence, every edge ei j determines a permutation σi j such

that σi j (k) = k ′. The lifted edge e(k)i j connects v(k)i to v(σi j (k))
k . We write (V ′, E ′) for this lifted graph

on C(C). If we split up the path in sufficiently small steps, we can determine these permutations.

Lemma 2-2. With the notation above and for given i, j , we can algorithmically determine a subdivision

0= t0 < t1 < t2 < · · ·< tmi j = 1

and real numbers ε0, . . . , εmi j−1 such that for t,m satisfying tm ≤ t ≤ tm+1, we have |y(k
′)(t)− y(k)(tm)|<

εm if and only if k ′ = k.

Proof. We construct the tm, εm iteratively, starting with m = 0. We set

εm =
1
3 min{|y(k1)(tm)− y(k2)(tm)| : k1 6= k2}.

Using [19, Theorem 2.1], we can determine from f (x(t), y), ε, and x(tm) a value δ > 0 such that for
values t satisfying tm ≤ t ≤ tm + δ we have that |y(k)(t)− y(k)(tm)| < εm . It follows that we can set
tm+1 =min(1, tm + δ). Inspection of the formulas for δ give us that if the distance of any critical point
from the path is positive, then there is a finite m such that tm = 1. �
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Remark 2-3. In Figure 1, the dots on the edges mark the sequence x(t0), x(t1), . . . , x(tmi j ). In particular,
on the edge from v7 to v10 one can see that as the distance to the branch points s2, s3 gets smaller, the
step sizes are reduced accordingly.

Lemma 2-4. Given ε < εm , t with tm < t ≤ tm+1, and ỹm with |ỹm − y(k)(tm)| < ε, we can use Newton
iteration to compute ỹ such that |ỹ− y(k)(t)|< ε.

Proof. We use Newton iteration to approximate a root of f (t, y), with initial value ỹm . We are looking
for the unique root that lies within a radius of εm of the initial value. If at any point the Newton iteration
process escapes this disk, or if the iteration does not converge sufficiently quickly, we insert the point
(tm + t)/2 and restart. We know that if Newton iteration converges to a value in the disk, it must be the
correct value. Furthermore, continuity implies that convergence will occur if |t − tm | is small enough. �

Since x(t0) /∈ S we can use standard complex root-finding algorithms on f (x(t0), y)= 0, to find approx-
imations ỹ(k)0 to any desired finite accuracy. We then use Lemma 2-4 iteratively to find an approximation
ỹ(k)m to y(k)(tm), for each m = 1, . . . ,mi j .

The Voronoi graph (V, E) generates the fundamental group of C− S, so the lifted graph (V ′, E ′)
generates the fundamental group of the unramified cover C(C)− x−1(S∞), and therefore also of C(C).
We have assumed that C is an absolutely irreducible algebraic curve, so the graph is connected.

Remark 2-5. For computing integrals along v(k)i j in Section 3B, we store for each relevant edge ei j the

vectors {(tm, εm, ỹ(1)m , . . . , ỹ(n)m ) : m ∈ {0, . . . ,mi j }}. With this information we can quickly, reliably, and
accurately approximate y(k)(t) for t ∈ [0, 1] using Lemma 2-4.

2C. Computing the monodromy of C → P1. We do not need this in the rest of the paper, but a side
effect of computing the lifted graph is that we can also compute the monodromy of the cover C→ P1.
To any path in the Voronoi graph we associate a permutation by composing the permutations associated
with the constituent edges. For example, to the path p = (v1, v2, v3) we associate the permutation
σp = σ12σ23 (assuming that our permutations act on the right). Choosing, say, v1 as our base point, this
provides us with a group homomorphism π1(C− S, v1)→ Sym(n). The image gives the group of deck
transformations of the cover or, in terms of field theory, a geometric realization of the Galois group of
the degree n field extension of C(x) given by C(x)[y]/( f (x, y)). In particular, by taking a path that
forms a loop around a single point s ∈ C ∪ {∞}, we can obtain the local monodromy of s. The cycle
type of the corresponding permutation gives the ramification indices of the fiber over s. In particular, if
the permutation is trivial, then C→ P1 is unramified over s.

2D. Symplectic homology basis. Since C(C) is a Riemann surface, it is orientable and hence we have a
symplectic structure on its first homology. The pairing on cycles can be computed in the following way.
Suppose that α, β are two paths intersecting at v(1)0 , and that α contains the segment v(1)1 → v

(1)
0 → v

(1)
2

and that β contains the segment v(1)3 → v
(1)
0 → v

(1)
4 . We define

〈α, β〉
v
(1)
0
= 〈α, β〉in

v
(1)
0
+〈α, β〉out

v
(1)
0
, and 〈α, β〉 =

∑
v

〈α, β〉v,
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v
(1)
0

v
(1)
1

v
(1)
2 = v

(1)
3

v
(1)
4

α

β

〈α, β〉in
v
(1)
0
= 0, 〈α, β〉out

v
(1)
0
=−

1
2

v
(1)
0

v
(1)
1

v
(1)
2

v
(1)
3

v
(1)
4

α

β

〈α, β〉in
v
(1)
0
=−

1
2 , 〈α, β〉out

v
(1)
0
=−

1
2

Figure 2. Examples of the intersection pairing.

where 〈α, β〉
v
(1)
0
= 0 if α or β do not pass through v(1)0 , and otherwise

〈α, β〉in
v
(1)
0
=


0 if v3 = v1 or v3 = v2,
1
2 if v1, v3, v2 are counterclockwise oriented around v0,

−
1
2 if v1, v3, v2 are clockwise oriented around v0,

〈α, β〉out
v
(1)
0
=


0 if v3 = v1 or v4 = v2,
1
2 if v1, v2, v4 are counterclockwise oriented around v0,

−
1
2 if v1, v2, v4 are clockwise oriented around v0.

At vertices where α, β meet transversely, this is clearly the usual intersection pairing on H1(C(C),Z).
A deformation argument verifies that the half-integer weights extend it properly to cycles with edges in
common. An illustration of this intersection pairing is given in Figure 2.

Lemma 2-6. By applying an algorithm by Frobenius [14, §7] we can find a Z-basis α1, . . . , αg, β1, . . . , βg

for H1(C(C),Z) such that 〈αi , α j 〉 = 〈βi , β j 〉 = 0 and 〈αi , β j 〉 = δi j .

Proof. We first compute a cycle basis for the lifted graph (V ′, E ′) described in Section 2B, say γ1, . . . , γr

and compute the antisymmetric Gram matrix Gγ = (〈γi , γ j 〉)i j . Frobenius’s algorithm yields an integral
transformation B such that BGγ BT is in symplectic normal form, i.e., a block diagonal matrix with g
blocks (

0 di

−di 0

)
,

possibly followed by zeros, with d1 | d2 | · · · | dg. Because C(C) is a complete Riemann surface, we
know that d1 = · · · = dg = 1 and that g is the genus of C(C). The matrix B gives us α1, β1, . . . , αg, βg

as Z-linear combinations of our initial cycle basis γ1, . . . , γr . �

3. Computing the period lattice

3A. A basis for H0(C, �1
C). From the adjunction formula [1] we know that H0(C, �1

C) is naturally a
subspace of the span of{

h dx
∂y f (x, y)

: h = x i y j with 0≤ i, j and i + j ≤ n− 3
}
.
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If the projective closure of C̃ is nonsingular, then H0(C, �1
C) is exactly this span. If C̃ has only singular-

ities at the projective points (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), and f satisfies some easily tested genericity
conditions then Baker’s theorem [4] states that we can take those (i, j) for which (i+1, j+1) is an interior
point to the Newton polygon of f (x, y). In even more general situations, the adjoint ideal [1, Appendix A,
§2] specifies exactly which subspace of polynomials g corresponds to the regular differentials on C . We
use Baker’s theorem when it applies and otherwise rely on Singular [11] to provide us with a basis{

ωi =
hi dx

∂y f (x, y)
: i = 1, . . . , g

}
⊂ H0(C, �1

C).

3B. Computing the period matrix. Given a basis ω1, . . . , ωg for H0(C, �1
C) and a symplectic basis

α1, . . . , αg, β1, . . . , βg for H1(C(C),Z), the corresponding period matrix is

�αβ = (�α |�β)=

(∫
α j

ωi

∣∣∣∣ ∫
β j

ωi

)
i j
.

The resulting period lattice is the Z-span 3 = �αβZ2g of the columns in Cg. As an analytic space,
the Jacobian of C is isomorphic to the complex torus Cg/3. Our paths consist of lifted line segments,
so we numerically approximate the integrals along the edges e(k)i j that occur in our symplectic basis
and compute �αβ by taking the appropriate Z-linear combinations of these approximations. To lighten
notation we describe the process for the edge e(1)12 . As in Section 2B we parametrize the edge by

x(t)= (1− t)v1+ tv2

and with the stored information (see Remark 2-5), we can quickly compute y(k)(t) for given values of t .
We obtain ∫

e(1)12

ωi = (v2− v1)

∫ 1

t=0

hi (x(t)y(t))
∂y f (x(t), y(t))

dt.

Note that our integrand is holomorphic, so well suited for high order integration schemes such as Gauss–
Legendre and Clenshaw–Curtis. We implemented Gauss–Legendre with relatively naive node computa-
tion. While in our experiments this was sufficient, there is the theoretical drawback that for very high
order approximations, the determination of the integration nodes becomes the dominant part. There are
sophisticated methods for obtaining the nodes with a better complexity [6]. Alternatively, quadrature
schemes like Clenshaw–Curtis may need more evaluation nodes to obtain the same accuracy, but allow
for faster computation of these nodes.

Rather than compute guaranteed bounds, we have settled on a standard error estimation scheme, as
described in, for instance, [3, §5] to adapt the number of evaluation nodes. Since our applications will
not provide proven results anyway, this is sufficient for our purposes.

Remark 3-1. There is a split in literature on how to order the symplectic basis for the period matrix.
With the normalization we use, one gets that

�−1
α �αβ = (1 |�

−1
α �β)= (1 | τ)
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where τ is a Riemann matrix, i.e., a symmetric matrix with positive definite imaginary part. Here τ
represents the corresponding lattice in Siegel upper half space. In [5], the period matrix is taken to be �βα .

4. Homomorphism and isomorphism computations

4A. Computing homomorphisms between complex tori. Let C1 and C2 be two curves with Jacobians J1

and J2. Let�1, �2 be period matrices such that J1(C)=Cg1/�1Z2g1 and J2(C)=Cg2/�2Z2g2 as analytic
groups.

A homomorphism φ : J1 → J2 induces a tangent map H0(C1, �
1
C1
)∗ → H0(C2, �

1
C2
)∗ and a map

on homology H1(C1,Z) → H1(C2,Z). After a choice of bases, these correspond to matrices T =
Tφ ∈ Mg2,g1(C) and R = Rφ ∈ M2g2,2g1(Z), which we call the tangent representation and the homology
representation of φ.

Proposition 4-1. Let φ : J1→ J2 be a homomorphism and let T , R be the induced matrices described
above.

(i) The matrices T = Tφ and R = Rφ satisfy T�1 =�2 R.

(ii) A pair (T, R) as in (i) comes from a uniquely determined homomorphism φ : J1→ J2.

(iii) Either of the elements T and R in (i) is determined by the other.

(iv) If the curves C1 and C2 as well as the chosen bases of differentials and φ are defined over k ⊂ Q,
then the matrix T is an element of Mg2,g1(k).

Proof. These results are in [5, §1.2]. Writing �2 for the elementwise complex conjugate of �2, we
remark for part (iii) that we can determine R from T by considering(

T�1

T�1

)
=

(
�2

�2

)
R, (4-2)

since the first matrix on the right-hand side of (4-2) is invertible. Conversely, we can determine T from R
by considering the first g1 columns on either side of T�1 =�2 R since the corresponding matrices are
invertible. �

We seek to recover these pairs (T, R) numerically. This question was briefly touched upon in [7, §6.1],
and before that in [28, §3], but here we give some more detail.

Lemma 4-3. Given approximations of �1, �2 to sufficiently high precision, we can numerically re-
cover a Z-basis for Hom(J1, J2), represented by matrices R ∈ M2g2,2g1(Z) and T ∈ Mg2,g1(C) as in
Proposition 4-1.

Proof. Following Remark 3-1, we can normalize �i to be of the form (1 | τi ). We write

R =
(

D B
C A

)
, where D, B,C, A ∈ Mg2,g1(Z).

Then T = D+ τ2C , and
B+ τ2 A = (D+ τ2C)τ1.
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Considering real and imaginary parts separately, we obtain m = 2g1g2 equations with real coefficients
in n = 4g1g2 integer variables, denoted by M ∈ Mm,n(R). We recognize integer solutions that are small
compared to the precision to which we calculated τ1, τ2 in the following way. Observe that such solutions
correspond to short vectors in the lattice generated by the columns of (I | ε−1 M), where ε is some small
real number. The LLL algorithm can find such vectors, and we keep the ones that lie in the kernel to the
specified precision.

If sufficient precision is used, then we obtain a basis for Hom(J1, J2) in this way. (Heuristically, any
approximation to high precision will do.) Proposition 4-1 shows how to recover the tangent representation
T from the corresponding homology representations R. �

Remark 4-4. An important tuning parameter for applications of LLL is the precision. We have an
(estimated) accuracy of the entries in the matrix M . We choose ε such that ε−1 M has accuracy to
within 0.5. If we have computed the period matrices to a precision of b bits, then M contains about
2g1g2b bits of information. We would therefore expect that the entries in the LLL basis have entries of
size about (2g1g2b)/(4g1g2)= b/2. We only keep vectors that have entries of bit size at most half that.

In the context of Proposition 4-1(iv), the algebraic entries of T can be recognized by another applica-
tion of the LLL algorithm; the SageMath implementation number_field_elements_from_algebraics can
be used to this end, for example. We emphasize that in order to recover this algebraicity, we need the
original period matrices �i with respect to a basis of H0(C, �1

C) defined over Q. A differential basis for
which the period matrix takes the shape (1 | τi ) usually has a transcendental field of definition.

For a Jacobian J , the natural principal polarization gives rise to the Rosati involution on End(J )
[5, §5.1]. We choose a symplectic basis for H1(C(C),Z) and denote the standard symplectic form by

E =
(

0 I
−I 0

)
∈ M2g,2g(Z).

Proposition 4-5. Let φ : J → J be an endomorphism with corresponding pair (T, R) as in Proposition
4-1(i). Then the Rosati involution φ† of φ corresponds to the pair (T †, R†) with

R†
=−E Rt E .

Proof. Since we chose our homology basis to be symplectic, the Rosati involution of the endomor-
phism corresponding to R corresponds to the adjoint with respect to the pairing defined by E , which is
E Rt E−1

=−E Rt E . �

Remark 4-6. Proposition 4-1(iii) shows how to obtain T † from R†.

Recall [5, Chapter 5] that any polarized abelian variety allows a decomposition up to isogeny

J ∼
∏

i

Aei
i (4-7)

into powers of simple polarized quotient abelian varieties Ai .
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Corollary 4-8. Let J be the Jacobian of a curve C , and let � be a corresponding period matrix. If we
know � to sufficiently high precision, then we can numerically determine the factors in (4-7). Further-
more, if J is defined over Q, we can numerically determine a field of definition for each of the conjectural
factors Ai .

Proof. Using Lemma 4-3 we can compute generators for End(J ). We can then determine symmetric
idempotent matrices e ∈ M2g,2g(Q) by using meataxe algorithms, or alternatively by directly solving
e2
= e in the subring of End(J ) fixed by the Rosati involution. The columns of �e span a complex torus

of smaller dimension. By [18] all isogeny factors of J occur this way.
In order to find a field of definition, we can determine the matrix T corresponding to e and recognize

its entries as algebraic numbers. Then [18] shows that the image of the projection T is still polarized,
and defined over the corresponding field. �

4B. Computing symplectic isomorphisms. When g1 = g2, Lemma 4-3 allows us to recover possible
isomorphisms between J1 and J2, as these correspond to the matrices R with det(R)=±1.

In particular, this gives us a description of the automorphism group of a Jacobian variety J as the
subgroup of elements of End(J ) with determinant 1. This group can be infinite. However, note that we
have principal polarizations on J1 and J2. We take symplectic bases for the homology of both Jacobians,
and let α : J1→ J2 be an isomorphism, represented by R ∈ M2g,2g(Z).

Definition 4-9. We say that α is symplectic if we have Rt E2 R = E1.

Remark 4-10. More intrinsically, the definition demands that the canonical intersection pairings E1

and E2 on H1(C1,Z) and H1(C2,Z) satisfy α∗E2 = E1.

The symplectic automorphisms of J form a group, which is called the symplectic automorphism group
Aut(J, E) of the principally polarized abelian variety (J, E).

Theorem 4-11. Suppose that C is a smooth curve of genus at least 2. Then we have the following:

(i) The symplectic automorphism group of J is finite.

(ii) There is a canonical map Aut(C) → Aut(J, E). If C is nonhyperelliptic, then this map is an
isomorphism; otherwise it induces an isomorphism Aut(C)−→∼ Aut(J, E)/〈−1〉.

Proof. Part (i) is [5, Corollary 5.1.9], and (ii) is the Torelli theorem [21, Theorem 12.1]. �

This shows we can recover Aut(C) from Aut(J, E). In fact, from the linear action of the symplectic
automorphism on H0(C, �1

C)
∗ we can recover its action on a canonical model of C in PH0(C, �1

C)
∗.

For nonhyperelliptic curves this realizes the isomorphism Aut(J, E)/〈−1〉 ' Aut(C) explicitly. For
hyperelliptic curves it recovers the reduced automorphism group, which can in fact be determined more
efficiently by purely algebraic methods, as described in [20].

If C is defined over Q, then we can verify that the numerical automorphisms thus obtained are correct
by working purely algebraically: by Proposition 4-1(iv) we obtain an algebraic expression for T . We
can then check by exact calculation that it fixes the defining ideal of the canonical embedding of C .
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More generally, given two Jacobians J1 and J2, we can determine the numerical symplectic isomor-
phisms between them. To this end, one proceeds as in the proof of [5, Theorem 5.1.8]: we have

Rt E2 R = E1 (4-12)

or
(E−1

1 Rt E2)R = 1. (4-13)

In particular, we get
tr((E−1

1 Rt E2)R)= 2g (4-14)

for the common genus g of C1 and C2. Let B = {B1, . . . , Bd} be a Z-basis of Hom(J1, J2). Then we
can write

R =
d∑

i=1

λi Bi . (4-15)

The positivity of the Rosati involution implies that the set of solutions λ1, . . . , λd of (4-14) is finite.
Explicitly, these can be obtained by using the Fincke–Pohst algorithm [13]. For the finite set of solutions
thus obtained, we check which yield matrices R in (4-15) that numerically satisfy (4-13). These matrices
constitute the homology representations R of numerical isomorphisms J1→ J2. From this, we can obtain
the corresponding tangent representations T by Proposition 4-1(iii), and we can verify these algebraically
as above.

Remark 4-16. Using the same methods, one can determine the maps C1→ C2 of a fixed degree d by
finding the α for which α∗E1 = d E2. This is especially useful if the genus g2 of C2 is larger than 2, since
then we can bound d by (2g1− 2)/(2g2− 2).

In this way, we obtain the following pseudocode.

Algorithm 4-17 (compute isomorphisms between curves).

Input: Planar equations f1, f2 for two curves C1,C2, as well as a given working precision.

Output: A numerical determination of the set of isomorphisms C1→ C2.

(1) Check if g(C1)= g(C2) and that either both curves are hyperelliptic or both are nonhyperelliptic;
if not, return the empty set.

(2) If C1 and C2 are both hyperelliptic, use the methods in [20].

(3) Otherwise, determine the period matrices P1, P2 of C1,C2 to the given precision, using Algorithm 1-2.

(4) Using Lemma 4-3 (see also [7, §6.1]), determine a Z-basis of Hom(J1, J2)⊂ M2g,2g(Z) represented
by integral matrices R ∈ M2g,2g(Z).

(5) Using Fincke–Pohst, determine the finite set S = {R ∈ Hom(J1, J2) | tr((E−1
1 Rt E2)R)= 2g}.

(6) Using the canonical morphisms with respect to the chosen bases of differentials, return the subset
of elements of S that indeed induce an isomorphism C1→ C2.
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5. Examples

The examples in this section can be found online at [9] or in an online supplement.

Example 5A. Consider the curve

C : 4x6
− 54x5 y− 729x4

+ 108x3 y3
+ 39366x2

− 54xy5
− 531441.

This is a nonhyperelliptic curve of genus 6. Theorem 4-11 shows that, at least numerically, its geometric
automorphism group is of order 2 and generated by the involution ι : (x, y) 7→ (−x,−y). Lemma 4-3
shows that its numerical geometric endomorphism ring is of index 6 in Z×Z×Z.

The quotient of C by its automorphism group gives a morphism of degree 2 to the genus 2 curve

D1 : y2
= x6
− x5
+ 1.

This corresponds to the symmetric idempotent e1 = 1− (1+ ι)/2 in the endomorphism algebra, whose
tangent representation has numerical rank 4. Numerically, there are two other such symmetric idempo-
tents e2, e3. Together, their kernels span H1(C(C),Z), and all of these are of dimension 4= 2 · 2. This
means that along with A1 = Jac(D1) there should be two other 2-dimensional abelian subvarieties A2, A3

of Jac(C) such that
Jac(C)∼ A1× A2× A3.

We now describe the abelian varieties A2 and A3.
The tangent representation of an idempotent ei corresponding to a factor Ai has dimension 4. Its kernel

is therefore a subspace Wi of H0(C, �1
C)
∗ of dimension 2. If the idempotent ei is induced by a map of

curves p : C→ Di , then Wi = p∗H0(Di , �
1
Di
)∗ for some curve Di and some projection p : C→ Di .

By composing the canonical map with the projection to the projective line PWi , all the idempotents ei

give rise to a cover C→ PWi . Now if ei is induced by a projection C→ Di at all, then Di is a subcover
of this map C→ PWi . It turns out that all ei give rise a subcover of the degree 6 non-Galois cover

C→ P1,

(x, y)→ y/x .

A monodromy calculation gives the Galois closure Z→ P1 of this cover: its Galois group G is dihedral
of order 12. In particular, considering the subgroups of G that properly contain the degree 2 subgroup
corresponding to C → P1, we see that there exist exactly two nontrivial subcovers p1 : C → D1 and
p2 : C→ D2 of C→ P1. These subcovers have degree 2 and degree 3, respectively.

The curves D1 and D2 are both of genus 2. The first subcover p1 is a quotient of C and corresponds
to the curve D1 above. The second subcover p2 is not a quotient of C , but using Galois theory for the
normal closure still furnishes us with a defining equation of D2, namely

D2 : y2
=−16x5

− 40x4
+ 32x3

+ 88x2
− 32x − 23.

We take A2 to be the Jacobian of D2.

http://msp.org/obs/2019/2-1/obs-v2-n1-x09-Examples.zip
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Since we have exhausted all subcovers of the Galois closure Z→ P1, we conclude that A3 does not
arise from a cover C→ D3. Still, using analytic methods we find that numerically the subvariety A3 is
simple and admits a (unique) principal polarization. It is therefore the Jacobian of a curve D3 of genus 2.
Calculating the Igusa invariants numerically, we reconstruct

D3 : y2
= x6
+ 3x4

+ 3x2
+ x + 1.

We can numerically check that there is a morphism of abelian varieties Jac(C)→ Jac(D3) that is compat-
ible with the polarizations on both curves. A computation on homology again shows that this morphism
cannot come from a morphism of curves C → D3; if it did, the degree of such a morphism would
have to be 6, which is impossible in light of the Riemann–Hurwitz formula. An explicit correspondence
between C and D3 can in principle be found by using the methods in [10]; however, this will still be a
rather involved calculation, which we have therefore not performed yet.

Example 5B. Consider the plane model

C : f (x, y)= 1+ 7xy+ 21x2 y2
+ 35x3 y3

+ 28x4 y4
+ 2x7

+ 2y7
= 0

of the Macbeath curve from [16], which is due to Bradley Brock. Its automorphism group is isomorphic
to PSL2(F8) and has order 504. We illustrate that the algorithm described in Section 4B indeed recovers
that Aut(C) is isomorphic to PSL2(F8), that C is indeed the Macbeath curve, and moreover that all the
automorphisms of C are already defined over the cyclotomic field Q(ζ7).

From the adjoint ideal computed by Singular [11] we find a Q-rational basis of 7 global differentials
of the form hω, where ω = ∂ f

∂y dx and where h is one of

{h1, . . . , h7} = {4x2 y2
+ 3xy+ 1, 2y5

− x3 y− x2, 2xy4
+ x4
+ y3,

4x2 y3
+ 3xy2

+ y, 4x3 y2
+ 3x2 y+ x, 2x4 y+ y4

+ x3, 2x5
− xy3

− y2
}.

We can determine a corresponding period matrix to binary precision 100 after about a minute’s calcula-
tion, and find the corresponding numerical symplectic automorphism group. It indeed has cardinality
1008, and its elements are well approximated by relatively simple matrices in the cyclotomic field
Q(ζ7) that also generate a group G ⊂ GL7(Q(ζ7)) of order 1008 with G ∩Q(ζ7)

∗
= 〈−1〉 and with

G/〈−1〉 ∼= PSL2(F
3
2). In practice this is of course indication enough that the automorphism group has

been found.
To prove this, we choose two elements T1, T2 of G. The first of these is the diagonal matrix with entries
{1, ζ 2

7 , ζ
4
7 , ζ

6
7 , ζ7, ζ

3
7 , ζ

5
7 }; the other has relatively modest entries but is still too large to write down here.

We check that these matrices generate a subgroup of G of cardinality 504 that projects isomorphically
to G/〈−1〉. If we show that T1 and T2 indeed correspond to automorphisms of C , then our claims will
be proved, since any curve of genus 7 with (at least) 504 automorphisms is birational to the Macbeath
curve.
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To verify this claim, one can use the canonical embedding of C with respect to the given basis of
global differentials {hiω}. Alternatively, one observes that

x = h5/h1, y = h4/h1.

This means that after applying one of the transformations T1, T2 to the basis of global differentials to
obtain the linear transformations {Ti (h jω)} j , we can recover corresponding transformations x ′ and y′

in x and y via

x ′ = Ti (h5ω)/Ti (h1ω), y′ = Ti (h4ω)/Ti (h1ω).

For T1, we get

x ′ = ζ7x, y′ = ζ 6
7 y,

while when evaluating natively for T2 we get two decidedly unpleasant rational expressions the degree
of whose denominator and numerator both equal 5. In either case, we can check that the correspond-
ing substitutions leave the equation for C invariant, which provides us with the desired verification of
correctness of T1 and T2.

Example 5C. This example illustrates the value of being able to verify isogeny factors of Jacobians
numerically. We consider a genus 4 curve C and an unramified double cover π : D→ C . Then D is of
genus 7, and Jac(D) is isogenous to Jac(C)× A for some 3-dimensional abelian variety A. The theory
of Prym varieties shows that we can take A to be principally polarized. It follows that generally A is a
quadratic twist of a Jacobian of a genus 3 curve F . In [22] W. P. Milne constructs a plane quartic F from
a genus 4 curve C with data that amounts to specifying an unramified double cover of C . One would
guess that Jac(F) is indeed the Prym variety of D/C . Here we check this numerically for a particular
example. See [8] for a modern, systematic treatment of this construction.

Let C be the canonical genus 4 curve in P3, described by 02 = 03 = 0, where

02 = x2
+ xy+ y2

+ 3xz+ z2
− yw+w2, 03 = xyz+ xyw+ xzw+ yzw.

A plane model for this curve is given by

C̃ : y4w2
−y3w3

+y2w4
+2y4w−y3w2

+2yw4
+y4
−2y2w2

+yw3
+w4
−y2w−yw2

+y2
+2yw+w2

=0.

Since 03 has four nodal singularities in general position, it is a Cayley cubic. It admits a double cover
unramified outside the nodes, obtained by adjoining the square root of the Hessian of 03. Since C
does not pass through the nodes, this induces an unramified double cover D of C . It is geometrically
irreducible and admits a plane model

D̃ : u4v4
− 3u4v2

+ u4
− u3v3

− 2u3v+ u2v2
− u2
+ 3uv3

+ 2uv+ v4
+ v2
+ 1= 0.

Milne’s construction yields a plane quartic

F :5s4
+28s3t+28s3

+47s2t2
+76s2t+44s2

+34st3
+82st2

+66st+18s+16t4
+34t3

+32t2
+18t+1=0.
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Numerical computation shows that End(Jac(C))= Z and that End(Jac(F))= Z, which can be confirmed
by the `-adic methods in [10]. It follows that Hom(Jac(F), Jac(C)) = 0. Furthermore, we find that
Hom(Jac(C), Jac(D)) and Hom(Jac(F), Jac(D)) are 1-dimensional, so it follows that Jac(D)∼ Jac(C)×
Jac(F) and that Jac(F) lies in the Prym variety of the cover D→C . Thus, we obtain numerical evidence
that Milne indeed provides a construction of a curve F generating the Prym variety.
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Ranks, 2-Selmer groups, and Tamagawa numbers
of elliptic curves with Z=2Z�Z=8Z-torsion

Stephanie Chan, Jeroen Hanselman, and Wanlin Li

In 2016, Balakrishnan, Ho, Kaplan, Spicer, Stein and Weigandt produced a database of elliptic curves
over Q ordered by height in which they computed the rank, the size of the 2-Selmer group, and other
arithmetic invariants. They observed that after a certain point, the average rank seemed to decrease as the
height increased. Here we consider the family of elliptic curves over Q whose rational torsion subgroup
is isomorphic to Z=2Z � Z=8Z. Conditional on GRH and BSD, we compute the rank of 92% of the
202;461 curves with parameter height less than 103. We also compute the size of the 2-Selmer group and
the Tamagawa product, and prove that their averages tend to infinity for this family.

1. Introduction

Let E be an elliptic curve over Q. After a suitable choice of isomorphism, we can always express such
a curve in its short Weierstrass form:

E W y2
D x3

C a4xC a6;

with a4; a6 2 Z. Using this description, we define the naive height of the curve E as

h.E/ WDmaxf4ja4j
3; 27a2

6g:

In [1], the authors created an exhaustive database of isomorphism classes of elliptic curves with naive
height up to 2:7 �1010, which contained a total of 238;764;310 curves. For each elliptic curve in this data-
base, they computed the minimal model, the torsion subgroup, the conductor, the Tamagawa product, the
rank, and the size of the 2-Selmer group. They plotted the average rank of the curves up to a certain height.
Initially the average rank seemed to be an increasing function, but around a naive height of 109, they ob-
served a turnaround point, where the average rank seemed to start decreasing as the height was increasing.

In this database however, there were no elliptic curves recorded with rational torsion subgroup isomor-
phic to Z=2Z�Z=8Z, which is the largest possible torsion subgroup for elliptic curves over Q. The curve
with minimal naive height that has such a torsion group has Weierstrass form y2 D x3� 1386747xC

368636886 and its naive height is 10667230914617018892� 1:07 � 1019.
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Keywords: elliptic curve, rank, Selmer group, Tamagawa number.
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In this paper, we describe a similar database for the family of elliptic curves over Q whose rational
torsion subgroup is isomorphic to Z=2Z�Z=8Z. We can parametrize this family in the following way:

F WD
�

E W y2
D x.xC 1/.xCu4/

ˇ̌̌̌
uD

2t

t2� 1
; t 2Q n f0; 1g

�
:

We call t the parameter of the curve and write t D a=b for coprime integers a, b. This particular
parametrization was provided by Bartosz Naskręcki, resulting from ideas in [16]. The family inherits
a height function from its parametrization. For any E 2 F , we define the parameter height H.E/ WD

maxfjaj; jbjg. For each isomorphism class of curves in this family, we will only consider the model in
F for which H is minimal. From now on, we will call the family of curves represented by elements of
F the .2; 8/-torsion family.

We use the parameter height, as it makes it easier to enumerate and compare curves in our family. The
naive height of the curves in our family is very large, as could already be seen in the example mentioned
above. We prove in Section 2 that

0:559 � h.E/1=48 <H.E/ < 0:672 � h.E/1=48:

We also show that the parameter height controls the size of the conductor N.E/:

N.E/ < 1:161 �H.E/10:

From now on, we will use the term height to refer to the parameter height.
There are several reasons to consider the .2; 8/-torsion family. First, based on the relation between the

parameter height and the naive height, restricting to this family allows us to quickly see curves of large
naive height. Another advantage is that the existence of the rational torsion structure makes it easier to
carry out 2-descent.

To provide an example, the 2000th curve in our database has parameter t D 98
99

, naive height 6:39 �10107

and conductor 6:65 � 1017. It would be more difficult to determine the rank for a curve of similar size
without any special structure, and currently it would not be feasible to carry out such calculations in bulk.

In our family, we enumerated all 202;461 isomorphism classes of curves with height less than 1000.
The average rank function seems to achieve its maximum at height 24, at the 121st curve, where the
average rank peaks at 0:744. Among these, we determined the rank for 186;876 classes, conditional on
GRH and BSD.

This particular family of elliptic curves was also studied in [7] and [12]. In [7], the authors were in
search of rank 4 curves, but were unable to find any. To date, no rank 4 curve has yet been found in
this family. In [12], the authors obtained statistical results on the 2-Selmer group, similar to our data in
Section 5B.

Main results. We found that curves with height up to 100 in the .2; 8/-torsion family have average rank
0:626 (Figure 2 in Section 5A) and with height up to 1000 have average rank between 0:508 and 0:663
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(Figure 3 in Section 5A). The first curves in the .2; 8/-torsion family with given rank r are

r D 0 W y2
Dx3

�1386747xC368636886
�
t D 1

2

�
;

r D 1 W y2
Dx3

�64052311707xC6090910426477494
�
t D 1

4

�
;

r D 2 W y2
Dx3

�42884506779312987xC3379377560795274084396534
�
t D 5

8

�
;

r D 3 W y2
Dx3

�20406728559954500484507xC1121060630379489735235148874483894
�
t D 12

17

�
:

We found that no rank-4 curves can exist with height below 1000.
The curve with rank 3 with the greatest height found in our database has parameter t D 841

1018
; its global

minimal model is

y2
CxyDx3

�1537294523297507321569249472559902413559297102550x

C733636624633313284630814852522791055015138014738294124679165680060100132:

This curve was found when we tried to compute the 2-Selmer rank of curves beyond height 1000. Cur-
rently, the curve with maximal height on the list of elliptic curves with high rank maintained by Dujella
[10] has parameter 352

1017
.

The average size of the 2-Selmer group seems to be increasing rather slowly, but steadily. We prove
the following theorem, which is an analogue of a result by Lemke Oliver and Klagsbrun for the family
of elliptic curves with 2-torsion [15].

Theorem 6.3. The average size of the 2-Selmer group tends to infinity in the .2; 8/-torsion family.

Similarly, observing the data on the average Tamagawa product suggested the following theorem that
we prove in Section 6A:

Theorem 6.1. The average Tamagawa product in the .2; 8/-torsion family up to height N has order of
magnitude .log N /33.

Outline of the paper. In Section 2, we provide some properties of the .2; 8/-torsion family related to our
parametrization. In Section 3, we recall general results and conjectures related to ranks of elliptic curves.
In Section 4, we discuss the computational methods we use. Section 5 contains the data we obtained and
our analysis of the data. In Section 6, we prove that the average Tamagawa product and the average size
of the 2-Selmer group tends to infinity for this family.

2. Some preliminary properties of the .2 ;8/-torsion family

In this section, we discuss the parametrization for the .2; 8/-torsion family. We also show how the
parameter height is related to the naive height and the conductor.

2A. The parametrization. By expressing the torsion points explicitly, one can check that any curve
with Z=2Z�Z=8Z-torsion can be described as an element of F . Conversely, given a curve in F , it is a
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straightforward calculation to verify that�
2u

.t C 1/2
;
4t.t2C 2t � 1/.t2C 1/

.t C 1/5.t � 1/3

�
is a point of order 8. Hence the torsion subgroup is isomorphic to Z=2Z�Z=8Z.

In each isomorphism class in F , there are exactly eight different choices of t . We get these representa-
tives using the transformations t 7! �t , t 7! 1=t and t 7! .1� t/=.1C t/. We choose the t corresponding
to a curve with minimal height. The maps t 7! �t and t 7! 1=t allow us to restrict t D a=b to the
range .0; 1/. Assuming a < b, if a � b � 1 mod 2, the map t 7! .1 � t/=.1C t/ allows us to take
parameter t 0 D a0=b0, where a0 D .b � a/=2 and b0 D .aC b/=2. Then t 0 would have a smaller height,
since a0 < b0 < b. Thus, choosing t D a=b 2 .0; 1/ with a and b coprime with different parity, we get a
unique representative for each isomorphism class.

With this choice of parameter, we see that the number of curves with height n is �.n/ if n is even and
�.n/=2 if n is odd, where �.n/ is the Euler totient function. By [19], we have for any � > 0, the estimateX

n�N

�.n/D
3

�2
N 2
CO.N.log N /2=3.log log N /4=3/:

Using the fact that �.2n/ is �.n/ if n is odd and 2�.n/ if n is even, one can show that the total number
of curves up to height N is

2

�2
N 2
CO.N.log N /2=3.log log N /4=3/:

2B. Naive height and parameter height. Let E be a curve given by the equation y2D x.xC1/.xCu4/

in F , where u D 2t=.t2 � 1/ and t D a=b are chosen as above. We show how the naive height and
parameter height are related.

Proposition 2.1. Let E=Q be an elliptic curve in F , with naive height h and parameter height H. We
have

0:559 � h1=48 <H < 0:672 � h1=48:

Proof. We start by giving a minimal Weierstrass model for our curve. Write S D 2ab and T D b2� a2,
so uD�S=T. It follows that S and T are coprime where S is even and T is odd. We write E in short
Weierstrass form y2 D x3�AxCB by putting

AD 27.S8
�S4T 4

CT 8/ and B D 27.S4
� 2T 4/.2S4

�T 4/.S4
CT 4/:

One can check that there exists no prime p such that p4 jA and p6 jB; therefore this Weierstrass
form is minimal. With this, the naive height of E is given by

hD 39T 24 maxf4j1�u4
Cu8
j
3; .1� 2u4/2.2�u4/2.1Cu4/2g:

Since this expression is symmetric in S and T, first assume S < T, so that u 2 .0; 1/. Bounding the
polynomials in u, we get 312 �T 24=16� h� 4 � 39 �T 24. Note also, max.S;T /Dmax.2ab; b2� a2/ 2
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Figure 1. Conductor of isomorphism classes in the .2; 8/-torsion family.

Œ2.
p

2� 1/H 2; 2H.H � 1/�. Therefore .
p

2� 1/24 � 312 � 220 �H 48 < h< 39 � 226 �H 48, which gives the
result. �

2C. Size of the conductor. Consider a curve in F with parameter t D a=b, where a and b are coprime
and of different parity. This curve is isomorphic to

E W y2
D x.xCS4/.xCT 4/;

where S D 2ab and T D b2� a2 are coprime. The discriminant of E is �E D 16S8T 8.T 4�S4/2. By
Tate’s algorithm [18], this curve has bad reduction precisely at the primes dividing �E , and the exponent
of the conductor is always 1. Therefore the conductor of E is the product of primes dividing

ab.b2
�a2/.a2

C b2/.a2
� 2ab� b2/.a2

C 2ab� b2/D b10t.1� t2/.1C t2/.t2
� 2t � 1/.t2

C 2t � 1/:

The absolute value of the polynomial in t is bounded from above in the interval .0; 1/ by approximately
1:160. Hence N.E/ < 1:161 �H.E/10. See Figure 1.

3. Background

Computing the rank of an elliptic curve over a number field is a difficult problem, and while there are a
number of techniques that work well in practice, there is no known algorithm to carry this out in general.
Here we review the main theorems and conjectures and discuss how they can be used to give conditional
results.

3A. The BSD conjecture. The most famous conjecture on ranks of elliptic curves is the Birch and
Swinnerton-Dyer conjecture (BSD) [4]. Let E be an elliptic curve defined over a number field with
L-function L.s;E/. The BSD conjecture states that the rank of E equals the order of vanishing of
L.s;E/ at s D 1, which is called the analytic rank of E. Assuming this conjecture allows us to obtain
an upper bound of the rank from the L-function.

3B. The minimalist conjecture and current results. It is believed that the root number, i.e., the sign
of the functional equation of L.s;E/, is 1 for half of all elliptic curves and �1 for the other half. The
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minimalist conjecture, initially formulated by Goldfeld [13] for the quadratic twists families, states that
with respect to any reasonable ordering, half of the elliptic curves have rank 0 and half have rank 1. This
would mean the average rank should tend to 1

2
, and 0% of elliptic curves have rank at least 2. One of

our main goals is to provide numerical evidence for this conjecture for the .2; 8/-torsion family.
The following result of Bhargava and Shankar [2] on the upper bound of the average rank of elliptic

curves provides strong evidence for the minimalist conjecture.

Theorem 3.1 (Bhargava and Shankar [2]). The average rank of all elliptic curves over Q ordered by
naive height is at most 0:885.

3C. The Selmer group and descent. For each integer n� 2, the n-Selmer group Seln.E/ of E over Q

fits into an exact sequence of abelian groups

0!E.Q/=nE.Q/! Seln.E/!X.E/Œn�! 0; (1)

where X.E/Œn� denotes the n-torsion subgroup of the Tate–Shafarevich group X.E/ of E over Q. If
p is a prime, then Selp.E/ is an elementary abelian p-group, whose dimension as an Fp-vector space
is called the p-Selmer rank of E, which is effectively computable and provides an upper bound on the
rank via (1).

Explicitly, an element in the n-Selmer group of E can be represented by a pair .C; �/, where C is a
genus-1 curve which is locally soluble and � is a map defined over Q that makes the following diagram
commute:

C

E E

�
'

Œn�

In this diagram, the vertical map C !E is an isomorphism defined over Q. Determining (a lower bound
for) the rank of E is equivalent to finding rational points on C. If no rational point of C can be found by
a search by height, we apply the method of descent repeatedly. More generally, given a rational isogeny
� WE!E0, there is a Selmer group associated to it, denoted as Sel�.E/. For the dual isogeny O� WE0!E

of �, we denote the corresponding Selmer group as Sel O�.E
0/. The following is a standard result, see for

example [17, Lemma 6.1].

Theorem 3.2. Let E and E0 be elliptic curves over Q. Suppose there exists � W E! E0 an isogeny of
degree 2. Then the following sequence is exact:

0!E0.Q/Œ O��=�.E.Q/Œ2�/! Sel�.E=Q/! Sel2.E=Q/! Sel O�.E
0=Q/:

For E 2 F , we have jE0.Q/Œ O��=�.E.Q/Œ2�/j D 1, which implies that

jSel�.E=Q/j � j Sel2.E=Q/j:
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Fisher [11] gives an efficient way to apply descent six times on elliptic curves with full 2-torsion
structure. Moreover, since the .2; 8/-torsion family has Z=2Z�Z=8Z torsion, there are two isogenous
curves with full 2-torsion structure. Applying Fisher’s method to all three isogenous curves allowed
us to determine the rank of more curves. Below is a picture of the isogenous curves and their torsion
structures:

E Etors.Q/Š Z=2Z�Z=8Z

E0 E0tors.Q/Š Z=2Z�Z=4Z

E00 E00tors.Q/Š Z=2Z�Z=2Z

There are also a number of recent results on the size of Selmer groups:

Theorem 3.3 (Bhargava and Shankar [3]). For n� 5, the average size of Seln.E/ for all elliptic curves
E=Q ordered by naive height is �.n/, the sum of divisors of n.

The theorem implies that the average size of the 2-Selmer group converges to �.2/ D 3. However,
this no longer holds for the family with nontrivial 2-torsion.

Theorem 3.4 (Klagsbrun and Lemke Oliver [15]). The average size of Sel2.E/ is unbounded for the
family of elliptic curves over Q with a torsion point of order 2 ordered by a parameter height.1

Our data suggests that the average size of the 2-Selmer group is also unbounded in the .2; 8/-torsion
family. In Section 6B, we give a proof of this fact.

3D. The Tamagawa number. Let E be an elliptic curve over Q. The Tamagawa number is the finite
index cp.E/ WD #.E.Qp/=E0.Qp//, where E0.Qp/ is the subgroup of points in E.Qp/ which have good
reduction. Each cp.E/ can be easily computed from the coefficients of E using Tate’s algorithm [18].
The Tamagawa product of E is

T .E/D
Y

p�1

cp.E/:

If there exists an isogeny � WE!E0 of degree 2, then the Tamagawa ratio of E is

T .E=E0/D
jSel�.E/j
jSel O�.E

0/j
:

Consider the exact sequence induced by the isogeny �:

0 ker.�/ E.Q/ E0.Q/ H 1.Q; ker.�// H 1.Q;E/ � � � :
� ı

Passing to a completion at a place p, we define

H 1
� .Qp; ker�/ WD ıp.E0.Qp/=�.E.Qp///�H 1.Qp; ker.�//:

1The parameter height used here for an elliptic curve with a 2-torsion point EA;B W y
2 D x3CAx2CBx is maxfjAj;B2g.
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Then the Tamagawa ratio can be related to the Tamagawa numbers as follows.

Theorem 3.5 (Cassels [8, Lemma 3.1]). The Tamagawa ratio decomposes into a product of local factors
as follows:

T .E=E0/D
Y

p�1

Tp.E=E
0/; where Tp.E=E

0/D 1
2
jH 1
� .Qp; ker�/j:

Theorem 3.6 (Dokchitser and Dokchitser [9, Lemmas 4.2 and 4.3]). For p ¤ 2 finite,

1
2
jH 1
� .Qp; ker�/j D

cp.E
0/

cp.E/
:

4. Computing ranks

4A. Enumerating curves. We produce a list of all isomorphism classes in F up to height N by comput-
ing the Farey sequence of order N to get a list of .a; b/, where a and b are coprime and have opposite
parities. Each pair .a; b/ gives a curve in F of minimal height in its isomorphism class. This gives us
202;462 ordered isomorphism classes of .2; 8/-torsion curves with height less than 1000.

4B. Procedure. To make our rank computations feasible, we assume two standard conjectures: the Birch
and Swinnerton-Dyer conjecture (BSD) and the generalized Riemann hypothesis (GRH). BSD allows
us to obtain an upper bound of the rank by computing the analytic rank numerically. GRH provides the
conjecturally best bound for the error term of the L-function attached to an elliptic curve, which improves
the efficiency of the analytic rank computation. An immediate consequence of the BSD conjecture is the
parity conjecture, which states that the root number agrees with the parity of the rank. This allows us to
determine the rank when the upper bound and lower bound we calculated for the rank differ by 1.

We computed the rank using a combination of Sage and Magma [6]. We first ran Cremona’s mwrank
in Sage, which carries out 2-descent and searches for rational points with low height. This function gave
us an upper bound and a lower bound for the rank of each curve in our database. If the bounds agreed,
this determined the rank. If the bounds differed by 1, the rank was obtained conditional on the parity
conjecture. This process determined the rank of 52:1% of the curves.

If the rank was not determined at this stage, we ran the Sage function analytic_rank_upper_bound,
which computes an upper bound on the analytic rank conditional on GRH and takes a parameter �, using
Bober’s method in [5]. The runtime is exponential in �, but a higher � potentially gives a better bound.
We ran the function repeatedly with increasing values of � up to at most 2:0, or until the rank’s upper
bound differed from the lower bound by at most 1. After this stage, we still had 44:2% curves with
unknown rank.

Because of the large number of curves remaining, it was computationally unfeasible to run with higher
� for all of them. Restricting to curves with H < 100, only 153 remained at this stage, and we were able
to continue the process up to �D 3:8. After this, only 15 curves were left with H < 100. Computing
the analytic rank becomes more difficult as the conductor increases. Since the parameter height appears
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to be positively correlated with the conductor, as is seen in Figure 1, it became more and more difficult
to determine the rank the further we got along.

A recent implementation of Fisher’s TwoPowerIsogenyDescentRankBound [11] in Magma is faster
and a better fit for our purposes since our curves have full rational 2-torsion. Using this, we were able
to determine the ranks of more than 90% of the curves up to H < 1000.

For the remaining curves, we returned to Sage. We ran analytic rank with higher values of �, up to
at least 3:2, and did a further point search using a higher bound in the mwrank function two_descent.
Altogether, the rank of 40:8% of the curves in our database was determined purely via descent, hence
unconditionally.

Initially there was one curve left with H < 100: this is the curve with parameter t D 66
97

. Thanks to
Klagsbrun for suggesting the use of AnalyticRank in Magma, we were able to show that this curve has
rank 0. The ranks of all curves with H < 100 were determined, conditional on GRH and BSD.

The list of high rank curves maintained by Dujella [10] contains 28 rank-3 curves, of which 26 have
H < 1000. Our computations recovered the rank of 17 of them. The rank of the remaining nine curves,
which were all discovered by Fisher, were included in our database for completeness. In addition to the
list, we found an extra rank-3 curve at t D 9

296
.

5. Results and analysis of computed data

5A. Rank. In the .2; 8/-torsion family, we very quickly observe a possible turnaround point in average
rank. The average rank seems to peak at H D 24 with value 0:744, after 121 curves are computed, then
steadily decreases to 0:626 at H D 99. See Figure 2.

Looking at all curves with H < 1000, the behaviour is less certain because of the number of curves
with undetermined ranks: we are only able to compute the rank of 186;876 curves, which is 92:3%. For
the remaining curves, we have upper bounds and lower bounds from our computations. None of these
upper bounds is greater than 3, so no rank-4 curve can exist with H < 1000. In Figure 3, we plot the
computed upper and lower bounds for the average rank.
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Figure 2. Average rank up to height 100 in the .2; 8/-torsion family.
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Figure 3. Average rank up to height 1000 in the .2; 8/-torsion family.

rank H<100 .%/ H<250 .%/ H<500 .%/ H<1000 .%/

0 865 .43:3/ 5689 .45:1/ 22160 .43:8/ 84763 .41:9/

1 1021 .51:1/ 6243 .49:5/ 25110 .49:7/ 101432 .50:1/

2 111 .5:6/ 307 .2:4/ 465 .0:9/ 652 .0:3/

3 3 .0:2/ 10 .0:1/ 24 .0:0/ 27 .0:0/

� 4 0 .0:0/ 0 .0:0/ 0 .0:0/ 0 .0:0/

unknown 0 .0:0/ 358 .2:8/ 2806 .5:5/ 15585 .7:7/

total 2000 .100:0/ 12607 .100:0/ 50565 .100:0/ 202461 .100:0/

average 0.626 [0.546, 0.604] [0.516, 0.628] [0.508,0.663]

Table 1. Rank distribution up to different heights.

5B. Size of the 2-Selmer group. To get a clearer picture of the behaviour of the average size of the
2-Selmer group, we computed data beyond height 1000, and it seems to be divergent (see Figure 4). In
Section 6B, we prove that this is indeed the case.

5C. Tamagawa product. The average Tamagawa product in the .2; 8/-torsion family also behaves dif-
ferently from the one in [1]. In their data, the average Tamagawa product peaks at 1:84 at naive
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Figure 4. Average size of the 2-Selmer group in the .2; 8/-torsion family.
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rank Sel2.E/ H<100 .%/ H<1000 .%/ H<2000 .%/ H<4000 .%/

2 346 .17:3/ 29943 .14:8/ 117397 .14:5/ 462688 .14:3/

3 799 .40:0/ 70856 .35:0/ 278930 .34:4/ 1107482 .34:2/

4 586 .29:3/ 62903 .31:1/ 252357 .31:1/ 1009839 .31:2/

5 222 .11:1/ 29287 .14:5/ 120373 .14:9/ 487277 .15:0/

6 44 .2:2/ 7934 .3:9/ 34104 .4:2/ 142043 .4:4/

7 3 .0:2/ 1386 .0:7/ 6329 .0:8/ 27823 .0:9/

8 0 .0:0/ 147 .0:1/ 811 .0:1/ 3743 .0:1/

9 0 .0:0/ 5 .0:0/ 51 .0:0/ 333 .0:0/

10 0 .0:0/ 0 .0:0/ 3 .0:0/ 28 .0:0/

� 11 0 .0:0/ 0 .0:0/ 0 .0:0/ 0 .0:0/

total 2000 .100/ 202461 .100/ 810352 .100/ 3241228 .100/

average jSel2.E/j 13.728 16.574 17.055 17.361

Table 2. 2-Selmer rank distribution up to different heights.
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Figure 5. Average Tamagawa product in log10 scale in the .2; 8/-torsion family.

root number H<100 .%/ H<1000 .%/ H<10000 .%/

1 976 .48:8/ 100927 .49:9/ 10125245 .50:0/

� 1 1024 .51:2/ 101534 .50:1/ 10136574 .50:0/

total 2000 .100/ 202461 .100/ 20261819 .100/

average �0:024000 �0:002998 �0:000559

Table 3. Root number distribution up to different heights.

height 6:3 � 105, then decreases with respect to the naive height. However in Figure 5, we see that it
is increasing in the .2; 8/-torsion family, and that its value is much larger than 1:84. In Section 6A, we
show that the average Tamagawa product is unbounded for this family.

5D. Root number. The average root number appears to converge to 0, as shown in Figure 6.
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Figure 6. Average root number in the .2; 8/-torsion family.

6. Proofs

6A. The average Tamagawa product is unbounded. To find the numbers cp.E/, we apply Tate’s algo-
rithm [18]. We look at the model

E W y2
�xy D x3

C
1
4
.S4
CT 4

� 1/x2
C

1
16

S4T 4x;

where S D 2ab and T D b2�a2. Again a and b are coprime and have opposite parities. The discriminant
of E is �E D

1
28 S8T 8.T 4 �S4/2. Note that S , T and .T 4 �S4/2 are pairwise coprime. By Tate’s

algorithm [18], we get

cp D

8<:
vp.�E/ if p jST or

�
p jT 4�S4 and

�
�1
p

�
D 1

�
;

2 if p jT 4�S4 and
�
�1
p

�
D�1;

1 otherwise:

Combining the local factors cp.E/, we get

T .E/D
Y
p

cp.E/D
Y

p jT 4�S4

.�1
p
/D�1

2
Y

pkk.T 4�S4/2

.�1
p
/D1

k
Y

pl k 1

28
S8T 8

l:

Theorem 6.1. The average Tamagawa product in the .2; 8/-torsion family up to height N has order of
magnitude .log N /33.

Proof. We estimate the sum

S.N / WD
X

a;b�N;2 ja
.a;b/D1

Y
p jT 4�S4

.�1
p
/D�1

2
Y

pkk.T 4�S4/2

.�1
p
/D1

k
Y

pl k 1

28
S8T 8

l:

Let H1.a; b/D .a
2� b2� 2ab/.a2� b2C 2ab/, H2.a; b/D a2C b2 and H3.a; b/D ab.b�a/.bCa/.

Note that the factors a2� b2� 2ab, a2� b2C 2ab, a2C b2, a, b, b� a; bC a are pairwise coprime.
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Let

f .H /D
Y

p jH

.�1
p
/D�1

2
Y

pkkH

.�1
p
/D1

k and g.H /D
Y

pl kH

l:

Let PC.x/ and P�.x/ denote the largest and smallest prime divisor of x respectively. Fix � > 0.
Factorize Hi.a; b/ into di and Hi.a; b/=di , so that P�.di/ < N �, and PC.Hi.a; b/=di/ � N �. Then
maxa;b�N fH1.a; b/

2H2.a; b/
4;H3.a; b/

8g �N 32, so H1.a; b/
2H2.a; b/

4 and H3.a; b/
8 each have at

most 32=� prime factors greater than N �. Therefore f .d2
1

d4
2
/� f .H1.a; b/

2H2.a; b/
4/�� f .d

2
1

d4
2
/.

Similarly g.d8
3
/� g.H3.a; b/

8/�� g.d8
3
/. We have

S.N /D
X

a;b�N;2 ja
.a;b/D1

f .H1.a; b/
2H2.a; b/

4/g.H3.a; b/
8/

�

X
d1;d2;d3

PC.di /<N �

f .d2
1 d4

2 /g.d
8
3 /

X
a;b�N; 2 ja; .a;b/D1

di jHi .a;b/
P�.Hi .a;b/=di /�N �

1:

Write aD ˛Cud1d2d3 and bDˇCvd1d2d3. Since H1, H2 and H3 are pairwise coprime, we only need
to look at coprime d1, d2 and d3. Since H1, H2 are odd and H3 is even, we consider only odd d1, d2

and even d3. Note that a; b jH3.a; b/ by construction. Suppose p j .a; b/; then p j d2 or p > N �. We
have X

a;b�N
9p�N �W p j .a;b/

1DO

� X
p�N �

�
N

p

�2�
DO.N 2��/:

We can exclude pairs of a and b with P�..a; b// >N � with a cost of O.N 2��/.X
a;b�N; 2 ja; .a;b/D1

di jHi .a;b/
P�.Hi .a;b/=di /�N �

1D
X

˛;ˇ<d1d2d3

2 j˛; di jHi .˛;ˇ/
p jd1d2d3).p−ˇ or p−˛/

X
u;v<N=.d1d2d3/

P�.Hi .a;b/=di /�N �

1CO.N 2��/:

By the small sieve [14, Theorem 2.6, p. 85] we have

X
u;v<N=.d1d2d3/

P�.Hi .a;b/=di /�N �

1�
N 2

d2
1

d2
2

d2
3

Y
p<N �

�
1�

7C
�
�1
p

�
C 2 �

�
2
p

�
p

�
�

N 2

d2
1

d2
2

d2
3
.log N /7

:

It remains to computeX
˛;ˇ<d1d2d3

2 j˛; di jHi .˛;ˇ/
p jd1d2d3).p−ˇ or p−˛/

1D
X

˛;ˇ<d1

d1 jH1.˛;ˇ/
p jd1).p−ˇ or p−˛/

1
X

˛;ˇ<d2

d2 jH2.˛;ˇ/
p jd2).p−ˇ or p−˛/

1
X

˛;ˇ<d3

2 j˛; d3 jH3.˛;ˇ/
p jd3).p−ˇ or p−˛/

1:
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By the Chinese remainder theorem, it suffices to count the number of solutions of Hi modulo pvkdi for
each prime p dividing di . We have

h1.p
v/ WD

X
˛;ˇ<pv

pv jH1.˛;ˇ/
p−ˇ or p−˛

1D

�
4�.pv/ if 2 is a square modulo pv;

0 otherwiseI

h2.p
v/ WD

X
˛;ˇ<pv

pv jH2.˛;ˇ/
p−ˇ or p−˛

1D

�
2�.pv/ if � 1 is a square modulo pv;

0 otherwiseI

h3.p
v/ WD

X
˛;ˇ<pv

pv jH3.˛;ˇ/
p−ˇ or p−˛

1D

�
4�.pv/ if p ¤ 2;

�.pv/ if p D 2:

We extend h1, h2 and h3 to multiplicative functions. Then the sum becomes

S.N /�
N 2

.log N /7

X
d1;d2;d3

PC.di /<N �

f .d2
1

d4
2
/g.d8

3
/h1.d1/h2.d2/h3.d3/

d2
1

d2
2

d2
3

�
N 2

.log N /7

Y
p<N �

�
1C

f .p2/h1.p/

p2

��
1C

f .p4/h2.p/

p2

��
1C

g.p8/h3.p/

p2

�

�
N 2

.log N /7

Y
p<N �

�
1C

1

p

�4�
1C

1

p

�4�
1C

1

p

�32

�N 2.log N /33:

The total number of curves up to height N has order of magnitude N 2 as discussed in Section 2A.
Therefore the average Tamagawa product is of the size .log N /33. �

6B. The average size of the 2-Selmer group is unbounded. We follow the approach in [15] to show the
average Tamagawa ratio diverges in the .2; 8/-torsion family, which implies that the average size of the
2-Selmer group is unbounded.

The curve obtained by the degree-2 isogeny � W E ! E0 corresponding to the rational subgroup
generated by the point .0; 0/ is

E0 W y2
�xy D x3

C
1
4
..S2

CT 2/2C 4S2T 2
� 1/x2

C
1
4
.S2T 2.S2

CT 2/2/x;

which has discriminant �E0 D
1
24 S4T 4.T 4�S4/4. Using Tate’s algorithm and looking at Table 1 in [9],

we find that the Tamagawa ratio for any finite prime p is

Tp.E=E
0/D

cp.E
0/

cp.E/
D

8<:
2 if p jS4�T 4 and

�
�1
p

�
D 1;

1
2

if p jST;

1 otherwise:

Since the discriminants �E and �0
E

are both positive, we have T1.E=E0/D 1.
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Theorem 6.2. The logarithmic Tamagawa ratio t.a; b/ WD log2 T .E=E0/ tends to a normal distribution
with mean �2 log log N CO.1/ and variance 6 log log N CO.1/.

Before we turn to the proof, let us look at the application of Theorem 6.2. We find that t.a; b/ log 2

tends to a normal distribution with mean � and variance �2 given by

� WD �2.log 2/.log log N /CO.1/; �2
WD 6.log 2/2 log log N CO.1/:

Hence T .E=E0/Dexp.t.a; b/ log 2/ tends to a log-normal distribution which has mean exp
�
�C1

2
�2
�
D

eO.1/.log N /.3 log 2�2/ log 2. Since 3 log 2�2> 0, the mean increases as N increases. From the discussion
in Section 3C, we know that jSel2.E/j � jSel�.E/j � T .E=E0/, so the following theorem is a corollary
of Theorem 6.2.

Theorem 6.3. The average size of the 2-Selmer group tends to infinity in the .2; 8/-torsion family.

Proof of Theorem 6.2. Let H1 D .a
2� b2� 2ab/.a2� b2C 2ab/.a2C b2/ and H2 D ab.b� a/.bC a/.

Throughout this proof, we will assume p is an odd prime as the contribution of the prime 2 can be taken
into the error term. Define

fp.H / WD 1p jH � 1.�1
p
/D1

and gp.H / WD 1p jH ;

where 1 denotes the indicator function. Then

t.a; b/D f .H1.a; b//�g.H2.a; b//; where f .H / WD
X
p

fp.H / and g.H / WD
X
p

gp.H /:

For any function F and any property P defined on the set

AN WD f.a; b/ W a; b �N; a and b coprime and have opposite paritiesg;

define

PN .P/D
P
.a;b/2AN

1P.a;b/

jAN j
and EN .F /D

P
.a;b/2AN

F.a; b/

jAN j
:

Fix � > 0. For p �N �, by counting the number of solutions of H1;H2 modulo p,

EN .fp.H1//D PN .H1 � 0 mod p/D

(
6

pC1
CO

�
1

N 2.1��/

�
if
�

2
p

�
D
�
�1
p

�
D 1;

2
pC1
CO

�
1

N 2.1��/

�
if
�

2
p

�
D�1;

�
�1
p

�
D 1I

EN .gp.H2//D PN .H2 � 0 mod p/D 4
pC1
CO

�
1

N 2.1��/

�
:

Since maxa;b�N fjH1.a; b/j; jH2.a; b/jg � N 6, each of H1 and H2 can only be divisible by at most
6=� prime factors larger than N �, so

P
p>N � fp.H1/ and

P
p>N � gp.H2/ are bounded above by 6=�.

Let F.N / WD
P

p�N � fp.H1/ and G.N / WD
P

p�N � gp.H2/. Then F.N /Df .H /CO.1/ and G.N /D

g.H /CO.1/ for .a; b/ 2AN .
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We define the following random variables to model fp.H1/ and gp.H2/:

Xp D

(
1 with probability 2

pC1

�
2C

�
2
p

��
;

0 with probability 1� 2
pC1

�
2C

�
2
p

�� if
�
�1
p

�
D 1;

Yp D

�
1 with probability 4

pC1
;

0 with probability 1� 4
pC1

;

so that fXpgp [ fYpgp are independent except P.Xp D 1 and Yp D 1/D 0. If
�
�1
p

�
¤ 1, then Xp D 0

with probability 1. Let X.N /D
P

p�N � Xp and Y .N /D
P

p�N � Yp. By the multidimensional central
limit theorem, X.N / and Y .N / converge to independent normal distributions as N !1. Note that
X.N / has mean and variance 2 log log N CO.1/; Y .N / has mean and variance 4 log log N CO.1/.

Since mixed moments determine the multinomial distribution, we want to show that the mixed mo-
ments of F.N / and G.N / converge to those of X.N / and Y .N /. We have by construction

EN .F.N /kG.N /l/D
X

p1;:::;pk�N �

q1;:::;ql�N �

PN .H1 � 0 mod pi and H2 � 0 mod qj /

D E.X.N /kY .N /l/CO

�
.4 log log N /kCl�1

N 2.1��/

�
:

From this we compute

EN

�
.F.N /� EN .F.N ///k.G.N /� EN .G.N ///l

�
D E

�
.X.N /� E.X.N ///k.Y .N /� E.Y .N ///l

�
CO

�
.4 log log N /kCl�1

N 2.1��/

�
:

This shows that the distributions of F.N / and G.N / tend to those of X.N / and Y .N / respectively. The
difference of two normal distribution is a normal distribution; hence f .H1/�g.H2/D F.N /�G.N /C

O.1/ tends to a normal distribution with mean and variance as claimed. �
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Counting roots for polynomials modulo prime powers

Qi Cheng, Shuhong Gao, J. Maurice Rojas, and Daqing Wan

Suppose p is a prime, t is a positive integer, and f ∈Z[x] is a univariate polynomial of degree d with
coefficients of absolute value < pt. We show that for any fixed t , we can compute the number of roots
in Z/(pt ) of f in deterministic time (d log p)O(1). This fixed parameter tractability appears to be new
for t ≥ 3. A consequence for arithmetic geometry is that we can efficiently compute Igusa zeta func-
tions Z , for univariate polynomials, assuming the degree of Z is fixed.

1. Introduction

Given a prime p, and a univariate polynomial f ∈Z[x] of degree d with coefficients of absolute value< pt,
it is a basic problem to count the roots of f in Z/(pt). Aside from its natural number theoretic relevance,
counting roots in Z/(pt) is closely related to error correcting codes [3] and factoring polynomials over
the p-adic rationals Qp [8; 4; 16], and the latter problem is fundamental in polynomial-time factoring
over the rationals Q [23], the study of prime ideals in number fields [9, Chapters 4 and 6], elliptic curve
cryptography [21], the computation of zeta functions [5; 22; 29; 6], and the detection of rational points
on curves [26].

There is surprisingly little written about root counting in Z/(pt) for t ≥ 2: while an algorithm for
counting roots of f in Z/(pt) in time polynomial in d log p has been known in the case t = 1 for many
decades (just compute the degree of gcd(x p

− x, f ) in Fp[x]), the case t = 2 was first solved in 2017 by
some of our students [17]. The case t≥3, which we solve here, appeared to be completely open (see [27;
25; 28] for further background). One complication with t ≥ 2 is that polynomials in (Z/(pt))[x] do not
have unique factorization, thus obstructing a simple use of polynomial gcd.

However, certain basic facts can be established quickly. For instance, the number of roots can be
exponential in log p. (It is natural to use log p, among other parameters, to measure the size of a poly-
nomial since it takes O(dt log p) bits to write down f .) The quadratic polynomial x2

= 0, which has

Rojas was partially supported by NSF grant CCF-1409020, the American Institute of Mathematics, and MSRI (through REU
grant DMS-1659138). Cheng was partially supported by NSF grant CCF-1409294.
MSC2010: 11Y16, 13P15.
Keywords: polynomials, root counting, prime power.
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roots 0, p, 2p, . . . , (p− 1)p in Z/(p2), is such an example. This is why we focus on computing the
number of roots of f , instead of listing or searching for the roots in Z/(pt).

Let Nt( f ) denote the number of roots of f in Z/(pt) (setting N0( f ):=1). The Poincaré series for f
is P f (x) :=

∑
∞

t=0 Nt( f )x t . Assuming P f (x) is a rational function in x , one can reasonably recover
Nt( f ) for any t via standard generating function techniques. That P f (x) is in fact a rational function
of x (even for multivariate f ) was first proved in 1974 by Igusa (in the course of deriving a new class
of zeta functions [18]), applying resolution of singularities. Denef found a new proof (using p-adic cell
decomposition [10]) leading to more algorithmic approaches later. While this in principle gives us a way
to compute Nt( f ), there are few papers studying the computational complexity of Igusa zeta functions
[30]. Our work here thus also contributes in the direction of arithmetic geometry by significantly im-
proving upon results in [30], where P f is computed in the special case where f is univariate and splits
completely over Q.

To better describe our results, let us start with a naive description of the first key idea: how do roots
in Fp lift to roots in Z/(pt)? A simple root of f in Fp can be lifted uniquely to a root in Z/(pt),
according to the classical Hensel’s lemma (see, e.g., [14]). But a root with multiplicity ≥ 2 in Fp can
potentially be the image (under mod p reduction) of many roots in Z/(pt), as illustrated by our earlier
example f (x)=x2. Or a root may not be liftable at all, e.g., x2

+ p= 0 has no roots mod p2, even though
it has a root mod p. More to the point, if one wants a fast deterministic algorithm, one can not assume
that one has access to individual roots. This is because it is still an open problem to find the roots of
univariate polynomials modulo p in deterministic polynomial time (see, e.g., [11; 15]).

Nevertheless, we have overcome this difficulty and found a way to keep track of how to correctly lift
roots of any multiplicity.

Theorem 1.1. There is a deterministic algorithm that computes the number of roots of f in Z/(pt) in
time (d log(p)+ 2t)O(1), where the implied constant in the big O notation is absolute.

We prove Theorem 1.1 in Section 5. Note that Theorem 1.1 implies that if t = O(log log p) then there
is a deterministic (d log p)O(1) algorithm to count the roots of f in Z/(pt). We are unaware of any earlier
algorithm achieving this complexity bound, even if randomness is allowed. (A few weeks after our work
here was presented at ANTS XIII, an improved complexity bound was obtained in the preprint [20].)
It is worth noting that further speed-ups in terms of sparsity (e.g., polynomials with a fixed number of
monomial terms) may be difficult to derive: merely deciding the existence of roots in Fp or Qp is already
NP-hard (under BPP-reductions) with respect to the sparse encoding [1; 7]. An interesting open problem
in this direction is then the following: if c1, c2, c3, a, b∈{1, . . . , p2

− 1} with a<b< p2
− p, can one

decide if c1+ c2xa
+ c3xb has a root in Z/(p2) in time polynomial in log p?

Our main technical innovations are the following:

• We use ideals in the ring Zp[x1, . . . , xk] of multivariate polynomials over the p-adic integers to
keep track of the roots of f in Z/(pt). More precisely, from the expansion

f (x1+ px2+ · · ·+ pk xk−1)= g1(x1)+ pg2(x1, x2)+ p2g3(x1, x2, x3)+ · · · ,
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we build a collection of ideals in Zp[x1, . . . , xk], starting from (g1(x1)). We then decompose the
ideals according to multiplicity type and rationality. This process produces a tree of ideals which
ultimately encode the summands making up our final root count.

• The expansion above is not unique. (For example, adding p to g1 and subtracting 1 from g2 gives
us another expansion.) However, we manage to keep most of our computations within Fp, and
maintain uniformity for the roots of our intermediate ideals, by using Teichmüller lifting (described
in Section 4).

2. Overview of our approach

To count the number of roots in Z/(pt) of f ∈ Z[x], our algorithm follows a divide-and-conquer strategy.
First, partially factor f over Fp according to multiplicity and rationality as follows:

f = f1 f 2
2 f 3

3 · · · f l
l F (mod p), (1)

where each fi∈Fp[x] is monic and splits completely into a product of distinct linear factors over Fp, the fi

are pairwise relatively prime, and F is free of linear factors in Fp[x]. Such a factorization is classically
known to be doable in deterministic polynomial-time (see, e.g., [2, pp. 170–171]). For an element α ∈ Fp,
we call any element of its inverse image under the natural map Z→ Fp a lift of α to Z. Similarly, we can
define a lift of α to Zp or to Z/(pt), and we can naturally extend this concept to polynomials in Fp[x] as
well. The core of our algorithm counts how many roots of f in Z/(pt) are lifts of roots of fi in Fp, for
each i . For f1, by Hensel’s lifting lemma, the answer should be deg f1 for all t . For other fi , however,
Hensel’s lemma will not apply, so we run our algorithm on the pair ( f,m), where m is the lift of (a factor
of) fi to Z[x],1 for each i ∈ {2, . . . , l}, to see how many lifts (to roots of f in Z/(pt)) are produced by
the roots of the fi in Fp. The final count is then the summation of the results over all the fi , since the
roots of f in Z/(pt) are partitioned by the roots of the fi .

Remark 2.1. If one instead uses a randomized factorization algorithm (e.g., [19]) to find roots of f in Fp

in polynomial time then one may assume deg m=1, and greatly simplify the analysis of our algorithm.

Since m| f (and in fact m2
| f ) in Fp[x], we have f (x)= 0 (mod (m(x), p)) and, in Z[x1, x2], we have

the containment

f (x1+ px2) ∈ (m(x1), p).

If we have the refined containment f (x1+ px2) ∈ (m(x1), pt) then for any root r1 of m in Z/(pt), and
any integer 0 ≤ r2 < pt−1, f (r1+ pr2) = 0 (mod pt). Thus each root of m in Fp lifts to exactly pt−1

roots of f in Z/(pt), and the counting problem for ( f,m) is solved. Otherwise we can efficiently find
an integer s ∈ {1, . . . , t − 1} and a g∈Z[x1, x2] such that

f (x1+ px2)= ps g(x1, x2) (mod (m(x1), pt)), (2)

1All factors of all fi are ultimately exhausted.
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where degx2
g ≤ t − 1, degx1

g < deg m and g(x1, x2) 6= 0 (mod p,m(x1)). Let

g(x1, x2)=
∑

0≤ j<t

g j (x1)x
j
2 .

Then either g j = 0 (mod p) or gcd(m(x1), g j (x1))= 1 over Fp. (Otherwise, we apply the algorithm to
the pairs ( f, gcd(m, g j )) and ( f, m/gcd(m, g j )).)

If s = 1 then, since m2
| f over Fp, we must have

f (x1+ px2)= pg0(x1) (mod m(x1), p2).

Since gcd(m, g0)= 1 over Fp, none of the roots of m in Fp can be lifted to Z/p2. So from now on we
assume that 1< s < t .

The algorithm for t = 3. The only interesting case is when s = 2.

Theorem 2.2. The number of roots in Z/(p3) of f that are lifts of roots of m (mod p) is equal to p
times the number of roots in F2

p of the 2× 2 polynomial system

m(x1)= 0, g(x1, x2)= 0, (3)

and thus the number of roots can be calculated in deterministic polynomial time.

Proof. To calculate the number of the roots, we run the Euclidean algorithm to compute the gcd of two
polynomials,

g(x1, x2) and x p
2 − x2,

viewed as polynomials in x2 over Fp[x1]/(m(x1)). If we encounter a zero divisor of Fp[x1]/(m(x1))

during the computation, then we have a nontrivial factorization of m(x1)= m1m2. We recursively count
the Fp solutions of the equation system m1(x1)= 0 and g(x1, x2)= 0, and the system m2(x1)= 0 and
g(x1, x2)= 0, and output the sum of these two numbers.

Otherwise assume that the degree of the gcd (a monic polynomial in x2) is n2. The number of Fp-roots
of (3) is equal to n2 deg(m(x)).

Since the number of factors of m(x1) is at most deg(m(x)), and the Euclidean algorithm can be done
in deterministic polynomial time, the theorem follows. �

More details and generalization (to the Gröbner base computation) of the algorithm can be found in
Section 6. Note that since degx2

g ≤ 2 any root of m in Fp can be lifted to at most 2p roots in Z/(p3).
Assume that f ∈ Z[x] is not divisible by p. The preceding ideas are formalized in Algorithm 1.

A proposition for general t. Let r ∈ Fp be any root of m, let r ′ be the corresponding lifted root of m
in Zp, and let a ∈ Zp. We then have

f (r ′+ ap)= ps g(r ′, a) (mod pt).
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Algorithm 1: The case t = 3

1 function COUNT( f (x) ∈ Z[x], f (x) 6= 0 (mod p))
2 factor f as in (1)
3 count = deg f1 F Every root of f1 can be lifted uniquely.
4 push f2, f3, . . . , fl onto a stack S
5 while S 6=∅ do
6 pop a polynomial from the stack, find its lift to Z and denote it by m
7 if f (x1+ px2)= 0 (mod (m(x1), p3)) then
8 count← count+ p2 deg m
9 else

10 find s and g satisfying the conditions in (2)
11 if deg gcd(m, g j ) > 0 for some j then
12 push gcd(m, g j ) and m/ gcd(m, g j ) onto the stack
13 else
14 if s = 2 then
15 count← count+ p·(the number of solutions of (3) in F2

p)
16 return count

So r ′+ ap is a root in Z/(pt) for f if and only if

g(r ′, a)= 0 (mod pt−s).

The preceding argument leads us to the following result.

Proposition 2.3. The number of roots in Z/(pt) of f that are lifts of the roots of m (mod p) is equal
to ps−1 times the number of solutions in (Z/(pt−s))2 of the following 2× 2 polynomial system (in the
variables (x1, x2)):

m(x1)= 0, g(x1, x2)= 0. (4)

Since the root of m is liftable only when s > 1 (see the discussion at the beginning of the section),
this yields the following dichotomy:

Corollary 2.4. If m2
| f in Fp[x], and t ≥ 2, then any root of m in Fp is either not liftable to a root in

Z/(pt) of f , or can be lifted to at least p roots of f in Z/(pt).

3. From Taylor series to ideals

For any univariate polynomial m of degree n let us define

Tm, j (x, y)=
∑

1≤i≤ j

yi−1

i !
d i m
(dx)i

(x).

Note that if m ∈ Z[x] then 1
i ! d

i m/(dx)i (x), being a Taylor expansion coefficient, also lies in Z[x].
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So Tm, j is an integral multivariate polynomial for any j. Since Tm,1 does not depend on y, we abbreviate
Tm,1(x, y) by Tm(x). The following lemma follows from a simple application of Taylor expansion:

Lemma 3.1. Let m ∈ Z[x] be a polynomial that is irreducible in Z[x] but splits completely, without
repeated factors, into linear factors in Fp[x]. Let r ∈ Fp be any root of m and let r ′ ∈ Zp be the
corresponding p-adic integer root of m. Then

m(r ′+ ap)= apTm(r) (mod p2).

To put it in another way, we have the following congruence:

m(x1+ px2)≡ px2Tm(x1) (mod m(x1), p2)

in the ring Z[x1, x2].

That one can always associate an r ∈ Fp to a root r ′ ∈ Zp as Lemma 3.1 is an immediate consequence
of the classical Hensel’s Lemma [14]. More generally, we have the following stronger result:

Lemma 3.2. Let m ∈ Z[x] be a polynomial that is irreducible in Z[x] but splits completely, without
repeated factors, into linear factors in Fp[x]. Let r ∈ Fp be any root of m, and let r ′ ∈ Zp be the
corresponding p-adic integer root of m. Then for any positive integer u,

m(r ′+ ap)= apTm,u−1(r ′, ap) (mod pu).

Also, in the ring Z[x1, x2], we have

m(x1+ px2)= x2 pTm,deg(m)(x1, px2) (mod m(x1)).

Proof. By Taylor expansion:

m(r ′+ ap)= m(r ′)+
∑

1≤i<u

(ap)i

i !
d i m
(dx)i

(r ′) (mod pu)

=

∑
1≤i<u

(ap)i

i !
d i m
(dx)i

(r ′) (mod pu)= ap
∑

1≤i<u

(ap)i−1

i !
d i m
(dx)i

(r ′) (mod pu)

As observed earlier, 1
i ! d

i m/(dx)i (x) is an integral polynomial (even when i > p−1), so we are done. �

Note that in the setting of Lemma 3.2, Tm,u−1(r ′, ap)≡ Tm(r ′) 6= 0 (mod p).
The following theorem is a generalization of the preceding lemmas to ideals.

Theorem 3.3. Let I be an ideal in Zp[x1, . . . , xk−1]. Assume that I (mod p) is a zero-dimensional
radical ideal in Fp[x1, . . . , xk−1] whose zero set in Fk−1

p lies in Fk−1
p and lifts to Zp. Let f ∈Z[x1, . . . , xk]

satisfy degxk
f < p. If f (r1, . . . , rk)≡ 0 (mod ps) for every Zp-root (r1, . . . , rk−1) of I, and every integer

rk , then there must exist a polynomial g(x1, . . . , xk) such that

f (x1, . . . , xk)≡ ps g(x1, . . . , xk) (mod I ).
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Theorem 3.3 can be proved by induction on k. Lemma 3.2 is basically the special case of Theorem 3.3
when s = 1, k = 2, I = (m(x1)) and f (x1, x2)= m(x1+ px2). It is important in Theorem 3.3 that the
ideal I (mod p) be radical, just like in Lemma 3.2, where m is free of repeated factors over Fp.

4. The case t = 4 and the need for Teichmüller lifting.

Here we work on the case t = 4. Earlier, we saw that in the course of our algorithm, m is a lift of a factor
of fi to Z[x]. In this section we will show the need for Teichmüller lifting. We start with

f (x1+ px2)= ps g(x1, x2) (mod m(x1), p4),

where 1< s < 4. If s = 3 then we have the following root count, thanks to Proposition 2.3:

Theorem 4.1. The number of roots in Z/(p4) of f that are lifts of roots of m (mod p) is equal to p2

times the number of roots in F2
p of the 2× 2 polynomial system (in the variables (x1, x2)),

m(x1)= 0, g(x1, x2)= 0, (5)

which can be calculated in deterministic polynomial time.

The most interesting subcase is thus s = 2. From (3), we first build an ideal

(m(x1), g(x1, x2)) (mod p)⊂ Fp[x1, x2].

The leading coefficient of g(x1, x2), considered as a polynomial in x2, is assumed to be invertible in
Fp[x1]/(m(x1)). So g can be made monic (as a polynomial in x2). Thus we may assume that the ideal is
given as

(m(x1), xn2
2 + f2(x1, x2)),

where n2 ≤ 2 and degx2
f2 < n2. If (r, r2) is a root in Fp of the ideal, and r1 is the lift of r to the Zp-root

of m, then r1+ pr2 is a solution of f (mod p3). We compute the rational component of the ideal, and
find its radical over Fp. In the process, we may factor m in Fp[x]. If we lift naively a factor m1 of m
over Fp, the p-adic roots of m1 may not be p-adic roots of m. So how do we keep the information about
p-adic roots of m, a polynomial with integer coefficients?

Our solution to this problem is to use Teichmüller lifting: recall that for an element α in the prime field
F/p, the Teichmüller lifting of α is the unique p-adic integer w(α) ∈ Zp such that w(α)≡ α mod p and
w(α)p

= w(α). If a is any integer representative of α, the Teichmüller lifting of α can be computed via

w(α)= lim
k→∞

a pk
, w(α)≡ a pt

mod pt .

Although the full Teichmüller lifting cannot be computed in finite time, we will see momentarily how
its mod pt reduction can be computed in deterministic polynomial time.

Let us now review how the mod pt reduction of the Teichmüller lift can be computed in deterministic
polynomial time: if m ∈ Z[x] is a monic polynomial of degree d > 0 such that m mod p splits as a
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product of distinct linear factors,

m(x)≡
d∏

i=1

(x −αi ) mod p, αi ∈ Fp,

then the Teichmüller lifting of m mod p is defined to be the unique monic p-adic polynomial m̂ ∈ Zp[x]
of degree d such that the p-adic roots of m̂ are exactly the Teichmüller lifting of the roots of m mod p.
That is,

m̂(x)=
d∏

i=1

(x −w(αi )) ∈ Zp[x].

The Teichmüller lifting m̂ can be computed without factoring m mod p: Using the coefficients of m, one
forms a d × d companion matrix M with integer entries such that m(x)= det(x Id −M). Then, one can
show that

m̂(x)= lim
k→∞

det(x Id −M pk
), m̂(x)≡ det(x Id −M pt

) mod pt .

This construction and computation of Teichmüller lifting of a single polynomial m(x) mod p can be
extended to any triangular zero-dimensional radical ideal with only rational roots as follows.

Let I be a radical ideal of the form

I = (g1(x1), g2(x1, x2), . . . , gk(x1, . . . , xk))⊂ Fp[x1, . . . , xk],

having only rational roots, where gi ∈ Z[x1, . . . , xi ] is a monic polynomial in xi of the form

gi (x1, . . . , xi )= xni
i + fi (x1, . . . , xi ), ni ≥ 1,

satisfying degxi
fi < ni . Such a presentation of the ideal I is called triangular form. It is clear that such an

I is a zero-dimensional complete intersection. Using the companion matrix of a polynomial, we can eas-
ily find ni×ni matrices Mi−1(x1, . . . , xi−1) whose entries are polynomials with coefficients in Z such that

gi (x1, . . . , xi )≡ det(xi Ini −Mi (x1, . . . , xi−1)) mod p, 1≤ i ≤ k.

Recursively define the polynomial fi ∈ (Z/(pt))[x1, . . . , xi ] for 1≤ i ≤ k such that

f1(x1)≡ det(x1 In1 −M pt

0 ) mod pt ,

f2(x1, x2)≡ det(x2 In2 −M1(x1)
pt
) mod (pt , f1(x1)),

...

fk(x1, . . . , xk)≡ det(xk Ink −Mk−1(x1, . . . , xk−1)
pt
) mod (pt , f1, . . . , fk−1).

The ideal Î = ( f1, . . . , fk) ∈ (Z/(pt))[x1, . . . , xi ] is called the Teichmüller lifting mod pt of I. It is
independent of the choice of the auxiliary integral matrices Mi . The roots of Î over Z/pt Z are precisely
the Teichmüller liftings mod pt of the roots of I over Fp. In particular, each root (r1, . . . , rk) over Z/(pt)

of Î satisfies the condition r p
i ≡ ri mod pt .
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We require that m be the Teichmüller lift of (a factor of ) fi at the beginning of the algorithm. Then
we compute the Teichmüller lift of the ideal (m(x1), xn2

2 + f2(x1, x2)), which is an ideal in Zp[x1, x2].
We only need it modulo p4. Denote the ideal by I2. For every root (r1, r2) of I2, r1+ pr2 is a solution
of f (x) = 0 (mod p3). Namely, for any integer r3, we have f (r1 + pr2 + p2r3) = 0 (mod p3), since
f (x1+ px2)= 0 (mod I2, p3).

According to Theorem 3.3, there exists a polynomial G ∈ Z[x1, x2, x3] such that

f (x1+ px2+ p2x3)≡ p3G(x1, x2, x3) (mod I2),

since I2 (mod p) is radical. We have

f (x1+ px2+ p2x3)= g1(x1, x2)p3x3+ g0(x1, x2)p3 (mod (I2, p4)).

Hence if (r1, r2) is a root of I2, then r1+ pr2+ p2r3 is a root of f (mod p4) if and only if (r1, r2, r3)

satisfies
g1(r1, r2)r3+ g0(r1, r2)= 0.

Assume that g1 6≡ 0 (mod I2, p). We count the number of rational roots of

(I2, g1(x1, x2)x3+ g0(x1, x2)) (mod p)⊂ Fp[x1, x2, x3].

Multiplying the resulting count by p yields the number of roots of f in Z/(p4).

5. Generalization to arbitrary t ≥ 5

We now generalize the idea for the case of t = 4 to counting roots in Z/(pt) of f (x) when t ≥ 5 and f is
not identically 0 mod p. (We can of course divide f by p and reduce t by 1 to apply our methods here,
should p divide f .) In the algorithm, we build a tree of ideals. At level k, the ideals belong to the ring
(Z/(pt))[x1, . . . , xk]. The root of the tree (level 0) is {0} ⊂ Z/(pt), the zero ideal. At the next level the
ideals are of the form (m(x1)), where m is taken to be the Teichmüller lift of fi in (1). We study how
the roots in Zp of m can be lifted to roots of f in Z/(pt).

Let I0, I1, . . . , Ik be the ideals in a path from the root to a leaf. We require the following:

• I0 = {0} ⊂ Z/(pt) and Ii ⊂ (Z/(pt))[x1, . . . , xi ].

• Ii = Ii+1 ∩Z/(pt)[x1, . . . , xi ] for all 0≤ i ≤ k− 1.

• The ideal Ii (mod p) in Fp[x1, . . . , xi ] is zero-dimensional, radical, and has only rational roots for
all i ∈ {0, . . . , k}; furthermore, Ii can be written in the form

(Ii−1, xni
i + fi (x1, . . . , xi ))⊂ (Z/(pt))[x1, . . . , xi ], (6)

where degxi
fi < ni .

• The ideal Ii is the mod pt reduction of the Teichmüller lift of the mod p reduction of Ii .
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The basic strategy of the algorithm is to grow every branch of the tree until we reach a leaf whose
ideal allows a trivial count of solutions (in which case we output the count and terminate the branch).
Once all the branches terminate, we then compute the summation of the numbers on all the leaves as
the output of the algorithm. The tree of ideals contains all necessary information about the solutions of
f (mod pt) in the following sense:

• For any ideal Ii in the tree, there exists an integer s ∈ {i, . . . , t}, such that if (r1, . . . , ri ) is a solution
of Ii in (Z/(pt))i , then r1+ pr2+· · ·+ pi−1ri+ pir is a solution of f (x) (mod ps) for any integer r .
Denote the maximum such s by s(Ii ).

• If r ∈ Z/(pt) is a root of f (mod pt), then there exists a terminal leaf Ik in the tree such that

r ≡ r1+ pr2+ · · ·+ pk−1rk (mod pk)

for some root (r1, . . . , rk)(Z/(pt))k of Ik .

• The root sets of ideals from distinct leaves are disjoint.

Suppose that at the end of a branch we have an ideal Ik ⊂ (Z/(pt))[x1, . . . , xk]. The ideal Ik (mod p)
is zero-dimensional and radical in Fp[x1, . . . , xk], with only rational roots. There are two termination
conditions:

• If s(Ik) = t then each root of Ik in Zk
p produces exactly pt−k roots of f in Z/(pt). We can count

the number of roots in Fk
p of Ik , multiply it by pt−k, output the number, and terminate the branch.

• Let g be the polynomial satisfying

f (x1+ px2+ p2x3+ · · ·+ pk−1xk + pk xk+1)≡ ps(Ik)g(x1, . . . , xk+1) (mod Ik).

Such a polynomial exists according to Theorem 3.3. If g (mod p) is a constant polynomial in xk+1,
and its constant is an invertible element (mod Ik, p), then the count on this leaf is zero.

Example 5.1. Suppose t = 2. For the polynomials x2
= 0 and x2

+ p = 0, the ideal (x1) is a terminal
leaf with count p for the former polynomial, and with count 0 for the latter.

If none of the conditions hold then let

g =
∑
j≤t/k

g j (x1, . . . , xk)x
j
k+1 (mod p).

The degree bound t/k is due to the fact that pk j divides any term in the monomial expansion of

f (x1+ px2+ · · ·+ pk−1xk + pk xk+1)

that has a factor x j
k+1. If any of the g j vanish at some rational root of Ik in Fk

p then this allows Ik (mod p) to
be expressed as an intersection of simpler ideals. Otherwise, for the ideal (Ik, g)⊂ (Z/(pt))[x1, . . . , xk+1],
we compute its decomposition in Fp[x1, . . . , xk+1] according to multiplicity type, find the radicals of the
underlying ideals, and then lift them back to (Z/(pt))[x1, . . . , xk+1]. They become the children of Ik .
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Note that if (Ik, g) does not have rational roots, it means that none of the roots of Ik can be lifted to a
solution of f (mod ps+1), and thus the branch terminates with count 0.

Proof of Theorem 1.1. If p ≤ d then factoring polynomials over Fp can be done in time polynomial in d
by brute force, and all the ideals in the tree are maximal. The number of children that an ideal with
distance k from the root can have is bounded from above by t/k or the degree of g. (More precisely, the
number of nonterminal child nodes is bounded from above by t/(2k).) The complexity is determined by
the size of the tree, which is bounded from above by

d
t∏

k=1

(t/k)= d
t t

t !
< det .

If p > d then this upper bound on the tree size still holds. Since we use Teichmüller lifting during the
algorithm, the tree size will never decrease. The algorithm must stop once the tree size approaches the
upper bound bdet

c. For each tree size change, we either create new children, or split a node. We need
to compute in the ring Fp[x1, . . . , xk]/Ik . Observe that in (6), we must have ni < t/(i − 1) for i ≥ 2. So
the ring is a vector space over Fp of dimension at most

d
t∏

i=2

ni = d
t t−1

(t − 1)!
< det .

Theorem 1.1 follows from the fact that each tree size change involves a number of bit operations at most
polynomial in det log p. �

6. Computer algebra discussion

In this section, we explain how to split ideals over Fp into triangular form so that the Teichmüller lift
to Zp can be computed. We start with the one variable case: For any given ideal

I = ( f (x))⊂ Fp[x],

we can split f into the form

f = gd1
1 · · · g

dt
t g0,

where d1 > · · ·> dt > 0, the polynomials g1, . . . , gt ∈ Fp[x] are separable, pairwise coprime and each
splits completely over Fp, and g0 has no linear factors in Fp[x]. Such a factorization can be computed
deterministically in time polynomial in log(p) deg( f ). Note that, for 1≤ i ≤ t , each root of gi has multi-
plicity di in I. This means that we can count the number of Fp-rational roots of I, and their multiplicities,
in polynomial time. Also, the rational part of I (i.e., excluding the factor g0) is decomposed into t factors
g1, . . . , gt .

Now we show how to go from k variables to k+ 1 variables for any k ≥ 1. Suppose

J = (g1, . . . , gk)⊂ Fp[x1, . . . , xk]
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has triangular form:
g1 = xn1

1 + r1(x1),

g2 = xn2
2 + r2(x1, x2),

...

gk = xnk
k + rk(x1, x2, . . . , xk),

where gi is monic in xi (i.e., degxi
ri < ni ) for 1 ≤ i ≤ k. We further assume that J is radical and

splitting completely over Fp — that is, J has n1n2 · · · nk distinct solutions in Fk
p. In particular, g1(x1)

has n1 distinct roots in Fp and, for each root a1 ∈ Fp of g1, there are n2 distinct a2 ∈ F2 such that (a1, a2)

is a root of g2(x1, x2). In general, for 1 ≤ i < k, each root (a1, . . . , ai ) ∈ Fi
p of (g1, . . . , gi ) can be

extended to ni+1 distinct solutions (a1, . . . , ai , ai+1) ∈ Fi+1
p of gi+1. For convenience, any ideal with

these properties is called a splitting triangular ideal.
Let f ∈ Fp[x1, . . . , xk, xk+1] be any nonzero polynomial which is monic in xk+1, and let I = (J, f ) be

the ideal generated by J and f in Fp[x1, . . . , xk, xk+1]. We want to decompose I into splitting triangular
ideals, together with their multiplicities. More precisely, we want to decompose I into the form

I = (J1, hd1
1 )∩ (J2, hd2

2 )∩ · · · ∩ (Jm, hdm
m )∩ (J0, h0), (7)

where J = J1∩J2∩·· ·∩Jm∩J0, I0 = (J0, h0) has no solutions in Fk+1
p , and the ideals

Ii = (Ji , hi )⊂ Fp[x1, . . . , xk, xk+1],

1≤ i ≤ m, are splitting triangular ideals and are pairwise coprime (i.e., any pair of distinct Ii have no
roots in common).

To get the decomposition (7), we first compute

w := x p
k+1− xk+1 mod G,

where G={g1,g2, . . . ,gk, f } is a Gröbner basis under the lexicographical order with xk+1> xk>· · ·>x1.
Via the square-and-multiply method, w can be computed using O(log(p)3n2) bit operations where n =
deg( f )·n1 · · · nk is the degree of the ideal I. Next we compute the Gröbner basis B of {g1, g2, . . . , gk, f, w}
(under lex order with xk+1 > xk > · · ·> x1), which is radical and completely splitting (hence all of its
solutions are in Fk+1

p and are distinct). This means that we get rid of the nonlinear part (J0, h0) in (7). The
ideal (B) is now equal to the radical of the rational part of I. To decompose (B) into splitting triangular
ideals, we view each polynomial in B as a polynomial in xk+1 with coefficient in Fp[x1, . . . , xk]. Let
t0 = 0< t1 < · · ·< tv be the distinct degrees of xk+1 among the polynomials in B. For 0≤ i ≤ v, let Bi

denote the set of the leading coefficients of all g ∈ B with deg(g)≤ ti . We then have a chain of ideals

J ⊆ (B0)⊂ (B1)⊂ · · · ⊂ (Bv−1)⊂ (Bv)= Fp[x1, . . . , xk]

with the following properties:

(i) 1 ∈ Bv.
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(ii) Each Bi (1 ≤ i ≤ v) is automatically a Gröbner basis under the lex order with xk > · · ·> x1 (one
can remove some redundant polynomials from Bi ).

(iii) For 0 ≤ i < v, each solution of Bi that is not a solution of Bi+1 can be extended to exactly ti+1

distinct solutions of I.

We can compute a Gröbner basis Ci for the colon ideal (Bi+1) : (Bi ) for 0 ≤ i < v. These Ci give
us the different components of J that have different numbers of solution extensions. Together with B,
we get different components of (I, w). These components are completely splitting, but may not be in
triangular form (as stated above). We again use the Gröbner basis structure to further decompose them
until all are splitting triangular ideals (Ji , hi ). Note that computing Gröbner bases, for arbitrary ideals
in Q[x1, . . . , xn], has exponential worst-case complexity [24]. However, all of our ideals are of a special
form, so their Gröbner bases can be computed deterministically in polynomial-time via the incremental
method in [12] (see also [13]).

Finally, to get the multiplicity of each component (Ji , hi ), we compute the Gröbner basis for the ideal
(Ji , f, f ( j)) where f ( j) denotes the j-th derivative of f for j = 1, 2, . . . , deg( f ), until the Gröbner
basis is 1. These ideals may not be in triangular form, so they may split further, but the total number
of components is at most deg f . Hence the total number of bit operations used is still polynomial in
log(p) deg(I ).
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Analytic evaluation of Hecke eigenvalues
for Siegel modular forms of degree two

Owen Colman, Alexandru Ghitza, and Nathan C. Ryan

The standard approach to evaluate Hecke eigenvalues of a Siegel modular eigenform F is to determine a
large number of Fourier coefficients of F and then compute the Hecke action on those coefficients. We
present a new method based on the numerical evaluation of F at explicit points in the upper half-space
and of its image under the Hecke operators. The approach is more efficient than the standard method
and has the potential for further optimization by identifying good candidates for the points of evaluation,
or finding ways of lowering the truncation bound. A limitation of the algorithm is that it returns floating
point numbers for the eigenvalues; however, the working precision can be adjusted at will to yield as
close an approximation as needed.

1. Introduction

The explicit computation of classical modular forms and their associated L-functions has been very useful
to formulate and verify conjectures, to discover new phenomena and to prove theorems. There are a
variety of ways to effectively compute the Fourier coefficients of classical modular forms and, therefore,
their L-functions. Analogous work for Siegel modular forms of degree 2 is less well-developed for,
perhaps, two main reasons:

(1) the methods for computing Siegel modular forms are ad hoc and less efficient than those for com-
puting classical modular forms;

(2) computing Siegel modular forms does not immediately give you the associated L-functions since
the Hecke eigenvalues of Siegel modular forms, unlike in the classical case, are not equal to the
Fourier coefficients and because the Euler factors of the L-function involve knowing both the p-th
and the p2-th eigenvalues.

To give an idea of the difficulty of computing the L-function of a Siegel modular form, we consider
an example. Let ϒ20 be the unique normalized Siegel modular form of degree 2 and weight 20 that is a
Hecke eigenform and not a Saito–Kurokawa lift. Skoruppa [15] gave an explicit formula for ϒ20 in terms
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207

http://msp.org/obs
http://dx.doi.org/10.2140/obs.2019.2-1
http://dx.doi.org/10.2140/obs.2019.2.207
http://msp.org


208 OWEN COLMAN, ALEXANDRU GHITZA, AND NATHAN C. RYAN

of the generators of the ring of Siegel modular forms of degree 2, and the largest calculation of ϒ20 has
been carried out by Kohnen and Kuss [7] (we point out that Kurokawa [9; 10] was the first to compute
ϒ20 but his computations were not very extensive). The computation that Kohnen and Kuss carried out
was enough to find the p-th eigenvalue for p ≤ 997 and the p2-th eigenvalue for p ≤ 79. They compute
Fourier coefficients indexed by quadratic forms with discriminant up to 3000000 and then use them to
determine the Hecke eigenvalues. An examination of the formulas on page 387 of [15] shows that to find
the eigenvalue λ(n) of Tn , for n = p2, requires the Fourier coefficients indexed by quadratic forms of
discriminant up to n2

= p4. This relation makes it infeasible to compute many more Fourier coefficients,
and thus Hecke eigenvalues, using this approach. Instead, in this paper, we propose a different approach.

Our method does not compute any of the Fourier coefficients of the Siegel modular form being studied.
Instead, we take suitable truncations of the Fourier expansions of the Igusa generators (whose coefficients
are inexpensive to compute) and use these truncations to evaluate our modular form numerically at points
in the upper half-space. This approach is based on work of Bröker and Lauter [3] in which they use such
techniques to evaluate Igusa functions. Using their method we find the eigenvalue λ(p) of an eigenform
F by doing the following:

• evaluate F at some point Z in the Siegel upper half-space;

• evaluate F |Tp at the same point Z ;

• take the ratio (F |Tp)(Z)/F(Z).

The conceptual shift that we are proposing is that, instead of representing the Siegel modular form F as
a list of Fourier coefficients, we represent F by its values at points in the Siegel upper half-space. The
idea is simple but its importance can be seen by virtue of the results. We remark that in [2] we describe
an implementation of the analogous method for classical modular forms and, in some cases, outperform
the standard method using modular symbols.

The potential to parallelize our algorithm stems from the fact that we sum over the coset decomposition
of the Hecke operators, and the computation of each summand is independent; these computations can
therefore be performed in parallel. Such approaches have been used in the past, for instance in deter-
mining the Hecke eigenvalues of paramodular forms; see [12; 4]. We thank the referees for pointing
this out, and note that the similarity ends at the level of the sum itself: Poor and Yuen specialize the
paramodular eigenform to a modular curve, then compute the summands (which are power series in one
variable) exactly. We work with the Siegel eigenform itself (as a power series in three variables) and
compute good numerical approximations to the summands.

It is important to emphasize that our method takes as input the expression of a Siegel eigenform as a
polynomial in the Igusa generators. Our objective is then to efficiently compute approximate values of
the Hecke eigenvalues. We do not claim to obtain further information about the Fourier coefficients of
the eigenform, nor that this is an efficient way of determining the exact value of the eigenvalues (unless
the latter happen to be integers).
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The paper is organized as follows. We begin by stating some numerical preliminaries used in our
method. Then, we give the relevant background on Siegel modular forms and discuss Bröker and Lauter’s
work and how to compute F |Tp both in theory and in practice. We conclude by presenting some results
of our computations, together with details of the implementation and ideas for further improvement.

2. Numerical preliminaries

Before we describe our algorithm to compute Hecke eigenvalues of Siegel modular forms analytically,
we begin by stating some results related to bounding the error introduced when we evaluate a given Siegel
modular form and its image under the Hecke operators Tp and Tp2 at a point in the upper half-plane.

2.1. Error in quotient. We have a quantity defined as

z = x
y

with x, y ∈ C.

The numerator and denominator can be approximated to xA and yA; we define z A := xA/yA. Given ε > 0,
what values of εx and εy ensure that

if |x − xA|< εx and |y− yA|< εy then |z− z A|< ε?

Lemma 1. With the above notation, let ex = x − xA and ey = y− yA. Then

z− z A =
ex − eyz A

yA+ ey
.

Proof. This follows from a straightforward calculation. �

Proposition 2. For any h ∈ (0, 1), if

εx <
hε|yA|

2
and εy <min

{
(1− h)ε|yA|

2|z A|
,
|yA|

2

}
,

then |z− z A|< ε.

Proof. Under the hypotheses, we have |yA+ ey|> |yA|/2 so

|z− z A|<
2
|yA|

(|ex | + |eyz A|) < hε+ (1− h)ε = ε. �

The value of the parameter h can be chosen in such a way that the calculations of xA and of yA are
roughly of the same level of difficulty.

In order to use the results of Proposition 2 in practice, we need a lower bound on |yA| and an upper
bound on |z A| (which can be obtained from the lower bound on |yA| and an upper bound on |xA|). How
do we bound |xA|? We compute a very coarse estimate x̃ to x , with ε̃x just small enough that |x̃ |−2ε̃x > 0.
(We can start with ε̃x = 0.1 and keep dividing by 10 until the condition holds.) Later we will make sure
that εx is smaller than ε̃x . Then we know that

|x̃ − x |< ε̃x and |xA− x |< εx ≤ ε̃x ,
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so ∣∣|xA| − |x̃ |
∣∣≤ |xA− x̃ |< 2ε̃x ⇒ 0< |x̃ | − 2ε̃x < |xA|< |x̃ | + 2ε̃x ,

giving us lower and upper bounds on |xA|. A similar argument works for |yA|.

3. Siegel modular forms

Let the symplectic group of similitudes of genus 2 be defined by

GSp(4) := {G ∈ GL(4) : t G J G = λ(G)J, λ(G) ∈ GL(1)}, where J =
[

I2

−I2

]
.

Let Sp(4) be the subgroup with λ(G)= 1. The group GSp+(4,R) := {G ∈ GSp(4,R) : λ(G) > 0} acts
on the Siegel upper half-space H2 := {Z ∈ M2(C) :

t Z = Z , Im(Z) > 0} by

G〈Z〉 := (AZ + B)(C Z + D)−1, where G =
[

A B
C D

]
∈ GSp+(4,R), Z ∈ H2. (1)

Let S(2)k be the space of holomorphic Siegel cusp forms of weight k and genus 2 with respect to
0(2) := Sp(4,Z). Then F ∈ S(2)k satisfies

F(γ 〈Z〉)= det(C Z + D)k F(Z)

for all γ =
[ A

C
B
D

]
∈ 0(2) and Z ∈ H2. This also can be written in terms of the slash operator: for

M ∈ GSp+(4,R) let (F |k M)(Z)= det(C Z + D)−k F(M〈Z〉). Then the functional equation satisfied by
a Siegel modular form can be written as

(F |k M)(Z)= F(z)

for all M ∈ Sp(4,Z).
Now we describe the Hecke operators acting on S(2)k . For M ∈GSp+(4,R)∩M4(Z), define the Hecke

operator T (0(2)M0(2)) on S(2)k as in [1, (1.3.3)]. For a positive integer m, we define the Hecke operator
Tm by

Tm :=
∑

λ(M)=m

T (0(2)M0(2)). (2)

See Section 5.1 for an explicit decomposition of the double cosets Tp and Tp2 into right cosets. Suppose

Tm =
∑

0(2)α

is a right coset decomposition of the Hecke operator Tm . Then the operator Tm acts on a Siegel modular
form F of weight k as

(F |k Tm)(Z)=
∑

(F |kα)(Z).

This action can be described in terms of the Fourier coefficients of the Siegel modular form F .
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Any Siegel modular form F of degree 2 has a Fourier expansion of the form

F(Z)=
∑

N

aN (F) exp(2π i Tr(NZ)), aN (F) ∈ C,

where the sum ranges over all positive semidefinite matrices

N =
(

a b/2
b/2 c

)
, with a, b, c ∈ Z.

The quadratic form N is often written [a, b, c] using Gauss’s notation. Using the decompositions of the
Hecke operators in Section 5.1 one can derive formulas for the action of Tp and Tp2 on a Siegel modular
form F . When these formulas are written down as in [15, p. 387] one can see that to compute λF (p),
the Hecke eigenvalue of F with respect to the Hecke operator Tp, one needs Fourier coefficients up to
discriminant of order p2. To compute λF (p2), the Hecke eigenvalue of F with respect to the Hecke
operator Tp2 , one needs Fourier coefficients up to discriminant p4. With current methods, computing
this number of coefficients of a Hecke eigenform that is not a Saito–Kurokawa lift has proven impossible.

A bottleneck to computing such a large number of coefficients is the fact that there is no known way
to compute individual coefficients in parallel. The determination of a single Fourier coefficient requires
knowledge of many other Fourier coefficients. Our method, described above, has approximately the same
number of steps to compute a new Hecke eigenvalue but these steps, in our method, are easily done in
parallel.

4. Evaluating Hecke eigenforms

4.1. Bounds on the coefficients of the Igusa generators.

Proposition 3. Let E4, E6, χ10 and χ12 denote the Igusa generators of the ring of even-weight Siegel
modular forms of genus 2 with respect to Sp(4,Z).

We have the following bounds on the Fourier coefficients of these forms:

|aN (E4)|< 19230 t5,

|aN (E6)|< 12169 t9,

|aN (χ10)|<
1

236
A(ε, 9) t9+ε,

|aN (χ12)|<
1

311
A(ε, 11) t11+ε,

where the last two hold for any ε > 0, t = Tr(N ), and the function A(ε, s) is defined by

A(ε, s)=
1

(2π)1/4
exp(9ε−123/ε/ log(2)) ζ(1+ ε) max

{
1,

√
0(s+ 1/2+ ε)
0(s− 1/2− ε)

}
.
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Proof. It follows directly from [3, Corollary 3.6 and Remark 3.7] that

|aN (E4)|< 19230(4ac− b2)5/2 ≤ 19230 Tr(N )5,

|an(E6)|< 12169(4ac− b2)9/2 ≤ 12169 Tr(N )9.

The second two inequalities follow from [3, Theorem 5.10] with γ = η = ε/3. �

Remark 4. The bounds for χ10 and χ12 in Proposition 3 allow for further optimization by choosing the
parameter ε appropriately.

Considering χ10, the factor t9+ε is of course dominant as t→∞, but choosing ε as small as possible
is counterproductive for practical computations, as the factor A(ε, 9) explodes for small ε.

In our computations, we use ε = 2, so the bounds can be summarized as

|aN (E4)|< 19230 t5, |aN (E6)|< 12169 t9,

|aN (χ10)|< 220439 t11, |aN (χ12)|< 287248 t13,

where t = Tr(N ).

4.2. The truncation error for Siegel modular forms. Let F be a Siegel modular form of degree 2, with
Fourier expansion

F(Z)=
∑

N

aN (F) exp(2πi Tr(NZ)).

Given a positive integer T , we truncate the Fourier expansion of F by considering only those indices N
whose trace is at most T :

FT (Z)=
∑

Tr(N )≤T

aN (F) exp(2π i Tr(NZ)).

Lemma 5. For any t ∈ N, the number of Fourier indices of trace t satisfies

#{N : Tr(N )= t} ≤ (t + 1)(2t + 1)= 2t2
+ 3t + 1≤ 6t2.

Proof. We have

#{N : Tr(N )= t} =
t∑

a=0

(
1+ 2

⌊
2
√

a(t − a)
⌋)
.

There are t + 1 terms in the sum, and the largest corresponds to a = t/2 (or a = (t − 1)/2 if t is odd). In
any case, every term in the sum is at most 1+ 2t . �

Suppose we have, like in Proposition 3, an upper bound on the Fourier coefficients of F :

|aN (F)| ≤ Ctd , where C ∈ R>0, d ∈ N and t = Tr(N ). (3)

We are interested in bounding the gap between the true value F(Z) and its approximation FT (Z).

Proposition 6. Suppose F is a Siegel modular form of degree 2 whose Fourier coefficients satisfy (3),
and Z ∈ H2. We wish to approximate the value F(Z) with error at most 10−h . It is then sufficient to use
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the truncation FT (Z) containing all terms of the Fourier expansion of F with indices of trace at most T ,
where

T > d+2
α(Z)

and 6C d+3
α(Z)

exp(−α(Z)T )T d+2 < 10−h .

Here
δ(Z)= sup{δ′ ∈ R : Im(Z)− δ′ I is positive semidefinite}

and α(Z)= 2πδ(Z).

Proof. Using [3, Lemma 6.1], we have

|F(Z)− FT (Z)| =
∣∣∣∣ ∑

Tr(N )>T

aN (F) exp(2πi Tr(NZ))
∣∣∣∣

≤

∑
Tr(N )>T

|aN (F)|| exp(2πi Tr(NZ))|

≤

∑
Tr(N )>T

|aN (F)| exp(−α(Z)Tr(N ))

<

∞∑
t=T+1

∑
Tr(N )=t

|aN (F)| exp(−α(Z)t)

≤

∞∑
t=T+1

6Ctd+2 exp(−α(Z)t)

≤ 6C
∫
∞

T
xd+2 exp(−α(Z)x) dx

= 6C exp(−α(Z)T )
d+2∑
j=0

(d + 2)!
j !α(Z)d− j+3 T j

<
6C(d + 3)
α(Z)

exp(−α(Z)T )T d+2,

where the last inequality holds if T is in the half-infinite interval on which the integrand is decreasing
(i.e., T > (d + 2)/α(Z)). �

Example 7. We determine T sufficient for computing E4(Z) within 10−20 at the point

z =
(

5i i
i 6i

)
.

We have
α(Z)= 27.5327,

so we are looking for T such that

exp(−α(Z)T )T 7 < 2.983 · 10−25,

which is easily seen (numerically) to hold as soon as T ≥ 3.
We proceed similarly to obtain the values in Table 1.
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T

error E4 E6 χ10 χ12

10−10 2 2 2 2
10−20 3 3 3 3
10−100 10 10 10 11
10−1000 86 86 87 87

Table 1. Truncation necessary for computing F(Z) within specified error

5. Our method

As described above, our method is rather straightforward. We fix a Z ∈ H2 and evaluate F(Z), using
methods in Section 4. Consider the double coset Tp =

∑
0(2)α and its action on F :

(F |k Tp)(Z)=
∑

(F |kα)(Z).

What is left to do, then, is to compute (F |kα)(Z) for α in the decomposition, that is, to be able to write
α as

[ A
C

B
D

]
and to be able to evaluate

det(C Z + D)−k F((AZ + B)(C Z + D)−1).

In Section 5.1 we present the desired decompositions for the Hecke operators Tp and Tp2 and we use the
methods of Section 4 to evaluate the Siegel modular form at the points (AZ + B)(C Z + D)−1

∈ H2.

5.1. Hecke action. Hecke operators are defined in terms of double cosets 0M0 and the action of such
an operator is determined by the right cosets that appear in the decomposition of these double cosets. For
a prime p we consider the double coset Tp = 0

(2) diag(1, 1, p, p)0(2). An explicit version of a formula,
due to Andrianov, for the right cosets that appear in the decomposition of Tp, is given by Cléry and van
der Geer as follows.

Proposition 8 [1; 5]. The double coset Tp admits the left coset decomposition

0(2)


p 0 0 0
0 p 0 0
0 0 1 0
0 0 0 1

+ ∑
0≤a,b,c≤p−1

0(2)


1 0 a b
0 1 b c
0 0 p 0
0 0 0 p


+

∑
0≤a≤p−1

0(2)


0 −p 0 0
1 0 a 0
0 0 0 −1
0 0 p 0

+ ∑
0≤a,m≤p−1

0(2)


p 0 0 0
−m 1 0 a

0 0 1 m
0 0 0 p

 ,
and the degree of Tp is p3

+ p2
+ p+ 1.

Thus, in particular, in order to find λp, then, p3
+ p2
+ p+ 1 independent evaluations of our Siegel

modular form F at points in H2 are required. This is why our method is so amenable to parallelization.
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Similarly, for a prime p define the operator Tp2 as a sum of double cosets:

Tp2 = 0(2)


p 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

0(2)+0(2)


1 0 0 0
0 p 0 0
0 0 p2 0
0 0 0 p

0(2)+0(2)


1 0 0 0
0 1 0 0
0 0 p2 0
0 0 0 p2

0(2).
Again, based on a result of Andrianov, Cléry and van der Geer give an explicit decomposition of the

operator Tp2 :

Proposition 9 [1; 5]. The Hecke operator Tp2 has degree p6
+ p5
+ 2p4

+ 2p3
+ p2
+ p+ 1 and admits

a known explicit left coset decomposition.

One can do better, however. We can reduce the number of summands at which we need to evaluate F
to be O(p4) instead of O(p6) by using some standard facts about the Hecke algebra for Siegel modular
forms of degree 2. The Hecke operator Tp2 is itself a linear combination of three double cosets:

Tp2,0 = 0
(2) diag(p, p; p, p)0(2),

Tp2,1 = 0
(2) diag(1, p; p2, p)0(2),

Tp2,2 = 0
(2) diag(1, 1; p2, p2)0(2).

(4)

The decomposition in Proposition 9 is itself the (disjoint) sum of the decomposition of three double
cosets Tp2,0, Tp2,1 and Tp2,2.

The p-part of the Hecke algebra is generated by the operators Tp, Tp2,0 and Tp2,1 and, in fact, in
[8; 17] it is shown that

(Tp)
2
= Tp2,0+ (p+ 1)Tp2,1+ (p

2
+ 1)(p+ 1)Tp2,2. (5)

To determine the eigenvalue λp2(F) for F ∈ S(2)k with respect to the Hecke operator Tp2 , using
Proposition 8, we first find the eigenvalue λp(F) for the operator Tp. Then, we find the eigenvalues
λp2,0(F) (known to be p−2k by the definitions in Section 3) and the eigenvalue λp2,1(F) for the operator
Tp2,1. Then using (5) we can find the eigenvalue λp2,2(F) for the operator Tp2,2. Putting it all together,
then, all we need is an explicit decomposition of Tp2,1 into left cosets, in order to compute λp2(F).

Proposition 10 [1]. The Hecke operator Tp2,1 admits the left coset decomposition

∑
0≤α<p

0(2)


p2 0 0 0
−pα p 0 0

0 0 1 α

0 0 0 p

0(2)


p 0 0 0
0 p2 0 0
0 0 p 0
0 0 0 1

+ ∑
0≤a,b,c<p

ac−b2
≡0 (mod p)

and not all zero

0(2)


p 0 a b
0 p b c
0 0 p 0
0 0 0 p



+

∑
0≤α,β<p
0≤C<p2

0(2)


p 0 0 pβ
−α 1 β αβ +C
0 0 p pα
0 0 0 p2

+ ∑
0≤β<p

0≤A<p2

0(2)


1 0 A β

0 p pβ 0
0 0 p2 0
0 0 0 p

0(2).
Thus the degree of Tp2,1 is p4

+ p3
+ p2
+ p.



216 OWEN COLMAN, ALEXANDRU GHITZA, AND NATHAN C. RYAN

Remark 11. In the introduction, we discussed the difficulty of computing λp2(F) using the action of
Tp2 on the coefficients of the eigenform F . One might ask whether we could more efficiently compute
λp2(F) using the action of Tp2,1 on F as described in Proposition 10 and (5). It turns out, though, that
one still would require coefficients up to discriminant p4 using Tp2,1 and (5).

6. Some computations and implementation details

We describe some sample computations involving the eigenform of smallest weight that is not a lift from
lower rank groups, namely the cusp form ϒ20 mentioned in the introduction:

ϒ20 =−E2
4χ12− E4 E6χ10+ 1785600χ2

10.

As a gauge of the performance of the algorithm, we compared the timings to those required by the
implementation [16] of the standard method1 by Sho Takemori.

We implemented the method described in this paper in SageMath [13]; this implementation is available
at [6]. The benchmarks described below were performed using a single core of a Linux machine with an
i7-6700 CPU at 3.40 GHz and 64 GB of RAM, via the following helper functions:

def ups20_eigenvalue_numerical(p, prec, y11):
CRING = _initialise_rings(prec, 2*p)
Z = matrix(CRING, 2, 2, [y11*i, i, i, (y11+1)*i])
R.<a, b, c, d> = QQ[]
f = -a^2*d-a*b*c+1785600*c^2
return _eigenvalue_T_fixed_trace(f, Z, p, 2*p)

def ups20_eigenvalue_standard(p):
with degree2_number_of_procs(1):

a = eisenstein_series_degree2(4, p)
b = eisenstein_series_degree2(6, p)
c = x10_with_prec(p)
d = x12_with_prec(p)
f = -a^2*d-a*b*c+1785600*c^2
return f.hecke_eigenvalue(p)

For the standard algorithm, the most expensive step appears to be the multiplication of the q-expansions
of the Igusa generators. In the case of our numerical algorithm, the majority of the time is spent evaluating
truncations of the q-expansions of the Igusa generators at various points in the Siegel upper half-space.

1The only other publicly available implementation we are aware of is [14]. We did not compare against it for two reasons:
(a) at the moment, the computation of the Hecke image appears to be incorrect for primes that are congruent to 1 mod 4, and (b)
it uses Cython for the most expensive part of the computation, namely the multiplication of the q-expansions. Since both our
code and S. Takemori’s are pure Python, we deemed this to be a more useful comparison of the two algorithms.
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p y11 precision (bits) numerical (s) standard (s)

2 2.7 37 0 0
3 4.3 62 0 0
5 6.1 101 0 0
7 7.5 130 1 1

11 9.5 172 3 7
13 10.3 190 6 15
17 10.9 208 16 55
19 11.9 226 25 90
23 12.3 240 54 230
29 13.5 267 140 735
31 13.9 275 186 1185
37 14.5 295 406 2876

Table 2. Benchmarks comparing the numerical and standard algorithms for computing the Hecke eigenval-
ues of ϒ20. The timings are rounded to the nearest second. The working precision was chosen so that the
eigenvalue is the closest integer to the computed floating point number.

These functions are polynomials in the variables q1, q2, q3 and q−1
3 , where

Z =
(

z1 z3

z3 z2

)
and q j = e2πi z j .

To evaluate such functions efficiently at a large number of points, we implemented an iterative version
of Horner’s method; to illustrate what is involved, here is how the truncation of the Igusa generator χ10

at trace up to 3 is evaluated:

q1
(
q2(q−1

3 − 2+ q3+ q2(−2q−2
3 − 16q−1

3 + 36− 16q3− 2q2
3 ))

+ q1(q2(−2q−1
3 − 16q−1

3 + 36− 16q3− 2q2
3 ))
)
.

Many of the partial evaluations are repeated for different summands of the expression for the Hecke
operators. We take advantage of this phenomenon by caching the results of evaluations of polynomials in
q3 and q−1

3 . All the operations are performed using interval arithmetic (via the ComplexIntervalField
available in Sage). While this introduces a small overhead, it frees us from having to keep track of
precision loss due to arithmetic operations (and evaluations of the complex exponential function). Sage
gives the final approximation of the Hecke eigenvalue in the form

1.0555282184708004141101491800000000000000?e27 + 0.?e-13*I

from which we observe that the answer is most likely the integer

1055528218470800414110149180

which is indeed λ29(ϒ20). The question mark in the floating point number indicates that the last decimal
may be incorrect due to rounding errors (but all preceding decimals are guaranteed to be correct).
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There are certainly many variants of our choices that deserve further scrutiny and may lead to improved
performance. Here are some of the more interesting ones:

• For computing the eigenvalue λp, we chose to focus on the initial evaluation point

Z =
(

y11i i
i (y11+ 1)i

)
,

where the parameter y11 is (at the moment) determined by trial and error. The optimal values of y11

for ϒ20 and small p are listed in the second column of Table 2. We note that the dependence of this
optimal y11 on p appears to be linear in log(p).

The choice of Z is significant for another reason: the fact that Z is a “purely imaginary matrix”
gives an extra symmetry that allows to reduce the number of overall computations by almost a factor
of 2. Note that the timings listed in Table 2 do not incorporate this optimization.

• Our experiments indicate that computing the value of λp accurately using the choice of point Z
described above requires truncating the q-expansions of the Igusa generators at trace up to 2p. It
would be very interesting to see if this trace bound can be lowered; even a small improvement in
the trace can reduce the computation time significantly. We have observed such phenomena in the
case of classical modular forms (treated in [2]).

6.1. Summary of further computations. We performed similar numerical experiments with the follow-
ing forms:

ϒ22 = 61E3
4χ10− 30E4 E6χ12+ 5E2

6χ10− 80870400χ10χ12,

ϒ24a =−67E3
4χ12+ 78E2

4 E6χ10− 274492800E4χ
2
10+ 25E2

6χ12+ 71539200χ2
12,

ϒ24b =+70E3
4χ12− 69E2

4 E6χ10− 214341120E4χ
2
10+ 53E2

6χ12− 137604096χ2
12,

ϒ26a =−22E4
4χ10− 3E2

4 E6χ12+ 31E4 E2
6χ10− 96609024E4χ10χ12− 13806720E6χ

2
10,

ϒ26b = 973E4
4χ10+ 390E2

4 E6χ12− 1255E4 E2
6χ10+ 3927813120E4χ10χ12− 4438886400E6χ

2
10.

These have in common that they are all “interesting” forms (Skoruppa’s terminology and notation), not
arising as lifts from lower rank groups. They also all have rational coefficients (and are very likely the
only rational “interesting” forms in level one).

As we can see in Table 3, while the standard method slows down rapidly with the increase in the
weight, the numerical method seems unaffected by the weight (in this range).

As we increase the weight further, we encounter “interesting” eigenforms defined over number fields
of increasing degree. Our implementation treats these in the same way as the rational eigenforms; the
algebraic numbers appearing in the expression of an eigenform as a polynomial in the Igusa generators
are first embedded into the ComplexIntervalField with the working precision, and the computations
are then done exclusively with complex intervals.
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f numerical (s) standard (s) λ23( f )

ϒ20 57 240 −7159245922546757692913520
ϒ22 59 410 1288399464282335021926848240
ϒ24a 59 559 −5704707774363351635801133259440
ϒ24b 59 563 −2612738224352475069296861434032
ϒ26a 59 658 1723965639346061287785316101052080
ϒ26b 60 659 −2455694249118004577637986236157520

Table 3. Benchmarks comparing the numerical and standard algorithms for computing the Hecke eigen-
value λ23 of the rational “interesting” eigenforms. The timings are rounded to the nearest second.

f numerical (s) standard (s) integer closest to λ11( f )

ϒ28 5 42 −5759681178477373721671849774
ϒ30 5 55 255840273811994841300205675092
ϒ32 5 72 −62889079837500073468061496815555
ϒ34 5 99 439086084572485264922509970244600
ϒ36 5 145 −1085248116783567484088793200996441965
ϒ38 5 171 99082752899176432104304580529696472526
ϒ40 6 316 21639993149436935203941512756710465353890
ϒ42 6 405 1326433094276015828828131422320612505802642
ϒ44 6 697 −216254834133020533289657866886176910904279874
ϒ46 6 1156 3025010356797981861229021682270178023420599162
ϒ48 6 2147 3623681259607683701352889863246901251092385443364
ϒ50 6 3558 −50111326406849287661448298549933139673192742821477
ϒ52 6 7701 −33891727074702812676183940887995219801531644658145401
ϒ54 6 12205 −4324363734737815894771410628259133851153783375885366874
ϒ56 7 19290 807326143967818876211261524740739769895631903544298785221

Table 4. Benchmarks comparing the numerical and standard algorithms for computing the Hecke eigen-
value λ11 of a representative of the unique Galois orbit of “interesting” eigenforms in each of the listed
weights. The timings are rounded to the nearest second.

We illustrate this with a number of examples from the L-functions and Modular Forms Database [11]:
ϒ28, ϒ30, . . . , ϒ56, contributed by Nils-Peter Skoruppa. These are representatives of the unique Galois
orbit of “interesting” Siegel modular eigenforms of level one and weights given by the indices. We
computed the integer closest to the eigenvalues λ2, λ3, . . . , λ11 of these forms and verified the results
against Sho Takemori’s implementation.2 The timings for λ11 appear in Table 4. We note once again
that the change in weight has only a very minimal effect on the timings for the numerical approach. The
degree of the number field over which each eigenform is defined varies from 3 for ϒ28 to 29 for ϒ56.

2The LMFDB contains only λ2, λ3 and λ5 for the forms ϒ28, . . . , ϒ48. We are not aware of the other eigenvalues we
computed having been published anywhere.
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Zeta functions of nondegenerate hypersurfaces
in toric varieties via controlled reduction

in p-adic cohomology

Edgar Costa, David Harvey and Kiran S. Kedlaya

We give an interim report on some improvements and generalizations of the Abbott–Kedlaya–Roe
method to compute the zeta function of a nondegenerate ample hypersurface in a projectively normal
toric variety over Fp in linear time in p. These are illustrated with a number of examples including
K3 surfaces, Calabi–Yau threefolds, and a cubic fourfold. The latter example is a nonspecial cubic four-
fold appearing in the Ranestad–Voisin coplanar divisor on moduli space; this verifies that the coplanar
divisor is not a Noether–Lefschetz divisor in the sense of Hassett.

1. Introduction

We consider the problem of computing the zeta function Z(X , t) of an explicitly specified variety X
over a finite field Fq of characteristic p. For curves and abelian varieties, Schoof’s method and variants
[Sch85; Pil90; GS04; GKS11; GS12] can compute Z(X , t) in time and space polynomial in log q and
exponential in the genus/dimension; these have only been implemented for genus/dimension at most 2.
Such methods may be characterized as `-adic, as they access the `-adic cohomology (for ` 6= p prime)
of the variety via torsion points; there also exist p-adic methods which compute approximations of the
Frobenius action on p-adic cohomology (Monsky–Washnitzer cohomology), and which have proven
to be more viable in practice for large genus. Early examples include Kedlaya’s algorithm [Ked01] for
hyperelliptic curves, in which the time/space dependence is polynomial in the genus and quasilinear in p,
and Harvey’s algorithm [Har07], which improves the dependence on p to p1/2+ε. These methods have
been subsequently generalized [GG01; DV06a; DV06b; Har12], notably by Tuitman’s algorithm [Tui16;
Tui17], which applies to (almost) all curves while keeping the quasilinear dependence on p. In another

Costa was partially supported by the Simons Collaboration Grant #550029. Harvey was supported by the Australian Research
Council (grants DP150101689 and FT160100219). Kedlaya was supported by the National Science Foundation (grants DMS-
1101343, DMS-1501214), UC San Diego (Warschawski Professorship), and a Guggenheim Fellowship. All three authors thank
ICERM for its hospitality during the fall of 2015.
MSC2010: primary 11G25; secondary 11M38, 11Y16, 14G10.
Keywords: zeta function, toric varieties, Kedlaya’s algorithm, p-adic methods.

221

http://msp.org/obs
http://dx.doi.org/10.2140/obs.2019.2-1
http://dx.doi.org/10.2140/obs.2019.2.221
http://msp.org


222 EDGAR COSTA, DAVID HARVEY AND KIRAN S. KEDLAYA

direction, Harvey [Har14] has shown that when computing the zeta functions of reductions of a fixed
hyperelliptic curve over a number field, p-adic methods can achieve average polynomial time in log p
and the genus; this has been implemented in small genus [HS14; HS16].

One advantage of p-adic methods over `-adic ones is that they scale much better to higher-dimensional
varieties. For example, there are several p-adic constructions that apply to arbitrary varieties with reason-
able asymptotic complexity [LW08; Har15], although we are not aware of any practical implementations.
Various algorithms, and some implementations, have been given using Lauder’s deformation method of
computing the Frobenius action on the Gauss–Manin connection of a pencil [Lau04a; Lau04b; Ger07;
Hub08; PT15; Tui19].

In this paper, we build on an algorithm of Abbott, Kedlaya and Roe [AKR10] which adapts the original
approach of [Ked01] to smooth projective hypersurfaces. Here, we add two key improvements:

• We use controlled reduction in de Rham cohomology, as described in some lectures of Harvey
[Har10a; Har10b; Har10c], to preserve sparsity of certain polynomials, thus reducing the time (re-
spectively, space) dependence on p from polynomial to quasilinear (respectively, O(log p)). The
resulting controlled AKR method was implemented, with further improvements, in Costa’s Ph.D.
thesis [Cos15], with examples of generic surfaces and threefolds over Fp for p ∼ 106 [Cos15, §1.6];
by contrast, the largest p used in [AKR10] is 29. Costa and Harvey are currently preparing a paper
on this method; meanwhile, Costa’s GPL-licensed code is available on GitHub [Cos] and is slated
to be integrated into SageMath [Sag].

• We also generalize to toric hypersurfaces, subject to a standard genericity condition called nondegen-
eracy. This greatly increases the applicability of the method while preserving much of its efficiency.
Some previous attempts have been made to compute zeta functions in this setting, such as work of
Castryck, Denef and Vercauteren [CDV06] for curves and Sperber and Voight [SV13] in general; it
is the combination with controlled reduction that makes our approach the most practical to date.

It may be possible to improve the dependence on p to square-root (as in [Har07]) or average polynomial
time (as in [Har14]), but we do not attempt to do so here.

For reasons of space, we give only a summary of the algorithm, with further details to appear elsewhere.
In lieu of these details, we present a number of worked examples in dimensions 2-4 that demonstrate
the practicality of this algorithm in a wide range of cases. The results are based on an implementation
in C++, using NTL [Sho] for the underlying arithmetic operations. Our examples in dimensions 2 and 3
were computed on one core of a desktop machine with an Intel Core i5-4590 3.30GHz processor; our
sole example in dimension 4 was computed on one core of a server with an AMD Opteron 6378 1.6GHz
processor. (We have not yet optimized our vector-matrix multiplications in any way; as a consequence,
we observe a serious performance hit whenever the working moduli exceeds 262.)

In dimensions 2 and 3, our examples are Calabi–Yau varieties, i.e., smooth, proper, simply connected
varieties with trivial canonical bundle. In dimension 1, these are simply elliptic curves. In dimension 2,
they are K3 surfaces, whose zeta functions are of computational interest for various reasons. For instance,
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these zeta functions can (potentially) be used to establish the infinitude of rational curves on a K3 surface
(see the introduction to [CT14] for discussion); there has also been recent work on analogues of the
Honda–Tate theorem, establishing conditions under which particular zeta functions are realized by K3
surfaces [Tae16; Ito16].

As for Calabi–Yau threefolds, much of the interest in their zeta functions can be traced back to mir-
ror symmetry in mathematical physics. An early example is the work of Candelas, de la Ossa and
Rodriguez Villegas [CdlORV03] on the Dwork pencil; a more recent example is [DKS+16], in which
(using p-adic cohomology) certain mirror families of Calabi–Yau threefolds are shown to have related
zeta functions.

Our four-dimensional example is a cubic projective fourfold. Such varieties occupy a boundary region
between rational and irrational varieties; it is expected that a rational cubic fourfold is special in the sense
of having a primitive cycle class in codimension 2. The geometry of special cubic fourfolds is in turn
closely linked to that of K3 surfaces; in many cases, the Hodge structure of a K3 surface occurs (up to
a twist) inside the Hodge structure of a special cubic fourfold, and (modulo standard conjectures) this
implies a similar relationship between zeta functions. See [Has16] for further discussion.

The specific example we consider is related to the geometry of the moduli space of cubic fourfolds
over C. On this space, there exist various divisors consisting entirely of special cubic fourfolds; Hassett
calls these Noether–Lefschetz divisors (by analogy with the case of surfaces). Recently, Ranestad and
Voisin [RV17] exhibited four divisors which they believed not to be Noether–Lefschetz, but only checked
this in one case. Addington and Auel [AA17] checked two more cases by finding in these divisors some
cubic fourfolds over Q with good reduction at 2 such that the zeta functions over F2 show no primitive
Tate classes in codimension 2. By replacing the brute-force point counts of Addington and Auel with
p-adic methods, we are able to work modulo a larger prime to find an example showing that the fourth
Ranestad–Voisin divisor is not Noether–Lefschetz.

To sum up, the overall goal of this project is to vastly enlarge the collection of varieties for which
computing the zeta function is practical. It is our hope that doing so will lead to a rash of new insights,
conjectures, and theorems of interest to a broad range of number theorists and algebraic geometers.

2. Toric hypersurfaces

We begin by reviewing the construction of a projective toric variety from a lattice polytope. For more
details we recommend [CLS11].

Let n ≥ 1 be an integer. For any commutative ring R, let R[x±] denote the Laurent polynomial ring
in n variables x1, . . . , xn with coefficients in R. For α := (αi ) ∈ Zn , we write xα for the monomial
xα1

1 · · · x
αn
n . We denote the R-torus by Tn

R := Spec(R[x±]).
Let 1⊂ Rn be the convex hull of a finite subset of Zn that is not contained in any hyperplane, so that

dim1= n. For r ∈ R, let r1 be the r -fold dilation of 1. For an integer d ≥ 0, let

Pd := 〈xα : α ∈ d1∩Zn
〉R and P Int

d := 〈x
α
: α ∈ Int(d1)∩Zn

〉R
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be the free R-modules on the sets of monomials with exponents in d1∩Zn and Int(d1)∩Zn respectively.
Define the R-graded algebras

P1 :=
+∞⊕
d=0

Pd and P Int
1 :=

+∞⊕
d=0

P Int
d

with the usual multiplication in R[x±]. We define the polarized toric variety associated to 1 as the
pair (P1,O1), where P1 := Proj P1 and O1 is the ample line bundle on P1 associated to the graded
P1-module P1(1). Note that P1 and P Int

1 admit n commuting degree-preserving differential operators
∂i := xi (∂/∂xi ) for i = 1, . . . , n.

In order to suppress some expository and algorithmic complexity, we make the simplifying assumption
that 1 is a normal polytope; that is, the map

(1∩Zn)d → d1∩Zn, (x1, . . . , xd) 7→ x1+ · · ·+ xd ,

is surjective for d ≥ 1. This corresponds to the pair (P1,O1) being projectively normal; this will be the
case in our examples. As a consequence, we have that O1 is indeed very ample.

Example 2.1. Let 1 be the regular n-simplex, the convex hull of 0, e1, . . . , en . We may then identify
Pd with the set of homogeneous polynomials of degree d in x0, . . . , xn , by identifying xα ∈ P1,d with
the monomial xd−α1−···−αn

0 xα1
1 · · · x

αn
n ; then (P1,O1) is isomorphic to (Pn

R,O(1)).
We obtain the weighted projective space P(w0, . . . , wn) by taking

1=
{
(x0, . . . , xn) ∈ Rn+1

:
∑n

i=0wi xi = w0 · · ·wn
}
;

see [Dol82, 1.2.5].
We obtain Pk

R ×R Pr
R by taking 1 to be the Cartesian product of the regular k-simplex by the regular

r -simplex [CLS11, §2.4].

We now turn our attention to toric hypersurfaces over R = Fq , the finite field with q = pa elements
and characteristic p. Let Y be the hypersurface in Tn

Fq
defined by a Laurent polynomial f ∈ Fq [x±],

Y := V ( f )⊂ Tn
Fq

. Let

supp f = {α ∈ Zn
: cα 6= 0}

be the support of f in Rn; the convex hull of supp f is the Newton polytope of f , which we denote by 1.
We will work under the hypothesis that f is (1-)nondegenerate:1 for all faces τ ⊆1 (including 1 itself),
the system of equations

f �τ = ∂1 f �τ = · · · = ∂n f �τ = 0

has no solution in F×n
q , where Fq denotes an algebraic closure of Fq . Furthermore, nondegeneracy im-

plies quasismoothness; see [BC94, Definition 3.1 and Proposition 4.15]. For fixed normal 1 over an

1This condition was introduced by Dwork [Dwo62] without a name; the term nondegenerate first appears in [Kou76; Var76].
Synonyms include 1-regular [Bat93, § 4] and schön [Tev07].
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infinite field, this condition holds for generic f . Others have given point-counting algorithms under this
assumption [CDV06; SV13].

Let X := Proj P1/( f ) denote the closure of Y in P1 (placing f in degree 1) and set U := Tn
\Y . Let

H i
rig denote the i-th rigid cohomology group in the sense of Berthelot [Ber97]. The Lefschetz hyperplane

theorem, combined with Poincaré duality, shows that the map

H i
rig(P1)→ H i

rig(X )

induced by the inclusion X ↪→ P1 is an isomorphism for i 6= n − 1 [BC94, Proposition 10.8]. This
implies that the “interesting” part of the cohomology of X occurs in dimension n− 1 and consists of
those classes that do not come from P1. Denote by PH n−1

rig (X ) the primitive cohomology group of X ,
defined by the (Frobenius-equivariant) exact sequence

0→ H n−1
rig (P1)→ H n−1

rig (X )→ PH n−1
rig (X )→ 0.

With this notation, we may write

Z(X , t)= Z(P1, t)Q(t)(−1)n ,

where
Q(t) := det(1− t Frobq |PH n−1

rig (X )).

Thus given f , we would like to compute Q(t).
The cohomology group PH n−1

rig (X ) is closely related to H n
rig(P1\X ). For example, if P1 is a (weighted)

projective space, as in [AKR10; Cos15], the two cohomology groups are isomorphic; see [BC94, Propo-
sition 10.11].

3. de Rham cohomology of toric hypersurfaces

In preparation for our use of p-adic cohomology to compute Q(t), we give an explicit description of the
algebraic de Rham cohomology of a nondegenerate toric hypersurface in characteristic zero. We take R
to be the ring Zq , that is, the ring of integers of Qq , which is the unramified extension of Qp with residue
field Fq .

Let f ∈ Zq [x±] be a lift of f to characteristic zero with the same support as f (it will also be
nondegenerate). Consider Y := V ( f )⊂ T := TQq and X , the closure of Y in P1. Write U := T\Y, and
V := P1\X ' Spec(A), where A is the coordinate ring of V ; explicitly,

A '
+∞⋃
d=0

f −d Pd .

Let I f be the ideal in P1 generated by f , ∂1 f , . . . , ∂n f . We call I f the toric Jacobian ideal and the
quotient ring Jf := P1/I f the toric Jacobian ring. Since f is nondegenerate, the ideal I f is irrelevant in
P1 and rankZq Jf = n! Vol(1); furthermore, (J f )d = 0 for d > n [Bat93, §4]. If O1 is not very ample,
then I f might not be generated in degree 1 and we might have (J f )d = 0 only for d � n.
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Let �• denote the logarithmic de Rham complex of V with poles along P1\T. Let H• be the cohomol-
ogy groups of�•; these are naturally isomorphic to H•dR(V ∩T=T\Y =U ) and H•rig(TFq\Y=U) [Kat89].

We now provide an explicit description of the group H n, as in [Bat93, §§6 and 7], in which we will
compute Q(t). Set

ω :=
dx1

x1
∧ · · · ∧

dxn

xn
∈�n,

and define the ascending filtration in �n by

Fild �n
:= {g f −dω : g ∈ Pd}.

The associated graded ring

�n
:=

∞⊕
d=0

Grd �n, Grd �n
:= Fild �n/Fild−1�n,

is then isomorphic to P1/( f ) (again placing f in degree 1).
Equip H n with the filtration induced from�n, and view H n as the quotient of�n by the Qq -submodule

generated by the relations

g
f d ω−

g f
f d+1ω and

∂i (g)
f d ω−

dg∂i ( f )
f d+1 ω (3-1)

for each i = 1, . . . , n, each nonnegative integer d , and each g ∈ Pd . From these relations, we see that

Gr1 H n
' P1/( f ) and Grd H n

' (Jf )d (d > 1).

This gives a way to compute explicitly in H n: for any h ∈ (Jf )d+1 with d > n, we can find a relation of
the form

d
h

f d+1ω = d
g0 f +

∑n
i=1 gi∂i f

f d+1 ω ≡
dg0+

∑n
i=1 ∂i gi

f d ω (3-2)

because Pd ⊂ (I f )d , so in H n we can reduce the pole order of any form to at most n. This process
was introduced for smooth projective hypersurfaces in [Gri69a; Gri69b] and attributed to Dwork; it is
commonly known as Griffiths–Dwork reduction.

With the above representation of H n, we may also identify PH n−1
dR (X) with (P Int

1 + I f )/I f ⊂ H n,
where the filtration by pole order is the Hodge filtration; see [Bat93; BC94, §§9 and 11].

We now introduce a variation of Griffiths–Dwork reduction, called controlled reduction. This will be
crucial for our application to p-adic cohomology, as careless application of Griffiths–Dwork reduction
to a sparse form will easily lead to a dense form. For d = 1, . . . , n+ 1, choose a Zq -linear splitting Pd ≈

(J ′f )d ⊕Cd , where (J ′f )d is a lift of (J f )d into Pd . Let ρd : Pd→ (J ′f )d and πd,0, . . . , πd,n : Pd→ Pd−1

be Zq -linear maps such that

g = ρd(g)+πd,0(g) · f +
n∑

i=1

πd,i (g) · ∂i f, g ∈ Pd .

These maps may be constructed one monomial at a time.
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Proposition 3.1 (controlled reduction). Let xν ∈ P1 and xµ ∈ Pd be two monomials and define the
Zq -linear maps

Rµ,ν(g): = (d + n)πn+1,0(xνg)+
n∑

i=1

(∂i +µi )(πn+1,i (xνg)),

Sν(g): = πn+1,0(xνg)+
n∑

i=1

νiπn+1,i (xνg).

Then for any g ∈ Pn and any nonnegative integer j , in H n we have

g
x ( j+1)ν+µ

f d+n+ j+1ω ≡ (d + n+ j)−1(Rµ,ν(g)+ j Sν(g))
x jν+µ

f d+n+ j ω.

Proof. This is straightforward from (3-1) and (3-2). �

Note that Proposition 3.1 enables us to reduce the pole order of a differential form from d + n+ j + 1
to d + n+ j without increasing its total number of monomials; we can thus reduce the pole order of a
sparse form without making it dense.

Corollary 3.2. With notation as in Proposition 3.1, let k be a positive integer. Then for any g ∈ Pn ,

g
xµ+kν

f d+n+k ω ≡

∏k−1
j=0(Rµ,ν + j Sν)(g)∏k−1

j=0(d + n+ j)

xµ

f d+nω,

forming the composition product from left to right.

Using Proposition 3.1 amounts to performing linear algebra on matrices of size #(n1∩Zn)∼nn Vol(1).
One can reduce this by a factor of nn/n! ∼ en at the expense of making the expression for the reduction
matrix more convoluted; compare [Cos15, Remark 1.17 and Proposition 1.18].

4. Monsky–Washnitzer cohomology

We now indicate how Monsky–Washnitzer cohomology, as introduced in [MW68; Mon68; Mon71],
provides a crucial link between algebraic de Rham cohomology and p-adic rigid cohomology, by trans-
ferring to the former the canonical Frobenius action on the latter; see also [vdP86]. To simplify, we
assume p >max{n, 2}.

Let A† denote the weak p-adic completion of A, the ring consisting of formal sums
∑
+∞

d=0 gd f −d such
that for some a, b> 0, gd ∈ pmax{0,bad−bc}Pd for all d ≥ 0. We define the associated logarithmic de Rham
complex �†,• by �†,i

:=�i
⊗A A†; denote the cohomology groups of this complex by H †,•. We may then

obtain p-adic Monsky–Washnitzer cohomology groups H †,•
⊗Zq Qq . The map�•⊗Zq Qq→�†,•

⊗Zq Qq

is a quasi-isomorphism [Mon70; vdP86; Kat89]; that is, the induced maps H i
⊗Zq Qq → H †,i

⊗Zq Qq

are isomorphisms. We can thus identify the algebraic de Rham cohomology of U with the Monsky–
Washnitzer cohomology of U .

On the other hand, we also have H †,•
⊗Zq Qq ' H•rig(U) and the latter object is functorial with respect to

geometry in characteristic p [Ber97]. In this way, H †,i receives an action of the Frobenius automorphism,
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which we can make explicit by constructing a lift σ of the p-th power Frobenius on Fq to A†. To do so,
we take the Witt vector Frobenius on Zq and set σ(µ)=µp for any monomial µ ∈ P1. We then extend σ
to A† by the formula

σ

(
g
f d

)
:= σ(g)σ ( f )−d

= σ(g)
∑
i≥0

(
−d
i

)(σ ( f )− f p)i

f p(d+i) . (4-1)

The above series converges (because p divides σ( f )− f p) and the definitions ensure that σ is a semi-
linear (with respect to the Witt vector Frobenius) endomorphism of A†. We finally extend σ to �†,• by
σ(g dh) := σ(g) d(σ (h)).

5. Sketch of the algorithm

We now indicate briefly how to use controlled reduction to compute the Frobenius action on the coho-
mology of nondegenerate toric hypersurfaces. We start as in [Har07, Proposition 4.1], by rewriting the
Frobenius action in a sparser form.

Lemma 5.1. For any positive integers d, N and g ∈ Pd , in A† we have

σ

(
g
f d

)
≡

N−1∑
j=0

(
−d

j

)(d+N−1
d+ j

)
σ(g f j ) f −p(d+ j) (mod pN ).

Proof. This follows from (4-1) by truncating the sum and then rewriting it formally; see [Cos15,
Lemma 1.10]. �

In order to compute a p-adic approximation of the Frobenius action on PH n−1(X ), we must first
fix a basis of the latter; we do this by constructing a monomial basis for PH n−1

dR (X) via explicit linear
algebra. We then apply Frobenius to each basis element in the sparse truncated form given by Lemma 5.1,
recursively reduce the pole order using Corollary 3.2 (using k = p as much as possible), and project to the
chosen monomial basis. The dominant step is controlled reduction, which amounts to O(pnN Vol(1))
matrix multiplications of size n! Vol(1) per basis element.

We will not address precision estimates in this report, except to note that the machinery of [AKR10,
§3.4] applies. In general, if we want N digits of p-adic accuracy, we must apply Lemma 5.1 with N
replaced by N ′ = N +O(n+ log N ) and work modulo pO(N ′). Hence, with respect to p alone, we expect
our algorithm to run in quasilinear time in p and use O(log p) space.

6. K3 surfaces

We now turn our attention to examples, starting with K3 surfaces. For X a K3 surface, dim H 2(X)= 22 and
the Hodge numbers are (1, 20, 1). A common example of a K3 surface is a smooth quartic surface in P3; but
they also occur in other ways, such as hypersurfaces in weighted projective spaces. Using a criterion of Miles
Reid [Rei80], Yonemura [Yon90] found the complete list of (polarized) weighted projective spaces in
which a generic hypersurface is a K3 surface; there are 95 of these. For toric varieties, the corresponding
classification is that of reflexive 3-dimensional polytopes, of which there are 4,319 in all [KS98].
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In the following examples, we worked modulo p4 in order to obtain Q(t) with two p-adic significant
digits. As a result, we observe a performance hit for p > 216.

Example 6.1. Consider the projective quartic surface X ⊂ P3
Fp

defined by

x4
+ y4
+ z4
+w4

+ λxyzw = 0;

it is a member of the Dwork pencil. For p = 220
− 3 and λ= 1, using the controlled AKR algorithm in

22h 7m we compute that

Z(X , t)−1
= (1− t)(1− pt)16(1+ pt)3(1− p2t)Q(t),

where the “interesting” factor is

Q(t)= (1+ pt)(1− 1688538t + p2t2).

For this family, the remaining factors, apart from Q(t), could have also been deduced by a p-adic formula
of de la Ossa and Kadir [Kad04, Chapter 6]. In this context, the Hodge numbers of PH 2(X ) are (1, 19, 1).

A similar runtime would be expected if we used our current implementation to com-
pute Z(X , t) with 1 being the 3-simplex (tetrahedron), as indicated by the
outer polytope at right. Instead, we observe that the monomials defining X
generate a sublattice of index 42 in Z3; hence, we can instead run our algorithm
with a polytope of significantly smaller volume (32/3≈ 10.66 versus 2/3≈ 0.66),
as indicated by the inner polytope at right. This leads to a dramatic speedup: with our
current implementation, we computed Q(t) in 1m 33s. We present the running times for
other p in Table 1; memory usage was about 16MB.

In the new framework, X is given by the closure (in P1) of the affine surface defined by the Laurent
polynomial

x4 y−1z−1
+ λx + y+ z+ 1,

p CHK time PT time p CHK time

28
− 5 0.03s 1.65s 217

− 1 11.9s
29
− 3 0.04s 3.64s 218

− 5 23.4s
210
− 3 0.04s 7.39s 219

− 1 46.9s
211
− 9 0.06s 14.65s 220

− 3 1m 33s
212
− 3 0.08s 34.80s 221

− 9 3m 6s
213
− 1 0.13s 34.80s 222

− 3 6m 15s
214
− 3 0.22s 2m 33s

215
− 19 0.41s 6m 43s

216
− 15 5.72s 14m 14s

Table 1. The second and fifth columns use our current implementation to compute Q(t). The third column
uses the Pancratz–Tuitman implementation [PT15] to compute Z(X , t).
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and the Hodge numbers of PH 2(X ) are (1, 1, 1), which explains why deg Q(t)= 3.
Since the Dwork pencil is a “small” deformation of the Fermat quartic, we may also use the Pancratz–

Tuitman implementation of the deformation method [PT15] to compute Z(X , t). We did this and verified
that our results agree; we compare running times in Table 1. To interpret these fairly, note that Pancratz
and Tuitman work in P3 and so compute the whole numerator of Z(X , t) rather than just Q(t). (Note
that the algorithm of [Tui19] has a square-root dependence on p, as in [Har07].)

Example 6.2. Consider the projective quartic surface X ⊂ P3
Fp

defined by

x3 y+ y4
+ z4
+w4

− 12xyzw,

which contains a hypergeometric motive; see [DKS+16, §5]. For p = 215
− 19, using the controlled AKR

algorithm, in 27m 12s we compute that

Z(X , t)−1
= (1− t)(1− pt)2(1+ pt)2(1− pt + p2t2)2(1− p2t2

+ p4t4)2(1− p2t)Q(t),

where the “interesting” factor is (up to rescaling)

pQ(t/p)= p+ 20508t1
− 18468t2

− 26378t3
− 18468t4

+ 20508t5
+ pt6.

As in the previous example, the Newton polytope has volume 8, but the defin-
ing monomials generate a sublattice of index 4 in Z3; we may thus work

instead with a polytope of volume 2 (depicted at left) and observe a
significant speedup. In this setting, the Hodge numbers of PH 2(X ) are

(1, 4, 1). With our current implementation we computed Q(t) in 4s. We present
the running times for other p in Table 2, where the memory footprint was about 52MB.

Alternatively, one could try to use Magma [BCP97] to confirm Q(t). Unfortunately, Magma is only
able to confirm the linear coefficient:

> C2F2 := HypergeometricData([6,12], [1,1,1,2,3]);
> EulerFactor(C2F2, 2^10 * 3^6, 2^15 - 19: Degree:=1);
1 + 20508*$.1 + O($.1^2)

p time p time p time

28
− 5 0.20s 213

− 1 1.12s 218
− 5 4m 54s

29
− 3 0.23s 214

− 3 2.08s 219
− 1 9m 46s

210
− 3 0.29s 215

− 19 4.00s 220
− 3 19m 32s

211
− 9 0.41s 216

− 15 1m 11s 221
− 9 38m 58s

212
− 3 0.64s 217

− 1 2m 30s 222
− 3 1h 18m

Table 2. Running times for Example 6.2.
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p time p time p time

27
− 1 6.46s 210

− 3 18.93s 213
− 1 1m 46s

28
− 5 9.50s 211

− 9 31.34s 214
− 3 3m 24s

29
− 3 12.64s 212

− 3 56.23s 215
− 19 6m 20s

Table 3. Running times for Example 6.3.

Example 6.3. Consider the closure X in P1 (which in this case is not a weighted projective space) of
the affine surface defined by the Laurent polynomial

3x + y+ z+ x−2 y2z+ x3 y−6z−2
+ 3x−2 y−1z−2

− 2− x−1 y− y−1z−1
− x2 y−4z−1

− xy−3z−1
;

it is a K3 surface of geometric Picard rank 6, and the Hodge numbers of PH 2(X ) are (1, 14, 1). For
p = 215

− 19, using our current implementation, in 6m 20s we obtain the “interesting” factor of Z(X , t)

pQ(t/p)= (1− t)(1+ t)
(

p+ 33305t1
+ 1564t2

− 14296t3
− 11865t4

+ 5107t5
+ 27955t6

+ 25963t7
+ 27955t8

+ 5107t9

− 11865t10
− 14296t11

+ 1564t12
+ 33305t13

+ pt14).
We present the running times for other p in Table 3, where the peak memory usage was about 144MB.
The vertices of the associated polytope correspond to the first six terms displayed;

the remaining terms are interior points. We depict this polytope of volume 8
at right.

We know of no previous algorithm that can compute Z(X , t) for p in this
range. The defining polynomial is “dense” from the point of the Sperber–
Voight algorithm [SV13], which is based on Dwork cohomology and scales
with the number of monomials away from the vertices of the Newton polytope.

Example 6.4. Let X be the smooth projective surface in P3 defined by the fully dense, randomly chosen
quartic polynomial

−9x4
− 10x3 y− 9x2 y2

+ 2xy3
− 7y4

+ 6x3z+ 9x2 yz− 2xy2z+ 3y3z

+8x2z2
+ 6y2z2

+ 2xz3
+ 7yz3

+ 9z4
+ 8x3w+ x2 yw− 8xy2w

−7y3w+ 9x2zw− 9xyzw+ 3y2zw− xz2w− 3yz2w+ z3w− x2w2

−4xyw2
− 3xzw2

+ 8yzw2
− 6z2w2

+ 4xw3
+ 3yw3

+ 4zw3
− 5w4

;

then 1 is the 3-simplex (tetrahedron) of volume 32/3≈ 10.66. For this example, we have PH 2(X )'
H 3(P3

\X ), the Hodge numbers are (1, 19, 1), and

Z(X , t)−1
= (1− t)(1− pt)(1− p2t)Q(t),
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p time p time p time

27
− 1 25.41s 210

− 3 1m 30s 213
− 1 9m 26s

28
− 17 37.73s 211

− 9 2m 37s 214
− 3 18m 42s

29
− 3 55.82s 212

− 3 4m 50s 215
− 19 36m 29s

Table 4. Running times for Example 6.4.

where deg Q(t)= 21. For p = 215
− 19, we obtain

pQ(t/p)= (1+ t)
(

p− 53159t1
+ 10023t2

− 3204t3
+ 49736t4

− 56338t5
+ 43086t6

− 48180t7
+ 44512t8

− 42681t9
+ 47794t10

− 42681t11
+ 44512t12

− 48180t13

+ 43086t14
− 56338t15

+ 49736t16
− 3204t17

+ 10023t18
− 53159t19

+ pt20)
using the controlled AKR algorithm in 38m 27s; our current implementation takes roughly the same time.
We present the running times for other p in Table 4. The memory footprint was about 230MB.

Unfortunately, the deformation method is not suitable for dense quartics with p in this range. For
example, for p = 31 the running time was 2h 8m and its memory footprint was around 7GB, and both
time and space should scale linearly with p.

7. Calabi–Yau threefolds

We next consider Calabi–Yau threefolds. Unlike for K3 surfaces, the middle Betti numbers of Calabi–Yau
threefolds are not a priori bounded; the largest value of which we are aware is 984 (found in [KS00]).

A common example is a smooth quintic surface in P4. Again, additional constructions arise from
generic hypersurfaces in weighted projective spaces, of which there are 7,555 in all, or more generally
from toric varieties corresponding to reflexive 4-dimensional polytopes, of which there are 473,800,776
in all [KS00].

In all of the following examples, we worked modulo p6 in order to obtain Q(t) and our memory
footprint ranged between 100MB and 270MB.

Example 7.1. Consider the projective quintic threefold X ⊂ P3
Fp

defined by

x5
0 + x5

1 + x5
2 + x5

3 + x5
4 + x0x1x2x3x4 = 0;

it is a member of the Dwork pencil. We have

Z(X , t)=
R1(pt)20 R2(pt)30 Q(t)

(1− t)(1− pt)(1− p2t)(1− p3t)
,

where R1 and R2 are the numerators of the zeta functions of certain curves given by a formula of Candelas,
de la Ossa and Rodriguez Villegas [CdlORV03].

As it is presented, we would work with P1 = P4, where 1 is the 4-simplex of volume 625/24. As in
Example 6.1, the monomials of the equation generate a sublattice of index 53 in Z4, so we may instead



ZETA FUNCTIONS OF NONDEGENERATE HYPERSURFACES IN TORIC VARIETIES 233

p time p time p time

28
− 5 0.73s 213

− 1 6.41s 218
− 5 2m 50s

29
− 3 0.77s 214

− 3 11.61s 219
− 1 5m 38s

210
− 3 0.80s 215

− 19 21.98s 220
− 3 11m 18s

211
− 9 2.54s 216

− 15 43.07s 221
− 9 22m 41s

212
− 3 3.80s 217

− 1 1m 25s 222
− 3 52m 37s

Table 5. Running times for Example 7.1.

work with a polytope whose volume is smaller by a factor of 53. For p = 220
− 3, we compute the

“interesting” factor

Q(t)= 1− 1576492860t1
+ 2672053179370pt2

− 1576492860p3t3
+ p6t4

in 11m 18s; if we instead had tried to apply the controlled AKR algorithm to compute Q(t) (and not the
other factors) we extrapolate that it would take us at least 120 days. We present the running times for
other p in Table 5.

Since this is a “small” perturbation of the Fermat threefold, we again attempted to confirm these results
using the deformation method; however, this was again hampered by the fact that the Pancratz–Tuitman
implementation works in P1 instead of P3. For p= 7, it took 5h 4m and its memory footprint was around
12GB.

Example 7.2. Let X be the threefold defined by

x8
0 + x5

1 x2+ x2
0 x2

1 x2x3+ x1x3
2 x3+ x2

1 x3
3 + x0x1x2x3x4+ x2x3x2

4

in the weighted projective space P(1, 14, 18, 20, 25). The Newton polytope has volume 11/3 ≈ 3.67;
by changing the lattice we may instead work with a polytope of volume 1/3≈ 0.33. In this setting, the
Hodge numbers of PH 3(X ) are (1, 1, 1, 1).

For p = 220
− 3, we compute the “interesting” factor of Z(X , t)

1− 618297672t1
+ 390956360946pt2

− 618297672p3t3
+ p6t4

in 32m 33s. We present the running times for other p in Table 6.

p time p time p time

28
− 5 1.90s 213

− 1 18.2s 218
− 5 8m 0s

29
− 3 1.96s 214

− 3 32.9s 219
− 1 16m 8s

210
− 3 2.06s 215

− 19 1m 6s 220
− 3 32m 33s

211
− 9 7.48s 216

− 15 2m 4s 221
− 9 1h 5m

212
− 3 10.9s 217

− 1 4m 3s 222
− 3 2h 23m

Table 6. Running times for Example 7.2.
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p time p time p time

28
− 5 4.47s 213

− 1 1m 8s 218
− 5 32m 25s

29
− 3 4.60s 214

− 3 2m 8s 219
− 1 1h 5m

210
− 3 4.96s 215

− 19 4m 6s 220
− 3 2h 10m

211
− 9 25.8s 216

− 15 8m 18s 221
− 9 4h 17m

212
− 3 39.1s 217

− 1 16m 31s 222
− 3 9h 33m

Table 7. Running times for Example 7.3.

Example 7.3. Let X be the threefold defined by

x7
1 + x5

0 x1x2+ x2
0 x2

1 x2x3+ x4
0 x2x4+ x0x3

2 x3+ x2
0 x3

3 + x0x1x2x3x4+ x2x3x2
4

in the weighted projective space P(10, 11, 16, 19, 21). Again, by choosing the right lattice, we reduce
the volume of the Newton polytope from 55/12 ≈ 4.58 to 11/24 ≈ 0.46, and the Hodge numbers of
PH 3(X ) are (1, 2, 2, 1). For p = 220

− 3, we computed the “interesting” factor of Z(X , t)

1− 2068001468t1
+ 3449674041773pt2

− 3772715295733197p2t3

+ 3449674041773p4t4
− 2068001468p6t5

+ p9t6

in 2h 10m. We present the running times for other p in Table 7.

Example 7.4. Let X be the closure in P1 (which is not a weighted projective space) of the threefold
defined by the Laurent polynomial

xyz2w3
+ x + y+ z− 1+ y−1z−1

+ x−2 y−1z−2w−3
= 0.

Choosing the correct lattice reduces the volume of the Newton polytope from 9/8≈ 1.12 to 3/8≈ 0.38,
and the Hodge numbers of PH 3(X ) are (1, 2, 2, 1). For p = 220

− 3, we computed the “interesting”
factor of Z(X , t)

(1+ 718pt + p3t2)(1+ 1188466826t1
+ 1915150034310pt2

+ 1188466826p3t3
+ p6t4)

in 1h 15m. We present the running times for other p in Table 8.

p time p time p time

28
− 5 2.74s 213

− 1 39.28s 218
− 5 18m 34s

29
− 3 2.80s 214

− 3 1m 13s 219
− 1 38m 8s

210
− 3 3.00s 215

− 19 1m 21s 220
− 3 1h 15m

211
− 9 14.86s 216

− 15 4m 45s 221
− 9 2h 32m

212
− 3 22.32s 217

− 1 9m 12s 222
− 3 5h 39m

Table 8. Running times for Example 7.4.
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8. Cubic fourfolds

For our final example, we consider a cubic fourfold. For X a smooth cubic fourfold in P5, dim H 4(X)=
23 and the Hodge numbers are (0, 1, 21, 1, 0).

In this example, we worked modulo p6 in order to obtain Q(t).

Example 8.1. Let X be the smooth projective cubic fourfold in P5
Fp

defined by

x3
0 + x3

1 + x3
2 + (x0+ x1+ 2x2)

3
+ x3

3 + x3
4 + x3

5 + 2(x0+ x3)
3
+ 3(x1+ x4)

3
+ (x2+ x5)

3
;

it is nondegenerate in P5. For p = 31, in 21h 31m we computed

Z(X , t)−1
= (1− t)(1− pt)(1− p2t)(1− p3t)(1− p4t)Q(t),

where the “interesting” factor is an irreducible Weil polynomial given by

pQ(t/p2)= p− 7t1
+ 21t2

− 52t3
− 8t4

− 28t5
+ 21t6

+ 35t7
+ 39t9

+ 62t10
+ 23t11

+ 62t12
+ 39t13

+ 35t15
+ 21t16

− 28t17
− 8t18

− 52t19
+ 21t20

− 7t21
+ pt22

;

the coefficient of t1 may be confirmed independently by counting X (Fp) using the Sage function
count_points. For p = 127 the running time was 23h 15m and for p = 499 it was 24h 55m; in both
cases, the “interesting” factor is an irreducible Weil polynomial. In these computations, the memory
footprint was around 36.5GB.

In dimension 4, the bottleneck seems to be the linear algebra required to set up controlled reduction.
For p = 31, more than half of the running time (15h 32m) is spent solving a linear problem of size
15,504× 37,128 modulo p6. With careful handling of this step (e.g., avoiding Hensel lifts) we would
expect a significant speedup.

Note that the defining equation for X is quite sparse. To assess the effect of this sparsity, as well as
to cross-check the answer, we recomputed Z(X , t) after applying a random linear change of variables to
obtain a dense defining equation. For p = 31, in 27h 55m and using about 41GB we obtained the same
value for Z(X , t) as above.

Recall from the Introduction that a cubic fourfold is coplanar if it is defined by an expression
∑10

i=1 a3
i

in which each ai is a linear form and some four of the ai are linearly dependent. Ranestad and Voisin
[RV17] showed that the Zariski closure Dcopl of the coplanar locus is a divisor on the moduli space
of cubic fourfolds. Example 8.1 is a nonspecial coplanar cubic fourfold: the existence of a primitive
codimension-2 cycle class would imply2 that pQ(t/p2) has a cyclotomic factor. This shows (modulo
detailed analysis of the algorithm) that Dcopl is not a Noether–Lefschetz divisor.
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Class field theory is an important tool in number theory. We discuss improvements to the computation
of ray class groups, congruence subgroups and class fields, which are fundamental building blocks of
constructive class field theory. As an application and to illustrate the power of our new techniques, we
find new fields with minimal discriminant having prescribed Galois group and signature.

1. Introduction

Class field theory of algebraic number fields is one of the main achievements of algebraic number theory
from the first half of the 20th century. Building upon Kummer theory, it gives a complete description of
abelian extensions of a number field K in terms of objects “inside” K. As a corollary, one obtains a fairly
simple parametrization of all abelian extensions of K, similar to the parametrization of abelian extensions
of Q provided by the theorem of Kronecker and Weber. With a growing interest in algorithmic aspects of
algebraic number theory and the availability of computational resources, the existence theorem of class
field theory was made constructive, resulting in efficient algorithms for working with ray class groups
and constructing class fields; see [Has64; DP95; DP98; Poh99; CDyDO96; CDyDO98; Coh99; CS08].

The aim of this paper is to describe new methods for computing class fields with an emphasis on
the problem of tabulating extensions of number fields. While the overall strategy is the same as in
[CDyDO98] and [DP95], we show how the individual steps can be improved tremendously. The theoret-
ical improvements are accompanied by an efficient implementation allowing computations in situations
which were out of reach before. To illustrate this, we have computed new minimal discriminants of
number fields with various Galois groups. For a number field K denote by dK the absolute discriminant
of K. If G is a transitive permutation group of degree n and r ∈ Z, 0≤ r ≤ n, we set d0(n, r,G) to be
the smallest value of |dK |, where [K :Q] = n, K has r real embeddings, and if L is the Galois closure
of K over Q, then Gal(L/Q)∼= G as a permutation group on the embeddings of K in L .

This work was supported by Project II.2 of SFB-TRR 195 “Symbolic Tools in Mathematics and their Application” of the
German Research Foundation (DFG).
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We let Cn denote the cyclic group of order n, Dn denote the dihedral group of order 2n and Sn denote
the symmetric group on n letters. Using our algorithm we obtain the following minimal discriminants.

Theorem 1. The following hold:

(1) d0(15, 1, D15)= 2397,

(2) d0(15, 3, D5×C3)= 712
· 176,

(3) d0(15, 5, S3×C5)= 210
· 1113,

(4) d0(36, 36,C9 oC4)= 112927,

(5) d0(36, 0,C9 oC4)= 388
· 2927.

In all five cases the value of the minimal possible discriminant was not known (see the database of
Klüners and Malle [KM01] for the first three cases).

Finally, note that we only consider the problem of computing abelian extensions of arbitrary number
fields K, with a focus on normal extensions. For various base fields, there are special methods; for
example, complex multiplication for K imaginary quadratic or (conjectural) Stark units for totally real
fields.

2. Class field theory and enumeration of abelian extensions

In this section, we briefly recall the main theorem of class field theory and its application to the construc-
tion of number fields or complete tables of number fields with specific properties. We refer the reader to
[Jan96] or [Lan94] for a detailed description of the topic.

Let K be a number field with ring of integers OK . For a nonzero prime ideal p of OK , we denote by
vp the p-adic valuation. A modulus m of K is a pair (m0,m∞) consisting of a nonzero ideal m0 of OK

and a set of real embeddings of K. In this case we also write m = m0m∞. For a modulus m = m0m∞

we define Im to be the group of fractional ideals of K generated by the prime ideals not dividing m0.
Moreover, for x ∈ K we define x ≡ 1 mod m if and only if vp(x − 1) ≥ vp(m0) for all prime ideals p

dividing m0 and σ(x) > 0 for σ ∈m∞. We define the ray group Pm = {x K | x ≡ 1 mod m} ⊆ Im and call
the finite abelian group Clm = Im/Pm the ray class group of K modulo m. A subgroup Pm ⊆ A ⊆ Im is
called a congruence subgroup modulo m. By abuse of notation, we will also call A= A/Pm a congruence
subgroup. The smallest modulus n with Im ∩ Pn ⊆ A is the conductor of A.

Let L/K be an abelian extension. For every prime ideal p of K, which is unramified in L/K, there
exists a unique map Frobp,L/K ∈ Gal(L/K ) with Frobp,L/K (x) ≡ xN(p) mod pOL for all x ∈ OL . We
call Frobp,L/K the Frobenius automorphism of p. If m is a modulus divisible by the prime ideals rami-
fying in L/K, there exists a unique morphism ϕL/K : Im→ Gal(L/K ), called the Artin map, such that
ϕL/K (p) = Frobp,L/K for all nonzero prime ideals p not dividing m0. Any modulus f such that ϕL/K

factors through Clf is called an admissible modulus of L/K. The smallest modulus with this property is
called the conductor of L/K.
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Theorem 2. If L/K is an abelian extension of conductor f, then there exists a congruence subgroup
Af ⊆ Clf of conductor f such that the Artin map induces an isomorphism ψL/K : Clf/Af→ Gal(L/K ).
If Af is a congruence subgroup of conductor f, then there exists an abelian extension L/K such that the
Artin map induces an isomorphism ψL/K : Clf/Af→ Gal(L/K ).

Now assume K is a number field, G an abelian group and X ∈ R>0. We fix an algebraic closure K of
K. For a finite extension L/K we let dL/K = N(dL/K ) be the norm of the relative discriminant. To find

{K ⊆ L ⊆ K | Gal(L/K )∼= G and dL/K ≤ X},

we can proceed as follows:

(1) Find a set F containing all possible conductors f.

(2) For every conductor f ∈ F compute the ray class group Clf and all subgroups A ⊆ Clf of conductor
f with Clf/A ∼= G.

(3) Let L be an abelian extension of K corresponding to a pair (f, A) of Step (2). If dL/K ≤ X, compute
a defining polynomial for L .

We discuss Step (2) in Section 3 and Step (3) in Section 4. In many applications, one is only interested
in field extensions with specific properties. While sieving after Step (3) is always possible, it is not an
optimal strategy since the computation of the defining polynomials is usually the most expensive step.
Very often, the situation allows one to make improvements already in Steps (2) or (3). For example, since
the ramification of L/K is intimately connected to the conductor of this extension, restrictions on the
ramification allow us to reduce the set of possible conductors in Step (1). In other common situations, K
itself is a normal extension of some subfield K0 and one is only interested in extensions L/K with Galois
group G, such that L/K0 is also normal. We will address the latter problem in Section 5.

3. Quotients of ray class groups

Let K be an algebraic number field and suppose that we are searching for abelian extensions of K with
Galois group of exponent n. As described in Section 2, the fields we are looking for correspond to
congruence subgroups H of ray class groups Clm with conductor m = m0m∞, such that Clm/A is of
exponent n, that is, to subgroups A with Clnm ⊆ A⊆ Clm. Therefore we do not need the whole group Clm,
but only the quotient Clm/Clnm.

The standard algorithm (see [CDyDO96]) to compute the ray class group Clm relies on the exact
sequence

O×K → (OK /m)
×
→ Clm→ Cl→ 0, (1)

where O×K are the units of OK and Cl is the class group of K. In particular, if {ui }, {mi }, {ci } are generators
of the groups O×K, (OK /m)

× and Cl, respectively, then we can choose as generators of Clm the union
of the images of the mi and preimages of the ci . Computing the relations between the generators of
Cl and (OK /m)

×, as well as the generators coming from O×K, requires the computation of generators of
principal ideals and of discrete logarithms in (OK /m)

×. Note that the latter problem can be expensive. For
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every prime ideal p dividing m0, computing the discrete logarithm in (OK /m)
× requires the computation

of a discrete logarithm in the multiplicative group (OK /p)
× of the residue field. This quickly becomes

a bottleneck if N(p)− 1 is hard to factor or divisible by large primes.
To avoid these problems, we show how to directly construct the quotient Clm/Clnm of the ray class

group. For clarity of exposition, we will only consider the case when n is a prime power, that is, n = ps

for some prime p ∈ Z>0. Indeed, if n factors as n =
∏r

i=1 pei
i , we get

Clm/Clnm ∼=
r∏

i=1

Clm/Cl
p

ei
i

m .

While for finite abelian groups the functor A 7→ A/ps A is in general only right exact, we can use the
exact sequence (1) together with the following lemma to construct the quotient directly.

Lemma 3. Let 0→ A→ B→ C→ 0 be an exact sequence of finite abelian groups of exponents e1, e2

and e3 respectively. Let p ∈ Z>0 be a prime number and k ∈ Z>0 with k ≥ vp(ei ) for i = 1, 2, 3. Then
the sequence

0→ A/pk A→ B/pk B→ C/pkC→ 0

is exact.

Now let ñ = ps̃ with s̃ = vp(#(OK /m)
×)+vp(#Cl). The lemma shows that we can construct Clm/Clñm

by working only with Cl/Clñ and with (OK /m)
×/(OK /m)

×ñ (by applying it to 1→ (OK /m)
×/ι(O×K )→

Clm→Cl→ 1). In particular, the number of generators of the quotient can be smaller than the number of
generators of the entire class group. Since for every generator we have to perform expensive operations,
this improves performance.

The lemma also affects the construction of the unit group. Let q be a prime ideal divisor of m0

and l = vq(m0). Recall that by [Coh00, Proposition 4.2.4] we have

(OK /q
l)× ∼= (OK /q)

×
× (1+ q)/(1+ ql).

We distinguish two cases:

• If l = 1, we need to compute a generator of U/ñU, where U = (OK /q)
×. This is much easier than the

computation of a generator of the whole group U, which would require the factorization of #U = N (q)−1.
We can assume that p | N (q)− 1, otherwise m cannot be the conductor of such an extension ([Coh00,
Proposition 3.3.21]). Let e = vp(N (q)− 1). Finding a generator of the group U/ñU is equivalent to
finding an element of U of order divisible by pe. Such an element can be found with high probability
by picking random elements. Indeed, let g be an element of U and let s = (N (q)− 1)/pe. Then g is a
generator of U/ñU if gspe−1

is not trivial. The probability of finding an element of order divisible by pe

is ϕ(pe)/pe
= (p− 1)/p, which is always greater than or equal to 1/2.

• If l > 1, then p - N (q)− 1 and we can avoid computing the multiplicative group of the residue field
altogether, since its order is not divisible by p.

Since in this way we have constructed the quotient V = Clm/Clñm, as a final step we just have to
compute V/nV.
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4. Ray class fields

Let L/K be an abelian extension of degree n and suppose that we have computed an admissible modulus
f = f0f∞ of L/K divisible only by the ramifying primes, and a congruence subgroup Af such that the
Artin map induces an isomorphism Clf/Af→ Gal(L/K ). While various invariants can be computed
from only f and Af, finding explicit defining polynomials for the extension L/K is sometimes relevant,
for example when constructing towers of number fields. This problem is usually solved using either
Hecke’s theorem or the Artin map; see [Coh00, Section 5.5.5] for a comparison of both methods. Here
we follow in principle the Artin map approach, but we show how to improve it significantly. We will
repeatedly make use of the following key result from [Fie01, Section 3]; see also [Coh00, Section 5.4.1].

Proposition 4. Assume that K contains the n-th roots of unity and L = K ( n
√
α) is a Kummer extension.

Then, for almost all prime ideals p of K, we can efficiently find k ∈ Z with Frobp( n
√
α) = ζ k

n
n
√
α doing

only computations in K.

4.1. Reduction to the prime power case. Using the fundamental theorem of finite abelian groups, we
may decompose Clf/Af into a product of cyclic groups of prime power order. Accordingly, L/K is the
compositum of linearly disjoint cyclic extensions of K of prime power degree. Thus, from now on we
assume that Gal(L/K )∼= Z/`mZ is a cyclic extension of prime power degree n = `m for some prime `.
Furthermore we assume that we have computed an explicit isomorphism 9 : Clf/Af→ Z/`mZ.

4.2. Using Kummer theory. Let E = K (ζn) and F = L E = L(ζn). Then F/E is again an abelian
extension and, since NE/K (PfOE )⊆ Pf, we know that the lift fE = fOE is an admissible modulus for the
abelian extension F/E by [Jan96, Chapter III, Section 3]. Our aim is to find a defining polynomial for
the field extension F/E , which is now a Kummer extension. To this end, we compute ClE and a finite
set S of primes of E containing the infinite primes such that

(1) F/E is unramified outside of S, that is, S contains all primes dividing fE ,

(2) ClE/ClnE is generated by the classes of the finite primes in S.

We consider then the group US of S-units of E . By Dirichlet’s unit theorem it is isomorphic to µE×Z#S−1.
Let ε0 ∈ O×E be a torsion unit with 〈ε0〉 = µE . Denoting r = #S − 1, we can compute r elements
ε1, . . . , εr ∈ E such that ε0, ε1, . . . , εr generate US . Since F/E is of exponent n and E contains the
n-th roots of unity, by Kummer theory we know that F = E( n

√
WF ), where WF = E× ∩ F×n. By [CS08,

Lemma 5.4], condition (1) implies that WF/E×n
⊆ (US · E×n)/E×n and therefore E ⊆ F ⊆ N, where

N = E( n
√

US). Since F/E is a cyclic subextension of N/E , Kummer theory asserts that there exists an
element α = εn0

0 ε
n1
1 · · · ε

nr
r such that F = E( n

√
α). Our aim is to determine such an element α ∈ US or,

equivalently, suitable exponents n0, . . . , nr ∈ Z.
Let fN be an admissible modulus for N/E and ClfN /AfN be the corresponding quotient of the ray class

group; the latter is isomorphic to Gal(N/E) via the Artin map. Since

N = E( n
√

US)= E( n
√
ε0, . . . ,

n
√
εr ),
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the Galois group Gal(N/E) is isomorphic to (Z/nZ)r+1 via

8 : σ 7→ (m0, . . . ,mr ), where σ( n
√
εi )= ζ

mi
n ·

n
√
εi for 0≤ i ≤ r .

We therefore get the following commutative diagram:

IfN ClfN /AfN Gal(N/E) (Z/nZ)r+1

Z/nZ Clf/Af Gal(L/K ) Gal(F/E)

ϕN/E

NE/K

ψN/E

NE/K
π

8

4

9 ψL/K res

Since F is the fixed field of Gal(N/F) ⊆ Gal(N/E), we want to search for elements v1, . . . , vl in
(Z/nZ)r+1 such that 〈8−1(v1), . . . ,8

−1(vl)〉=Gal(N/F), that is, 〈v1, . . . ,vl〉=8(Gal(N/F)). Through
diagram chasing, we see that

Gal(N/F)= ker(π)= ker(ψ−1
L/K ◦ res ◦π)

= ker(NE/K ◦ψ
−1
N/E)= ψN/E(ker(NE/K ))

=8−1(ker(4)).

Thus it is sufficient to compute the kernel of the Z/nZ-linear map 4. Once we have generators for
the kernel, we can read off exponents n0, . . . , nr such that α = εn0

0 · · · ε
nr
r using linear algebra. The

following lemma shows that it is not necessary to directly compute the map 4 in order to find ker(4)
or 8−1(ker(4)).

Lemma 5. Let T be a finite set of finite primes q of E such that q does not divide fN and (Frobq)q∈T

generates Gal(N/E). For M = (9(NE/K ([q])))q∈T ∈ (Z/mZ)#T×1 the following holds: If v1, . . . , vl ∈

(Z/nZ)#T generate the right kernel ker(M), then∑
q∈T

vi,q ·8(Frobq), 1≤ i ≤ l,

are generators for 8(Gal(N/F)).

Remark 6. This is quite different from the original approach in [Fie01, Section 3]. There, an admissible
modulus fN was explicitly constructed using bounds due to Hasse [Has67]. This was then followed by the
computation of a generating set for the kernel ker(NE/K )⊆ ClfN and the application of ψN/E ◦8. Since
the valuations of fN obtained by Hasse can be very large, the necessary discrete logarithms in the ray
class group ClfN tended to be quite costly. We circumvent this by avoiding any computation with ClfN .
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4.3. Descent to L/K. Suppose now that we have found α ∈ E such that F = E( n
√
α). We aim to

find a defining polynomial for L/K. As a first step, we compute µ ∈ F such that F = K (µ). Since
E( n
√
α)= K (ζn,

n
√
α), we can find µ as µ= n

√
α+ kζn for a suitable k ∈ Z. Note that k can be found by

trying small elements in Z. As the coefficients of the minimal polynomial f µL of µ over L generate the
cyclic extension L/K, it is sufficient to determine

f µL =
∏

σ∈Gal(F/L)

(X − σ(µ)) ∈ L[X ].

Hence the problem of finding a defining polynomial is reduced to the problem of computing an explicit
description of Gal(F/L) on n

√
α and ζn . Since F/K is the compositum of E and L , it is abelian with

admissible modulus fF = nOK ∩ fN . Denote by AfF the corresponding congruence subgroup of Cl fF .
We have the following commutative diagram:

IfF ClfF /AfF Gal(F/K )

Z/nZ Clf/Af Gal(L/K )

ϕF/K

ψF/K

res

9

ψL/K

First, note that we can easily compute a generating set for Gal(F/K ). As the group Gal(E/K ) =
Gal(K (ζn)/K ) is a subgroup of (Z/nZ)× and n is a prime power, we can find r, s ∈ Z such that
Gal(E/K ) is generated by ζn 7→ ζ r

n and ζn 7→ ζ s
n . Using [Fie01, Lemma 4.1], we can determine extensions

f, g : F→ F of both morphisms, which together with F→ F, n
√
α 7→ ζn

n
√
α, generate Gal(F/K ). We

now need to find Gal(F/L)= ker(res : Gal(F/K )→ Gal(L/K )).

Lemma 7. Let T be a finite set of finite primes q of K such that q does not divide fF and (Frobq)q∈T

generates Gal(F/K ). Let M = (9([q]))q∈T ∈ (Z/nZ)#T×1. If v1, . . . , vl ∈ (Z/mZ)#T generate the right
kernel ker(M), then ∏

q∈T

(Frobq)vi,q, 1≤ i ≤ l,

are generators for Gal(F/L).

To compute Frobq in F/K, we can proceed as follows. Since we already know Gal(F/K ), if we pick a
prime p of F lying over q, we can find Frobq as the unique σ ∈Gal(F/K ) such that σ(ζn)≡ ζ

N(p)
n mod q

and σ( n
√
α)≡ ( n

√
α)N(p) mod q.

Remark 8. If n = ` is prime, even fewer steps are necessary. Since [K (ζn) : K ] is a divisor of `− 1, it
is coprime to ` and thus Gal(F/L) is the unique subgroup of Gal(F/K ) of order `. If f is the lift of a
generator of Gal(K (ζn)/K ) to Gal(F/K ), then f ` will be a generator of Gal(F/L).

Remark 9. In [Fie01, Section 4], the set Gal(F/L) is also computed as the kernel of the restriction map
res :Gal(F/K)→Gal(L/K). More precisely, Gal(F/L) is computed as the image of ker(ι :ClfF→Clf/Af))
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under ψF/K . This is a costly operation due to discrete logarithms in ray class groups. In our approach
this is circumvented by the use of the Artin map on sufficiently many prime ideals.

4.4. Reduction of generators. In the computation of a defining polynomial of the class field, we find
a generator of a Kummer extension. Depending on the situation, this is either the final result or this
computation is followed by the descent. To improve the overall performance, it is beneficial to find
a “small” generator for the Kummer extension. More precisely, let K be an algebraic number field;
given α ∈ K×, we want to find a “small” representative for α · K×n , that is, we want to find β ∈ K× such
that βn

·α is “small”. To this end, we will describe how to compute a so-called compact representation

α = α0α
n
1α

n2

2 · · ·α
nk

k

with small elements αi ∈OK . Once we have found this, α0 will be a small representative in the coset of
α modulo K×n.

Note that the notion of compact representations was used in [Thi95] in connection with the computa-
tion of units and principal ideal generators; see also [BF14]. Here we give a different algorithm, which
uses a similar approach to [BF14], but which also works for elements which are not units. As the value
of the presented algorithms comes from the practicality, we will refrain from giving precise statements
about the size of the objects. Note that it is possible to obtain rigorous estimates using Remarks 11
and 13.

The first step of a compact representation is a reduction at the finite places. We let

αOK =

l∏
i=1

pni
i

be the prime ideal factorization of αOK and set N =maxi ni .

Algorithm 10. Let k = blogn(N )c. The following steps return small (with respect to the T2-norm)
elements α0, . . . , αk and a of small norm with

αOK = (α0α
n
1α

n2

2 · · ·α
nk

k ) · a.

(1) Define ak+1 = 1.

(2) For j = k, . . . , 0 define b j =

l∏
i=1

p
b(ni mod n j+1)/n j

c

i .

(3) For j = k, . . . , 0 find α j ∈ (a
n
j+1b j )

−1 such that the ideal a j := α
−1
j an

j+1b j has small norm.

(4) Return α0, . . . , αk and a= a0.

Remark 11. Finding α j in Steps (1) and (3) is the well known problem of finding small representatives in
ideal classes. The solution involves computing a small basis of the inverse ideal using a lattice reduction.
If one uses LLL reduction ([LLL82]), the ideals a j will have a small norm bounded by O(2d2√

|dK |)

(see also [BFH17, 4.3]).



ON THE CONSTRUCTION OF CLASS FIELDS 247

We now assume that we have an element α ∈OK such that |N(α)| is small and for which we want to
compute a compact representation. To do so, we need the following notion. Let b be a nonzero integral
ideal of OK . We define

b
n
√
bc =

∏
p

pbvp(b)/nc,

to be the n-th root of b. Here the product runs over all nonzero prime ideals of OK . Note that b n
√
bc is

an integral ideal such that b n
√
bcn divides b.

Let σ1, . . . , σd : K → C be the complex embeddings of K. For an element v = (vi )1≤i≤d ∈ Rd we
denote max1≤i≤d |vi | by ‖v‖∞. Recall that the T2,v-norm is defined to be T2,v(β) =

∑d
i=1 v

2
i |σi (β)|

2

for β ∈ K.

Algorithm 12 (compact representation for elements of small norm). Let α ∈OK with |N(α)| small. The
following steps return small elements α0, . . . , αk such that

α = α0α
n
1α

n2

2 · · ·α
nk

k .

(1) Define v = (v j )1≤ j≤d = (log(|σ j (α)|))1≤ j≤d ∈Rd and k = blogn(‖v‖∞)c so that nk
≤ ‖v‖∞ ≤ nk+1.

We set α̃k+1 = α.

(2) For i = k, . . . , 1, we set w = (exp(n−iv j ))1≤ j≤d and then compute bi =
⌊

ni√
α̃i+1OK

⌋
. Next, use

lattice reduction to find an element γi ∈ b
−1
i which is small with respect to T2,w, and set αi = γ

−1
i

and α̃i = α̃i+1 · γ
ni

i .

(3) Define α0 = α̃1 and return α0, . . . , αk .

Remark 13. The size of the elements γ1, . . . , γk of the algorithm is bounded in T2-norm in terms of
n and

√
dK/Q. Assume that we are in the i-th iteration of the algorithm; using the same notation as in

Algorithm 12, the element γi ∈ b
−1
i obtained by the LLL-algorithm has small T2,w-norm:

T2,w(γi )≤ C
(

d1/2
K/Q N (bi )

−1
d∏

j=1

w j

)2/d

≤ C
(

d1/2
K/Q N (α)1/n

i
)2/d

,

where C is the explicit constant of the reduction algorithm and the last inequality comes from the fact
that

(
N (bi )

−1∏d
j=1w j

)ni

= N (α)N (bi )
−ni

is integral, hence bounded by N (α). Clearly, αγ ni

i ∈ OK

and we have the following bound on its size:

T2(αγ
ni

i )=

d∑
s=1

(w−2ni

s |σs(α)|
2)(w2ni

s |σs(γ
ni

i )|
2)=

d∑
s=1

w2ni

s |σs(γ
ni

i )
2
|

≤

( d∑
s=1

w2
s |σs(γi )|

2
)ni

= T2,w(γi )
ni
≤ Cni

N (α)2/ddni/d
K/Q.

Thus
‖v‖∞ ≤ log T2(αγ

ni

i )≤ ni log
(
C N (α)2/dd1/d

K/Q

)
.
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Now, w−1
i = exp(−n−ivi )≤ exp(n−i

‖v‖∞)≤ C N (α)2/ ld1/d
K/Q and

T2(γi )=

d∑
s=1

w−2
s w2

s |σs(γi )|
2
≤ ‖w−1

‖
2
2T2,w(γk)≤ dC3d3/d

K/Q N (α)4/d+2/(dni )

is bounded as well.

Summarizing, to reduce an element α ∈ K modulo K×n , we first apply Algorithm 10 to obtain
α0, . . . , αk ∈ K and an ideal a of bounded norm such that αOK = (α0α

n
1α

n2

2 · · ·α
nk

k ) · a. Thus the
element α̃ defined by

α̃ = α(α−1
0 α−n

1 · · ·α
−nk

k )

is an element of small norm. This is followed by an application of Algorithm 12 to α̃, which yields
α̃0, . . . , α̃l with

α̃ = α̃0α̃
n
1 · · · α̃

nk

k .

Since

α =

max(k,l)∏
i=0

(αi α̃i )
ni
,

(where we set αi = 1 and α̃i = 1 for i > k and i > l, respectively), we see that α ≡ α0α̃0 mod K×n. By
construction, α0α̃0 is a small element.

4.5. Computation of Galois groups. Let L/K be an abelian extension of degree n, for which we have
computed a polynomial f ∈ K [X ] with L ∼= K [X ]/( f ). Denote by γ ∈ L a root of f in L . Our
aim is to show how to compute Gal(L/K ) using the objects which showed up during the computation
of the defining polynomial f . By computing Gal(L/K ), we mean the computation of the image of γ
under the elements of Gal(L/K ). As in Section 4 we may assume that L/K is cyclic. Recall that
F = L(ζn) = K (ζn)(

n
√
β) = E( n

√
β). Assume first that L and K (ζn) are linearly disjoint. Then the

restriction Gal(F/E)→ Gal(L/K ) is an isomorphism and, since F/E is a Kummer extension with
generator n

√
β, we have

Gal(F/E)= 〈σ : F→ F : n
√
β 7→ ζn

n
√
β〉.

In particular, σ |L is a generator of Gal(L/K ) and a0, . . . , an−1 ∈ K with

σ |L(γ )= σ(γ )=

n−1∑
i=0

aiγ
i

can be found using linear algebra.
In the general case, the restriction map Gal(F/E)→Gal(L/K ) is not surjective. But as the restriction

map Gal(F/K )→ Gal(L/K ) is always surjective, we can solve the problem by restricting generators
of Gal(F/K ) to Gal(L/K ). This can be done using linear algebra as above. Since we have already
constructed Gal(F/K ) in the descent step, we do not need to recompute the automorphisms of this
extension.
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Assume that K/K0 and L/K0 are normal extensions; this occurs frequently when constructing towers
of normal extensions with more than two layers. In this case, it makes sense to compute the “absolute”
Galois group Gal(L/K0). The naive way of computing Gal(L/K0) would be to write L/K0 as a simple
extension and to find the roots of the defining polynomial. While this works well for small degrees, it
quickly becomes unfeasible.

Alternatively, note that Gal(L/K0) = 〈σ1, . . . , σr ,Gal(L/K )〉, where σ1, . . . , σr are extensions of
generators of Gal(K/K0) to L . By the first part, we know how to compute generators of Gal(L/K ), thus
it is sufficient to show how to extend an automorphism σ ∈ Gal(K/K0) to an element of Gal(L/K0).
Let ` be a prime dividing [L : K ] and denote by L`/K the largest subextension such that [L : L`] is
coprime to `. As Gal(L`/K ) is isomorphic to the `-Sylow subgroup of Gal(L/K ), L`/K0 is also normal.
Since L/K is the compositum of the linearly disjoint L`/K, where ` divides [L : K ], we may assume that
L = L` is an abelian `-extension of K. In particular, L itself is the compositum of linearly disjoint cyclic
extensions L i = K (γi ) of prime power degree `mi. Recall that we have constructed the extension L i/K
by passing to the Kummer extension L i (ζ`mi )/K (ζ`mi ), for which we computed an element βi ∈ K (ζ`mi )

with L i (ζ`mi )= K (ζ`mi , mi
√
βi ). For simplicity we assume that mi =m for all i = 1, . . . , r and set n = `m,

E = K (ζn). We have the following lattices of number fields:

K (ζn)

K K0(ζn)

K ∩ K0(ζn)

E( m
√
β1, . . . ,

m
√
βr )= M

L E = K (ζn)

K

The idea is to extend σ ∈ Gal(K/K0) to an automorphism of

M = E( n
√
β1, . . . ,

n
√
βr )

and then to restrict this to L . As the first step, we extend σ to K (ζn). Denote by K1 the intersection
K0(ζn)∩ K. Then K (ζn)/K1 is the compositum of the linearly disjoint extensions K/K1 and K0(ζn)/K1.
Thus it is straightforward to extend σ to an automorphism of K (ζn), which we also denote by σ .

In the next step, we extend σ to an automorphism σ̂ of M by determining σ̂ ( n
√
βi ) for all i = 1, . . . , r ,

using the Frobenius automorphisms. We now fix i ∈ {1, . . . , r}. Since M/E is a Kummer extension,
there exist unique 1≤ n j ≤ n and µ ∈ K (ζn) such that

σ̂ ( n
√
βi )= µ · (

n
√
β1)

n1( n
√
β2)

n2 · · · ( n
√
βr )

nr . (2)

Our aim is to determine the n j as well as µ. As σ̂ extends σ , we may assume that σ̂ ( n
√
βi ) =

n
√
σ(βi ).

For a finite prime p of E , unramified in M/E , there exist ep, ep,1, . . . , ep,r ∈ Z/nZ such that

Frobp,M/E(
n
√
β j )= Frobp,E( n

√
β j )/E

(
ζ

ep, j
n

n
√
β j
)
,

Frobp,M/E
(

n
√
σ(βi )

)
= Frobp,E( n√σ(βi ))/E

(
n
√
σ(βi )

)
= ζ

ep
n

n
√
σ(βi ).
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Since Frobp,M/E(µ)= µ, applying Frobp,M/E to (2) yields

ζ
ep
n = ζ

n1ep,1
n · · · ζ

nr ep,r
n , that is, 0= ep−

r∑
i=1

ni ep,i in Z/nZ.

Thus, for each prime we get a linear equation over Z/nZ of which n1, . . . , nr is a solution. Since
Gal(M/E) is generated by Frobp,M/E , p a finite prime of K, we know that using sufficiently many primes
(n1, . . . , nr ) will be the unique solution of the simultaneous equations. Hence we can use Proposition 4
to compute n1, . . . , nr . Once this is done, we can recover µ by extracting an n-th root of

σ(βi )

β
n1
1 · · ·β

nr
r
= µn.

5. Invariant subgroups

5.1. Normal extensions. Let K be a number field which is normal over the base field K0 with Galois
group G = Gal(K/K0). In this section we describe how to compute abelian extensions of K, which are
also normal over K0.

The action of G on K extends to an action on the places of K and, in particular, on the set of moduli
of K. Let m be a modulus which is invariant under the action of G, that is, σ(m)=m for every σ ∈ G.
In this case G acts on the ray class group Clm by sending [I ] to [σ(I )].

Remark 14. Let L be an abelian extension of K with conductor m and let σ : L→Q be an embedding.
Then σ(m) is the conductor of σ(L) over σ(K ). To see this it is enough to consider the compositum of
the Artin map with σ .

Proposition 15. Let m be a modulus of K which is invariant under the action of G. Every subgroup H of
Clm which is invariant under the action of G corresponds to an abelian extension L/K, such that L/K0

is normal. Conversely, let L be an abelian extension of K which is normal over K0. Then the conductor
f of L/K as well as the corresponding congruence subgroup are invariant under the action of G.

Proof. Firstly, we prove that if m is an invariant modulus, the statement is true for H = {1} and the
corresponding extension L . Let σ be an embedding of L into Q such that σ |K0 = id. Then σ(K )= K
since K is normal over K0 and σ(L) is an abelian extension of K with admissible modulus σ(m).
As σ(m)=m, we get σ(L)⊆ L and thus L/K0 is normal.

Now, let H be an invariant subgroup of Clm corresponding to an extension L and let F be the ray
class field corresponding to {1}< Clm. We want to show that L is normal over K0, or, equivalently, that
Gal(F/L) is normal in Gal(F/K0). In this setting, we have the exact sequence

1→ Gal(F/K )→ Gal(F/K0)→ Gal(K/K0)→ 1.

In particular, Gal(F/K0) is generated by a set of generators of Gal(F/K ) and preimages of genera-
tors of Gal(K/K0). Obviously, Gal(F/L) is invariant under conjugation by elements of Gal(F/K ) in
Gal(F/K0) since F/K is abelian. By the properties of the Artin map, Clm ' Gal(F/K ) and the action
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of G on Clm corresponds to conjugation in the group Gal(F/K0). Since H is invariant, this means
that Gal(F/L) is invariant under conjugation by generators of Gal(K/K0) and therefore it is a normal
subgroup.

On the other hand, let L be an abelian extension of K which is normal over K0. The conductor being
invariant follows from the observation above. Furthermore, we know that the field L corresponding
to {1}< Clf is normal over K0. Since L is normal, it corresponds to a normal subgroup of Gal(F/K0),
so it is invariant under conjugation by elements of this group. By the properties of the Artin map, the
action of Gal(K/K0) on Gal(F/K ) is given by conjugation in Gal(F/K0). Since L is normal, the
corresponding subgroup is invariant. �

Consequently, if we are searching for abelian extensions of K which are also normal over K0, we can
restrict to invariant subgroups of the ray class groups.

5.2. Computing invariant subgroups. Let M be a finite abelian group of exponent n and G a finite
group acting on M. We now describe how to compute the set of all G-invariant subgroups of M. While
one could of course first compute the set of all subgroups of M using a theorem of Butler [But94], the
following example shows that this is in general not a useful approach.

Example 16. We consider the abelian group M = (Z/25Z)11 with the symmetric group G= S11 acting via
σ(a1, . . . , a11)= (aσ(1), . . . , aσ(11)) for σ ∈ S11 and (a1, . . . , a11)∈M. Then the number of subgroups of
M with quotient isomorphic to Z/25Z is 119209287109375, and only one of these subgroups is invariant.

Denote by Z[G] the integral group ring of G. Since G-invariant subgroups of M are the same as Z[G]-
submodules of M and nZ acts trivially on M, it is sufficient to determine the (Z/nZ)[G]-submodules
of M.

By induction, it is enough to find all the irreducible (Z/nZ)[G]-submodules of M. Since this task can
be easily solved in case the exponent n of M is a prime number using the meat-axe (see [Par84] and
[HEO05, Section 7.4]), we will focus on the nonprime case. As usual we can assume that the exponent n
is a prime power: indeed, for every prime number q dividing the order of M, the q-Sylow subgroup of M
is invariant and they generate the whole group M. This means that every simple (Z/nZ)[G]-submodule
of M must be contained in one of the Sylow subgroups of M. As the q-Sylow subgroup of M is naturally
a (Z/qvq (n)Z)[G]-module, we may assume that n = ps is a prime power.

Proposition 17. Let N be a simple (Z/psZ)[G]-module. Then the exponent of N is p.

Thus all minimal submodules are contained in the submodule Mp = {m ∈ M | pm = 0}, which is
naturally an Fp[G]-module. Thus to find the (Z/psZ)[G]-submodules, we just have to apply the method
for the prime case and iterate. In particular, we have an efficient algorithm to determine the G-invariant
subgroups of an abelian group M.

Remark 18. Assume we want to compute only G-invariant subgroups N of M such that the quotient
M/N has exponent m. As mM itself is G-invariant, the group G also acts on M/mM and the G-invariant
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subgroups of M with quotient of exponent m correspond to the G-invariant subgroups of M/mM. In the
situation where M = Clm is the ray class group, this implies that again it is sufficient to only compute
the quotient Clm/Clmm instead of the whole ray class group.

5.3. Duality. While the previous section provides a solution to the problem of finding G-invariant sub-
groups of M, it can be very inefficient if we are looking only for subgroups N with small index in M,
since it can be necessary to repeat the procedure for finding minimal submodules multiple times.

In this case, we can use duality to translate the problem of finding submodules of small index into
the one of finding submodules of small order. Recall that the dual group M∗ of M is the group
HomZ(M,Z/psZ), which is isomorphic to M. In practice, an isomorphism can be written explicitly
after a choice of a basis. In our case, we assume that M has exponent ps and is given in Smith normal
form, that is, M = Z/pn1Z×· · ·×Z/pnwZ with 1≤ n1 ≤ · · · ≤ nw = s. Let e1, . . . , ew be the canonical
generators of M. Then we define elements of the dual

e∗i : M→ Z/psZ, e j 7→ δi j
ps

ord(ei )
,

where δi j is the Kronecker delta and ord(ei ) denotes the order of ei . The dual is again in Smith normal
form with respect to this generating set.

Every endomorphism ϕ of M induces a dual morphism

ϕ∗ : M∗→ M∗, f 7→ f ◦ϕ.

In particular every element g ∈ G acts on M∗, endowing M∗ with the structure of a (Z/psZ)[G]-module.
The action of G on the dual group just defined preserves the inclusion-reversing correspondence exist-
ing between subgroups of M and subgroups of M∗. Given a subgroup H of M, define the orthogonal
complement of H as

H⊥ = {ϕ ∈ M∗ | H ⊆ ker(ϕ)}.

Proposition 19. There is an inclusion-reversing bijection between submodules of M and M∗:

{(Z/psZ)[G]-submodules of M} → {(Z/psZ)[G]-submodules of M∗},

H 7→ H⊥.

Furthermore, for every submodule H of M, we have H⊥ ' G/H.

Thus if we want to search for submodules of small index, we can instead search for submodules of
the dual module of small order and then use duality. In order to make this computationally effective,
we need to understand how to obtain the action on the dual group M∗ given the one on the group M.
As above, we assume that M is given in Smith normal form with generators ei and we consider the
corresponding element of the dual e∗i . Let ϕ ∈ Aut(M) be the automorphism of M induced by g ∈ G.
We want to compute the matrix A = (ai j ) associated to ϕ∗ with respect to the basis e∗i . Note that by
definition, ϕ∗(e∗i )= e∗i ◦ϕ. Let B be the matrix representing ϕ with respect to the elements ei and let di
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be the valuation of the order of ei at p. Then

ϕ∗(e∗i )(e j )= e∗i (ϕ(e j ))= e∗i

(∑
k

b jkek

)
= b j i e∗i (ei )= b j i ps−di .

On the other hand,

ϕ∗(e∗i )(e j )=

(∑
k

aike∗k

)
(e j )= ai j e∗j (e j )= ai j ps−d j .

Therefore, it is enough to choose ai j satisfying the relation ai j ps−d j = b j i ps−di.

6. Application: fields with minimal discriminant

The algorithms outlined in the previous sections have been implemented in the number theory package
Hecke [FHHJ17].1 As an application, we used our implementation to find number fields K having
Galois closure L over Q with prescribed Galois group and such that K has minimal discriminant among
all fields with this property. We chose to consider the following cases:

• K of degree 15 with Gal(L/Q)' D15 and signature (1, 7).

• K of degree 15 with Gal(L/Q)' D5×C3 and signature (3, 6).

• K of degree 15 with Gal(L/Q)' S3×C5 and signature (5, 5).

• K of degree 36 with Gal(L/Q)' C9 oC4 and signatures (36, 0), (0, 18).

All together the computations took 12 hours on an Intel i7-4790 with 3.6 GHz. The results of the
computation are given in Theorem 1.

6.1. Nonnormal extensions of degree 15. In this section, we consider number fields K of degree 15
over Q having Galois closure L over Q with Galois group Gal(L/Q) ∼= G ∈ {D15, D5×C3, S3×C5}.
Our strategy is to compute the normal closure L (of degree 30) of K and then use the trace and norm to
find the corresponding field K (as in Section 4.3). Since G has a normal cyclic subgroup of degree 15,
we can construct L as a relative cyclic extension of degree 15 over a quadratic field F2. A crucial point
is the choice for the bound on the discriminant of the Galois closure L given a bound on the field K of
degree 15. Since L is the compositum of F2 and K we have dL/Q ≤ d15

F2/Q
· d2

K/Q. Thus, we need to find
a bound for the field F2 given the one on K. For this, we have to distinguish the cases corresponding to
the different groups.

• If G = D15, we can apply [Coh00, Theorem 9.2.6] to obtain the bound dF2/Q ≤ d1/7
K/Q.

• If G = D5 × C3, then K has an intermediate subfield K1 of degree 5 and dK1/Q ≤ d1/3
K/Q by the

behavior of the discriminant in towers of extensions. Now, the Galois closure of K1 has Galois
group D5 and so we apply again [Coh00, Theorem 9.2.6] to obtain dF2/Q ≤ d1/2

K1/Q
≤ d1/6

K/Q.

1Available at https://github.com/thofma/Hecke.jl

https://github.com/thofma/Hecke.jl
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• If G = S3×C5, we use the same strategy as in the case of D5×C3. Here K has an intermediate
subfield K1 of degree 3 whose Galois closure is an S3-extension of Q and dK1/Q ≤ d1/5

K/Q. Therefore
dF2/Q ≤ dK1/Q ≤ d1/5

K/Q.

Thus, we need to list the imaginary quadratic fields up to these bounds, since we are searching for fields K
with nonreal embeddings. By Proposition 15, the possible conductors are invariant under the action of
the Galois group of F2. For every possible conductor m, we need to search for invariant subgroups of
index 15 in the group R =Clm/Cl15

m . Before computing the defining polynomial, we check that the action
of G on the quotient by any subgroup corresponds to the correct group extension. More precisely, let H
be a congruence subgroup of Clm and let σ be the generator of Gal(F2/Q). Then:

• For the D15-extensions, σ must send every element of Clm/H to its inverse.

• For the D5×C3-extensions, σ must fix the 3-Sylow subgroup of Clm/H and act on the 5-Sylow by
sending every element to its inverse.

• For the S3×C5-extensions, σ must fix the 5-Sylow subgroup of Clm/H and act on the 3-Sylow by
sending every element to its inverse.

6.2. Extensions of degree 36. For G = C9 oC4, we construct these fields as a tower of a normal field
of degree 4 and a field of degree 9 on top of it. In this example, the tools we developed in the previous
sections are fundamental, since we are dealing with extensions having nonsquarefree degree.
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Principally polarized squares of elliptic curves
with field of moduli equal to Q

Alexandre Gélin, Everett W. Howe, and Christophe Ritzenthaler

We give equations for 13 genus-2 curves over Q, with models over Q, whose unpolarized Jacobians are
isomorphic to the square of an elliptic curve with complex multiplication by a maximal order. If the
generalized Riemann hypothesis is true, there are no further examples of such curves. More generally,
we prove under the generalized Riemann hypothesis that there exist exactly 46 genus-2 curves over Q

with field of moduli Q whose Jacobians are isomorphic to the square of an elliptic curve with complex
multiplication by a maximal order.

1. Introduction

For g > 1, let Mg and Ag be the moduli spaces classifying absolutely irreducible projective smooth
curves of genus g and principally polarized abelian varieties of dimension g, respectively, over Q. These
spaces are quasiprojective varieties defined over Q, linked by the Torelli map, which associates to a curve
its Jacobian. To explain the modular interpretation of rational points on these spaces, we must define
the terms field of definition and field of moduli. If X is a curve or polarized abelian variety over Q, we
say that a field F ⊆Q is a field of definition of X if there exists a variety X0/F — called a model of X
over F — such that X0 'Q X . Since Q is a field of characteristic 0, by [Koi72, Corollary 3.2.2, p. 54]
we can define the field of moduli of X to be either

• the field fixed by the subgroup {σ ∈ Gal(Q/Q) | X ' Xσ
}, or

• the intersection of the fields of definition of X .

With these terms defined, we can say that the rational points on Mg and Ag correspond to the isomor-
phism classes of curves and principally polarized abelian varieties, respectively, over Q that have field
of moduli Q [Bai62].

This work was supported in part by a public grant as part of the Investissement d’avenir project, reference ANR-11-LABX-
0056-LMH, LabEx LMH.
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There are a number of interesting sets of rational points on Ag, but the complex multiplication (CM)
abelian varieties — that is, the principally polarized abelian varieties having endomorphism rings contain-
ing an order in a number field of degree 2g over Q — have attracted the most interest. When such a point
on Ag lies in the image of Mg, the corresponding curve is called a CM-curve. For g= 2, the set of simple
CM-abelian varieties with field of moduli Q is known, and for those varieties that are Jacobians explicit
equations have been computed for the corresponding curves [Spa94; vW99; MU01; KS15; BS17]; for
g = 3 the similar set of possible CM maximal orders is determined in [Kıl16] and conjectural equations
for the curves are given in [Wen01; KW05; BILV16; LS16; KLL+18]. (And while we have avoided the
case g = 1 in the discussion above for technical reasons, it is still of course true that the CM-elliptic
curves with rational j-invariants are known as well [Sil94, Appendix A.3].)

In this article we consider genus-2 curves whose Jacobians are nonsimple CM-abelian surfaces. Every
such surface is isogenous to the square of a CM-elliptic curve, but we restrict our attention in two ways:
first, we look only at surfaces that are isomorphic (and not just isogenous) to E2 for a CM-elliptic curve E ,
and second, we only consider E that have CM by a maximal order. The second restriction is not essential
to our methods, and we impose it here in order to simplify some of our calculations. Note that if the
elliptic curve E has no CM — i.e., End(E) ' Z — then E2 cannot be isomorphic to the Jacobian of a
genus-2 curve, because E2 has no indecomposable principal polarizations [Lan06, Corollary 4.2, p. 159].

Main contributions. We prove under the generalized Riemann hypothesis that there exist exactly 46
genus-2 curves over Q with field of moduli Q whose Jacobians are isomorphic to the square of an
elliptic curve with CM by a maximal order. We show that among these 46 curves exactly 13 can be
defined over Q, and we give explicit equations for them. In order to accomplish this, we develop an
algorithm to compute, for an imaginary quadratic maximal order O, canonical forms for all positive
definite unimodular Hermitian forms on O×O. Such Hermitian forms correspond to principal polariza-
tions ϕ on E2, and our algorithm computes the automorphism group of the polarized variety (E2, ϕ) and
identifies the polarizations that come from genus-2 curves.

Related work. Hayashida and Nishi [HN65] consider in particular when a product of two elliptic curves,
with CM by the same maximal order O, is the Jacobian of a curve over C, and they find that this happens
if and only if the discriminant of O is different from −1, −3, −7, and −15. Hayashida [Hay68] gives
the number of indecomposable principal polarizations on E2 where E/C is an elliptic curve with CM by
a maximal order. More recently, Kani [Kan14; Kan16] gives existence results on Jacobians isomorphic
to the product of two elliptic curves with control on the polarization, and Schuster [Sch89] and Lange
[Lan06] study generalizations to higher dimensions. Rodriguez-Villegas [RV00] considers the same
situation as Hayashida and Nishi, and in the case where O has class number 1 and odd discriminant,
he gives an algorithm (relying on quaternion algebras) for producing curves with field of moduli Q.
Note finally that Fité and Guitart [FG18] determine when there exists an abelian surface A/Q that is
Q-isogenous to E2, with E/Q a CM-curve.
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Outline. Torelli’s theorem [Ser01] implies that our genus-2 curve C has field of moduli Q if and only
if its principally polarized Jacobian (E2, ϕ) has field of moduli Q. We therefore need to find all elliptic
curves E with CM by a maximal order O and all polarizations ϕ of E2 such that (E2, ϕ) is isomorphic to
all of its Gal(Q/Q)-conjugates. Proposition 2.1 shows that if E2 is isomorphic to all of its Galois conju-
gates — even just as an abelian variety without polarization — then the class group of O has exponent at
most 2. Under the generalized Riemann hypothesis, this gives us an explicit finite list of possible orders
(Table 1). For each of these orders O, one can identify the indecomposable principal polarizations ϕ
on E2 and describe them as certain 2-by-2 matrices M with coefficients in O (Proposition 3.1). Tables of
such matrices were computed by Hoffmann [Hof91] and Schiemann [Sch98] and were published online,1

but they only include a fraction of the discriminants that we must consider. We therefore describe an
algorithm, using a method different from that of Hoffmann and Schiemann, that we use to recompute
these tables of matrices (Section 3B). Given such a matrix M , we find explicit algebraic conditions on M
for the principally polarized abelian surface (E2, ϕ) to have field of moduli Q (Section 3C). We check
whether these conditions are satisfied for each M on our list.

We conclude the article with three more results: we heuristically compute the Cardona–Quer invariants
[CQ05] of the associated curves C and see that the factorization of their denominators reveals interesting
patterns; we show that the field of moduli is a field of definition if and only if C has a nontrivial group
of automorphisms (i.e., of order greater than 2; see Proposition 4.1); and for curves C defined over Q,
we compute equations and prove that they are correct.

Notation. In the following, E is an elliptic curve over Q with complex multiplication by a maximal
order O of discriminant 1 and with fraction field K , which we sometimes call the CM-field.

2. Condition on E2

We are interested in the field of moduli M of a principally polarized abelian surface (E2, ϕ). As outlined
above, we first consider the abelian surface E2 alone and we give a necessary condition for M to be
contained in the CM-field K . If M ⊆ K then in particular we have E2

' (Eσ )2 for all σ ∈Gal(Q/K ). The
class group Cl(O) acts simply transitively on the set of elliptic curves with CM by O [Sil94, Proposition
1.2, p. 99]. Since End(Eσ )= End(E)= O, for each σ ∈ Gal(Q/K ), there exists a unique class of ideals
Iσ ∈ Cl(O) such that Eσ ' E/Iσ .

Using a result of Kani [Kan11, Proposition 65, p. 335], we get that, for E , σ , and Iσ defined as above,

E2
' (E/Iσ )2 ⇐⇒ I 2

σ = [O],

where the last equality is in Cl(O). Note that since we only work with maximal orders, the conditions on
the conductors in Kani’s result are trivially satisfied. Moreover by [Sil94, Theorem 4.3, p. 122], since
for any I ∈ Cl(O) there exists σ ∈ Gal(Q/K ) (actually even in Gal(K ( j (E))/K )) such that E/I = Eσ ,
we get the following proposition.

1Available at https://www.math.uni-sb.de/ag/schulze/Hermitian-lattices/.

https://www.math.uni-sb.de/ag/schulze/Hermitian-lattices/


260 ALEXANDRE GÉLIN, EVERETT W. HOWE, AND CHRISTOPHE RITZENTHALER

# Cl(O) Discriminants 1

20
−3, −4, −7, −8, −11, −19, −43, −67, −163

21
−15, −20, −24, −35, −40, −51, −52, −88, −91, −115,
−123, −148, −187, −232, −235, −267, −403, −427

22
−84, −120, −132, −168, −195, −228, −280, −312,
−340, −372, −408, −435, −483, −520, −532, −555,
−595, −627, −708, −715, −760, −795, −1012, −1435

23
−420, −660, −840, −1092, −1155, −1320, −1380,
−1428, −1540, −1848, −1995, −3003, −3315

24
−5460

Table 1. Discriminants 1 of the imaginary quadratic maximal orders O of exponent at most 2, conditional
on the generalized Riemann hypothesis.

Proposition 2.1. A necessary condition for M ⊆ K is that the class group of O has exponent at most 2.

Louboutin [Lou90] shows that under the assumption of the generalized Riemann hypothesis, the
discriminant 1 of an imaginary quadratic field whose class group is of exponent at most 2 satisfies
|1| ≤ 2 · 107. In Table 1 we list the 65 fundamental discriminants satisfying this bound that give class
groups of exponent at most 2.

3. Polarized abelian surfaces

3A. Polarizations on the square of an elliptic curve. We now consider the principal polarizations on
the product surface A= E2. A principal polarization on A is, in particular, an isogeny of degree 1 from A
to the dual Â of A, but not every isomorphism A→ Â is a principal polarization; other properties must
be satisfied as well [BL92, §4.1]. One such polarization is the product polarization ϕ0 = ϕE ×ϕE . Given
any other principal polarization ϕ, we can consider the automorphism M = ϕ−1

0 ϕ of A, which (in light
of the isomorphism A = E2) we view as a matrix2 in GL2(O). Our first result characterizes the matrices
that arise in this way; the statement is not new, but we provide a proof here because it introduces some of
the ideas used in the sequel. (Recall [Hal58, Exercise 7, p. 134] that two matrices M1 and M2 in GL2(O)

are said to be congruent if there exists a matrix P ∈ GL2(O) such that P∗M1 P = M2, where P∗ is the
conjugate transpose of P .)

Proposition 3.1. The map M 7→ ϕ0 ·M defines a bijection between the positive definite unimodular Her-
mitian matrices with coefficients in O and the principal polarizations on A. Two principal polarizations
are isomorphic to one another if and only if their associated matrices are congruent to one another.

Proof. By [BL92, Theorem 5.2.4, p. 121], the matrices M corresponding to principal polarizations are
totally positive symmetric endomorphisms of norm 1. Here the symmetry is with respect to the Rosati

2All matrices in this paper act on the left.
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involution of End(A) associated to the polarization ϕ0, which is the conjugate-transpose involution under
the identification End(A)= M2(O). Thus, the matrices M corresponding to principal polarizations are
exactly the positive definite unimodular Hermitian matrices.

Let ϕ1 and ϕ2 be two principal polarizations on A, corresponding to matrices M1 and M2. The
polarizations ϕ1 and ϕ2 are isomorphic to one another if and only if there exists an automorphism α :

A→ A such that α̂ϕ1α = ϕ2, where α̂ : Â→ Â is the dual of α. This last condition is equivalent to
(ϕ−1

0 α̂ϕ0)(ϕ
−1
0 ϕ1α)= ϕ

−1
0 ϕ2. Now, ϕ−1

0 α̂ϕ0 is nothing other than the Rosati involute of α, so if we write
α as a matrix P ∈ GL2(O), the condition that determines whether ϕ1 and ϕ2 are isomorphic is simply
P∗M1 P = M2. �

The principal polarizations on A come in two essentially different types.

Definition 3.2. A polarization ϕ on an abelian variety A over a field k is said to be geometrically de-
composable if there exist two abelian varieties A1 and A2 over k of positive dimension, together with
polarizations ϕ1 and ϕ2, such that (A, ϕ) and (A1× A2, ϕ1×ϕ2) are isomorphic over k. A polarization
that is not geometrically decomposable is geometrically indecomposable. For brevity’s sake, in this
paper we drop the adjective geometrically and simply use the terms decomposable and indecomposable
for these concepts.

Results in [Wei57; Hoy63; OU73] show that a principally polarized abelian surface is the Jacobian of a
curve if and only if the polarization is indecomposable. In the remainder of this section we show how we
can easily compute representatives for the congruence classes of matrices representing the decomposable
polarizations on E2; we focus on the indecomposable polarizations in later sections.

Proposition 3.3. If ϕ is a decomposable polarization on E2, then there exist elliptic curves F and F ′

that have CM by O such that ϕ is the pullback to E2 of the product polarization on F × F ′ via some
isomorphism E2

' F × F ′. The pair (F, F ′) giving rise to a given decomposable polarization is unique
up to interchanging F and F ′ and up to isomorphism for each elliptic curve. Moreover, for every F with
CM by O there exists an F ′ with CM by O such that E2

' F × F ′.

Proof. First we note that by definition, if ϕ is a decomposable polarization on E2 there must exist elliptic
curves F and F ′, isogenous to E , such that ϕ is the pullback of the product polarization on F × F ′

under some isomorphism E2
' F × F ′. Now, the center of End(E2) is End(E)= O, while the center of

End(F × F ′) is End(F)∩End(F ′); since O is a maximal order, F and F ′ both have CM by O.
If (α, β) : G→ F × F ′ is an embedding of an elliptic curve G into F × F ′, then the pullback of the

product polarization to G is the morphism[
α̂ β̂

] [1 0
0 1

] [
α

β

]
= α̂α+ β̂β = deg(α)+ deg(β);

that is, the pullback is the multiplication-by-d map, with d = deg(α)+ deg(β). It follows that if ϕ is
the pullback to E2 of the product polarization on F × F ′ via some isomorphism E2

' F × F ′, then the
set of elliptic curves G for which there exists an embedding ε : G→ E2 such that ε∗ϕ is a principal
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polarization is simply {F, F ′}. Thus, for a given decomposable principal polarization, the pair (F, F ′)
is unique up to order and isomorphism.

As we noted at the beginning of Section 2, the set of elliptic curves with CM by O is a principal
homogenous space for the class group of O. Given an F with CM by O, let I ∈ Cl(O) be the ideal class
that takes E to F . If F ′ is an elliptic curve with CM by O, say corresponding to an ideal class I ′ ∈ Cl(O),
then E2

' F × F ′ if and only if I ′ is the inverse of I [Kan11, Proposition 65, p. 335]. This proves the
final statement of the proposition. �

Corollary 3.4. Let h denote the class number of O, and let t denote the size of the 2-torsion subgroup of
the class group. The number of decomposable polarizations on E2 is equal to (h+ t)/2.

Proof. The proof of Proposition 3.3 shows that the unordered pairs (F, F ′) with E2
' F × F ′ correspond

to unordered pairs (I, I−1), where I ∈ Cl(O). The number of such pairs is (h+ t)/2. �

Let F be an elliptic curve with CM by O, and let I be the ideal class that takes E to F . Let a be an ideal
of O representing I , such that a is not divisible by any nontrivial ideal of Z. We may write a= (n, α),
where n = Norm(a) ∈ Z and where α ∈ a is chosen so that the ideal αa−1 is coprime to nO; then there
exist x, y ∈ Z such that xn2

− y Norm(α)= n. Let F ′ be the elliptic curve such that E2
' F × F ′. We

prove the following corollary in Section 3C.

Corollary 3.5. In the notation of the paragraph above, the isomorphism class of the decomposable
polarization on E2 obtained from pulling back the product polarization on F × F ′ is represented by the
congruence class of the matrix(

n+Norm(α)/n (x+y)α
(x+y)α x2n+y2 Norm(α)/n

)
.

3B. How to find the polarizations? In Section 2, we identified 65 orders O for which we need to compute
the set of indecomposable principal polarizations, or equivalently, representatives of the congruence
classes of indecomposable positive definite unimodular Hermitian matrices with coefficients in O. In this
section we describe how we computed these representatives.

Fix an embedding ε0 of K into the complex numbers. For any α ∈ O, we write α > 0 if either the trace
of α is positive, or the trace of α is 0 and ε0(α) has positive imaginary part. Then for α, β ∈ O we write
α > β if α−β > 0. Clearly this gives us a total ordering on O.

Let H denote the set of positive definite unimodular Hermitian matrices with coefficients in O. Let
χ :H→ N×N×O be the map that sends a matrix M =

(a
b

b
d

)
to the triple (a, d, b). We define a total

ordering on H by saying that M1 < M2 if χ(M1) < χ(M2) in the lexicographic ordering on N×N×O.
Given any M ∈ H, we say that M is reduced if M ≤ M ′ for all M ′ congruent to M . Clearly every

M ∈H is congruent to a unique reduced matrix. The following algorithm produces the reduced matrix
that is congruent to a given M .
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Algorithm 3.6.

Input: A positive definite unimodular Hermitian matrix M with coefficients in O, specified by a, d ∈ Z

and b ∈ O such that M =
(a

b
b
d

)
.

Output: The reduced matrix congruent to M.

(1) Set a′ = 1.

(2) Compute the set A′ of vectors x = (x1, x2) ∈ O2 such that x∗M x = a′ and such that x1 and x2

generate the unit ideal of O. If A′ =∅, increment a′ and repeat.

(3) Set d ′ = a′.

(4) Compute the set D′ of vectors y = (y1, y2) ∈ O2 such that y∗M y = d ′ and such that y1 and y2

generate the unit ideal of O. If D′ =∅, increment d ′ and repeat.

(5) Initialize M to be the empty set.

(6) For each x ∈ A′ and y ∈ D′ such that x and y generate O2 as an O-module, let M ′ be the matrix
representing the Hermitian form M written on the basis x, y of O2, and add M ′ to the set M.

(7) If M is empty, increment d ′ and return to Step (4).

(8) Find the smallest element M ′ of M under the ordering of H defined above.

(9) Output M ′.

Remark 3.7. In Steps (2) and (4) of Algorithm 3.6, we need to find vectors in O2 of a given length under
the quadratic form specified by M . We note that this is a finite computation: if x = (x1, x2) satisfies
x∗M x = n, with M =

(a
b

b
d

)
, then

Norm(ax1+ bx2)+Norm(x2)= an.

Thus, to solve x∗M x = n, we can simply enumerate all pairs (u, v) ∈ O2 with Norm(u)+Norm(v)= an,
and keep those pairs for which u− bv is divisible by a.

Note that solving x∗M x = n can be done more quickly when the value of a is small. Thus, in
Algorithm 3.6, once one finds a short vector x = (x1, x2) with x1 and x2 coprime, it is worthwhile to
compute any vector y such that x and y generate O, and to replace M with the congruent form obtained
by rewriting M on the basis x, y.

Theorem 3.8. Algorithm 3.6 terminates with the correct result.

Proof. Let M ′ =
(a′

b′
b′
d ′
)

be the reduced matrix congruent to M . If P =
( x1

x2

y1
y2

)
is an element of GL2(O)

such that P∗M P = M ′, and if we set x = (x1, x2) and y= (y1, y2), then a′ = x∗M x and d ′ = y∗M y. By
the very definition of the ordering on H, then, we want to find vectors x and y, each with coordinates that
are coprime to one another, such that x∗M x is as small as possible and y∗M y is as small as possible,
given that x and y generate O2 as an O-module. This is what the algorithm does. Finally, among all
possible such pairs (x, y), we simply need to choose the one that gives the smallest matrix. �
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Hayashida [Hay68] gives a formula for the number of isomorphism classes of indecomposable prin-
cipal polarizations on E2 in the case where E has CM by a maximal order.3 Hayashida’s proof does not
immediately lead to a constructive method of finding polarizations representing the isomorphism classes,
but simply knowing the number of isomorphism classes is the key to a straightforward algorithm for
producing such representatives.

Algorithm 3.9.

Input: A fundamental discriminant 1< 0.

Output: A list of reduced matrices representing the distinct congruence classes of positive definite uni-
modular Hermitian matrices with entries in the order O of discriminant 1, separated into the
decomposable and indecomposable classes.

(1) Compute the number N of indecomposable polarizations on E2 using Hayashida’s formula.

(2) Compute the set D of reduced matrices representing decomposable polarizations, using Corollary 3.5
and Algorithm 3.6.

(3) Initialize I to be the empty set and set P = 0.

(4) Increment P , and compute the set S of elements of O of norm P − 1.

(5) For every divisor a of P with a ≤ P/a, and for every b ∈ S:

(a) Compute the reduced form M of the matrix
(a

b
b

P/a

)
.

(b) If M is not contained in D∪I, then add M to the set I.

(6) If #I< N , then return to Step (4).

(7) Return D and I.

Of course, for our goal of producing genus-2 curves over Q with Jacobians isomorphic to E2, we only
need the indecomposable polarizations.

Theorem 3.10. Algorithm 3.9 terminates with the correct result.

Proof. The algorithm is very straightforward. Every isomorphism class of principal polarization appears
somewhere on the countable list that we are considering, and we simply enumerate the polarizations and
compute their reduced forms until we have found the right number of isomorphism classes. �

Remark 3.11. In our applications, when the class group of O has exponent at most 2, we can speed
up our algorithm as follows: once we have a principal polarization M on E2, we can view the same
matrix as giving a polarization on F2 for any elliptic curve F with CM by O. Since the class group
has exponent at most 2, there exists an isomorphism E2

→ F2, and pulling M back to E2 via such an
isomorphism gives a new positive definite unimodular Hermitian matrix M ′. Each time we find a new

3There is a typographical error in Hayashida’s paper. In the second line of page 43, the term (1/4)(1− (−1))(m
2
−1)/8

should be (1/4)(1− (−1)(m
2
−1)/8)h. Note that the correction involves both moving a parenthesis and adding an instance of

the variable h.
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reduced polarization M , we compute the reduced forms of the polarizations M ′ associated to all the
curves F isogenous to E , and add these reduced forms to the set D if they are new.

If ϕ is a principal polarization on E2 and M is the corresponding Hermitian matrix, then the automor-
phism group of the polarized abelian variety (E2, ϕ), denoted by Aut(E2, ϕ), is isomorphic to the group
{P ∈ GL2(O) | P∗M P = M}. Note that if ϕ is indecomposable, so that (E2, ϕ) is the polarized Jacobian
of a curve C , then Torelli’s theorem [Ser01] shows that this group is also isomorphic to Aut(C). In any
case, computing Aut(E2, ϕ) is straightforward:

Algorithm 3.12.

Input: A positive definite unimodular Hermitian matrix M =
(a

b
b
d

)
with entries in an imaginary qua-

dratic maximal order O.

Output: A list of all matrices P ∈ GL2(O) such that P∗M P = M.

(1) Compute the set A of vectors x = (x1, x2)∈ O2 such that x∗M x = a and such that x1 and x2 generate
the unit ideal of O.

(2) Compute the set D of vectors y= (y1, y2)∈ O2 such that y∗M y= d and such that y1 and y2 generate
the unit ideal of O.

(3) Initialize A to be the empty set.

(4) For each x ∈ A and y ∈ D such that x and y generate O2 as an O-module:

(a) Compute b′ = x∗M y.
(b) If b′ = b then add the matrix

( x1
x2

y1
y2

)
to the set A.

(5) Output A.

(See Remark 3.7 for an explanation of how to implement the two first steps.)

Theorem 3.13. Algorithm 3.12 terminates with the correct result.

Proof. If P =
( x1

x2

y1
y2

)
∈ GL2(O) satisfies P∗M P = M , then x = (x1, x2) and y = (y1, y2) are vectors

in O2 such that x∗M x = a and y∗M y = d and x∗M y = b. The algorithm simply enumerates all x and y
that meet the first two conditions, and checks to see whether they meet the third. �

3C. Conditions on the polarization. Throughout this section, E is an elliptic curve with CM by a max-
imal order O of an imaginary quadratic field K whose class group has exponent at most 2. Also ϕ is
a principal polarization on E2 corresponding (as in Proposition 3.1) to a positive definite unimodular
Hermitian matrix M with entries in O and M is the field of moduli of the polarized abelian variety
(E2, ϕ). We resume our analysis of the condition that M =Q.

Proposition 3.14. Let a1, . . . , ah be ideals of O representing all of the elements of the class group of O,
and for each i let ni ∈ Z>0 generate Norm(ai ). Then M = Q if and only if for every i there exists a
matrix Pi ∈ GL2(K ), with entries in ai , such that ni M = P∗i M Pi .
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Proof. Lemma 3.15 below shows that M =Q if and only if M ⊆ K , and this is the case if and only if
for every σ ∈ Gal(Q/K ) there exists an isomorphism ασ : (E2, ϕ)→ ((Eσ )2, ϕσ ). To understand this
condition, we use the classical theory of complex multiplication of abelian varieties; the book of Shimura
and Taniyama [ST61] is one possible reference, especially Chapter II.

Under the embedding ε0 : K → C we chose earlier, the isomorphism classes of elliptic curves over
Q ⊂ C with CM by O correspond to the lattices ε0(a) up to scaling, for fractional ideals a of O. Since
the class group of the order O is 2-torsion, we have E2

' F2 for every E and F with CM by O, so we
may as well choose our E so that it corresponds to the trivial ideal O.

Let 1 be the discriminant of O and let δ ∈ O be a square root of 1, chosen so that ε0(δ) is positive
imaginary. Note that the trace dual a† of an arbitrary fractional O-ideal a is (1/δ)a−1. If F is the
elliptic curve corresponding to a, then the dual of F is the elliptic curve corresponding to the complex
conjugate of a†, and the canonical principal polarization of F is the isomorphism a→ (1/δ)a−1 given
by x 7→ x/(nδ), where n ∈Q is the positive generator of Norm(a). (See [ST61, §6.3] for more details.)

Let ϕ0 be the product polarization on E2. For ασ : E2
→ (Eσ )2 to give an isomorphism between

(E2, ϕ) and ((Eσ )2, ϕσ ), the following diagram must be commutative:

E2 M
//

ασ
��

E2 ϕ0
// Ê2

(Eσ )2 M
// (Eσ )2

ϕσ0
// (Êσ )2

α̂σ

OO

To express this diagram in terms of lattices, we let a be an ideal corresponding to Eσ , we let n=Norm(a),
and we let Pσ be the matrix in GL2(K ) corresponding to ασ . Then the preceding diagram becomes

O×O
M

//

Pσ
��

O×O
1/δ

// (1/δ)(O×O)

a× a
M

// a× a
1/(nδ)

// (1/δ)(a−1
× a−1)

P∗σ

OO

Thus, there exists an isomorphism (E2, ϕ)→ ((Eσ )2, ϕσ ) of polarized varieties if and only if there exists
a matrix P , with entries in a, such that nM = P∗M P . Since the Galois group of Q/K acts transitively
on the set of elliptic curves with CM by O, the field of moduli of (E2, ϕ) is contained in K if and only
if we can find such a matrix P for each of the ideals a1, . . . , ah . �

Lemma 3.15. Let E , ϕ, and M be as mentioned at the beginning of this section. Then M = Q if and
only if M ⊆ K .

Proof. Let us assume that M ⊆ K ; we must show that M =Q. Since O has a class group of exponent
at most 2, [Shi71, Exercise 5.8, p. 124] implies that Q( j (E)) is totally real. Let ι be any complex
conjugation in Gal(Q/Q), so that ι acts trivially on Q( j (E)) and nontrivially on K . Given any element
σ ∈ Gal(Q/Q), we want to show that (E2, ϕ)' ((Eσ )2, ϕσ ).
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If σ acts trivially on K , then such an isomorphism exists, because M ⊆ K . Otherwise, σ ι acts trivially
on K , and we have (E2, ϕ)' ((Eσ ι)2, ϕσ ι), and therefore ((E ι)2, ϕι)' ((Eσ )2, ϕσ ). So it is enough for
us to show that (E2, ϕ)' ((E ι)2, ϕι). If we choose our model of E to be defined over Q( j (E)), then
E ι = E , and we simply need to show that there exists an element P of GL2(O) such that M = P∗M P .
If M =

(a
b

b
d

)
, we can simply take P =

( b
−a

d
−b

)
. �

At this point, we have reviewed enough CM theory to prove Corollary 3.5.

Proof of Corollary 3.5. We are given an ideal a= (n, α) of O, where n ∈ Z is the norm of a and where
α ∈ O, and we have x, y ∈ Z such that xn2

− y Norm(α)= n. The complex conjugate a of a represents
the inverse of the class of a in Cl(O), and the matrix P =

( n
α

yα
xn

)
takes the lattice O×O⊂ K 2 onto the

lattice a× a. The dual lattice for a× a is (nδ)−1
· (a× a) (where δ is the positive imaginary square

root of 1 as in the proof of Proposition 3.14) and the product polarization from a× a to its dual is
simply multiplication by 1/(nδ). Pulling this polarization back to O×O via P gives us the polarization
(nδ)−1 P∗P . Since the product polarization on O× O is 1/δ, the pullback polarization is represented
by the endomorphism (1/n)P∗P of O× O, and we compute that (1/n)P∗P is the matrix given in the
statement of the corollary. �

We close this section by indicating how we can check the criterion given in Proposition 3.14: namely,
given the polarization matrix M and an ideal a with Norm(a)= nZ, how can we determine whether there
exists a matrix P ∈ M2(a) that satisfies nM = P∗M P?

Suppose there exists such a matrix P . If M =
(a

b
b
d

)
let us take L =

(a
0

b
1

)
, so that L∗L = aM . Let

Q = L P L−1. Then the condition nM = P∗M P becomes the condition n Id= Q∗Q. This equality can
only hold if Q is of the form

Q =
(

x y
z t

)
∈ GL2(K )

where x, y, z, t ∈ K satisfy Norm(x)+Norm(z)= Norm(y)+Norm(t)= n and x y+ zt = 0. Since we
have

P = L−1 QL =
(

x − bz (bx + y− b2z− bt)/a
az bz+ t

)
∈ M2(a),

we see that we must have x = X/a, y = Y/a, z = Z/a, and t = T/a with X, Y, Z , T ∈ a.
Therefore, to check whether a matrix P with the desired properties exists, it suffices to compute and

store all solutions (X, Z) ∈ a× a to the norm equation Norm(X)+Norm(Z)= a2n (which can be done
efficiently). Then, for every two solutions (X, Z) and (Y, T ) satisfying XY + Z T = 0, we can check
whether the corresponding matrix P lies in M2(a). If we obtain such a P for each of the ideals ai from
Proposition 3.14, then the field of moduli for (E2, ϕ) is Q. In fact, we need only find a P for each ai in
a set that generates the class group of O.

3D. Results. We have implemented the algorithms described in the previous sections. We were able
to test all polarizations on the 65 possible orders identified in Section 2. The results are presented in
Table 2.
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h 1 #ϕ #C h 1 #ϕ #C h 1 #ϕ #C

1 −3 0 0 4 −84 2 0 8 −420 10 0
−4 0 0 −120 5 3 −660 16 0
−7 0 0 −132 3 1 −840 22 0
−8 1 1 −168 4 0 −1092 22 0
−11 1 1 −195 8 0 −1155 32 0
−19 1 1 −228 5 1 −1320 36 0
−43 2 2 −280 14 0 −1380 34 0
−67 3 3 −312 11 1 −1428 28 0
−163 7 7 −340 14 0 −1540 46 0

−372 8 0 −1848 46 0
2 −15 0 0 −408 14 0 −1995 56 0
−20 1 1 −435 16 0 −3003 72 0
−24 1 1 −483 12 0 −3315 128 0
−35 2 0 −520 25 3
−40 2 2 −532 14 0 16 −5460 128 0
−51 2 0 −555 20 0
−52 2 2 −595 28 2
−88 4 2 −627 16 0
−91 4 0 −708 15 1
−115 6 0 −715 36 0
−123 4 0 −760 41 1
−148 5 3 −795 28 2
−187 8 0 −1012 28 0
−232 9 5 −1435 64 0
−235 12 0
−267 8 0
−403 18 0
−427 16 0

Table 2. The number of indecomposable principal polarizations ϕ and the number of isomorphism classes
of curves C with field of moduli Q for each discriminant 1, grouped by class number h.

There exist 1226 indecomposable polarizations, in total. Our algorithms, implemented in Magma on
a laptop with a 2.50 GHz Intel Core i7-4710MQ processor, took less than 21 minutes to compute all of
the polarizations; about 10 minutes of that time was spent on the largest discriminant. The computation
required about 2.8 GB of memory.

Once we computed the polarizations, it took about 26 minutes (on the same laptop) to check the
conditions of Proposition 3.14. For this calculation, the largest discriminant represented more than two-
thirds of the computation time.

In the end, we obtained exactly 46 polarizations ϕ such that the principally polarized abelian surface
(E2, ϕ) is isomorphic to the Jacobian of a curve C with field of moduli Q. These 46 curves are obtained
only from orders whose class groups have order 1, 2, or 4.
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4. Computation of invariants and final remarks

4A. Invariants of the genus-2 curves C. A genus-2 curve C has field of moduli Q if and only if all of
its absolute invariants are defined over Q (see for example [LRS13, §3]). This is in particular true for the
triplet (g1, g2, g3) of invariants defined by Cardona and Quer in [CQ05], which characterizes a genus-2
curve up to Q-isomorphism and enables one to find an equation y2

= f (x) for the curve. We quickly
review here a strategy for obtaining the Cardona–Quer invariants for the 46 curves whose invariants are
Q-rational.

The first quantity we are able to derive is a Riemann matrix τ , using the same method as [Rit10, §3.3].
Starting with the positive definite unimodular Hermitian matrix M corresponding to the polarization
ϕ = ϕ0 ·M , we obtain the Riemann matrix τ associated to ϕ and the CM-elliptic curve E ' C/(Z+Zω)

where ω = (1+
√
1)/2 if 1 is odd and ω =

√
1 otherwise.

This matrix we get is defined up to the action of the symplectic group Sp4(Z). One then works out
a matrix τ0 in the orbit of τ for which the computation of the theta constants (θi )0≤i≤9 at τ0 is fast (see
[Lab16] for instance).

A complex model of a curve C : y2
= x(x − 1)(x − λ1)(x − λ2)(x − λ3) with Riemann matrix τ0 can

then be classically approximated using Rosenhain’s formulas [Ros51, p. 417]

λ1 =
θ2

0 θ
2
2

θ2
1 θ

2
3
, λ2 =

θ2
2 θ

2
7

θ2
3 θ

2
9
, and λ3 =

θ2
0 θ

2
7

θ2
1 θ

2
9
.

By computing the theta constants to higher and higher precision, we are able to get a sufficiently good
approximation of the Cardona–Quer invariants to recognize them as rationals. The numbers we get are
a priori only heuristic as there is no bound known for the denominators of these rationals; however, we
can sometimes prove that these heuristic values are correct, as follows.

Given a set of Cardona–Quer invariants that we suspect are equal to the invariants of a curve whose
Jacobian is isomorphic to E2 for an E with complex multiplication, we can easily produce a curve C
having those invariants. Then we can use the techniques of [CMSV18] to provably compute the endo-
morphism ring of the Jacobian of C . If this endomorphism ring is isomorphic to the ring M2(End E),
then we have provably found a curve of the type we are looking for.

We computed heuristic values for the Cardona–Quer invariants of our 46 principally polarized abelian
surfaces, and the list of these invariants is available on authors’ web pages,4 together with all the programs
to compute them. We are grateful to J. Sijsling for computing the endomorphism rings for the Jacobians
of 13 of our 46 curves; he is currently developing a faster and more robust algorithm which should be
able to handle the remaining cases. For each of these 13 curves, the endomorphism ring was M2(End E),
so the heuristic values of the Cardona–Quer invariants of these curves are provably correct.

We observe that for the 13 provably correct sets of invariants, all the denominators are smooth integers.
It would be very interesting, in the same spirit as [GL07; LV15] for the CM genus-2 case, to find formulas

4Available at https://alexgelin.github.io/, http://ewhowe.com, and https://perso.univ-rennes1.fr/christophe.ritzenthaler/.

https://alexgelin.github.io/
http://ewhowe.com
https://perso.univ-rennes1.fr/christophe.ritzenthaler/
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1 M Cardona–Quer invariants [g1, g2, g3]

−8
(

2 ω+1
−ω+1 2

)
[24
· 55, 2 · 3 · 54,−53

]

−11
(

2 ω

−ω+1 2

) [
195

22 ,
32
· 11 · 193

25 ,−
192
· 47

26

]
−19

(
2 ω

−ω+1 3

) [
55
· 295

22 · 37 ,
53
· 7 · 293

· 31 · 73
25 · 38 ,−

52
· 17 · 292

· 2719
26 · 310

]
−20

(
2 ω

−ω 3

) [
55
· 75

22 ,
55
· 73
· 11

25 ,−
3 · 53
· 72

26

]
−24

(
2 ω+1

−ω+1 4

) [
24
· 235

3
,

2 · 233
· 421

32 ,−
232
· 37

34

]
−40

(
2 ω+1

−ω+1 6

) [
24
· 55
· 435

37 ,
2 · 54
· 433
· 6977

38 ,−
54
· 13 · 432

310

]
−52

(
2 ω

−ω 7

) [
55
· 1735

22 · 37 ,
54
· 1733

· 112061
25 · 38 ,−

53
· 7 · 37 · 1732

26 · 310

]
Table 3. Cardona–Quer invariants for seven of the 46 genus-2 curves with field of moduli Q whose Ja-
cobians are isomorphic to E2, where E has CM by a maximal order O. The discriminant of O is 1, the
corresponding principal polarization on E2 is ϕ0 ·M , and ω denotes either

√
1/2 or (1+

√
1)/2, depending

on whether 1 is even or odd.

to explain the prime powers dividing these denominators. An example of such a closed formula appears
in the introduction of [RV00] without any details. The denominators of the 33 sets of invariants that we
have not proven to be correct also are smooth, which provides some further heuristic evidence that the
values are correct.

We present in Table 3 the invariants for a few of the curves we could provably compute.

4B. When is Q also a field of definition for C? To conclude let us consider any of the 46 pairs (A, ϕ).
We know that there exists a genus-2 curve C/Q with field of moduli Q such that (Jac(C), j)'Q (A, ϕ),
where j is the canonical polarization on Jac(C). If the order of Aut(A, ϕ)'Aut(C) is larger than 2, then
it is known [CQ05] that the field of moduli of C is a field of definition and that there exists a genus-2
curve C0 : y2

= f (x) with f ∈Q[x] such that (Jac(C0), j0)'Q (A, ϕ). In particular Q is also a field of
definition for (A, ϕ).

Proposition 4.1 (compare [RV00, §4]). The field Q is a field of definition of C — and thus of (A, ϕ)— if
and only if the order of Aut(A, ϕ)' Aut(C) is greater than 2.

Proof. It remains to prove that when Aut(A, ϕ)= {±1}, there is no model of (A, ϕ) over Q. Actually we
show there is even no model (B, µ) over R. Indeed, an isomorphism ψ : (A, ϕ)/C→ (B, µ)/R, defined
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1 M d equation for C

−8
(

2 ω+1
−ω+1 2

)
1 y2

= x5
+ x

−11
(

2 ω

−ω+1 2

)
(−11)1/3 y2

= 2x6
+ 11x3

− 2 · 11

−19
(

2 ω

−ω+1 3

)
−19

y2
= x6
+ 1026x5

+ 627x4
+ 38988x3

− 627 · 19x2
+ 1026 · 192x − 193

−43
(

2 ω

−ω+1 6

)
−43

y2
= x6
+ 48762x5

+ 1419x4
+ 4193532x3

− 1419 · 43x2
+ 48762 · 432x − 433

−67
(

2 ω

−ω+1 9

)
−67

y2
= x6
+ 785106x5

+ 2211x4
+ 105204204x3

− 2211 · 67x2
+ 785106 · 672x − 673

−163
(

2 ω

−ω+1 21

)
−163

y2
= x6
+ 1635420402x5

+ 5379x4

+ 533147051052x3
− 5379 · 163x2

+ 1635420402 · 1632x − 1633

−20
(

2 ω

−ω 3

)
√

5 y2
= x5
+ 5x3

+ 5x

−24
(

2 ω+1
−ω+1 4

)
√

2 y2
= 3x5

+ 8x3
+ 3 · 2x

−40
(

2 ω+1
−ω+1 6

)
√

5 y2
= 9x5

+ 40x3
+ 9 · 5x

−52
(

2 ω

−ω 7

)
√

13 y2
= 9x5

+ 65x3
+ 9 · 13x

−88
(

2 ω+1
−ω+1 12

)
√

2 y2
= 99x5

+ 280x3
+ 99 · 2x

−148
(

2 ω

−ω 19

)
√

37 y2
= 441x5

+ 5365x3
+ 441 · 37x

−232
(

2 ω+1
−ω+1 30

)
√

29 y2
= 9801x5

+ 105560x3
+ 9801 · 29x

Table 4. Genus-2 curves defined over Q with Jacobian isomorphic over Q to E2, where E has CM by a
maximal order O. The discriminant of O is 1, the corresponding principal polarization on E2 is ϕ0 ·M , and
ω denotes either

√
1/2 or (1+

√
1)/2, depending on whether 1 is even or odd. This list is complete if the

generalized Riemann hypothesis holds. Each curve is a double cover of its corresponding E (as can be seen
by the fact that the upper-left entry of each polarization matrix is 2), and the associated involution of C is
given by (x, y) 7→ (d/x, d3/2 y/x3) for the value of d given in the third column.

over C, would induce an isomorphism

αι = (ψ
−1)ι ◦ψ : (A, ϕ)→ (A, ϕ)ι,
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for the complex conjugation ι, such that αιι ◦αι = ((ψ−1) ◦ψ ι) ◦ ((ψ−1)ι ◦ψ)= Id.
Since we have seen that E ι = E , the isomorphism αι can be represented as a matrix P ∈ GL2(O) such

that P P = Id. Moreover the commutativity of the diagram

E2 ϕ
//

αι
��

Ê2

E2 ϕι
// Ê2

α̂ι

OO

translates into the equality P∗M P = M . If we denote M = (a
b

b
d ), then it is easy to see that the matrix

P0 =
( b
−a

d
−b

)
satisfies the last equality. Any other P = P0 R differs from P0 by an automorphism R

of (A, ϕ) since R∗P∗M P R = R∗M R = M . Because the automorphism group of (A, ϕ) is {±1}, this
means that the only possible P are ±P0. It is easy to check that P0 P0 = (−P0)(−P0) = − Id, so the
condition P P = Id cannot be satisfied. �

4C. Provably correct equations for the curves defined over Q. Using Proposition 4.1 we found that
exactly 13 of our curves can be defined over Q, and these 13 are precisely the curves for which we
could provably compute the invariants. This is no coincidence, as having an equation over Q definitely
simplifies the computation. We present these curves in Table 4.
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Higher-dimensional sieving for the number field sieve algorithms

Laurent Grémy

Since 2016 and the introduction of the exTNFS (extended tower number field sieve) algorithm, the secu-
rity of cryptosystems based on nonprime finite fields, mainly the pairing- and torus-based ones, is being
reassessed. The feasibility of the relation collection, a crucial step of the NFS variants, is especially
investigated. It usually involves polynomials of degree 1, i.e., a search space of dimension 2. However,
exTNFS uses bivariate polynomials of at least four coefficients. If sieving in dimension 2 is well described
in the literature, sieving in higher dimensions has received significantly less attention. We describe and
analyze three different generic algorithms to sieve in any dimension for the NFS algorithms. Our imple-
mentation shows the practicability of dimension-4 sieving, but the hardness of dimension-6 sieving.

1. Introduction

Nowadays, an important part of the deployed asymmetric cryptosystems bases its security on the hardness
of two main number theory problems: the factorization of large integers and the computation of discrete
logarithms in a finite cyclic group. In such a group (G, · ) of order ` and generator g, the discrete
logarithm problem (DLP) is, given a ∈ G, to find x ∈ [0, `) such that gx

= a. Usual choices of group are
groups of points on elliptic curves or multiplicative subgroups of finite fields.

In this article, we focus on discrete logarithms in finite fields of the form Fpn , where p is a prime
and n is relatively small, namely the medium and large characteristics situation studied in [21]. Com-
puting discrete logarithms in this type of field can affect torus-based [29; 36] or pairing-based [12]
cryptography. The best-known algorithm to achieve computations in such groups is the number field
sieve (NFS) algorithm. It has a subexponential complexity, often expressed with the L(α) notation
L pn (α, c) = exp[(c+ o(1)) log(pn)α log log(pn)1−α], where α = 1

3 for all the variants of NFS. For the
general setting in medium characteristic, the first L

( 1
3

)
algorithm was reached with c = 2.43 [21], im-

proved to 2.21 [4] and now to 1.93 with exTNFS [23], the same complexity as NFS in large characteristic.
In some specific context, exTNFS even reaches a lower complexity. However, theoretical complexities
are not enough to estimate what a real attack would cost, since practical improvements can be hidden
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in the o(1) term [1; 30; 7]. Experimental results are then needed to assess the concrete limits of known
algorithms.

On the practical side, there has been a lot of effort to compute discrete logarithms in prime fields,
culminating in a 768-bit record [27]. Although the records for Fp2 are smaller than the ones in prime
fields, the computations turned out to be faster than expected [4]. However, when n is a small composite
and p fits for Fpn to be in the medium characteristic case (typically n = 6 [16] and n = 12 [18]), the
records are smaller, even with a comparable amount of time spent during the computation. A way to fill
the gap between medium and large characteristics is to implement exTNFS, since the computations in
medium characteristic were, until now, performed with a predecessor of exTNFS.

Since exTNFS is a relatively new algorithm, there remain many theoretical and practical challenges
to be solved before a practical computation can be reached. One of the major challenges concerns the
sieve algorithms which efficiently perform the relation collection, one of the most costly steps of NFS.
However, if there exist sieve algorithms in dimensions 2 and 3, these sieves are not efficient for higher
dimensions and exTNFS needs to sieve in even dimension larger than or equal to 4.

Our contributions. We describe three new generic sieve algorithms which deal with any dimension,
especially those addressed by exTNFS. Instantiating these algorithms in dimension 2 or 3 may allow to
recover the existing sieve algorithms. Since these new sieves do not ensure completeness of the enumera-
tion, unlike most of the existing sieve algorithms, we describe workarounds to ensure a trade-off between
the completeness and the running-time efficiency. Finally, we analyze some quality criteria of these sieve
algorithms and show the feasibility of sieving in dimension 4, but the hardness of dimension-6 sieving.

2. Overview of the NFS algorithms

Let ` be a large prime factor of the order 8n(p) of F∗pn that is coprime to 8k(p) for all prime factors k
of n: the Pohlig–Hellman algorithm allows one to reduce the DLP in F∗pn to the DLP in all its subgroups,
especially the one of order `. The NFS algorithms can be split into four main steps: polynomial selection,
relation collection, linear algebra and individual logarithm. The first step defines in a convenient way
the field Fpn . The next two steps find the discrete logarithms of a subset of small to medium elements
of Fpn , where sizes of the elements will be defined later. The last step computes the discrete logarithm
of a large element of Fpn . The overall complexity of NFS is dominated by the relation collection and the
linear algebra.

2A. Polynomial selection. Let n = ηκ; the field Fpn can be represented as a degree-κ extension of Fpη .
Let h be an integer polynomial of degree η irreducible over Fp and ι be a root of h. Let Fpη be defined by
R/pR, where R is the ring Z[y]/h(y). There exist two ring homomorphisms from R[x] = Z[ι][x] to Fpn ;
they involve a number field K0 or K1 defined by f0 or f1 respectively. The polynomials f0 and f1 are
irreducible over R and share a common irreducible factor φ of degree κ modulo p. This setting allows
one to define Fpn = F(pη)κ ≈ (R/pR)[x]/φ(x). This provides the commutative diagram of Figure 1. The
different polynomial selections defining f0 and f1 are given in Figure 2.
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K0 ⊃ R[x]/ f0(x) R[x]/ f1(x)⊂ K1

R[x]

(R/pR)[x]/φ(x)≈ Fpn
mod (p, φ(x)) mod (p, φ(x))

Figure 1. The NFS diagram to compute discrete logarithms in Fpn .

Base-m
[8; 31; 25; 26; 1]

JL [20] GJL [4] A [39] B [40] C [37]

D [38]Conj [4] gConj [24]

JLSV0 [21] JLSV2 [21] gJLSV2 [24]

JLSV1 [21]

κ = 1
κ > 1

d = 0

W = 0

D = 0

Figure 2. Polynomial selections: a link a→ b means that a is a particular case of b (how to get a from b
is written if this is not explicit in the articles); a dashed link means that the selection strategies in a and b
strongly resemble each other. Polynomial selections in the gray area allow one to build polynomials with
algebraic coefficients.

2B. Relation collection. Since the diagram of Figure 1 is the same for all the NFS variants, we use in
the following the name NFSη to cover all the variants (see Table 1 for their names) or NFS when the
parameter η does not matter.

2B1. Relation. A relation in NFS is given by a polynomial a(x, y) in R[x] of degree µ in x , often set to
µ= 1 to reach the best complexity (see Table 1), and η−1 in y. Since there are t = (µ+1)η coefficients
to define a polynomial a, the relation collection is done in dimension t . A polynomial a gives a relation
when the ideal factorizations of a mapped in both number fields involve prime ideals of norms smaller
than two L

( 1
3

)
smoothness bounds B0 and B1 respectively. Such ideals are elements of the so-called

factor bases F0 and F1 respectively; see [21; 5; 23].
Since the factorization of a in prime ideals and the factorization of the norm of a are strongly linked,

the relation collection looks for polynomials a of norms B0-smooth in K0 and B1-smooth in K1. To
ensure the best probability of smoothness, the t-coefficients a of a are taken into a t-search space S
containing L

( 1
3

)
elements. Since an upper bound of the norm of a involves its infinity norm [6], the

search spaces are usually cuboids of form S = [Sm
0 , SM

0 )× [S
m
1 , SM

1 )× · · · × [S
m
t−1, SM

t−1), where 0 is
in S, all the [Sm

i , SM
i ) are integer intervals and SM

i = −Sm
i , where i is in [0, t). Theoretically, all the

κ = 1 κ ≥ 1

η = 1 NFS NFS-HD
η ≥ 1 TNFS exTNFS

κ = 1 κ ≥ 1

η = 1 µ= 1 µ≥ 1
η ≥ 1 µ= 1 µ= 1

Table 1. The different variants of NFS. Left: names of the NFS variants. Right: optimal degrees.



278 LAURENT GRÉMY

SM
i are equal but practically, the skewness of the polynomials f0 and f1 must be taken into account

[31; 25; 26; 1], implying a skew search space. Since −a and a give the same relation, Sm
t−1 = 0. By

abuse of notation, we denote by a both the polynomial and the list a of its t-coefficients.

2B2. Practical considerations. To ensure the best running time for the relation collection, the polyno-
mials f0 and f1 must be chosen carefully. However, the two usual quality criteria, especially the α but
also the Murphy-E functions [31], are only defined for NFS1 and µ≤ 3 [14]. Finding good polynomials
for NFS>1, even by settling for integer coefficients to define f0 and f1, is yet a challenge.

The goal of the relation collection is to produce more relations than the number of ideals in both factor
bases. A classical algorithm, used to analyze theoretically NFS, tests the smoothness of the norms of a in
S by using the elliptic curve method (ECM) algorithm. However, if this algorithm is almost memory-free,
the practical running time of such a task is prohibitive.

Instead, the common practical way is to perform ECM only on promising polynomials a, i.e., polyno-
mials whose norms have many small factors. Finding these small factors is efficiently performed thanks
to arithmetic sieve algorithms. However, sieve algorithms need a huge memory-footprint, since they
need to store the norms of all the elements of S. This problem was tackled in [33], allowing moreover
a high-level parallelization, by considering many subsets of polynomials; in one number field, say K0,
the factorization into prime ideals of these polynomials involved at least an enforced ideal of medium
size. Let Q be such an ideal, called special-Q. Polynomials a such that Q appears into their ideal
factorization in K0 are elements of a lattice, called Q-lattice, a basis of which is given by the rows of the
matrix MQ. To consider only polynomials fitting into S, sieves look for elements c in the intersection of
the Q-lattice and a t-search space H=[H m

0 , H M
0 )×[H

m
1 , H M

1 )×· · ·×[0, H M
t−1); a is obtained from cMQ.

If theoretically H should depend on Q, it is often the same for all the special-Qs. In this intersection,
sieve algorithms remove the contribution of small ideals. Let R be such an ideal of prime norm r . Except
for a tiny number of such ideals, a basis of the R-lattice in the Q-lattice can be of the form

{(r,0,0, . . . ,0), (λ0,Q,R,1,0,0, . . . ,0), (λ1,Q,R,0,1,0,0, . . . ,0), . . . , (λt−2,Q,R,0,0, . . . ,0,1)}

= {b0,b1,b2, . . . ,bt−1}, (1)

where the λi,Q,R are integers in [0, r). Briefly, the different steps of the relation collection with the
special-Q-method and sieving algorithms are as follows:

(1) For all the possible special-Qs:

(a) For both sides i in [0, 1]:

(i) Compute the norms Ni [c] of a = cMQ, where c is in H.
(ii) For all the ideals R to be sieved, enumerate the elements c in H∩3QR and remove the

contribution of R from Ni [c].

(b) If both N0[c] and N1[c] are sufficiently small to have a chance to give a relation, factor the
norms of a and report a if a gives a relation.
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However, if there exist generic sieve algorithms in any dimension (see Section 3), they are not very
efficient when t ≥ 4, which especially arises with NFS>1. We propose algorithms for these cases in
Section 4. Note that we will use the term sieve algorithms, but we only focus on the enumeration part
of them, which is Step 1(a)ii without updating the array Ni . Step 1(a)i is briefly addressed in Section 5.

2C. Linear algebra and individual logarithm. Let θ0 and θ1 be roots of f0 and f1 respectively. Let
a be a polynomial that gives a relation; i.e., 〈a(θk, ι)〉 =

∏
R∈Fk

RvalR(a(θk ,ι)), where k is in [0, 1] and
val denotes the valuation: the factorizations of the norms of a must be translated into such a factoriza-
tion of ideals [9]. A relation can be transformed into a linear relation involving the virtual logarithms
(vlog) of the ideals [42]. To be valid, this linear relation must involve the Schirokauer maps εk [41], as∑

R∈F0
valR(a(θk, ι)) vlog(R)+ ε0(a)=

∑
R∈F1

valR(a(θk, ι)) vlog(R)+ ε1(a) mod `. In this equation,
the virtual logarithms are unknowns, the valuations are small integers and the Schirokauer maps are large
integers, close to `. These large elements negatively impact the usual algorithms to solve sparse systems,
but the cost of these heavy parts can be significantly decreased thanks to a modification of the block
Wiedemann algorithm [10; 22; 13].

The last step of the computation is the computation of a large, say L(1), unknown logarithm. This
computation is achieved by rewriting the (virtual) logarithm of the target in terms of logarithms of smaller
elements; these smaller elements are again rewritten in terms of smaller elements until the logarithm of
the target has been rewritten using only the precomputed logarithms given by the relation collection and
the linear algebra. This descent step uses different algorithms depending on the size of the rewritten
element: the target is rewritten in elements up to L

( 2
3

)
thanks to the so-called initial splitting (booting

step) [34; 20; 2; 17; 45]; for elements in
[
L
( 1

3

)
, L
( 2

3

))
, the special-Q-method is used. The theoretical

analysis of [13, Appendix A.2] shows that the descent by special-Q may be more efficient by considering
polynomials of degree not restricted to µ= 1.

3. A framework to study existing sieve algorithms

Let Q be a special-Q and R be an ideal to be sieved such that the lattice 3QR is given by a basis as
in (1).1 There exist different sieve algorithms proposed for NFS that allow one to enumerate the elements
in the intersection of 3QR and a search space H. Their efficiency depends on the dimension of 3QR and
the density of the lattice in H. This density is formally defined thanks to the level of a sieve algorithm in
Definition 3.1, a key notion for the rest of the description and especially for Section 4. All the existing
sieve algorithms used in NFS are reported in Table 2. These algorithms can be described by the following
two-step algorithm. The vectors produced in Step (2) will be called transition-vectors:

(1) Compute an adapted set B of spanning vectors of 3QR with respect to H.

(2) Start from 0 and use the vectors of B or an (often small) linear combination of them to enumerate
elements in the intersection of 3QR and H.

1Sieve algorithms can deal with other basis shapes of lattices, but this one occurs the most.
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Definition 3.1 (level). Let 3 be a lattice and H be a search space. The level of a sieve algorithm
with respect to 3 and H is the minimal integer value ` < t such that the intersections of the cuboids
[H m

0 , H M
0 )×[H

m
1 , H M

1 )×· · ·×[H
m
` , H M

` )×{c`+1}×{c`+2}×· · ·×{ct−1}, where (c`+1, c`+2, . . . , ct−1)

are in [H m
`+1, H M

`+1)× [H
m
`+2, H M

`+2) × · · · × [H
m
t−1, H M

t−1), and the lattice 3 contains more than one
element on average. In the case when H contains less than one element on average, `= t − 1.

3A. Exhaustive sieve algorithms. The first use of a sieve algorithm in an index calculus context is
attributed to Schroeppel and was successfully used by Pomerance [35; 28]. They used the 1-dimensional
sieve of Eratosthenes as a factoring algorithm instead of a prime-detecting one. It was extended to any
dimension and called line sieve; see for example its use in dimension 3 in [44]. In dimension 2, the
line sieve is known to be inefficient when there is at most one element in a line, an intersection of
3QR and [H m

0 , H M
0 )×{c1} where c1 is in Z: the 0-level line sieve is used as a 1-level sieve algorithm.

Pollard designed in this sense the sieve by vectors [33], now subsumed by the lattice sieve of Franke
and Kleinjung [11]. Based on this sieve algorithm, the plane sieve [14] and the 3-dimensional lattice
sieve [19] were proposed for similar densities in three dimensions. The plane sieve was turned into a
generic sieve algorithm in CADO-NFS [43] (see Section 4D).

The completeness of all these sieve algorithms comes from special procedures that compute transition-
vectors. They are defined thanks to the t-extended search spaces: let k be in [0, t) and H be a t-search
space; the t-extended search space Hk is the set [H m

0 , H M
0 )×[H

m
1 , H M

1 )× · · ·× [H
m
k , H M

k )×Zt−(k+1).

Definition 3.2 (transition-vector). Let k be in [0, t) and H be a t-search space. A k-transition-vector is
an element v 6= 0 of a lattice 3 such that there exist c and d in the intersection of 3 and the t-extended
search space Hk , where d = c+ v is such that the last t − 1− k coordinates of c and d are equal and the
coordinate d[k] is the smallest possible larger than c[k].

With such sieve algorithms, the small factors of both norms of all the considered polynomials a are
known: this allows one to be close to the expected number of relations at the end of the relation collection.
But, the number of relations is not the only efficiency criterion of the relation collection. Indeed, in
dimension 2, the lattice sieve is used since it allows one to maintain the same number of relations but
decrease the time per relation. The same occurs in dimension 3, switching from the line to the plane or
the 3-dimensional lattice sieves. However, these sieves have some drawbacks, highlighted when there is
less than one element on average in each plane [H m

0 , H M
0 )×[H

m
1 , H M

1 )×{c2}, where c2 is in [H m
2 , H M

2 ).
The plane sieve is essentially the use of the lattice sieve on each plane: even if there is no element in a
plane, the lattice sieve is used to report nothing instead of using it only on nonempty planes. There is
no alternative to avoid these useless uses without losing completeness. The 3-dimensional lattice sieve
does not have this drawback, but the procedure to generate the spanning list B and the one to enumerate
seem difficult to analyze and may be costly for skewed lattices or skewed search spaces.

3B. Heuristic sieve algorithms. Because of these drawbacks and especially the penalty in terms of run-
ning time, the designers of the plane sieve proposed a heuristic sieve algorithm, the space sieve [14]. Its
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line lattice 3-dimensional plane space this
sieve sieve [11] lattice sieve [19] sieve [14] sieve [14] work

t=2 3 3 7 7 7 3

t=3 3 7 3 3 3 3

t>3 3 7 7 3 7 3

level `=0 `=1 `=1 and `=2 `=1 `=2 any
completeness

3 3 3 3 7 7of enumeration

Table 2. Characteristics of the sieve algorithms proposed for NFS.

use allows one to decrease the running time by 45% for the 240-bit example of [14], while at the same
time lose less than 6% of the relations. This corresponds to decreasing the time per relation by 42%.

The space sieve focuses on enumerating a large portion of the elements instead of all of them, which
is helpful for multiple reasons. First, all the sieve algorithms, both exhaustive and heuristic, allow one
to enumerate the t-extended search space Ht−2 instead of the search space H =Ht−1. For exhaustive
sieves, it implies that the spanning set B is qualitatively too accurate because it allows one to generate
transition-vectors that will never be used. If this accuracy implies a costly computation to find an adapted
set B, the time per relation can be drastically impacted. Secondly, completeness is not always useful,
since this reports hits on polynomials a that may or may not give relations; missing some hits may not
affect the number of relations in some circumstances. Furthermore, if the computation can be completed,
the expected gain in the time per relation must be considered to compare heuristic and exhaustive sieves,
even if the relation collection misses some relations. Finally, in dimension larger than 3, the use of a
heuristic sieve seems unavoidable; to the best of our knowledge, producing all the transition-vectors can
only be done by the exhaustive sieve algorithms, all of them being inefficient when there is less than one
element in [H m

0 , H M
0 )×[H

m
1 , H M

1 )×[H
m
2 , H M

2 )×{c3}× {c4}× · · ·× {ct−1}, where ci is in [H m
i , H M

i ).
Yielding to produce some transition-vectors can be done by computing the Graver basis of the lattice:
these transition-vectors may lead to building a generic exhaustive sieve algorithm from the heuristic one
described in Section 4. However, computing the Graver basis is often too costly in our context [15; 32].

In the following, we propose globalntv, localntv and sparsentv, three heuristic sieves which
perform the enumeration in any dimension and level.

4. Sieve algorithms in higher dimensions

Using transition-vectors implies the sieve enumerations are exhaustive. Since completeness is not the main
target of globalntv, localntv and sparsentv, the vectors used in Step (2) of Section 3, called here
nearly-transition-vectors, will be weakened by removing from Definition 3.2 the strong condition about d[k].

Definition 4.1 (nearly-transition-vector). Let k be in [0, t) and H be a t-search space. A k-nearly-
transition-vector is an element v 6= 0 of a lattice 3 such that there exist c and d in the intersection
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of 3 and the t-extended search space Hk , where d = c+ v is such that the last t − 1− k coordinates of
c and d are equal and the coordinate d[k] is larger than c[k].2

The three generic sieve algorithms will take place in a general framework, described by allowing the
report of duplicated elements for simplicity in Algorithm 1. It is purposely vague, to be as general as
possible: instantiation examples of Initialization, Step (c) and Step (d) will be given in the following.

The addition of a possible nearly-transition-vector (Step (c)) is likewise performed for all the three
sieve algorithms. Like the addition of a 2-nearly-transition-vector in the space sieve [14], a loop iterates
the list of k-nearly-transition-vectors, beforehand sorted by increasing coordinate k (see Section 4C). We
also choose to use the same fall-back strategy (Step (d)); this choice is justified in Section 4B. Therefore,
the difference between the three sieve algorithms only comes from the initialization processes, described
in Section 4A.

4A. Initializations. To define the three initialization processes, we introduce two new notions: the shape
of the nearly-transition-vectors and the skew-small-vectors.

4A1. Preliminaries. Even if the three initialization processes are different, the shapes of the nearly-
transition-vectors are the same. The shape represents the expected magnitude of the coefficients of the
nearly-transition-vectors with respect to a search space H and 3QR. In this paragraph, the O( j) notation
will denote a value smaller than or almost equal to j . Let us recall the shape of the transition-vectors of the
`-level sieve algorithms in three dimensions. Let Ii be the length of the interval [H m

i , H M
i ). When `= 0,

the shape is equal to (O(r), O(1), O(1)); the one for `= 1 is (O(I0), O(r/I0), O(1)); the one for `= 2
is (O(I0), O(I1), O(r/(I0 I1))). This shape is generalized, as (I0, I1, . . . , I`−1, r/(I0× I1× · · ·× I`−1),

1, 1, . . . , 1), given a level ` of a sieve algorithm and removing the O( · ) for clarity.
The initialization processes of the three sieve algorithms do not ensure that the produced vectors are

nearly-transition-vectors. They build skew-small-vectors, that are lattice vectors whose coefficients try
to follow the shape. Even if Definition 4.2 does not capture it, skew-small-vectors are built to be almost
nearly-transition-vectors: a k-skew-small-vector v is a k-nearly-transition-vector if |v[i]|< Ii .

Definition 4.2 (skew-small-vector). Let k be in [0, t). A k-skew-small-vector is an element v 6= 0 of a
lattice 3 such that there exist c and d in 3, where d = c+ v is such that the last t − 1− k coordinates
of c and d are equal and the coordinate d[k] is larger than c[k].

4A2. Three initialization processes. The three initialization processes try to generate a large number of
nearly-transition-vectors, given the level ` of the sieve algorithms. They begin by building a basis B of
3QR whose basis vectors are skew-small-vectors. Nearly-transition-vectors are afterwards built thanks
to small linear combination of the basis vectors. The major difference between globalntv on the one
hand, and localntv and sparsentv on the other, is in the coefficients of the k-skew-small-vectors,

2Note that transition vectors of [14, Definition 5] are 2-nearly-transition-vectors.
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Initialization: Call a procedure that returns nearly-transition-vectors with respect to a search space H
and a lattice 3QR described as in (1).

Set c to 0 and k to t − 1.
Enumeration:

(1) While c[k]< H M
k :

(a) Report c.
(b) If k > 0, call this enumeration procedure recursively with inputs c and k− 1.
(c) Find a k-nearly-transition-vector v from the one computed during Initialization, such that

adding v to c lands in the extended search space Hk−1 and c[k] is the smallest possible.
(d) If there does not exist such a k-nearly-transition-vector v, call a fall-back strategy that tries

to produce a new element c in 3QR ∩H, and therefore a new k-nearly-transition-vector.

(2) Recover c as it was when the procedure was called.
(3) While c[k] ≥ H m

k , perform Steps (a)–(d) by considering c− v instead of c+ v.

Algorithm 1. Framework for globalntv, localntv and sparsentv.

where k > `. In localntv and sparsentv, the coordinate k is enforced to 1, and even to 0 for the
coordinates `+ 1 to k − 1 in sparsentv. This comes from a crude interpretation of the magnitude
of the coefficients given by the shape. To build the k-skew-small-vectors, where k ≤ ` for localntv
and sparsentv or all of them for globalntv, the initialization processes compute a skew basis of a
(sub)lattice, which is a basis formed by skew-small-vectors. The basis B is built thanks to

• a skew basis reduction of {b0, b1, . . . , bt−1} for globalntv;

• a skew basis reduction of {b0, b1, . . . , b`} followed by, for k in [`+ 1, t), a reduction of bk by its
closest vector in {b0, b1, . . . , bk−1} for localntv;

• a skew basis reduction of {b0, b1, . . . , b`} followed by, for k in [`+ 1, t), a reduction of bk by its
closest vector in {b0, b1, . . . , b`} for sparsentv.

To build possible nearly-transition-vectors, linear combinations of the skew basis vectors are per-
formed, as well as computations of some vectors close to bk in the corresponding sublattice instead of
one for localntv and sparsentv. The patterns of the skew-small-vectors produced by the different
initializations follow necessarily the ones reported in Table 3. Note that, when `= t − 2, localntv and
sparsentv have the same initialization processes. When `= t − 1, the three initialization processes are
the same.

4B. A common fall-back strategy. At this step, all the additions to c in3QR∩H of a k-nearly-transition-
vector fail to land in Hk−1. The additions of v, a k-skew-small-vector, are necessarily out of Hk−1. Since
no k-skew-small-vector makes it possible to stay in Hk−1, a potential k-nearly-transition-vector must
have some smaller coordinates. Vectors close to c+ v in the sublattice formed by {b0, b1, . . . , bk−1} may
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k globalntv localntv sparsentv

0 (> 0, 0, 0, 0, 0) (> 0, 0, 0, 0, 0) (> 0, 0, 0, 0, 0)
1 ( · , > 0, 0, 0, 0) ( · , > 0, 0, 0, 0) ( · , > 0, 0, 0, 0)
2 ( · , · , > 0, 0, 0) ( · , · , > 0, 0, 0) ( · , ·, > 0, 0, 0)
3 ( · , · , · , > 0, 0) ( · , · , · , 1, 0) ( · , · , · , 1, 0)
4 ( · , · , · , · , > 0) ( · , · , · , · , 1) ( · , · , · , 0, 1)

Table 3. Patterns of the k-skew-small-vectors, where `= 2 and t = 5.

make it possible from c+v to obtain such a k-nearly-transition-vector. Let e be such a vector; subtracting
e from c+ v will shrink the k first coefficients of c+ v. If c+ v− e fits in the search space, v− e is a
new k-nearly-transition-vector. If not, set c to c+ v− e and rerun this procedure, until c+ v− e fits in H
or its coordinate k is larger than H M

k . The different steps of this fall-back strategy are, for c in 3QR ∩H
and k in [0, t):

(1) While c[k]< H M
k :

(a) For all k-skew-small-vectors v:

(i) Compute some vectors close to c+ v in the sublattice generated by {b0, b1, . . . , bk−1} and
store them in the list E .

(ii) For all e in E , return c+ v− e if c+ v− e is in H.

(b) Set c to one of the vectors c+ v− e computed previously.

(2) Return fail.

If this procedure does not fail, the new element in H is the output of this procedure and v− e is the
new k-nearly-transition-vector, computed by the difference between the output and the input vectors of
the fall-back procedure and inserted in the lists of k-nearly-transition-vectors and k-skew-small-vectors
for further use.

This fall-back strategy is costly since it requires solving multiple closest vector problems in Step (ai),
iterating all the k-skew-small-vectors and looping while H M

k is not reached. The condition to use such
a strategy must therefore be carefully studied. If k ≤ `, the average number of elements with the same
last t − k− 1 coordinates is equal to 1, from the Definition 3.1 of the level. If no precomputed k-nearly-
transition-vectors allow one find a new element in H, then, most likely, there do not exist such elements.
However, if k > `, there are generally more chances that such an element exists. The fall-back strategy is
therefore applied only when k > `. This condition must be studied a little bit more carefully. If `= t − 1,
the first t − 1 coordinates of c+ v out of H must be shrunk, where v is a `-skew-small-vector. Therefore,
when k = t−1, the close vector e is a linear combination of {b0, b1, . . . , bt−2}. Since this strategy allows
one to modify the maximal number of coordinates without changing the last nonzero one, the strategy
allows one to increase the chance of finding a new element. Another strategy is proposed in Section 4D,
but is specific to sparsentv.
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4C. Formal algorithms. The pseudocode of the addition of a nearly-transition-vector and the fall-back
strategy are given respectively in Function add and in Function fbadd. They return an element in the
intersection of 3QR and H or an element out of H to stop the enumeration of a subset of H. The
lists T and S consist of t lists containing respectively nearly-transition-vectors and skew-small-vectors
(e.g., k-nearly-transition-vectors are stored in T [k]). Each list T [k] and S[k] is sorted by increasing
coordinate k. Given an element c of 3QR and an integer i , the function CVA (close vectors around a
targeted element) returns a list of some lattice vectors close to c in the sublattice of 3QR generated by
{b0, b1, . . . , bi }.

FUNC. add(c, k, H, T , S, 3QR, `)
for v ∈ T [k] do

if c+ v ∈Hk−1 then
return c+ v;

if k > ` or k = t − 1 then
e← fbadd(c, k,H, S,3QR);
if e ∈H then

T [k] ← T [k] ∪ {e− c};
S[k] ← S[k] ∪ {e− c};

c← e;
else

c← (H M
0 , H M

1 , . . . , H M
t−1); // /∈H

return c;

FUNC. fbadd(c, k, H, S, 3QR)
while c[k]< H M

k do
L←∅;
for v ∈ S[k] do

E← CVA(c+ v, k− 1,3QR);
for e ∈ E do

if c+ v− e ∈H then
return c+ v− e;

L← L ∪ {c+ v− e};

set c to an element of L;

return c; // /∈H

4D. A specific fall-back strategy. Unlike the previous fall-back strategy, we describe here a specific
one which allows one to recover all the sieve algorithms of Section 3. This specific fall-back strategy is
designed for sparsentv by exploiting the specific patterns of the skew-small-vectors of sparsentv. It
can be more costly but can report a larger number of elements. To completely recover exhaustive sieve
algorithms, the k-skew-small-vectors used in the sieve algorithms must have their coordinate k equal to 1,
when k > `.

When the fall-back strategy is called, the coefficients of c+v, where c is in3QR∩H and v is a k-skew-
small-vector, are shrunk with vectors close to c+v in the sublattice generated by {b0, b1, . . . , b`} instead
of {b0, b1, . . . , bk−1}, to keep unchanged the coordinates `+1 to t−1 of c+v. Let e be a vector subtracted
from c+ v to shrink its coefficients. If c+ v− e fits in H, a new element in the intersection of 3QR and
H is found, as well as a new k-nearly-transition-vector.

If k > `+ 1, the coordinates `+ 1 to k− 1 of c have not been modified, and therefore, some cuboids
of dimension `+ 1 were not explored to try to find a new starting point: to explore them, this procedure
must be called with inputs one of the vectors generated previously and k− 1. If all the recursions fail to
find a new element in the intersection of the lattice and the search space, c is set to c+ v− e and this
procedure is redone with inputs c and k, until a generated element fits in H or its coordinate k is larger
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than H M
k . The different steps of this generation are the same as the ones described in Section 4B, except

that after Step (b), the following instruction is added:

(1) While ct [k]< H M
k :

...

(c) If k−1> `, use this fall-back procedure (additive or subtractive case) with c and k−1 as inputs
and return the result if it does not fail.

(2) Return fail.

5. Analyses of the generic sieves

Practical generic sieve algorithms are of two types: exhaustive for the levels ` = 0 and ` = 1, and
heuristic for all levels.3 For levels `= 0 and `= 1, using heuristic algorithms makes almost no sense,
since generally, the exhaustive algorithms are optimal in term of running time. For larger levels, the
practical gain obtained by using the space sieve lets us expect an improvement since exhaustive sieves
are not adapted to such levels. However, heuristic sieves do not ensure completeness of the enumeration:
if substantially many relations are not reported, the time per relation can negatively be impacted and can
eventually be worse than with exhaustive sieves.

To evaluate the practicability of the three new sieve algorithms, we analyze them thanks to a Sage
implementation of the three sieves named ntv.sage (provided in CADO-NFS), mainly implemented
to test the accuracy of the enumeration processes; see Section 5A. Even if the implementation is not
optimized to test running time, we can extrapolate some tendencies about the efficiency of the sieves;
see Section 5B. The practical experiments were done on random lattices4 having the shape of (1), whose
volume is adapted to fit for the tested levels.

5A. Accuracy. The quality criteria to test accuracy reported in Table 4 are

• the number of produced skew-small-vectors, adjusted thanks to the number of the small linear com-
binations and close vectors,

• the number of iterations of the while loop in the fall-back strategy and

• the relative error between the expected number of elements to be enumerated (#H/r ) and the number
of reported elements.

The relative error informs about the accuracy of the algorithm. A large relative error likely means that
the nearly-transition-vectors have coordinates that are too large. A few more linear combinations during
the initialization may solve this problem. The criterion about the fall-back strategy informs about the

3Combining the 3-dimensional lattice sieve [19] and Section 4D may lead to obtaining a 2-level exhaustive generic sieve
algorithm, but we did not manage to fully implement the 3-dimensional lattice sieve.

4From the point of view of a practical sieving procedure, lattices describing ideals of the same or different factor bases, or
random lattices, are treated similarly.
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globalntv (`=2) localntv (`=2) globalntv (`=3)
min med max mean min med max mean min med max mean

#ssvs 40 41 40
#fbs 0 2.0 61 3.1 0 3.0 61 4.3 0 12.0 65 20.0
rel. err. 0.0 2.6 95.7 10.1 0.0 1.2 96.7 5.8 0.0 0.0 75.0 2.0

(A) Experiments on 214 lattices where H= [−26, 26)3×[0, 26) (t = 4, #H= 227).

globalntv (`=2) localntv (`=2) sparsentv (`=2)
min med max mean min med max mean min med max mean

#ssvs 364 69 37
#fbs 0 5.0 712 18.3 0 9.0 591 20.0 0 13.0 332 22.0
rel. err. 0.0 1.5 36.1 6.4 0.0 1.6 50.0 5.6 0.0 2.0 49.0 5.9

(B) Experiments on 27 lattices where H= [−24, 24)5×[0, 24) (t = 6, #H= 229).

globalntv (`=3) localntv (`=3) sparsentv (`=3)
min med max mean min med max mean min med max mean

#ssvs 364 88 72
#fbs 0 8.0 142 13.3 0 12.0 186 16.8 0 14.0 161 18.1
rel. err. 0.0 2.7 54.4 7.7 0.0 3.3 47.7 6.9 0.0 3.2 48.8 6.8

(C) Experiments on 27 lattices where H= [−24, 24)5×[0, 24) (t = 6, #H= 229).

globalntv (`=4) localntv (`=4) globalntv (`=5)
min med max mean min med max mean min med max mean

#ssvs 364 153 364
#fbs 0 1.0 10 1.8 0 3.0 10 3.3 0 8.5 17 8.3
rel. err. 0.0 6.4 60 11.3 0.0 5.2 52.9 9.8 0.0 0.0 66.7 2.0

(D) Experiments on 27 lattices where H= [−24, 24)5×[0, 24) (t = 6, #H= 229).

Table 4. Experiments on the three sieves: “#ssvs”, “#fbs” and “rel. err.” correspond to the criteria listed in Section 5A.

global effort on discovering new nearly-transition-vectors or stopping regularly the enumeration process,
as the number of generated skew-small-vectors about the global effort on the initialization. The combi-
nation of these three criteria is needed since, e.g., generating a huge amount of skew-small-vectors will
decrease quantitatively the two other criteria by putting solely too much effort on the initialization.

Since the patterns of the skew-small-vectors of localntv and sparsentv are constrained, their rela-
tive errors are expected to be better (i.e., smaller) than the one with globalntv. Since the initialization
is less under control with globalntv, the number of skew-small-vectors may be often (much) larger for
globalntv; however, the number of calls to the fall-back strategy is expected to be lower.
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The accuracy of the algorithms seems more than sufficient for the majority of the lattices, both in
four and six dimensions. The maximal values of all the tables can be impressive, but occur only for a
sufficiently small number of skewed lattices; since the enumeration in such lattices may be costly, it can
be better to avoid them or at least, to be not too accurate.

In four dimensions, the accuracy is combined with a reasonable number of produced skew-small-
vectors. The criteria do not help to determine which of the 2-level localntv and globalntv is the
most suitable algorithm. The running time estimations may help to decide. At level `= 3, the number
of calls to the fall-back strategy can be an issue but may be under control in a careful implementation.

The situation is mitigated in dimension 6. Except for the 2-level sparsentv, the number of skew-
small-vectors is huge, which disqualifies with this setting all the sieves at any level. In addition, the
number of calls to the fall-back strategy at levels ` = 2 and ` = 3 indicates that the produced nearly-
transition-vectors are of poor quality. If dimension-6 sieving were feasible, it would need more investi-
gation; however, using cuboid search spaces is probably a constraint that implies a hardness, or even an
impossibility, for the sieving process. In addition, the initialization of the norms in higher dimensions
implemented in CADO-NFS [43] is actually too slow for dimensions larger than six because of preserving
a relative accuracy. It confirms the hardness of the relation collection above dimension 4.

5B. Running time. From the previous section, only 4-dimensional sieving seems to be an option. We
compare, at levels ` = 2 and ` = 3, the new sieves with the state-of-the-art sieve algorithms and also
between themselves.

Comparison with the plane sieve. The 2-level globalntv and localntv are compared with the most
efficient existing sieve algorithm, which is the (generalized) plane sieve. Our implementation of the plane
sieve is however a bit incomplete: we implement the fall-back strategy of Section 4D without enforcing
the coordinate k of the k-skew-small-vectors to be equal to 1. This implementation may be a bit faster
than a complete plane sieve. On 210 lattices, globalntv and localntv are faster than our generalized
plane sieve, with localntv slightly faster than globalntv. Since the accuracy of the two heuristic sieve
algorithms is quite good, both sieves must be considered as an alternative to the plane sieve.

Comparison of the new sieves. The 3-level globalntv is also compared with the 2-level globalntv and
localntv on 210 lattices. Unlike the previous comparisons, the results can be puzzling. Indeed, for lat-
tices where the 3-level globalntv is expected to be efficient, the 2-level localntv is less than 1.5 times
faster. Furthermore, the 2-level localntv is more than 3 times faster than the 2-level globalntv. Before
explaining these results, we first remark that, in this situation, the three studied sieve algorithms share
the same condition to use or not the fall-back strategy. The second remark comes from a detail of our
implementation. Since accuracy is our main concern, Step (b) of the fall-back strategy in Section 4B sets
c to one of the computed elements with the smallest coordinate k (i.e., the first element, since the list of
k-nearly-transition-vectors is sorted by increasing coordinate k).

The 2-level globalntv and localntv produce more or less the same nearly-transition-vectors, de-
spite having differently produced skew-small-vectors. The 3-skew-small-vectors are less numerous and
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have smaller coordinates with localntv than with globalntv. Then, if the for loop on the k-skew-
small-vectors (Step 1(a)i) fails to find an element in H in both sieves, and if the coordinate k of the first
k-skew-small-vectors is the same for both sieves (these two situations often occur), localntv is faster
than globalntv.

Between the 3-level globalntv and the 2-level localntv, the situation shares some of the obser-
vations made previously. However, this time, globalntv produces nearly-transition-vectors and skew-
small-vectors of better quality than localntv: in some cases, globalntv is faster than localntv, but
if the situations become the same as in the previous analysis, localntv stays faster. We believe that a
careful study of the different parts (especially how the linear combinations can produce useful vectors
during the initialization of globalntv specialized in dimension 4) of the algorithms will lead to an
efficient implementation of the 3-level globalntv.

6. Conclusion

In this article we propose algorithms to sieve in any dimension in the intersection of a lattice and a cuboid,
which is one of the challenges we list to have a practical implementation of the NFS>1 algorithms.
These algorithms allow us to report a large portion of the elements in the intersection faster than the
previous generic sieve algorithms. We provide a reference implementation of these algorithms, allowing
us to highlight their advantages and drawbacks for the accuracy and efficiency of the enumeration, and
demonstrate the practicability of these sieves for dimension 4, and the hardness of sieving in dimension 6
and above.

In the near future, we plan to integrate these algorithms, specialized in dimension 4, in the existing
implementations of NFS1 in CADO-NFS [43] and extend it to NFS>1. It will help key size estimations
for pairings [30; 3]. However, since a practical computation of the relation collection with NFS>1 will
be possible only with good polynomials f0 and f1, we also plan to study quality criteria for such NFS
algorithms. Further work includes also enumeration in noncuboid search space.
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Faster integer multiplication using short lattice vectors

David Harvey and Joris van der Hoeven

We prove that n-bit integers may be multiplied in O(n log n 4log∗ n) bit operations. This complexity
bound had been achieved previously by several authors, assuming various unproved number-theoretic
hypotheses. Our proof is unconditional and is based on a new representation for integers modulo a
fixed modulus, which we call the θ-representation. The existence of such representations is ensured by
Minkowski’s theorem concerning lattice vectors in symmetric convex sets.

1. Introduction

Let M(n) denote the number of bit operations required to multiply two n-bit integers, where “bit op-
erations” means the number of steps on a deterministic Turing machine with a fixed, finite number of
tapes [23] (our results also hold in the Boolean circuit model). Let log∗ x denote the iterated natural
logarithm, i.e., log∗ x :=min{ j ∈ N : log◦ j x 6 1}, where log◦ j x := log · · · log x (iterated j times). The
main result of this paper is an algorithm achieving the following bound.

Theorem 1.1. M(n)= O(n log n 4log∗ n).

The first complexity bound for M(n) of the form O(n log n K log∗ n) was established by Fürer [10; 11],
for an unspecified constant K > 1. His algorithm reduces a multiplication of size n to many multiplica-
tions of size exponentially smaller than n, which are then handled recursively. The number of recursion
levels is log∗ n+ O(1), and the constant K measures the “expansion factor” at each recursion level.

The first explicit value for K , namely K = 8, was given by Harvey, van der Hoeven, and Lecerf [16].
Their method is somewhat different from Fürer’s, but still carries out an exponential size reduction at
each recursion level. One may think of the constant K = 8 as being built up of three factors of 2, each
coming from a different source.

The first factor of 2 arises from the need to perform both forward and inverse DFTs (discrete Fourier
transforms) at each recursion level. This is a feature common to all of the post-Fürer algorithms, sug-
gesting that significantly new ideas will be needed to do any better than O(n log n 2log∗ n).
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The second factor of 2 arises from coefficient growth: a product of polynomials with k-bit integer
coefficients has coefficients with at least 2k bits. This factor of 2 also seems difficult to completely
eliminate, although Harvey and van der Hoeven have recently made some progress [14]: they achieve
K = 4

√
2≈ 5.66 by arranging that, in effect, the coefficient growth only occurs at every second recursion

level. This was the best known unconditional value of K prior to the present paper.1

The final factor of 2 occurs because the algorithm works over C: when multiplying complex coeffi-
cients with say β significant bits, the algorithm first computes a full 2β-bit product, and then truncates to
β bits. More precisely, after splitting the β-bit inputs into m exponentially smaller chunks, and encoding
them into polynomials of degree m, the algorithm must compute the full product of degree 2m, even
though essentially only m coefficients are needed to resolve β significant bits of the product. Again, this
factor of 2 has been the subject of a recent attack: Harvey has shown [13] that it is possible to work
modulo a polynomial of degree only m, at the expense of increasing the working precision by a factor
of 3/2. This leads to an integer multiplication algorithm achieving K = 6.

Another way of attacking this last factor of 2 is to replace the coefficient ring C by a finite ring Z/qZ

for a suitable integer q. A Fürer-type complexity bound (with no attempt to optimize the value of K )
was first obtained using this approach in [9]. By choosing q with some special structure, it may become
possible to convert a multiplication modulo q directly into a polynomial multiplication modulo some
polynomial of degree m, rather than 2m. Three algorithms along these lines have been proposed.

First, Harvey, van der Hoeven, and Lecerf suggested using Mersenne primes, i.e., primes of the form
q = 2k

− 1, where k is itself prime [16, §9]. They convert multiplication in Z/qZ to multiplication in
Z[y]/(ym

− 1), where m is a power of two. Because k is not divisible by m, the process of splitting an
element of Z/qZ into m chunks is somewhat involved, and depends on a variant of the Crandall–Fagin
algorithm [8].

Covanov and Thomé [7] later proposed using generalized Fermat primes, i.e., primes of the form
q = rm

+ 1, where m is a power of two and r is a small even integer. Here, multiplication in Z/qZ is
converted to multiplication in Z[y]/(ym

+ 1). The splitting procedure consists of rewriting an element
of Z/qZ in base r , via fast radix-conversion algorithms.

Finally, Harvey and van der Hoeven [15] proposed using FFT primes, i.e., primes of the form q =
a · 2k

+ 1, where a is small. They reduce multiplication in Z/qZ to multiplication in Z[y]/(ym
+ a) via

a straightforward splitting of the integers into m chunks, where m is a power of two. Here the splitting
process is trivial, as k may be chosen to be divisible by m.

These three algorithms all achieve K = 4, subject to plausible but unproved conjectures on the dis-
tribution of the relevant primes. Unfortunately, in all three cases, it is not even known that there are

1 The main feature that the preprint [14] has in common with the present paper is that it inherits the overall algorithm
structure (decompose into exponentially smaller DFTs and apply Bluestein’s trick) from [16]. The main novelty of the present
paper (use of θ -representations and short lattice vectors) does not appear in [14]. Besides integer multiplication, it is noteworthy
to mention that [14] proves an analogous complexity bound for polynomial multiplication over finite fields, again with K = 4.
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infinitely many primes of the required form, let alone that there exists a sufficiently high density of them
to satisfy the requirements of the algorithm.

The main technical novelty of the present paper is a splitting procedure that works for an almost
arbitrary modulus q. The core idea is to introduce an alternative representation for elements of Z/qZ:
we represent them as expressions a0+ a1θ + · · ·+ am−1θ

m−1, where θ is some fixed 2m-th root of unity
in Z/qZ, and where the ai are small integers, of size roughly q1/m . Essentially the only restriction on q
is that Z/qZ must contain an appropriate 2m-th root of unity. We will see that Linnik’s theorem is strong
enough to construct suitable such moduli q .

In Section 2 we show that the cost of multiplication in this representation is only a constant factor
worse than for the usual representation. The key ingredient is Minkowski’s theorem on lattice vectors
in symmetric convex sets. We also give algorithms for converting between this representation and the
standard representation. The conversions are not as fast as one might hope — in particular, we do not
know how to carry them out in quasilinear time — but surprisingly this turns out not to affect the overall
complexity, because in the main multiplication algorithm we perform the conversions only infrequently.

Then in Sections 3 and 4 we prove Theorem 1.1, using an algorithm that is structurally very similar
to [15]. We make no attempt to minimize the implied big-O constant in Theorem 1.1; our goal is to give
the simplest possible proof of the asymptotic bound, without any regard for questions of practicality.

An interesting question is whether it is possible to combine the techniques of the present paper with
those of [14] to obtain an algorithm achieving K = 2

√
2≈ 2.83. Our attempts in this direction have so

far been unsuccessful. One might also ask if the techniques of this paper can be transferred to the case
of multiplication of polynomials of high degree in Fp[x]. However, this is not so interesting, because an
unconditional proof of the bound corresponding to K = 4 in the polynomial case is already known [14].
One may finally wonder whether any algorithms along these lines may be useful for practical purposes.
We refer to [20; 17; 26] for some recent work on this theme.

Throughout the paper we use the following notation. We write lg n := dlog2 ne for n > 2, and
for convenience put lg 1 := 1. We define MSS(n) = Cn lg n lg lg n, where C > 0 is some constant so
that the Schönhage–Strassen algorithm multiplies n-bit integers in at most MSS(n) bit operations [25].
This function satisfies nMSS(m) 6 MSS(nm) for any n,m > 1, and also MSS(dm) = O(MSS(m)) for
fixed d. An n-bit integer may be divided by an m-bit integer, producing quotient and remainder, in
time O(MSS(max(n,m))) [27, Chapter 9]. We may transpose an n×m array of objects of bit size b in
O(bnm lg min(n,m)) bit operations [4, Appendix]. Finally, we occasionally use Xylouris’s refinement
of Linnik’s theorem [28], which states that for any relatively prime positive integers a and n, the least
prime in the arithmetic progression p = a (mod n) satisfies p = O(n5.2).

2. θ -representations

In this section, fix an integer q > 2 and a power of two m > 2 such that

m 6
log2 q
(lg lg q)2

, or equivalently, q1/m > 2(lg lg q)2, (2-1)
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and such that we are in addition given some θ ∈ Z/qZ with θm
=−1. (In Section 3, we will ensure that

q and m are chosen so that a suitable θ exists.)
For a polynomial F = F0+ F1 y+ · · · + Fm−1 ym−1

∈ Z[y]/(ym
+ 1), define ‖F‖ := maxi |Fi |. This

norm satisfies ‖FG‖6 m‖F‖‖G‖ for any F,G ∈ Z[y]/(ym
+ 1).

Definition 2.1. Let u ∈ Z/qZ. A θ-representation for u is a polynomial U ∈ Z[y]/(ym
+ 1) such that

U (θ)= u (mod q) and ‖U‖6 mq1/m .

Example 2.2. Let m = 4 and

q = 3141592653589793238462833,

θ = 2542533431566904450922735 (mod q),

u = 2718281828459045235360288 (mod q).

(For reasons of legibility, the choice of q in this running example is somewhat smaller than what is
required by (2-1).) The coefficients in a θ-representation must not exceed mq1/m

≈ 5325341.46. Two
examples of θ -representations for u are

U (y)= 3366162y3
+ 951670y2

− 5013490y− 3202352,

U (y)=−4133936y3
+ 1849981y2

− 5192184y+ 1317423.

By (2-1), the number of bits required to store U (y) is at most

m(log2(mq1/m)+ O(1))= lg q + O(m lg m)=
(

1+
O(1)
lg lg q

)
lg q,

so a θ -representation incurs very little overhead in space compared to the standard representation by an
integer in the interval 06 x < q .

Our main tool for working with θ-representations is the reduction algorithm stated in Lemma 2.9
below. Given a polynomial F ∈ Z[y]/(ym

+ 1), whose coefficients are up to about twice as large as
allowed in a θ-representation, the reduction algorithm computes a θ-representation for F(θ) (up to a
certain scaling factor, discussed further below). The basic idea of the algorithm is to precompute a
nonzero polynomial P(y) such that P(θ)= 0 (mod q), and then to subtract an appropriate multiple of
P(y) from F(y) to make the coefficients small.

After developing the reduction algorithm, we are able to give algorithms for basic arithmetic on ele-
ments of Z/qZ given in θ -representation (Proposition 2.15), a more general reduction algorithm for inputs
of arbitrary size (Proposition 2.17), and algorithms for converting between standard and θ -representation
(Propositions 2.18 and 2.21).

We begin with two results that generate certain precomputed data necessary for the main reduction step.

Lemma 2.3. In q1+o(1) bit operations, we may compute a nonzero polynomial P ∈ Z[y]/(ym
+ 1) such

that P(θ)= 0 (mod q) and ‖P‖6 q1/m .
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Proof. We first establish existence of a suitable P(y). Let θ i denote a lift of θ i to Z, and consider the
lattice 3⊂ Zm spanned by the rows of the m×m integer matrix

A =


q 0 0 0
−θ 1 0 · · · 0
−θ2 0 1 0
...

. . .

−θm−1 0 0 · · · 1

 .

Every vector (a0, . . . , am−1) ∈3 satisfies the equation a0+ · · ·+ am−1θ
m−1
= 0 (mod q). The volume

of the fundamental domain of 3 is det A = q. The volume of the closed convex symmetric set

6 := {(x1, . . . , xm) ∈ Rm
: |x1|, . . . , |xm |6 q1/m

}

is (2q1/m)m = 2mq , so by Minkowski’s theorem (see for example [18, Chapter V, Theorem 3]), there exists
a nonzero vector (a0, . . . , am−1) in 3∩6. The corresponding polynomial P(y) := a0+· · ·+ am−1 ym−1

then has the desired properties.
To actually compute P(y), we simply perform a brute-force search. By (2-1) there are at most

(2q1/m
+ 1)m 6 (3q1/m)m = 3mq < q1+o(1) candidates to test. Enumerating them in lexicographical

order, we can easily evaluate P(θ) (mod q) in an average of O(lg q) bit operations per candidate. �

Example 2.4. Continuing Example 2.2, the coefficients of P(y) must not exceed q1/m
≈ 1331335.36.

A suitable polynomial P(y) is given by

P(y)=−394297y3
− 927319y2

+ 1136523y− 292956.

Remark 2.5. The computation of P(y) is closely related to the problem of finding an element of small
norm in the ideal of the ring Z[ζ2m] generated by q and ζ2m − θ , where ζ2m denotes a primitive 2m-th
root of unity.

Remark 2.6. The poor exponential-time complexity of Lemma 2.3 can probably be improved, by taking
advantage of more sophisticated lattice reduction or shortest vector algorithms, but we were not easily
able to extract a suitable result from the literature. For example, LLL is not guaranteed to produce a
short enough vector [19], and the Micciancio–Voulgaris exact shortest vector algorithm [21] solves the
problem for the Euclidean norm rather than the uniform norm. In any case, this has no effect on our
main result.

Lemma 2.7. Assume that P(y) has been precomputed as in Lemma 2.3. Let r be the smallest prime
exceeding 2m2q1/m such that r - q and such that P(y) is invertible in (Z/rZ)[y]/(ym

+ 1). Then r =
O(m2q1/m), and in q1+o(1) bit operations we may compute r and a polynomial J ∈ Z[y]/(ym

+ 1) such
that J (y)P(y)= 1 (mod r) and ‖J‖6 r .
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Proof. Let R ∈ Z be the resultant of P(y) (regarded as a polynomial in Z[y]) and ym
+ 1. The primes r

dividing R are exactly the primes for which P(y) fails to be invertible in (Z/rZ)[y]/(ym
+1). Therefore,

our goal is to find a prime r > 2m2q1/m such that r - Rq.
Since m is a power of two, ym

+ 1 is a cyclotomic polynomial and hence irreducible in Q[y]. Thus,
ym
+ 1 and P(y) have no common factor, and so R 6= 0. Also, we have R =

∏
α P(α) where α runs over

the complex roots of ym
+1. These roots all lie on the unit circle, so |P(α)|6m‖P‖6mq1/m . From (2-1)

we obtain m log2 m < (log2 q/(lg lg q)2) log2 log2 q 6 log2 q and so |Rq|6 (mq1/m)mq = mmq2 < q3.
On the other hand, let ϑ(x) :=

∑
p6x log p (sum taken over primes) be the standard Chebyshev

function. Combining Theorems 9, 10, and 18 of [24], one deduces the explicit estimate x/4< ϑ(x) < 2x
for all x > 8. Therefore, ∑

2x<p620x

log2 p =
1

log 2
(ϑ(20x)−ϑ(2x)) > x, x > 4.

Taking x := m2q1/m > 4, again by (2-1) we get∑
2m2q1/m<p620m2q1/m

log2 p > m2q1/m > 3 · 2(lg lg q)2 > 3 lg q > log2(q
3).

In particular, there must be at least one prime in the interval 2m2q1/m 6 r 6 20m2q1/m that does not
divide Rq.

To find the smallest such r , we first make a list of all primes up to 20m2q1/m in (m2q1/m)1+o(1) <

q1+o(1) bit operations. Then for each prime r between 2m2q1/m and 20m2q1/m , we check whether r di-
vides q in (lg q)1+o(1) bit operations, and attempt to invert P(y) in (Z/rZ)[y]/(ym

+1) in (m lg r)1+o(1)
=

(lg q)1+o(1) bit operations [27, Chapter 11]. �

Example 2.8. Continuing Example 2.2, we have r = 42602761 and

J (y)= 17106162y3
+ 6504907y2

+ 30962874y+ 8514380.

Now we come to the main step of the reduction algorithm, which is inspired by Montgomery’s method
for modular reduction [22].

Lemma 2.9. Assume that P(y), r , and J (y) have been precomputed as in Lemmas 2.3 and 2.7. Given as
input F ∈Z[y]/(ym

+1) with ‖F‖6m3(q1/m)2, we may compute a θ -representation for F(θ)/r (mod q)
in O(MSS(lg q)) bit operations.

Proof. We first compute the “quotient” Q := F J (mod r), normalized so that ‖Q‖6 r/2. This is done
by means of Kronecker substitution [27, Chapter 8]; i.e., we pack the polynomials F(y) and J (y) into
integers, multiply the integers, unpack the result, and reduce the result modulo ym

+1 and modulo r . The
packed integers have at most m(lg‖F‖+ lg r + lg m) bits, where the lg m term accounts for coefficient
growth in Z[y]. By (2-1) and Lemma 2.7, this simplifies to O(lg q) bits, so the integer multiplication
step costs O(MSS(lg q)) bit operations. This bound also covers the cost of the reductions modulo r .
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Next we compute Q P , again at a cost of O(MSS(lg q)) bit operations using Kronecker substitution.
Since ‖Q‖6 r/2 and ‖P‖6 q1/m , we have ‖Q P‖6 1

2rmq1/m .
By construction of J we have Q P = F (mod r). In particular, all the coefficients of F − Q P ∈

Z[y]/(ym
+ 1) are divisible by r . The last step is to compute the “remainder” G := (F − Q P)/r ; again,

this step costs O(MSS(lg q)) bit operations. Since r > 2m2q1/m , we have

‖G‖6
‖F‖

r
+
‖Q P‖

r
6

m3(q1/m)2

2m2q1/m +
mq1/m

2
6 mq1/m .

Finally, since P(θ)= 0 (mod q), and all arithmetic throughout the algorithm has been performed modulo
ym
+ 1, we see that G(θ)= F(θ)/r (mod q). �

Using the above reduction algorithm, we may give preliminary addition and multiplication algorithms
for elements of Z/qZ in θ -representation.

Lemma 2.10. Assume that P(y), r , and J (y) have been precomputed as in Lemmas 2.3 and 2.7. Given
as input θ-representations for u, v ∈ Z/qZ, we may compute θ-representations for uv/r and (u± v)/r
in O(MSS(lg q)) bit operations.

Proof. Let the θ-representations be given by U, V ∈ Z[y]/(ym
+ 1). We may compute F∗ := U V

in Z[y]/(ym
+ 1) using Kronecker substitution in O(MSS(lg q)) bit operations, and F± := U ± V in

O(lg q) bit operations. Note that ‖F∗‖6m‖U‖‖V ‖6m3(q1/m)2, and ‖F±‖6 ‖U‖+‖V ‖6 2mq1/m 6

m3(q1/m)2, so we may apply Lemma 2.9 to obtain the desired θ -representations. �

Example 2.11. Continuing Example 2.2, we walk through an example of computing a product of ele-
ments in θ -representation. Let

u = 1414213562373095048801689 (mod q),

v = 1732050807568877293527447 (mod q).

Suppose we are given as input the θ -representations

U (y)= 3740635y3
+ 3692532y2

− 3089740y+ 4285386,

V (y)= 4629959y3
− 4018180y2

− 2839272y− 3075767.

We first compute the product of U (y) and V (y) modulo ym
+ 1:

F(y)=U (y)V (y)= 10266868543625y3
−37123194804209y2

−4729783170300y+26582459129078.

We multiply F(y) by J (y) and reduce modulo r to obtain the quotient

Q(y)= 3932274y3
− 14729381y2

+ 20464841y− 11934644.

Then the remainder

(F(y)− P(y)Q(y))/r = 995963y3
− 1814782y2

+ 398819y+ 777998

is a θ -representation for uv/r (mod q).
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The following precomputation will assist in eliminating the spurious 1/r factor appearing in Lemmas
2.9 and 2.10.

Lemma 2.12. Assume that P(y), r , and J (y) have been precomputed as in Lemmas 2.3 and 2.7. In
q1+o(1) bit operations, we may compute a polynomial D ∈ Z[y]/(ym

+ 1) such that ‖D‖ 6 mq1/m and
D(θ)= r2 (mod q).

Proof. We may easily compute the totient function ϕ(q) in q1+o(1) bit operations, by first factoring q.
Since (r, q) = 1, we have r−(ϕ(q)−2)

= r2 (mod q). Repeatedly using the identity r−i−1
= (r−i

· 1)/r ,
we may compute θ-representations for r−1, r−2, . . . , r−(ϕ(q)−2) by successively applying Lemma 2.10.
Here we notice that we may use U = 1 as the θ -representation for 1. �

Remark 2.13. Assuming the factorization of q is known (which will always be the case in the application
in Section 3), the complexity of Lemma 2.12 may be improved to O(MSS(lg q) lg q) bit operations by
using a modified “repeated squaring” algorithm.

Example 2.14. Continuing Example 2.2, we may take

D(y)=−1918607y3
− 3680082y2

+ 2036309y− 270537.

Henceforth, we write P(q,m, θ) for the tuple (P(y), r, J (y), D(y)) of precomputed data generated
by Lemmas 2.3, 2.7, and 2.12. Given q , m, and θ as input, the above results show that we may compute
P(q,m, θ) in q1+o(1) bit operations. With these precomputations out of the way, we may state complexity
bounds for the main operations on θ -representations.

Proposition 2.15. Assume that P(q,m, θ) has been precomputed. Given as input θ-representations for
u, v ∈ Z/qZ, we may compute θ -representations for uv and u± v in O(MSS(lg q)) bit operations.

Proof. For the product, we first use Lemma 2.10 to compute a θ-representation for uv/r (mod q), and
then we use Lemma 2.10 again to multiply by D(y), to obtain a θ-representation for (uv/r)(r2)/r =
uv (mod q). The sum and difference are handled similarly. �

Remark 2.16. We suspect that the complexity bound for u± v can be improved to O(lg q), but we do
not currently know how to achieve this. This question seems closely related to Remark 2.23 below.

Proposition 2.17. Assume that P(q,m, θ) has been precomputed. Given as input a polynomial F ∈
Z[y]/(ym

+ 1) (with no restriction on ‖F‖), we may compute a θ-representation for F(θ) (mod q) in
time O(dm lg‖F‖/ lg qeMSS(lg q)).

Proof. Let b := lgdq1/m
e and n := d2m lg‖F‖/ lg qe, so that

2nb > (q1/m)n > (q1/m)2m lg‖F‖/ lg q
= 2lg‖F‖(2 log2 q/ lg q) > 2lg‖F‖.

We may therefore decompose the coefficients of F into n chunks of b bits; i.e., we may compute polyno-
mials F0, . . . , Fn−1 ∈Z[y]/(ym

+1) such that F = F0+2b F1+· · ·+2(n−1)b Fn−1 and ‖Fi‖6 2b 6 2q1/m .
(This step implicitly requires an array transposition of cost O(bmn lg m)= O(n lg q lg lg q).) Now we
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use Proposition 2.15 repeatedly to compute a θ-representation for F via Horner’s rule; i.e., first we
compute a θ -representation for 2b Fn−1+ Fn−2, then for 2b(2b Fn−1+ Fn−2)+ Fn−3, and so on. Here we
notice that 2b is already in θ -representation, since 2b 6 2q1/m 6 mq1/m . �

Proposition 2.18. Assume that P(q,m, θ) has been precomputed. Given as input an element u ∈ Z/qZ

in standard representation, we may compute a θ -representation for u in O(mMSS(lg q)) bit operations.

Proof. Simply apply Proposition 2.17 to the constant polynomial F(y)= u, noting that ‖F‖6 q . �

Corollary 2.19. Every u ∈ Z/qZ admits a θ -representation.

Remark 2.20. It would be interesting to have a direct proof of the corollary that does not rely on the
reduction algorithm. A related question is whether it is possible to tighten the bound in the definition
of θ-representation from mq1/m to q1/m . We do not know whether such a representation exists for all
u ∈ Z/qZ.

Proposition 2.21. Given as input an element u ∈Z/qZ in θ -representation, we may compute the standard
representation for u in O(mMSS(lg q)) bit operations.

Proof. Let U ∈Z[y]/(ym
+1) be the input polynomial. The problem amounts to evaluating U (θ) in Z/qZ.

Again we may simply use Horner’s rule. �

Remark 2.22. In both Propositions 2.18 and 2.21, the input and output have bit size O(lg q), but the
complexity bounds given are not quasilinear in lg q. It is possible to improve on the stated bounds, but
we do not know a quasilinear time algorithm for the conversion in either direction.

Remark 2.23. In the reduction algorithm, the reader may wonder why we go to the trouble of introducing
the auxiliary prime r . Why not simply precompute an approximation to a real inverse for P(y), i.e.,
the inverse in R[y]/(ym

+ 1), and use this to clear out the high-order bits of each coefficient of the
dividend? In other words, why not replace the Montgomery-style division with the more natural Barrett-
style division [2]?

The reason is that we cannot prove tight enough bounds on the size of the coefficients of this inverse:
it is conceivable that P(y) might accidentally take on a very small value near one of the complex roots
of ym

+ 1, or equivalently, that the resultant R in the proof of Lemma 2.7 might be unusually small. For
the same reason, we cannot use a more traditional 2-adic Montgomery inverse to clear out the low-order
bits of the dividend, because again P(y) may take a 2-adically small value near one of the 2-adic roots
of ym

+ 1, or equivalently, the resultant R might be divisible by an unusually large power of 2.

3. Integer multiplication: the recursive step (Transform)

In this section we present the recursive routine that lies is at the heart of the overall multiplication
algorithm given in Section 4. We describe first its input and output, then give an overview of the steps
and finally a complexity analysis.
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3A. Transform: the interface. Transform takes as input a (sufficiently large) power-of-two transform
length L , a prime p = 1 (mod L), a prime power q = pα such that

lg L 6 lg q 6 3 lg L lg lg L , (3-1)

a principal L-th root of unity ζ ∈ Z/qZ (i.e., an L-th root of unity whose reduction modulo p is a
primitive L-th root of unity in the field Z/pZ), certain precomputed data depending on L , q , and ζ (see
below), and a polynomial F ∈ (Z/qZ)[x]/(x L

− 1). Its output is the DFT of F with respect to ζ , that is,
the vector

F̂ := (F(1), F(ζ ), . . . , F(ζ L−1)) ∈ (Z/qZ)L .

The coefficients of both F and F̂ are given in standard representation.
The precomputed data consists of the tuple P(q,m, θ) defined in Section 2, where m and θ are defined

as follows.
First, (3-1) implies that lg q > 2(lg lg L)2 lg lg lg L for sufficiently large L , so we may take m to be

the unique power of two lying in the interval

lg q
(lg lg L)2 lg lg lg L

6 m <
2 lg q

(lg lg L)2 lg lg lg L
. (3-2)

Observe that (2-1) is certainly satisfied for this choice of m (for large enough L), as (3-1) implies that
lg lg L ∼ lg lg q .

Next, note that 2m | L , because (3-1) and (3-2) imply that m = o(lg L) = o(L); therefore, we may
take θ := ζ L/2m , so that θm

= ζ L/2
=−1.

We remark that the role of the parameter α is to give us enough control over the bit size of q, to
compensate for the fact that Linnik’s theorem does not give us sufficiently fine control over the bit size
of p (see Lemma 3.5).

3B. Transform: overview of the structure. Our implementation of Transform uses one of two algo-
rithms, depending on the size of L . If L is below some threshold, say L0, then it uses any convenient base-
case algorithm. Above this threshold, it reduces the given DFT problem to a collection of exponentially
smaller DFTs of the same type, via a series of reductions that may be summarized as follows.

(i) Use the conversion algorithms from Section 2 to reduce to a transform over Z/qZ where the input
and output coefficients are given in θ -representation. (During steps (ii) and (iii) below, all elements
of Z/qZ are stored and manipulated entirely in θ -representation.)

(ii) Reduce the “long” transform of length L over Z/qZ to many “short” transforms of exponentially
small length S := 2(lg lg L)2 over Z/qZ, via the Cooley–Tukey decomposition.

(iii) Reduce each short transform from step (ii) to a product in (Z/qZ)[x]/(x S
− 1), i.e., a cyclic convo-

lution of length S, using Bluestein’s algorithm.
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(iv) Use the definition of θ-representation to reinterpret each product from step (iii) as a product in
Z[x, y]/(x S

− 1, ym
+ 1), where the coefficients in Z are exponentially smaller than the original

coefficients in Z/qZ.

(v) Embed each product from (iv) into (Z/q ′Z)[x, y]/(x S
− 1, ym

+ 1) for a suitable prime power q ′

that is exponentially smaller than q, and large enough to resolve the coefficients of the products
over Z.

(vi) Reduce each product from (v) to a collection of forward and inverse DFTs of length S over Z/q ′Z,
and recurse.

The structure of this algorithm is very similar to that of [15]. The main difference is that it is not
necessary to explicitly split the coefficients into chunks in step (iv); this happens automatically as a
consequence of storing the coefficients in θ-representation. In effect, the splitting (and reassembling)
work has been shunted into the conversions in step (i).

3C. Transform: details and complexity analysis. We now consider each of the above steps in more
detail. We write T(L , q) for the running time of Transform. We always assume that L0 is increased
whenever necessary to accommodate statements that hold only for large L .

Step (i): convert between representations. Let Tlong(L , q) denote the time required to compute a DFT of
length L over Z/qZ with respect to ζ , assuming that the coefficients of the input F and the output F̂ are
given in θ -representation, and assuming that P(q,m, θ) is known.

Lemma 3.1. T(L , q) < Tlong(L , q)+ O(L lg L lg q).

Proof. We first convert F from standard to θ -representation using Proposition 2.18; we then compute F̂
from F (working entirely in θ -representation); at the end, we convert F̂ back to standard representation
using Proposition 2.21. By (3-1) and (3-2), the total cost of the conversions is

O(LmMSS(lg q))= O
(

L
lg q

(lg lg L)2 lg lg lg L
lg q lg lg q lg lg lg q

)
= O

(
L

lg L lg lg L
(lg lg L)2 lg lg lg L

lg q lg lg L lg lg lg L
)

= O(L lg L lg q). �

Henceforth, all elements of Z/qZ are assumed to be stored in θ-representation, and we will always
use Proposition 2.15 to perform arithmetic operations on such elements in O(MSS(lg q)) bit operations.

Step (ii): reduce to short DFTs. Let S := 2(lg lg L)2 . Given as input polynomials F1, . . . , FL/S ∈

(Z/qZ)[x]/(x S
−1) (presented sequentially on tape), let Tshort(L , q) denote the time required to compute

the transforms F̂1, . . . , F̂L/S ∈ (Z/qZ)S with respect to the principal S-th root of unity ω := ζ L/S . (Here
and below, we continue to assume that P(q,m, θ) is known.)

Lemma 3.2. Tlong(L , q) < (lg L/(lg lg L)2)Tshort(L , q)+ O(L lg L lg q).
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Proof. Let d := blg L/ lg Sc, so that lg L = d lg S + d ′ where 0 6 d ′ < lg S. Applying the Cooley–
Tukey method [6] to the factorization L = Sd2d ′ , the given transform of length L may be decomposed
into d∼ lg L/(lg lg L)2 layers, each consisting of L/S transforms of length S (with respect to ω), followed
by d ′ layers, each consisting of L/2 transforms of length 2. Between each of these layers, we must
perform O(L) multiplications by “twiddle factors” in Z/qZ, which are given by certain powers of ζ .
(For further details of the Cooley–Tukey decomposition, see for example [16, §2.3].)

The total cost of the twiddle factor multiplications, including the cost of computing the twiddle factors
themselves, is

O((d + d ′)LMSS(lg q))= O
((

lg L
(lg lg L)2

+ (lg lg L)2
)

L lg q lg lg q lg lg lg q
)

= O
(

lg L
(lg lg L)2

L lg q lg lg L lg lg lg L
)
= O(L lg L lg q).

This bound also covers the cost of the length 2 transforms (“butterflies”), each of which requires one
addition and one subtraction in Z/qZ.

In the Turing model, we must also account for the cost of rearranging data so that the inputs for each
layer of short DFTs are stored sequentially on tape. The cost per layer is O(L lg S lg q) bit operations,
so O(L lg L lg q) altogether (see [16, §2.3] for further details). �

Step (iii): reduce to short convolutions. Given polynomials G1, . . . ,GL/S, H ∈ (Z/qZ)[x]/(x S
− 1) as

input, let Mshort(L , q) denote the time required to compute the products G1 H, . . . ,GL/S H .

Lemma 3.3. Tshort(L , q) <Mshort(L , q)+ O(L(lg lg L)2 lg q).

Proof. We use Bluestein’s method [3], which reduces the problem of computing the DFT of F ∈
(Z/qZ)[x]/(x S

−1) to the problem of computing the product of certain polynomials G, H ∈ (Z/qZ)[x]/
(x S
−1), plus O(S) auxiliary multiplications in Z/qZ (for further details see [16, §2.5]). Here G depends

on F and ζ , but H depends only on ζ . The total cost of the auxiliary multiplications is

O((L/S)SMSS(lg q))= O(L lg q lg lg q lg lg lg q)= O(L(lg lg L)2 lg q). �

Step (iv): reduce to bivariate products over Z. Given as input the polynomials G̃1, . . . , G̃L/S, H̃ ∈
Z[x, y]/(x S

−1, ym
+1), all whose coefficients are bounded in absolute value by mq1/m , let Mbivariate(L , q)

denote the cost of computing the products G̃1 H̃ , . . . , G̃L/S H̃ .

Lemma 3.4. Mshort(L , q) <Mbivariate(L , q)+ O(L(lg lg L)2 lg q).

Proof. We are given as input polynomials G1, . . . ,GL/S, H ∈ (Z/qZ)[x]/(x S
− 1). Since their coeffi-

cients are given in θ -representation, we may immediately reinterpret them as polynomials G̃1, . . . , G̃L/S,

H̃ ∈ Z[x, y]/(x S
− 1, ym

+ 1), with coefficients bounded by mq1/m . By definition of θ-representation,
we have H̃(x, θ)= H(x) (mod q), and similarly for the Gi .
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After computing the products G̃i H̃ for i = 1, . . . , L/S, suppose that

(G̃i H̃)(x, y)=
S−1∑
j=0

Ai j (y)x j , Ai j ∈ Z[y]/(ym
+ 1).

Then we have (Gi H)(x) = (G̃i H̃)(x, θ) =
∑

j Ai j (θ)x j (mod q) for each i . Therefore, to compute
the desired products Gi H with coefficients in θ-representation, it suffices to apply Proposition 2.17 to
each Ai j , to compute θ -representations for all of the Ai j (θ).

Let us estimate the cost of the invocations of Proposition 2.17. We have ‖Ai j‖ 6 Sm(mq1/m)2 =

Sm3(q1/m)2, so

lg‖Ai j‖6
2 lg q

m
+ lg S+ 3 lg m <

2 lg q
m
+ (lg lg L)2+ O(lg lg L).

From (3-2) we have (lg q)/m > 1
2(lg lg L)2 lg lg lg L , so for large L ,

lg‖Ai j‖<

(
2+

3
lg lg lg L

)
lg q
m
. (3-3)

The cost of applying Proposition 2.17 for all Ai j is thus

O
(
(L/S)S

⌈
m lg‖Ai j‖

lg q

⌉
MSS(lg q)

)
= O(LMSS(lg q))= O(L(lg lg L)2 lg q). �

Step (v): reduce to bivariate products over Z/q ′Z. Let p′ be the smallest prime such that p′ = 1 (mod S);
by Linnik’s theorem we have p′ = O(S5.2). Put q ′ := (p′)α

′

where

α′ :=

⌈(
2+

4
lg lg lg L

)
lg q
m

/
lgbp′/2c

⌉
.

We have the following bounds for q ′.

Lemma 3.5. Let Ai j be as in the proof of Lemma 3.4, for i = 1, . . . , L/S and j = 0, . . . , S− 1. Then
q ′ > 4‖Ai j‖ and

lg q ′ <
(

2+
O(1)

lg lg lg L

)
lg q
m
.

Proof. In what follows, we frequently use the fact that (lg q)/m � (lg lg L)2 lg lg lg L (see (3-2)). Now,
observe that log2 q ′ = α′ log2 p′ > α′ lgbp′/2c, so by (3-3),

log2 q ′ >
(

2+
4

lg lg lg L

)
lg q
m
>

(
2+

3
lg lg lg L

)
lg q
m
+ 2> lg‖Ai j‖+ 2.

Thus, q ′ > 4‖Ai j‖. For the other direction, since lg p′ � lg S = (lg lg L)2, we have

lg q ′ 6 α′ lg p′ 6
[
(2+ 4/(lg lg lg L))(lg q)/m

lgbp′/2c
+ 1

]
lg p′ <

(
2+

O(1)
lg lg lg L

)
lg q
m
·

lg p′

lgbp′/2c
,

and lg p′/ lgbp′/2c< 1+ O(1)/ lg p′ < 1+ O(1)/(lg lg L)2. �
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Now, given as input polynomials g1, . . . , gL/S, h ∈ (Z/q ′Z)[x, y]/(x S
−1, ym

+1), let M′bivariate(L , q)
denote the cost of computing the products g1h, . . . , gL/Sh, where all input and output coefficients
in Z/q ′Z are in standard representation.

Lemma 3.6. Mbivariate(L , q) <M′bivariate(L , q)+ O(L lg q).

Proof. We may locate p′ by testing S+1, 2S+1, . . . , in SO(1)
=2O((lg lg L)2)

=O(L) bit operations, and we
may easily compute α′ and q ′ within the same time bound. Now, given input G̃1, . . . , G̃L/S, H̃ ∈Z[x, y]/
(x S
− 1, ym

+ 1), we first convert them to polynomials g1, . . . , gL/S, h ∈ (Z/q ′Z)[x, y]/(x S
− 1, ym

+ 1)
(in linear time), and then multiply them in the latter ring. The bound q ′ > 4‖Ai j‖ in Lemma 3.5 shows
that the products over Z may be unambiguously recovered from those over Z/q ′Z; again, this lifting can
be done in linear time. �

Step (vi): reduce to DFTs over Z/q ′Z. In this step we will call Transform recursively to handle cer-
tain transforms of length S over Z/q ′Z. To check that these calls are permissible, we must verify the
precondition corresponding to (3-1), namely lg S 6 lg q ′ 6 3 lg S lg lg S. The first inequality is clear
since q ′ > p′ > S. The second inequality follows from (3-2), Lemma 3.5, and the observation that
lg S lg lg S > (lg lg L)2 lg lg lg L .

Lemma 3.7. M′bivariate(L , q) < (2L/S+ 1)mT(S, q ′)+ O(L(lg lg L)2 lg q).

Proof. We start by computing various data needed for the recursive calls. We may compute a primitive
S-th root of unity in Z/p′Z in (p′)O(1)

= O(L) bit operations, and then Hensel lift it to a principal S-th
root of unity ζ ′ ∈ Z/q ′Z in (lg p′ lg q ′)O(1)

= O(L) bit operations. For q (whence q ′ and S) sufficiently
large, we have lg q ′ > lg S > 2(lg lg S)2 lg lg lg S. Just as before, this allows us to define m′ to be the
unique power of two in the interval

lg q ′

(lg lg S)2 lg lg lg S
6 m′ <

2 lg q ′

(lg lg S)2 lg lg lg S
, (3-4)

and set θ ′ := (ζ ′)S/2m′ . Using Lemmas 2.3, 2.7, and 2.12, we may compute P(q ′,m′, θ ′) in (q ′)1+o(1)
=

2O((lg lg L)2 lg lg lg L)
= O(L) bit operations.

Now suppose we wish to compute the products g1h, . . . , gL/Sh, for polynomials g1, . . . , gL/S, h ∈
(Z/q ′Z)[x, y]/(x S

− 1, ym
+ 1). We use the following algorithm.

First we use Transform to transform all L/S+ 1 polynomials with respect to x ; that is, we compute
gi ((ζ

′) j , y) and h((ζ ′) j , y) as elements of (Z/q ′Z)[y]/(ym
+1), for i = 1, . . . , L/S and j = 0, . . . , S−1.

Since Transform must be applied separately to every coefficient 1, y, . . . , ym−1, the total number of calls
is (L/S+ 1)m. Accessing the coefficient of each yk also implies a number of array transpositions whose
total cost is O((L/S)Sm lg m lg q ′)= O(L lg lg L lg q).

Next we compute the (L/S)S = L pointwise products gi ((ζ
′) j , y)h((ζ ′) j , y). Using Kronecker substi-

tution, each such product in (Z/q ′Z)[y]/(ym
+1) costs O(MSS(lg q)) bit operations, as m(lg q ′+ lg m)=

O(lg q).
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Finally, we perform (L/S)m inverse transforms with respect to x . It is well known that these may
be computed by the same algorithm as the forward transform, with ζ ′ replaced by (ζ ′)−1, followed by a
division by S. The division may be accomplished by simply multiplying through by S−1 (mod q ′); this
certainly costs no more than the pointwise multiplication step. �

Corollary 3.8. T(L , q) < ((lg L)/(lg lg L)2)(2L/S+ 1)mT(S, q ′)+ O(L lg L lg q).

Proof. This follows immediately by chaining together Lemmas 3.1, 3.2, 3.3, 3.4, 3.6, and 3.7. �

Define
T(L) :=maxq T(L , q)/(L lg L lg q),

where the maximum is taken over all prime powers q satisfying (3-1). (For large L , at least one such q
always exists. For example, take α := 1 and take q = p to be the smallest prime satisfying p= 1 (mod L);
then Linnik’s theorem implies that (3-1) holds for this q .)

Proposition 3.9. T(L) < (4+ O(1)/(lg lg lg L))T(2(lg lg L)2)+ O(1).

Proof. Dividing the bound in Corollary 3.8 by L lg L lg q yields

T(L , q)
L lg L lg q

<

(
2+

S
L

)
m lg q ′

lg q
·

T(S, q ′)
S lg S lg q ′

+ O(1).

Applying Lemma 3.5 and the estimate S/L < O(1)/ lg lg lg L yields

T(L , q)
L lg L lg q

<

(
4+

O(1)
lg lg lg L

)
T(S)+ O(1).

Taking the maximum over allowable q yields the desired bound. �

Corollary 3.10. T(L)= O(4log∗ L).

Proof. This follows by applying the “master theorem” [16, Proposition 8] to the recurrence in Proposition
3.9. Alternatively, it follows by the same method used to deduce [15, Corollary 3] from [15, Proposition 2].
The key point is that 2(lg lg L)2 is dominated by a “logarithmically slow” function of L , such as 8(x) :=
2(log log x)3 [16, §5]. �

Remark 3.11. When working with θ-representations, one may multiply an element of Z/qZ by any
power of θ in linear time, by simply permuting the coefficients. In other words, we have available “fast
roots of unity” in the sense of Fürer. Notice however that the algorithm presented in this section makes
no use of this fact!

This raises the question of whether one can design an integer multiplication algorithm that uses these
fast roots in the same way as in Fürer’s original algorithm, instead of our appeal to Bluestein’s trick.
This is indeed possible, and one does obtain a bound of the form O(n lg n K log∗ n). In this algorithm,
instead of the running time being dominated by the short transforms, it is dominated by the twiddle factor
multiplications, just as in Fürer’s algorithm. Unfortunately, this leads to a worse value of K , because of
the implied constant in Proposition 2.15.
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4. Integer multiplication: the top level

The only complication in building an integer multiplication algorithm on top of the Transform routine
is ensuring that the precomputations do not dominate the complexity. We achieve this by means of a
multivariate Kronecker-style splitting, as follows.

Proof of Theorem 1.1. Suppose that we wish to compute the product of two n-bit integers u and v,
for some sufficiently large n > 729. Let b := lg n and t := ddn/be1/6e, so that t6b > n and t 6 n1/6.
Decompose u into t6 chunks of b bits, say

u = u0+ u12b
+ · · ·+ ut6−12(t

6
−1)b,

where 06 ui < 2b for each i , and similarly for v. Let

U (x0, . . . , x5) :=

t−1∑
i0=0

· · ·

t−1∑
i5=0

ui0+ti1+···+t5i5 x i0
0 · · · x

i5
5 ∈ Z[x0, . . . , x5],

so that u =U (2b, 2tb, . . . , 2t5b), and define V (x0, . . . , x5) similarly. We store multivariate polynomials
in Z[x0, . . . , x5] using the recursive dense representation. The product U V has degree less than 2t in
each variable, so at most 64t6 terms altogether, and its coefficients are bounded by 22bt6 6 22bn 6 4n3.
We may therefore reconstruct uv from U V using a straightforward overlap-add procedure (essentially,
evaluating at (2b, 2tb, . . . , 2t5b)) in O(t6 lg n)= O(n) bit operations.

Now we consider the computation of U V . Let L be the unique power of two in the interval 2t 6 L < 4t ;
then it suffices to compute the product U V in the ring Z[x0, . . . , x5]/(x L

0 − 1, . . . , x L
5 − 1).

For i = 1, . . . , 19, let qi be the least prime such that qi = 1 (mod L) and qi = i (mod 23). Then the qi

are distinct, and by Linnik’s theorem they satisfy qi = O(L5.2)= O(t5.2)= O(n0.9), so we may locate
the qi in n0.9+o(1) bit operations. They certainly satisfy (3-1), since qi > L and lg qi 6 5.2 lg L + O(1)6
3 lg L lg lg L for large L . Moreover, for large n we have q1 · · · q19> L19> 219t19> 219(n/ lg n)19/6> 4n3,
so to compute U V it suffices to compute U V (mod qi ) for each i and then reconstruct U V by the
Chinese remainder theorem. The cost of this reconstruction is (lg n)1+o(1) bit operations per coefficient,
so (n/ lg n)(lg n)1+o(1)

= n(lg n)o(1) altogether.
We have therefore reduced to the problem of computing a product in the ring

(Z/qi Z)[x0, . . . , x5]/(x L
0 − 1, . . . , x L

5 − 1)

for each i = 1, . . . , 19. To do this, we use Transform to perform forward DFTs of length L with respect
to a suitable primitive L-th root of unity ζi in Z/qi Z (with the notations from Section 3, this means that
we take p = q = qi and ζ = ζi ) for each variable x0, . . . , x5 successively; then we multiply pointwise
in Z/qi Z; finally we perform inverse DFTs and scale the results. The necessary precomputations for
each prime qi (finding ζi , mi , and θi , and computing P(qi ,mi , θi )) require only q1+o(1)

i = n0.9+o(1) bit
operation per prime. Since one FFT-multiplication in (Z/qi Z)[x0, . . . , x5]/(x L

0 − 1, . . . , x L
5 − 1) requires

two direct multivariate transforms and one inverse multivariate transform, the total number of calls to
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Transform for each prime is 6 · (2+ 1)L5
= 18L5. The total cost of the pointwise multiplications is

n(lg n)o(1). By Corollary 3.10, this yields

M(n)= O
(

L5
19∑

i=1

T(L , qi )

)
+ n(lg n)o(1)

= O
(

L6
19∑

i=1

T(L) lg L lg qi

)
+ n(lg n)o(1)

= O((n/ lg n)4log∗ L lg n lg n)+ n(lg n)o(1)

= O(n lg n 4log∗ n). �

Postscript

During and after the conference, Dan Bernstein and Laurent Imbert pointed out to us that several authors
have previously described systems for modular arithmetic that are closely related to our θ -representation:
see [1; 5; 12].
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Cyclic extensions of prime degree and their p-adic regulators

Tommy Hofmann and Yinan Zhang

We present a conjecture on the distribution of the valuations of p-adic regulators of cyclic extensions
of Q of odd prime degree. This is based on the observation of computational data of p-adic regulators of
the 5 521 222 cyclic quintic and 329 708 cyclic septic extensions of Q for 2< p < 100 with discriminant
up to 5× 1031 and 1042 respectively, and noting that the observation matches the model that the entries
in the regulator matrix are random elements with respect to the obvious restrictions.

1. Introduction

The class group and regulator of a number field are important invariants of the field, providing information
about the multiplicative and unit group structure of the number field. These two invariants are intimately
linked by the class number formula, and following the improvements to the class group algorithm by
Buchmann [Buc90], can be computed together in the same algorithm. Despite various improvements to
the algorithm, some in recent times, an efficient algorithm to compute the class group and regulator of
arbitrary number fields remains elusive and a significant focus in computational number theory.

In [Leo62], Leopoldt introduced the p-adic regulator Rp(K ) of a number field K in his study of
p-adic L-functions, and his conjecture states that it is nonvanishing. While its classical counterpart, the
regulator of a number field, is well defined for all finite extensions of Q, the p-adic regulator is only
unambiguous for totally real or CM number fields, and very little is known about the actual value of
p-adic regulators.

Previous efforts on computing the p-adic regulators of number fields were predominantly focused on
numerical verification of Leopoldt’s conjecture, and significant practical difficulties with p-adic compu-
tations restricted efforts to compute its exact value. Indeed, this was noted in the PhD thesis of Panayi
[Pan95], who was one of the first to compute Rp(K ) explicitly.

Research on the valuation of p-adic regulators has also been limited. One investigator was Schirokauer
[Sch93, Proposition 3.8], who provided heuristic arguments regarding the p-divisibility of the units, while
Miki [Mik87] attempted to provide an upper bound on vp(Rp(K )), and Hakkarainen provided a simple
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lower bound in his PhD thesis [Hak07], along with limited heuristics using the valuation of the class
number and the class number formula.

A recent development by Fieker and Zhang [FZ16] in a p-adic class number algorithm for totally
real abelian fields allowed relatively efficient computation of the p-adic regulator of these fields. This
algorithm was used in [HZ16] to compute the p-adic regulator of the almost 16 million cyclic cubic
extensions of Q with discriminant less than 1016, and from this experimental data, the authors were able
to conjecture and provide heuristics on the distribution of the values of vp(Rp(K )).

We continue this previous work by computing the p-adic regulator for a large number of cyclic quintic
and septic extensions for 2 < p < 100. Based on this new experimental data, we extend the previous
heuristics to a conjecture for all cyclic extensions of Q with prime degree as follows.

Fix an odd prime ` and let K be the set of all cyclic extensions of Q with degree ` inside a fixed
algebraic closure of Q. Note that such extensions are necessarily totally real. For a prime p let Kun

p

and Kram
p denote the set of all fields in K which are unramified and ramified at p, respectively. Note that

Kram
p =∅ and K=Kun

p in the case p 6≡1 mod ` and p 6=`. For D>0 we set K(D)={K ∈K | |d(K )|≤D},
where d(K ) is the discriminant of K, Kun

p (D)=Kun
p ∩K(D), and Kram

p (D)=Kram
p ∩K(D). Let ord`(p)

be the multiplicative order of p modulo `, and vp be the p-adic valuation. Based on heuristics and
numerical data, we claim the following conjecture:

Conjecture 1. Let p 6= 2, ` be a prime, ord`(p)=m, `−1=mn and T ∈ {un, ram}. Then vp(Rp(K )) ∈
mZ+ vT for all K ∈ KT

p and for i ≥ 0 we have

lim
D→∞

#{K ∈ KT
p(D) | vp(Rp(K ))= mi + vT}

#KT
p(D)

=

( i+n−1
n−1

) 1
pmi

(
1−

1
pm

)n

,

where vun = `− 1 and vram = (`− 1)/2.

This paper is organised as follows: some basic definitions are recalled in Section 2. We then conjecture
a link between the distributions of vp(Rp(K )) and vp(det(M)), where M is an arbitrary matrix in a
particular form, in Section 3 (see Conjecture 1′). So far this is similar to [HZ16, §1–3], but we diverge
in Section 4 to obtain some results about solutions of linear equations in p-adic rings. Applying this to
the factorisation of det(M), we obtain Conjecture 1 in Section 5. Finally, in Section 6, we provide the
numerical data from our computations.

2. Definition and notation

Let K be a number field of degree ` and p a prime. By Cp we denote the completion of an algebraic
closure of Qp. By fixing an embedding from Cp into C, any embedding of K into Cp can be considered
as either real or complex, depending on the image of K in the composite embedding into C. Note that
for totally real or CM fields, whether an embedding from K to Cp is real or complex is independent of
the choice of embedding from Cp to C, but this is not well defined in general.
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Let (r1, r2) be the signature of K and r = r1 + r2 − 1 the unit rank. Denote by τ1, . . . , τr1 the real
and by τr1+1, τ r1+1, . . . , τr1+r2, τ r1+r2 the complex embeddings of K into Cp. Let ε1, . . . , εr be a set
of independent units of K such that, modulo torsion, the index of 〈ε1, . . . , εr 〉 in O×K is coprime to p.
Consider the submatrix formed by deleting one column of the matrix,

(δi logp(τ j (εi )))i, j ∈ Cr×(r+1)
p ,

where δi = 1 for 1≤ i ≤ r1 and δi = 2 if r1+ 1≤ i ≤ r1+ r2, and logp : C×p → Cp is the p-adic Iwasawa
logarithm (see [Iwa72]). As each row sums to zero, the determinant of such a submatrix is independent
of the column deleted, up to a sign. The value of this determinant is also independent of the choice of
the units ε1, . . . , εr , up to a p-adic unit, and is known as the p-adic regulator Rp(K ) of the number field
K.

There is an alternate definition introduced by Iwasawa [Iwa72] and subsequently implemented in the
algorithm by Fieker and Zhang [FZ16]. Instead of deleting a column in the matrix, one can add a row
of 1’s to it, and divide the determinant by `. Again, due to each row summing to zero, the value of
the determinant is unaffected. In [HZ16] it was noted that while this does have the disadvantage of
calculating the determinant of a matrix one dimension higher than necessary, it is outweighed by leaving
the structure of the original matrix intact.

If G is a compact group, we denote by µG the unique left Haar measure with µG(G) = 1. When
no confusion can arise, we just write µ instead of µG . For two integers n ∈ Z≥1, k ∈ Z we denote by
k mod n the unique representative of k+ nZ in the set {0, . . . , n− 1}.

3. p-adic regulators and regulator matrices

Let ` be a prime and denote by K a cyclic extension of Q of degree `. We start by collecting basic facts
about p-adic regulators, beginning with lower bounds, a special case of which was observed in [HZ16,
Lemma 3.1].

Proposition 2. For a prime p 6= ` we have

vp(Rp(K ))≥
{
(`− 1)/2 if p is ramified in K ,
`− 1 if p is unramified in K.

Proof. By the theorem of Ax and Brumer (see [Bru67]) we know that Leopoldt’s conjecture holds for
abelian extensions of Q and in particular Rp(K ) 6= 0. For a nonzero prime ideal p | pOK denote by νp
the number of p-power roots of unity in the completion of K at p. By [Coa77, Appendix, Lemma 5] we
know that

` · p · Rp(K )

1
1/2
K

∏
p | pOK

(νp · N (p))−1

has nonnegative p-adic valuation. Using that vp(νp)≥ 0 we obtain

vp(Rp(K ))≥
vp(1K )

2
− vp(`)− vp(p)+

`

e(p)
,
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where e(p) is the ramification index of p in K. Since K/Q is cyclic of prime degree `, we know that
if p is ramified, then e(p) = `. Moreover, as p is tamely ramified, we have vp(1K ) = `− 1 ([Ser79,
Chapter III, §7, Proposition 13]) �

Definition 3. Let R=Z[X1, . . . , X`−1] and set X0=−
∑`−1

i=1 X i . We define M`= (mi j )1≤i, j≤`∈ R`×` by

mi j =

{
1 if i = 1,
X(i+ j−2) mod ` otherwise.

We call M` the generic regulator matrix of degree `. Using the Haar measure µ on Z`−1
p we define the

random variable

P`,p : Z`−1
p −→ R≥0, (a1, . . . , a`−1) 7−→ vp(det(M`(a1, . . . , a`−1))),

where M`(a1, . . . , a`−1) is obtained by setting X i = ai in the matrix M`, so that for i ∈ Z≥0 we have
pr(P`,p = i)= µ({a ∈ Z`−1

p | vp(det(M`(a)))= i}).

The name of the generic regulator matrix is justified by the following result, which was also observed
in [HZ16, Proposition 3.2] for `= 3.

Theorem 4. Let p 6= ` be a prime. Then there exists a ∈ Q`−1
p such that vp(Rp(K )) = vp(M`(a)).

Moreover, if p is split in K, the vector a can be chosen in Z`−1
p .

Proof. Let σ be a generator of Gal(K/Q) and τ : K →Qp a p-adic embedding. For i ∈ {1, . . . , `} we
define τi = τ ◦ σ

i−1 and note that τ1, . . . , τ` are the distinct p-adic embeddings of K. Due to [Mar96]
there exists a p-Minkowski unit ε ∈O×K ; that is, modulo torsion the subgroup 〈ε, σ (ε), . . . , σ `−2(ε)〉 of
O×K has index prime to p. Thus vp(Rp(K ))= vp(det((mi j )1≤i, j≤`)), where m1 j = 1 for j ∈ {1, . . . , `}
and mi j = logp(τ j (σ

i−2(ε))) for i ∈ {2, . . . , `}, j ∈ {1, . . . , `}. Now τ j (σ
i−2)= σ (i+ j−2) mod ` and the

claim follows by setting ai = logp(σ
i−1(ε)) for i = 1, . . . , `− 1.

For the final statement first note that if p splits in K, then Qp is a p-adic splitting field of K, that is,
τi (α) ∈Qp for all α ∈ K and i ∈ {1, . . . , `}, and therefore τi (ε) ∈ Zp. �

Theorem 4 suggests that there could be a connection between the distribution of valuations of p-adic
regulators and valuations of determinants of matrices of the form M`(a), where a ∈Q`−1

p or a ∈ Z`−1
p in

the case p is split. Based on numerical observations for the quintic and septic fields, similar to [HZ16,
Conjecture 6], we conjecture that the distribution of the valuations of the p-adic regulators in cyclic
`-extensions matches that of the corresponding random variable P`,p : Z`−1

p → R, a 7→ vp(det(M`(a)))
associated to the generic regulator matrix of degree `. Although Theorem 4 supports this only in the case
p splits, numerical evidence suggests that it holds for all primes independent of the decomposition type.
The lower bound of the regulator in the conjecture comes from Proposition 2.

Conjecture 1′. For primes 2< `, p 6= ` and T ∈ {un, ram} the following holds:

lim
D→∞

#{K ∈ KT
p(D) | vp(Rp(K ))= i + vT}

#KT
p(D)

= pr(P`,p = i),

where vun = `− 1 and vram = (`− 1)/2.
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This is in agreement with the authors’ previous work, since for the cubic case ` = 3, Conjecture 1′

is equivalent to [HZ16, Conjecture 6]. Note that in the following it is shown that the value pr(P`,p)= i
on the right-hand side of Conjecture 1′ can be computed explicitly (see Theorem 9), making it possible
to gather numerical evidence for Conjecture 1′ by only investigating statistics of valuations of p-adic
regulators of cyclic number fields (see Section 6).

While it may be possible to extend [HZ16, Lemmas 4.8 and 4.9] to cover pr(P`,p= i) when ord`(p)= 1
and ord`(p)= `− 1, respectively, this would be extremely tedious due to the increasing complexity of
det(M`(a)) as ` grows, and it remains unclear whether such an approach could be adapted for arbitrary
values of `. Furthermore, this leaves the case of ord`(p) 6= 1, `− 1 unresolved, which only occurs when
` ≥ 5. For these reasons we need a different approach, and we start by obtaining some results about
solutions of linear equations in p-adic rings.

4. Solutions of linear equations

Let ` be a prime and M` ∈ Z[X1, . . . , X`−1] the generic regular matrix of degree `. To investigate the
associated random variable P`,p, where p is a prime, we will determine properties of the image of Z`−1

p

under the polynomial det(M`) ∈ Z[X1, . . . , X`−1] using the following general setup.
Let R ⊆ S be an extension of p-adic rings, that is, valuation rings of p-adic fields, such that the residue

fields have cardinalities p and q, respectively. We consider a system of k linear forms f1, . . . , fk ∈

S[X1, . . . , Xk] with k indeterminates. By M ∈ Sk×k we denote the unique matrix such that
f1(a1, . . . , ak)

f2(a1, . . . , ak)
...

fk(a1, . . . , ak)

= M


a1

a2
...

ak

 .
For the remainder of this section we assume that det(M) ∈ S×.

Lemma 5. For v1, . . . , vk ∈ Z≥0 we have

µ({a ∈ Sk
| vp( fi (a))= vi , i = 1, . . . , k})= q−s(1− q−1)k,

where s = v1+ · · ·+ vk .

Proof. Let Y be the set {(b1, . . . , bk) ∈ Sk
| vp(bi )= vi , i = 1, . . . , k}. Then

{a ∈ Sk
| vp( fi (a))= vi } = {a ∈ Sk

| ( f1(a), . . . , fk(a)) ∈ Y }

= {a ∈ Sk
| M · a ∈ Y }

= {M−1b | b ∈ Y }.

Since M is invertible and measure-preserving, this implies that

µ({a ∈ Sk
| vp( fi (a))= vi , i = 1, . . . , k})= µ(Y )=

k∏
i=1

q−vi (1− q−1)= q−s(1− q−1)k . �
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In our application, we will be mainly interested in counting solutions in Rk. While this seems rather
difficult in general, we will see that in our case, the action of the associated Galois group of the p-adic
fields on the set of polynomials { f1, . . . , fk} is of a particular simple form, reflected in the following
assumption: Assume that the field extension of the corresponding fraction fields of R and S is cyclic of
degree d with Galois group G = 〈σ 〉 and the system of linear forms f1, . . . , fk satisfies the following
property: there exists a partition { f1, . . . , fk} =

⋃l
i=1 Fi into disjoint sets Fi of cardinality d such that

G acts transitively on each Fi . For i ∈ {1, . . . , l} we write Fi = { fi,1, . . . , fi,d}. As G acts transitively
we may order the polynomials such that σ( fi, j )= fi,( j+1) mod d for all i ∈ {1, . . . , l}, j ∈ {1, . . . , d}.

Lemma 6. Let c=(ci, j )1≤i≤l,1≤ j≤d=(c1,1, . . . , c1,d , c2,1, . . . , c2,d , . . . , cl,d)∈ Sk and a=(a1, . . . , ak)∈

Sk such that M ·a= c. Then a ∈ Rk if and only if for each 1≤ i ≤ l we have ci, j = σ
j−1(ci,1) for 1≤ j ≤ d.

Proof. First assume that a ∈ Rk. We fix 1≤ i ≤ l. Since fi,1(a)= ci,1 for all 1≤ j ≤ d we have

σ j−1(ci,1)= σ
j−1( fi,1(a))= (σ j−1( fi,1))(σ (a))= fi, j (a)= ci, j .

Now assume that ci, j = σ
j−1(ci,1) for all 1≤ i ≤ l, 1≤ j ≤ d; that is, σ(ci, j )= ci,( j+1) mod d . Then

ci,( j+1) mod d = σ(ci, j )= σ( fi, j (a))= (σ ( fi, j ))(σ (a))= fi,( j+1) mod d(σ (a)),

implying that also σ(a) satisfies M · σ(a) = c. Since M is invertible it follows that a = σ(a); that is,
a ∈ Rk. �

We can now determine the number of solutions with prescribed valuation in the subring R. Since the
valuation of an element is invariant under σ , a necessary condition for the existence of solutions in R is
that the valuations in every block Fi must be equal.

Proposition 7. For v1, . . . , vl ∈ Z≥0 we have

µ({a ∈ Rk
| vp( fi, j (a))= vi , i = 1, . . . , l, j = 1, . . . , d})= p−s(1− p−d)l,

where s = d(v1+ · · ·+ vl).

Proof. By defining

Y = {(bi , σ (bi ), . . . , σ
d−1(bi ))1≤i≤l | (b1, . . . , bl) ∈ Sl, vp(bi )= vi } ⊆ Sk,

Lemma 6 shows that

{a ∈ Rk
| vp( fi, j (a))= vi , i = 1, . . . , l, j = 1, . . . , d} = {M−1b | b ∈ Y }.

The remainder of the proof is analogous to the proof of Lemma 5. �

5. Distribution for cyclic field of prime degree

Let K be a cyclic field of odd prime degree `, and p 6= 2, `. Let M` be the generic regulator matrix of K.
To find the associated random variable P`,p using the results from Section 4, we first need to determine
the factorisation of det(M`) ∈ Z[X1, . . . , X`−1].
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Proposition 8. Denote by ζ a primitive `-th root of unity and by σ : Q(ζ ) → Q(ζ ) a generator of
Gal(Q(ζ )/Q). Define f0 = X0+ ζ X1+ · · ·+ ζ

`−1 X`−1.

(1) We have

det(M`)= (−1)(`−1)/2
·NQ(ζ )/Q( f0)= (−1)(`−1)/2

·

`−2∏
i=0

σ i ( f0).

(2) For i ∈ {1, . . . , `− 2} define fi = σ
i ( f0). The matrix M ∈Q(ζ )(`−1)×(`−1) defined by f0
...

f`−2

= M

 X1
...

X`−1


satisfies det(M)2 = (−1)(`−1)/2

· ``−2.

Proof. (1) Recall that

M` =


1 1 1 · · · 1 1

X1 X2 X3 · · · X`−1 X0

X2 X3 X4 · · · X0 X1
...

...
... · · ·

...
...

X`−1 X1 X2 · · · X`−3 X`−2

 .
As X0 =−X1− X2− · · ·− X`−1, we may treat X0 as an indeterminate and prove the result for M` by
considering it as an `× ` matrix over Z[X0, . . . , X`−1]. By applying to M` the column transpositions
(i + 1, `− (i − 1)), i ∈ {1, . . . , (`− 1)/2}, we see that det(M`)= (−1)(`−1)/2

· det(N ), where

N =


1 1 1 · · · 1 1

X1 X0 X`−1 · · · X3 X2

X2 X1 X0 · · · X4 X3
...

...
... · · ·

...
...

X`−1 X`−2 X`−3 · · · X1 X0

 .
On the other hand, the circulant matrix

N ′ =


X0 X`−1 X`−2 · · · X2 X1

X1 X0 X`−1 · · · X3 X2

X2 X1 X0 · · · X4 X3
...

...
... · · ·

...
...

X`−1 X`−2 X`−3 · · · X1 X0

 .
has determinant det(N ′)= (X0+ X1+ · · ·+ X`−1) ·NQ(ζ )/Q( f0) (see [Dav79, Section 3.2]). Adding the
last `− 1 rows of N ′ to the first row of N ′, we see that

det(N ′)= (X0+ X1+ · · ·+ X`−1) · det(N ).

This shows that
det(M`)= (−1)(`−1)/2

· det(N )= (−1)(`−1)/2
·NQ(ζ )/Q( f0).



318 TOMMY HOFMANN AND YINAN ZHANG

(2) As the matrix M is equal to (σ i (ζ j ))0≤i, j≤`−2 and {ζ j
| j ∈{0, . . . ,`−2}} is an integral basis of the cy-

clotomic field Q(ζ ), we obtain det(M)2=disc(Q(ζ ))=(−1)(`−1)/2
·``−2 (see [Lan94, Chapter IV, §1]). �

We can now apply the results of Section 4 to determine P`,p.

Theorem 9. Let ord`(p)= m and `− 1= mn. Then for i ∈ Z≥0 the following holds:

pr(P`,p = mi)=
( i+n−1

n−1

) 1
pmi

(
1−

1
pm

)n

.

Proof. We use the same notation as in Proposition 8. Let i ∈ Z≥0 and v1, . . . , vn ∈ Z≥0 such that
i = v1+ · · ·+ vn .

As ord`(p) = m we know that Zp ⊆ Zp[ζ ] is an extension of degree m. Using Proposition 8, by
setting Fk = { f j | j ≡ k mod m}, k ∈ {1, . . . , n}, we find ourselves in the situation stated in Section 4,
and Proposition 7 implies

µ({a ∈ Z`−1
p | vp( fk(a))= v j , j = 1, . . . , n, fk ∈ F j })=

1
pm(v1+···+vn)

(
1−

1
pm

)n

.

As there are a total of
(i+n−1

n−1

)
choices of (v1, . . . , vn) with v1+ · · ·+ vn = i , we have

µ({a ∈ Z`−1
p | vp(det(M(a)))= mi})=

∑
v1+···vn=i

1
pm(v1+···+vn)

(
1−

1
pm

)n

=

( i+n−1
n−1

) 1
pmi

(
1−

1
pm

)n

. �

In particular, Conjecture 1 is just a reformulation of Conjecture 1′ using Theorem 9.

6. Numerical evidence

We have investigated Conjecture 1 (and Conjecture 1′) numerically for ` ∈ {5, 7}. Recall that Conjecture 1
states that for a prime p 6= 2, ` with ord`(p)= m, `− 1= mn and T ∈ {un, ram} we have vp(Rp(K )) ∈
mZ+ vT for all K ∈ KT

p and for i ≥ 0 we have

lim
D→∞

#{K ∈ KT
p(D) | vp(Rp(K ))= i + vT}

#KT
p(D)

= pr(P`,p = i),

lim
D→∞

#{K ∈ KT
p(D) | vp(Rp(K ))= mi + vT}

#KT
p(D)

=

( i+n−1
n−1

) 1
pmi

(
1−

1
pm

)n

,

where vun = `− 1 and vram = (`− 1)/2. As the right-hand side of this equation is straightforward to
calculate, only the limit on the left-hand side had to be investigated. Thus to test our conjecture we needed
algorithms to compute both a large number of cyclic extensions and their p-adic regulators. We used an
algorithm based on global class field theory as provided by Fieker in [Fie01] to obtain a list of cyclic
quintic and septic extensions. For the computation of the p-adic regulators, we relied on the methods from
Fieker and Zhang [FZ16]. A more detailed discussion of the algorithms can be found in these references.
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p #Kun
p (5 · 1031) 4 5 6 7 8 9 10

11 4 049 077 0.68249 0.24878 0.05655 0.01026 0.00162 2.37 ·10−2 3.26 ·10−3

Conjecture 1 0.68301 0.24836 0.05644 0.01026 0.00163 2.37 ·10−2 3.23 ·10−3

31 4 890 617 0.87712 0.11313 0.00913 5.67 ·10−2 3.31 ·10−3 2.04 ·10−4 2.04 ·10−5

Conjecture 1 0.87707 0.11317 0.00912 5.88 ·10−2 3.32 ·10−3 1.71 ·10−4 8.30 ·10−6

41 5 030 537 0.90597 0.08837 0.00538 2.53 ·10−2 1.15 ·10−3 1.98 ·10−5 0
Conjecture 1 0.90595 0.08838 0.00538 2.62 ·10−2 1.12 ·10−3 4.37 ·10−5 1.60 ·10−6

61 5 181 713 0.93575 0.06163 0.00252 8.49 ·10−3 1.73 ·10−4 0 0
Conjecture 1 0.93602 0.06137 0.00251 8.24 ·10−3 2.36 ·10−4 6.20 ·10−6 1.52 ·10−7

71 5 226 957 0.94495 0.05311 0.00187 5.49 ·10−3 7.65 ·10−5 0 0
Conjecture 1 0.94484 0.05323 0.00187 5.27 ·10−3 1.30 ·10−4 2.93 ·10−6 6.19 ·10−8

Table 1. Distribution of valuations of p-adic regulators where ord5(p)= 1 and p is unramified.

p #Kram
p (5 · 1031) 2 3 4 5 6 7 8

11 1 472 145 0.68262 0.24847 0.05671 0.01028 0.00161 2.47 ·10−2 3.19 ·10−3

Conjecture 1 0.68301 0.24836 0.05644 0.01026 0.00163 2.37 ·10−2 3.23 ·10−3

31 630 605 0.87763 0.11259 0.00909 6.29 ·10−2 4.28 ·10−3 1.58 ·10−4 0
Conjecture 1 0.87707 0.11317 0.00912 5.88 ·10−2 3.32 ·10−3 1.71 ·10−4 8.30 ·10−6

41 490 685 0.90685 0.08748 0.00538 2.58 ·10−2 1.42 ·10−3 0 0
Conjecture 1 0.90595 0.08838 0.00538 2.62 ·10−2 1.12 ·10−3 4.37 ·10−5 1.60 ·10−6

61 339 509 0.93634 0.06122 0.00234 8.54 ·10−3 0 0 0
Conjecture 1 0.93602 0.06137 0.00251 8.24 ·10−3 2.36 ·10−4 6.26 ·10−6 1.52 ·10−7

71 294 265 0.94497 0.05291 0.00207 4.07 ·10−3 0 0 0
Conjecture 1 0.94484 0.05323 0.00187 5.27 ·10−3 1.30 ·10−4 2.93 ·10−6 6.19 ·10−8

Table 2. Distribution of valuations of p-adic regulators where ord5(p)= 1 and p is ramified.

p #Kun
p (5 · 1031) 4 6 8 10

19 5 521 222 0.99447 0.00550 2.10 ·10−3 1.81 ·10−5

Conjecture 1 0.99446 0.00550 2.28 ·10−3 8.45 ·10−6

29 5 521 222 0.99762 0.00237 5.07 ·10−4 0
Conjecture 1 0.99762 0.00237 4.23 ·10−4 6.70 ·10−7

59 5 521 222 0.99942 5.70 ·10−2 3.62 ·10−5 0
Conjecture 1 0.99942 5.74 ·10−2 2.47 ·10−5 9.47 ·10−9

79 5 521 222 0.99967 3.24 ·10−2 0 0
Conjecture 1 0.99967 3.20 ·10−2 7.69 ·10−6 1.64 ·10−9

89 5 521 222 0.99974 2.52 ·10−2 0 0
Conjecture 1 0.99974 2.52 ·10−2 4.78 ·10−6 8.04 ·10−10

Table 3. Distribution of valuations of p-adic regulators where ord5(p)= 2.
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p #Kun
p (5 · 1031) 4 8 12 16

3 5 521 222 0.98766 0.01218 1.42 ·10−2 1.81 ·10−4

Conjecture 1 0.98765 0.01219 1.50 ·10−2 1.85 ·10−4

7 5 521 222 0.99958 4.13 ·10−2 0 0
Conjecture 1 0.99958 4.16 ·10−2 1.73 ·10−5 7.22 ·10−9

13 5 521 222 0.99996 3.54 ·10−3 0 0
Conjecture 1 0.99996 3.50 ·10−3 1.22 ·10−7 4.29 ·10−12

17 5 521 222 0.99998 1.10 ·10−3 0 0
Conjecture 1 0.99998 1.19 ·10−3 1.43 ·10−8 1.71 ·10−13

23 5 521 222 0.99999 2.71 ·10−4 0 0
Conjecture 1 0.99999 3.57 ·10−4 1.27 ·10−9 4.56 ·10−15

37 5 521 222 0.99999 1.26 ·10−4 0 0
Conjecture 1 0.99999 5.33 ·10−5 2.84 ·10−11 1.51 ·10−17

43 5 521 222 0.99999 1.81 ·10−5 0 0
Conjecture 1 0.99999 2.92 ·10−5 8.55 ·10−12 2.50 ·10−18

47 5 521 222 0.99999 1.81 ·10−5 0 0
Conjecture 1 0.99999 2.04 ·10−5 4.19 ·10−12 8.60 ·10−19

53 5 521 222 1 0 0 0
Conjecture 1 0.99999 1.26 ·10−5 1.60 ·10−12 2.03 ·10−19

67 5 521 222 1 0 0 0
Conjecture 1 0.99999 4.96 ·10−6 2.46 ·10−13 1.22 ·10−20

73 5 521 222 1 0 0 0
Conjecture 1 0.99999 3.52 ·10−6 1.23 ·10−13 4.36 ·10−21

83 5 521 222 1 0 0 0
Conjecture 1 0.99999 2.10 ·10−6 4.43 ·10−14 9.35 ·10−22

97 5 521 222 1 0 0 0
Conjecture 1 0.99999 1.12 ·10−6 1.27 ·10−14 1.44 ·10−22

Table 4. Distribution of valuations of p-adic regulators where ord5(p)= 4.

6.1. Cyclic quintic extensions. We computed the valuation of p-adic regulators for all cyclic quintic
extensions with discriminant up to 5 · 1031 for 2< p < 100, p 6= `. The computations were carried out
using Magma [BCP97]. For these 5 521 222 fields, the values

#{K ∈ KT
p(5 · 1031) | vp(Rp(K ))= j}

#KT
p(5 · 1031)

are presented in Tables 1–4 and compared to the values as predicted by Conjecture 1. Note that in Tables 1
and 2 for p = 11 the fields with vp(Rp(K )) ∈ {11, 12, 13} and vp(Rp(K )) ∈ {9} respectively have been
omitted for brevity.
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p #Kun
p (1042) 6 7 8 9 10 11

29 273 289 0.81036 0.16753 0.01990 0.00204 1.35 ·10−2 1.09 ·10−3

Conjecture 1 0.81014 0.16761 0.02022 0.00186 1.44 ·10−2 9.95 ·10−4

43 289 489 0.86861 0.12041 0.01034 5.71 ·10−2 4.97 ·10−3 3.45 ·10−4

Conjecture 1 0.86833 0.12116 0.00986 6.11 ·10−2 3.20 ·10−3 1.48 ·10−4

71 304 141 0.91805 0.07774 0.00400 1.74 ·10−2 1.31 ·10−3 0
Conjecture 1 0.91841 0.07761 0.00382 1.43 ·10−2 4.55 ·10−4 1.28 ·10−5

Table 5. Distribution of valuations of p-adic regulators where ord7(p)= 1 and p is unramified.

p #Kram
p (1042) 3 4 5 6 7

29 56 419 0.81070 0.16575 0.02164 0.00171 1.77 ·10−2

Conjecture 1 0.81014 0.16761 0.02022 0.00186 1.44 ·10−2

43 40 219 0.86861 0.12041 0.01034 5.71 ·10−2 4.97 ·10−3

Conjecture 1 0.86833 0.12116 0.00986 6.11 ·10−2 3.20 ·10−3

71 25 567 0.91977 0.07713 0.00297 1.17 ·10−2 0
Conjecture 1 0.91841 0.07761 0.00382 1.43 ·10−2 4.55 ·10−4

Table 6. Distribution of valuations of p-adic regulators where ord7(p)= 1 and p is ramified.

p #Kun
p (1042) 6 8 10

13 329 708 0.98216 0.01766 1.75 ·10−2

Conjecture 1 0.98235 0.01743 2.06 ·10−2

41 329 708 0.99814 0.00184 3.03 ·10−4

Conjecture 1 0.99821 0.00178 2.11 ·10−4

83 329 708 0.99957 4.21 ·10−2 0
Conjecture 1 0.99956 4.35 ·10−2 1.26 ·10−5

97 329 708 0.99971 2.88 ·10−2 0
Conjecture 1 0.99968 3.18 ·10−2 6.77 ·10−6

Table 7. Distribution of valuations of p-adic regulators where ord7(p)= 2.

Moreover, the conjecture predicts that the valuations occur in an arithmetic progression with an initial
value of `− 1 or (`− 1)/2 and common difference ord`(p); indeed, no valuations not in this arithmetic
progression were observed. For example, when p= 13 we have ord5(13)= 4, and the conjecture predicts
that all valuations must be multiples of 4, and no valuation that is not a multiple of 4 was observed.

6.2. Cyclic septic extensions. The same computations as in the quintic case were carried out for all
329 708 cyclic septic extensions of discriminant ≤ 1042; see Tables 5–9. Again, no valuations not
predicted by Conjecture 1 were observed in the computation.
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p #Kun
p (1042) 6 9

11 329 708 0.99857 0.00142
Conjecture 1 0.99849 0.00150

23 329 708 0.99984 1.57 ·10−2

Conjecture 1 0.99983 1.64 ·10−2

37 329 708 0.99996 3.63 ·10−3

Conjecture 1 0.99996 3.94 ·10−3

p #Kun
p (1042) 6 9

53 329 708 0.99998 1.51 ·10−3

Conjecture 1 0.99998 1.34 ·10−3

67 329 708 0.99998 1.21 ·10−3

Conjecture 1 0.99999 6.64 ·10−4

79 329 708 0.99999 3.03 ·10−4

Conjecture 1 0.99999 4.05 ·10−4

Table 8. Distribution of valuations of p-adic regulators where ord7(p)= 3.

p #Kun
p (1042) 6 12

3 329 708 0.99865 0.00134
Conjecture 1 0.99862 0.00136

5 329 708 0.99992 7.58 ·10−3

Conjecture 1 0.99993 6.39 ·10−3

17 329 708 1 0
Conjecture 1 0.99999 4.14 ·10−6

19 329 708 1 0
Conjecture 1 0.99999 2.12 ·10−6

31 329 708 1 0
Conjecture 1 0.99999 1.12 ·10−7

p #Kun
p (1042) 6 12

47 329 708 1 0
Conjecture 1 0.99999 9.27 ·10−10

59 329 708 1 0
Conjecture 1 0.99999 2.37 ·10−9

61 329 708 1 0
Conjecture 1 0.99999 1.94 ·10−9

73 329 708 1 0
Conjecture 1 0.99999 6.60 ·10−10

89 329 708 1 0
Conjecture 1 0.99999 2.01 ·10−10

Table 9. Distribution of valuations of p-adic regulators where ord7(p)= 6.
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Kiran S. Kedlaya and Anna Medvedovsky

For all odd primes N up to 500000, we compute the action of the Hecke operator T2 on the space
S2(00(N ),Q) and determine whether or not the reduction mod 2 (with respect to a suitable basis) has 0
and/or 1 as eigenvalues. We then partially explain the results in terms of class field theory and modular
mod-2 Galois representations. As a byproduct, we obtain some nonexistence results on elliptic curves
and modular forms with certain mod-2 reductions, extending prior results of Setzer, Hadano, and Kida.

1. Introduction

1.1. Computations and theorems. For N a positive integer and k a positive even integer, let Sk(00(N ),Q)

be the space of weight-k rational cusp forms for the group 00(N ), equipped with the Hecke operators Tp

for all primes p not dividing N. For N prime with 2< N < 500000, we computed the matrix of T2 acting
on some basis of S2(00(N ),Q); this was done using Cremona’s implementation of modular symbols, as
documented in [8], via the eclib package in Sage [30]. We then used the m4ri package in Sage, which
implements the “method of four Russians” [1, Chapter 9], to compute the rank of the reductions of T2

and T2− 1 mod 2. These computations took a few CPU-months; we did not make an accurate costing
because our method is almost certainly not optimal (see below).

From this data, we observed the following behavior of the mod-2 matrix of T2.

• For N ≡ 3 mod 8, the eigenvalue 0 always occurs if N > 3.

• For N ≡ 1, 3, 5 mod 8, the eigenvalue 1 always occurs if N > 163.

• For N ≡ 1 mod 8, the eigenvalue 0 occurs with probability 16.8%.

• For N ≡ 5 mod 8, the eigenvalue 0 occurs with probability 42.2%.

• For N ≡ 7 mod 8, the eigenvalue 0 occurs with probability 17.3%.

• For N ≡ 7 mod 8, the eigenvalue 1 occurs with probability 47.9%.
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These results can be partially explained (see Section 7) by combining the Cohen–Lenstra heuristics [7]
with a detailed count of the maximal ideals of the mod-2 Hecke algebra with residue field F2. The bulk
of the paper is devoted to making these counts (Theorems 2 and 12) using class field theory plus the
theory of modular Galois representations. As a byproduct, we recover some nonexistence results of
Setzer [34], Hadano [12], and Kida [18] for elliptic curves of conductor N or 2N with N prime, derived
using a totally different approach: a diophantine analysis of discriminants of Weierstrass equations due
to Ogg [26].

For N < 200000, we also computed the multiplicities of 0 and 1 as generalized eigenvalues of the
mod-2 reduction of the matrix of T2. (These multiplicities are independent of the choice of basis.)
These are somewhat more complicated to analyze because the self-adjointness of Tp with respect to the
Petersson inner product does not guarantee diagonalizability mod `; hence the computed multiplicity is
an upper bound for the count of maximal ideals, and either both are zero or both are nonzero, but more
work is needed to explain the full multiplicity. See Conjecture 13 for a step in this direction; existing
work on failure of multiplicity one in characteristic 2 (e.g., [19]) suggests that even conjecturally, it may
be difficult to formulate a more precise conjecture without allowing for some sporadic exceptions.

1.2. Motivation: tabulation of rational eigenforms. Although these results may be of independent in-
terest, for context we indicate how they were motivated by some considerations around the tabulation
of rational eigenforms. Via the modularity theorem, isogeny classes of elliptic curves of conductor N
correspond to rational newforms in S2(00(N ),Q); finding rational eigenforms within S2(00(N ),Q) is the
rate-limiting step in Cremona’s algorithm for tabulating rational elliptic curves of a given conductor, as
documented in [8] and executed to date for N ≤ 400000 [21]. (The table is also available in PARI/GP [27],
Magma [25], and Sage [30].)

Within this step of Cremona’s algorithm, the rate-limiting substep is the computation of the kernel of
Tp − ap where p is the smallest prime not dividing N and ap runs over all integers with |ap| ≤ 2

√
p.

Once this step is done, the resulting kernels are typically of much smaller dimension than the original
space, so it is of negligible difficulty to diagonalize the restrictions of enough additional Hecke operators
to isolate all one-dimensional joint eigenspaces. (The fact that this catches all rational eigenforms is a
consequence of self-adjointness and strong multiplicity one.)

Recall that linear algebra over Q is not generally performed using generic algorithms due to interme-
diate coefficient explosion; it is better to use a multimodular approach in which one does linear algebra
over F` for various small primes ` and reconstructs the final answer using the Chinese remainder theorem.
In Cremona’s implementation of his algorithm, he uses only the single prime `= 230

− 35; to date, this
has provided enough information to identify the kernel of Tp − ap.

The present work was motivated by a desire to understand the following question: to what extent (if
any) can this algorithm be accelerated using linear algebra over F` for a single small `, such as `= 2?
Of course, one does not expect the result of computing the kernel of Tp − ap mod ` to provide enough
information to identify the kernel over Q. However, for N large, the probability that S2(00(N ),Q) admits
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any rational newforms is relatively small: by analogy with the corresponding estimate for elliptic curves
sorted by naïve height [5] or Faltings height [15], one expects that only O(X5/6) of positive integers up
to X occur as levels of rational newforms. Consequently, there are likely to be many values of N for
which Tp−ap has no kernel at all over Q; if this remains true mod `, then finding this out would provide
an early abort mechanism. A more sophisticated early abort strategy would be to calculate not the rank
of Tp − ap, but rather

(contribution from level N newforms)
= (eigenvalue multiplicity of 0)−

∑
d<N , d|N

τ(N/d)(contribution from level d newforms),

where τ(n) is the number of divisors of n; an early abort occurs if this contribution modulo ` is zero.
The restriction to N prime in this paper was made for several reasons; notably, a key role in the

theoretical analysis is played by Eisenstein ideals, which are well understood for N prime by the work of
Mazur [22] but remain largely mysterious for general N (but still tractable for squarefree N, as in the work
of Yoo [39]). However, for N prime there is no need to optimize Cremona’s method: the method used by
Bennett and Rechnitzer [2] to extend the tables of Stein and Watkins [35] is sufficient to compute (rigor-
ously) a table of elliptic curves of all prime conductors up to 1010. Nonetheless, we hope that a thorough
understanding of the present situation will provide a blueprint for extending the analysis; see below.

1.3. Additional questions. We conclude this introduction with discussion of further work to be done in
this direction. To begin with, our final analysis of the experimental data remains somewhat incomplete
because our analysis of mod-2 Galois representations focuses on the ones with dihedral image; while
representations with larger image are somewhat rarer, they do appear to make measurable contributions
which we would like to see quantified.

In addition, one could repeat the analysis in other situations: one could treat nonprime N, work modulo
another prime `, consider Tp for another p, and/or work in some higher weight k. While all of these
variants are of intrinsic interest, we would like to point out some developments in the computation of
modular forms which draw attention to some particular cases. (Separately, the case of N prime, `= 2,
p > 2, k = 2 has arisen in the context of error-correcting codes [28].)

We first reconsider our choice of method to compute the Hecke actions on Sk(00(N ),Q). The method
of modular symbols is implemented in Magma and Sage, and in a specially optimized form for k = 2
in Cremona’s eclib. The approach used in PARI/GP [27] is based on trace formulas. However, for a
large-scale tabulation of rational eigenforms, we believe the best approach is the method of Birch [3]
as extended by Hein, Tornaría, and Voight [13] (see also [37]). Birch’s original method is a variant of
the Mestre–Oesterlé method of graphs [24] in the case where k = 2 and N is prime; Birch (partially)
described his method for k = 2 and N squarefree, in terms of reduction of definite quadratic forms,
while Hein, Tornaría, and Voight generalize to higher weight by considering the action of SO(3) on
nonstandard representations. Hein [14] has implemented the method in C++ for k = 2 and N squarefree;
experimenting with this code reveals several computational benefits.

• It is extremely efficient in practice.
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• The matrix of Tp is guaranteed1 to be integral (but not symmetric) and optimally sparse, with at
most p+ 1 nonzero entries per row.

• It separates eigenspaces for the Atkin–Lehner involutions, thus reducing the complexity of the re-
sulting linear algebra.

• It removes some oldforms, thus again simplifying the linear algebra. For example, if N is squarefree
with an odd number of prime factors, then no oldforms appear; if N is squarefree with an even
number of prime factors, one gets an old subspace from the smallest prime factor of N. For general N,
one sees oldforms from levels which differ from N by a square factor.

The early abort strategy of computing ranks modulo ` is potentially even more effective when using
the method of Birch, Hein, Tornaría, and Voight, due to the separation of Atkin–Lehner eigenspaces.
However, in order to realize this benefit one must probably take ` > 2, as for ` = 2 the two possible
eigenvalues of an involution come together, so there is the chance of some problematic (for our purposes)
interaction between the eigenspaces. An analysis of the case k = 2, N prime, `= 3 would be a natural
variant of what we have done here.

Moreover, for k > 2 the early abort strategy may be of even greater value, as rational newforms in
Sk(00(N ),Q) correspond to Galois representations for which there is no systematic construction avail-
able. Indeed, there is some evidence that there are only finitely many such forms for k > 4 [29]; extending
previous exhaustive searches, particularly in the borderline case k = 4, would be a natural next step.

2. Elliptic curves and their 2-torsion

For K a quadratic extension of Q, write OK for its ring of integers, Cl(K ) for its class group, h(K )
for its class number, and H(K ) for its Hilbert class field. Write Cl(K , a) for the ray class group of K
with conductor a, and h(K , a) for the order of Cl(K , a). Let p(K ) be a prime of K above (2), and write
〈p(K )〉 ⊂ Cl(K ) for the subgroup that p(K ) generates. If K is real, let u(K ) be a fundamental unit of K.

For E an elliptic curve, write NE for the conductor of E . Let ρE,2 : GQ,2NE → GL2(F2) be the mod-2
Galois representation associated to E ; it factors through G KE where KE :=Q(E[2]) has Galois group
contained in GL2(F2)∼= S3. By considering the subgroups of S3 and their embeddings in GL2(F2), we
see that exactly one of the following alternatives holds.

(i) E[2] is reducible as a Galois module, and KE is either Q or a quadratic extension of Q unramified
away from 2N. In other words, E has at least one rational 2-torsion point.

(ii) E[2] is irreducible over F2 but becomes reducible over F4, and KE is a cubic Galois extension of Q.
In other words, GQ permutes the three nonidentity points of E[2] cyclically.2

(iii) E[2] is absolutely irreducible over F2, and KE is an S3-extension of Q.
1This is not true in Cremona’s setup because projecting onto the minus part of the space of modular symbols could in

principle introduce a denominator of 2; we have yet to observe this.
2This happens, for example, for both isogeny classes of elliptic curves of conductor 196 (lmfdb.org/EllipticCurve/Q/196/)

and isogeny classes a and c of conductor 324 (lmfdb.org/EllipticCurve/Q/324/).

http://www.lmfdb.org/EllipticCurve/Q/196/
http://www.lmfdb.org/EllipticCurve/Q/324/
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Proposition 1. If NE = 2r M for some odd squarefree integer M and some r ≥ 0, then E[2] is either
reducible or absolutely irreducible.

Proof. Suppose to the contrary that KE is cubic. Let ` be an odd prime dividing NE . Since ` divides NE

exactly once, E has multiplicative reduction at `; hence the action of GQ`
on the 2-adic Tate module of E

is reducible, and likewise for the action on E[2]. However, the (unique) order-3 subgroup of GL2(F2) is{( 1
0

0
1

)
,
( 0

1
1
1

)
,
(1

1
1
0

)}
, which acts irreducibly. Therefore the image of GQ`

is trivial in GL2(F2), and so KE

is unramified at `. Since this is true for every odd ` dividing NE , KE is ramified at most at 2. But there
are no cubic extensions of Q unramified outside 2: the maximal abelian extension unramified outside 2
is Q(ζ2∞), whose Galois group is pro-2. �

In light of Proposition 1, when NE is squarefree, we say that E is reducible if E[2] is a reducible
representation of GQ and K -dihedral, or simply dihedral, if KE is an S3-extension containing a quadratic
extension K of Q.

Recall that E is ordinary (at 2) if a2(E) is odd, and supersingular (at 2) otherwise. By theorems
of Deligne and Fontaine (see Theorem 11), E is ordinary at 2 if and only if ρE,2|GQ2

is reducible. In
particular, reducible elliptic curves are ordinary.

The following theorem will be proved in Section 5.

Theorem 2. Let N be an odd prime.

(i) Every dihedral elliptic curve of conductor N is either Q(
√

N )-dihedral or Q(
√
−N )-dihedral.

(ii) Ordinary dihedral elliptic curves: For K =Q(
√
±N ), if

3 -
h(K )

#〈p(K )〉
,

then there are no ordinary K -dihedral elliptic curves of conductor N.

(iii) Supersingular elliptic curves:

(a) If N ≡ 1, 7 mod 8, then there are no supersingular elliptic curves of conductor N.
(b) If N ≡ 3 mod 8, then every supersingular elliptic curve of conductor N is Q(

√
−N )-dihedral.

(c) If N ≡ 5 mod 8, then every supersingular elliptic curve of conductor N is Q(
√

N )-dihedral.
If u(K ) 6≡ 1 mod 2OK , then there are no supersingular elliptic curves of conductor N.

(iv) Reducible elliptic curves: If N 6≡ 1 mod 8, then there are no reducible elliptic curves of conductor N.

For prime N and K = Q(
√

N ), the order of p(K ) in Cl(K ) divides 2 unless N ≡ 1 mod 8, so if
N ≡ 3, 5, 7 mod 8 then the condition 3 - (h(K )/#〈p(K )〉) in (ii) is equivalent to 3 - h(K ). Similarly, if
N 6≡ 7 mod 8 and K =Q(

√
−N ), then the condition 3 - (h(K )/#〈p(K )〉) in (ii) is equivalent to 3 - h(K ).

Theorem 2 includes a theorem of Setzer [34, Theorem 1]: if N is a prime congruent to 1 or 7 mod 8
such that 3 - h(Q(

√
±N )), then every elliptic curve of conductor N is reducible. With similar methods,

we also recover the following results of Hadano [12, Theorems II and III] and Kida [18, Theorem 3.3].
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(Kida’s original statement requires N − 64 to not be a square; for N 6= 17, this is equivalent to existence
of a reducible elliptic curve of conductor N [34, Theorem 2]. See also [12, Theorem I].)

Theorem 3 (Hadano). Let N be a prime such that 3 - h(Q(
√
±N )), h(Q(

√
±2N )).

(i) If N ≡ 1, 7 mod 8, then every elliptic curve of conductor 2N is reducible.

(ii) If N ≡ 3, 5 mod 8, there are no elliptic curves of conductor 2N.

Theorem 4 (Kida). Let N be a prime such that none of

h(Q(
√
±N )), h(Q(

√
(−1)(N−1)/2 N ), 2)

is divisible by 3. Then every elliptic curve of conductor N is reducible.

3. Representation theory preliminaries

To prepare for the proof of Theorem 2, we make some representation-theoretic calculations. Fix a prime p
and a finite field F of characteristic p, let G be any group, and let ρ : G → GL2(F) be a semisimple
representation. Let ρ(G) ⊂ GL2(F) and ρ̃(G) ⊂ PGL2(F) be the image and projective image of ρ,
respectively. Then exactly one of the following statements holds [31, Propositions 15–16].

(i) Reducible case: ρ̃(G) is a cyclic group Cn . In other words, ρ is reducible (over F), a sum of two
characters χ ⊕χ ′, and the order of χ/χ ′ is n.

(ii) Dihedral case: ρ̃(G) is a dihedral group Dn of order 2n with n ≥ 2. In other words, ρ is irreducible
but there is an index-2 subgroup H of G, determined uniquely if n ≥ 3, so that ρ|H splits as a sum
of two characters.

(iii) Exceptional case: ρ̃(G) is isomorphic to A4, S4, or A5.

(iv) Big-image case: ρ̃(G) contains PSL2(Fq) for some q ≥ 5, but ρ(G) 6= SL2(F5).3

Call ρ reducible, dihedral, exceptional, or big-image accordingly.

3.1. The dihedral case in detail.

3.1.1. Inducing a character. Let H ⊂ G be a normal subgroup. Any character ψ : H→ F× to a field F
may be twisted by any g ∈ G to obtain a new character gψ , defined by gψ(h) := ψ(g−1hg). Because ψ
factors though an abelian quotient of H, one can show that gψ depends only on the class g of g in G/H .
We therefore write gψ for the twist of ψ by g ∈ G/H .

Now suppose that H ⊂G has index 2 and take ρ to be the induced representation IndG
H ψ :G→GL2(F).

Let εH be the (at most quadratic) character of G that takes H to 1 and G−H to−1. Let g be the nontrivial
element of G/H . The following are well known (e.g., see [32, 7.2.1]):

(i) ρ|H = ψ ⊕ gψ ;

3The restrictions are explained by exceptional isomorphisms for small primes: SL2(F2) ∼= D3, PSL2(F3) ∼= A4,
PGL2(F3)∼= S4, PSL2(F4)= PGL2(F4)∼= A5, and PSL2(F5)∼= A5.
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(ii) ρ is an irreducible representation of G if and only if ψ 6= gψ ;

(iii) det ρ = εH ·ψ(VerG
H ), where VerG

H : G→ H ab is the Verlagerung (transfer) homomorphism taking
x ∈ G to xg−1xg;4

(iv) ρ̃(G)∼= Dn , where n is the order of gψ/ψ (assuming ψ has finite order).

3.1.2. Dihedral representations. Conversely, suppose that ρ : G→ GL2(F) is a dihedral representation
with ρ̃(G)= Dn . If n ≥ 3, then Dn contains a unique index-2 subgroup isomorphic to Cn .5 Let H ⊂ G
be the inverse image of that cyclic subgroup under the map G→ GL2(F)→ PGL2(F). Since ρ̃(H) is
a cyclic group, ρ|H is a reducible representation, a sum of two characters, each defined over an at-most-
quadratic extension of F. Let ψ : H → F× be one of these characters. Then Frobenius reciprocity and
dimension considerations guarantee that the map IndG

H ψ→ ρ induced by ψ→ ρ|H is an isomorphism.

3.1.3. The image of a dihedral representation. Suppose further that ρ is a faithful dihedral representation
of G. With H, ψ , and gψ as above, we have the following:

Lemma 5. (i) kerψ ∩ ker gψ = 1.

(ii) H is an abelian subgroup of G.

(iii) If kerψ ⊂ H is normal in G, then ψ is faithful, so H is cyclic.

The proofs are straightforward but not completely standard, so we include them.

Proof. (i) We know that ρ|H = ψ ⊕ gψ and we have assumed that ker ρ is trivial.

(ii) The commutator of any two elements of H is in both kerψ and ker gψ ; now use part (i).

(iii) By part (ii), G/H acts on H by conjugation, and ker gψ is the image of kerψ under the action of
the nontrivial element. Now use (i). �

Note that even if ψ is faithful and H is finite cyclic of order n and the sequence

1→ H → G→ G/H → 1

splits (i.e., there is an order-2 element in G− H ), we cannot conclude that G is isomorphic to Dn: the
dicyclic groups give a counterexample for every even n.

3.1.4. Translating to Galois representations. Let ρ : GQ→ GL2(F) be a finite-image dihedral repre-
sentation such that |ρ̃(GQ)| ≥ 6. Let K be the quadratic extension of Q for which [ρ̃(GQ) : ρ̃(G K )] = 2,
so that ρ|G K is reducible. Let ψ : G K → F× be a character appearing in ρ|G K and let Lψ be the fixed
field of kerψ . If Lψ/Q is Galois, then Lψ = ker ρ. Otherwise, writing Gal(K/Q)= {1, σ }, we obtain
the twist σψ ; its fixed field Lσψ is the image σ̃ (Lψ)⊂Q for any lift σ̃ of σ to GQ, and ker ρ =: M is
the compositum Lψ Lσψ (inside Q). In particular, it is clear that M is an abelian extension of K.

4One can show that ψ(VerG
H ) takes x ∈ H to ψ gψ(x) and takes x ∈ G− H to ψ(x2).

5For n = 2, there are three such subgroups. But n is the order of a character to F×p (see Section 3.1.1(iv)) and hence prime
to p; as we will later restrict to p = 2, we ignore n = 2 here.
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3.1.5. Artin conductor formulas. We will also make use of the following formula (see, for example, [36,
Corollary 1]) for the Artin conductor of IndQ

K ψ in terms of the Artin conductor of ψ :

cond(IndQ
K ψ)= |1K |N K

Q (condψ), (3-1)

where N K
Q

is the field norm and 1K is the discriminant of K.
If F is a finite extension of Fp or a p-adic field, we will denote the tame or prime-to-p Artin conductor

by cond(p). The analogous formula holds:

cond(p)(IndQ
K ψ)= |1

(p)
K |N

K
Q (cond(p) χ). (3-2)

Here 1(p)K is the prime-to-p part of the discriminant of K.

3.2. Mod-2 dihedral Galois representations. From now on, we work with F = F, a finite extension
of F2. Suppose that ρ = IndQ

K ψ : GQ→ GL2(F) is a K -dihedral representation for some quadratic K
over Q and ray class (i.e., Hecke) character ψ : G K → F×.

3.2.1. Implications of det ρ = 1. Again, let Lψ be the fixed field of kerψ .

Lemma 6. If det ρ = 1, then Lψ is Galois over Q.

Proof. If det ρ = 1, then considering det ρ on the subgroup G K , we see that σψ = ψ−1. Therefore Lψ is
also the fixed field of ker σψ , which means that Lψ/Q is Galois and Lψ is the fixed field of ker ρ. �

3.2.2. The conductor of ψ . Let a be the conductor of ψ . Since we work in characteristic 2, we are only
interested in odd-order ψ here; we thus ignore consideration of any real places of K and view a as an
integral ideal of K. We have a standard exact sequence relating the class group Cl(K ) to the ray class
group Cl(K , a):

O×K → (OK /a)
×
→ Cl(K , a)→ Cl(K )→ 1. (3-3)

Lemma 7. If a= qn is a power of a prime of OK lying over a prime q of Z, then

[Cl(K , a) : Cl(K )] divides
{
(q − 1)qk for some k ≥ 0 if (q) splits or ramifies in K,
(q2
− 1)qk for some k ≥ 0 if (q) is inert in K.

Proof. This is immediate from sequence (3-3) in light of the exact sequence

1→ 1+ qnOK → 1+ qOK → (OK /q
n)×� (OK /q)

×
→ 1, (3-4)

combined with the fact that 1+ qOK is pro-q . �

Corollary 8. (i) If 2 ramifies or splits in K, then any Hecke character ψ : G K → F× of modulus 2nOK

has trivial conductor and hence factors through Cl(K ).

(ii) If 2 is inert in K, then any Hecke character ψ : G K → F× of modulus 2nOK has conductor dividing
2OK and hence factors through Cl(K , (2)).

Proof. (i) If 2 ramifies in K, then this follows immediately from Lemma 7, since (q − 1)qn is a power
of 2. If 2 splits as 2OK = pp′, then argue as in Lemma 7, noting that by the Chinese remainder theorem,
(OK /(2OK )

n)× = (OK /p
n)×× (OK /p

′n)×.
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N mod 8
K =Q(

√
N ) K =Q(

√
−N )

(2) in K h(K ) #〈p(K )〉 (2) in K h(K ) #〈p(K )〉

1 splits odd varies ramifies even > 4 2

3 ramifies odd 1 inert odd 1

5 inert odd 1 ramifies 2·odd 2

7 ramifies odd 1 splits odd varies

Table 1. Class number parity and splitting of 2 in Q(
√
±N ) for N prime.

(ii) From the proof of Lemma 7 and (3-4), it’s clear that the only odd contribution to [Cl(K , (2)n) :Cl(K )]
comes at n = 1. �

3.2.3. The local behavior of ρ. Fixing an embedding ι : GQ2 ↪→ GQ, we can consider the restriction ρ2

of ρ to GQ2 . Let p be the prime of OK above 2 corresponding to ι, and let ψ2 be the restriction of ψ
to G Kp . Then ρ2 is reducible if and only if either

(i) 2 splits in K, or

(ii) 2 is inert or ramified in K and σψ2=ψ2. (Note that σ is in the decomposition group at p in this case.)

3.3. Mod-2 dihedral Galois representations of prime conductor. Retaining the notation (F, ρ, K, ψ)
from the previous subsection, we now additionally suppose that N is an odd prime and ρ has (tame Artin)
conductor N. The induced tame conductor formula (3-2) guarantees that either

1
(2)
K = (1), N K

Q (cond(2) ψ)= (N ) or 1
(2)
K = (N ), N K

Q (cond(2) ψ)= (1).

We analyze each scenario in turn.

3.3.1. First scenario: 1(2)K = (1) and N K
Q
(cond(2) ψ)= (N ). Here, K =Q(i) or Q(

√
±2 ), and N splits

in K as (N )= qq′ with cond(2) ψ = q. Hence ψ is a ray class character of conductor qa for some ideal a
of K divisible only by primes above 2.

Lemma 9. In this scenario, det ρ : GQ→ F× is a nontrivial character.

Proof. Since condψ is not Galois-invariant, Lψ is not Galois over Q. Lemma 6 then implies the desired
conclusion. �

3.3.2. Second scenario: 1(2)K = (N ) and N K
Q
(cond(2) ψ) = (1). Here, K = Q(

√
±N ) or Q(

√
±2N )

and ψ is a ray class character of conductor dividing (2OK )
n.

Corollary 10. In this scenario, ψ factors through Cl(K ) unless

• N ≡ 5 mod 8 and K =Q(
√

N ) or

• N ≡ 3 mod 8 and K =Q(
√
−N ),

in which cases ψ factors through Cl(K , (2)).

Proof. Combine Corollary 8 with the ramification of 2 in Q(
√
±N ): see Table 1. �
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3.4. Mod-2 modular Galois representations of weight 2. We now suppose that N is an odd integer (not
necessarily prime) and f ∈ S2(00(N ),Z2) is a normalized weight-2 Hecke eigenform of level N. By
a theorem of Breuil, Conrad, Diamond and Taylor [4], such f with coefficients in Q correspond pre-
cisely to isogeny classes of elliptic curves E of conductor N, with the `-th Fourier coefficient satisfying
a`( f )= `+1−#E(F`) for all primes ` - 2N. As for elliptic curves, the form f is ordinary or supersingular
according to whether a2( f ) is a unit in Z2. Reducing any GQ-stable lattice of the Galois representation
associated by Eichler and Shimura to f , we obtain a mod-2 representation ρ f : GQ→ SL2(F2) which for
prime ` - 2N is unramified at ` and satisfies Tr ρ f (Frob`)= a`( f ), where a`( f ) ∈ F2 is the mod-2 reduc-
tion of a`( f ). If f corresponds to an elliptic curve E (up to isogeny) then ρ f is the representation ρE,2

(up to semisimplification) discussed in Section 2.
Fixing a prime of Q above 2, we consider the corresponding decomposition group of GQ, which one

can identify with the absolute Galois group GQ2 = Gal(Q2/Q2) of the local field Q2. The following
theorem relates the shape of the local representation ρ f,2 := ρ f |GQ2

to the invertibility of a2( f ). In the
statement and the proof, Qp2 refers to the unique unramified degree-2 extension of Qp.

Theorem 11 (Deligne, Fontaine, Edixhoven, Serre). One of the following holds.

(i) ρ f,2 is reducible, in which case f is ordinary, and

ρ f,2 ∼

(
λ−1
∗

0 λ

)
,

where λ : GQ2 → F
×

2 is the unramified character sending Frob2 to a2( f ).
Moreover ρ f,2 is at most peu wildly ramified in the sense of Serre.6

(ii) ρ f,2 is irreducible, in which case f is supersingular. In this case, ρ f,2 is the induction of a character
of GQ4 (the second fundamental character) and is therefore at most tamely ramified.

Proof. Write p in place of 2 to avoid confusion with weight 2. For the shape of ρ f,p, see Edixhoven
[10, Theorems 2.5 and 2.6]. In the ordinary case, since f has level prime to p and weight 2, ρ f,p is
finite at p: it arises from a finite flat group scheme over Zp (the p-torsion of a certain abelian variety
of GL2-type), forcing ρ f,p to be at most peu wildly ramified [10, Proposition 8.2]. In the supersingular
case, ρ f,2 is at most tamely ramified, by [31, Proposition 4]; for the description of ρ f,p as the induction
of the second fundamental character of GQp2 , see [33, §2.2]. �

4. Mod-2 dihedral representations appearing in weight 2

Before proving Theorem 2, we state an analogous theorem for cuspforms of weight 2: see Theorem 12
below. As many of the arguments are identical, the two theorems will be proved together in Section 5.

6An extension M/Qp is at most peu wildly ramified if M = M tr(α
1/p
1 , . . . , α

1/p
d ), where M tr/Qp is the at most tamely

ramified subextension of M, and the αi can be taken to be units in M tr. If M is still an elementary p-extension of M tr but at
least one of the αi must be a nonunit, then M is très wildly ramified. See [33, 2.4.ii]. A representation of Gal(Qp/Qp) as usual
inherits the ramification properties of the fixed field of its kernel.
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For N an odd squarefree positive integer, we study the distribution of generalized T2-eigenvalues
on S2(00(N ), F2)

new. Write m(N ) for the dimension of this space. For α ∈ F2, write m(N , α) for
the dimension of the generalized kernel of T2−α on this space (i.e., the dimension of the generalized
eigenspace corresponding to T2-eigenvalue α). Let mord(N ) := m(N ) − m(N , 0), the dimension of
the ordinary subspace. Our aim will be to give lower bounds on mord(N ), m(N , 1), and m(N , 0) by
enumerating dihedral forms with multiplicities. Note that, for squarefree N, forms defined over F2 will
be either dihedral or reducible (that is, the analog of Proposition 1 holds).

To this end, write S2(N ) := S2(00(N ), F2)
new and let T2(N ) := T2(N , F2)

new be the shallow Hecke
algebra acting on S2(N ). In other words, T2(N ) is the (commutative) F2-algebra generated inside
End

F2
(S2(N )) by the action of all the Hecke operators Tn with n prime to 2N. Then T2(N ) is a semilocal

artinian ring whose maximal ideals m correspond to mod-2 Hecke eigensystems appearing in S2(N ). For
` prime to 2N, let a`(m) ∈ F2 be the T`-eigenvalue corresponding to m; note that m is generated by the
T` − a`(m) for ` - 2N. By Serre reciprocity (that is, Serre’s conjecture [33], now known by work of
Khare and Wintenberger [16; 17], Kisin [20], and Dieulefait [9]), the maximal ideals m also correspond
to semisimple Galois representations ρm :GQ,2N→ SL2(F2) that are at most peu wildly ramified at 2. The
correspondence is codified by the Eichler–Shimura relation a`(m)= trρm(Frob`). Theorem 11 implies
that, given m, one can determine whether a2(m) is 0 or 1; otherwise a2(m) is only defined up to inverse.7

We decompose T2(N ) as a product of localizations at its maximal ideals, and correspondingly decom-
pose S2(N ) into generalized m-eigenspaces S2(N )m:

T2(N )=
∏
m

T2(N )m, S2(N )=
⊕
m

S2(N )m.

Note that if m⊂T2(N ) is a maximal ideal, then the eigenspace S2(N )[m] is nonzero, so that the dimension
of the generalized eigenspace S2(N )m is at least 1.

We say that a maximal ideal m of T2(N ) is reducible, dihedral, exceptional, or big-image if ρm has
the corresponding property. Similarly, we say that m is supersingular or ordinary if ρm is so at 2.

We determine the fields K for which there exist K -dihedral m occurring in T2(N ) for N prime and
how many such m there are (Theorem 12 below). In Section 6, we study the multiplicity of S2(N )m in
each case (Conjecture 13 and Proposition 14).

Theorem 12. Let N be an odd prime, and m⊂ T2(N ) a maximal ideal.

(i) If m is dihedral, then it is either Q(
√

N )-dihedral or Q(
√
−N )-dihedral.

(ii) Ordinary dihedrals: For K = Q(
√
±N ), there are exactly 1

2(h(K )
odd
− 1) ordinary K -dihedral

maximal ideals in T2(N ). Of these, 1
2(h(K )

odd,2-split
− 1) have a2(m)= 1.

7Note that a2(m) is not in general the trace of a Frobenius element at 2 of the ρm corresponding to m (indeed, ρm may
be ramified at 2). Therefore a2(m) is not a priori determined by m. In fact, a2(m) may not even be defined over the field of
definition of ρm. This happens, for example, in level 257 for the Q(

√
257 )-dihedral Galois orbit of forms.
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(iii) Supersingular dihedrals:

(a) If m is supersingular K -dihedral, then either N ≡ 3 mod 8 and K =Q(
√
−N ), or N ≡ 5 mod 8

and K =Q(
√

N ).
(b) Let N ≡ 3 mod 8 and K = Q(

√
−N ). If N > 3, then there are exactly h(K ) supersingular

maximal ideals of T2(N ).
(c) Let N ≡ 5 mod 8 and K =Q(

√
N ). If u(K )≡ 1 mod 2OK , then there are h(K ) supersingular

maximal ideals of T2(N ); otherwise, there are none.

(iv) Reducibles: If N ≡ 1 mod 8, then there is one reducible maximal ideal of T2(N ), generated by T`
for every prime ` - 2N ; otherwise, there are none.

Note that h(Q(
√

N )) is always odd, and h(Q(
√
−N )) is even only for N ≡ 1 mod 4. Note also that

a prime p above 2 of K = Q(
√
±N ) has order 1 or 2 in the class group unless N ≡ ε mod 8 and

K =Q(
√
εN ) for ε =±1, so the 2-split condition is vacuous outside those two cases.

5. Proofs of theorems

We prove the various parts of Theorems 2 and 12 in parallel. We then adapt the ideas to recover the
theorems of Hadano (Theorem 3) and Kida (Theorem 4).

5.1. Proof of part (i). Suppose that f ∈ S2(N ) is a K -dihedral modular form for some quadratic exten-
sion K of Q (corresponding to an elliptic curve for Theorem 2 or to a maximal ideal of the Hecke algebra
for Theorem 12). Since ρ f factors through an extension of Q unramified outside of 2 and N, K must be
one of the following:

Q(
√

N ), Q(
√
−N ), Q(

√
−1 ), Q(

√
2 ), Q(

√
−2 ), Q(

√
2N ), Q(

√
−2N ).

If K =Q(
√
±2 ) or Q(

√
±2N ), then K is très wildly ramified at 2 [33, §2.6, Exemple], so no modular

form of weight 2 (and in particular no elliptic curve) can be K -dihedral (Theorem 11). If K =Q(
√
−1 ),

then we are in the first scenario of Section 3.3, and Lemma 9 guarantees that a K -dihedral representation
cannot come from a 00(N )-modular form. Thus K =Q(

√
±N ), as claimed.

5.2. Proof of part (ii). Suppose K = Q(
√
±N ) and f ∈ S2(N ) is a K -dihedral ordinary form, with

ρ = ρ f = IndQ
K ψ for some character ψ of G K ramified only at primes above 2 (Section 3.3.2). Write

H = H(K ) and p= p(K ). Let L be the fixed field of kerψ . Since det ρ = 1, by Lemma 6 the extension
L/Q is Galois. Choose a prime P of L above p, and write ψ2 for the restriction of ψ to Gal(LP/Kp).

We first show that ψ is in fact unramified at 2, and hence will factor through H odd, the maximal odd-
degree subextension of H. By Corollary 10 and Table 1, ψ is unramified in all cases except possibly
when 2 is inert in K. In that case, ρ f,2 = IndQ2

Kp
ψ2, so by 3.1.1(ii) we know that ψ2 =

σ2ψ2 for σ2 a
generator of Gal(Kp/Q2). In this case, Theorem 11(i) tells us that ψ2 is unramified above 2, as then is ψ .
In fact, the determinant condition further forces σ2ψ2 = ψ

−1
2 , which implies ψ2 = 1 because we are in

characteristic 2.
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Next, from Theorem 11(i), the condition a2( f )= 1 is equivalent to the condition ψ2= 1, which exactly
means that ψ factors through H odd,2-split, the maximal odd subextension of H over K in which 2 splits
completely.

To complete the proof of Theorem 2(ii), we observe that [H odd,2-split
: K ] = h(K )odd/#〈p〉. If ρ comes

from a K -dihedral elliptic curve, then it has image D3, so ψ must have order 3. So a K -dihedral elliptic
curve of conductor N is only possible if 3 divides h(K )odd/#〈p〉, or equivalently h(K )/#〈p〉.

To complete the proof of Theorem 12(ii), we recall that in general, IndQ
K ψ = IndQ

K ψ
′ if and only if

ψ = ψ ′ or σψ = ψ ′ for σ a generator of Gal(K/Q). In our unit-determinant case, σψ = ψ−1. Therefore
there are 1

2(h(K )
odd
−1) distinct ordinary K -dihedral ρ, as claimed. The a2= 1 condition works similarly.

5.3. Proof of part (iii). Suppose that K = Q(
√
±N ) and that f ∈ S2(N ) is a K -dihedral form with

ρ = ρ f = IndQ
K ψ for some character ψ of G K ramified only at primes above 2. Maintain the notation H,

p, σ , ρ2 as above. As in the second paragraph of Section 5.2, ψ does not factor through H (or else ρ2

would be reducible, contradicting Theorem 11). Therefore ψ must be a character of Cl(K , a) for some
ideal a of K divisible only by primes above 2. By Corollary 8, a = (2) and either N ≡ 3 mod 8 and
K =Q(

√
−N ), or N ≡ 5 mod 8 and K =Q(

√
N ).

Now suppose we are in one of these two cases. Since σψ = ψ−1, the character σψ will also factor
through H(K , (2)) and not through H. This gives exactly 1

2(h(K , (2))− h(K )) representations, and
hence maximal ideals of T2(N ).

The formulations in part (b) of Theorem 12 and part (c) of both theorems come from analyzing the
sequence (3-3) from the proof of Lemma 7. For N congruent to 3 modulo 8, we have K =Q(

√
−N ), so

OK =

{
{±1} if N > 3,
{±1,±ω,±ω2

} if N = 3,

for ω a cube root of unity in Q(
√
−3). Since (2) is inert in K, we have OK /(2) = F4. Therefore, for

N > 3 (still congruent to 3 modulo 8), sequence (3-3) becomes

{±1} → F×4 → H(K , (2))→ H(K )→ 1,

so that h(K , (2)) = 3h(K ). For N = 3, the global units exactly cancel out the mod-(2) units, so
that h(K , (2)) = h(K ). For N congruent to 5 modulo 8, we still have OK /(2) = F4, but this time
OK = {±1}× uZ for some fundamental unit u = u(K ), and therefore we similarly have the two cases

h(K , (2))=
{

3h(K ) if u maps to 1 in (OK /(2))×,
h(K ) otherwise.

5.4. Proof of part (iv). If N 6≡ 1 mod 8, then 2 is not an Eisenstein prime for N (see Mazur [22] or
Mazur and Serre [23]), so there are no cuspforms in S2(N ,Z) congruent to the Eisenstein series E2,N

modulo 2, which carries the unique reducible maximal ideal in squarefree level. In particular, there are
no rational newforms whose associated mod-2 Galois representation is reducible.

This completes the proof of Theorem 2 and Theorem 12.



338 KIRAN S. KEDLAYA AND ANNA MEDVEDOVSKY

5.5. Proof of Theorem 4. By Theorem 12(ii), the condition 3 - h(Q(
√
±N )) rules out the existence of

an ordinary elliptic curve of conductor N. For a supersingular elliptic curve, with notation as in the proof
of Theorem 12(iii), K =Q(

√
(−1)(N−1)/2 N ) and ψ is a nontrivial order-3 character of H(K , (2)); this

is ruled out by assuming that 3 - h(K , (2)). This completes the proof of Theorem 4.

5.6. Proof of Theorem 3. We now change notation to address Theorem 3. Let N be a prime such that
3 - h(K ) for K =Q(

√
±N ),Q(

√
±2N ), and let E be an elliptic curve of conductor 2N. Let f ∈ S2(2N )

be the corresponding modular form and let m⊆T2(2N ) be the corresponding maximal ideal. Since E has
multiplicative reduction at 2, f is ordinary and the conclusion of Theorem 11(i) holds. By Proposition 1,
m is either reducible or ordinary dihedral.

In the reducible case, m is an Eisenstein ideal; by the proof of [39, Theorem 6.1], the difference of
the cusps of X0(2N ) corresponding to 1, 1/2 ∈ P1(Q) must have even order in the Jacobian. By [39,
Theorem 1.3] this order is the numerator of (N 2

− 1)/8, forcing N ≡ 1, 7 mod 8.
In the ordinary dihedral case, by Lemma 9 we must be in the second scenario of Section 3.3; that

is, ρ f = IndQ
K ψ where K is one of Q(

√
±N ) or Q(

√
±2N ) and ψ is an order-3 character of G K

ramified only at primes above 2. As in Section 5.2, we see that ψ is also unramified at 2 and so factors
through Cl(K ); however, this contradicts the hypothesis that 3 - h(K ).

This completes the proof of Theorem 3.

6. Multiplicities of mod-2 dihedral cuspforms in weight 2

The following conjecture8 complements Theorem 12. Note that the fact that m⊂ T2(N ) is a maximal
ideal automatically implies that dim S2(N )m ≥ 1.

Conjecture 13. Let N be an odd prime and m a maximal ideal of T2(N ).

(i) Suppose N ≡ 1 mod 8.

(a) If m is Q(
√

N )-dihedral, then dim S2(N )m ≥ 4.
(b) If m is Q(

√
−N )-dihedral, then dim S2(N )m ≥ h(−N )even.

(c) If m is reducible, then dim S2(N )m ≥ 1
2(h(−N )even

− 2).

(ii) Suppose N ≡ 5 mod 8.

(a) If m is ordinary Q(
√

N )-dihedral, then dim S2(N )m ≥ 4.
(b) If m is Q(

√
−N )-dihedral, then dim S2(N )m ≥ 2.

(iii) Suppose N ≡ 3 mod 4 and K =Q(
√
±N ).

(a) If m is ordinary K -dihedral, then dim S2(N )m ≥ 2.

In the case that N ≡ 9 mod 16, part (i c) has been proved by Calegari and Emerton [6, Theorem 1.1]:
indeed, they establish that dim S2(N )m = 1

2(h(Q(
√
−N ))even

− 2) for the unique reducible m in this case.

Proposition 14. Part (iii) of Conjecture 13 is true when K =Q(
√
−N ).

8Added in proof: Frank Calegari reports that some progress towards these conjectures has been made by Noah Taylor.
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Proof. If K =Q(
√
−N ), and N ≡ 3 mod 4 is a prime, and ε= εK , there are exactly 1

2(h(K )−1) distinct
K -dihedral forms in S1(N , ε,C) corresponding to inductions of characters ψ :Gal(H(K )/K )→C× (see,
for example, [32, §8.1.I] for details). Since h(K ) is odd, all of these reduce to distinct representations
modulo 2, so that S1(N , εK , F2)

K -dih splits as a Hecke module into a direct sum of 1
2(h(K )−1) nonisomor-

phic one-dimensional lines spanned by ordinary forms. The two maps S1(01(N ), F2) ↪→ S2(01(N ), F2)

given by f 7→ f 2 and f 7→ E1,ε f preserve Hecke eigenspaces (the former because we are in char-
acteristic 2; the latter because E1,ε in characteristic zero lifts the Hasse invariant9) and are linearly
independent [11, Proposition 4.4]. Since ε is quadratic, we obtain a Hecke equivariant embedding
(S1(N , ε, F2)

K -dih)2 ↪→ S2(N , F2) that doubles the eigenspace. �

7. Comparison with experimental results

To conclude, we compare our results to the empirical assertions about the mod-2 reduction of T2 acting
on S2(00(N ),Q) for N prime from the introduction.

• For N ≡ 3 mod 8, the eigenvalue 0 always occurs if N > 3.

• For N ≡ 1, 3, 5 mod 8, the eigenvalue 1 always occurs if N > 163.

• For N ≡ 1 mod 8, the eigenvalue 0 occurs with probability 16.8%.

• For N ≡ 5 mod 8, the eigenvalue 0 occurs with probability 42.2%.

• For N ≡ 7 mod 8, the eigenvalue 0 occurs with probability 17.3%.

• For N ≡ 7 mod 8, the eigenvalue 1 occurs with probability 47.9%.

Of these, the first assertion is implied by part (iii b) of Theorem 12 and the second assertion is implied
by part (ii) of Theorem 12. Combining the other parts of Theorem 12 with the Cohen–Lenstra heuristics
yields the following statements.

• For N ≡ 5 mod 8, the eigenvalue 0 occurs for “dihedral reasons” when u(N )≡ 1 mod 2O(N ). The
three possible nonzero reductions of u(N ) mod 2O(N ) being equally likely, this should occur with
probability 1

3 = 33.3%.

• For N ≡ 7 mod 8, the eigenvalue 1 occurs for “dihedral reasons” when h(Q(
√
−N ))odd,2-split > 1

or h(Q(
√

N )) > 1. Each of these is modeled by the probability that a random finite abelian group,
modulo the subgroup generated by a random element, yields a nontrivial quotient; this probability is

1−
∏
p>2

∞∏
j=1

(
1−

1
p j+1

)
= 0.2455 . . . .

Since the two events are presumed to be independent, at least one should occur with probability
43.1%.

9See user Electric Penguin’s answer to MathOverflow question 228497.

https://mathoverflow.net/a/228596/86179
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N mod 8 excess multiplicity of 0 excess multiplicity of 1

1 16.4% 43.8%
3 53.0% 45.7%
5 22.5% 45.8%
7 17.3% 39.0%

Table 2. Frequency of unexplained eigenvalue multiplicity in the mod-2 reduction of T2 on S2(00(N ),Q)

for N < 200000 prime.

Removing these cases leaves the following occurrence of eigenvalues arising from exceptional or
big-image maximal ideals.

• For N ≡ 1 mod 8, the eigenvalue 0 occurs with probability 16.8%.

• For N ≡ 5 mod 8, the eigenvalue 0 occurs with probability 13.3%.

• For N ≡ 7 mod 8, the eigenvalue 0 occurs with probability 17.3%.

• For N ≡ 7 mod 8, the eigenvalue 1 occurs with probability 8.4%.

It would of course be desirable to explain these probabilities also. This will require combining some
analysis of the corresponding representations with Wood’s nonabelian analog of the Cohen–Lenstra
heuristics [38], which for a given pair of finite groups G,G ′ predicts the probability that a quadratic
number field K admits a Galois G-extension L for which L/Q is a Galois G ′-extension.

For N < 200000 prime, we also checked whether Theorem 12 and Conjecture 13 together give a sharp
lower bound on the eigenvalue multiplicities of 0 and 1. For each residue mod 8, the percentage of cases
where this fails is shown in Table 2.

Note that these percentages include both uncounted (exceptional or big-image) maximal ideals and
nonsharpness in Conjecture 13. The preceding calculation suggests that excess multiplicity of 0 for
N ≡ 1, 7 mod 8 arises almost entirely from uncounted maximal ideals, but in other cases Conjecture 13
may need to be refined.
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A new perspective on the powers of two descent
for discrete logarithms in finite fields

Thorsten Kleinjung and Benjamin Wesolowski

A new proof is given for the correctness of the powers of two descent method for computing discrete
logarithms. The result is slightly stronger than the original work, but more importantly we provide a
unified geometric argument, eliminating the need to analyse all possible subgroups of PGL2(Fq). Our
approach sheds new light on the role of PGL2, in the hope to eventually lead to a complete proof that
discrete logarithms can be computed in quasipolynomial time in finite fields of fixed characteristic.

1. Introduction

In this paper we prove the following result.

Theorem 1.1. Given a prime power q, a positive integer d, coprime polynomials h0 and h1 in Fqd [x] of
degree at most two, and an irreducible degree ` factor I of h1xq

− h0, the discrete logarithm problem in
Fqd` ∼= Fqd [x]/(I ) can be solved in expected time q log2 `+O(d).

It was originally proven in [GKZ18] when q > 61, q is not a power of 4, and d ≥ 18. Even though
we eliminate these technical conditions, the main contribution is the new approach to the proof. The
theorem represents the state of the art of provable quasipolynomial time algorithms for the discrete
logarithm problem (or DLP) in finite fields of fixed characteristic. The obstacle separating Theorem 1.1
from a full provable algorithm for DLP is the question of the existence of a good field representation:
polynomials h0, h1 and I for a small d. A direction towards a full provable algorithm would be to find
analogues of this theorem for other field representations, but this may require in the first place a good
understanding of why Theorem 1.1 is true.

The integers q , d and `, and the polynomials h0, h1 and I are defined as in the above theorem for the
rest of the paper. The core of that result is Proposition 1.3 below, which essentially states that elements of
Fqd` represented by a good irreducible polynomial in Fqd [x] of degree 2m can be rewritten as a product
of good irreducible polynomials of degrees dividing m — a process called degree two elimination, first
introduced for m = 1 in [GGMZ13].
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Definition 1.2 (traps and good polynomials). An element τ ∈ Fq for which [Fqd (τ ) : Fqd ] is an even
number 2m and h1(τ ) 6= 0 is called

(1) a degenerate trap root if (h0/h1)(τ ) ∈ Fqdm ,

(2) a trap root of level 0 if it is a root of h1xq
− h0, or

(3) a trap root of level dm if it is a root of h1xqdm+1
− h0.

Analogously, a polynomial in Fq [x] that has a trap root is called a trap. A polynomial is good if it is not
a trap.

Proposition 1.3 (degree two elimination). Given an extension k/Fqd of degree m such that dm ≥ 23, and
a good irreducible quadratic polynomial Q ∈ k[x], there is an algorithm which finds a list of good linear
polynomials (L0, . . . , Ln) in k[x] such that n ≤ q + 1 and

Q ≡ h1L−1
0 ·

n∏
i=1

L i mod I,

and runs in expected polynomial time in q, d and m.

The difficulty of proving Theorem 1.1 lies mostly in Proposition 1.3. We recall briefly in Section 1B
how the proposition implies the theorem. The main contribution of the present paper is a new proof of
Proposition 1.3, which hopefully provides a better understanding of the degree two elimination method,
the underlying geometry, and the role of traps. The action of PGL2 on the polynomial xq

− x became a
crucial ingredient in the recent progress on the discrete logarithm problem for fields of small character-
istic, since [Jou14] (and implicitly in [GGMZ13]). While the proof in [GKZ18] resorted to an intricate
case by case analysis enumerating through all possible subgroups of PGL2(Fq), we provide a unified
geometric argument, shedding new light on the role of PGL2.

1A. Degree two elimination algorithm. The key observation allowing degree two elimination is that a
polynomial of the form αxq+1

+ βxq
+ γ x + δ has a high chance to split completely over its field of

definition. Furthermore, we have the congruence

αxq+1
+βxq

+ γ x + δ ≡ h−1
1 (αxh0+βh0+ γ xh1+ δh1) mod I, (1-1)

and the numerator of the right-hand side has degree at most 3. Consider the Fq -vector space V spanned
by xq+1, xq , x and 1 in Fq [x], and the linear subspace

VQ = {αxq+1
+βxq

+ γ x + δ ∈ V | αxh0+βh0+ γ xh1+ δh1 ≡ 0 mod Q}.

As long as Q is a good irreducible polynomial, VQ is of dimension two. The algorithm simply consists
in sampling uniformly at random elements f ∈ VQ(k) (or equivalently in its projectivisation P1

Q(k)) until
f splits completely over k into good linear polynomials (L1, . . . , Ldeg f ). Since f ∈ VQ , the polynomial
Q divides the numerator of the right-hand side of (1-1), and the quotient is a polynomial L0 of degree
at most 1. The algorithm returns (L0, . . . , Ldeg f ).
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To prove that the algorithm terminates in expected polynomial time, we need to show that a random
polynomial in VQ(k) has good chances to split into good linear polynomials over k. In this paper, we
prove this by constructing a morphism C → P1

Q , where C is an absolutely irreducible curve defined
over k, such that the image of any k-rational point of C is a polynomial that splits completely over k.
This construction is the content of Section 4. Absolute irreducibility implies that C has a lot of k-rational
points, allowing us to deduce that a lot of polynomials in P1

Q(k) split over k. This is done in Section 5.

1B. Proof of Theorem 1.1. We briefly explain in this section how Proposition 1.3 implies Theorem 1.1.
Consider the factor base

F= { f ∈ Fqd [x] | deg f ≤ 1, f 6= 0} ∪ {h1}.

First, the following proposition extends the degree two elimination to a full descent algorithm from any
polynomial down to the factor base.

Proposition 1.4. Suppose d ≥ 23. Given a polynomial F ∈ Fqd [x], there is an algorithm that finds
integers (α f ) f ∈F such that

F ≡
∏
f ∈F

f α f mod I,

and runs in expected time q log2 `+O(d).

Proof. This is essentially the zigzag descent presented in [GKZ18]. We recall the main idea for the
convenience of the reader. First, one finds a good irreducible polynomial G ∈ Fqd [x] of degree 2e such
that F ≡ G mod I (this can be done for e = dlog2(4`+ 1)e; see [Wan97, Theorem 5.1] and [GKZ18,
Lemma 2]). Over the extension Fqd2e−1 , the polynomial G splits into 2e−1 good irreducible quadratic
polynomials, all conjugate under Gal(Fqd2e−1/Fqd ). Let Q be one of them, and apply the algorithm of
Proposition 1.3 to rewrite Q in terms of linear polynomials (L0, . . . , Ln) in Fqd2e−1 [x] and h1. For any
index i , let L ′i be the product of all the conjugates of L i in the extension Fqd2e−1/Fqd . Then

F ≡ h2e−1

1 L ′−1
0 ·

n∏
i=1

L ′i mod I,

and each L ′i factors into good irreducible polynomials of degree a power of two at most 2e−1. The descent
proceeds by iteratively applying this method to each L ′i until all the factors are in the factor base F. �

Then, as in [GKZ18, Section 2], the descent algorithm of Proposition 1.4 can be used to compute
discrete logarithms, following ideas from [EG02] and [Die11]. To compute the discrete logarithm of
an element h in base g, the idea is to collect relations between g, h and elements of the factor base by
applying the descent algorithm on gαhβ for a few uniformly random exponents α and β (note that in
practice one descent is usually sufficient, when complemented by an independent heuristic computation
for the factor base elements).

That proves Theorem 1.1 for d ≥ 23. To remove the condition on d, suppose that d ≤ 22, and let
d ′ ≤ 44 be the smallest multiple of d larger than 22. Let I ′ be an irreducible factor of I in Fqd′ [x]. The
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DLP can be solved in expected time q log2(deg I ′)+O(d ′)
= q log2 `+O(1) in the field Fqd′ [x]/(I ′), and therefore

also in the subfield Fqd [x]/(I ).

2. The action of PGL2 on xq − x

As already mentioned, a crucial fact behind degree two elimination is that a polynomial of the form
αxq+1

+ βxq
+ γ x + δ has a high chance to split completely over its field of definition. This fact is

closely related to the action of 2× 2 matrices on such polynomials.

Definition 2.1. We denote by ? the action of invertible 2× 2 matrices on univariate polynomials defined
as follows: (

a b
c d

)
? f (x)= (cx + d)deg f f

(
ax + b
cx + d

)
.

Consider the Fq -vector subspace V spanned by xq+1, xq , x and 1 in Fq [x]. The above action induces
an action of the group PGL2 on the projective space P(V ), which we also write ?. Parametrising the
polynomials in P(V ) as αxq+1

+ βxq
+ γ x + δ, let S be the quadratic surface in P(V ) defined by the

equation αδ = βγ . This surface is the image of the morphism

ψ : P1
×P1

→ P(V ) : (a, b) 7→ (x − a)(x − b)q .

Note that to avoid heavy notation, everything is written affinely, but we naturally have ψ(∞, b)= (x−b)q ,
ψ(a,∞) = x − a and ψ(∞,∞) = 1. More generally, we say that f (x) ∈ V has a root of degree n at
infinity if f is of degree q + 1− n. Now, the following lemma shows that apart from the surface S, the
polynomials of P(V ) form exactly one orbit for PGL2.

Lemma 2.2. We have P(V ) \ S = PGL2 ? (xq
− x).

Proof. First, notice that both S and P(V ) \ S are closed under the action of PGL2. In particular,
PGL2 ? (xq

− x) ⊆ P(V ) \ S. Let f (x) ∈ P(V ) \ S. Suppose by contradiction that f (x) has a double
root r ∈ P1, and let g ∈ PGL2 be a linear transformation sending 0 to r . The polynomial g ? f (x) has a
double root at 0, so has no constant or linear term, and must be of the form αxq+1

+βxq , so it is in S, a
contradiction. Therefore f (x) has q + 1 distinct roots. Let g ∈ PGL2 send 0, 1 and∞ to three of these
roots. Then g ? f (x) has a root at 0 and at∞ so is of the form βxq

+ γ x , and since it also has a root
at 1, it can only be xq

− x . �

This result implies that most polynomials of P(V ) are of the form g ?(xq
− x), which splits completely

over the field of definition of the matrix g.

3. The role of traps

Consider a finite field extension k/Fqd of degree m. Let Q be an irreducible quadratic polynomial in
k[x] coprime to h1. Let a1 and a2 be the roots of Q in Fq . The degree two elimination aims at expressing
Q modulo h1xq

− h0 as a product of linear polynomials. To do so, we study a variety P1
Q ⊂ P(V )
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parametrising polynomials that can possibly lead to an elimination of Q (i.e., such that Q divides the
right-hand side of (1-1)). In this section, we define P1

Q and show how the notion of traps and good
polynomials determine how it intersects the surface S from Lemma 2.2.

Recall that V is the Fq -vector subspace V spanned by xq+1, xq , x and 1 in Fq [x]. Consider the linear
map

ϕ : V → Fq [x][h−1
1 ] :



1 7→ 1,

x 7→ x,

xq
7→ h0/h1,

xq+1
7→ xh0/h1.

(3-1)

We want P1
Q to parametrise the polynomials f ∈ V such that ϕ( f ) is divisible by Q. For any P ∈ Fq [x]

coprime with h1, write ϕP = πP ◦ϕ, where πP : Fq [x][h−1
1 ] → Fq [x]/P is the canonical projection. We

can now define P1
Q as

P1
Q = P(kerϕQ). (3-2)

The variety P1
Q is the intersection of the two planes P(kerϕx−a1) and P(kerϕx−a2).

Lemma 3.1. If Q is not a degenerate trap, then |(P1
Q ∩ S)(Fq)| = 2, and these two points are of the form

ψ(a1, b1) and ψ(a2, b2), with a1 6= a2 and b1 6= b2.

Proof. For a ∈ {a1, a2}, we have

P(kerϕx−a)∩ S = ψ({a}×P1)∪ψ

(
P1
×

{
h0

h1
(a)1/q

})
.

Since the polynomial Q is irreducible, we have a1 6= a2. Furthermore, assuming that Q is not a degenerate
trap, we have (h0/h1)(a1) 6∈ k, and thereby (h0/h1)(a1) 6= (h0/h1)(a2). Therefore P1

Q ∩ S is equal to

P(kerϕx−a1)∩P(kerϕx−a2)∩ S =
{
ψ

(
a1,

h0

h1
(a2)

1/q
)
, ψ

(
a2,

h0

h1
(a1)

1/q
)}
. �

In particular, when Q is not a degenerate trap, P1
Q is exactly the line passing through the two points

s1=ψ(a1, b1) and s2=ψ(a2, b2). We get a k-isomorphism P1
→P1

Q : α 7→ s1−αs2. For this reason the
two points s1 and s2 play a central role in the rest of the analysis, and the following proposition shows
that they behave nicely when Q is a good polynomial.

Proposition 3.2. Let Q be a good polynomial. Then (P1
Q∩S)(Fq)={s1, s2}, where s1 = (x − a1)(x − b1)

q

and s2 = (x − a2)(x − b2)
q , and the roots a1, a2, b1 and b2 are all distinct.

Proof. From Lemma 3.1, we can write (P1
Q ∩ S)(Fq)= {s1, s2} with a1 6= a2 and b1 6= b2. If a1 = b2 or

a2 = b1, then Q divides xqh1− h0, a trap of level 0. Now, suppose a1 = b1 (the case a2 = b2 is similar).
Since a1 and a2 are the two roots of Q, and Q divides (x−a1)(h0−aq

1 h1), then a2 is a root of h0−aq
1 h1.

We get that h0(a2)= aq
1 h1(a2), so a2 is a root of h1xqdm+1

− h0, a trap of level dm. �
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4. Irreducible covers of P1
Q

In this section we suppose Q is good, and we consider the polynomials s1 = (x − a1)(x − b1)
q and

s2 = (x − a2)(x − b2)
q as defined in Proposition 3.2, where a1, a2, b1 and b2 are all distinct. Consider

the variety P1
Q from (3-2).

Recall that our goal is to prove that a significant proportion of the polynomials of P1
Q(k) split com-

pletely over k. As mentioned in Section 1A, our method consists in constructing a morphism C→ P1
Q ,

where C is an absolutely irreducible curve defined over k, such that the image of any k-rational point of
C is a polynomial that splits completely over k. The absolute irreducibility is crucial as it implies that
C has a lot of k-rational points. The idea is to consider the algebraic set

C = {(u, r1, r2, r3) | r1, r2, r3 are distinct roots of u} ⊂ P1
Q ×P1

×P1
×P1,

and the canonical projection C→ P1
Q .

Proposition 4.1. If (u, r1, r2, r3) ∈ C(k), then u splits completely over k.

Proof. Suppose that (u, r1, r2, r3) is a k-rational point of C . From Lemma 2.2, we get u = g ? (xq
− x),

where g is the matrix g ∈ PGL2(k) sending the three points r1, r2 and r3 to 0, 1 and∞. In particular, the
set of roots of u is g−1(P1(Fq)), which are all in P1(k). �

In the rest of this section, we prove that C is absolutely irreducible (Proposition 4.6). The strategy is
the following. Instead of considering C directly, which encodes three roots for each polynomial of P1

Q ,
we start with the variety

X = {(u, r) | u(r)= 0} ⊂ P1
Q ×P1,

which considers a single root for each polynomial. We can then “add” roots by considering fibre products.
Recall that given two covers ν : Z→ Y and µ : Z ′→ Y , the geometric points of the fibre product Z×Y Z ′

are pairs (z, z′) such that ν(z)= µ(z′). In particular, the fibre product over the projection X→ P1
Q is

X ×P1
Q

X = {((u1, r1), (u2, r2)) | u1(r1)= 0, u2(r2)= 0, u1 = u2}

∼= {(u, r1, r2) | u(r1)= 0, u(r2)= 0}.

This product X ×P1
Q

X contains a trivial component, the diagonal, corresponding to triples (u, r, r).
The rest is referred to as the nontrivial part, and we prove that it is an absolutely irreducible curve
(Corollary 4.3). Iterating this construction, the fibre product (X×P1

Q
X)×X (X×P1

Q
X) (over the projection

X×P1
Q

X→ X to the first component) encodes quadruples (u, r1, r2, r3). Therefore, the curve C naturally
embeds into the nontrivial part of this product. We prove that this nontrivial part is itself an absolutely
irreducible curve (Lemma 4.5).

Instead of the projection X → P1
Q , we work with an isomorphic cover θ . It is easy to see that the

canonical projection X → P1 is an isomorphism, with inverse r 7→ (s2(r)s1 − s1(r)s2, r). Through
the isomorphisms X ∼= P1 and P1

Q
∼= P1, this projection is isomorphic to the cover θ in the following
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commutative diagram (where, again, the morphisms are written affinely for convenience):

(u, r) � // u

(u, r)
_

��

X //

o

��

P1
Q

o

��

s1−αs2_

��
r P1 θ // P1 α

r � // s1(r)/s2(r)

For convenience, consider θ as a cover X1→ X0, where X0 = X1 = P1. As a first step, we study the
induced fibre product X1×X0 X1. It contains the diagonal 11, isomorphic to X1. We wish to show that
Y2= X1×X0 X1 \11 is absolutely irreducible. The second step consists in showing that X2×X1 X2 \12 is
also absolutely irreducible, where X2 is a desingularisation of Y2 and 12 is the diagonal. The following
lemma provides a general method used in both steps.

Lemma 4.2. Let Y and Z be two absolutely irreducible, smooth, complete curves over k, and consider
a cover η : Z → Y . If there exists a point a ∈ Z such that η is not ramified at a and #(η−1(η(a))) = 2,
then Z ×Y Z \1 is absolutely irreducible, where 1 is the diagonal component.

Proof. By contradiction, suppose that Z ×Y Z \1 is not absolutely irreducible, and can be decomposed
as two components A∪ B. Let pr : Z ×Y Z → Z be the projection on the first factor. Since Z ×Y Z is
complete, both A and B are complete, so we have pr(A) = pr(B) = pr(1) = Z . Observe that pr−1(a)
consists of #(η−1(η(a)))= 2 points, so one of them must belong to two of the components A, B and 1.
That point must therefore be singular in Z ×Y Z , contradicting the fact that η is not ramified at a (recall
that a point (z1, z2) ∈ Z ×Y Z is singular if and only if η is ramified at both z1 and z2). �

Corollary 4.3. The curve Y2 = X1×X0 X1 \11 is absolutely irreducible.

Proof. First observe that θ is ramified only at b1 and b2 (as can be verified from the explicit formula
θ(r)= s1(r)/s2(r)). In particular, it is not ramified at a1. Since #(θ−1(θ(a1)))= #{a1, b1} = 2, we apply
Lemma 4.2. �

Lemma 4.4. The desingularisation morphism ν : X2→ Y2 is a bijection between the geometric points.

Proof. It is sufficient to prove that for any singular point P on Y2, and ϕ : Ỹ2→ Y2 the blowing-up at P ,
the preimage ϕ−1(P) consists of a single smooth point. Up to a linear transformation of X1 = P1, we
can assume that s1 and s2 are of the form s1(x)= (x − 1)xq and s2(x)= x − a, for some a 6= 0, 1. The
intersection A of the curve Y2 with the affine patch A2

⊂ P1
×P1 is then defined by the polynomial

f (x, y)=
s1(x)s2(y)− s1(y)s2(x)

x − y
=

xq(x − 1)(y− a)− yq(y− 1)(x − a)
x − y

.

It remains to blow up A at the singularity (0, 0) (which corresponds to (b1, b1) through the linear trans-
formation), and check the required properties. This is easily done following [Har77, Example 4.9.1], and
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we include details for the benefit of the reader. Let ψ : Z→ A2 be the blowing-up of A2 at (0, 0). The
inverse image of A in Z is defined in A2

×P1 by the equations f (x, y)= 0 and t y = xu (where t and
u parametrise the factor P1). It consists of two irreducible components: the blowing-up Ã of A at (0, 0)
and the exceptional curve ψ−1(0, 0). Suppose t 6= 0, so we can set t = 1 and use u as an affine parameter
(since f is symmetric, the case u 6= 0 is similar). We have the affine equations f (x, y)= 0 and y = xu,
and substituting we get f (x, xu)= 0, which factors as

f (x, xu)= xq−1 (x − 1)(xu− a)− uq(xu− 1)(x − a)
1− u

.

The blowing-up Ã is defined on t = 1 by the equations g(x, u) = f (x, xu)/xq−1
= 0 and y = xu. It

meets the exceptional line only at the point u = 1, which is nonsingular. �

The projection X1×X0 X1→ X1 on the first component induces another cover θ2 : X2→ X1, through
which we build the fibre product X2×X1 X2. As above, it contains a diagonal component 12 isomorphic
to X2.

Lemma 4.5. The curve Y3 = X2×X1 X2 \12 is absolutely irreducible.

Proof. Let ν : X2→ Y2 be the bijective morphism from Lemma 4.4. Since θ1 is only ramified at b1 and b2,
the cover θ2 is ramified at most at the points ν−1(bi , bi ) and ν−1(ai , bi ) (for i ∈ {1, 2}). In particular, it is
not ramified at ν−1(b1, a1). Since #

(
θ−1

2 (θ2(ν
−1(b1, a1)))

)
= #{ν−1(b1, a1), ν

−1(b1, b1)} = 2, we apply
Lemma 4.2. �

Proposition 4.6. The curve C is absolutely irreducible.

Proof. Let ν : X2 → Y2 be the morphism from Lemma 4.4. It is an isomorphism away from the
singularities of Y2, so

C→ Y3 : (u, r1, r2, r3) 7→ (ν−1(r1, r2), ν
−1(r1, r3))

is a morphism. It is an embedding, and the result follows from Lemma 4.5. �

5. Counting split polynomials in P1
Q

Recall that we wish to prove Proposition 1.3 by showing that P1
Q(k) contains a lot of polynomials that

split into good polynomials over k. The results of Section 4 allow us to prove in Theorem 5.1 that a lot of
polynomials in P1

Q(k) do split. We then show in Proposition 5.2 that all these polynomials are coprime,
which implies that bad polynomials cannot appear too often.

Theorem 5.1. Let k/Fqd be a field extension of degree m, and Q be a good irreducible quadratic polyno-
mial in k[x] coprime to h1. If dm ≥ 23, there are at least #k/2q3 polynomials in P1

Q that split completely
over the field k.

Proof. Let 2 : Y3→ P1
Q be the cover resulting from the composition of the successive covers of Section 4.

Let S3 =2
−1(P1

Q ∩ S). The embedding C→ Y3 from Proposition 4.6 has image Y3 \ S3. The morphism

µ : Y3→ P1
×P1

×P1
: (ν−1(r1, r2), ν

−1(r1, r3)) 7→ (r1, r2, r3)
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restricts to an embedding of Y3 \ S3. Let A be the intersection of µ(Y3) with the affine patch A3. The
curve A is a component of the (reducible) curve defined by the equations θ(r1)= θ(r2) and θ(r1)= θ(r3).
Therefore A is of degree at most 4(q + 1)2. If B is the closure of A in P3, then [Bac96, Theorem 3.1]
shows that

|#B(k)− #k− 1| ≤ 16(q + 1)4
√

#k.

Since Y3 is complete, µ(Y3) is closed, so all the points of B \ A are at infinity, and there are at most
deg(B)≤ 4(q + 1)2 of them. Also, at most 2(q3

− q) points of B are in µ(S3) (because #S = 2 and 2
is of degree q3

− q). Therefore,

#C(k)= #(Y3 \ S3)(k)≥ #k+ 1− 16(q + 1)4
√

#k− 4(q + 1)2− 2(q3
− q).

Since q ≥ 2 and dm ≥ 23, we get #C(k)≥ #k/2. From Proposition 4.1, and the fact that the map 2 is
q3
− q to one, we get that at least #k/2q3 polynomials in P1

Q split completely over k. �

Let ϕ be the morphism defined in (3-1).

Proposition 5.2. Suppose Q is a good polynomial. For any two distinct polynomials f and g in P1
Q(Fq),

we have gcd( f, g)= 1 and gcd(h1ϕ( f ), h1ϕ(g))= Q.

Proof. Let s1 and s2 be as in Proposition 3.2. They have no common root. Since f and g are distinct,
all the polynomials of P1

Q are of the form α f + βg for (α : β) ∈ P1. Then, if r is a root of f and g, r
is a root of all the polynomials of P1

Q . In particular, it is a root of both s1 and s2, a contradiction. This
shows that gcd( f, g)= 1.

Similarly, if a polynomial h divides h1ϕ( f ) and h1ϕ(g), it must also divide both

h1ϕ(s1)= (x − a1)(h0− bq
1 h1) and h1ϕ(s2)= (x − a2)(h0− bq

2 h1).

Since h0− bq
1 h1 and h0− bq

2 h1 are coprime, h must divide Q. �

Proof of Proposition 1.3. As discussed in Section 1A, it is sufficient to prove that a uniformly random
element of P1

Q(k) has a good probability to lead to an elimination into good polynomials. A polynomial
f ∈ P1

Q(k) leads to an elimination into good polynomials if f splits completely over k into good linear
polynomials, and ϕ( f ) is itself a good polynomial.

Let A be the set of polynomials of P1
Q(k) that split completely over k. From Theorem 5.1, A contains

at least qdm−3/2 elements. Trap roots τ occurring in A or ϕ(A) must be roots of h1xq
− h0, or of

h1xqdn+1
− h0 for n | m/2, or satisfy (h0/h1)(τ ) ∈ Fqdm/2 . There are at most q(dm/2)+3 such trap roots.

From Proposition 5.2, any trap root can only occur once in A and in ϕ(A). So there are at most 2q(dm/2)+3

polynomials in A for which trap roots appear. Therefore, the number of elements in A leading to a good
reduction is at least

1
2qdm−3

− 2q(dm/2)+3
≥

1
2(q

dm−3
− 4qdm−8)≥ 1

4qdm−3,

using dm ≥ 23. Since P1
Q(k) contains qdm

+ 1 elements, the probability of a random element to lead to
a good elimination is 1/O(q3). �
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Arithmetic statistics of Galois groups

David Kohel

We develop a computational framework for the statistical characterization of Galois characters with
finite image, with application to characterizing Galois groups and establishing equivalence of characters
of finite images of Gal(Q/Q).

1. Introduction

The absolute Galois group G = Gal(Q/Q) is a fundamental object of study in number theory. The objec-
tive of this work is to develop an explicit computational framework for the study of its finite quotients.
We may replace G with the absolute Galois group of any global field, but restrict to that of Q for simplicity
of exposition.

As point of departure, we consider an irreducible polynomial f (x) ∈ Z[x] of degree n as input. We
set K =Q[x]/( f (x)), denote by L its normal closure and write G(K ) for the Galois group Gal(L/Q)
equipped with a permutation representation in Sn determined by the action on the roots of f (x). Let
PS(Z) be the set of primes coprime to the finite set S of primes ramified in Z[x]/( f (x)).

The statistical perspective we develop expresses the map from PS(Z) to factorization data as an equidis-
tributed map to a finite set X (K ) equipped with a probability function induced from the Haar measure
on G(K ). A Frobenius lift at p, defined up to conjugacy, acts on the roots of f (x). The permutation
action on the roots of f (x) induces a representation in O(n), fixing the formal sum of the roots. The
orthogonal complement gives the standard representation in O(n− 1), spanned by differences of basis
elements. Let P(x) be the characteristic polynomial of Frobenius in the permutation representation and

S(x)= P(x)/(x − 1)= xn−1
− s1xn−2

+ · · ·+ (−1)n−1sn−1

be the characteristic polynomial in the standard representation. This polynomial is independent of choices
of lift of Frobenius and choice of basis. As such, the coordinates (s1, . . . , sn−1) ∈ Zn−1 are invariants
of the Frobenius conjugacy class Frobp in the set C̀ (G(K )) of conjugacy classes of G(K ). Denote the
finite set of such class points by X (K ). We note that the class points are entirely determined by the
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factorization data of f (x) mod p, and X (K )⊂ Zn−1 is equipped with the structure of a finite probability
space, induced from the cover C̀ (G(K ))→ X (K ). The irreducible characters are known to form an
orthogonal basis for the class functions on C̀ (G(K )), and the rational characters are integer-valued class
functions on the class space X (K ).

In what follows we develop this approach by describing systems of rational characters on G(K ) al-
gebraically as a basis of polynomials in Z[s1, . . . , sn−1] modulo the defining ideal for X (K ), together
with their associated inner product. As a consequence we develop algorithms for the characterization of
Galois groups, and more generally, tools for determining equivalence of finite Galois representations.

2. Representations of orthogonal groups

Let G be a compact Lie group. In practice, G will be an orthogonal group

G = O(n− 1)⊂ O(n) or G = SO(n− 1)⊂ O(n− 1),

or a finite permutation group, equipped with the standard representation in O(n− 1),

G ⊆ Sn ⊂ O(n− 1) or G ⊆An ⊂ SO(n− 1).

The standard representation of Sn provides the motivation for an algebraic presentation of the charac-
ter ring of a permutation group. For the character theory of permutation groups, we appeal to known
algorithms for its computation.

The symmetric group Sn acts on a set of n elements, and the linear extension to a basis of Zn
⊂Rn gives

the permutation representation of Sn , extending its action on the basis {e1, . . . , en}. Since e1+ · · ·+ en

is fixed by Sn , a line is fixed, and we consider the action on the hyperplane spanned by the orthogonal
complement. In the basis {e1 − e2, . . . , en−1 − en}, we obtain the standard representation of Sn in
O(n − 1). The choice of basis is noncanonical, but the character theory is independent of any such
choice. The orthogonal group O(n) and its subgroup O(n− 1) have two connected components, with
principal component SO(n− 1)⊂ SO(n), such that An = Sn ∩SO(n− 1).

Representation ring. For a compact Lie group G, we denote the set of conjugacy classes of G by C̀ (G).
We define the representation ring of G,

R(G)=
⊕
χ

Zχ,

as the free abelian group on irreducible characters χ : G→ C of finite degree. We identify addition with
direct sum, and thereby the abelian submonoid

⊕
Nχ ⊆R(G) with characters, and define multiplication

on R(G) by the linear extension of tensor product on
⊕

Nχ . We refer to elements of R(G) as virtual
characters.

As class functions, R(G) can be identified with a subring of complex-valued functions on C̀ (G).
Indeed, when G is finite, the number h of conjugacy classes (and of irreducible characters) is finite, and
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the character table is defined as the evaluation vectors

(χi (C1), . . . , χi (Ch))

in the ring Ch
= C× · · · ×C, for χi running over the irreducible characters, forming a generator set

for the representation ring. For a subfield F ⊂ C, we denote by RF (G) the subring of F-valued virtual
characters. While R(G)=RQ(G) for G = Sn or G = O(n− 1), for a general finite group that we may
consider, the field of definition of an irreducible character may be a proper extension of Q.

Considering the group O(n) in GLn(R), an element g satisfies a characteristic polynomial of the form

xn
− s1xn−1

+ · · ·+ (−1)nsn.

The coefficient s1 is the trace in its representation on Rn, and sn is its determinant character. We note that
sk is an invariant of the class of g, and we can identify g 7→ sk as characters. Specifically, sk is the character
on the k-th exterior power

∧k
Rn . We recall the structure of the character ring for O(n) (see [19]).

Lemma 1. The virtual character ring R(O(n)) is generated by sk , 1≤ k ≤ n, and

R(O(n))∼=
Z[s1, . . . , sn]

(sksn − sn−k, s2
n − 1)

·

The restriction Res :R(O(n))→R(SO(n)) surjects on

R(SO(n))∼=
Z[s1, . . . , sn]

(sk − sn−k, sn − 1)
,

with kernel ideal (sn − 1).

Remark. If n = 2m or n = 2m + 1, then R(SO(n)) = Z[s1, . . . , sm], and R(O(n)) is an extension by
the quadratic character ξ = sn such that ξ |SO(n) = 1.

Algebraic parametrization. If H is a subgroup of G, there is an induced map C̀ (H)→ C̀ (G) on conju-
gacy classes and concomitant restriction homomorphism Res :R(G)→R(H) on representation rings.
Applied to the standard representation of Sn in O(n − 1), the restriction homomorphism equips the
representation ring of R(Sn) with a surjective restriction map from R(O(n− 1)), giving an algebraic
presentation of R(Sn) by polynomials in Z[s1, . . . , sn−1] modulo the defining ideal (sksn−1 − sn−k−1,

s2
n−1− 1). Given a permutation group G ⊂ Sn , the subsequent restriction captures a significant subring

of RQ(G)⊂R(G).
As a tool to characterize permutation groups in Sn , for subgroups G and H, with H ⊆ G ⊆ Sn , we

develop the branching rules — explicit forms for the decomposition

Res(χi )=

ni∑
j=1

ai jψj

of irreducible characters {χ1, . . . , χr } on G in terms of the irreducible characters {ψ1, . . . , ψs} on H. In
light of the algebraic parametrization by Z[s1, . . . , sn−1], we deduce the kernel ideals IG ⊆ IH for each
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permutation group in the lattice (poset) of subgroups. A basis of generators provides test functions for
membership in a given subgroup. We develop the algorithmic details later.

Using the Brauer–Klimyk formula (see [3, Proposition 22.9]), it is possible to develop recursive for-
mulas for the character theory of orthogonal groups, as done in [17; 18] for USp(2m), and using the
algebraic presentation, to deduce recursive branching rules for Res :R(O(n− 1))→R(G). Instead, we
content ourselves with the algebraic parametrization from R(O(n− 1)) and exploit the well-established
computational character theory of permutation groups to develop branching rules in the lattice of permu-
tation subgroups of Sn .

3. Representations of permutation groups

Let G be a permutation group — a finite group equipped with an embedding in Sn . The cycle type of
g ∈ G is the multiset of cardinalities of its orbits under the action of Sn on {1, . . . , n}. A multiset can be
denoted by a tuple (d1, . . . , dt) or a formal product me1

1 · · ·m
es
s , where

d1 ≤ d2 ≤ · · · ≤ dt or m1 < · · ·< ms such that
t∑

i=1

di =

s∑
i=1

ei mi = n.

The cycle type is invariant under conjugation in Sn; thus the cycle type is well-defined for the conjugacy
class C = C(g) ∈ C̀ (G), where C(g)= {xgx−1

: x ∈ G}.

Lemma 2. The map C̀ (Sn)→
{
(d1, . . . , dt) :

∑t
i=1 di = n

}
from conjugacy classes of Sn to cycle types

is a bijection.

Proof. Clearly, giving a cyclic ordering to any partition of {1, . . . , n} into orbits determines an element
of Sn; hence the map is surjective. Moreover, by definition the symmetric group is n-transitive, conju-
gating any cyclically ordered orbit partition to any other of the same cycle type. Consequently the map
is injective. �

Remark. For a permutation group G⊂Sn the induced map C̀ (G)→ C̀ (Sn) in general is neither injective
nor surjective. The failure of injectivity means that the cycle type fails to distinguish the conjugacy classes.
We will later see this in the failure of R(Sn) to surject on R(G). In fact, the irreducible characters are
known to form a basis of the class functions on G (see [16, Theorem 6]); hence the failure to separate
conjugacy classes means that the restriction homomorphism from R(Sn) does not surject on R(G).

On the one hand, the cycle type of a conjugacy class characterizes the class. On the other hand, the
characteristic polynomial (hence its coefficients) is a class invariant of an orthogonal group element, and
the permutation and standard representations thus provide other class invariants. We make this association
explicit. Let (d1, . . . , dt) be the cycle type of an element g ∈ Sn . It is easy to see that the characteristic
polynomial of the permutation representation of g is

P(x)= (xd1 − 1) · · · (xdt − 1)= (xm1 − 1)e1 · · · (xms − 1)es .
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The eigenvalue on the trivial space is 1, so the characteristic polynomial in the standard representation is

S(x)=
P(x)
(x − 1)

= xn−1
− s1xn−2

+ · · ·+ (−1)n−1sn−1,

and (s1, . . . , sn−1) is the tuple of class invariants associated to the conjugacy class C(g) under the standard
representation in O(n− 1). This gives the following lemma.

Lemma 3. The map C̀ (Sn)→ Zn−1 from conjugacy classes to the (n−1)-tuples (s1, . . . , sn−1) of coeffi-
cients of the characteristic polynomial under the standard embedding is injective.

Proof. By Lemma 2 the map from conjugacy classes to cycle types is a bijection. However, by unique
factorization in Q[x], a polynomial of the form (xd1−1) · · · (xdt −1) is uniquely determined by the cycle
type (d1, . . . , dt); hence the map to its coefficients (s1, . . . , sn−1) is injective. �

Representation rings and character tables. Let G be a permutation group and let C̀ (G)= {C1, . . . , Ch}

and {χ1, . . . , χh} be its irreducible characters. For a conjugacy class C, define the ideal

mC = { f ∈R(G) : f (C)= 0}

such that the value f (C) of a virtual character f at C is a well-defined class in the residue class ring
R(G)/mC . The character table of G is typically represented as a matrix whose i-th row is the evaluation
vector (χi (C1), . . . , χi (Ch)). With this notation, we interpret as the embedding of the character χi in the
product ring, under the injection

R(G)→R(G)/mC1 × · · ·×R(G)/mCh .

Lemma 4. The image of the homomorphism R(G)→R(G)/mC1 × · · ·×R(G)/mCh has finite index in
its codomain.

Proof. Clearly R(G) is torsion-free, since the image of a virtual character is a subring of C. Thus R(G)
embeds in R(G)⊗Q, which is an étale algebra, isomorphic to the product of its quotients X i (see [2]
for details). It follows that the index is finite. �

More generally in the direction of the lemma, [2] finds that the center of the group ring Q[G] over Q

and the tensor product of the representation ring R(G)⊗Q are related by Brauer equivalence. We give
two examples below. In view of the restriction map from R(Sn) to R(G), and since all characters on Sn

are rational, the image of R(Sn)=RQ(Sn) lies in the subring RQ(G)⊂R(G). In the examples below,
we illustrate the role of nontrivial Galois action and of quadratic characters in the failure of surjectivity
of R(Sn) on R(G) and on RQ(G). In the next section we exploit the embedding by interpolating the
character table values by the polynomial presentation Z[s1, . . . , sn−1] →RQ(G).

Orthogonality relations. The role of arithmetic statistics of G comes from the orthogonality relations
for the irreducible characters. Let {χ1, . . . , χh} be the irreducible characters for G, and A(G) be the
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character matrix

A(G)=

χ1(C1) · · · χ1(Ch)
...

...

χh(C1) · · · χh(Ch)

 .
The orthogonality relations for characters (see [16, Section 2.3]), expressed in terms of group elements,
reformulated in terms of conjugacy classes, takes the form

δi j = 〈χi , χj 〉G :=
1
|G|

∑
g∈G

χi (g)χj (g)=
h∑

k=1

|Ck |

|G|
χi (Ck)χj (Ck).

Set D(G) to be the diagonal matrix with diagonal entries (p1, . . . , ph), where pk = |Ck |/|G| is the weight
of the conjugacy class Ck . The orthogonality relations are then expressed by the equality

Ih = A(G)D(G)A(G)†,

where † denotes the conjugate transpose. The matrix D(G) can be viewed as the inner product matrix
of the Haar measure induced by G on C̀ (G).

Rational character table. Let χ be a character on G, let m be the exponent of G, and let C = C(g) be
a conjugacy class. As the trace of a representation of g, the value χ(C) lies in Z[ζm], since each of its
eigenvalues are in µm = 〈ζm〉. We thus obtain two actions of the Galois group Gal(Q(ζm)/Q)∼= (Z/mZ)∗.
Denote by σ : (Z/mZ)∗→Gal(Q(ζm)/Q) the isomorphism such that ζ σ(k)m = ζ k

m . The first of the actions
is on conjugacy classes, by C(g) 7→ C(gk), and the second on characters by χσ(k)(C(g))= χ(C(g))σ(k).
Considering the action on eigenvalues we see immediately that

χσ(k)(C(g))= χ(C(gk)).

Restriction from R(Sn). Only characters in the image of R(Sn) can be parametrized by polynomials in
Z[s1, . . . , sn−1] from the standard representation. We note by example, that the preimage of C in C̀ (Sn)

under the induced map C̀ (G)→ C̀ (Sn) can split into an even number of conjugacy class separated by a
quadratic character not coming from Sn . We observe this phenomenon for G = D4 and G = Q8 in the
examples section below.

4. Algorithms for Galois representations

In what follows we describe algorithms for testing equivalence of finite Galois characters. As the principal
application, we consider input f (x) of degree n, determining a number field K = Q[x]/( f (x)), and
describe how to evaluate a sample set of primes S at characters on the permutation group G(K ). The
approach is completely general, allowing one to compare the set of characters on the absolute group G
mapping through permutation groups G(K1) and G(K2) determined by number fields K1 and K2.
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Factorization types of irreducible polynomials. Consider an irreducible polynomial f (x) in Z[x] of
degree n, set K =Q[x]/( f (x)) and let L be its normal closure with maximal order OL . For a rational
prime p and prime P over p in OL , the Frobenius lift FrobP is the unique element of the decomposition
subgroup DP ⊂ G = G(K ) such that

FrobP(a)≡ a p mod P

for all a in OL . Denote by Frobp the conjugacy class of FrobP in C̀ (G).
For p not dividing disc( f (x)) we define the factorization type of f (x) mod p to be the multiset of

degrees of the factorization of f (x) in Fp[x], which we may denote by (d1, . . . , dt), where d1 ≤ · · · ≤ dt

and d1+ · · ·+ dt = n. We can now identify the data of the factorization type with the cycle type of the
Galois group G = G(K ) equipped with its embedding in Sn .

Lemma 5. The factorization type of f (x) mod p is the cycle type of Frobp ⊂ G(K ).

Proof. The factorization pOK = p1 · · · pt is determined from f (x)≡ f1(x) · · · ft(x) mod p, with pk =

(p, fk(x)) a prime of degree dk = deg( fk). The Galois group acts transitively on primes of OL over p,
and there exist conjugates P1, . . . ,Pt over p1, . . . , pt , from which we see that dk divides deg(P), and
each dk is the cardinality of an orbit of roots modulo p under the action of FrobP. �

Character inner products as expectation. The factorization type of a polynomial gives a means of tak-
ing random samples of character values (s1, . . . , sn−1) at a set S of primes mapping to the group G.
Other data, for particular characters, may come from weight-1 modular eigenforms, character sums, or
Kronecker symbols. Let S be such a sample set of primes, and ψ , χ two characters which can be
evaluated on S. We write ψ(p) and χ(p) for the values of the characters at a sample point. We obtain
an approximation for the orthogonal product 〈ψ, χ〉 as the expectation of ψχ :

〈ψ, χ〉 = E(ψχ)∼ ES(ψχ)=
1
|S|

∑
p∈S

ψ(p)χ(p).

If the multiplicity of each irreducible character in the support of ψ and χ is 1, then m = 〈ψ, χ〉 is an
integer counting the number of irreducible characters in the support of both ψ and χ . When ψ and χ
are irreducible, to determine equality ψ = χ , one needs only sufficient precision to distinguish the one
bit 〈ψ, χ〉 = 0 or 〈ψ, χ〉 = 1.

The interest in working with irreducible characters, or nearly irreducible characters as captured by the
image of restriction from R(Sn), is that the variance of the character products ψχ is minimized, and the
number of primes needed to recognize is convergence small, as observed by Shieh [17; 18] in the case
of symplectic groups USp(2m) (see also [9]).

One should note that in view of classifying the Galois group, nonvanishing of an element of the kernel
ideal of the restriction R(Sn)→R(G) can be used to provably exclude G as a Galois group. This was
already observed by Pohst [14], who proposed the use of factorization types as a lower bound for the
Galois group, and that for n ≥ 8 the factorization types, and their probabilities, fail to separate groups.
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This statement, however, concerns the data of the induced Haar measure on C̀ (G), and not that of the
character table of G. Precisely we have two data structures on C̀ (G) at our disposal, that of a probability
space and of class functions (given by a character table)

• C̀ (G) with Haar measure p : C̀ (G)→ R, and

• Ch
= Hom(C̀ (G),C) with orthonormal basis {χ1, . . . , χh}.

Due to the failure of surjectivity of the restriction homomorphism from R(Sn), the subset of characters
determined from the cycle types are unlikely to separate groups for sufficiently large n. Nevertheless, the
joint data of Haar measure and character table, plus the system of restriction maps coming from common
embeddings in Sn gives more information than either the Haar measure or character table alone.

Restriction kernel ideal. To a conjugacy class C for Sn we associate an ideal mC in Z[s1, . . . , sn−1] of
the form

mC = (s1− s1(C), . . . , sn−1− sn−1(C)),

where (s1(C), . . . , sn−1(C)) are the values of si at C. Then the kernel ideal for the restriction of R(Sn) to
R(G) is the intersection ideal

I (G)=
⋂

C∈π(C̀ (G))

mC,

where π : C̀ (G)→ C̀ (Sn).

Example. Consider the restriction from R(O(3)) to R(S4). Since

R(O(3))=
Z[s1, s2, s3]

(s1s3− s2, s2
3 − 1)

and the values of (s1, s2, s3) are in

{(3, 3, 1), (−1,−1, 1), (0, 0, 1), (−1, 1,−1), (1,−1,−1)},

we obtain a defining ideal of S4 given by the additional generators

s1(s1+ 1)(s1− s3− 2), s1(s1+ 1)(s1− 1)(s1− 3), (s1+ 1)(s1− 1)(s3− 1).

The map C̀ (D4)→ C̀ (S4) fails to surject on (0, 0, 1); hence there are only four maximal ideals in the
intersection and the kernel ideal for R(S4)→R(D4) is generated by

s2
1 − s1− s2− s3− 2, s2− s1s3, s2

3 − 1.

The first polynomial is not in the kernel ideal for R(S4) and its vanishing provides a test for D4. Geo-
metrically, it means that the tensor square of the representation with trace s1 decomposes into a direct
sum of representations with trace s1+ s2+ s3+ 2.
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Restriction homomorphism. Let H ⊂ G be permutation groups, and set `= | C̀ (H)| and h = | C̀ (G)|
equal to the cardinalities of their conjugacy class sets. Suppose that {ψ1, . . . , ψ`} and {χ1, . . . , χh} are
the irreducible characters, which are given by embeddings in C` and Ch, respectively. We thus have
isomorphisms

R(H)=
⊕̀
i=1

Zψi →3(H)⊂ C` and R(G)=
h⊕

j=1

Zχj →3(G)⊂ Ch,

where 3(H) and 3(G) are the lattices in C` and Ch spanned by the rows of the character table. The
restriction homomorphism R(G) 7→R(H) is induced by the map π : C̀ (H)→ C̀ (G), by

χ 7→ (χ(π(C1)), . . . , χ(π(C`))) ∈3(H)⊂ C`.

The linear transformation 3(G)→ 3(H) gives the restriction homomorphism as an integral (h × `)-
matrix with respect to the respective bases of irreducible characters. The rows of this matrix can be
interpreted as branching rules, giving the decomposition of an irreducible character on G as a sum of
irreducible characters on H.

Inside each 3(G) we have a sublattice (generally of lower rank) 3Q(G) = 3(G)∩Qh of rational-
valued characters. We recall that for a conjugacy class C of group elements of order m, the value of χ(C)
is a sum of eigenvalues in Q(ζm). We thus obtain an action by the Galois group of a cyclotomic field on
the irreducible characters. As a consequence, the lattice 3Q(G) is generated by the sums over Galois
orbits of irreducible characters. Since these orbits are disjoint, this basis of rational characters remains or-
thogonal, but not orthonormal, since 〈χ, χ〉 measures the cardinality of the orbit (assuming χ is a sum of
irreducible characters of multiplicity 1). On the other hand, the restriction images ResG

H (3(G))⊂3(H)
and ResG

H (3Q(G))⊂3Q(H) do not possess natural reduced orthogonal bases. In order to determine a
generating set which is small with respect to the orthogonality relations on characters, we need to apply
a constrained lattice reduction inside the submonoid of characters:⊕̀

j=1

Nψj ⊂
⊕̀
j=1

Zψj =R(H).

Rather than a generic LLL algorithm, we need to carry out a structured lattice reduction in the character
monoid order to be able to invoke the heuristic arguments for convergence of small characters.

Algebraic parametrization. In order to interpret factorization types of polynomials (or splitting types of
primes) as conjugacy classes on which we can apply the class functions s1, . . . , sn−1, we need to find an
explicit algebraic parametrization

Z[s1, . . . , sn−1]

I (Sn)
→R(Sn)→ ResSn

G (3(Sn))⊆3(G).

The presentation Z[s1, . . . , sn−1]/I (Sn)→ R(Sn) comes from the standard representation of Sn , and
its composition into 3(Sn) can be effectively computed. In order to lift characters in 3(Sn) back to
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representative polynomials in (s1, . . . , sn−1), we must invert

Z[s1, . . . , sn−1]

I (Sn)
→3(Sn).

As noted above, the isomorphism R(Sn)→3(Sn) is obtained by the Chinese remainder theorem. More
precisely, over Q, we obtain a product decomposition of the étale algebra R(Sn)⊗Q,

R(Sn)⊗Q→
R(Sn)

mC1

⊗Q× · · ·×
R(Sn)

mCh

⊗Q∼=Qh,

under which R(Sn) ∼= 3(Sn) ⊆ Zh. Since the generators s1, . . . , sn−1 can be evaluated at conjugacy
classes, we can evaluate a basis of monomials modulo I (Sn) and invert a matrix to determine the preimage
of a basis of irreducible characters. The same applies to a basis of characters in ResSn

G (3(Sn)) modulo
the restriction kernel I (G).

Database of restriction-induction. Databases of transitive permutation groups of degree up to 30 are
available in GAP [10] and Magma [1; 7], computed by Greg Butler, John McKay, Gordon Royle and
Alexander Hulpke (see [5; 4; 15; 8; 12]). The above is intended to motivate an interest in a metastructure
of the restriction relations (and adjoint induction relations) between character rings R(G), and for the
algebraic parametrizations arising from the restriction homomorphism from orthogonal groups.

5. Explicit computations

We illustrate the approach through arithmetic statistics of character theory by applying the methods to
groups of low degree. First we analyze the dihedral and quaternionic groups D4 and Q8 of order 8, the
smallest groups sharing the same character table. Then we consider an example of a pair of permutation
groups of degree 8 and order 16 whose cycle types and induced Haar measure on S8-conjugacy classes are
equal. We show how an auxiliary (sub)field suffices to distinguish the characters using joint Frobenius
cycle data. In a final example, we treat different permutation representations of A5 to show how this
approach can be used to establish the equivalence of the absolute Galois representations determined by
different fields.

Dihedral and quaternionic groups of order 8. The groups D4 and Q8, known to share the same character
table, can nevertheless be separated by the restriction data coming from a permutation representation. We
first recall that the common character table takes the form

A(G)=


1 1 1 1 1
1 1 −1 1 −1
1 1 1 −1 −1
1 1 −1 −1 1
2 −2 0 0 0

 ,
with weights

( 1
8 ,

1
8 ,

1
4 ,

1
4 ,

1
4

)
on the conjugacy classes. The semisimple group algebras Q[D4] and Q[Q8]

have Wedderburn decompositions

Q[D4] ∼=Q×Q×Q×Q×M2(Q) and Q[Q8] ∼=Q×Q×Q×Q×H,
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where H is the quaternion algebra over Q ramified at 2 and∞. These decompositions correspond to the
four linear characters and sole degree-2 irreducible representation.

Only the former group, D4, embeds in S4, which shows that the permutation embedding contains
distinguishing information not in the character table. We make explicit the above approach through char-
acter theory for the degree-4 permutation representation. Let {1, χ1, χ2, χ3, χ4} be a basis of characters,
with χ1, χ2, and χ3 = χ1χ2 quadratic linear characters, and χ4 of degree 2. The standard representation
of S4 in O(3) provides irreducible characters

{1, s1, s2, s3, s2
1 − s1− s2− 1},

where s3 is the quadratic determinant character, s1 and s2 = s1s3 are degree-3 representations, and the last
one is of degree 2. Computing the inner product matrices for these characters on S4 and D4, we obtain

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 and


1 0 0 0 1
0 2 1 0 0
0 1 2 0 0
0 0 0 1 1
1 0 0 1 2

 .
For example, this was the output to the nearest integer for the expectation method on a sample size of
16 unramified primes, for the polynomials x4

+ x + 1 and x4
− 2x2

+ 2 with respective Galois groups S4

and D4.
One identifies the polynomial expression χ = s2

1 − s1− s2− 1 for the irreducible degree-2 character χ
on S4, which decomposes into a direct sum 1+ s3 on D4, from which we deduce that s2

1 − s1− s2− s3−2
is in the kernel ideal I (D4). Similarly, we read from the inner products 〈s1, s1〉 = 〈s2, s2〉 = 2 and
〈s1, s2〉 = 1 on D4 that each of s1 and s2 decompose into two irreducible characters, which share a
common irreducible summand. The restriction homomorphism from R(S4) thus captures

1, s1 = χ1+χ4, s2 = χ2+χ4, s3 = χ3.

The restriction fails to span all characters, because the conjugacy classes are not separated by characters
on S4. Indeed the cycle types of the five conjugacy classes in C̀ (D4) are 14, 1221, 22, 22, and 41, and
hence the two classes of cycle type 22 map to the same class in C̀ (S4).

The missing character χ1 is easily recovered. It arises from the quadratic subfield (here with defining
polynomial x2

−2x+2), which can be expressed as a Legendre symbol. In terms of the basis of characters
{1, s1, s2, s3, χ1}, we now obtain an inner product matrix,

1 0 0 0 0
0 1 0 0 0
0 0 2 1 1
0 0 1 2 0
0 0 1 0 1

 ,
which can be reduced to an orthonormal basis for R(D4).
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Since both D4 and Q8 admit permutation representations of degree 8, we carry out a similar analysis
of the permutation representations of degree 8 for D4 and Q8, given by

D4 ∼=

〈(1, 8)(2, 7)(3, 4)(5, 6),
(1, 2)(3, 5)(4, 6)(7, 8),
(1, 6)(2, 4)(3, 8)(5, 7)

〉
and Q8 ∼=

〈
(1, 2, 4, 7)(3, 6, 8, 5),
(1, 3, 4, 8)(2, 5, 7, 6)

〉
·

The cycle types 18, 24, 42 arise with probabilities
( 1

8 ,
5
8 ,

1
4

)
in D4, whereas in Q8, these same types have

probabilities
( 1

8 ,
1
8 ,

3
4

)
. Both groups embed in A8 ⊂ SO(7); hence the character rings are parametrized

by R(SO(7))∼= Z[s1, s2, s3] (s7 = 1 and s4 = s3, s5 = s2, s6 = s1). Since the cycle types are the same,
the kernel ideals agree, but the Haar measures differentiate the groups. However, a naive tabulation of
the probabilities gives a poor empirical invariant. In fact, computing these probabilities is tantamount to
evaluating the expectations of the idempotents e1, e2, e3 under the isomorphism

R(G)⊗Q=
Q[s1, s2, s3]

I (G)⊗Q
→

R(G)⊗Q

mC1 ⊗Q
×

R(G)⊗Q

mC2 ⊗Q
×

R(G)⊗Q

mC3 ⊗Q
∼=Q×Q×Q.

To express this computation in the character ring framework, we scale by the group order to have
integer values. As a general strategy for a group G ⊂ Sn this amounts to asking whether the scaled
idempotents converge to

(〈|G|e1, 1〉, . . . , 〈|G|es, 1〉)= (|C1|, . . . , |Cs |),

where Ci are the Sn-conjugacy classes for G.
Let {1, χ1, χ2, χ3, ψ} be a basis of irreducible characters for D4, and {1, χ ′1, χ

′

2, χ
′

3, ψ
′
} be a basis of

irreducible characters for Q8. The parametrization gives a Q-basis {1, s1, s2} and an idempotent basis
{e1, e2, e3} which are characteristic functions for the evaluations on conjugacy classes. A reduced basis
for the image of R(S8) in R(D4) is {1, σ1, σ2}, described as follows in these respective bases:

D4 {1,s1,s2} {e1,e2,e3} {1,χ1,χ2,χ3,ψ}

1 1 e1+e2+e3 1

σ1 −s1+
1
2 s2−

1
2 2e1−e2+e3 χ1+ψ

σ2 2s1−
1
2 s2+

1
2 4e1−2e3 χ1+χ2+χ3

Similarly, a reduced basis for the image of R(S8) in R(Q8) is {1, τ1, τ2}, expressed in the respective
bases as follows:

Q8 {1,s1,s2} {e1,e2,e3} {1,χ ′1,χ
′

2,χ
′

3,ψ
′
}

1 1 e1+e2+e3 1
τ1 −s1+

1
2 s2−

3
2 2e1−2e2 ψ ′

τ2 3s1−s2+3 3e1+3e2−e3 χ ′1+χ
′

2+χ
′

3

Relative to the parametrizations from R(SO(7)), the bases (σ1, σ2) and (τ1, τ2) are related by (σ1, σ2)=

(τ1+ 1, τ1+ τ2− 1), and inversely (τ1, τ2) = (σ1− 1, σ1+ σ2+ 2). We thus express (8e1, 8e2, 8e3) in
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the respective bases
{1,s1,s2} {1,σ1,σ2} {1,τ1,τ2}

8e1 s1+1 1+σ1+σ2 1+2τ1+τ2

8e2 5s1−2s2+7 5−3σ1+σ2 1−2τ1+τ2

8e3 −6s1+2s2 2+2σ1−2σ2 6−2τ2

giving inclusions of submodules 〈8e1, 8e2, 8e3〉 ⊂ 〈1, σ2, σ3〉 = 〈1, τ2, τ3〉 ⊂ 〈e1, e2, e3〉.
Computing the expectations of the test functions {1, σ1, σ2} for D4 on polynomials with Galois groups

G = D4 or Q8, the Gram matrix M(G)= (E(σiσj )) (σ0 = 1) takes the form

M(G)=

1 0 0
0 2 1
0 1 3

 , where G = D4 and otherwise

 1 1 −1
1 2 0
−1 0 5

 .
With respect to test functions {1, τ1, τ2} for Q8, the Gram matrices are

M(G)=

1 0 0
0 1 0
0 0 3

 , where G = Q8 and otherwise

 1 −1 2
−1 3 −3

2 −3 7

 .
It should be clear that the full Gram matrix gives a more complete picture of the orthogonality relations
of characters than the triple of inner products (〈8e1, 1〉), (〈8e2, 1〉), (〈8e3, 1〉), which is just one linear
combination of the rows in the above Gram matrices.

In the next section, we show that the choice of reduced basis for the target group gives a better set of
test functions, converging more rapidly to the asymptotic Gram matrix. With respect to the polynomials
x8
+ 6x4

+ 1 of Galois group D4 and x8
− 12x6

+ 36x4
− 36x2

+ 9 of Galois group Q8, we obtain
reasonably good convergence (to within a half integer) with the first 80 primes.

Nondistinguished representations of degree 8. The first example of nonisomorphic permutation repre-
sentations not distinguished by their cycle types and Haar measure are the degree-8 groups of order 16
denoted by 8T10 and 8T11 (see the LMFDB [6] Galois groups database). Specifically we define the
representative groups

G0=〈(1,2,3,8)(4,5,6,7), (1,5)(3,7)〉, G1=〈(1,3,5,7)(2,4,6,8), (1,4,5,8)(2,3,6,7), (1,5)(3,7)〉

whose character tables are given by

A(G0)=



1 1 1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1 1 1
1 1 1 1 −1 −1 1 1 −1 −1
1 1 1 1 1 1 −1 −1 −1 −1
1 −1 −1 1 1 −1 i −i −i i
1 −1 −1 1 −1 1 −i i −i i
1 −1 −1 1 −1 1 i −i i −i
1 −1 −1 1 1 −1 −i i i −i
2 −2 2 −2 0 0 0 0 0 0
2 2 −2 −2 0 0 0 0 0 0


, A(G1)=



1 1 1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 1 −1 −1 1
1 1 −1 −1 −1 −1 −1 1 1 1
1 1 −1 −1 1 1 −1 −1 −1 1
1 1 1 1 1 −1 −1 1 −1 −1
1 1 1 1 −1 1 −1 −1 1 −1
1 1 −1 −1 −1 1 1 1 −1 −1
1 1 −1 −1 1 −1 1 −1 1 −1
2 −2 −2i 2i 0 0 0 0 0 0
2 −2 2i −2i 0 0 0 0 0 0


,



366 DAVID KOHEL

with respective probabilities
( 1

16 ,
1
16 ,

1
16 ,

1
16 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8

)
. We note that the first eight characters are

linear, and the latter two are of degree 2. The linear characters admit a group structure, isomorphic to
C2 × C4 and C3

2 , respectively. We denote the characters by {1, χ1, χ2, χ3, ρ1, ρ1, ρ2, ρ2, ψ1, ψ2} and
{1, ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7, ψ,ψ}. In the groups G0 and G1 the character of the standard representation
(of degree 7) decomposes as

s1 = χ1+ ρ1+ ρ1+ψ1+ψ2 and s1 = ξ1+ ξ2+ ξ2+ψ +ψ,

respectively, but the individual characters in s1 are not separated.
Given the obvious Galois action (on the codomain field Q(i)), we see that the subrings RQ(G0) and

RQ(G1) have different ranks, 8 and 9. On the other hand, the images of the restriction homomorphism
from R(S8) have rank 4 in each of R(G0) and R(G1), generated for instance by {1, s1, s2, s3}. Moreover,
since exactly the same four cycle types occur, with the same probabilities

( 1
16 ,

5
16 ,

1
8 ,

1
2

)
, the characters

in the image of restriction from R(S8) to R(G0) and R(G1) cannot be differentiated.
Let K0 and K1 be number fields whose normal closures have respective Galois groups G0 and G1.

In order to distinguish these fields, it suffices to construct missing characters from the linear character
groups. In fact these number fields have nontrivial automorphism groups, isomorphic to V4 and C4,
respectively. This induces respective subfield lattices of the forms

K0 K1

F ′0 F0 F ′′0 F1

G0 G ′1 G1 G ′′1

Q Q

For each field we recover a significant subgroup of the linear character groups from the quartic and
quadratic characters. In fact there is a unique cyclic subfield F0/Q in K0 which recovers the charac-
ters ρ1, ρ2, and χ1 = ρ

2
1 . (The other fields F ′0 and F ′′0 are nonnormal.) And there exists a unique

biquadratic field F1/Q in K1 which yields the quadratic characters ξ1, ξ2, ξ3. The pairs (K0, F0) and
(K1, F1) give characters on the pairs of permutation groups of degree 8 and 4, (G0,G0/H0 ∼= C4) and
(G1,G1/H1 ∼= V4), such that the joint factorization types of Frobenius characters separate the Galois
structures.

Representations of A5. We denote the irreducible characters of the alternating groups A5 by {1, χ1, χ2,

χ3, χ4}, where χ1 is the character of the degree-4 standard representation, χ2 is the character of a degree-5
representation, and χ3 and χ4 are the conjugate characters of degree-3 icosahedral representations over
Q(
√

5). The rational representations are thus spanned by the orthogonal characters {1, χ1, χ2, χ3+χ4}

of degrees 1, 4, 5, and 6.
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On the other hand, the permutation representation of A5 in S5 gives a parametrization by

R(SO(4))=
Z[s1, s2, s3, s4]

(s1− s3, s4− 1)
∼= Z[s1, s2],

and while | C̀ (A5)| = 5, there are two conjugacy classes which map to the same cycle type 51 in C̀ (S5).
Thus the restriction from R(S5) gives a basis of four independent characters, and we identify

(1, s1, s2
1 − s2− s1− 1, s2)= (1, χ1, χ2, χ3+χ4).

In addition to its degree-5 permutation representation, A5 admits a faithful permutation representation
in S6. In the restriction of Z[s1, s2] ∼= R(SO(5)) we recognize the same characters equipped with a
different parametrization

(1, s2
1 − 2s1− s2− 1, s1, s2−χ1)= (1, χ1, χ2, χ3+χ4).

Consider the number fields, each with Galois group A5, defined by polynomials

f = x5
− 5x4

+ 48x3
+ 28x2

+ 5x − 1,

g = x6
+ 4x5

+ 10x4
− 10x3

+ 17x2
+ 10x + 1,

constructed as subfields of the same normal closure. Although not isomorphic, we can construct the
inner product matrix of the same characters set {1, χ1, χ2, χ3+ χ4} on A5 with respect to its different
embeddings in S5 and S6. Jointly evaluating the characters on factorization types of f or g with those of
either f or g, yields the same diagonal inner product matrix (= diag(1, 1, 1, 2) to nearest integer). This
gives a means of recognizing the same character of the absolute Galois group via different presentations.
The arithmetic statistic approach through character theory gives a powerful tool to not only characterize
Galois groups, but to recognize equivalence of finite representations of the absolute Galois group G which
may arise in different contexts.

6. Variance, covariance and convergence

The focus on irreducible characters provides, on the one hand, a theoretic framework for understanding
the arithmetic statistics of Frobenius distributions. On the computational side, irreducible characters
provide test functions with optimal convergence properties. Naively, in view of the orthogonality relations
for a system {χ1, . . . , χr } of irreducible characters as test functions, it suffices to recognize the integer
〈χi , χj 〉 = δi j to one bit of precision. Furthermore, for χi 6= 1 and χj 6= 1 the inner products 〈χi , 1〉 =
〈χj , 1〉 = 0 imply that χi and χj have mean 0; hence we can interpret

ES(χiχ j )=
1
|S|

∑
p∈S

χi (p)χ j (p)

as a (sample) variance (i = j ) or covariance (i 6= j ) of the sample S, we see that the use of irreducible char-
acters (or of reduced characters in R(G) as the next best approximation when irreducible characters are
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not in the restriction image from R(Sn)) minimizes the variance of the test functions, and orthogonality
minimizes the covariance.

We can illustrate the convergence properties with the lattice of subgroups between the representation
of PSL2(F7) on P1(F7) and S8

PGL2(F7)∼= G1 S8

PSL2(F7)∼= H1 H2 A8

with respective orders |H1| = 168, |G1| = 336, and |H2| = 1344.
Let h(G) be the number of conjugacy classes of G, equal to the number of irreducible characters

and to the rank of R(G); let r(G) be the number of characters irreducible over Q, equal to the rank of
RQ(G); and let s(G) the rank of the image of the restriction of R(Sn) to R(G). For each of the groups
we give the respective numbers h(G), r(G) and s(G), as well as a representative polynomial (from the
LMFDB [6]) with Galois group G:

G h(G) r(G) s(G) fG(x)

S8 22 22 22 x8
−x−1

A8 14 12 12 x8
−2x7

+3x5
−5x4

+2x3
+2x2

−x+1
G1 9 8 8 x8

−x7
+x6
+4x5

−x4
−3x3

+5x2
−2x+1

H2 11 10 8 x8
−4x7

+8x6
−9x5

+7x4
−4x3

+2x2
+1

H1 6 5 5 x8
−4x7

+7x6
−7x5

+7x4
−7x3

+7x2
+5x+1

For the generic group Sn the characters (1, s1, . . . , sn−1) are irreducible on Sn and form a system of
test functions for Sn . On An and its subgroups the relations sn−1−i = si hold, and so the characters
(1, s1, . . . , sm), where n = 2m+ 1 or 2m+ 2, form a system of test functions for An .

The Gram matrices M(G) with respect to the test characters (1, s1, . . . , s7) for G = S8, A8, and G1,
respectively are

M(S8)=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


, M(A8)=



1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 1 0 0 1 0 0
0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 1


, M(G1)=



1 0 0 0 1 0 0 0
0 1 0 1 1 1 0 0
0 0 3 2 1 1 1 0
0 1 2 6 4 1 1 1
1 1 1 4 6 2 1 0
0 1 1 1 2 3 0 0
0 0 1 1 1 0 1 0
0 0 0 1 0 0 0 1


.

For the indicated representative polynomials, characters (χ1, . . . , χr ) and set of nonramified primes S,
we define the error matrix ZS(G)= ES(χiχ j )−M(G) and for an (r × r)-matrix Z = (zi j ) we define the
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S8 A8

k ‖ZS(G)‖2 ‖ZS(G)‖8 ‖ZS(G)‖∞ ‖ZS(G)‖2 ‖ZS(G)‖8 ‖ZS(G)‖∞

1 0.104870 < 0.184799 < 0.257812 0.080624 < 0.112569 < 0.140625
2 0.104915 < 0.197659 < 0.269531 0.099134 < 0.174740 < 0.226562
3 0.093747 < 0.189553 < 0.255208 0.074997 < 0.128586 < 0.166666
4 0.072267 < 0.138632 < 0.191406 0.057739 < 0.092246 < 0.119140
5 0.063890 < 0.112834 < 0.151562 0.058826 < 0.128167 < 0.181250
6 0.063620 < 0.115167 < 0.171875 0.053728 < 0.112338 < 0.158854
7 0.052897 < 0.083975 < 0.116071 0.049278 < 0.098191 < 0.138392
8 0.045921 < 0.070367 < 0.097656 0.036335 < 0.065900 < 0.092773

Table 1. Approximation for G = S8 and G =A8 on sample sets of first 128k nonramified primes.

normalized `p-norms

‖Z‖p =

(
1
r2

∑
i, j

|zi j |
p
)1/p

and ‖Z‖∞ =max
i, j
{|zi j |}.

In particular we need ‖ZS(G)‖∞ < 0.50 in order for the approximation to round to M(G). We say that
a sequence stably converges to M(G) after m terms if ‖ZS(G)‖∞ < 0.50 for all initial segments S of the
sequence with |S|> m.

Setting S equal to the first 128k nonramified primes, in the case of S8 and A8 the symmetric functions
give good convergence in the `2, `8 and `∞-norms to M(G) on small sample sets consisting of the first
128k nonramified primes; see Table 1.

Even with sample size 128, we obtain a close approximation to the correct Gram matrix, and the
convergence remains stable. In contrast, for the group G1 (of index 120 in S8) taking increments of size
1024 we find that 214

= 1024 · 16 primes gives an exact approximation of M(G1) (in the `∞-norm) but
that at least 1024 · 22 primes are needed for stable convergence; see Table 2.

k ‖ZS(G)‖2 ‖ZS(G)‖8 ‖ZS(G)‖∞ k ‖ZS(G)‖2 ‖ZS(G)‖8 ‖ZS(G)‖∞

1 0.876885 < 1.841975 < 2.686523 10 0.187304 < 0.375945 < 0.533105
2 0.229706 < 0.475835 < 0.701171 11 0.211544 < 0.429012 < 0.613725
3 0.437539 < 0.862551 < 1.233723 12 0.231261 < 0.465137 < 0.665364
4 0.542897 < 1.080542 < 1.525878 13 0.279154 < 0.560439 < 0.800030
5 0.267850 < 0.528893 < 0.756054 14 0.201504 < 0.399819 < 0.572195
6 0.365931 < 0.733534 < 1.035156 15 0.189139 < 0.375454 < 0.534960
7 0.199105 < 0.407255 < 0.580217 16 0.178182 < 0.348732 < 0.493652
8 0.229675 < 0.471416 < 0.672363 17 0.143345 < 0.282338 < 0.397633
9 0.111158 < 0.231270 < 0.333224 18 0.136637 < 0.266879 < 0.378417

Table 2. Approximation for G = G1 on sample sets of 1024k primes.
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k ‖ZS(G)‖2 ‖ZS(G)‖8 ‖ZS(G)‖∞ k ‖ZS(G)‖2 ‖ZS(G)‖8 ‖ZS(G)‖∞

1 0.191903 < 0.557482 < 0.937500 9 0.114006 < 0.234514 < 0.392361
2 0.107457 < 0.204107 < 0.312500 10 0.116967 < 0.233938 < 0.390625
3 0.111166 < 0.316320 < 0.531250 11 0.120169 < 0.241507 < 0.403409
4 0.085609 < 0.199992 < 0.335937 12 0.090920 < 0.197313 < 0.330729
5 0.087717 < 0.208395 < 0.350000 13 0.093108 < 0.180276 < 0.300480
6 0.094278 < 0.217121 < 0.364583 14 0.070129 < 0.145311 < 0.243303
7 0.103194 < 0.236602 < 0.397321 15 0.074861 < 0.160193 < 0.268750
8 0.110885 < 0.249000 < 0.417968 16 0.030534 < 0.066387 < 0.111328

Table 3. Approximation for G = G1 on sample sets of 128k primes, using a basis of irreducible characters.

Extending the computation further, we find that the apparent stable convergence fails when ‖ZS(G1)‖∞>

0.50 for |S| = 1024 · k for 19≤ k ≤ 21 and again in the range 45≤ k ≤ 48.
Passing to a basis of rational irreducible characters (r(G1)= s(G1)), the rational character table A(G1)

and the inner product matrix D(G1) of the Haar measure on conjugacy classes are respectively

A(G1)=



1 1 1 1 1 1 1 1
1 1 −1 1 1 −1 1 −1
6 −2 0 0 2 0 −1 0

12 4 0 0 0 0 −2 0
7 −1 1 1 −1 1 0 −1
7 −1 −1 1 −1 −1 0 1
8 0 −2 −1 0 1 1 0
8 0 2 −1 0 −1 1 0


and D(G1)=

1
336



1 0 0 0 0 0 0 0
0 21 0 0 0 0 0 0
0 0 28 0 0 0 0 0
0 0 0 56 0 0 0 0
0 0 0 0 42 0 0 0
0 0 0 0 0 56 0 0
0 0 0 0 0 0 48 0
0 0 0 0 0 0 0 84


,

which determine the diagonalized matrix M(G1) = A(G1)D(G1)A(G1)
t
= diag(1, 1, 1, 2, 1, 1, 1, 1)

with respect to the rational irreducible characters. With respect to this basis, in increments of 128k
primes, we find stable convergence after just 512= 128 · 4 primes; see Table 3.

For the subgroup chain H1 ⊂ H2 ⊂A8, starting with the characters (1, s1, s2, s3), irreducible on A8,
we find a similar analysis. In particular, the Gram matrices with respect to this basis are

M(A8)=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , M(H2)=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 3

 , M(H1)=


1 0 0 1
0 1 1 2
0 1 4 3
1 2 3 10

 .
In the former two cases, the characters are orthogonal and irreducible or nearly so (s3 decomposes as
a sum of three distinct irreducibles on H2), and convergence is relatively good. In contrast, the Gram
matrix M(H1) has determinant 14, and is far from being orthogonal or irreducible (except for 1 and s1)
on H1. In increments of 1024, we find stable convergence only after 215

= 1024 · 32 primes; see Table 4.
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k ‖ZS(G)‖2 ‖ZS(G)‖8 ‖ZS(G)‖∞ k ‖ZS(G)‖2 ‖ZS(G)‖8 ‖ZS(G)‖∞

1 1.300776 < 2.685076 < 3.787109 17 0.162082 < 0.331846 < 0.467773
2 0.457035 < 0.943691 < 1.331054 18 0.249476 < 0.507743 < 0.715332
3 0.316304 < 0.671333 < 0.948242 19 0.260497 < 0.533048 < 0.751336
4 0.149549 < 0.327977 < 0.463623 20 0.250136 < 0.514311 < 0.725195
...

...
...

...
...

...
...

...
...

...
...

...

13 0.201940 < 0.417409 < 0.588792 29 0.183952 < 0.364100 < 0.511112
14 0.219831 < 0.449876 < 0.634137 30 0.193960 < 0.384122 < 0.539257
15 0.207462 < 0.427431 < 0.602799 31 0.148770 < 0.290129 < 0.406060
16 0.170705 < 0.352046 < 0.496520 32 0.132390 < 0.258615 < 0.362091

Table 4. Approximation for G = H1 on sample sets of 1024k primes.

k ‖ZS(G)‖2 ‖ZS(G)‖8 ‖ZS(G)‖∞ k ‖ZS(G)‖2 ‖ZS(G)‖8 ‖ZS(G)‖∞

1 0.227868 < 0.301886 < 0.406250 9 0.064413 < 0.088651 < 0.114583
2 0.225747 < 0.296604 < 0.398437 10 0.079219 < 0.104501 < 0.132812
3 0.127307 < 0.165588 < 0.216145 11 0.091419 < 0.119029 < 0.154829
4 0.149822 < 0.191605 < 0.250000 12 0.056475 < 0.076844 < 0.097656
5 0.166819 < 0.214155 < 0.271875 13 0.047871 < 0.066901 < 0.086538
6 0.085019 < 0.114926 < 0.148437 14 0.041653 < 0.062817 < 0.083705
7 0.101179 < 0.132950 < 0.166294 15 0.029993 < 0.041051 < 0.053125
8 0.114860 < 0.148922 < 0.193359 16 0.041465 < 0.054989 < 0.069335

Table 5. Approximation for G = H1 on sample sets of 128k primes, using a basis of irreducible characters.

Going further one finds that the `∞-norm gradually decreases and does indeed stay below 0.50 after
this point. In contrast, in terms of the basis (1, χ1 = ϕ+ϕ, χ2, χ3, χ4) of irreducible characters over Q,
of degrees (1, 6, 6, 7, 8) given by

χ1 =
1
2(4s2+ 3s3− s1s2− 4s1− 2), χ3 = s1,

χ2 =
1
4(2s2+ 5s3− s1s2− 6s1− 4), χ4 =

1
2(s1s2+ 2s1+ 2− 2s2− 3s3),

the test characters stable converge to M(H1) after only 128 primes, with results here in increments of
128 primes; see Table 5.

These convergence results give empirical support to the principle of using irreducible characters as test
functions, based on the theoretical interpretation of inner product relations on characters as variance and
covariance. Moreover, when using irreducible characters, the number of primes necessary to recognize
the Gram matrix associated to a Galois group is strikingly small.

7. Asymptotics in the degree

In analyzing the character theory of a permutation group of large degree, one must avoid certain bot-
tlenecks in the complexity. First the number of transitive permutation groups is too large to enumerate,
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k ‖ZS(G)‖2 ‖ZS(G)‖8 ‖ZS(G)‖∞ k ‖ZS(G)‖2 ‖ZS(G)‖8 ‖ZS(G)‖∞

1 0.512041 < 1.947691 < 3.843750 17 0.122505 < 0.279019 < 0.473345
2 0.256200 < 0.868283 < 1.609375 18 0.118703 < 0.265146 < 0.452473
3 0.180087 < 0.525172 < 0.929687 19 0.114018 < 0.254474 < 0.432360
4 0.251753 < 0.848164 < 1.571289 20 0.110361 < 0.248728 < 0.442968
...

...
...

...
...

...
...

...

13 0.161766 < 0.376064 < 0.648137 29 0.110513 < 0.283699 < 0.530980
14 0.151537 < 0.350967 < 0.611049 30 0.108019 < 0.275711 < 0.514713
15 0.139688 < 0.325884 < 0.550000 31 0.105191 < 0.262830 < 0.491053
16 0.128557 < 0.298173 < 0.504638 32 0.102228 < 0.251891 < 0.468505

Table 6. Approximation for G = W (E8)/Z(W (E8)) on sample sets of 256k primes, using a basis of
irreducible characters.

and so clearly the poset must be navigated in a lazy fashion. Second, the number of conjugacy classes
(hence of irreducible characters) for Sn is too large to enumerate. For the generic groups Sn and An , the
characters (1, s1, . . . , sn−1) and (1, s1, . . . , sm), where n = 2m+ 1 or 2m+ 2, give a subset of rational
irreducible test functions (when n= 2m+2, the character sm is the sum of two characters on An , conjugate
over a quadratic field). In general the number of conjugacy classes is the partition number p(n), whose
asymptotic growth is known by [11] to be

p(n)∼
1

4n
√

3
exp

(
π

√
2n
3

)
.

In particular, we will treat a nontrivial example of degree 120 (and 240) despite the large size p(120)=
1844349560 (and p(240)= 105882246722733) of the corresponding partition numbers. Finally, com-
putation of the kernel ideal of the restriction R(O(n − 1))→ R(G) by Groebner basis algorithms is
prohibitively expensive, even if the s(G) points in the kernel can be computed.

Polynomials with interesting Galois groups of large degree, outside the generic groups Sn and An and
cyclic and dihedral groups Cn and Dn rely on specific constructions. We consider such an example of
Jouve, Kowalski and Zywina [13], a polynomial f (x) of degree 240 with Galois group the Weyl group
W (E8) of the lattice E8, of order 696729600. In contrast to the large number of conjugacy classes of
S240, the number of conjugacy classes of W (E8) is 112, and the restriction homomorphism from R(S240)

has full rank. We take the quotient of order 348364800 by its center, which is the Galois group of the
degree-120 polynomial g(x) such that f (x) = g(x2). The quotient group G = W (E8)/Z(W (E8)) has
67 conjugacy classes, all characters are rational, and the restriction homomorphism from R(S120) is
a subring of rank 65. We consider the 18 absolutely irreducible rational characters in the image. In
increments of 256 primes, we compute the convergence to the Gram matrix A(G) for these 18 characters
to 213

= 256 · 32 primes; see Table 6.
Extending the computation further suggests that the convergence to M(G) is stable for m > 213.
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8. Conclusion

A standard tool in Galois group computation is to recognize the probable group from an analysis of
Frobenius cycle types. We use an explicit polynomial parametrization of the character ring to identify
the irreducible characters in the restriction from orthogonal groups and subsequently from the symmetric
group. As in the thesis work of Shieh [17; 18], with the view to classifying Sato–Tate groups, it is rec-
ognized that the irreducible characters on the target group provide optimal test functions for recognizing
(or rejecting) a given group coming from a Galois representation. We develop this perspective in the
application to the parametrized representation rings of finite groups, with associated lattice structure. Al-
though we focus on Galois groups arising from splitting fields of polynomials over Q, the same methods
apply to Galois representations coming from L-series and modular forms, families of exponential sums,
and global fields of any characteristic.

At a higher level, the approach through character theory and arithmetic statistics lets us identify when
Frobenius distributions of different degrees admit a common Galois subrepresentation. Examples arise in
the form of fields with isomorphic normal closures, as described in the above examples of A5 representa-
tions, but more generally one can recognize whether two normal fields admit a common subfield. In this
framework, orthogonality relations of characters are measured by correlations of Frobenius distributions
associated to different representations of the absolute Galois group. This perspective has promising
potential for the computational investigation of Galois representations.
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A database of Belyi maps

Michael Musty, Sam Schiavone, Jeroen Sijsling, and John Voight

We use a numerical method to compute a database of three-point branched covers of the complex
projective line of small degree. We report on some interesting features of this data set, including issues
of descent.

1. Introduction

1.1. Motivation. Let X be a smooth, projective curve over C. A Belyi map on X is a nonconstant map
φ : X → P1 that is unramified away from {0, 1,∞}. By a theorem of Belyi [2] and Weil’s descent
theory [17], X can be defined over the algebraic closure Qal of Q if and only if X admits a Belyi
map. This remarkable observation has led to a spurt of activity, with many deep questions still open
after forty years. In his study of covers of the projective line minus three points [8], Deligne writes
pessimistically:

A. Grothendieck and his students developed a combinatorial description (“maps”) of finite
coverings. . . It has not aided in understanding the Galois action. We have only a few examples
of nonsolvable coverings whose Galois conjugates have been computed.

Indeed, although significant mathematical effort has been expended in computing Belyi maps [15], there
have been few systematic computations undertaken.

1.2. Main result. In this article we seek to remedy this state of affairs. We address Deligne’s second
objection by describing the uniform computation of a large catalog of Belyi maps of small degree. We
utilize the numerical method of Klug–Musty–Schiavone–Voight [11] and follow the combinatorial de-
scription of Grothendieck. We make some preliminary observations about our data, but leave to future
work a more detailed analysis of the Galois action on the maps in our catalog.

A passport is the data (g,G, λ) consisting of a nonnegative integer g ∈ Z≥0, a transitive permutation
group G ≤ Sd , and three partitions λ= (λ0, λ1, λ∞) of d. The passport of a Belyi map is given by its
genus, its monodromy group, and the ramification degrees of the points above 0, 1,∞. There is a natural
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d ↓ g→ 0 1 2 3 ≥ 4 total

1 1/1 0 0 0 0 1/1
2 1/1 0 0 0 0 1/1
3 2/2 1/1 0 0 0 3/3
4 6/6 2/2 0 0 0 8/8
5 12/12 6/6 2/2 0 0 20/20
6 38/38 29/29 7/7 0 0 74/74
7 89/89 50/50 7/13 2/3 0 148/155
8 243/261 83/217 0/84 0/11 0 326/573
9 410/583 33/427 0/163 0/28 0/6 443/1207

total 802/993 204/732 16/269 2/42 0/6 1024/2042

The number of passports of Belyi maps for each degree d and genus g is shown to the right of the slash;
the number of them that we have computed is given to the left of the slash.

permutation action of S3 on passports, so (without loss of generality) we choose exactly one passport up
to this S3-action. (For more on passports, see Section 2.)

A summary of the scope of our computation so far is given in the table above. Our data is available at
https://github.com/michaelmusty/BelyiDB and will hopefully also be available at lmfdb.org in the near
future.

1.3. Comparison. Our database compares to the existing catalogs of Belyi maps that are currently avail-
able as follows:

• Birch [4] computed a sampling of Belyi maps of low degree and genus, for a total of 50 passports.

• A Shabat polynomial is a Belyi map of genus 0 that is totally ramified at∞. Bétréma–Péré–Zvonkin
[3] computed all Shabat polynomials up to degree 8; there are 78 such passports.

• A Belyi map is clean if every point above 1 has ramification index 2. (A clean Belyi map has even
degree, and if φ is an arbitrary Belyi map of degree d then 4φ(1−φ) is a clean Belyi map of degree 2d .)
Adrianov et al. [1] computed all clean Belyi maps up to degree 8; there are 67 such passports.

• Malle [12] computed fields of definition of some genus-0 passports whose permutation group is prim-
itive, subject to some other restrictions, up to degree 13; there are hundreds of passports.

• Bose–Gundry–He [5] describe a partial catalogue of Belyi maps, inspired by considerations from gauge
theory in physics. This database contains many genus-0 maps up to degree 7 and some maps in genus 1
and 2.

• Arsen Elkin also has a database of Belyi maps [9].

There are many other papers that compute certain classes of Belyi maps; for further reference, see
Sijsling–Voight [15].

1.4. Outline. The paper is organized as follows. We begin in Section 2 by defining passports and exhibit-
ing an algorithm to enumerate their representative permutation triples up to simultaneous conjugation. In

https://github.com/michaelmusty/BelyiDB
http://www.lmfdb.org/
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Section 3, we briefly recall the numerical method employed. In Section 4, we treat the descent issues that
arise. In Sections 5–6, we detail steps that are specific to elliptic and hyperelliptic curves, and provide
examples of these computations. We conclude in Section 7 with a description of the database, some
statistics, and some final observations.

2. Passports

We begin by explaining the combinatorial (or topological) description of Belyi maps and exhibit an
efficient method for their enumeration. For general background reading, see Sijsling–Voight [15, §1].

2.1. Preliminaries. Throughout, let K ⊆ C be a field. A (nice) curve over K is a smooth, projective,
geometrically connected (irreducible) scheme of finite type over K that is pure of dimension 1. After
extension to C, a curve may be thought of as a compact, connected Riemann surface. A Belyi map over
K is a finite morphism φ : X → P1 over K that is unramified outside {0, 1,∞}; we will sometimes
write (X, φ) when we want to pay special attention to the source curve X . Two Belyi maps φ, φ′ are
isomorphic if there is an isomorphism ι : X −→∼ X ′ of curves such that φ′ι= φ.

Let φ : X→ P1 be a Belyi map over Qal of degree d ∈ Z≥1. The monodromy group of φ is the Galois
group Mon(φ) := Gal(C(X) |C(P1))≤ Sd of the corresponding extension of function fields (understood
as the action of the automorphism group of the normal closure); the group Mon(φ) may also be obtained
by lifting paths around 0, 1,∞ to X .

A permutation triple of degree d ∈ Z≥1 is a tuple σ = (σ0, σ1, σ∞) ∈ S3
d such that σ∞σ1σ0 = 1. A

permutation triple is transitive if the subgroup 〈σ 〉 ≤ Sd generated by σ is transitive. We say that two
permutation triples σ, σ ′ are simultaneously conjugate if there exists τ ∈ Sd such that

σ τ := (τ−1σ0τ, τ
−1σ1τ, τ

−1σ∞τ)= (σ
′

0, σ
′

1, σ
′

∞
)= σ ′. (2.1.1)

An automorphism of a permutation triple σ is an element of Sd that simultaneously conjugates σ to itself,
i.e., Aut(σ ) is equal to ZSd (〈σ 〉), the centralizer inside Sd .

Lemma 2.1.2. The set of transitive permutation triples of degree d up to simultaneous conjugation is in
bijection with the set of Belyi maps of degree d up to isomorphism.

Proof. The correspondence is via monodromy [11, Lemma 1.1]; in particular, the monodromy group of
a Belyi map is (conjugate in Sd to) the group generated by σ . �

The group Gal(Qal
|Q) acts on Belyi maps by acting on the coefficients of a set of defining equations;

under the bijection of Lemma 2.1.2, it thereby acts on the set of transitive permutation triples, but this
action is rather mysterious.

We can cut this action down to size by identifying some basic invariants, as follows. A passport
consists of the data P = (g,G, λ), where g ≥ 0 is an integer, G ≤ Sd is a transitive subgroup, and
λ= (λ0, λ1, λ∞) is a tuple of partitions λs of d for s = 0, 1,∞. These partitions will be also be thought
of as a tuple of conjugacy classes C = (C0,C1,C∞) by cycle type, so we will also write passports as
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(g,G,C). The passport of a Belyi map φ : X → P1 is (g(X),Mon(φ), (λ0, λ1, λ∞)), where g(X) is
the genus of X and λs is the partition of d obtained by the ramification degrees above s = 0, 1,∞,
respectively. Accordingly, the passport of a transitive permutation triple σ is (g(σ ), 〈σ 〉, λ(σ )), where
(by Riemann–Hurwitz)

g(σ ) := 1− d + (e(σ0)+ e(σ1)+ e(σ∞))/2 (2.1.3)

and e is the index of a permutation (d minus the number of orbits), and λ(σ) is the cycle type of σs for
s = 0, 1,∞. The size of a passport P is the number of simultaneous conjugacy classes (as in (2.1.1)) of
(necessarily transitive) permutation triples σ with passport P.

The action of Gal(Qal
|Q) on Belyi maps preserves passports. Therefore, after computing equations

for all Belyi maps with a given passport, we can try to identify the Galois orbits of this action. We say
a passport is irreducible if it has one Gal(Qal

|Q)-orbit and reducible otherwise.

2.2. Passport lemma. To enumerate passports, we will use the following lemma.

Lemma 2.2.1. Let S be a group, let G ≤ S be a subgroup, let N := NS(G) be the normalizer of G in S,
and let C0,C1 be conjugacy classes in N represented by τ0, τ1 ∈ G. Let Z N (g) denote the centralizer of
g in N. Let

U := {(σ0, σ1) ∈ C0×C1 : 〈σ0, σ1〉 ⊆ G}/∼, (2.2.2)

where ∼ indicates simultaneous conjugation by elements in S. Then the map

u : Z N (τ0)\N/Z N (τ1)→U,

Z N (τ0)νZ N (τ1) 7→ [(τ0, ντ1ν
−1)],

(2.2.3)

is surjective, and for all [(σ0, σ1)] ∈U such that 〈σ0, σ1〉 = G, there is a unique preimage under u.

Proof. The map (2.2.3) is well-defined, as ν ∈ N so ντ1ν
−1
∈ G and conjugacy classes are taken in N.

We first show that (2.2.3) is surjective. Let [(σ0, σ1)] ∈ U. Then gσ0g−1
= τ0 for some g ∈ N, and

so [(σ0, σ1)] = [(τ0, gσ1g−1)] ∈ U. Similarly, there is h ∈ N such that σ1 = hτ1h−1 so [(σ0, σ1)] =

[(τ0, (gh)τ1(gh)−1)], and gh = ν ∈ N.
Next, we show (2.2.3) is injective when restricted to generating pairs. Suppose [(τ0, ντ1ν

−1)] =

[(τ0, µτ1µ
−1)] ∈U with µ, ν ∈ N. Then there exists ρ ∈ S with

ρ(τ0, ντ1ν
−1)ρ−1

= (τ0, µτ1µ
−1). (2.2.4)

Then ρ〈τ0, ντ1ν
−1
〉ρ−1
= ρGρ−1

= 〈τ0, µτ1µ
−1
〉 = G under the hypotheses on generation, so we have

ρ ∈ N. The equation in the first component reads ρτ0ρ
−1
= τ0, so ρ ∈ Z N (τ0) by definition. The second

equation yields
ρντ1ν

−1ρ−1
= µτ1µ

−1,

(µ−1ρν)τ1(µ
−1ρν)−1

= τ1,
(2.2.5)

so µ−1ρν ∈ Z N (τ1). Writing ν = (ρ−1)µ(µ−1ρν), we find that Z N (τ0)νZ N (τ1)= Z N (τ0)µZ N (τ1), as
desired. �
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2.3. Computing passports. We now describe an algorithm to produce all passports for a given degree d
and a representative set of permutation triples in each passport up to simultaneous conjugation. We
simplify this description by considering the transitive subgroups of Sd one at a time: these are currently
available [6] up to degree 47.

There is a natural permutation action of S3 on passports and on the permutation triples in a passport,
corresponding to postcomposition of Belyi maps by an automorphism of the base curve P1 permuting
{0, 1,∞}. For the purposes of tabulation, we will choose one passport up to this action of S3: to do so,
we choose a total ordering � on partitions (e.g., refining the dominance partial order).

Algorithm 2.3.1. Let d ∈Z≥1, let G≤ Sd be a transitive subgroup, and let N := NSd (G) be the normalizer
of G in Sd . This algorithm returns a representative list of passports for G up to the action of S3; and, for
each passport, a representative list of permutation triples (one for each simultaneous conjugacy class).

(1) Compute representatives {τ1, . . . , τr } for the conjugacy classes {C1, . . . ,Cr } of G up to conjugation
by N.

(2) Out of the r2 possible pairs of conjugacy class representatives, only consider pairs (τi , τj ) with
λ(τi )� λ(τj ).

(3) For each pair (τi , τj ) from Step 2, apply Lemma 2.2.1 to compute the set

Ui j := {(σ0, σ1) ∈ Ci ×C j : 〈σ0, σ1〉 ⊆ G}/∼ (2.3.2)

by computing the double coset Z N (τi )\N/Z N (τj ) and applying the map u. Complete each pair
(σ0, σ1) ∈Ui j to a permutation triple by setting σ∞ := (σ1σ0)

−1, and let Ti j denote the resulting set
of triples obtained from Ui j .

(4) Keep only those triples σ ∈ Ti j with 〈σ 〉 = G and such that λ(σ1)� λ(σ∞).

(5) Sort the triples obtained from Step 4 into passports by cycle structure.

Proof of correctness. We compute all possible input pairs (τ0, τ1) to Lemma 2.2.1 with λ(τ0) � λ(τ1).
This accounts for all possible input pairs to Lemma 2.2.1 since every passport is S3-equivalent to such a
passport. We do not have control over the conjugacy class of σ∞ in this process, but Step 4 insists that
every resulting passport representative σ has λ(σ0)� λ(σ1)� λ(σ∞) thereby ensuring a unique passport
up to the action of S3. �

Using Algorithm 2.3.1 we computed representatives for all passports (without equations) in degree
d ≤ 11; this took about 18 minutes for all degrees d ≤ 9, about 3.3 hours for d = 10, and 2.37 days for
d = 11.

3. Numerical computation of Belyi maps

With triples and passports in hand, we now briefly review the numerical method used to compute Belyi
maps.
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3.1. Overview. The method of Klug–Musty–Schiavone–Voight [11] takes as input a permutation triple
σ = (σ0, σ1, σ∞) and produces as output equations for the curve X and Belyi map φ : X → P1 over a
number field K ⊆ C that corresponds to σ (in the monodromy bijection of Lemma 2.1.2).

This method is numerical, so it is not guaranteed to terminate (because of loss of precision or con-
vergence issues), but when it terminates, it gives correct output. The method proceeds in the following
steps:

(1) Form the triangle subgroup 0 ≤1(a, b, c) associated to σ and compute its coset graph.

(2) Use a reduction algorithm for 0 and numerical linear algebra to compute power series expansions
of modular forms fi ∈ Sk(0) for an appropriate weight k.

(3) Use numerical linear algebra (and Riemann–Roch) to find polynomial relations among the series fi

to compute equations for the curve X and similarly to express the map φ in this model.

(4) Normalize the equations of X and φ so that the coefficients are algebraic; recognize these coefficients
as elements of a number field K ⊆ C.

(5) Verify that φ has the correct ramification and monodromy.

For the purposes of this article, the reader may treat this method as a black box with two exceptions:
in Section 4.4 we describe an improvement to the method in Step 4 for a choice of descent constant, and
we discuss a numerical test for hyperellipticity using power series in weight 2 in Section 6.2.

3.2. Discussion. There are a few key advantages of the above algorithm for our purposes. First, it
is uniform, and in particular does not require the permutation triple to have a special form or for the
curve to be of any particular genus. Second, it computes one Belyi map at a time, without needing the
whole passport, and in particular, there are no parasitic solutions (degenerate maps that arise in other
computational methods). Third, we obtain the bijection between triples and Belyi maps by the very
construction of the equations (and the embedding K ↪→ C).

There is an alternative method due to Monien [13; 14] that uses noncocompact triangle subgroups
0 ≤1(2, 3,∞)' PSL2(Z) instead of our cocompact subgroups. This method has been shown to work
in genus 0 for maps of very large degree (e.g., a Belyi map with monodromy group isomorphic to the
Conway group Co3 is given in [14]).

4. Descent issues

In this section, we discuss issues of descent for Belyi maps: when can a Belyi map be defined over a
minimal field? (The reader eager for Belyi map computations should skip this and proceed to the next
section.) A satisfactory answer to this question is crucial for understanding the action of Gal(Qal

|Q) on
Belyi maps.

4.1. Field of moduli and field of definition. Let σ be a permutation triple with passport P and corre-
sponding Belyi map φ : X→ P1 over Qal. The field of moduli M(X, φ)⊆Qal

⊂ C of φ is the fixed field
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of {τ ∈ Gal(Qal
|Q) : τ(φ)' φ}. The field of moduli is the intersection of all fields over which (X, φ)

can be defined.
The degree of M(X, φ) is bounded above by the size of the passport P; this bound is achieved if and

only if the passport is irreducible.

Definition 4.1.1. We say that (X, φ) descends (to its field of moduli) if (X, φ) can be defined over its
field of moduli M(X, φ), that is, if there exists a Belyi map φK : X K → P1 over K whose base change
to Qal is isomorphic to φ : X→ P1.

Weil [17] studied general conditions for descent. For example, if φ has trivial automorphism group
Aut(φ), then φ descends — this criterion suffices to deal with a large majority of Belyi maps. More
generally, to descend the Belyi map it is necessary and sufficient to construct a Weil cocycle, a collection
of isomorphisms fσ : σ(X)→ X , one for every element σ ∈ GalM(X,φ) := Gal(Qal

|M(X, φ)), such
that fστ = fσσ( fτ ) for all σ, τ ∈ GalM(X,φ). (When Aut(φ) is trivial, this condition is satisfied for any
collection of isomorphisms fσ .) This criterion can be made explicit and computable [15, Method 4.1].

4.2. Pointed descent. There is another way to sidestep descent issues by rigidifying, as follows.

Definition 4.2.1. A pointed Belyi map (X, φ; P) is a Belyi map (X, φ) together with a point P ∈
φ−1({0, 1,∞}) ⊆ X (Qal). An isomorphism of pointed Belyi maps (X, φ; P) −→∼ (X ′, φ′; P ′) is an
isomorphism of Belyi maps ι such that ι(P)= P ′.

Remark 4.2.2. In our computations we choose the point P to be one of the ramification points of φ.
Any point on X would do, but only the ramification points can be seen from the combinatorial data.

Definition 4.2.3. A pointed permutation triple (σ ; c) is a permutation triple σ ∈ S3
d together with a

distinguished cycle c in one of the permutations σs with s = 0, 1,∞; we call s its base point and the
length of the cycle c its length. We call (σ ; c) a pointed refinement of the permutation triple σ .

Two pointed permutation triples (σ ; c) and (σ ′; c′) are simultaneously conjugate if the permutation
triples σ, σ ′ are simultaneously conjugate by an element τ ∈ Sd such that cτ = c′. The automorphism
group Aut(σ ; c)≤ Aut(σ ) is the subgroup of Sd that simultaneously conjugates (σ ; c) to itself.

Returning to the correspondence of Lemma 2.1.2, we see that pointed permutation triples of degree d
up to simultaneous conjugation are in bijection with pointed Belyi maps of degree d up to isomorphism.

Proposition 4.2.4. The base point, length, and cardinality of the automorphism group of a pointed per-
mutation triple are invariant under simultaneous conjugation and under the action of Gal(Qal

|Q).

Proof. The statements for simultaneous conjugation are clear. For the Galois action, we pass back to
Belyi maps: the base point, the ramification index, and the automorphism group of a pointed Belyi map
are Galois invariant. �

We similarly define the field of moduli M(X, φ; P) for a pointed Belyi map. The following theorem
gives us a widely applicable criterion for descent (even in the presence of automorphisms).
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Theorem 4.2.5. A pointed Belyi map (X, φ; P) descends; i.e., the curve X , the map φ, and the point P
can all be defined over M(X, φ; P).

Proof. The statement is given by Birch [4, Theorem 2]; for a constructive proof using branches, see
Sijsling–Voight [16, Theorem 1.12]. �

4.3. Pointed passports. Given the simplicity and importance of Theorem 4.2.5, we refine our notion of
passport as follows.

Definition 4.3.1. A pointed passport is the data (g,G, λ; c), where (g,G, λ) is a passport and c =
(s, e, a) consists of the data s ∈ {0, 1,∞}, and e ∈ Z≥1 a summand in the partition λs , and finally
a ∈ Z≥1.

Given a pointed Belyi map (X, φ; P), we define its pointed passport P(X, φ; P) to be its passport
together with the data s = φ(P), the ramification degree e = eφ(P), and a = #Aut(X, φ; P). Likewise,
we define the pointed passport P(σ ; c) to be the passport with s its base point, e its length, and a the
cardinality of its automorphism group. We define the size of a pointed passport P to be the number
of isomorphism classes of pointed Belyi maps (equivalently, number of classes of pointed permutation
triples) with pointed passport P.

Corollary 4.3.2. A pointed Belyi map is defined over a field whose degree is at most the size of its pointed
passport.

Proof. Apply Theorem 4.2.5. �

Proposition 4.3.3. If the size of P(σ ; c) is equal to the size of P(σ ), then all Belyi maps with passport
P(σ ) descend.

Proof. Any field of definition of a pointed Belyi map is also a field of definition of the underlying
Belyi map, so the fields of moduli and pointed moduli coincide by hypothesis. Descent follows by
Theorem 4.2.5, since the moduli field of the pointed curve is a field of definition. �

It seems quite common for a permutation triple to have a pointed refinement of size 1. The first
example where no such refinement exists occurs in degree 8; see Example 4.5.1 below.

4.4. Descent from C. In Step 4 of our numerical method (see Section 3.1), there is a normalization pro-
cedure which we may interpret as an application of pointed descent as follows. In the original method [11,
§5], modular forms are expanded as power series centered in a neighborhood of a ramification point of
the form |w|< 1 in a parameter w, and the coefficients of these power series are renormalized by writing
them in terms of 2w for a certain transcendental factor 2, computed as the ratio of two “consecutive”
terms in the power series expansion. In our setting, we instead normalize not the coefficients of the power
series but instead coefficients of the Belyi map itself, now setting “consecutive” coefficients equal. In
practice, we find that this normalization requires smaller precision to recognize the Belyi map exactly
from its numerical approximation.
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Remark 4.4.1. In every example we computed, and in both ways of normalizing, we obtained normal-
ized power series expansions that numerically agree with series defined over M(X, φ; P) with chosen
ramification point P. Currently this is only a numerical observation, but it is a sensible expectation, as
the method works by computing the pluricanonical image using expansions at the designated point.

Example 4.4.2. Consider the passport (1, S5, (51, 4111, 4111)). The unique representative up to simul-
taneous conjugation is given by σ with

σ0 = (1 4 2 5 3), σ1 = (1 2 3 4), σ∞ = (1 2 3 5). (4.4.3)

We take c = (1 4 2 5 3), which has length 5 and trivial automorphism group. Since the pointed passport
also has size 1, the field of moduli of the Belyi map equals Q by Corollary 4.3.2, and we can descend
to this field by Proposition 4.3.3. Computing with 50 digits of precision (here and throughout, we only
ever display 5 digits), we find X : y2

= x3
− 27c4x − 54c6 with

c4 ≈ 0.01030+ 0.00748i, c6 ≈−0.00270+ 0.00196i (4.4.4)

and Belyi map φ with

φ ≈
2.0000

−1+ (2.21275+ 0.71897i)y+ (1.77422i)xy
=

2
−1+ b3 y+ b5xy

(4.4.5)

(where i2
=−1). The indeterminacy in this approximation is by λ ∈ C×, acting according to the degree

of the pole at∞, so (c4, c6)← (λ−4c4, λ
−6c6) and (x, y)← (λ−2x, λ−3 y). Taking

λ :=
b5

b2
3
≈−0.19265− 0.26516i (4.4.6)

the rescaled values b′3 := λ
3b3 ≈ 216/510 and b′5 := λ

5b5 ≈−28/55 have (b′3)
2/b′5 = 1 (and there exists a

descent with this ratio, defined over Q). Now all the coefficients a0, b3, b5, c4, c6 ∈Q are easily identified.
After computing a minimal model and swapping 0,∞∈P1 for cosmetics, we obtain X : y2

= x3
+5x+10

with map
φ(x, y)= ((x − 5)y+ 16)/32. (4.4.7)

4.5. Examples. We now discuss some examples to see the various subtleties that play a role when de-
scending Belyi maps.

Example 4.5.1. The first case of a passport for which Proposition 4.3.3 does not apply occurs in degree 8,
given by (1, V 2

4 : S3, (3212, 42, 42)). The passport is size 1 but all pointed passports are size 2. The Belyi
map descends because its automorphism group is trivial. A descent is given by X : y2

= x3
+x2
+8x+8 and

φ(x, y)=
4(7x4

+ 24x3
+ 92x2

+ 320x + 272)y− 16(x + 1)(x2
+ 8)(x2

+ 16x + 24)
27x4 y

.

Because Aut(X, φ) is trivial, this is the only model over Q up to isomorphism. Finally, none of its
ramification points is rational, so no descent of a pointed refinement immediately gets us to the field of
moduli Q.
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Example 4.5.2. The first dessin that does not descend to its field of moduli is of degree 16. Indeed, in
lower degree, there are only three passports for which Proposition 4.3.3 does not apply and the automor-
phism group is nontrivial: all occur in degree 12, one with size 1, the other two of size 2. Yet explicit
calculation shows that these three examples all descend.

For purposes of illustration, we consider the passport (4, t12n57, (62, 62, 62)) of size 2, where t12n57
denotes the transitive group in S12 numbered 57. The passport is irreducible and the curves are nonhyper-
elliptic: they arise as degree-2 covers branching at the ramification points of the unique Belyi map with
passport (1, A4(6), (32, 32, 32)), given by E : y2

= x3
+6x2

−3x and Belyi map φ(x, y)= (x2
+3)y/(8x2).

The ramification points are then exactly the Q-rational points∞, (0, 0), (1,±2), (−3,±6) on E . To
construct the resulting degree-2 cover, we choose a 4-torsion point P4 on E . Then the sum of the
ramification points and 2P4 is equivalent to 8∞, so that we get a function whose square root gives rise
to the requested cover. The four possible covers thus obtained are all Galois conjugate; we get the same
Belyi map, this from the curve

X :
y2
= x3
+ 6x2

− 3x,
w2
= yx2

+ 2yx − 3y+αx3
+ 2αx2

− 3αx,
(4.5.3)

where α4
− 12α2

+ 48= 0. The field Q(α) contains Q(
√
−3). This unique quadratic subfield is also the

field of moduli of the Belyi map from X , since one can show that it is mapped to its Q(
√
−3)-conjugate

by the automorphism

(x, y, w) 7→
(
−3
x
,

3y
x2 ,

3iw
x2

)
(4.5.4)

of X . To show that the Belyi map descends, it suffices [7, Corollary 5.4] (or [16, Theorem 3.4.8] with
R=∅) to show that the canonical model E0 of E corresponding to the cocycle defined by the first two
entries of (4.5.4) has a rational point. It does; in fact E0 is isomorphic to E . Still, none of the points on
E0 that correspond to the ramification points of E are rational over Q(

√
−3). We conclude that there is

no choice of pointed refinement that will give rise to a descent to Q(
√
−3) in this case, even though the

Belyi map descends.

5. Genus 1

In this section, we discuss some details for Belyi maps of genus 1.

5.1. Newton’s method. Let (X, φ) be a Belyi map with X of genus 1 defined by X : y2
= f (x) =

x3
− 27c4x − 54c6. In our numerical method (see Section 3.1, or the “Genus 1” subsection of [11, §5]),

we compute a numerical Weierstrass X and Belyi map φ on X to arbitrary precision.
Klug–Musty–Schiavone–Voight [11, Example 5.28] describe how to use Newton’s method in the case

of genus 0 to achieve very accurate approximations of the coefficients of the Belyi map, allowing us to
quickly pass from tens of digits of precision to tens of thousands. We now explain how Newton’s method
can be extended to the case of genus-1 Belyi maps, ironing out some wrinkles.



A DATABASE OF BELYI MAPS 385

Let P = (xP , yP) ∈ X (C) be an affine point and let t := x − xP and s := y − yP . Insisting that φ
have a zero or pole of a given order at P imposes equations that can be determined by working in the
completed local ring Ĉ[X ]P as follows.

If P is not a 2-torsion point of X , then t is a uniformizer for Ĉ[X ]P . We solve for s in terms of t by
substituting x = t + xP and y = s+ yP into the equation for X , thereby obtaining a quadratic equation
in s whose solution is

s := −yP + yP

√
1+

t3+ 3xP t2+ (3x2
P − 27c4)t

y2
P

. (5.1.1)

If instead P is a 2-torsion point, then s is a uniformizer for Ĉ[X ]P ; substituting as above, we obtain a
cubic equation in s, which we solve via Hensel lifting. In either case, we may express the numerator and
denominator of φ as power series in the local parameter. Once this has been accomplished, we obtain
the equations imposed by a zero or pole at P of order eP by insisting that the first eP coefficients of the
series for the numerator or denominator, respectively, of φ vanish.

Newton’s method has proven invaluable in our computations: it has allowed us to compute genus-1
maps that were previously out of reach, and has also sped up our computations considerably.

5.2. Example. We illustrate the above method with an example.

Example 5.2.1. Consider the passport (1, S7, (6111, 6111, 2231)) of size 13. Its pointed refinement taking
the 6-cycle over 0 also has size 13. A representative permutation triple is

σ0 = (1 2 3 4 5 6), σ1 = (2 7 6 3 4 5), σ∞ = (1 7 2)(3 5)(4 6). (5.2.2)

This ramification data and a Riemann–Roch calculation implies that φ can be written as φ = φ0/φ∞ for
φ0∈L (2∞) and φ∞∈L (8∞). (For details, see Section 6.3 below.) Since 1, x and 1, x, y, x2, xy, . . . , x4

are bases for L (2∞) and L (8∞), respectively, pulling out leading coefficients and changing notation,
we write

φ = u
φ0

φ∞
= u

a0+ x
b0+ b2x + b3 y+ · · ·+ b7x2 y+ x4 (5.2.3)

for some a0, a2, b0, b2, . . . , b7 ∈ Qal
⊂ C. Computing with 40 digits of precision (displaying 5), we

find after 20 seconds on a standard CPU the initial approximation for X and φ. After normalizing as in
Section 4.4 to obtain b7(= b8)= 1, we obtain

c4,≈−0.00031, c6 ≈ 0.0000035,

φ ≈ 0.0024
−0.18587+ x

−0.00042+ 0.00112x + · · ·+ 0.03839x3+ x2 y+ x4 . (5.2.4)

Let P = (xP , yP) be the point corresponding to the 3-cycle in σ∞. Since P ∈ X (C), our first equation is
y2

P = x3
P − 27c4xP − 54c6. Computing s as in (5.1.1), we find
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s =
3
2 x2

P −
27
2 c4

yP
t +
−

9
8 x4

P +
81
4 c4x2

P +
3
2 xP y2

P −
729

8 c2
4

y3
P

t2

+

27
16 x6

P −
729
16 c4x4

P + · · ·+
81
4 c4xP y2

P +
1
2 y4

P −
19683

16 c3
4

y5
P

t3
+ O(t4). (5.2.5)

Substituting x = t + xP and y = s+ yP into the above expression for φ∞ yields

φ∞= x4
P+x3

Pb6+x2
P yPb7+x2

Pb4+xP yPb5+xPb2+yPb3+b0

+
( 3

2 x4
Pb7+4x3

P yP+
3
2 x3

P+·· ·+b5+yPb2−
27
2 c4b3

) t
yP

+
(
−

9
8 x6

Pb7−
9
8 x5

Pb5+·· ·+
729

8 c2
4b3
) t2

y3
P

+O(t3). (5.2.6)

To impose the condition that φ has a pole of order 3 at P, we set the first three coefficients of φ∞ equal
to 0, giving three relations.

Proceeding similarly with the other ramification points, we obtain 22 polynomial equations in the
23 variables u, c4, c6, a0, b0, . . . , b7 and xP , yP for each of the ramification points, other than the point
corresponding to the cycle containing 1 in σ0. (The point corresponding to this cycle is∞, and we have
already imposed the condition that φ vanishes to order 6 at∞ by taking φ0 ∈L (2∞) and φ∞ ∈L (8∞).)
This system is underdetermined, so in order to apply Newton’s method, we must find at least one more
equation. We observe that although φ is a degree-7 map, φ∞ has degree 8, so there must be a common
zero of φ0 and φ∞. Calling this point Ps = (xs, ys), we obtain three more equations

y2
s = x3

s − (27c4xs − 54c6),

0= φ0(Ps)= a0+ xs,

0= φ∞(Ps)= b0+ b2xs + b3 ys + · · ·+ b7x2
s ys + x4

s .

(5.2.7)

We have adjoined two more variables xs, ys and produced three more equations to ensure nondegeneracy.
This produces a system of 25 equations in 25 variables. Applying Newton’s method to this system, in
16.20 seconds we obtain approximations of coefficients with 2000 digits of precision, which allows us
to recognize the coefficients of φ as algebraic numbers. After a change of variables to reduce the size of
the output, we find the elliptic curve

X : y2
= x3
− (24ν+ 75)x + 1

2(−657ν2
− 1014ν+ 3278) (5.2.8)

and Belyi map φ = uφ0/φ∞, where u = 1/(2932) and

φ0 = (−419ν2
− 358ν+ 2947)+ 49x,

φ∞ = (−806361ν2
− 724014ν+ 5449304)+ (−3150ν2

− 15652ν+ 84560)x

+ (−11310ν2
+ 17940ν+ 118656)y+ (−33180ν2

+ 74760ν− 55104)x2

+ (59556ν2
− 189336ν+ 233856)xy+ (5166ν2

− 16380ν+ 20720)x3

+ (−59022ν2
+ 184980ν− 225792)x2 y+ (25557ν2

− 80122ν+ 97832)x4
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over the number field Q(ν) where ν3
− 6ν+ 12= 0. It turns out that this passport decomposes into two

Galois orbits, one of size 3 as shown above, and the other of size 10. The coefficients of the Belyi map
for the size-10 orbit are too large for us to display here, but it is defined over the number field Q(µ)

where

µ10
− 2µ9

+ 15µ8
− 78µ7

+ 90µ6
+ 48µ5

+ 90µ4
− 78µ3

+ 15µ2
− 2µ+ 1= 0. (5.2.9)

Remark 5.2.10. The “extra zero” phenomenon in (5.2.7) is typical; it can be avoided in the special case
when 0 is totally ramified (i.e., when σ0 is a d-cycle).

6. Hyperelliptic curves

We now discuss some issues and improvements for hyperelliptic curves.

6.1. Setup. Recall that a hyperelliptic curve of genus g ≥ 2 over K has a model

X : y2
+ u(x)y = v(x), (6.1.1)

where deg(u)≤ g+1 and deg(v)≤ 2g+2. Letting f (x) := u(x)2+4v(x), we have f (x) separable with
deg f (x)= 2g+ 1 or 2g+ 2; we refer to the model as even or odd according to the parity of deg f (x).
Note that an odd model has the single point∞= (1 : 1 : 0) at infinity, while an even model has two,
∞
′
= (1 :

√
f0 : 0) and∞= (1 : −

√
f0 : 0), where f0 is the leading coefficient of f (x) (i.e., the point

∞ is a Weierstrass point if and only if the model is odd.) In constructing the Belyi map, in both cases
we take∞ to be the marked point (around which we expand series), and by convention it corresponds
to the cycle containing 1 in σ0.

6.2. Numerical test for hyperellipticity. Let 0 be a triangle subgroup with X = X (0) of genus g ≥ 2.
We test if X is numerically hyperelliptic (in the sense the curve appears to be hyperelliptic to the precision
computed) as follows. First, we compute power series expansions of an echelonized basis f1, f2, . . . , fg

of S2(X (0)). We have an isomorphism S2(X (0))∼=�(X (0)) given by f (z) 7→ f (z) dz, where�(X (0))
is the C-vector space of holomorphic differential 1-forms on X (0). If X is hyperelliptic with model as
in (6.1.1), since f1, . . . , fg is an echelonized basis we have the further isomorphism

�(X (0))−→∼ �(X),

fi (z) dz 7→ xg−i dx
y
,

(6.2.1)

for i = 1, . . . , g. Thus, to recover x, y defined on X (0), we can take

x := f1/ f2, y := x ′/ fg, (6.2.2)

where x ′ denotes the derivative of x with respect to w (the coordinate in the hyperbolic disc). If the
model is odd, then ord∞ x =−2 and ord∞ y =−(2g+ 1); if the model is even, then ord∞ x =−1 and
ord∞ y =−(g+ 1).
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Consider the rational map X (0)→ A2
C

with coordinates x, y. Using numerical linear algebra, we test
if there is an approximate linear relation among

1, x, . . . , x2g+2, y, xy, . . . , xg+1 y, y2
∈ C[[w]]. (6.2.3)

If there is such a relation, we obtain a rational map from X to a hyperelliptic curve X ′ ⊆ A2. If g(X ′)=
g(X), then the Riemann–Hurwitz formula implies that this map is birational; hence X ′ is a model of X
as in (6.1.1). If no such relation exists, then we conclude that X is not numerically hyperelliptic.

6.3. Computing a hyperelliptic Belyi map. Suppose now that X is hyperelliptic with model as in (6.1.1).
We compute the expression of the Belyi map φ as a rational function in x and y roughly as follows.
(1) Determine an appropriate Riemann–Roch space L (D). (2) Compute a basis of L (D) in terms of x
and y. (3) Using numerical linear algebra, express φ as a linear combination of functions in this basis.

We make this precise as follows, following Javanpeykar–Voight [10, Lemma 3.2]. Let σ = (σ0, σ1, σ∞)

be a transitive permutation triple of degree d with corresponding hyperelliptic Belyi map (X, φ), and let
g be the genus of X . Let s be the length of the cycle containing 1 in σ0 and let k1, . . . , kr be the lengths
of the remaining cycles in σ0. Then the divisor of poles of 1/φ is div∞(1/φ) = s∞+

∑r
i=1 ki Pi for

some points P1, . . . , Pr ∈ X (C). Since we do not have control over the points P1, . . . , Pr , we “cancel”
these poles by multiplying φ by a suitable function φ0 that has zeroes at P1, . . . , Pr and has poles only
at∞. Such a φ0 will belong to the space L (D)⊆L (t∞), where

D := −
r∑

i=1

ki Pi + t∞ (6.3.1)

for some (as of yet undetermined) t ∈ Z≥0. Once we have obtained φ0, then φ0/φ ∈L ((s+ t)∞). As
we will describe in the next step, we can write down a basis for Riemann–Roch spaces for divisors of
the form m∞. This allows us to compute φ0 and φ∞ := φ0/φ ∈L ((s+ t)∞) with respect to this basis.
Thus we have φ = φ0/φ∞ for some φ0 ∈L (t∞) and φ∞ ∈L ((s+ t)∞).

It remains to determine a value of t so that such a φ0 exists. To do this, we apply Riemann–Roch to
the divisor D. Since

∑r
i=1 ki = d − s, this yields

`(D)− `(K X − D)= 1− g+ deg(D)= 1− g+ (s− d + t), (6.3.2)

where K X is a canonical divisor of X . To ensure the existence of a nonzero φ0 as above, we must have
`(D) ≥ 1. By (6.3.2), this holds if 1− g + s − d + t ≥ 1, i.e., if t ≥ d − s + g. Thus we may take
t = d − s+ g. (This conclusion actually does not require X to be hyperelliptic.)

Next, we explain how to compute bases for L (t∞) and L ((s+t)∞) as in Step 2. In the case of an odd
model, this basis is particularly simple: x and y have poles at∞ of orders 2 and 2g+ 1, respectively, so

1, x, x2, . . . , xbm/2c, y, xy, . . . , xb(m−(2g+1))/2cy (6.3.3)

is a basis for L (m∞). In the case of an even model the situation is more complicated. Now x, y 6∈
L (m∞) because they have poles at ∞′. We compute a basis for L (m∞) as follows. Since x has a
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simple pole at ∞′ we know t = 1/x has a simple zero, and hence is a uniformizing parameter at ∞′.
Working in the completed local ring ÔX,∞′ ' C[[t]], we can express y as a Laurent series in t via

y = 1
2

(
−u(1/t)±

√
u(1/t)2+ 4v(1/t)

)
. (6.3.4)

We use the series expansions x(w), y(w) at ∞ to match the correct sign in (6.3.4). For each j ∈
{0, . . . ,m − (g + 1)} we compute the Laurent tail Pj ∈ C[1/t] = C[x] of x j y, so that x j y − Pj is
holomorphic at∞′. In this way we obtain the basis

1, y− P0, xy− P1, . . . , xm−(g+1)y− Pm−(g+1) (6.3.5)

for L (m∞).

Example 6.3.6. We now illustrate the above procedure. Consider the passport (2,G, (61, 61, 32)), where
G := 2A4(6)' A4×C2. The passport (and pointed passport) are size 1, with representative triple

σ0 = (1 6 2 4 3 5), σ1 = (1 3 5 4 6 2), σ∞ = (1 3 5)(2 4 6). (6.3.7)

Computing the coordinate functions x, y as in (6.2.2) to 50 digits (displaying 5), we find approximate
series

x ≈ 0.99999w−1
− 0.79370w− 0.31498w3

+ O(w4),

y ≈−0.99999w−3
− 0.79370w−1

− 0.94494w− 0.02142w3
+ O(w4).

(6.3.8)

Since the series for y has a pole of order 3= g+ 1, we are in the case of an even model. Forming the
matrix of coefficients of the monomials

1, x, x2, x3, x4, x5, x6, y, xy, x3 y, y2, (6.3.9)

we find a hyperelliptic equation as in (6.1.1) with u = 0 and

v ≈ 1.00000x6
+ 6.34960x4

+ 15.11905x2
+ 11.99999. (6.3.10)

This gives the local expansion

y =
√
v(1/t)=

√
1.00000t−6+ 6.34960t−4+ 15.11905t−2+ 11.99999

= 1.00000t−3
+ 3.17480t−1

+ 2.51984t − 1.99999t3
+ O(t4). (6.3.11)

Thus the Laurent tail of y is 1.00000x3
+ 3.17480x , and the first nonconstant element of our basis for

L (m∞) for m ≥ 3 is

y−(1.00000x3
+3.17480x)≈−2.00000w−3

−1.58740w−1
+0.62996w−0.04285w3

+O(w4) (6.3.12)

and we can compute the remaining elements of the basis similarly. Proceeding as explained above, we
obtain the Belyi map

φ(x, y)=
x4
+ 2x2

+ xy+ 1
2(x2+ 1)2

(6.3.13)

defined on the hyperelliptic curve X : y2
= x6
+ 4x4

+ 6x2
+ 3.
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passport size precision (Newton) CPU time

(0, A9, (5122, 33, 412113)) 2 20 (1000) 7 s
(0, S9, (7121, 412113, 412211)) 23 20 (16000) 2 m 46 s
(1, A7, (71, 3122, 3122)) 2 30 (1000) 23 s
(1, S7, (5121, 5121, 3122)) 4 40 (1500) 2 m 48 s
(1, A7, (71, 412111, 412111)) 22 20 (1500) 10 s
(2,GL3(F2), (71, 71, 3211)) 4 20 4 m 59 s

Approximate CPU time for computing one Belyi map in the listed passport.

7. Database

7.1. Technical description. Our database is organized by passports as computed in Algorithm 2.3.1. For
each passport we store basic information such as degree, genus, ramification indices, and the monodromy
group. We also store the automorphism group and passport representatives, as well as their pointed coun-
terparts. After computing equations for every Belyi map in a passport, we store the Belyi maps, curves,
the fields over which they are defined, and the associated complex embedding. We then partition the
pointed passport representatives into Galois orbits obtained from this information. Lastly, the numerical
power series and information to recover the normalization in Section 3.1 Step 4 are also saved.

7.2. Running time. Since our numerical method for computing equations sometimes requires a work-
around for corner cases, we do not have detailed information about the total running time. To give a
rough idea of the running time, we consider some examples. In the table above we list the approximate
CPU time to compute one Belyi map in the listed passport, with power series computed to the specified
number of decimal digits of precision and then precision obtained in Newton iteration.

The current database of Belyi maps consists of approximately 240MB of text files.

7.3. Observations. Having completed a large scale computation of Belyi maps, it remains to analyze
our data.

• The largest passport sizes in each degree are:

degree ≤ 4 5 6 7 8 9 10 11

passport size 1 3 8 38 177 1260 8820 72572
(7.3.1)

• The largest degree number field arising as a field of definition of a Belyi map in our database occurs for
the passport (1, S7, (6111, 6111, 412111)), which is irreducible of size 32. This degree-32 number field
has discriminant 26832759715 and Galois group Z/2Z o S16.

• The passport (2, A7, (71, 71, 511111)) provides an example of a highly reducible passport: it has size 24
and decomposes into six Galois orbits of sizes 1, 2, 3, 4, 6, and 8. The associated number fields are Q,
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and those with defining polynomials

x2
− x − 5, x3

+ 2x − 2, x4
− 2x3

− 2x2
+ 3x − 3, x6

− 2x4
− 5x3

− 2x2
+ 1,

and x8
− 4x7

+ 14x5
− 35x4

+ 42x3
− 126x2

+ 108x + 135.

• There are 262 passports with degree d ≤ 7. We have computed equations for all Belyi maps in 255 of
these passports and found that 37 are reducible. For a passport P of size l, the Galois action determines
a partition of l with parts l1, . . . , lr . To measure the irreducibility of P , define

w(P) :=
{

1 if l = 1,
(l − 1)−2∑r

i=1(li − 1)2 if l ≥ 2.
(7.3.2)

Let Pd be the set of passports with degree no larger than d and define

β(d) := (#Pd)
−1

∑
P∈Pd

w(P). (7.3.3)

From the database we find that β(d)= 1 for d ≤ 4, β(5)≈ 0.9393, β(6)≈ 0.9444, and 0.8779<β(7) <
0.9046.
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The inverse Galois problem for p-adic fields

David Roe

We describe a method for counting the number of extensions of Qp with a given Galois group G, founded
upon the description of the absolute Galois group of Qp due to Jannsen and Wingberg. Because this
description is only known for odd p, our results do not apply to Q2. We report on the results of counting
such extensions for G of order up to 2000 (except those divisible by 512), for p = 3, 5, 7, 11, 13. In
particular, we highlight a relatively short list of minimal G that do not arise as Galois groups. Motivated
by this list, we prove two theorems about the inverse Galois problem for Qp: one giving a necessary
condition for G to be realizable over Qp and the other giving a sufficient condition.

1. Introduction

The inverse Galois problem is most commonly studied over Q. There, a theorem of Shafarevich [13; 18,
Theorem 9.6.1] shows that every solvable group is realizable as the Galois group of an extension of Q.
Attention has thus focused on simple groups, and many have been shown to be realizable; see [11] for
background.

Over Q, if a given group arises as a Galois group it will arise for infinitely many extensions. Thus the
constructive version of the problem, finding extensions with a given Galois group, has been approached
by the method of generic polynomials. A generic polynomial for a group G is a monic polynomial with
coefficients in a function field Q(c1, . . . , cn) so that every extension of Q with Galois group G will arise
via specializing the ci to elements of Q. Even if G is realizable, it may not have a generic polynomial
parametrizing all extensions.

Over Qp, for fixed p and G, there are only finitely many isomorphism classes of Galois extensions
K/Qp with Gal(K/Qp) ∼= G. Thus, rather than trying to produce them via a generic polynomial, one
could hope to enumerate them directly. As a first step toward such an enumeration, in this paper we
study the less refined question of counting such K.

The counting and enumeration of p-adic fields has a rich history, mostly separate from the study of
the inverse Galois problem. Rather than focusing on the Galois group, most approaches have studied the
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extensions of a given degree, or with a given degree and discriminant. Foundational work of Krasner
[10, Theorem 2] gave counts for the number of extensions of degree n in a fixed algebraic closure, and
Serre [17] gives a “mass formula” where the counts are weighted appropriately. More recently, Hou
and Keating [7] and Monge [12] have described how to count isomorphism classes of extensions with
prescribed ramification and inertia degrees.

There has been some work on counting extensions with a given Galois group. When G is a p-group
generated by d elements (minimally) and k/Qp has degree n, Shafarevich [19] has obtained the following
formula for the number of extensions of k with Galois group G, using his description of the maximal
pro-p quotient of the absolute Galois group:

1
|Aut(G)|

(
|G|
pd

)n+1 d−1∏
i=0

(pn+1
− pi ). (1)

The result only holds for k that do not contain the p-th roots of unity, but Yamagishi [20] has generalized
it, obtaining a formula involving characters of G.

Other authors have pursued the problem of enumerating p-adic fields [14; 9] of a given degree. Theo-
retically, this would solve the problem of enumerating with a given Galois group, since one can determine
from G the smallest degree where a field can have a normal closure with Galois group G. However, for
many groups this degree is prohibitively large for the methods employed, since you also get many other,
much larger, Galois groups at the same time.

In this paper, we count Galois extensions with Galois group G by exploiting the explicit description
of the absolute Galois group of Qp. This approach has the benefit of completely avoiding computations
with polynomials, allowing for a large number of groups to be considered. The downside is that we do
not get any information on many invariants of number theoretic interest, such as the discriminant or the
ramification filtration, beyond distinguishing between tame and wild inertia.

We have chosen to focus on the case of Qp because it has the most intrinsic interest, and because the
number of extensions grows exponentially with the absolute degree of the base field, as illustrated by (1).
The code, which uses GAP [3] and SageMath [16], can be found at https://github.com/roed314/padicIGP.

1A. Summary. We begin Section 2 with the notion of a potentially p-realizable group, which encap-
sulates the obvious conditions on G that come from the first few steps of the ramification filtration.
This notion is closed under quotients, and we conjecture that any potentially p-realizable group can be
expressed as a semidirect product of its p-core and its tame quotient. This conjecture is supported by
experimental evidence, and has consequences for the existence of subextensions complementary to the
maximal tame subextension. We close with Section 2B, where we give algorithms to test whether a
group is potentially p-realizable and to enumerate such groups.

In Section 3 we review the structure of the absolute Galois group, which plays a key role in our
approach to counting extensions. We use the description to show that our notion of a potentially p-
realizable group has the property that any such group will be realized over some p-adic field k.

https://github.com/roed314/padicIGP
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Section 4 describes the algorithms used to count extensions K/Qp with a given Galois group G.
We give an explicit enumeration in the case of abelian groups, since we need this as a base case for
inductive lifting methods later. We then summarize the tame case, which follows from the well-known
structure of the tame quotient of Gal(Qp/Qp). Finally we give a lifting method for counting extensions
for arbitrary G, and briefly discuss its runtime.

In Section 5 we apply the counting algorithms to the question of whether a potentially p-realizable
group is actually realized over Qp. We start by listing minimal examples of groups that are unrealizable.
We then proceed, in Section 5B, to prove Theorems 5.3 and 5.4 giving one necessary and one sufficient
condition for p-realizability. Both conditions relate to the structure of the p-core of G as a representation
of the tame quotient.

1B. Notation and terminology. We work throughout with a prime p 6= 2 and a finite group G. There
are some naturally defined subgroups of G that will play an important role throughout the paper. The
p-core V of G is the intersection of all of the p-Sylow subgroups of G:

V =
⋂

P p-Sylow

P.

It is the maximal normal p-group inside G. The quotient T = G/V has the structure of a metacyclic
group (an extension of a cyclic group by a cyclic group), but not canonically. It acts on V by conjugation.
We call G tame if V is trivial and G = T.

We will also use the Frattini subgroup W of V, defined as

W = V pV ′,

where V ′ is the commutator subgroup of V. The quotient V/W is the maximal quotient of V that
is an elementary abelian p-group. The action of T on V descends to an action on V/W, yielding a
representation of T on an Fp-vector space.

We will refer to groups by their ID in GAP’s SmallGroups library [2] using the notation nGk, where
n is the order of G and k enumerates groups of that order.

Write G for the absolute Galois group Gal(Qp/Qp).

2. Potentially p-realizable groups

2A. The structure of p-adic Galois groups. The structure of p-adic field extensions [4, Chapter 16]
imposes constraints on the possible Galois groups that can arise. Any finite extension K ⊇Qp can be
decomposed into a tower K ⊇ Kt ⊇ Ku ⊇Qp, where Ku/Qp is unramified, Kt/Ku is tame and totally
ramified, and K/Kt is totally wildly ramified. When K/Qp is Galois, this tower corresponds to the first
parts of the ramification filtration on G = Gal(K/Qp):

G = G−1 ⊇ G0 ⊇ G1. (2)
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The fixed field of G0 is the unramified subfield Ku and the quotient G/G0 must be cyclic. The fixed
field of G1 is the tame subfield Kt and the quotient G0/G1 must be cyclic of order relatively prime to p.
Finally, G1 ∼= Gal(K/Kt) is a p-group. Moreover, G0 and G1 are normal subgroups of G.

By a theorem of Iwasawa [8, Theorem 2], the Frobenius element of G/G0 acts on G0/G1 by raising
to the p-th power.

Definition 2.1. A group G is potentially p-realizable if it has a filtration G ⊇ G0 ⊇ G1 so that

(1) G0 and G1 are normal in G,

(2) G/G0 is cyclic, generated by some σ ∈ G,

(3) G0/G1 is cyclic of order relatively prime to p, generated by some τ ∈ G0,

(4) τ σ = τ p,

(5) G1 is a p-group.

We will call such a filtration on G a tame structure. A group G is p-realizable if there exists an extension
K/Qp with Gal(K/Qp)∼= G.

Remark 2.2. By the discussion above, any p-realizable group is potentially p-realizable, justifying the
terminology. We will also see in Proposition 3.2 that if G is potentially p-realizable then it arises as a
Galois group after some finite extension, conforming with the common usage of “potentially.”

Remark 2.3. Since every p-group is nilpotent, the condition that G is potentially p-realizable implies
that G is solvable. However, some groups G may have multiple tame structures. The simplest example
is G = C2 and p odd, where we can take G0 = G or G0 = 1. An example with varying G1 is G = C p2 ,
where we can take G0 = G1 = C p or G0 = G1 = 1.

Proposition 2.4. Any quotient of a potentially p-realizable group is potentially p-realizable.

Proof. Suppose G has tame structure G⊇G0⊇G1 and N EG. It suffices to show that G/N ⊇G0 N/N ⊇
G1 N/N is a tame structure on G/N.

By the third isomorphism theorem, (G/N )/(G0 N/N ) ∼= G/(G0 N ) is a quotient of G/G0 and thus
cyclic, generated by the image of σ . The natural map

G0→ (G0 N/N )/(G1 N/N )∼= (G0 N )/(G1 N )∼= G0/(G1(G0 ∩ N ))

has kernel containing G1, showing that (G0 N/N )/(G1 N/N ) is cyclic and generated by the image of τ .
Since the relation τ σ = τ p holds in G, it also holds for the images of σ and τ in G/N. Finally,

G1 N/N ∼= G1/(G1 ∩ N ) is a p-group since G1 is. �

If G is potentially realizable, the maximal choice for G1 is the p-core V. We may always enlarge a
tame structure on G to make G1 = V :

Proposition 2.5. If G ⊇ G0 ⊇ G1 is a tame structure on G, so is G ⊇ G0V ⊇ V.
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Proof. Since G0 and V are normal subgroups of G, so is G0V. Moreover, G/(G0V ) is a quotient of G/G0

and thus cyclic generated by the same σ ∈ G. Since the order of G0/G1 is prime to p, G0∩V = G1 and
the second isomorphism theorem implies that (G0V )/V ∼= G0/G1 with the image of τ still generating
(G0V )/V. �

Define T = G/V, the smallest possible tame quotient of G.

Conjecture 2.6. If G is potentially p-realizable, then G ∼= V o T.

The conjecture holds for p ∈ {3, 5, 7, 11, 13} and potentially p-realizable groups G with |G| ≤ 2000.
It also holds when T has order prime to p, by the Schur–Zassenhaus theorem. Note that we may not
replace V with an arbitrary G1, as the example of C p2 ⊇ C p ⊇ C p shows. Moreover, attempting to
decompose the pieces further fails. The tame quotient T is not necessarily the semidirect product of
G0/G1 by G/G0: the quaternion group of order 8 is p-realizable for p ≡ 3 (mod 4) but not a semidirect
product of cyclic subgroups.

The conjecture has an interesting corollary for p-adic fields.

Corollary 2.7. Assume Conjecture 2.6 holds, and suppose that K/Qp is Galois. If Kt/Qp is the maximal
tamely ramified subextension of K/Qp and Gal(K/Kt) is the p-core of Gal(K/Qp) then there is a totally
wildly ramified complement K0/Qp with K = K0Kt .

2B. Enumerating small examples. The first step toward counting p-adic fields by Galois group is com-
puting a list of potential G. Since GAP’s database of small groups [2] can identify groups of order n for
n ≤ 2000 except n = 512, 1024, 1536, groups of these orders were screened.

When n is prime to p, we may use the classification of metacyclic groups [5, Lemma 2.1] to screen G.
This process is described in Algorithm 1.

When n has p-adic valuation 1, we can build groups as extensions of metacyclic groups. Any group
of order n will arise either as an extension of a group of order n/p by C p, or as a metacyclic group

Algorithm 1: Finding potentially p-realizable groups: the tame case

Input :an integer n
Output : the list of potentially p-realizable groups of order n with trivial G1

1 groups = [];
2 for positive k,m with n = k ·m do
3 if m divides pk

− 1 then
4 step = m / gcd(m, p− 1);
5 for ` from 0 to m by step do
6 find the GAP id of 〈x, y | xk

= y`, ym
= 1, yx

= y p
〉;

7 add id to groups if not present;
8 return sorted(groups);
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Algorithm 2: Finding potentially p-realizable groups: valuation 1

Input :an integer n with vp(n)= 1
Output : the list of potentially p-realizable groups of order n

1 groups = [];
2 foreach tame group T of order n/p do
3 foreach homomorphism φ from T to Aut(C p) do
4 foreach group G in Extensions(T, φ) do
5 if x and y lift to elements of G satisfying the tame relation then
6 find the GAP id of G;
7 add id to groups if not present;
8 foreach tame group T of order n do
9 find the id of T;

10 add id to groups if not present;
11 return sorted(groups);

produced by Algorithm 1. The extensions are computable using GAP’s Extensions method, and we
describe the process in Algorithm 2.

When n has larger p-adic valuation, this extension method becomes more complicated, since there
are more possibilities for V. Moreover, some of the possible V are not elementary abelian p-groups, so
GAP’s Extensions method does not apply. While it would be possible to try to construct the extensions
manually using GAP’s GrpConst package [1], in practice it suffices to check whether each group in the
small group database [2] with order n is potentially p-realizable using Algorithm 3 (see next page).

3. The absolute Galois group of a local field

Our approach to counting p-adic fields rests on the following description of the absolute Galois group of
Qp. Let p 6=2, k be a p-adic field, N =[k :Qp], q be the cardinality of the residue field of k, and ps be the
order of the group of p-power roots of unity in the maximal tame extension kt/k. Choose g, h ∈ Zp with

ζ σ = ζ g, ζ τ = ζ h for ζ ∈ µtr ,

where σ, τ ∈ Gal(kt/k) with τ σ = τ q as in [8], and µtr are the p-power roots of unity in kt.
Let π = πp be the element of Ẑ =

∏
` Z` with coordinate 1 in the Zp-component and 0 in the Z`

components for ` 6= p. Then for x, y in a profinite group,1 set

〈x, y〉 = (xh p−1
yxh p−2

y · · · xh y)π/(p−1).

Theorem 3.1 [13, Theorem 7.5.14]. The absolute Galois group Gal(k/k) is isomorphic to the profinite
group generated by N + 3 generators σ, τ, x0, . . . , xN , subject to the following conditions and relations.

(1) The closed subgroup topologically generated by x0, . . . , xN is normal in G and is a pro-p-group.

1See [15], especially Sections 3.3 and 4.1, for relevant background on profinite groups.
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Algorithm 3: Determining whether a group is potentially p-realizable

Input :a group G
Output :whether or not G is potentially p-realizable

1 V = PCore(G);
2 T = G/ V;
3 if IsCyclic(T) then
4 return True;
5 D = DerivedSubgroup(G);
6 if IsCyclic(D) then
7 for N in NormalSubgroupsContaining(D) do
8 if IsCyclic(N) and IsCyclic(G/N) then
9 let e be the order of N and f the order of G/N;

10 let a be the exponent in the conjugation action of G/N on N;
11 find b with ab

≡ p (mod e), or continue if not possible;
12 let m be the order of a (mod e);
13 if gcd(m, b, f )= 1 then
14 return True;
15 return False;

(2) The elements σ, τ satisfy the tame relation

τ σ = τ q .

(3) The generators satisfy the wild relation

xσ0 = 〈x0, τ 〉
gx ps

1 [x1, x2][x3, x4] · · · [xN−1, xN ] if N is even,

xσ0 = 〈x0, τ 〉
gx ps

1 [x1, y1][x2, x3] · · · [xN−1, xN ] if N is odd;

here g and s are defined above and y1 is an explicit element in the span of x1, σ , and τ , specified
below when k =Qp.

We will mostly be interested in the case where k =Qp; recall that we write G for Gal(Qp/Qp). Now
q = p, g = 1 and h is a (p− 1)-st root of unity in Zp. In order to define y1, let Qt

p be the maximal
tamely ramified extension of Qp and define β : Gal(Qt

p/Qp)→ Z×p by setting β(σ)= 1 and β(τ)= h.
For ρ in the subgroup of G generated by σ and τ and x ∈ G, set

{x, ρ} = (xρ2xβ(ρ)ρ2
· · · xβ(ρ

p−2)ρ2)π/(p−1).

Let π2 ∈ Ẑ be the element with π2Ẑ= Z2, and set τ2 = τ
π2 and σ2 = σ

π2. Set

y1 = x
τ

p+1
2

1 {x1, τ
p+1

2 }
σ2τ

(p−1)/2
2

{
{x1, τ

p+1
2 }, σ2τ

(p−1)/2
2

}σ2τ
(p+1)/2
2 +τ

(p+1)/2
2 . (3)
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The wild relation for Qp then becomes

xσ0 = 〈x0, τ 〉x
p
1 [x1, y1]. (4)

We can use this description of absolute Galois groups to show that any potentially p-realizable group
occurs as a Galois group over some k with k/Qp finite.

Proposition 3.2. If G is potentially p-realizable and V/W has dimension m then G will be realized over
k if [k :Qp] ≥ 2m+ 1.

Proof. It suffices to exhibit a surjective homomorphism Gal(k/k)→ G, which we define by specifying
the images of the generators. Map x0, x1, x3, x5, . . . , x2m+1 and x2m+2, . . . , xN to 1. Then the wild
relation is automatically satisfied, and we may freely choose the images of x2, . . . , x2m . As long as we
map them to elements of V that project to an Fp-basis of V/W, Burnside’s basis theorem implies that
they will generate V. The fact that G is potentially p-realizable then implies that we may extend this
homomorphism to a surjective map on all of Gal(k/k). �

Note that one can decrease 2m+ 1 in some cases using the representation of T on V, and even then
this bound is certainly not sharp.

4. Counting p-adic fields

4A. Parametrizing extensions. Following [20], we count the extensions of Qp with Galois group G by
counting the surjections G→ G, modulo automorphisms of G. We can then translate the description of
G from Theorem 3.1 to a counting problem in G. Let n be the order of G and factor n = u p pr

= u22s

with (u p, p)= 1 and u2 odd. Using the Chinese remainder theorem, define integers a and b so that

a = 0 (mod u p), (p− 1)a = 1 (mod pr ),

b = 0 (mod u2), b = 1 (mod 2s).

Since the images of x0 and x1 have p-power order, they lie in V.

Definition 4.1. Define TG to be the set of pairs (σ, τ ) ∈ G2 so that

(1) τ σ = τ p,

(2) the images of σ and τ in G/V generate G/V.

Define XG to be the set of quadruples (σ, τ, x0, x1) ∈ G4 satisfying the following properties:

(1) τ σ = τ p.

(2) x0, x1 ∈ V.

(3) σ, τ, x0, x1 generate G.

(4) xσ0 = 〈x0, τ 〉x
p
1 [x1, y1], where y1 is defined as in (3).

Note that we may compute the projections π/(p−1) and π2 by raising to the a and b powers, respectively.



THE INVERSE GALOIS PROBLEM FOR p-ADIC FIELDS 401

Proposition 4.2. The Galois extensions of Qp with Galois group G are in bijection with the orbits of XG

under the action of Aut(G).

Proof. Finite extensions K of Qp within a fixed algebraic closure of Qp correspond to finite index
subgroups HK of G. The condition that K is Galois with Galois group G translates to the condition
that HK is normal with G/HK ∼= G. Different subgroups H cannot yield isomorphic K since an iso-
morphism of fields would extend to an automorphism of Qp conjugating one H to the other, which is
impossible since both are normal. Finally, elements of XG correspond to homomorphisms G→ G by the
description of G in Theorem 3.1, and the kernel of such a homomorphism is preserved by composition
with an automorphism of G. �

We will be inductively constructing representatives for the orbits of Aut(G) on XG ; write YG for
a choice of such representatives. Then YG will be in bijection with the extensions of Qp with Galois
group G.

4B. Abelian groups. When G is abelian, the wild relation simplifies to x0 = x p
1 . Thus x0 is determined

by x1, and the wild relation imposes no constraint on x1. The order of τ must divide p− 1, the order
of x1 must be a power of p, and the three elements σ, τ , and x1 must generate G.

Write

G ∼=
∏
`

m∏̀
i=1

Z/`n`,i Z, (5)

where n`,1 ≤ · · · ≤ n`,m`
for each `. We can enumerate the elements of XG as a function of the n`,i .

Let α` be the element of G with a 1 in the `,1 component and 0s elsewhere, and let β` be the element
with a 1 in the `,2 component and 0s elsewhere. Since we will be analyzing the `-components separately,
we drop ` from the notation, writing a for n`,1, b for n`,2, α for α` and β for β`.

(1) In the case m` ≥ 3, set c` = 0 and C` = {}.

(2) In the case m` = 2, if a 6= b and `= p, set c` = 2 and C` = {(α, 0, pβ, β), (β, 0, pα, α)}.

(3) In the case m` = 2, if a 6= b and `b divides p− 1, set c` = 2 and C` = {(α, β, 0, 0), (β, α, 0, 0)}.

(4) In the case m` = 2, if a = b and `= p, set c` = 1 and C` = {(α, 0, pβ, β)}.

(5) In the case m` = 2, if `a divides p−1 but case (3) does not apply, set c` = 1 and C` = {(β, α, 0, 0)}.

(6) In the case m` = 2, if ` 6= p and `a - p− 1, set c` = 0 and C` = {}.

(7) In the case m` = 1, if `= p, set c` = pa−1(p+ 1) and

C` = {(α, 0, pkα, kα) : 0≤ k < pa
} ∪ {(pkα, 0, pα, α) : 0≤ k < pa−1

}.

(8) In the case m` = 1, if `a divides p− 1, set c` = `a−1(`+ 1) and

C` = {(α, kα, 0, 0) : 0≤ k < `a
} ∪ {(pkα, α, 0, 0) : 0≤ k < `a−1

}.
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(9) In the case m` = 1, if `a does not divide p− 1, set c` = gcd(`a, p− 1) and

C` =
{
(α,

`a

c` kα, 0, 0) : 0≤ k < c`
}
.

Proposition 4.3. Let G be abelian, with elementary factors as in (5). Then the number of Galois exten-
sions K/Qp with Galois group G is

∏
` c` and the set

{∑
` η` : η` ∈ C`

}
forms a set of representatives

for the orbits of Aut(G) on XG .

Proof. The role of x1 at p is almost the same as the role of τ away from p, except that the order of τ must
divide p− 1. For ` 6= p, the `-component of x1 must be 0; the p-component of τ must be 0. Therefore,
if any m` is at least 3, it is impossible for σ, τ and x1 to generate G.

For m` = 2, generating sets for Z/`aZ×Z/`bZ are permuted transitively by Aut(G) [6, Theorem 3.6],
and if a = b then the two generators can be interchanged by an automorphism. When `b divides p− 1
then τ can be taken as either generator, whereas if `a divides p− 1 but `b does not then τ can only be
the generator of order `a. If ` 6= p and `a does not divide p− 1 then σ and τ cannot generate G.

When m` = 1 then either σ or τ (or both) must be a generator. The descriptions of C` then follow
from the fact that Aut(Z/NZ)∼= (Z/NZ)×. �

Remark 4.4. It is also possible to count abelian extensions using local class field theory, but the orbits
on XG are used in the lifting algorithm (Algorithm 5) of Section 4D.

4C. Tame groups. If G has order relatively prime to p, or more generally if V is trivial, then we must
have x0 = x1 = 1. We search for elements of XG by enumerating the normal subgroups that can contain τ ,
and then finding pairs (σ, τ ) that satisfy the tame relation and generate G. We summarize the steps in
Algorithm 4.

Algorithm 4: Enumerating extensions: tame case

Input :a group G with trivial p-core
Output :a list of pairs (σ, τ ) representing the Aut(G)-orbits in XG

1 D = DerivedSubgroup(G);
2 pairs = [];
3 if IsCyclic(D) then
4 for N in NormalSubgroupsAbove(D) do
5 if IsCyclic(N) and IsCyclic(G/N) then
6 for s in G that induce p-th powering on N do
7 for t in N that generate G along with s do
8 if (s, t) not marked then
9 append (s, t) to pairs;

10 mark images of (s, t) under Aut(G);
11 return pairs;
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4D. Lifting homomorphisms. For potentially p-realizable groups G that are neither tame nor abelian,
we choose a minimal normal subgroup N G G (such an N always exists since G is solvable) and set
Q = G/N. Inductively, we may assume that we have computed a list YQ of representatives for the orbits
of Aut(Q) on X Q . In particular, if Q is abelian or tame then we may use Section 4B or Algorithm 4;
otherwise we will recursively use Algorithm 5, described below.

The idea is to just test all lifts of quadruples (σ, τ, x0, x1) ∈ YQ to see if they are valid elements of XG .
There is a subtlety however: there may be automorphisms of Q which are not induced by automorphisms
of G. This problem comes in two parts. First, if N is not a characteristic subgroup then it may not be
stabilized by all of Aut(G), so not all automorphisms descend. Second, the map StabAut(G)(N )→Aut(Q)
is not necessarily surjective, so elements of X Q that are equivalent under Aut(Q) may lift to elements
that are inequivalent under Aut(G).

We solve the problem by computing a list of coset representatives for the image of StabAut(G)(N )→
Aut(Q). Then, instead of just lifting elements of YQ , we lift all translates under these automorphisms.
We summarize this process in Algorithm 5.

The runtime of Algorithm 5 depends on the structure of G. If N GG is the minimal normal subgroup
used, C is the list of coset representatives in Aut(Q), YQ is the list of representatives for the quotient Q,
and R is the time it takes to compute the wild relation, then the runtime is bounded by O(|C |·|YQ |·|N |4 R).
The actual runtime may be better for some N since we can short circuit some of the loops if the lifts of
(x1, x0, τ, σ ) do not satisfy the appropriate conditions.

Algorithm 5: Enumerating extensions: lifting method

Input :a potentially p-realizable group G and lists of representatives YQ for quotients Q of G
Output :a list YG of quadruples (σ, τ, x0, x1) representing the Aut(G)-orbits in XG .

1 choose a minimal normal subgroup N GG;
2 Set Q = G/N ;
3 compute the stabilizer A of N in Aut(G);
4 compute a list cokreps of representatives for the cosets of the image of A in Aut(Q);
5 Xreps = [];
6 foreach (σ, τ, x0, x1) ∈ YQ do
7 foreach α ∈ cokreps do
8 foreach lift x1 of α(x0) to G that lies in V do
9 foreach lift x0 of α(x1) to G that lies in V do

10 foreach lift τ of α(τ) to G with order prime to p do
11 foreach lift σ of α(σ0) with τ σ = τ p do
12 if (σ, τ, x0, x1) not marked then
13 mark images of (σ, τ, x0, x1) under Aut(G);
14 if σ, τ, x0, x1 generate G then
15 append (σ, τ, x0, x1) to Xreps;
16 return Xreps;
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Figure 1. Number of potentially p-realizable G with |G| ≤ 2000 and |YG | ≥ n.

Running Algorithm 5 on groups of order up to 2000 for p up to 13 required a few weeks of CPU time.
The largest counts found occurred for cyclic groups such as C1458 : p= 3 (2916) and C1210 : p= 11 (2376),
or for products of cyclic groups with small nonabelian groups such as C243 × S3 : p = 3 (1944). For
p = 3, other nonabelian groups had large counts such as 1458G553: (C27 oC27)oC2 (1323) suggesting
that the dominance of cyclic groups may not last as the order increases.

Figure 1 shows these counts in aggregate, ignoring the group structure. Specifically, recall that YG is
in bijection with the set of Galois extensions of Qp with Galois group G. Figure 1 plots the function f (n)
that counts the number of potentially realizable G with |G| ≤ 2000 and |YG | ≥ n. The difference between
the first and second bars in each chart gives the number of groups that are potentially p-realizable but
not actually p-realizable. We have truncated the charts at 25 since they have long tails; the previous
paragraph gives examples of G with large |YG |.

We have no theoretical results on the possible sizes of N and C , but experimental results are summa-
rized in Tables 1 and 2. The first shows the number of G that have a specified minimum size of N, and
the second shows the number of pairs (G, N ) with a specified size of C , called the automorphism index.

Large indices did occur, but rarely. There were 20 cases of index larger than 10000 for p = 3, the
largest being 4586868. For p= 5, the only index larger than 124 was 3100, occurring 3 times; for other p
no index larger than 120 occurred.

number of groups whose N has the given size
size p = 3 p = 5 p = 7 p = 11 p = 13

2 8765 2437 1419 638 588
3 3800 423 228 104 110
5 27 392 70 26 45
7 10 6 168 11 18
9 87 0 0 0 0

11 0 3 0 56 7
13 0 3 0 0 68

> 13 9 17 12 12 2

Table 1. Smallest N GG for nonabelian, nontame G.
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number of N GG with given automorphism index
index p = 3 p = 5 p = 7 p = 11 p = 13

1 8594 2393 1210 561 663
2 1798 594 421 111 117
3 468 24 73 25 19
4 396 157 59 107 17
5 0 7 0 4 0
6 333 10 58 0 6
8 217 42 47 17 13
9 91 0 4 0 0

10 2 0 0 0 0
12 153 7 4 7 1
13 21 0 0 0 0
16 37 0 8 0 1
18 61 0 2 0 0
20 0 4 0 1 0
24 99 30 4 12 1

> 24 428 12 7 2 0

Table 2. Automorphism index for nonabelian, nontame G.

5. The inverse Galois problem for p-adic fields

5A. Examples of nonrealizable groups. Recall that G is p-realizable if there exists an extension K/Qp

with Gal(K/Qp)∼= G. If G is p-realizable, then every quotient of G is as well, leading us to consider
the following class of groups.

Definition 5.1. A group G is minimally unrealizable if G is not p-realizable but it is potentially p-
realizable and every proper quotient of G is p-realizable.

In Table 3 we list the minimally unrealizable G that have abelian p-core. The label is from the GAP
SmallGroups library, which makes precise the description of the group; we write Fn

p for Cn
p to emphasize

the vector space structure. The column V describes the decomposition of V into indecomposable sub-
modules: nk refers to a submodule of dimension n occurring with multiplicity k. The columns SS, TD,
and XC will be described in Section 5B.

5B. Realizability criteria. We may explain many of the groups in Table 3 by considering V/W as a
representation of T = G/V on an Fp-vector space. Note that |T | may be divisible by p: this will
occur precisely when there is more than one p-Sylow subgroup in G. In this case V/W may not have
a decomposition as a direct sum of irreducible subrepresentations, but it still has a decomposition as a
direct sum of indecomposable subrepresentations. The multiplicity of an indecomposable factor is the
number of times it appears in such a representation.

Recall from Definition 4.1 that TG is the set of pairs (σ, τ ) ∈ G2 generating G/V and satisfying the
tame relation. In order to show that a potentially p-realizable group G is not p-realizable, we will show
that any possible (σ, τ, x0, x1) ∈ XG that satisfy the tame and wild relations cannot generate G. We will
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p label description V SS TD XC

3 27G5 F3
3 13 N Y Y

3 36G7 F2
3 oC4 12 Y Y Y

3 54G14 F3
3 oC2 13 Y N N

3 72G33 F2
3 o D8 12 Y Y Y

3 162G16 C2
9 oC2 12 Y N N

3 324G164 F4
3 oC4 22 Y N Y

3 324G169 F4
3 o (C2×C2) 12

⊕ 12 Y N N
3 378G51 F2

3 o (C7 oC6) 12 Y Y Y
3 648G711 F4

3 oC8 22 Y N Y
5 50G4 F2

5 oC2 12 Y Y Y
5 125G5 F3

5 13 N Y Y
5 200G20 F2

5 oC8 12 Y Y Y
5 300G34 F2

5 o (C3 oC4) 12 Y Y Y
5 400G149 F2

5 o (C8×C2) 12 Y Y Y
5 500G48 F3

5 oC4 13 Y N Y
5 1300G29 F2

5 o (C13 oC4) 12 Y Y Y
5 1300G30 F2

5 o (C13 oC4) 12 Y Y Y
5 1875G21 F4

5 oC3 22 Y Y Y
7 98G4 F2

7 oC2 12 Y Y Y
7 147G4 F2

7 oC3 12 Y Y Y
7 343G5 F3

7 13 N Y Y
7 588G22 F2

7 oC12 12 Y Y Y
7 882G23 F2

7 oC18 12 Y Y Y
7 1176G130 F2

7 o (C3× D8) 12 Y Y Y
11 242G4 F2

11 oC2 12 Y Y Y
11 605G4 F2

11 oC5 12 Y Y Y
11 1331G5 F3

11 13 N Y Y
13 338G4 F2

13 oC2 12 Y Y Y
13 507G4 F2

13 oC3 12 Y Y Y
13 676G10 F2

13 oC4 12 Y Y Y
13 1014G9 F2

13 oC6 12 Y Y Y

Table 3. Minimally unrealizable groups with abelian p-core.

say that G is strongly split (SS) if, for every (σ, τ ) ∈ TG , the order of σ in G equals the order of its image
in G/V. Note that Conjecture 2.6 would imply that there is some σ with the same order in G as in G/V,
but some lifts of σ from G/V to G may have larger order.

We will say that G is tame-decoupled (TD) if τ acts trivially on V/W for every (σ, τ ) ∈ TG . Finally,
we will say that G is x0-constrained (XC) if the implication

xσ0 〈x0, τ 〉
−1
∈W ⇒ x0 ∈W

holds for all (σ, τ ) ∈ TG . The last three columns of Table 3 record whether G is strongly split, tame-
decoupled and x0-constrained, respectively.

Proposition 5.2. If G is tame-decoupled then it is x0-constrained.
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Proof. Each condition holds for G if and only if it holds for G/W, so we may assume that V is an
elementary abelian p-group and W = 1. Since every τ acts trivially on V by conjugation and h is a
(p− 1)-st root of unity,

〈x0, τ 〉 = (x1+h+···+h p−2

0 τ p−1)π/(p−1)
= τπ = 1.

So if xσ0 〈x0, τ 〉
−1
= 1 then xσ0 = 1 and thus x0 = 1. �

Let nG,ss be 0 if G is strongly split and 1 otherwise; let nG,xc be 0 if G is x0-constrained and 1
otherwise.

Theorem 5.3. Suppose G is potentially p-realizable. Let n be the largest multiplicity of an indecompos-
able factor of V/W as a representation of T. If n > 1+ nG,ss+ nG,xc, then G is not p-realizable.

Proof. We first reduce to the case where W = 1. This is easily done, since the definitions of n, nG,ss

and nG,xc are invariant under quotienting by W, and if we can show that G/W is not p-realizable then G
will be unrealizable as well. We may therefore replace V by V/W and assume that V is an elementary
abelian p-group.

For sake of contradiction, suppose that G is p-realizable, with (σ, τ, x0, x1) ∈ XG . Suppose that we
have an arbitrary word in these generators, and assume that the word is an element of V. Using the
conjugation action of T on V and the tame relation, we may rewrite it as σ cτ d x , where x is a product of
conjugates of x0 and x1 under the action of T. Thus σ cτ d

∈ V, so we may use the fact that τ has order
prime to p to rewrite σ cτ d as σ c′

∈ V. If G is strongly split then we must have σ c′
= 1; otherwise it

could be some nonzero element of V.
Since V is an elementary abelian p-group, the wild relation (4) simplifies to

xσ0 〈x0, τ 〉
−1
= 1. (6)

If G is x0-constrained, we must have x0 = 1; otherwise x0 can be nontrivial.
Since x1 is unconstrained, we can write any word in terms of a fixed set of 1+ nG,ss+ nG,xc elements

of V, where we are allowed to act on these elements by T. Let A be a homogeneous component of V with
multiplicity n, and consider the projections of our 1+ nG,ss+ nG,xc elements onto A. Their Fp[T ]-span
is a proper subspace of A since A has multiplicity n > 1+ nG,ss+ nG,xc, contradicting the assumption
that (σ, τ, x0, x1) generate G. �

We can get a partial converse, but we now need to assume that W = 1.

Theorem 5.4. Suppose that G is potentially p-realizable with W = 1, and that V decomposes as a
multiplicity-free direct sum of irreducible T -submodules. Then G is p-realizable.

Proof. It suffices to construct an element of XG . Since V is an elementary abelian p-group, we again
have the relation (6), which is satisfied for x0 = 1 and arbitrary x1. Since G is potentially p-realizable,
by Proposition 2.5 there are σ, τ ∈ G satisfying the tame relation and generating G/V. Choose x1 ∈ V
with nonzero projection onto each irreducible component. The conjugates of x1 under T generate V,
since if they were contained in a proper subspace that subspace would have zero projection onto some
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p label description G/W V/W

3 486G146 (F4
3 oC3)oC2 54G13 12

⊕ 1
3 648G218 (C27 oC3)× D8 72G37 12

3 648G219 (F3
3 oC3)× D8 72G37 12

3 648G220 ((C9×C3)oC3)× D8 72G37 12

3 648G221 ((C9×C3)oC3)× D8 72G37 12

3 972G816 (F2
3× (F

2
3 oC3))o (C2

2) 324G170 12
⊕ 1⊕ 1

3 1458G613 ((C81×C3)oC3)oC2 18G4 12

3 1458G640 (C2
9 oC9)oC2 18G4 12

Table 4. Minimally unrealizable groups with nonabelian p-core.

irreducible component, contradicting the choice of x1. Now the fact that σ and τ generate G/V means
that x1, σ and τ generate G. �

Remark 5.5. There are two groups in Table 3 that are not explained by Theorem 5.3. For 324G169, there
are nonzero x0 satisfying (6), but they all lie in a 1-dimensional indecomposable subrepresentation. The
other subrepresentation can’t be spanned by x1 on its own. For 162G16, the quotient by W is p-realizable.
Here V is abelian but has exponent 9 rather than 3, so the wild relation takes the form

xσ0 〈x0, τ 〉
−1
= x p

1 . (7)

In order to get a nontrivial x1, we need to find x0 with xσ0 〈x0, τ 〉
−1 of order 3. Such x0 exist, but they all

have the property that xσ0 〈x0, τ 〉
−1 is a multiple of x0, preventing x1 from spanning the rest of V.

Remark 5.6. Table 4 gives the groups of order up to 2000 with nonabelian V that are minimally unre-
alizable. In each case, G/W will be p-realizable, so the methods of this section do not apply. In order
to provide an explanation for why they are not p-realizable, one would need to analyze the wild relation
more thoroughly.
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Fast tabulation of challenge pseudoprimes

Andrew Shallue and Jonathan Webster

We provide a new algorithm for tabulating composite numbers which are pseudoprimes to both a Fermat
test and a Lucas test. Our algorithm is optimized for parameter choices that minimize the occurrence
of pseudoprimes, and for pseudoprimes with a fixed number of prime factors. Using this, we have
confirmed that there are no PSW-challenge pseudoprimes with two or three prime factors up to 280. In
the case where one is tabulating challenge pseudoprimes with a fixed number of prime factors, we prove
our algorithm gives an unconditional asymptotic improvement over previous methods.

1. Introduction

Pomerance, Selfridge, and Wagstaff famously offered $620 for a composite n that satisfies

(1) 2n�1 � 1 .mod n/ so n is a base-2 Fermat pseudoprime,

(2) .5 j n/D�1 so n is not a square modulo 5, and

(3) FnC1 � 0 .mod n/ so n is a Fibonacci pseudoprime,

or to prove that no such n exists. We call composites that satisfy these conditions PSW-challenge pseudo-
primes. In [PSW80] they credit R. Baillie with the discovery that combining a Fermat test with a Lucas
test (with a certain specific parameter choice) makes for an especially effective primality test [BW80].
Perhaps not as well known is Jon Grantham’s offer of $6.20 for a Frobenius pseudoprime n to the
polynomial x2� 5x� 5 with .5 j n/D�1 [Gra01]. Similar to the PSW challenge, Grantham’s challenge
number would be a base-5 Fermat pseudoprime, a Lucas pseudoprime with polynomial x2� 5x� 5, and
satisfy .5 j n/D�1. Both challenges remain open as of this writing, though at least in the first case there
is good reason to believe infinitely many exist [Pom84].

The largest tabulation to date of pseudoprimes of similar type is that of Gilchrist [Gil13], who found no
Baillie-PSW pseudoprimes (a stronger version of the PSW challenge) up to BD 264. After first tabulating
2-strong pseudoprimes [Fei13; Nic12] using an algorithm due to Pinch [Pin00], he applied the strong
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supported in part by Butler University’s Holcomb Awards Committee.
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Lucas test using the code of Nicely [Nic12]. Taking inspiration from tabulations of strong pseudoprimes
to several bases [Jae93; Ble96; JD14; SW17], our new idea is to treat the tabulation as a two-base com-
putation: a Fermat base and a Lucas base. In this way we exploit both tests that make up the definition.

Specifically, we improve upon [Pin00] in three ways:

� GCD computations replace factorizations of bn� 1.

� Sieving searches are done with larger moduli.

� Fewer preproducts are constructed.

Other notable attempts to find a PSW-challenge number involve construction techniques that result in
a computationally infeasible subset-product problem [GA99; CG03]. The first of such attempts would
have also found the number requested at the end of [Wil77] which is simultaneously a Carmichael number
and a .P;Q/-Lucas pseudoprime for all pairs .P;Q/ with 5D P2� 4Q and .5 j n/D�1.

The new algorithm presented constructs n by pairing primes p with admissible preproducts k. In
Section 6 we provide an unconditional proof of the running time. Unfortunately, the provable running
time gets worse as the number of primes dividing k increases. Specifically, we prove the following.

Theorem 1. There exists an algorithm which tabulates all PSW-challenge pseudoprimes up to B with
t prime factors, while using zO.B1�1=.3t�1// bit operations and space for O.B.3t�2/=.4t�2// words.

The running time improves, under a heuristic assumption that factoring plays a minimal role, to
zO.B1�1=.2t�1// bit operations.

No PSW-challenge pseudoprimes with two or three prime factors exist up to B D 280.

For the computation performed we chose 2 as the Fermat base and .1;�1/ as the Lucas base, but the
algorithm as designed can handle arbitrary choices.

The rest of the paper is organized as follows. Section 2 establishes key definitions and notation, while
Section 3 provides the theoretical underpinnings of the algorithm. The algorithm is presented in Section 4
along with a proof of correctness. The running time is analyzed in Sections 5 and 6. We conclude the
paper with comments on our computation with B D 280.

2. Definitions and notation

A base-b Fermat pseudoprime is a composite n with gcd.n; b/D 1 that satisfies the congruence bn�1 �

1 .mod n/.
Lucas sequences have many equivalent definitions. We state a few important ones and let the reader

consult standard sources such as [Leh30] for a more thorough treatment. Let P;Q 2 Z and ˛; ˛ be the
distinct roots of f .x/Dx2�PxCQ, with DDP2�4Q the discriminant. Then the Lucas sequences are

Un.P;Q/D
˛n�˛n

˛�˛
and Vn.P;Q/D ˛

n
C˛n:

Equivalently, we may define these as recurrence relations, where

U0.P;Q/D 0; U1.P;Q/D 1; and Un.P;Q/D PUn�1.P;Q/�QUn�2.P;Q/;
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and

V0.P;Q/D 2; V1.P;Q/D P; and Vn.P;Q/D PVn�1.P;Q/�QVn�2.P;Q/:

We will use �.n/D .D j n/ for the Jacobi symbol and will frequently write Un or Vn when the particular
sequence is clear from context. It should be noted that the definition below guarantees that n is odd so
that the Jacobi symbol is well-defined. Often Un is referred to as the Lucas sequence with parameters
P and Q, but both Vn and Un are needed for the “double-and-add” method for computing Un using
O.log n/ arithmetic operations. For a more modern take on this classic algorithm, see [JQ96].

A .P;Q/-Lucas pseudoprime is a composite n with gcd.n; 2QD/D 1 such that Un��.n/ � 0 .mod n/.

Definition 2. We call a composite n a .b;P;Q/-challenge pseudoprime if it is simultaneously a base-b
Fermat pseudoprime, a .P;Q/-Lucas pseudoprime, and additionally satisfies �.n/D�1.

Note that �.n/D�1 means that D is not a square.
A PSW-challenge pseudoprime is then a .2; 1;�1/-challenge pseudoprime in our notation. To get a

Baillie-PSW pseudoprime, one replaces the Fermat test with a strong pseudoprime test and the Lucas test
with a strong Lucas test. The Lucas parameters are chosen as P D 1 and QD .1�D/=4, where D is the
first discriminant in the sequence f5;�7; 9;�11; : : : g D f.�1/k.2kC 1/gk�2 for which .D j n/D�1.

Certain parameter choices should be avoided as they make the challenge much less interesting. Specif-
ically, roots of unity create unwanted degenerate behavior. Thus we exclude b D˙1, and any .P;Q/ for
which the squarefree part of D is either �1 or �3, in addition to excluding D which are squares. The
reason is that the only quadratic extensions of Q that contain roots of unity are those corresponding to
the quadratic cyclotomic polynomials x2C 1 and x2˙xC 1.

We use `b.n/ when gcd.b; n/D 1 to denote the multiplicative order of b modulo n, i.e., the smallest
positive integer such that b`b.n/ D 1 .mod n/. When n D p is a prime, `b.p/ jp � 1 by Lagrange’s
theorem since p� 1 is the order of .Z=pZ/�.

Given a prime p, there exists a least positive integer ! such that U! � 0 .mod p/. We call ! the rank
of apparition of p with respect to the Lucas sequence .P;Q/, and we denote it by !.p/. It is also well
known that Up��.p/ � 0 .mod p/ and hence that !.p/ jp� �.p/.

Throughout, we will use log to represent the natural logarithm.
The function P .n/ returns the largest prime factor of n, and for asymptotic analysis we often use zO ,

where f D zO.g/ means there are positive constants N, c such that f .n/ � g.n/.log.4C g.n///c for
nonnegative functions f .n/ and g.n/ and for all n�N [vzGG03, Definition 25.8].

3. Algorithmic theory

The main idea of the tabulation comes from [Jae93; Ble96; JD14; SW17], but instead of tabulating
pseudoprimes to many bases, we have just a Fermat base and a Lucas base. For the Fermat case we state
known results for completeness, while for the Lucas case we state and prove the required results. We
follow the notation in [SW17] when possible.
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To find all .b;P;Q/-challenge pseudoprimes n<B, we construct n in factored form nDp1p2 � � �pt�1pt ,
where t is the number of prime divisors of n and pi �piC1. We call kDp1p2 � � �pi for i < t a preproduct.
Section 3.1 states theorems limiting the number of preproducts that need to be considered. Section 3.2
shows that pt may be found via a gcd computation when k is small and by a sieving search when k is
large.

3.1. Conditions on n D wk. We will frequently make use of the fact that if �.n/D�1 and nDwk then
�.w/D��.k/ by the multiplicative property of the Jacobi symbol.

Proposition 3 [Ble96, Theorem 3.20]. Let k � 1 be an integer and p a prime. If nD kp2 is a Fermat
pseudoprime to the base b then the following two conditions must be satisfied:

(1) bp�1 � 1 .mod p2/.

(2) bk�1 � 1 .mod p2/.

Proposition 4. Let k � 1 be an integer and p a prime. If nD kp2 is a .P;Q/-Lucas pseudoprime with
�.n/D�1 then the following two conditions must be satisfied:

(1) Up��.p/ � 0 .mod p2/.

(2) Uk��.k/ � 0 .mod p2/.

Proof. We start by noting that !.p2/ jp!.p/ and hence !.p2/ divides p.p � �.p// by the law of
repetition [Leh30, Theorem 1.6]. In addition, UnC1 � 0 .mod n/ by assumption so that UnC1 � 0

.mod p2/ and hence !.p2/ j nC 1. With p relatively prime to nC 1, it follows that !.p2/ divides
gcd.nC 1;p� �.p//, and we conclude that !.p2/ divides p� �.p/, which proves the first congruence.

For the second congruence, if k D 1 then Uk��.k/ D U0 and the congruence is satisfied. In the case
k > 1, we have !.p2/ divides nC 1D kp2C 1D kp2� �.k/ and p� �.p/. Thus !.p2/ divides

kp2
� �.k/� k.p� 1/.pC 1/D kp2

� �.k/� k.p2
� 1/D k � �.k/:

It follows that Uk��.k/ � 0 .mod p2/. �

In the case b D 2, these primes are known as Wieferich primes and in the .1;�1/ case they are known
as Wall–Sun–Sun primes. The paper [CDP97] suggests the following heuristic argument to understand
the rarity of these primes. Consider either bp�1� 1 or Up��.p/ in a base-p representation. The constant
coefficient is zero by Fermat’s little theorem and its analogue. The coefficient on p needs to be 0 to
satisfy the above congruence and we expect this to happen with probability 1=p. Summing over the
reciprocals of primes gives an expected count of such primes up to x as being on the order of log log x.
For challenge pseudoprimes, both congruences would have to be met simultaneously. The corresponding
count from the expected values is now a sum of 1=p2 and the infinite sum converges. So we expect the
count to be finite and we know of no examples of this behavior.

Either the Fermat case or the Lucas case can individually be checked up to a bound B in O.B1=2/

time and such primes may be then tested against the other condition. In the very unlikely scenario that
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such a prime does exist, we refer the reader to Section 6 of [Pin00] in order to account for square factors
dividing challenge pseudoprimes. Given how exceedingly rare we believe these are, we deal no further
with square factors and assume a squarefree challenge pseudoprime.

Proposition 5. Let nD p1p2 � � �pt be a .b;P;Q/-challenge pseudoprime,

LD lcm.`b.p1/; : : : ; `b.pt // and W D lcm.!.p1/; : : : ; !.pt //:

Then gcd.L;W /� 2, gcd.n;L/D 1, and gcd.n;W /D 1.

Proof. We have bn�1 � 1 .mod pi/ and hence n� 1 .mod `b.pi//. We also have UnC1 � 0 .mod pi/

and hence n � �1 .mod !.pi//. So `b.pi/ j .n � 1/ and !.pi/ j .nC 1/ and this holds for all pi j n.
Therefore, L j .n� 1/ and W j .nC 1/. Then gcd.L;W / � gcd.n� 1; nC 1/ � 2. Since n is relatively
prime to both nC 1 and n� 1, the other two gcds are as claimed. �

We call a preproduct k admissible if the gcd statements in Proposition 5 are satisfied. The concept
of admissibility is extremely useful in limiting the preproducts under consideration. As one example,
very few primes p with �.p/D 1 are admissible, since in this case `b.p/ and !.p/ both divide p� 1,
increasing the likelihood that gcd.`b.p/; !.p// > 2. In private correspondence, Paul Pollack gave a
heuristic argument suggesting around log.x/ such primes up to x.

3.2. Conditions on pt given k. Henceforth, we assume that k D p1 � � �pt�1 and that k is admissible.

Proposition 6. If nD kp is a .b;P;Q/-challenge pseudoprime then p is a divisor of

gcd.bk�1
� 1;Uk��.k//:

Proof. Recall that bn�1�1 .mod n/ and UnC1�0 .mod n/. We rewrite n�1Dkp�1Dk.p�1/Ck�1.
Since `b.p/ divides p� 1 and n� 1 we conclude `b.p/ j .k � 1/. Thus, p j .bk�1� 1/.

Similarly nC1D kp��.p/�.k/D k.p��.p//Ck�.p/��.p/�.k/D k.p��.p//C�.p/.k��.k//.
Since !.p/ divides p� �.p/ and nC 1 we conclude !.p/ j .k � �.k//. Thus, p jUk��.k/. �

Proposition 7. If nD kp is a .b;P;Q/-challenge pseudoprime then

p �

�
k�1 .mod L/;

�k�1 .mod W /;

where
LD lcm.`b.p1/; : : : ; `b.pt�1// and W D lcm.!.p1/; : : : ; !.pt�1//:

Proof. Since n D kp is a challenge pseudoprime, we have that bkp�1 � 1 .mod pi/, where pi is
any prime factor of k, and so `b.pi/ j .kp � 1/. Thus, p � k�1 .mod `b.pi//. We also know that
!.nC 1/ � 0 .mod n/, and hence that it is congruent to 0 modulo pi . Thus, !.pi/ j .kpC 1/ so that
p ��k�1 .mod !.pi//.

Now, `b.pi/ j .kp�1/ for all pi j k if and only if L j .kp�1/. A similar statement holds for W , which
completes the proof. �
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4. Algorithm

Our basic strategy follows that found in [SW17]. Find all pseudoprimes with t prime factors for each
t � 2 in turn. For a given t , we analyze all preproducts k with t � 1 prime factors. The question for each
preproduct is whether there exists a prime p that makes n D kp a challenge pseudoprime. For small
preproducts, this question can be answered with a gcd computation. For large preproducts, we instead
use a sieve.

Algorithm 1: Tabulating squarefree challenge pseudoprimes.

Input :bound B, positive integer b � 2, Lucas sequence parameters .P;Q/.
Output : list of n� B which are .b;P;Q/-challenge pseudoprimes.

1 Create an array of size
p

B with entry i containing the smallest prime factor of i ;
2 for primes p �

p
B do

3 Compute `b.p/, !.p/ and only keep prime p if gcd.`b.p/; !.p//� 2;
4 Update preproduct list;
5 for new preproducts k do
6 if k �X then
7 do GCD step;

8 else
9 do Sieve step;

The above suggests storing all such primes up to
p

B along with allowable preproducts, but space
constraints would prohibit this strategy in practice. Construction of composite preproducts may be done
with a combination of storing the 3-tuple .p; `b.p/; !.p// for small primes and creating them on the fly
for large primes, where the distinction is dependent upon space constraints. To efficiently create them,
one may use an incremental sieve or a segmented sieve to generate factorizations of consecutive integers
so that we may quickly compute `b.p/ from the factorization of p� 1 and !.p/ from the factorization
of p� �.p/.

To tabulate Baillie-PSW pseudoprimes, one tabulates all pseudoprimes for each D in the sequence.
Each discriminant performs a trial division so that successive computations will remove the next small
prime from consideration, making the algorithm progressively more efficient.

4.1. Algorithm details and correctness proof. We update the preproduct list as follows. For each ex-
isting admissible preproduct k 0, create a new preproduct k D k 0p and check that it is also admissible.
Recall that k D

Q
pi is admissible if gcd.L;W /� 2, where LD lcmi.`b.pi// and W D lcmi.!.pi//.

The GCD step involves computing and then factoring gcd.bk�1 � 1;Uk��.k//. For each prime p

dividing the gcd with p > P .k/, we build n D kp and apply the Fermat test and the Lucas test to
determine if it is a challenge pseudoprime. Importantly, both bk�1 and Uk��.k/ can be computed using
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a standard “double-and-add” strategy at a cost of O.log k/ arithmetic operations. With such large inputs,
it is vital to use a gcd algorithm asymptotically faster than the Euclidean algorithm. The solution is a
discrete fast Fourier transform method that requires zO.n/ operations on n-bit inputs [SZ04].

For the sieve step, we check primes p in the range pt�1 < p < B=k that fall into the arithmetic
progression given by Proposition 7. For each such prime, we again construct nD kp and apply the tests
directly to see if it is a challenge pseudoprime.

Theorem 8. Algorithm 1 correctly tabulates all squarefree .b;P;Q/-challenge pseudoprimes up to B.

Proof. Suppose that n�B is a .b;P;Q/-challenge pseudoprime. Then we can write nD p1 � � �pt D kpt .
By Proposition 5, gcd.L;W / � 2, and this is true whether L;W are computed for each of the pi

separately, for k, or for n as a whole. Thus, limiting our preproduct list to admissible k is valid. Note
that any prime p j k satisfies p � B1=2, so finding all primes up to B1=2 is sufficient, if space intensive.

Given k, it follows from Propositions 6 and 7 that pt is a divisor of gcd.bk�1� 1;Uk��.k// and that

pt �

�
k�1 .mod L/;

�k�1 .mod W /:

Note that k�1 exists modulo L and modulo W because gcd.n;L/D gcd.n;W /D 1. Thus, the algorithm
will find pt either through the GCD step or the Sieve step.

Finally, there is no chance of false positives because each potential pseudoprime is subjected to the
necessary Fermat and Lucas tests. �

5. Reciprocal sums involving order

The next two sections develop a proof of the asymptotic running time of Algorithm 1. This proof depends
on finding upper bounds on the sum over primesX

p

1

p � lcm.`b.p/; !.p//
:

Since such results are of independent interest, we spend some time here developing the appropriate theory.
A general observation is that in order to bound a reciprocal sum of a function f .n/, it is not sufficient
to know that f .n/ is usually large. Instead, we need a precise bound on how often f .n/� y for a range
of values y.

The first step is to prove a slight generalization of a known lemma. Our proof will follow closely the
version found as Lemma 3 in [Mur88]. Let b be the base of the Fermat test, and let ˇ D ˛=˛, where
˛; ˛ are the roots of x2 �PxCQ. In this context let � be the squarefree part of the discriminant of
x2 �Px CQ. Define � as the subgroup generated by ˇ of the unit group of the ring of integers of
Q.
p
�/, and let �p be the reduction of � modulo p.

Note that ˇn D 1 if and only if ˛n D ˛n if and only if Un D 0. Thus !.p/D j�pj.
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Lemma 9. Let � D hˇi be a nontorsion subgroup of Q.
p
�/. Then there are O.y2/ primes p such that

j�pj � y, where the constant depends on ˇ.

Proof. Let n be a positive integer less than y, and consider ˇn � 1. Since ˇ 2 Q.
p
�/, so is ˇn � 1.

Analyzing the numerator, it is straightforward to show that the numerator of ˇn� 1 is at most cn, where
c is a constant depending on P and Q.

Now, define S D fˇn W 0 � n � yg. If j�pj � y then two elements of S are equal modulo p, i.e.,
ˇn1 D ˇn2 .mod p/. Without loss of generality, assume n1 � n2 so that m D n1 � n2 is nonnegative.
Then ˇn1�n2 D ˇmD 1 .mod p/ with 0�m� y. Then thinking of ˇm�1 as an element of Q.

p
�/, we

have ˇm� 1D 1C 2

p
�, and ˇn1�n2 D 1 .mod p/ implies p divides the numerators of the rational

numbers 1 and 2.
Since � is nontorsion, ˇm � 1¤ 0. Thus ˇm � 1D 0 .mod p/ for only finitely many p, and this is

limited by the numerator being at most cm. For any given mDn1�n2�y, there are O.m/DO.y/ primes
dividing the numerators of both 1 and 2, where the constant depends on the choice of ˇ. Thus, the
total number of primes with j�pj � y is O.y2/. �

The next lemma will be essential in the analysis of the sieve step of Algorithm 1. The authors are
very grateful to an anonymous referee for suggesting the usage of the Cauchy–Schwarz inequality, thus
improving the bound from zO.X�2=3/ to zO.X�1/.

Lemma 10. We have X
X<p<B

gcd.`b.p/;!.p//�2

1

p � lcm.`b.p/; !.p//
D zO.X�1/;

where the sum is over primes and the implicit logarithm factor depends on B, b, P, Q.

Proof. We first utilize the fact that gcd.`b.p/; !.p//� 2 for all primes in the sum, which along with the
Cauchy–Schwarz inequality produces the upper bound

X
X<p<B

2

p � `b.p/!.p/
�

� X
X<p<B

1

p � `b.p/
2

�1
2
� X

X<p<B

1

p �!.p/2

�1
2

:

To bound these new sums, we break into two pieces depending on whether `b.p/ is greater or less than y

(similarly, whether !.p/ is greater than or less than y).
In the case where `b.p/ is small we will use partial summation, and thus require a bound on the count

of primes p with `b.p/� y. By [MS87, Lemma 1], we know there are O.y2/ primes with `b.p/� y.
Using partial summation, we then haveX

X<p<B
`b.p/�y

1

`b.p/
2
D

1

y2
�O.y2/�

Z y

1

O.t2/ � �2t�3 dt DO.1/CO.log y/

and so X
X<p<B
`b.p/�y

1

p � `b.p/
2
�

1

X

X
X<p<B
`b.p/�y

1

`b.p/
2
�O

�
log y

X

�
:
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In the case where `b.p/ is large we bound as follows:X
X<p<B
`b.p/>y

1

p � `b.p/
2
�

1

y2

X
X<p<B

1

p
�O

�
log B

y2

�
:

Balancing the two cases gives
P

X<p<B 1=.p`b.p/
2/D zO.X�1/.

We now shift to considering !.p/. The only quadratic cyclotomic polynomials are x2C 1 and x2˙

xC 1. Since our parameter choices result in � ¤ �1;�3, the only roots of unity in Q.
p
�/ are ˙1.

Since we assume D is not a square, we further know that ˇ ¤ ˙1. From this we conclude that hˇi
is nontorsion, and thus by Lemma 9 there are at most O.y2/ primes with !.p/ � y. Using the same
argument as above, we conclude

P
X<p<B 1=.p!.p/2/D zO.X�1/. The result then follows. �

6. Algorithm analysis

In this section we provide an asymptotic analysis of Algorithm 1. Recall the restrictions on parameter
choices laid out in Section 2. First we find the cost of the GCD step.

Theorem 11. The asymptotic cost of the GCD step for all k �X is zO.X 2/C zO.B1=2X 3=2/ bit opera-
tions and space for zO.B1=2X 1=2/ words.

Proof. As noted above, for each preproduct k �X we need to compute bk�1� 1 and Uk��.k/ at a cost
of zO.k/ bit operations, then apply a linear gcd algorithm to compute g.k/D gcd.bk�1� 1;Uk��.k// at
a cost of zO.k/ bit operations.

In factoring g.k/ we do not need a complete factorization; rather we need to find all primes p <

B=k that divide g.k/. Using the polynomial evaluation method of Pollard and Strassen (see [vzGG03,
Theorem 19.3]) this requires zO..B=k/1=2 � log g.k// D zO..Bk/1=2/ bit operations and O..Bk/1=2/

space.
The total cost in bit operations for all k �X is thenX

k�X

O.k/C zO.k/C zO..Bk/
1
2 /D zO.X 2/C zO.B

1
2 X

3
2 /: �

Next we find the cost of the Sieve step of Algorithm 1, broken down by the number of prime factors
in the preproduct.

Theorem 12. Restrict attention to the tabulation of .b;P;Q/-challenge pseudoprimes that are square-
free with t � 3 prime factors. Then the cost in bit operations of the Sieve step in Algorithm 1 is

zO.X�
1

t�1 B/:

Proof. By construction we have n D kpt , where k > X and pt is the largest prime factor dividing n.
Since k is admissible, gcd.`b.p/; !.p//� 2 for all p j k.

Let k 0 denote k=pt�1, the product of the smallest t � 2 primes in the preproduct. It follows that
X < k < B1�1=t and so X=k 0 < pt�1 < B1�1=t=k 0. As t increases, k 0 might become larger than X .
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In this case we use the alternate lower bound pt�1 > X 1=.t�1/. This lower bound is true because
we construct k so that its prime factors are increasing, and thus if pt�1 � X 1=.t�1/ then k � X , a
contradiction.

By Proposition 7 the size of the arithmetic progression to check for each preproduct k is given by
B=.k lcm.L;W //, where L and W are computed from the primes dividing k. Then the total cost in
arithmetic operations for all preproducts with t � 1 prime factors isX
X<k<B1�1=t

B

k lcm.L;W /
�

X
k0�X 1�1=.t�1/

X
X
k0
<pt�1<

B1�1=t

k0

B

k 0pt�1 lcm.`b.pt�1/; !.pt�1//

C

X
X 1�1=.t�1/<k0<B1�2=t

X
X 1=.t�1/<pt�1

B

k 0pt�1 lcm.`b.pt�1/; !.pt�1//
:

For both sums the key tool will be Lemma 10. In the first case we haveX
k0�X 1�1=.t�1/

X
X
k0
<pt�1<

B1�1=t

k0

B

k 0pt�1 lcm.`b.pt�1/;!.pt�1//
�

X
k0<X 1�1=.t�1/

B

k 0
� zO

�
k 0

X

�
D zO

�
B

X
1

t�1

�
;

while in the second case we haveX
X 1�1=.t�1/<k0<B1�2=t

X
X 1=.t�1/<pt�1

B

k 0pt�1 lcm.`b.pt�1/; !.pt�1//

�

X
X 1�1=.t�1/<k0<B1�2=t

B

k 0
� zO.X�

1
t�1 /D zO

�
B

X
1

t�1

�
:

Since these arithmetic operations are on integers of size at most B, the result follows. �

Note that we are only utilizing the order statements for one prime in the preproduct; utilizing more
seems quite difficult.

If the preproduct is prime and the pseudoprimes have two prime factors then the sum is easier to
analyze, namely X

X<q<B
gcd.`b.q/;!.q//�2

B

q lcm.`b.q/; !.q//
;

which is zO.B=X / by Lemma 10.
These two theorems form the main components of the analysis of Algorithm 1.

Theorem 13. The worst-case asymptotic running time of Algorithm 1, when restricted to constructing
pseudoprimes with t prime factors, is zO.B1�1=.3t�1// bit operations.

If we ignore the cost of factoring, the running time becomes zO.B1�1=.2t�1// bit operations when
constructing .b;P;Q/-challenge pseudoprimes with t prime factors.
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Proof. We balance the cost of the GCD step from Theorem 11 and the cost of the Sieve step from
Theorem 12. The bottleneck in the GCD step is factoring, and balancing B=X with B1=2X 3=2 gives
X D B1=5 and a running time with main term B4=5 in the case t D 2. In practice, computing gcds was
the bottleneck rather than factoring. If we assume this holds in general, the cost of the GCD step is
instead zO.X 2/. In the case t D 2, balancing X 2 with B=X gives X D B1=3 and a running time with
main term B2=3.

For larger t , balancing BX�1=.t�1/ with B1=2X 3=2 gives X D B.t�1/=.3t�1/ and a running time
of zO.B1�1=.3t�1// bit operations. Under the heuristic assumption that the cost of the GCD step is
instead O.X 2/, balancing with BX�1=.t�1/ instead gives X D B.t�1/=.2t�1/ and a running time of
zO.B1�1=.2t�1//.

Asymptotically smaller is the cost of finding all primes up to B1=2. Applying the Fermat test and
Lucas test to each composite constructed requires only O.log B/ arithmetic operations per number on
integers with O.log B/ bits. �

7. Computational notes and conclusion

We implemented Algorithm 1 and verified there are no .2; 1;�1/-challenge pseudoprimes (i.e., PSW-
challenge pseudoprimes) with two or three prime factors less than 280. Since there are no primes up to
240 which are simultaneously Wieferich and Wall–Sun–Sun, this claim includes composites with square
factors.

If such a challenge pseudoprime with two prime factors were to be found, one of the primes would be
admissible while satisfying �.p/D 1. It is notable that we found seven admissible primes with �.p/D 1

while generating primes less than 240:

p `2.p/ !.p/

61681 40 1542
363101449 171436 1059

4278255361 80 6684774
4562284561 120 147934
4582537681 160453 1428

26509131221 748 14176006
422013019339 290442546 2906

When k had two prime factors, we found the gcd.bk�1 � 1;Uk��.k// needed factoring more often.
However, the total time spent factoring gcds was negligible. Michael Jacobson suggested batch factoring
[Ber02] as one possibility for removing factoring as the bottleneck in the running time of Algorithm 1.

One of the reasons the .b;P;Q/ test is effective is because of conflicting divisibility conditions. The
Fermat condition requires divisibility with respect to n � 1. The Lucas condition (with �.n/ D �1)
requires divisibility with respect to nC 1. Seemingly, this conflict will happen independent of the bases
chosen. However, 2047 can be checked to be a .2; 23; 131/-challenge pseudoprime. The authors are
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curious how challenging such pseudoprimes are in general. Are there bases for which the subset-product
method of construction makes the challenge only moderately challenging?

The authors also note the influence on this problem of the number sought at the end of [Wil77].
That number is simultaneously a Carmichael number, a Lucas pseudoprime to all sequences of a fixed
discriminant, and has �.n/ D �1, so it would certainly be a challenge pseudoprime. Williams shows
that such a number has an odd number of prime factors, has more than three prime factors, and is not
divisible by 3.

We conclude by offering our own rewards for exhibiting challenge pseudoprimes:

� $20 for a .2; 1;�1/-challenge pseudoprime with an even number of prime factors.

� $20 for a .2; 1;�1/-challenge pseudoprime with exactly three prime factors.

� $6 for a .2; 1;�1/-challenge pseudoprime divisible by 3.
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Fast Jacobian arithmetic for hyperelliptic curves of genus 3

Andrew V. Sutherland

We consider the problem of efficient computation in the Jacobian of a hyperelliptic curve of genus 3
defined over a field whose characteristic is not 2. For curves with a rational Weierstrass point, fast
explicit formulas are well known and widely available. Here we address the general case, in which we
do not assume the existence of a rational Weierstrass point, using a balanced divisor approach.

1. Introduction

Like elliptic curves, Jacobians of hyperelliptic curves over finite fields are an important source of finite
abelian groups in which the group operation can be made fully explicit and efficiently computed. This
has given rise to many cryptographic applications, including Diffie–Hellman key exchange and pairing-
based cryptography, and has also made it feasible to experimentally investigate various number-theoretic
questions related to the L-series of abelian varieties over number fields, including analogs of the Birch
and Swinnerton-Dyer conjecture, the Koblitz–Zywina conjecture, the Lang–Trotter conjecture, and the
Sato–Tate conjecture, each of which was originally formulated for elliptic curves but has a natural gen-
eralization abelian varieties of higher dimension. They can also be used to study analogs of the Cohen–
Lenstra heuristics [6] and related questions in arithmetic statistics that were originally formulated for
quadratic number fields but have a natural analog for quadratic function fields [1; 9].

Thanks to work by many authors, there are several algorithms available for Jacobian arithmetic in
genus 2 that have been heavily optimized (primarily with a view toward cryptographic applications).
For hyperelliptic curves of genus g > 2, fully general algorithms have been developed only in the last
decade, and fast explicit formulas are available only for curves that have a rational Weierstrass point. This
simplifying assumption makes it easier to encode elements of the Jacobian using unique representatives
of their divisor class as described by Mumford [25] and later exploited by Cantor [4], who gave the first
fully explicit algorithm for computing in the Jacobian of a hyperelliptic curve with a rational Weierstrass
point.

But most hyperelliptic curves do not have a rational Weierstrass point. Over finite fields the proportion
of such curves is roughly 1/(2g), and over a number field the proportion is zero (as an asymptotic
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limit taken over curves of increasing height). In particular, many arithmetically interesting examples of
hyperelliptic curves do not have any rational Weierstrass points. This includes, for example, all 19 of the
modular curves X0(N ) that are hyperelliptic.1

In this article we treat hyperelliptic curves of genus g = 3; in order to simplify matters, we assume
the field characteristic is not 2. Our formulas are based on the balanced divisor approach introduced
by David J. Mireles Morales in his (unpublished) thesis [24] and presented by Galbraith, Harrison, and
Mireles Morales in [10]. The basic idea is to represent divisors of degree 0 as the difference of an effective
divisor of degree g and an effective divisor D∞ whose support is “balanced” over two points at infinity
(see Section 3 for further details). This is one of two approaches to generalizing Cantor’s algorithm; the
other is to work in what is known as the infrastructure of a “real” hyperelliptic curve [20; 32]. We find
the balanced divisor approach easier to work with, and we expect that it is likely to be faster, as has
proven to be the case for genus 2 curves [19]. However, the odd genus case is more challenging because
one cannot make D∞ perfectly balanced when g is odd, and this introduces complications that do not
appear when g is even. This makes genus 3 an interesting test case for the balanced divisor approach.

Another reason to be particular interested in the genus 3 case, and the main motivation for this work, is
that group computations in the Jacobian play a small but crucial role in efficiently computing the L-series
of a genus 3 curve. Recall that for a curve C/Q we may define its L-series as an Euler product

L(C, s) :=
∏

p

L p(p−s)−1,

where L p ∈ Z[T ] is an integer polynomial of degree at most 2g; for primes p of good reduction (all but
finitely many), the degree is exactly 2g and L p(T ) is the numerator of the zeta function

ZC p(T ) := exp
( ∞∑

r=1

#C p(Fpr )
T r

r

)
=

L p(T )
(1− T )(1− pT )

,

where C p denotes the reduction of C modulo p. Using the average polynomial-time algorithm described
in [15; 17; 18], for hyperelliptic curves of genus g one can simultaneously compute L p(T ) mod p at
all primes p ≤ N of good reduction in time Õ(g3 N log3 N ). In principle one can use a generalization
of the algorithm in [15] to compute L p(T ) modulo higher powers of p sufficient to determine L p ∈

Z[T ] (in genus 3, computing L p(T ) mod p2 suffices for p > 144), but this requires a more intricate
implementation and is much more computationally intensive than computing L p(T ) mod p.

Alternatively, as described in [7; 21], for curves of genus 3 one can use Õ(p1/4) group operations
in the Jacobian of C p and its quadratic twist to uniquely determine L p ∈ Z[T ] using generic group
algorithms [33; 34]. Within the practical range of computation, say N ≤ 230, the cost of doing this is
negligible compared to computing L p(T ) mod p, provided that the group operations can be performed
efficiently. This is the goal of the present work.

1This follows from results of Ogg [28; 29], who both determined the N for which X0(N ) is hyperelliptic and gave a criterion
for rational Weierstrass points on X0(N ) that allows one to rule out the existence of any such points on the hyperelliptic X0(N ).
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The formulas presented here played a key role in the results described in [16], which generalizes the
algorithm in [18] to treat genus 3 curves that are hyperelliptic over Q, but not necessarily over Q (they may
be degree 2 covers of pointless conics). The output of this algorithm is L p(T )L p(−T ) mod p, and, as
explained in [18, §7], one can again use Õ(p1/4) group operations in the Jacobian to uniquely determine
L p ∈ Z[T ] given this information. As can be seen in Table 1 of [16], which shows timings obtained
using a preliminary version of the formulas presented in this article, the time spent on group operations
is negligible compared to the time spent computing L-polynomials modulo p (less than a tenth). This
was not true of initial attempts that relied on a generic implementation of the balanced divisor approach
included in Magma [3], which has not been optimized for hyperelliptic curves of genus 3.

The explicit formulas we obtain here are nearly as efficient as the best known formulas for genus 3
hyperelliptic curves that have a rational Weierstrass point [5; 8; 13; 12; 22; 27; 36], which have been
extensively optimized.2 The difference is about 10 or 20 percent, comparable to the difference seen when
using explicit formulas based on the balanced divisor approach for genus 2 curves without a rational
Weierstrass point [2; 10]. This suggests that while the implementation is slightly more complicated, the
balanced divisor approach is just as effective in odd genus as it is in even genus.

2. Background

In this section we recall some basic facts about hyperelliptic curves and their Jacobians.

2A. Hyperelliptic curves. A (smooth, projective, geometrically integral) curve C over a field k is said
to be hyperelliptic if its genus g is at least 2 and it admits a 2-1 morphism φ : C→ P1 (the hyperelliptic
map). The map φ determines an automorphism P→ P of C , the hyperelliptic involution, which fixes the
fibers of φ and acts trivially only at ramification points. The fixed points of the hyperelliptic involution
are precisely the Weierstrass points of C (the points P for which there exists a nonconstant function
on C with a pole of order less than g + 1 at P and no other poles). The Riemann–Hurwitz formula
implies that a hyperelliptic curve of genus g has exactly 2g+ 2 Weierstrass points. Some authors require
the hyperelliptic map φ to be defined over k (rationally hyperelliptic), while others only require it to
be defined over k (geometrically hyperelliptic); we shall assume the former. When k is a finite field
the distinction is irrelevant because P1

k has no nontrivial twists (these would be genus 0 curves with no
rational points, which do not occur over finite fields).

Provided char(k) 6= 2, which we henceforth assume, every hyperelliptic curve C/k has an affine model
of the form

y2
= f (x),

with f ∈ k[x] separable of degree 2g+1 or 2g+2. The hyperelliptic map φ sends each affine point (x, y)
on C to (x : 1) on P1, and the hyperelliptic involution swaps (x, y) and (x,−y). The projective closure

2Indeed, our addition formula uses exactly the same number of field multiplications as the formula in [5, Algorithm 14.52]
for genus 3 curves with a rational Weierstrass point in odd characteristic (this formula has since been improved).
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of the model y2
= f (x) has a singularity at infinity; the curve C is obtained by desingularization. Equiva-

lently, C is the smooth projective curve with function field k(C) := k[x, y]/(y2
− f (x)); the field k(C) is a

quadratic extension of the rational function field k(x)' k(P1), and the inclusion map φ∗ : k(P1) ↪→ k(C)
corresponds to the hyperelliptic map φ.

When deg f = 2g + 1, the model y2
= f (x) has a unique rational point at infinity that is also a

Weierstrass point. Conversely, if C has a rational Weierstrass point, we can obtain a model of the form
y2
= f (x) with deg f = 2g+ 1 by moving this point to infinity. We can then make f monic via the

substitutions x 7→ lc( f )x and y 7→ lc( f )g y, after dividing both sides of y2
= f (x) by lc( f )2g.

If C does not have a rational Weierstrass point, then we necessarily have deg f = 2g+ 2, and there
are either 0 or 2 rational points at infinity, depending on whether the leading coefficient of f is a square
in k× or not. Provided that C has some rational point P , moving this point to infinity ensures that there
are two rational points at infinity (the other is P 6= P). This makes the leading coefficient of f a square,
and we can then make f monic by replacing y with

√
lc( f )y and dividing through by lc( f ).

In summary, if C is a hyperelliptic curve with a rational point, then it has a model of the form y2
= f (x)

with f monic of degree 2g+1 or 2g+2. The former is possible if and only if C has a rational Weierstrass
point, and the latter can always be achieved provided that C has a rational point that is not a Weierstrass
point. If k is a finite field of cardinality q , the Weil bound #C(k)≥ q + 1− 2g

√
q guarantees that C has

a rational point whenever q > 4g2, and it is guaranteed to have a rational point that is not a Weierstrass
point when q > 4g2

+ 2g+ 2. For g = 3 this means that if k is a finite field of odd characteristic and
cardinality at least 47, then C has a model of the form y2

= f (x) with f monic of degree 8; in what
follows, we shall assume that the hyperelliptic curves C we work with have such a model.

Remark 2.1. In the literature, hyperelliptic curves with a model y2
= f (x) that has two rational points

at infinity are sometimes called “real” hyperelliptic curves (those with one rational point at infinity are
called “imaginary”). We avoid this abuse of terminology as it refers to the model and is not an intrinsic
property of the curve. As noted above, in the setting of interest to us every hyperelliptic curve can be
viewed as a “real” hyperelliptic curve.

2B. Divisor class groups of hyperelliptic curves. The Jacobian of a curve C/k of genus g is an abelian
variety Jac(C) of dimension g that is canonically determined by C ; see [23] for a formal construction.
Describing Jac(C) as an algebraic variety is difficult, in general, but we are only interested in its prop-
erties as an abelian group. Provided that C has a k-rational point, then by [23, Theorem 1.1], we may
functorially identify the group Jac(C) with the divisor class group Pic0(C), the quotient of the group
Div0(C) of divisors of degree 0 by its subgroup of principal divisors. We recall that a divisor on C can
be defined as a formal sum D =

∑
n P P over points P ∈ C(k) with only finitely n P nonzero; the degree

of D is deg(D) :=
∑

n P . A divisor is said to be principal if it is of the form div(α) :=
∑

P ordP( f )P
for some function α ∈ k(C); such divisors necessarily have degree 0.

We are interested in the k-rational points of Jac(C). Under our assumption that C has a k-rational
point, these correspond to divisor classes [D] of k-rational divisors D ∈Div0(C) (this means D=

∑
n P P
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is fixed by Gal(k/k), even though the points P in its support need not be). In order to describe the divisor
classes [D] explicitly, we now assume that C is a hyperelliptic curve that has a rational point, and fix a
hyperelliptic map φ : C→ P1. We say that a point P on C is affine if it lies above an affine point (x : 1)
on P1 and we call P a point at infinity if lies above the point (1 : 0) on P1.

Recall that a divisor D =
∑

n P P is effective if n P ≥ 0 for all P; an effective divisor can always be
written as

∑
i Pi , where the Pi need not be distinct.

Definition 2.2. An effective divisor D =
∑

Pi on a hyperelliptic curve C is semireduced if Pi 6= P j for
any i 6= j ; a semireduced divisor whose degree does not exceed the genus of C is said to be reduced.

Lemma 2.3. Let C/k be a hyperelliptic curve that has a rational point. Every rational divisor class [D]
in Pic0(C) can be represented by a divisor whose affine part is semireduced.

Proof. By adding a suitable principal divisor to D if necessary, we can assume the affine part D0 of D is
effective. If D0 is not semireduced it can be written as D1+ D1+ D2 with D2 rational and semireduced;
if we now take a principal divisor E on P1 with affine part φ∗D1 and subtract φ∗E from D we obtain a
linearly equivalent rational divisor with affine part D2 (here φ : C→ P1 is the hyperelliptic map). �

Let us now fix a model y2
= f (x) for our hyperelliptic curve C that has a rational point at infinity.

A semireduced affine divisor D =
∑

Pi can be compactly described by its Mumford representation
div[u, v]: let Pi = (xi , yi ), define u(x) :=

∏
i (x − xi ), and let v be the unique polynomial of degree

less than deg u for which f − v2 is divisible by u. As explained in [25, §1], this amounts to requiring
that v(xi )= yi with multiplicity equal to the multiplicity of Pi in D; when the xi are distinct v can be
computed via Lagrange interpolation in the usual way. If D is a rational divisor, then u, v ∈ k[x].

Conversely, suppose we are given u, v ∈ k[x] with u monic, deg v < deg u, and f −v2 is divisible by u.
Write u(x)=

∏
i (x − xi ), define Pi := (xi , v(xi )); the affine points Pi lie in C(k) because u | ( f − v2)

implies f (xi )− v(xi )
2 is divisible by u(xi )= 0, and therefore v(xi )

2
= f (xi ). We now define

div[u, v] :=
∑

i

Pi .

The effective divisor div[u, v] is rational, since u, v ∈ k[x], and it is semireduced: if Pi = P j , then we
must have xi = x j and v(xi ) = −v(x j ) = −v(xi ) = 0, and if i 6= j , then xi is a double root of u and
of v, and therefore also a double root of f , but this is impossible since f is separable. There is thus a
one-to-one correspondence between semireduced affine divisors and Mumford representations div[u, v],
and div[u, v] is rational if and only if u, v ∈ k[x].

Let us now fix an effective divisor D∞ of degree g supported on rational points at infinity; if C has
one rational point P∞ at infinity we may take D∞ = g P∞, and if C has two rational points P∞ and P∞
at infinity we may take D∞ = dg/2eP∞+bg/2cP∞.

Proposition 2.4. Let C be a hyperelliptic curve of genus g, and let D∞ be an effective divisor of degree g
supported on rational points at infinity. Each rational divisor class in Pic0(C) can be uniquely written
as [D0− D∞], where D0 is an effective rational divisor of degree g whose affine part is reduced.
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Proof. See Proposition 1 in [10], which follows from Propositions 3.1 and 4.1 of [30] (provided the
support of D∞ is rational, which we have assumed). �

Remark 2.5. When g is even it is not actually necessary for the points at infinity to be rational; the
divisor D∞ = (g/2)(P∞+ P∞) will be rational in any case. Indeed, as astutely observed in [10], when
C has even genus and no rational Weierstrass points, it is computationally advantageous to work with a
model for C that does not have rational points at infinity. But this will not work when the genus is odd
because we do need D∞ to be rational (Proposition 2.4 is false otherwise).

3. Hyperelliptic divisor class arithmetic using balanced divisors

In this section we summarize the general formulas for Jacobian arithmetic using balanced divisors. Our
presentation is based on [10], but we are able to make some simplifications by being more specific about
our choice of D∞ and unraveling a few definitions (we also introduce some new notation). We refer the
reader to [10; 24] for details and proofs of correctness. In the next section we specialize these formulas
to the case g = 3 and optimize for this case.

Let us first fix a model y2
= f (x) for a hyperelliptic curve C/k of genus g with rational points

P∞ := (1 : 1 : 0) and P∞ := (1 : −1 : 0) at infinity (in weighted projective coordinates), and let us define
D∞ := dg/2eP∞+bg/2cP∞. This implies that f is monic of degree 2g+ 2; as noted above, this can
be assumed without loss of generality if C has any rational points that are not Weierstrass points. The
case where C has a rational Weierstrass point is better handled by existing algorithms in any case, so the
only real constraint we must impose is that C have a rational point.3 The assumption that char(k) 6= 2 is
made purely for the sake of convenience; the algorithms in [10; 24] work in any characteristic.

Proposition 2.4 implies that we can uniquely represent each rational divisor class in Pic0(C) by a triple
(u, v, n), where div[u, v] is a rational reduced affine divisor in Mumford notation (so u, v ∈ k[x] satisfy
deg v < deg u, with u a monic divisor of f −v2) with deg u≤ g, and n is an integer with 0≤ n≤ g−deg u).
The triple (u, v, n) corresponds to the divisor

div[u, v, n] := div[u, v] + n P∞+ (g− deg u− n)P∞− D∞.

Whenever we write div[u, v, n] we assume that u, v, n are as above. In this notation

div[1, 0, dg/2e] = div[1, 0] + dg/2eP∞+ (g− 0−dg/2e)P∞− D∞ = 0

is the unique representative of the trivial divisor class in Pic0(C).
At intermediate steps in our computations we shall need to work with divisors whose affine parts

are semireduced but not reduced. Given a semireduced affine divisor div[u, v] with deg u ≤ 2g and an

3The assumption that C has a rational point is required by any algorithm that represents rational elements of Pic0(C) using
rational divisors (even though this is not always explicitly stated in the literature). As observed in [31, p. 287], without this
assumption a rational divisor class need not contain any rational divisors.
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integer n with 0≤ n ≤ 2g− deg u, we define

div[u, v, n]∗ := div[u, v] + n P∞+ (2g− deg u− n)P∞− 2D∞,

and whenever we write div[u, v, n]∗ we assume that u, v, n are as above (in particular, deg u+ n ≤ 2g).
We begin by precomputing the unique monic polynomial V for which deg( f −V 2)≤ g. This auxiliary

polynomial is determined by the top g+ 1 coefficients of f and will be needed in what follows.

Algorithm (Precompute). Given f (x)= x2g+2
+ f2g+1x2g+1

+· · ·+ f1x+ f0, compute the monic V (x)
for which deg( f − V 2)≤ g.

1. Set Vg+1 := 1.

2. For i = g, g− 1, . . . , 0 compute c := fg+1+i −
∑g+1

j=i+1 V j Vg+1+i− j and set Vi := c/2.

3. Output V (x) := xg+1
+ Vgxg

+ · · ·+ V1x + V0.

We now give the basic algorithm for composition, which is essentially the same as the first step in
Cantor’s algorithm [4]. In all of our algorithms, when we write a mod b with a, b ∈ k[x] and b nonzero,
we denote the unique polynomial of degree less than deg b that is congruent to a modulo b (the zero
polynomial if deg b = 0), and for any divisors D1, D2 ∈ Div(C) we write D1 ∼ D2 to denote linear
equivalence (meaning that D1− D2 is principal).

Algorithm (Compose). Given div[u1, v1, n1] and div[u2, v2, n2], compute div[u3, v3, n3]
∗ such that

div[u1, v1, n1] + div[u2, v2, n2] ∼ div[u3, v3, n3]
∗.

1. Use the Euclidean algorithm to compute monic w := gcd(u1, u2, v1+v2)∈ k[x] and c1, c2, c3 ∈ k[x]
such that w = c1u1+ c2u2+ c3(v1+ v2).

2. Let u3 := u1u2/w
2 and let v3 := (c1u1v2+ c2u2v1+ c3(v1v2+ f ))/w mod u3.

3. Output div[u3, v3, n1+ n2+ degw]∗.

To reduce the divisor div[u3, v3, n3]
∗ output by Compose to the unique representative of its divisor

class we proceed in two steps. The first is to repeatedly apply the algorithm below to obtain a divisor
whose affine part is semireduced with degree at most g+ 1.

Algorithm (Reduce). Given div[u1, v1, n1]
∗ with deg u1 > g+1, compute div[u2, v2, n2]

∗ with deg u2≤

deg u1− 2 such that

div[u1, v1, n1]
∗
∼ div[u2, v2, n2]

∗.

1. Let u2 be ( f − v2
1)/u1 made monic and let v2 := −v1 mod u2.

2. If deg v1= g+1 and lc(v1)= 1, then let δ := deg u1−(g+1); else if deg v1= g+1 and lc(v1)=−1,
then let δ := g+ 1− deg u2; else let δ := (deg u1− deg u2)/2.

3. Output div[u2, v2, n1+ δ].
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Reduce decreases the degree of the affine part of its input by at least 2, so at most b(g− 1)/2c calls
to Reduce suffice to reduce the output of Compose to a linearly equivalent divisor whose affine part has
degree at most g+ 1. Having obtained a divisor div[u, v, n]∗ with deg u ≤ g+ 1, we need to compute
the unique representative of its divisor class. Now if dg/2e ≤ n ≤ d3g/2e− deg u, then deg u ≤ g and

div[u, v, n]∗ = div[u, v] + (n−dg/2e)P∞+ (d3g/2e− deg u− n)P∞+ D∞− 2D∞,

so we can simply take div[u, v, n−dg/2e] as our unique representative. The following algorithm “adjusts”
div[u, v, n]∗ until n is within the desired range; it can be viewed as composition with a principal divisor
supported at infinity followed by reduction.

Algorithm (Adjust). Given div[u1, v1, n1]
∗ with deg u1 ≤ g+ 1 compute div[u2, v2, n2] such that

div[u1, v1, n1]
∗
∼ div[u2, v2, n2].

1. If n1 ≥ dg/2e and n1 ≤ d3g/2e− deg u1, then output div[u1, v1, n1−dg/2e] and terminate.

2. If n1<dg/2e, let v̂1 :=v1−V+(V mod u1), let u2 be ( f−v̂2
1)/u1 made monic, let v2 :=−v̂1 mod u2,

and let n2 := n1+ g+ 1− deg u2.

3. If n1≥dg/2e, let v̂1 :=v1+V−(V mod u1), let u2 be ( f−v̂2
1)/u1 made monic, let v2 :=−v̂1 mod u2,

and let n2 := n1+ deg u1− (g+ 1).

4. Output Adjust(div[u2, v2, n2]
∗).

The polynomial u2 computed in step 2 or 3 of Adjust has degree at most g (this is guaranteed by
deg( f − V 2) ≤ g and deg v1 < deg u1). If deg u1 ≤ g, then Adjust either terminates or outputs a value
for n2 that is strictly closer to the desired range than n1, and if deg u1 = g+ 1, then Adjust outputs a
divisor whose affine part has strictly lower degree with n2 no further from the desired range than n1.
Thus, it always makes progress, and the total number of nontrivial calls to Adjust (those that do not
terminate in step 1) is at most dg/2e+ 1.

We now give the general algorithm for adding rational divisor classes.

Algorithm (Addition). Given div[u1, v1, n1], div[u2, v2, n2], compute div[u3, v3, n3] ∼ div[u1, v1, n1]+

deg[u2, v2, n2].

1. Set div[u, v, n]∗← Compose(div[u1, v1, n1, div[u2, v2, n2]).

2. While deg u > g+ 1, set deg[u, v, n]∗← Reduce(div[u, v, n]∗).

3. Output Adjust(div[u, v, n]∗).

Note that Addition is fully general; the supports of its inputs may overlap, and it can be used with
hyperelliptic curves of any genus, so long as the curve has a model with two rational points at infinity
(always true over a sufficiently large finite field).

Let us now analyze the behavior of Addition in the typical case (which will be overwhelmingly dom-
inant when k is a large finite field). We generically expect divisors to have affine parts of degree g, and
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even when the two inputs to Addition coincide, we expect the GCD computed in step 1 of Compose to
be trivial.

More specifically, we expect the following to occur in a typical call to Addition:

• The inputs will satisfy deg u1 = deg u2 = g, deg v1 = deg v2 = g− 1, and n1 = n2 = 0.

• The divisor div[u, v, n]∗ output by Compose will have deg u = 2g, deg v = 2g− 1, and n = 0.

• Each call to Reduce will reduce the affine degree by 2 and increase n by 1.

• The input to Adjust will have deg u = g+ 1 if g is odd, deg u = g if g is even, and n = bg/2c.

• If g is even Adjust will simply set n to 0 and return. If g is odd Adjust will reduce the degree of u
from g+ 1 and increase n by 1 in the initial call, and then set n to 0 and return.

It is worth comparing this to Cantor’s algorithm for hyperelliptic curves with a rational Weierstrass
point, which instead uses a model y2

= f (x) for C with deg f = 2g+ 1. If we remove the steps related
to maintaining the integers n, all of which have negligible cost, the algorithms Compose and Reduce are
identical to those used in Cantor’s algorithm; the only difference is that in Cantor’s algorithm there is
no analog of Adjust. But note that in the typical odd genus case, Cantor’s algorithm will need to call
Reduce when deg u reaches g+ 1, and this is essentially equivalent to calling Adjust in the typical odd
genus case.

In summary, the asymptotic complexity of Addition in the typical case is effectively identical to that
of Cantor’s algorithm; the only meaningful difference is that the degree of the curve equation is 2g+ 2
rather than 2g+ 1, and this increases the complexity of various operations by a factor of 1+ O(1/g).

We conclude this section with an algorithm to compute the additive inverse of a divisor class.4

Algorithm (Negation). Given div[u1, v1, n1], compute div[u2, v2, n2] ∼ − div[u1, v1, n1].

1. If g is even, output div[u1,−v1, g− deg u1− n1] and terminate.

2. If n1 > 0, output div[u1,−v1, g− deg u1− n1+ 1] and terminate.

3. Output Adjust(div[u1,−v1, d3g/2e− deg u1+ 1]∗).

Perhaps surprisingly, negation is the one operation that is substantially more expensive when the genus
is odd (it is trivial when the genus is even). In the typical case we will have n1 = 0 and the call to Adjust
will need to perform a reduction step.

4. Explicit formulas in genus 3

We now specialize to the case g = 3 and give explicit straight-line formulas for the two most common
cases of Addition: adding divisors with affine parts of degree 3 and disjoint support, and doubling a
divisor with affine part of degree 3. We also give a formula for Negation in the typical case.

4We correct a typo that appears in step 4 of the divisor inversion algorithms given in [10; 24] (m1 should be n1).
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We assume the curve equation is y2
= f (x) where f (x)=

∑8
i=0 fi xi is monic of degree 8 (so f8 = 1);

we also assume that f7 = 0, which can be achieved via the linear substitution x→ x− f7/8. This implies
that our precomputed monic polynomial V =

∑4
i=0 Vi x i with deg( f − V 2)≤ 3 has V3 = 0.

4A. Addition in the typical case. Unraveling the execution of Addition in the typical case for g = 3
with deg u1 = deg u2 = 3, and gcd(u1, u2)= 1 yields the following algorithm.

Algorithm (TypicalAddition, preliminary version). Given div[u1, v1, 0] and div[u2, v2, 0] with deg u1 =

deg u2 = 3 and gcd(u1, u2)= 1, compute

div[u5, v5, n5] ∼ div[u1, v1, 0] + div[u2, v2, 0].

1. Compute c1, c2 ∈ k[x] such that c1u1+ c2u2 = 1.

2. Compute u3 := u1u2 and v3 := (c1u1v2+ c2u2v1) mod u3 (we have deg u3 = 6 and n3 = 0).

3. Let u4 be ( f − v2
3)/u3 made monic, and let v4 := −v3 mod u4 (we have deg u4 = 4 and n4 = 1).

4. Let v̂4 := v4− V + (V mod u4), let u5 be ( f − v̂2
4)/u4 made monic, and let v5 := −v̂4 mod u5.

5. Output div[u5, v5, 3− deg u5].

As first proposed by Harley in [11; 14] for genus 2 curves and subsequently exploited and generalized
by many authors, the straight-line program obtained by unrolling the loop in Cantor’s algorithm [4] in
the typical case can be optimized in two ways. The first is to avoid the GCD computation in step 1 by
applying the Chinese remainder theorem to the ring k[x]/(u3)= k[x]/(u1u2)' k[x]/(u1)× k[x]/(u2)

to compute
v3 = ((v2− v1)u−1

1 mod u2)u1+ v1,

where u−1
1 denotes the inverse of u1 modulo u2 (here we use gcd(u1, u2) = 1). This expression for v3

has degree at most 5, which is less than deg u3 = 6, so there is no need to reduce modulo u1u2.
The second optimization is to combine composition with the reduction step, in which we compute u4

as ( f − v2
3)/u3 made monic and v4 := −v3 mod u4. If we put s̃ := (v2− v1)u−1

1 mod u2, then u4 is

f − (s̃u1+ v1)
2

u1u2
=
( f − v2

1)/u1− s̃(s̃u1+ 2v1)

u2

made monic. All the divisions are exact and u4 has degree at most 4, so we only need know the top 3
coefficients of w := ( f − v2

1)/u1 = x5
− u12x4

+ ( f6+ u2
12− u11)x3

+ · · · , which do not depend on v1

(here we have used f7 = 0). To simplify matters we assume deg s = 2 (which will typically be true), so
that deg u4 = 4. If we let s be s̃ made monic and put c := 1/ lc(s̃) and z := su1, then

u4 = (s(z+ 2cv2)− c2w)/u2 and v4 =−v1− c−1(z mod u4).

These optimizations are exactly the same as those used to obtain existing explicit formulas that op-
timize Cantor’s algorithm for hyperelliptic curves of genus 3 with a rational Weierstrass point using
Harley’s approach; see [36, Algorithm 3], for example. We now discuss a further optimization that is
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specific to the balanced divisor approach. Rather than computing v4, we may proceed directly to the
computation of v̂4 := v4− V + (V mod u4), which is needed to compute u5 as ( f − v̂2

4)/u4 made monic.
Now V and u4 are monic of degree 4, so −V + (V mod u4)=−u4 does not depend on V , and

ṽ4 := −v̂4 = u4− v4 = u4+ v1+ c−1(z mod u4)

is a monic polynomial of degree 4 that we may use to compute u5 as ( f − ṽ2
4)/u4 made monic and

v5 = ṽ4 mod u5.
There is a notable difference here with the formulas used for genus 3 hyperelliptic curves with a

rational Weierstrass point, where the corresponding expression ( f − v2
4)/u4 is already monic, since

deg v4 ≤ 3. But ( f − ṽ2
4)/u4 is not monic; its leading coefficient is −2ṽ43, where ṽ43 denotes the cubic

coefficient of ṽ4. Expanding the equations for u4, v4, ṽ4 above yields the identity

ṽ43 = u12− u22+ c+ 2s1+ c−1(u21+ s1(s1− u22)− s0). (1)

We now give an optimized version of TypicalAddition that forms the basis of our explicit formula.

Algorithm (TypicalAddition). Given div[u1, v1, 0] and div[u2, v2, 0] with deg u1 = deg u2 = 3 and
gcd(u1, u2)= 1, compute

div[u5, v5, n5] ∼ div[u1, v1, 0] + div[u2, v2, 0].

1. Compute w := ( f − v2
1)/u1, and s̃ := (v2− v1)u−1

1 mod u2.

2. Compute c := lc(t)−1 and s = cs̃ and z := su1 (require deg s = 2).

3. Compute u4 := (s(z+ 2cv1)− c2w)/u2 and ṽ4 := v1+ u4+ c−1(z mod u4).

4. Compute u5 := (2ṽ43)
−1(ṽ2

4 − f )/u4 and v5 := ṽ4 mod u5 (require ṽ43! = 0).

5. Output div[u5, v5, 3− deg u5].

When expanding TypicalAddition into an explicit formula there are several standard optimizations
that one may apply. These include the use of Karatsuba and Toom style polynomial multiplication, fast
algorithms for exact division, the use of Bezout’s matrix for computing resultants, and Montgomery’s
method for combining field inversions. The last is particular relevant to us, as we require three inversions:
the inverse of the resultant r := Res(u1, u2) used to compute u−1

1 mod u2, as well as the inverses of lc(t)
and ṽ43. We may use (1) to calculate ṽ43 earlier than it is actually needed so that we can invert all
three quantities simultaneously using Montgomery’s trick: compute (r lc(t)ṽ43)

−1 using a single field
inversion, and then use multiplications to obtain the desired inverses. We omit the details of these well
known techniques and refer the interested reader to [36, §4].

An explicit formula that implements TypicalAddition appears on pages 438–440 and also in the on-
line supplement for this article. It includes a single exit point where we may revert to the general
Addition algorithm if any of our requirements for typical divisors are not met: it verifies the assumptions

http://msp.org/obs/2019/2-1/obs-v2-n1-x27-FormulasForAlgorithms.zip
http://msp.org/obs/2019/2-1/obs-v2-n1-x27-FormulasForAlgorithms.zip
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gcd(u1, u2) = 1, deg s = 2, and ṽ43 6= 0. This makes it unnecessary to verify gcd(u1, u2) = 1 before
applying the formula.

We give field operation counts for each step in the form [i I +m M+a A], where i denotes the number
of field inversions, m is the number of field multiplications (including squarings), and a is the number of
additions or subtractions of field elements. The count a includes multiplications by 2, and also divisions
by 2, which can be efficiently implemented using a bit-shift (possibly preceded by an integer addition)
and costs no more than a typical field addition. The divisions by 2 arise primarily in places where we
have used Toom style multiplications and could easily be removed if one wished to adapt the formula to
characteristic 2 by switching to Karatsuba.

The total cost of the formula for TypicalAddition is I + 79M + 126A; this is within 10 or 20 percent
of the I + 67M + 108A cost of the best known formula for addition on genus 3 hyperelliptic curves
with a rational Weierstrass point [27] (the exact ratio depends on the cost of field inversions relative to
multiplications).5 Aside from increasing the degree of f , the main difference in the two formulas is the
need to compute and invert v̂43, and to then multiply by this inverse to make u5 monic. By comparison,
the cost of a naïve implementation of the unoptimized version of TypicalAddition that uses standard
algorithms for multiplication, division with remainder, and GCD (as in [35, Chapter 1], for example),
in which we do not count multiplications or divisions by 1, is 5I + 275M + 246A [26, p. 45]. Our
optimizations thus improve performance by a factor of 4 or 5, in terms of the cost of field operations. In
practice the speedup is better than this, closer to 6× when working over word-sized finite fields. This is
due largely to the removal of almost all conditional logic from the explicit formula.

4B. Doubling in the typical case. When doubling a divisor the inputs to Addition are identical, but the
GCD computed in Compose is still trivial in the typical case where gcd(u1, v1)= 1 with deg u1 = 3. The
divisor div[u3, v3, n3] output by Compose will have u3 = u2

1 and v3 = (c1u1v1+ c3(v
2
1 + f )) mod u2

1,
where c1u1 + 2c3v1 = 1. In this situation we have v3 ≡ v1 mod u1, and since both div[u1, v1] and
div[u3, v3] are Mumford representations of semireduced divisors, we have u1 | (v

2
1− f ) and u2

1 | (v
2
3− f ).

We may thus view v1 as a square root of f modulo u1, and we may view v3 as a “lift” of this square root
from k[x]/(u1) to k[x]/(u2

1). Rather than computing v3 as in Compose, as suggested in [11] we may
instead compute it using a single u1-adic Newton iteration:

v3 := v1−
v2

1 − f
2v1

mod u2
1.

If we put w := ( f − v2
1)/u1 and define s̃ := w(2v1)

−1 mod u1, where (2v1)
−1 denotes the inverse of 2v1

modulo u1 (here we use gcd(u, v1)= 1), then v3 = v1+ s̃u1, and u4 is

f − (v1+ s̃u1)
2

u2
1

=
w− 2v1s̃

u1
− s̃2

made monic. We now proceed as in Section 4A. We assume deg s̃ = 2, let s be s̃ made monic, and define

5The formula in [27] contains some typographical errors; see [8, p. 25] for a clean version.
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c := lc(s̃)−1 and z := su1. We then have

u4 = s2
− (c2w− 2cv1s)/u1 and v4 =−v1− c−1(z mod u4),

and
ṽ4 := −v̂4 = u4− v4 = u4+ v1+ c−1(z mod u4)

is a monic polynomial of degree 4 that we may use to compute u5 as ( f − ṽ2
4)/u4 made monic and

v5 = ṽ4 mod u5. The polynomial ( f − ṽ2
4)/u4 has leading coefficient −2ṽ43, and expanding the equations

for u4, v4, ṽ4 yields the identity

ṽ43 = 2s1+ c+ c−1(s1(s1− u12)− s0+ u11). (2)

This leads to the following optimized formula for doubling a typical divisor.

Algorithm (TypicalDoubling). Given div[u1, v1, 0] with deg u1 = 3 and gcd(u1, v1)= 1, compute

div[u5, v5, n5] ∼ 2 div[u1, v1, 0].

1. Compute w := ( f − v2
1)/u1 mod u1, and s̃ := w(2v1)

−1 mod u1.

2. Compute c := lc(s̃)−1, and s := cs̃ and z := su1 (require deg s = 2).

3. Compute u4 := (c2w− 2csv1)/u1− s2 and ṽ4 := v1+ u4+ c−1(z mod u4).

4. Compute u5 := (2ṽ43)
−1(ṽ2

4 − f )/u4 and v5 := ṽ4 mod u5 (require ṽ43! = 0).

5. Output div[u5, v5, 3− deg u5].

An explicit formula that implements TypicalDoubling appears on the next three pages and in the online
supplement for this article. In terms of field operations, its total cost is I + 82M + 127A, which may
be compared with I + 68M + 102A for the best known formula for a genus 3 curve with a rational
Weierstrass point [27], and 5I + 285M + 258A for the unoptimized cost of doubling a typical advisor.

4C. Negation in the typical case. Finally, we consider the case of negating a typical divisor div[u1, v1, 0]
with deg u1 = 3, which amounts to computing Adjust(div[u1,−v1, 3]∗). Let

ṽ1 := v1− V + (V mod u1)=−x4+ ṽ12x2
+ ṽ11x + ṽ10

(here we have used V3 = 0). We wish to compute u2 as ( f − ṽ2
1)/u1 made monic and v2 := ṽ1 mod u2.

The polynomial ( f − ṽ1)
2/u1 has degree 3 and leading coefficient f6+ 2ṽ12, where

ṽ12 = v12+ u2
12− u11.

We thus obtain the following algorithm.

Algorithm (TypicalNegation). Given div[u1,v1,0], deg u1=3, compute div[u2,v2,n2]∼− div[u1, v1, 0].

1. Compute ṽ1 := v1− V + (V mod u1).

2. Compute u2 := ( f6+ 2ṽ12)
−1( f − ṽ2

1)/u1 and v2 := ṽ1 mod u2 (require f6+ 2ṽ12 6= 0).

3. Output div[u2, v2, 0].

http://msp.org/obs/2019/2-1/obs-v2-n1-x27-FormulasForAlgorithms.zip
http://msp.org/obs/2019/2-1/obs-v2-n1-x27-FormulasForAlgorithms.zip
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TYPICALADDITION: div[u5, v5, n5] ∼ div[u1, v1, 0] + div[u2, v2, 0] with gcd(u1, u2) = 1.
1. Compute r := Res(u1, u2) and i(x) = i2 x2 + i1 x + i0 := ru−1

1 mod u2 (and w0 := u11 − u12). [15M+12A]
t1 := u10 − u20; t2 := u11 − u21; w0 := u12 − u22; t3 := t2 − u22w0;
t4 := t1 − u21w0; t5 := u22 t3 − t4; t6 := u20w0 + u21 t3;
i0 := t4 t5 − t3 t6; i1 := w0 t6 − t2 t5; i2 := w0 t4 − t2 t3;
r := t1i0 − u20(t3i2 +w0i1);
2. Compute q(x) = q2 x2 + q1 x + q0 := r(v2 − v1)u−1

1 mod u2. [10M+30A]
t1 := v20 − v10; t2 := v11 − v21; t3 := v12 − v22; t4 := t2i1; t5 := t1i0; t6 := t3i2; t7 := u22 t6;
t8 := t4 + t6 + t7 − (t2 + t3)(i1 + i2); t9 := u20 + u22; t10 := (t9 + u21)(t8 − t6); t11 := (t9 − u21)(t8 + t6);
q0 := t5 − u20 t8;
q1 := t4 − t5 + (t11 − t10)/2− t7 + (t1 − t2)(i0 + i1);
q2 := t6 − q0 − t4 + (t1 − t3)(i0 + i2)− (t10 + t11)/2;

3. Compute t1 := rq2 ṽ43 via (1), and w1 := c−1 = q2/r, w2 := c = r/q2, w3 := c2, w4 := (2ṽ43)−1.
Then compute s(x) = x2 + s1 x + s0 := c(v2 − v1)u−1

1 mod u2 and ṽ43. [I+18M+5A]
t1 := (r + q1)2 + q2(rw0 + q2u21 − q1u22 − q0); t2 := 2t1; t3 := rq2;
If t2 = 0 or t3 = 0 then abort (revert to ADDITION).
t4 := 1/(t2 t3); t5 := t2 t4; t6 := r t5;
w1 := t5q2

2; w2 := r t6; w3 := w2
2; w4 := t2

3 t4;
s0 := t6q0; s1 := t6q1;
ṽ43 := t1 t5;

4. Compute z(x) = x5 + z4 x4 + z3 x3 + z2 x2 + z1 x + z0 := su1. [4M+15A]
t6 := s0 + s1; t1 := u10 + u12; t2 := t6(t1 + u11); t3 := (t1 − u11)(s0 − s1); t4 := u12s1;
z0 := u10s0; z1 := (t2 − t3)/2− t4; z2 := (t2 + t3)/2− z0 + u10; z3 := u11 + s0 + t4; z4 := u12 + s1;

5. Compute u4(x) = x4 + u43 x3 + u42 x2 + u41 x + u40 := (s(z + 2cv1)− c2( f − v2
1 )/u1)/u2. [14M+31A]

u43 := z4 + s1 − u22;
t0 := s1z4; t1 := u22u43;
u42 := z3 + t0 + s0 −w3 − u21 − t1;
t2 := u21u42; t3 := (u21 + u22)(u42 + u43)− t1 − t2; t4 := 2w2;
t5 := t4v12; t6 := s0z3; t7 := (s0 + s1)(z3 + z4)− t0 − t6;
u41 := z2 + t7 + t5 +w3u12 − u20 − t3;
u40 := z1 + s1(t5 + z2) + t6 + t4v11 −w3( f6 + u2

12 − u11)− u20u43 − t2 − u22u41;

6. Compute ṽ4(x) = x4 + ṽ43 x3 + ṽ42 x2 + ṽ41 x + ṽ40 := −v̂4 = v1 + u4 + c−1(z mod u4). [6M+10A]
t1 := u43 − z4 +w2;
ṽ40 := v10 +w1(z0 + u40 t1);
ṽ41 := v11 +w1(z1 − u40 + u41 t1);
ṽ42 := v12 +w1(z2 − u41 + u42 t1);
7. Compute u5(x) = x3 + u52 x2 + u51 x + u50 := (2ṽ43)−1(ṽ2

4 − f )/u4. [9M+17A]
u52 := ṽ43/2+w4(2ṽ42 − f6)− u43;
u51 := w4(2(ṽ41 + ṽ43 ṽ42)− f5)− u52u43 − u42;
u50 := w4(ṽ2

42 + 2(ṽ40 + ṽ43 ṽ41)− f4)− u51u43 − u52u42 − u41;

8. Compute v5(x) = v52 x2 + v51 x + v50 := ṽ4 mod u5. [3M+6A]
t1 := u52 − ṽ43;
v50 := ṽ40 + t1u50;
v51 := ṽ41 − u50 + t1u51;
v52 := ṽ42 − u51 + t1u52;

9. Output div[u5, v5, 3− deg u5]. [Total: I+79M+126A]

2
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TYPICALDOUBLING: div[u5, v5, n4] ∼ 2 div[u1, v1, 0] with gcd(u1, v1) = 1.
1. Compute r := Res(u1, v1) and i(x) = i2 x2 + i1 x + i0 := rv−1

1 mod u1 (w0 := v11 − u12v12). [15M+9A]
w0 := v11 − u12v12; t2 := v10 − u11v12; t3 := u12w0 − t2; t4 := u10v12 + u11w0;
i0 := w0 t4 − t2 t3; i1 := v11 t3 − v12 t4; i2 := v11w0 − v12 t2;
r := v10i0 − u10(w0i2 + v12i1);
2. Compute p(x) = p2 x2 + p1 x + p0 := w := ( f − v2

1 )/u1 mod u1 (w1 := u2
12, w2 := w1 + f6). [11M+24A]

w1 := u2
12; t2 := 2u10; t3 := 3u11; w2 := w1 + f6; t5 := 2t2 − f5; t6 := 2u12; t7 := t3 −w2;

p2 := f5 + t6(t7 −w1)− t2;
p1 := f4 + u12 t5 − v2

12 − u11(2 f6 − t3)−w1(t7 + t3);
p0 := f3 − u11(w1 t6 − t5)− t2w2 − u12p1 − 2v11v12;
3. Compute q(x) = q2 x2 + q1 x + q0 := r(( f − v2

1 )/u1)v−1
1 mod u1. [10M+28A]

(w3 := u10 + u11 + u12, w4 := u10 − u11 + u12)
t1 := i1p1; t2 := i0p0; t3 := i2p2; t4 := u12 t3; t5 := (i1 + i2)(p1 + p2)− t1 − t3 − t4; t6 := u10 t5;
t7 := u10 + u12; w3 := t7 + u11; w4 := t7 − u11; t10 := w3(t3 + t5); t11 := w4(t5 − t3);
q0 := t2 − t6;
q1 := t4 + (i0 + i1)(p0 + p1) + (t11 − t10)/2− t1 − t2;
q2 := t1 + t6 + (i0 + i2)(p0 + p2)− t2 − t3 − (t10 + t11)/2;
4. Compute t3 := 2rq2 ṽ43 via (2), and w5 := 1/c, w6 := c, w7 := 1/ṽ43. [I+18M+7A]

Then compute s(x) = x2 + s1 x + s0 := q/(2r) made monic and ṽ43.
t0 := 2r; t1 := t2

0; t2 := q2
2; t3 := t1 − q0q2 + q1(2t0 + q1 − q2u12) + t2u11;

If q2 = 0 or t3 = 0 then abort (revert to ADDITION).
t4 := 1/(t0q2 t3); t5 := t3 t4; t6 := t0 t5;
w5 := t2 t5; w6 := t1 t5; w7 := t1 t2 t4;
s0 := t6q0; s1 := t6q1; ṽ43 := t3 t5;
5. Compute z(x) = x5 + z4 x4 + z3 x3 + z2 x2 + z1 x + z0 := su1. [4M+12A]
t1 := w3(s0 + s1); t2 := w4(s0 − s1); t3 := u12s1;
z0 := s0u10; z1 := (t1 − t2)/2− t3; z2 := (t1 + t2)/2− z0 + u10; z3 := u11 + s0 + t3; z4 := u12 + s1;
6. Compute u4(x) = x4 + u43 x3 + u42 x2 + u41 x + u40 := s2 − (c2( f − v2

1 )/u1 − 2csv1)/u1. [8M+14A]
t1 := v12w6; t2 := w2

6;
u43 := 2s1;
u42 := 2s0 + s2

1 − t2;
u41 := 2(s0s1 + u12 t2 + t1);
u40 := s2

0 + 2(w0w6 + s1 t1)− t2(w2 + 2(w1 − u11));
7. ṽ4(x) = ṽ43 x3 + ṽ42 x2 + ṽ41 x + ṽ40 := −v̂4 = v1 + u4 + c−1(z mod u4). [6M+10A]
t1 := u43 − z4 +w6;
ṽ40 := v10 +w5(z0 + u40 t1);
ṽ41 := v11 +w5(z1 − u40 + u41 t1);
ṽ42 := v12 +w5(z2 − u41 + u42 t1);
8. u5(x) = x3 + u52 x2 + u51 x + u50 := (2ṽ43)−1(ṽ2

4 − f )/u4. [7M+17A]
u52 := ṽ43/2+w7(ṽ42 − f6/2)− u43;
u51 := ṽ42 +w7(ṽ41 − f5/2)− u52u43 − u42;
u50 := ṽ41 +w7((ṽ2

42 − f4)/2+ ṽ40)− u51u43 − u52u42 − u41;
9. v5(x) = v52 x2 + v41 x + v50 := ṽ4 mod u5. [3M+6A]
t1 := u52 − ṽ43;
v50 := ṽ40 + t1u50;
v51 := ṽ41 − u50 + t1u51;
v52 := ṽ42 − u51 + t1u52;
10. Output div[u4, v4, 3− deg u4]. [Total: I+82M+127A]

3
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TYPICALNEGATION: div[u2, v2, 0] ∼ −div[u1, v1, 0].
1. Compute ṽ1(x) = −x4 + ṽ12 x2 + ṽ11 x + ṽ10 := v1 − V + (V mod u1). [3M+5A]
ṽ12 := v12 − u11 + u2

12;
ṽ11 := v11 − u10 + u11u12;
ṽ10 := v10 + u10u12;
2. Compute u2(x) = x3 + u22 x2 + u21 x + u20 := ( f6 + 2ṽ12)−1( f − ṽ2

1 )/u1. [I+8M+14A]
t1 := 2ṽ12; t2 := f6 + t1;
If t1 = 0 then abort (revert to NEGATION).
t3 := 1/t2;
u22 := t3( f5 + 2ṽ11)− u12;
u21 := t3( f4 + 2ṽ10 − ṽ2

12)− u11 − u12u22;
u20 := t3( f3 − t1 ṽ11)− u10 − u11u22 − u12u21;
3. Compute v2(x) = v22 x2 + v21 x + v20 := ṽ1 mod u2. [3M+5A]
v22 := ṽ12 − u2

22 + u21;
v21 := ṽ11 − u21u22 + u20;
v20 := ṽ10 − u20u22;
4. Output div[u2, v2, 0]. [Total: I+14M+24A]

4

Note. The explicit formulas presented on those pages were typeset using latex source generated by an
automated script that reads an executable version of verified source code; they should thus be free of the
typos that unfortunately plague many of the formulas one finds in the literature. Magma source code
for the formulas and an implementation of all the algorithms in this article can be found at the author’s
website, along with scripts that verify their correctness.
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A database of nonhyperelliptic genus-3 curves over Q

Andrew V. Sutherland

We report on the construction of a database of nonhyperelliptic genus-3 curves over Q of small discriminant.

1. Introduction

Cremona’s tables of elliptic curves over Q have long been a useful resource for number theorists, and
for mathematicians in general [10]. The most current version of Cremona’s tables, and similar tables of
elliptic curves over various number fields, can be found in the L-functions and modular forms database
(LMFDB) [7]. Motivated by the utility of Cremona’s tables, the LMFDB now includes a table of genus-2
curves over Q whose construction is described in [1]. The goal of this article is to describe the first steps
toward the construction of a similar table of genus-3 curves over Q.

Thanks to the modularity theorem, elliptic curves over Q can be comprehensively tabulated by conduc-
tor, as described in [10]. Tabulations by conductor are useful for several reasons, most notably because
this invariant can be directly associated to the corresponding L-function. Unfortunately, no comparable
method is yet available for higher-genus curves, or more generally, for abelian varieties of dimension
greater than 1. However, one can instead organize curves by discriminant. The discriminant of a curve is
necessarily divisible by every prime that divides the conductor of its Jacobian, and it imposes bounds on
the valuation of the conductor at those primes. In particular, if the discriminant is prime, it is necessarily
equal to the conductor (every abelian variety over Q has bad reduction at some prime [14]), and if the
discriminant is small, then the conductor must also be small.

Curves of small discriminant (and hence of small conductor) are interesting for several reasons. First,
with enough effort one can obtain a reasonably comprehensive list by exhaustively enumerating curves
with bounded coefficients, as noted in [1, §3]. Another reason is practical: it is only for such curves
that one has reasonable hope of computing certain invariants, such as the analytic rank of the Jacobian,
or special values of its L-function. Finally, there is the phenomenon of small numbers: interesting
exceptions that arise from improbable collisions that are more likely to occur early in the tabulation.

The author was supported by NSF grant DMS-1522526 and Simons Foundation grant 550033.
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Two such examples arise for the absolute discriminants 6050 and 8233, which are two of the ten smallest
that we found. The Jacobian of the discriminant 6050 curve is Q-isogenous to the product of an elliptic
curve of conductor 11 and an abelian surface of conductor 550; this is notable because no abelian surface
over Q of conductor 550 was previously known, despite having been actively sought in the context of the
paramodular conjecture (see [13, §8], for example). The Jacobian of the prime discriminant 8233 curve
has the smallest prime conductor we found in our search of nonhyperelliptic genus-3 curves, and 8233
is also the smallest prime conductor we found in our search of hyperelliptic genus-3 curves, and in fact
the two Jacobians appear to be isogenous. See Section 6 for details of these and some other examples.

The methods used in [1] extend fairly easily to genus-3 hyperelliptic curves and have been used
to construct a list of genus-3 hyperelliptic curves over Q of small discriminant, and to compute their
conductors, Euler factors at bad primes, endomorphism rings, and Sato–Tate groups. We plan to make
this data available in the LMFDB later this year (2018); a preliminary list of these curves can be found at
the author’s website. In this article we focus on the more difficult case of (nonsingular) nonhyperelliptic
curves of genus 3, which represent the generic case of a genus-3 curve and always have a model of the
form f (x, y, z)= 0, where f is a ternary quartic form.

In order to keep the length of this article reasonable, and in recognition of the fact that there is still
work in progress to compute some of the invariants mentioned above, we focus only on the first step in
the construction of this database: an enumeration of all smooth plane quartic curves with coefficients
of absolute value at most Bc := 9, with the aim of obtaining a set of unique Q-isomorphism class
representatives for all such curves that have absolute discriminant at most B1 := 107.

Even after accounting for obvious symmetries, this involves more than 1017.5 possible curve equations
and requires a massively distributed computation to complete in a reasonable amount of time. Efficiently
computing the discriminants of these equations is a nontrivial task, much more so than in the hyperelliptic
case, and much of this article is devoted to an explanation of how this was done. Many of the techniques
that we use can be generalized to other enumeration problems and may be of independent interest, both
from an algorithmic perspective, and as an example of how cloud computing can be effectively applied
to a research problem in number theory. A list of the curves that were found (more than 80 thousand) is
available on the author’s website [31].

Remark 1.1. The informed reader will know that not every genus-3 curve over Q falls into the category
of smooth plane quartics f (x, y, z) = 0 or curves with a hyperelliptic model y2

+ h(x)y = f (x). The
other possibility is a degree-2 cover of a pointless conic; see [18] for a discussion of such curves and
algorithms to efficiently compute their L-functions. We plan to conduct a separate search for curves of
this form that will also become part of the genus-3 database in the LMFDB.

2. The discriminant of a smooth plane curve

Let C[x]d denote the space of ternary forms of degree d ≥ 1, as homogeneous polynomials in the variables
x := (x0, x1, x2). It is a C-vector space of dimension nd :=

(d+2
2

)
equipped with a standard monomial
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basis

Bd := {xu
: u ∈ Ed}, Ed := {(u0, u1, u2) ∈ Z3

: u0, u1, u2 ≥ 0, u0+ u1+ u2 = d}.

The dual basis B∗d for C[x]∗d consists of linear functionals δu : C[x]d → C defined by
∑

u fu xu
7→ fu , so

that δu( f ) is the coefficient of xu in f . We define δ :C[x]d→Cnd by f 7→ (δu( f ))u and δ̂ :Cnd →C[x]d
by ( fu)u 7→

∑
u fu xu.

A polynomial f ∈C[x]d is singular if f and its partial derivatives ∂0 f , ∂1 f , ∂2 f simultaneously vanish
at some point (z0, z1, z2) 6= (0, 0, 0) in C3. The curve f (x) = 0 is a smooth projective geometrically
irreducible curve if and only if f is nonsingular (note that f = 1

d

∑
i xi∂i f , so any common zero of ∂0 f ,

∂1 f , ∂2 f is also a zero of f ).

Definition 2.1. For d ≥ 2 the discriminant 1d is the integer polynomial in nd variables a := (au)u∈Ed

uniquely determined by the following properties:

• For all f ∈ C[x]d we have 1d( f ) :=1d(δ( f ))= 0 if and only if f is singular.

• 1d is irreducible and has content 1.

• 1d(xd
0 + xd

1 + xd
2 ) < 0.

It is a homogeneous polynomial of degree 3(d − 1)2, by Boole’s formula [2, p. 171].1

The first two properties determine 1d up to sign [15]; our sign convention is consistent with the case
of quadratic forms:

12 = a200 a2
011+ a2

101a020+ a2
110a002− a110 a101a011− 4a200 a020 a002.

The discriminant 13 is too large to display here; it is a degree-12 polynomial in 10 variables, with
2040 terms and largest coefficient 26 244. The discriminant 14 of interest to us is larger still: it is a
degree-27 polynomial in 15 variables, with 50 767 957 terms and largest coefficient 9 393 093 476 352.
Our goal in this section is to briefly explain how we computed it.

Remark 2.2. The discriminant 14 is the largest of the seven projective invariants I3, I6, I9, I12, I15, I18,
I27 defined by Dixmier [11]. Together with six additional invariants J9, J12, J15, J18, I21, J21 studied by
Ohno [27] they generate the full ring of invariants of ternary quartic forms, as conjectured by Shioda in
[29, Appendix] and proved by Ohno in an unpublished preprint [27], and later verified by Elsenhans in
the published paper [12]. These 13 invariants are collectively known as the Dixmier–Ohno invariants
and have been studied by many authors [12; 16; 24; 25]. Algorithms to compute the Dixmier–Ohno
invariants of a given ternary quartic are described in [12; 16; 25], and Magma [3] implementations of
these algorithms are available [12; 16; 30]. For our application we want to explicitly compute 14 as a
polynomial in 15 variables. In [27, Remark 2.2] Ohno considers the question of counting the number
of terms in 14, and he proves an upper bound of 58 456 030. As a byproduct of our work, we can now
answer Ohno’s question: the polynomial 14 has 50 767 957 terms.

1Boole credits this formula to Sylvester.
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Definition 2.3. For d≥1 the resultant Rd is the integer polynomial in 3nd variables a := (a0,u, a1,u, a2,u)∈

E3
d uniquely determined by the following properties:

• For all f0, f1, f2 ∈ C[x]d we have Rd( f0, f1, f2) := Rd(δ( f0), δ( f1), δ( f2)) = 0 if and only if
f0, f1, f2 have a common root (z0, z1, z2) 6= (0, 0, 0) in C3.

• Rd is irreducible and has content 1.

• Rd(xd
0 , xd

1 , xd
2 )= 1.

It is a homogeneous polynomial of degree 3d2 [15, Proposition 13.1.7].

Proposition 2.4. For all f ∈ C[x]d we have 1d( f )=−d−d2
+3d−3 Rd−1(∂0 f, ∂1 f, ∂2 f ).

Proof. Up to sign this is implied by [15, Proposition 13.1.7]. To verify the sign, we note that

1d(xd
0 + xd

1 + xd
2 )=−d−d2

+3d−3 Rd−1(dxd−1
0 , dxd−1

1 , dxd−1
2 )=−dd(2d−3) < 0. �

Proposition 2.4 implies that to compute 1d it suffices to compute Rd−1. In fact we only need to
compute

Rd−1(∂̃0(a), ∂̃1(a), ∂̃2(a)),

where ∂̃i := δ ◦ ∂i ◦ δ̂, which is a polynomial in nd variables, rather than 3nd−1 variables. For d = 4 this
reduces the number of variables from 30 to 15, which is crucial to us. Computing 14 is a nontrivial but
feasible computation, as we explain below; explicitly computing R3 would be far more difficult.

Sylvester’s resultant formula for ternary forms. In this section we briefly recall the classical determinan-
tal formula of Sylvester for computing Rd for d ≥ 2, following [15, §3.4D]. It provides an efficient method
to compute Rd( f0, f1, f2) for particular values of f0, f1, f2, even when Rd is too large to compute
explicitly. We will use this formula to compute 14.

Given f0, f1, f2 ∈ C[x]d , we define the linear operator

T f0, f1, f2 : C[x]
3
d−2→ C[x]2d−2,

(g0, g1, g2) 7→ g0 f0+ g1 f1+ g2 f2.

We now define a second linear operator D f0, f1, f2 :C[x]
∗

d−1→C[x]2d−2 by defining its value on elements
δu ∈ B∗d−1 of the dual basis, where u ∈ Ed−1. For each u ∈ Ed−1 we may write fi in the form

fi =

2∑
j=0

xu j+1
j F (u)i j ,

with F (u)i j ∈ C[x]d−1−u j . Without loss of generality we assume fi − xu0+1
0 F (u)i0 has no terms divisible

by xu0+1
0 and fi − xu0+1

0 F (u)i0 − xu1+1
1 F (u)i1 has no terms divisible by xu1+1

1 , so that the F (u)i j are uniquely
determined. We then define

D f0, f1, f2(δu) := det [F (u)i j ] ∈ C[x]2d−2.
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Finally, we define the linear operator

8 f0, f1, f2 : C[x]
3
d−2⊕C[x]∗d−1→ C[x]2d−2,

((g0, g1, g2), v) 7→ T f0, f1, f2(g0, g1, g2)+ D f0, f1, f2(v),

and observe that its domain and codomain both have dimension

3
(d−2+2

2

)
+

(d−1+2
2

)
= 2d2

− d =
(2d−2+2

2

)
.

Proposition 2.5. For all f0, f1, f2 ∈ C[x]d we have Rd( f0, f1, f2)=± det8 f0, f1, f2 .

Proof. This follows from Lemma 4.9 and Theorem 4.10 in [15, §3]. �

Remark 2.6. Unlike Theorem 4.10 in [15, §3], we allow a sign ambiguity in Proposition 2.5. In order to
view 8 f0, f1, f2 as a linear operator one needs to fix an isomorphism between its domain and its codomain,
which we prefer not to do. The most natural way to compute8 f0, f1, f2 is to compute values of T f0, f1, f2 and
D f0, f1, f2 on monomial bases of C[x]3d−2 and C[x]∗d−1; the sign of det8 f0, f1, f2 will depend on how one
orders these bases and a monomial basis for C[x]2d−2, but the condition Rd(xd , yd , zd)= 1 determines
the correct sign (see Magma scripts in [31]).

Our explicit description of T f0, f1, f2 and D f0, f1, f2 above makes it easy to write down the (2d2
− d)×

(2d2
− d) matrix whose determinant is equal to Rd( f0, f1, f2). Each row consists of the coefficients of

homogeneous polynomial of degree 2d − 2 that is the image of a basis element of C[x]3d−2⊕C[x]∗d−1,
each of which we can identify with an element of Ed−2 or Ed−1. For each u ∈ Ed−2 we get three rows,
the coefficient vectors of xu f0, xu f1, xu f2 and for each u ∈ Ed−1 we get one row, the coefficient vector
of D f0, f1, f2(δu)= det[Fu

i j ].

Example 2.7. Let f := y2z− x3
−a2x2z−a4xz2

−a6z3, and let f0, f1, f2 be its partial derivatives with
respect to x, y, z respectively. If we order our monomial bases lexicographically (so x3 comes first) and
put the three rows of 8 f0, f1, f2 corresponding to T f0, f1, f2 at the top and the three rows corresponding to
D f0, f1, f2 at the bottom, we have

8 f0, f1, f2 =



−3 0 −2a2 0 0 −a4

0 0 0 0 2 0
−a2 0 −2a4 1 0 −3a6

0 0 −4a2
2+12a4 0 0 −2a2a4+18a6

0 6 0 0 4a2 0
0 0 −2a2a4+18a6 0 0 12a2a6−4a2

4


,

and therefore
13( f )=−3−3 R2( f0, f1, f2)=−3−3 det8 f0, f1, f2

=−64a3
2a6+ 16a2

2a2
4 + 288a2a4a6− 64a3

4 − 432a2
6,

which matches the discriminant of the elliptic curve y2
= x3
+ a2x2

+ a4x + a6.

See [9, Chapter 3, §4, Exercise 15] and the magma script in [31] for further details and more examples.
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Computing 14. To compute 14 we put f :=
∑

u∈E4
au xu using

(4+2
2

)
= 15 formal variables au . The

resulting polynomial f is then an element of (Z[a])[x]4, rather than C[x]4, but we can construct a matrix
M8 representing the linear operator 8∂0 f,∂1 f,∂2 f as in Example 2.7, obtaining a 15× 15 matrix whose
coefficients are homogeneous polynomials in Z[a], with det M8 ∈ Z[a]27. The first nine rows of M8 (cor-
responding to T∂0 f,∂1 f,∂2 f ) each contain five zero entries and linear monomials in the nonzero entries. The
remaining six rows of M8 (corresponding to D∂0 f,∂1 f,∂2 f ) contain a 3×3 submatrix of zeros and homoge-
neous polynomials of degree 3 in the nonzero entries. After some experimentation we settled on the strat-
egy of computing det M8 as the sum of

(12
3

)
= 220 products of the form (det A)(det B) with A ∈ Z[a]3×3

and B ∈ Z[a]9×9 submatrices of M8 with det A ∈ Z[a]9 and det B ∈ Z[a]18. Computing the determinants
of all the submatrices A and B takes only a few minutes. We then computed the 220 products in parallel
on a 64-core machine and summed the results to obtain 14; in total this computation took about 8 core-
hours. The resulting polynomial 14 can be downloaded as a 2 GB text file from the author’s website [31].

3. Computing discriminants using a monomial tree

In this section we describe our method for enumerating ternary quartic forms

f (x)=
∑
u∈E4

fu xu

with coefficients fu ∈Z satisfying | fu| ≤ Bc, for some coefficient bound Bc, along with their discriminants
14( f ). As explained in the Introduction, our goal is to select from this list all such forms with nonzero
discriminants satisfying |14( f )| ≤ B1, for some discriminant bound B1. Rather than separately comput-
ing each discriminant via Sylvester’s method (which would not require 14), we will instead enumerate
values of 14( f ) in tandem with our enumeration of values of f , using a monomial tree, a data structure
introduced in [1, §3.2].

In the computation described in [1], the discriminant polynomial has only 246 terms, and the cor-
responding monomial tree has 703 nodes and fits in 8 KB of memory. In particular, the monomial
tree easily fits in L1-cache, and there is very little overhead in recomputing it as required in a parallel
computation (indeed, in the computation described in [1] each thread builds and maintains its own private
monomial tree). In our case the discriminant polynomial 14 is several orders of magnitude larger, and
the implementation of the monomial tree merits further discussion, particularly in view of the need to
support a massively parallel computation that must be fault tolerant.

The monomial tree is based on a data structure known in the computer science literature as a trie (or
prefix tree). This data structure represents a set of (key, value) pairs using a tree whose paths correspond
to keys with values stored at the leaves; in addition to supporting lookup operations, a trie allows one to
efficiently enumerate all keys with a common prefix (it is commonly used to implement the autocomplete
feature found in many user interfaces), but we will exploit it in a different way.

In a monomial tree, the keys are exponent vectors e := (e0, . . . , en) and the values are coefficients cu .
Each leaf of the tree represents a term ceae of a polynomial in the variables a := (a0, . . . , an). Two
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Figure 1. Two monomial trees for g(a0, a1, a2).

uninstantiated monomial trees for the polynomial

g(a0, a1, a2) := a3
0a2+ 3a2

0a2
1 − 4a2

0a1a2− 5a0a2
1a2+ 2a4

1 + 7a3
1a2

are shown in Figure 1.
We are free to choose any ordering of the variables, and there are thus many monomial trees that

represent the same polynomial; in this case we prefer the tree on the right (both because it has fewer
nodes, and because the maximum degree appearing at the top level is smaller). Once we fix an ordering
of the variables, there is no need to actually identify the variable in each node, since this will be implied
by its level in the tree; we only need to store the exponent. For polynomials that are fairly dense, such
as 14, we can make the exponent implicit as well by simply using an array of fixed size determined by
the maximum degree of the variable in the next level, using null values to indicate the absence of a child
of a given degree.

To evaluate a polynomial represented by a monomial tree we work from the bottom up (the opposite
of the typical usage pattern for a trie). Using the monomial tree listed on the right in Figure 1, let us
partially evaluate it by first making the substitution a0 = 2, and then the substitution a1 =−1; this yields
monomial trees for the polynomials g(2, a1, a2) and g(2,−1, a2), as shown in Figure 2.

With each substitution we evaluate nodes one level above the leaves (so 3a2
0 becomes 12 when we

substitute a0= 2, for example), and sum siblings (this does not impact the first substitution, but 12a2
1+2a4

1

becomes 14 when we substitute a1 =−1, for example). We ultimately obtain a univariate polynomial
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Figure 2. Monomial trees for g(a0, a1, a2), g(2, a1, a2), and g(2,−1, a2).
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in whichever variable we choose to put at the top of the tree; in this example that variable is a2 and we
have g(2,−1, a2)= 14+ 7a1

2 , which we could then evaluate on any value of a2 that we wish.
For the sake of illustration we have depicted the monomial tree as “shrinking” as we make these

substitutions, but in reality substitutions are performed by updating auxiliary values attached to each
node of the tree, the structure of which is not modified. At any point in the computation we can undo the
most recent substitution by simply incrementing a level pointer, a variable that identifies the level of the
tree where a variable substitution was most recently made (these are depicted as leaves in the diagrams
above). More generally, we can immediately revert to any prefix of the variable substitutions that have
been made by updating the level pointer; this feature is critical to the parallel implementation discussed
in the next section.

One can thus view the monomial tree as an arboreal stack. The top of the stack is at the leaves,
variable substitutions are “pushed” onto the stack by updating nodes at the current level, and we can
“pop” any number of variable substitutions off the stack by updating the level pointer (which acts as a
stack pointer).

For the discriminant polynomial 14 there are
(4+2

2

)
= 15 variables ai jk , each corresponding to a

possible coefficient of a monomial x i
0x i

1xk
2 in a ternary quartic form. After accounting for the symmetries

corresponding to permutations of x0, x1, x2, there 15!/3! distinct monomial trees we could use to repre-
sent 14, depending on how we choose to order the variables. The polynomial 14 has total degree 27, but
its degree in the variables ai jk varies: it has degree 9 in a400, a040, a004, degree 16 in a211, a121, a112, and
degree 12 in each of the remaining variables. One might expect that an optimal approach would have
the variables sorted by degree (lowest at the top of the tree, highest at the bottom), but this is not quite
true. After a lot of experimentation we settled on the following variable ordering (working from the top
of tree down):

a400, a310, a301, a220, a202, a130, a040, a103, a004, a031, a013, a022, a211, a121, a112.

This yields a monomial tree with a total of 246 798 264 nodes and level sizes as shown in Table 1.

Remark 3.1. As implied by the last four entries of Table 1, at the bottom several levels of the tree each
node has only one child. Indeed, fixing the exponent for all but the three variables a211, a121, a112 of
degree 16 uniquely determines a term in 14. There does not appear to be an easy way to compute the ex-
ponents of a211, a121, a112 directly from the exponents of the other 12 variables, but such a function exists.

Our implementation uses 16 bytes of storage for each node in the monomial tree. This includes a
64-bit integer value to store substitution results modulo 264 and a 32-bit integer that identifies the parent

a400 10 a220 1772 a040 246759 a031 11218852 a211 50767957
a310 67 a202 8128 a103 1197716 a013 27045996 a121 50767957
a301 328 a130 48856 a004 3957952 a022 50767957 a112 50767957

Table 1. Levels in the monomial tree used for 14.
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node by its index in an array that holds all the nodes in the tree; the total amount of memory required
is about 4 GB. Loading the terms of 14 from a suitably prepared binary file and constructing the tree in
memory takes less than 10 core-seconds on the machines we used (see the next section for details).

Modulo parallelization and optimizations discussed below, our strategy to enumerate ternary quartic
forms with their discriminants is given by the following recursive algorithm, in which we use vn to denote
the variable ai jk at level n of the tree, with v1 = a400 at the top and v15 = a112 at the bottom, and view
14 :=14(v1, . . . , v15) as a polynomial in these variables. After constructing the monomial tree T for
14 as above, we invoke the following algorithm with n = 15 (the bottom of the tree).

Algorithm. TERNARYQUARTICFORMENUMERATION (T, n)
Given a monomial tree T for 14 and a level n ∈ [1, 15]:

(1) If n = 1 then:

(a) Extract g(v1)=14(v1, c2, . . . , cn) mod 264 from T.
(b) For each integer c1 in the coefficient interval [−Bc, Bc]:

(i) Compute D := g(c1) mod 264 with −263
≤ D < 263.

(ii) If D = 0 or |D|> B1 proceed to the next value of c1.
(iii) Otherwise, compute 1 :=14(c1, . . . , cn) ∈ Z using Sylvester’s determinantal formula.

If |1| ≤ B1, output the ternary quartic form defined by c1, . . . , c15 with discriminant 1.

(2) Otherwise, for each integer cn in the coefficient interval [−Bc, Bc]:

(a) Apply the substitution vn← cn to T.
(b) Recursively invoke TERNARYQUARTICFORMENUMERATION(T, n− 1).

We assume that in the process of applying the substitution vn← cn the value of cn is stored in T so
that it can be accessed later in step (1.a.iii) if needed (so the data structure for T includes an auxiliary
array that holds c1, . . . cn). We now note the following optimizations and implementation details:

• We are interested in PGL3(Z)-isomorphism classes of ternary quartic forms represented by a form
within our coefficient bounds. Permutations of variables and sign changes do not change the absolute
value of the discriminant, so we can restrict our enumeration to 0≤ c15 ≤ c14 ≤ c13. This saves a factor
of 48.

• In the recursive call at level n, we can completely ignore levels of the tree below n. In a parallel
implementation, we can fork the execution at any level and divide the work among child processes that
only need the upper part of the tree. As described in the next section, we forked at level n = 10, at which
point the upper part of the tree fits in 700 MB of memory.

• In our implementation we use loops, not recursion, and completely unwind the inner loop, making
each integer value c1 ∈ [−Bc, Bc] fully explicit.

• With the coefficient bound Bc = 9 we only need to compute g(c1) for 19 values of c1. This makes
the finite differences approach of [23] that was used in [1] less attractive, as there is an initial setup cost
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and we cannot as easily take advantage of the fact that the values of c1 (and their powers) are known at
compile time. Instead, we write g1(v1)= g0+ v1h1(v

2
1)+ h2(v

2
1), with deg h1, deg h2 ≤ 4. We then have

g(0)= g0, and for c1 ∈ [1, Bc] we compute,

g(c1)= g0+ c1h1(c2
1)+ h2(c2

1), g(−c1)= g0− c1h1(c2
1)+ h2(c2

1),

reusing the values of c1h1(c2
1) and h2(c2

1), and taking advantage of the fact that all the powers of c1 are
known at compile time.

The last point is crucial, as most of the time will be spent in the inner loop evaluating g(c1). For the
nine values c1 = 0,±1,±2,±4,±8 we can compute g(c1) using only 64-bit additions/subtractions and
bit shifts, and for the remaining c1 ∈ [−Bc, Bc] we use an average of four 64-bit multiplications and six
64-bit additions.

With Bc = 9, benchmarking shows that on average we spend less than 22 clock cycles computing
each value of g(c1) and comparing the result with 0 and B1 (steps (1.b.ii) and (1.b.iii) of the algorithm),
which is consistent with the operation counts above. Overall, the average time per iteration of the inner
loop is about 33 clock cycles; this includes the cost of maintaining the monomial tree T, performing
variable substitutions, iterating values of cn , extracting the coefficients of g(v1) from T, and time spent
computing 14(c1, . . . , cn) ∈ Z using Sylvester’s formula and multiprecision arithmetic (but step (1.b.iii)
is executed so rarely that its impact is negligible).

Remark 3.2. Another advantage of unrolling the inner loop so that powers of c1 are available at com-
pile time (thereby turning polynomial evaluation into a dot product) is that the multiplications can be
performed in parallel. Although we did not take direct advantage of this in our implementation, it allows
the compiler to minimize instruction latency via pipelining. The AVX-512 instruction set supported on
newer Intel CPUs (Knights Landing and Skylake) provides SIMD instructions that support simultaneous
8-way 64-bit multiplication and 8-way 64-bit additive reduction, which in principle should reduce the
cost of evaluating g(c1) by close to a factor of 4. At the time we performed the computations described
in this article these newer processors were not yet widely available, but we plan to exploit this feature in
future computations.

4. Distributed parallel implementation

We performed our computations using preemptible compute instances on Google’s Compute Engine [17],
which is part of the Google Cloud Platform (GCP). We used the n1-highcpu-32 virtual machine type,
each instance of which has 32 virtual CPUs (vCPUs) and 28.8 GB memory; the 32 vCPUs correspond
to hyperthreads running on 16 physical cores. This machine type is widely available on all GCP regions
(geographical areas) and generally offers an optimal price/performance ratio for CPU intensive tasks.

With preemptible compute instances, computations are not allowed to run for more than 24 hours,
and the computation may be halted by GCP at any time. Preempted computations can be restarted if
and when the computational resources become available, and the restarted instance will have access to
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any information that was saved to disk, so in our implementation of the TERNARYQUARTICFORMENU-
MERATION algorithm we incorporated a checkpointing facility that tracks the current state of progress
by writing the values of c15, c14, . . . , cm to disk at regular intervals (we used m = 7). To restart we
simply read the most recently checkpointed values of c15, . . . , cm , rebuild the monomial tree, perform
the corresponding variable substitutions vn = cn , and resume where we left off (restarting typically takes
10–15 seconds).

To efficiently distribute the computation across multiple instances using the coefficient bound Bc = 9
we divide the work into

(Bc+3
3

)
(2Bc + 1)2 = 79 420 jobs. Each job is given a fixed set of integers

(c15, c14, c13, c12, c11), with 0 ≤ c15 ≤ c14 ≤ c13 ≤ Bc and c12, c11 ∈ [−Bc, Bc] (the constraints on
c15, c14, c13 come from the symmetry optimization noted above), and then proceeds to enumerate the
(2Bc + 1)10

= 1910
≈ 1012.79 values of the integers c10, . . . , c1 with |cn| ≤ Bc. Based on the GCP

resource quotas available to us, we assigned two jobs to each 32-vCPU instance, allowing us to use a
total of up to 39 710 preemptible instances at any one time, each equipped with 32 virtual CPUs.

To utilize the 32 virtual CPUs on each instance in parallel, after constructing the monomial tree and
applying substitutions using the values of c15, . . . , c11 assigned to the job, we fork the process into
32 child processes. As noted in the previous section, after performing these substitutions the relevant
part of the monomial tree (levels n ≤ 10) only requires 700 MB of memory, allowing each child process
to have a private copy of this portion of the tree while staying within our 28.8 GB memory footprint.
Each child process then iterates over values of c10, c9, c8 as usual, but only proceeds to c7, . . . , c1 when
(2Bc+ 1)2c10+ (2Bc+ 1)c9+ c8 ≡ i mod 32, where i ∈ [0, 31] is an integer that distinguishes the child
process among its 32 siblings.

With this approach it takes a typical 32-vCPU instance between 3000 and 4000 seconds of wall time
to complete one job (just under an hour, on average). The physical machine types vary, but most of the
machines we used were either 2.5 GHZ Intel Xeon E5v2 (Ivy Bridge) CPUs or 2.2 GHz Intel Xeon E5v4
(Broadwell) CPUs. The total time to complete all 79,420 jobs was about 290 vCPU-years.

Remark 4.1. One might assume 2 vCPUs= 1 core, but with our computational load vCPUs do substan-
tially better than this. It is difficult to make an exact comparison due to the variety of machines used,
but none of our GCP CPUs had a clock speed above 2.5 GHz and the majority were 2.2 GHz. If one
estimates the total number of vCPU clock cycles (≈ 1019.33±0.3) and divides by the number of ternary
quartic forms processed (≈ 1017.69), the average throughput is 44±3 vCPU clock cycles per form, versus
33 clock cycles for a single thread on an idle core. One explanation for this is that while 22 of the 33
average clock cycles represent processor bound low latency arithmetic operations in the inner loop that are
unlikely to benefit from hyperthreading, the remainder are spent on memory-bound activity (maintaining
the monomial tree), which can be overlapped with processor bound activity by another vCPU.

We ran the computations described above on Sunday June 11, 2017, distributing the work across 24
GCP zones located in nine regions (four in North America, two in Europe, and three in Asia). We ran the
computation in two stages, one in the morning and one in the afternoon, each involving approximately
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Figure 3. vCPU utilization on GCP.

20 000 preemptible 32-vCPU instances. Figure 3 shows the CPU utilization over the course of the day;
each color represents one of the 24 zones we used. As can be seen in the chart, our CPU utilization
peaked around 9:00, at which point we were utilizing the equivalent of 580,000 vCPUs at full capacity
(the total number of active vCPUs was well over 600,000, but not all were running at full capacity at the
same time, due to preemption and startup/restart latency).

5. Identifying isomorphism class representatives

With coefficient bound Bc = 9 and discriminant bound B1 = 107, the enumeration of ternary quartic
forms described in the previous sections produces a list of more than 107 forms f (x, y, z). But our goal
is to construct a list of smooth plane quartic curves C f : f (x, y, z) = 0 that we distinguish only up to
isomorphism over Q. The coefficient constraints that we added to optimize the search eliminate some
obvious isomorphisms (at least for curves where the coefficients of xyz2, xy2z, x2 yz are distinct), and
in some cases this does result in a unique isomorphism class representative appearing in our enumeration.
But in the vast majority of cases it does not. Indeed, among the 1378 forms f (x, y, z) we identified with
absolute discriminant |14( f )| = 3952, only two Q-isomorphism classes of curves are represented,

x3z+ x2z2
+ xy3

− xz3
+ y3z = 0, x3z+ y4

+ 2y3z− yz3
= 0,

and in general, among the more than ten million curves we found, only 82 241 distinct Q-isomorphism
classes are represented. Our goal in this section is to briefly explain how we efficiently reduced our initial
list of more than 107 ternary quartic forms to a list of 82 241 unique Q-isomorphism class representatives.

We first note that this computation cannot be easily accomplished using any of the standard computer
algebra packages. Even if one of them supported reliable isomorphism testing of smooth plane curves
over Q (to the author’s knowledge, none do), pairwise isomorphism testing is expensive and we would
need to perform hundreds of millions of such tests. We want a strategy that can be applied in bulk and effi-
ciently reduce a large set of smooth plane curves to a subset of unique isomorphism class representatives.

Given an equation f (x, y, z) in our list S of ternary quartic forms satisfying the coefficient bound Bc

and discriminant bound B1, let S f denote the set of ternary quartic forms g for which Cg is Q-isomorphic
to C f . The set S f is finite, and if we could efficiently compute it, our problem would be solved. Rather
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than computing S f , we will compute successively larger subsets of it and use them to reduce the size of
S by removing all elements of S ∩ S f distinct from f (or distinct from a chosen representative of S f that
we happen to like better than f ).

Let us fix the following set of generators for GL3(Z):

A1 :=

1 1 0
0 1 0
0 0 1

 , A2 :=

 0 1 0
−1 0 0

0 0 1

 , A3 :=

−1 0 0
0 1 0
0 0 1

 , A4 :=

0 0 −1
1 0 0
0 1 0

 .
These induce invertible linear transformations

A1 : f (x, y, z) 7→ f (x + y, y, z), A2 : f (x, y, z) 7→ f (y,−x, z),

A3 : f (x, y, z) 7→ f (−x, y, z), A4 : f (x, y, z) 7→ f (−z, x, y),

which do not change the Q-isomorphism class of the curve f (x, y, z)= 0 or its absolute discriminant.
(This means we will not detect isomorphisms f (x, y, z) 7→ f (ax, y, z) with a 6= ±1, but these change
the discriminant by a36, which will push the discriminant well beyond our discriminant bound). Let
‖ f ‖ denote the maximum of the absolute values of the coefficients of f ; note that ‖ f ‖ is preserved
by A2, A3, A4, but not A1. The following algorithm performs a breadth-first search of the Cayley
graph of GL3(Z) with respect to our generators, subject to the restriction that it only explores paths
1,M1, . . . ,Mn ∈ GL3(Z) in the graph for which ‖Mi ( f )‖ ≤ b for 1≤ i ≤ n.

Algorithm. BOUNDEDISOMORPHISMCLASSENUMERATION ( f, b)
Given a ternary quartic form f (x, y, z) and a bound b ≥ ‖ f ‖, compute S f,b ⊆ S f as follows:

(1) Let U := { f } and V := { f }.

(2) Let W := { }, and for g ∈ V :

(a) If ‖A1(g)‖ ≤ b then set W ←W ∪ {A1(g)}.
(b) Set W ←W ∪ {A2(g), A3(g), A4(g)}.

(3) Set V ← {g : g ∈W and g 6∈U }.

(4) If V is empty then output S f,b :=U ∪ {−g : g ∈U } and terminate.

(5) Set U ←U ∪ V and return to step (2).

Our strategy is to start with b = Bc and for each f ∈ S remove every element of S f,b from S except
for f , and then increase b and repeat. With b = Bc and our initial set of over ten million forms S, an
efficient implementation of the algorithm above takes only ten minutes and reduces the number of curves
to around 125 000. The algorithm becomes slower as b increases, but even with b = B2

c = 81 it takes
just eight core-hours, yielding a list of 82 241 curves that appear to be nonisomorphic.

We are now left with the task of trying to prove that the remaining set of curves S are all nonisomorphic.
Here again we adopt a bulk strategy and compute two sets of invariants for every f ∈ S. First we use the
Magma package [30] which implements the algorithms described in [25] to compute the Dixmier–Ohno
invariants of C f ; these uniquely identify the Q-isomorphism class of C f . Second, we compute a vector
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of point counts of C f modulo all primes p ≤ 256 of good reduction for C f , using the smalljac software
package described in [23]. Both computations are quite fast; it takes only a few minutes to do this for
all 82 241 of our candidate curves.

We now define an equivalence relation on S by defining C f and Cg to be equivalent if and only if their
normalized Dixmier–Ohno invariants coincide and their point counts at all common primes p ≤ 256 of
good reduction coincide. The resulting equivalence classes partition S into 82 239 singleton sets and the
following pair of curves with absolute discriminant 324 480:

C f : x3 y+ x3z+ x2 y2
− 2x2 yz− 4x2z2

− 4xy3
+ xz3

+ 2y4
− 2yz3

+ z4
= 0,

Cg : x4
+ x3 y+ 2x3z+ 4x2 y2

− xy3
− 2xy2z+ y4

+ 3y3z+ 5y2z2
+ 4yz3

+ 2z4
= 0.

These curves both have good reduction modulo 7 but are not isomorphic as curves over F7, as can
be verified by exhaustively checking all possible isomorphisms, or by using the algorithm of [25] to
reconstruct unique F7-isomorphism class representatives of all twists with these Dixmier–Ohno invariants
and verifying that C1 and C2 are isomorphic to distinct representatives. As observed by one of the
referees, these curves are isomorphic over Q(i) via the maps (x : y : z) 7→ (z : i x : (1− i)x/2− y) and
(iy : (1+ i)y/2+ z : −x) 7→(x : y : z).

6. Examples

We conclude with a list of the curves C : f (x, y, z)= 0 that we found with absolute discriminants |1|
less than 104, as well as two other curves of larger discriminant that are discussed below. For each curve
we list the (geometric) real endomorphism algebra of its Jacobian J, and the decomposition of J up to
Q-isogeny. The real endomorphism algebras were computed by Jeroen Sijsling using an adaptation of the
algorithms described in [8]. An abelian threefold J/Q with real endomorphism algebra R×R or R×C

over Q is isogenous to the product of an abelian surface A with End(AQ)= Z and an elliptic curve E
(see Table 2 of [32], for example), and it is not hard to show that A, E , and the isogeny J ∼ A× E can
all be defined over Q. There is a finite set of possibilities for the isogeny class of E , since its conductor
must divide that of J, and by comparing Euler factors one can quickly rule out all but one possibility. We
have not attempted to construct explicit Prym varieties (which requires defining a morphism C→ E),
but we have uniquely determined the isogeny class of E , and therefore of A.

In Table 2, isogeny classes of abelian surfaces and elliptic curves are identified by a label containing
its conductor (Cremona labels in the case of elliptic curves). The highlighted abelian surface isogeny
classes 389.a, 427.a, 472.a, 555.a are isogeny classes of genus-2 Jacobians listed in the LMFDB [7].
The isogeny classes 561.a and 737.a likely correspond to the Prym varieties listed in [4, Table 2], while
the isogeny classes 550.a, 702.a, 732.a are likely to be three of the eight “unknown” isogeny classes
corresponding to paramodular cuspidal newforms of weight 2 and level N ≤ 1000 listed in the tables of
Poor and Yuen [28]. We have verified that the Euler factors of isogeny class 550.a match those listed
in [13, Table 2], and we have verified that the expected functional equation for the L-functions of the
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|1| f (x, y, z) End(JQ)⊗R Q-isog factors

2940 x3 y+ x3z+ x2 y2
+ 3x2 yz+ x2z2

− 4xy3
− 3xy2z M2(R)×R 14a, 14a, 15a

−3xyz2
− 4xz3

+ 2y4
+ 3y2z2

+ 2z4

4727 x3z+ x2z2
+ xy3

− xy2z+ y2z2
− yz3 R simple

5835 x4
+ 2x3 y+ 2x3z− 4x2 y2

+ 2x2 yz− 4x2z2
− xy3 R×R 389.a, 15a

−xz3
+ 2y4

− 3y3z+ 5y2z2
− 3yz3

+ 2z4

5978 x3z+ x2 y2
+ x2 yz+ xy3

+ xy2z+ xyz2
+ xz3

+ y3z+ y2z2 R×R 427.a, 14a
6050 x3z+ x2 y2

+ xy3
− xy2z− 2xz3

− y2z2
− z4 R×R 550.a, 11a

6171 x3z+ x2 yz+ x2z2
− xy3

+ xy2z+ xz3
− y2z2

+ yz3 R×R 561.a, 11a
6608 x3z+ x2 yz+ x2z2

+ xy3
− 3xy2z− 4xz3

− y4
+ 2y3z+ 2z4 R×R 472.a, 14a

7376 x3z+ x2 y2
+ x2z2

+ xy3
+ xyz2

+ y3z+ yz3 R simple
8107 x3z+ x2 yz+ x2z2

+ xy3
+ xyz2

+ y3z+ y2z2
+ yz3 R×R 737.a, 11a

8233 x3z+ x2 yz+ x2z2
+ xy3

− xy2z+ y4
− y3z− yz3 R simple

8325 x3z+ x2 y2
− 2x2z2

+ y3z− 2y2z2
+ z4 R×R 555.a, 15a

8471 x3z+ x2 y2
− x2z2

+ xy3
− xy2z+ xyz2

− xz3
+ y3z− y2z2 R simple

9607 x3z+ x2 yz+ x2z2
− xy3

+ xyz2
+ y2z2

+ yz3 R simple

75816 x3z+ x2 y2
+ 2x2 yz− x2z2

+ 2xy3
− xy2z− xz3

− yz3 R×C 702.a, 27a
144400 x3z+ 2x2 yz+ 2x2z2

+ xy3
− xz3

+ 2y4
+ 2y3z+ y2z2 R×R 760.a, 190b

Table 2. Smooth plane quartics over Q of small discriminant.

isogeny classes 550.a, 702.a, 760.a holds to a precision of 1000 decimal places. We thank Armand
Brumer for bringing the 550.a example to our attention.

Among the absolute discriminants listed in Table 2, exactly one is prime, 8233, which arises for the
curve

C1 : x3z+ x2 yz+ x2z2
+ xy3

− xy2z+ y4
− y3z− yz3

= 0.

As noted in the Introduction, in a similar search of hyperelliptic curves of genus-3, the smallest prime
absolute discriminant that appears is also 8233, for the hyperelliptic curve

C2 : y2
+ (x4

+ x3
+ x2
+ 1)y = x7

− 8x5
− 4x4

+ 18x3
− 3x2

− 16x + 8.

Using the average polynomial-time algorithms described in [20; 21; 19] to compute Frobenius traces at
all primes p 6= 8233 up to 228 for both curves, we find that they coincide in every case. This is compelling
evidence that their Jacobians are isogenous. Computation of their period matrices by Nils Bruin suggests
that they are related by an isogeny whose kernel is isomorphic to (Z/2Z)4×Z/4Z. In principle, one can
use trace computations to prove or disprove the existence of an isogeny via a Faltings–Serre argument
(see [5, Theorem 2.1.5] for an effective algorithm), but we have not yet attempted to do so.

Examples of hyperelliptic and nonhyperelliptic curves with isogenous (even isomorphic) Jacobians
have been previously constructed [22], but these constructions all involve abelian varieties with extra

http://www.lmfdb.org/EllipticCurve/Q/14a/
http://www.lmfdb.org/EllipticCurve/Q/
http://www.lmfdb.org/EllipticCurve/Q/
http://www.lmfdb.org/Genus2Curve/Q/389/a/
http://www.lmfdb.org/EllipticCurve/Q/
http://www.lmfdb.org/Genus2Curve/Q/427/a/
http://www.lmfdb.org/EllipticCurve/Q/
http://www.lmfdb.org/EllipticCurve/Q/
http://www.lmfdb.org/EllipticCurve/Q/
http://www.lmfdb.org/Genus2Curve/Q/472/a/
http://www.lmfdb.org/EllipticCurve/Q/
http://www.lmfdb.org/EllipticCurve/Q/
http://www.lmfdb.org/Genus2Curve/Q/555/a/
http://www.lmfdb.org/EllipticCurve/Q/
http://www.lmfdb.org/EllipticCurve/Q/
http://www.lmfdb.org/EllipticCurve/Q/
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structure (typically products of elliptic curves). We have confirmed that the Jacobians of these discrim-
inant 8233 curves are generic in the sense that their Mumford–Tate groups are as large as possible (all
of GSp6). In genus 3 this is equivalent to having no extra endomorphisms over Q (type I in Albert’s
classification), see [26, §2.3], and to having large Galois image (open in GSp6(Ẑ)), see [6]. To prove this
it is enough to show that for some prime ` the image of the Galois representation given by the action of
Gal(Q/Q) on the `-torsion subgroup of Jac(Ci ) contains Sp6(Z/`Z): from the proof of [33, Lemma 2.4],
the image of the `-adic representation must contain Sp(Z`), and this implies that the Mumford–Tate group
is GSp6. Taking `= 5, if we compute the characteristic polynomial of Frobenius at the primes p= 31, 41
and reduce modulo ` we obtain

f 31(t) := t6
+ t4
+ 3t3

+ t2
+ 1 and f 41(t) := t6

+ 4t4
+ 2t3

+ 4t2
+ 1.

A computation in Magma shows that among the maximal subgroups of Sp6(Z/5Z) (ten, up to conjugacy),
none contain a pair of elements that realize these two characteristic polynomials; see the Magma scripts
in [31] for details. This proves that the mod-5 Galois image contains Sp6(F5); as argued above, this
implies that the Mumford–Tate groups of the Jacobians of the curves C1 and C2 are both equal to GSp6.
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Generating subgroups of ray class groups
with small prime ideals

Benjamin Wesolowski

Explicit bounds are given on the norms of prime ideals generating arbitrary subgroups of ray class groups
of number fields, assuming the extended Riemann hypothesis. These are the first explicit bounds for
this problem and are significantly better than previously known asymptotic bounds. Applied to the
integers, they express that any subgroup of index i of the multiplicative group of integers modulo m is
generated by prime numbers smaller than 16(i log m)2, subject to the Riemann hypothesis. Two particular
consequences relate to mathematical cryptology. Applied to cyclotomic fields, they provide explicit
bounds on generators of the relative class group, needed in some previous work on the shortest vector
problem on ideal lattices. Applied to Jacobians of hyperelliptic curves, they allow one to derive bounds
on the degrees of isogenies required to make their horizontal isogeny graphs connected. Such isogeny
graphs are used to study the discrete logarithm problem on said Jacobians.

1. Introduction

1A. Motivation. In 1990, Bach [1] computed explicit bounds for the norms of prime ideals generating
the class groups of number fields, assuming the extended Riemann hypothesis (henceforth, ERH). These
bounds made explicit the earlier work of Lagarias, Montgomery and Odlyzko [11], and have proved to be
a crucial tool in the design and analysis of many number-theoretic algorithms. However, these bounds do
not tell anything about the norms of prime ideals generating any particular subgroup of the class group.
Indeed, a generating set for the full group might not contain any element of the subgroup.

Let K be a number field of degree n, and let 1 be the absolute value of its discriminant. The results
of [11] show that the class group Cl(K ) is generated by prime ideals of norm bounded by O((log1)2).
Now, let H be an arbitrary subgroup of the class group Cl(K ). Some asymptotic bounds on the norm
of prime ideals generating H have already been computed in [10] by analyzing spectral properties of
the underlying Cayley graphs. They are of the form O((n[Cl(K ) : H ] log1)2+ε) for an arbitrary ε > 0.
Taking H to be the full class group reveals a clear gap with the bounds of [11]. The explicit bounds
provided in the present paper eliminate this gap, as they are asymptotically O(([Cl(K ) : H ] log1)2).

MSC2010: primary 11R29; secondary 11M06, 11R37, 14K02.
Keywords: class group, ray class group, prime ideal, isogeny graph.
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Situations where proper subgroups of class groups have to be considered have already arisen in two
distinct regions of mathematical cryptology. One is related to lattice-based cryptography. Cryptographic
schemes based on ideal lattices are typically instantiated over the ring of integers OK of a cyclotomic
field K. The field K has a Hermitian vector space structure induced by its Minkowski embedding, and
ideals of OK are also lattices in this vector space. It was shown in [3; 4; 5] that in principal ideals of OK ,
an unusually short vector can be found in quantum polynomial time, under some heuristic assumptions
(this short vector is actually a generator of the ideal). This led to the break of a multitude of cryptographic
schemes using principal ideals (including [4; 8; 14; 20]).

A recent result [6] shows how to extend the algorithm to find short vectors in arbitrary ideals of OK by
transferring the problem to a principal ideal. Let n be the degree of K, K0 the maximal real subfield of K,
and Cl−(K ) the relative class group (i.e., the kernel of the norm map Cl(K )→ Cl(K0)). The transferring
method of [6] crucially relies on the assumption that Cl−(K ) is generated by a small number (polynomial
in log n) of prime ideals of small norm (polynomial in n) and all their Galois conjugates. On one hand,
very little is known about the structure of Cl−(K ), and it seems difficult to prove that it can always be
generated by such a small number of Galois orbits of ideals (yet there is convincing numerical evidence;
see [19] for the case where K has prime conductor). On the other hand it can be shown, assuming the
ERH, that the constraint on the norms can be satisfied, and the present work provides the best asymptotic
bounds, and the first explicit ones (see Theorem 1.2 and Remark 2).

The second situation is related to hyperelliptic curves. Let A be the Jacobian of a hyperelliptic curve
over a finite field Fq . Isogeny graphs around A are a central tool to study the difficulty of the underlying
discrete logarithm problem (see for instance [7; 9; 10; 21]). When A is ordinary and absolutely simple
— as required for applications in cryptography — its endomorphism algebra is a complex multiplication
field K (with maximal real subfield K0) and its endomorphism ring is isomorphic to an order O in K. Any
abelian variety isogenous to A has the same endomorphism algebra, and an isogeny that also preserves
the endomorphism ring is called a horizontal isogeny. The horizontal isogeny graphs of A are closely
related to Cayley graphs of the kernel P(O) of the norm map

NK/K0 : Cl(O)−→ Cl+(O∩ K0),

where Cl+(O∩ K0) is the narrow class group of O∩ K0. More precisely, for any bound B > 0, there is
a graph isomorphism between

(1) the Cayley graph of P(O) with generators the ideals of prime norm smaller than B, and

(2) the isogeny graph consisting of all principally polarizable abelian varieties isogenous to A and with
same endomorphism ring, and all isogenies between them of prime degree smaller than B.

When the Jacobian A is an elliptic curve, the situation is well understood since K0 =Q; hence P(O)=
Cl(K ). As a result, Bach’s bounds have successfully been used to analyse various algorithms dealing
with elliptic curve isogenies. In higher genus, however, P(O) is typically a proper subgroup of the class
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group, and Bach’s bounds are not sufficient to obtain connected isogeny graphs. New explicit bounds
guaranteeing the connectedness are provided in Theorem 1.4.

1B. Setting. Throughout this paper, K denotes a number field of degree n, with r1 embeddings into R

and 2r2 embeddings into C. Let I(K ) denote the group of fractional ideals of the ring of integers OK . A
modulus m of K is a formal product of a finite part m0 (an ideal in OK ), and an infinite part m∞ (a subset of
the set of real embeddings of K ). Then, Im(K ) denotes the subgroup generated by ideals coprime to m0.

The notion of ray class group can now be recalled. Let Pm
K ,1 be the subgroup of Im(K ) generated

by principal ideals of the form αOK , where ordp(α− 1) ≥ ordp(m0) for all primes p dividing m0, and
ı(α) > 0 for all ı ∈m∞. The ray class group of K modulo m is the quotient

Clm(K )= Im(K )/Pm
K ,1.

For any ideal a such that (a,m)= 1, let [a]m denote its class in Clm(K ). The narrow class group of K
is the group Clm(K ), where m is the set of all the real embeddings.

Our main tools to study these groups will be ray class characters. We call a ray class character modulo
m what Neukirch [16, Definition VII.6.8] calls a (generalized) Dirichlet character modulo m, that is, a
Größencharakter χ : Im(K )→ C× that factors through the ray class group Clm(K ) via the canonical
projection.

1C. Main theorem. Let K be a number field of degree n, and m a modulus on K. Consider any subgroup
H of the ray class group Clm(K ) and any character χ that is not trivial on that subgroup. The main
theorem generalizes [1] by providing explicit bounds on the smallest prime ideal p whose class is in
H and such that χ(p) 6= 1. Note that all statements containing “(ERH)” assume the extended Riemann
hypothesis (recalled in Section 2). The following theorem is proved in Section 3.

Theorem 1.1 (ERH). Let K be any number field, and 1 the absolute value of the discriminant of K. Let
m be a modulus of K, with finite part m0 and infinite part m∞. Let H be any subgroup of the ray class
group Clm(K ). Let χ be a ray class character modulo m that is not trivial on H. Then there is a prime
ideal p such that (p,m0)= 1, the class of p in Clm(K ) is in the subgroup H, χ(p) 6= 1, deg(p)= 1 and

N (p)≤
(
[Clm(K ) : H ](2.71 log(1N (m0))+ 1.29|m∞| + 1.38ω(m0))+ 4.13

)2
,

where ω(m0) denotes the number of distinct prime ideals dividing m0.

Remark 1. When H is the full group and n ≥ 2, the above bound can be compared to Bach’s bound
N (p) ≤ 18(log(12 N (m0)))

2 given by [1, Theorem 4]. Let us put the expression of Theorem 1.1 in a
comparable form. From [1, Lemma 7.1], we have

|m∞| ≤ n ≤
log(1N (m0))+

3
2

log(2π)−ψ(2)
≤ 0.71 log(1N (m0))+ 1.07,
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where ψ is the logarithmic derivative of the gamma function. Moreover, we have the bound ω(m0) ≤

log(1N (m0))/ log 2. The bound of Theorem 1.1 becomes N (p)≤ (5.62 log(1N (m0))+ 5.52)2. When-
ever 1N (m0) < 12, the corresponding ray class group is trivial, so we can suppose that log(1N (m0))≥

log(12)≥ 2.48. These estimates lead to

N (p)≤ (5.62+ 5.52/2.48)2(log(1N (m0)))
2
≤ 62(log(1N (m0)))

2. (1-1)

Even in this form, direct comparison with [1, Lemma 7.1] is not obvious. With the unrefined estimate
12 N (m0) ≤ (1N (m0))

2, Bach’s bound becomes N (p) ≤ 72(log(1N (m0)))
2. The constant factor is

slightly worse than in the bound (1-1), but this comparison does not do justice to either theorem.

1D. Consequences. In Section 4, a series of notable consequences is derived from Theorem 1.1. Fore-
most, it allows us to obtain sets of small prime ideals generating any given subgroup of a ray class group.
This is made precise in the following theorem.

Theorem 1.2 (ERH). Let K be any number field and 1 the absolute value of the discriminant of K. Let
m be a modulus of K, with finite part m0 and infinite part m∞. Let h be any ideal in K. Let H be a
nontrivial subgroup of the ray class group Clm(K ). Then H is generated by the classes of the prime
ideals in

{p prime ideal in K | (p, hm0)= 1, [p]m ∈ H, deg(p)= 1 and N (p) < B},

where B =
(
[Clm(K ) : H ](2.71 log(1N (hm0))+ 1.29|m∞| + 1.38ω(hm0))+ 4.13

)2, and [p]m denotes
the class of p in Clm(K ).

Remark 2. In particular, Theorem 1.2 implies that the relative class group of a cyclotomic field K of
degree n and discriminant 1 is generated by ideals of prime norm smaller than (2.71hK0 log1+ 4.13)2,
where hK0 is the class number of the maximal real subfield of K. This is an important improvement
for [6] over the previously known bound O((hK0n log1)2+ε) derived from [10].

Applying Theorem 1.1 to Dirichlet characters, one can obtain new results on subgroups of the multi-
plicative group (Z/mZ)×. Let m be a positive integer and H a nontrivial subgroup of G = (Z/mZ)×. It
is already known that, assuming the ERH, H contains a prime number smaller than O(([G : H ] log m)2)
(see [2; 13]). But these bounds do not provide a generating set for H : they only guarantee the existence
of one such prime number. The following theorem gives a set of generators of H whose norms are also
asymptotically O(([G : H ] log m)2).

Theorem 1.3 (ERH). Let m be a positive integer, and H a nontrivial subgroup of G = (Z/mZ)×. Then
H is generated by the set of prime numbers p such that p mod m ∈ H and p ≤ 16([G : H ] log m)2.

Finally, we derive bounds on the degrees of cyclic isogenies required to connect all isogenous princi-
pally polarizable abelian varieties over a finite field sharing the same endomorphism ring.

Theorem 1.4 (ERH). Let A be a principally polarized, absolutely simple, ordinary abelian variety over
a finite field Fq , with endomorphism algebra K and endomorphism ring isomorphic to an order O in K.
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Let K0 be the maximal real subfield of K and f the conductor of O. For any B > 0, let G(B) be the
isogeny graph whose vertices are the principally polarizable varieties isogenous to A and with the same
endomorphism ring, and whose edges are isogenies connecting them, of prime degree smaller than B.
Then, if O0 =O∩ K0 is the ring of integers of K0, the graph

G(26(h+O0
log(1N (f)))2)

is connected, with 1 the absolute value of the discriminant of K and h+O0
the narrow class number of O0.

Remark 3. In particular, the above holds in dimension 2, where principally polarized translates to Ja-
cobian of a genus-2 hyperelliptic curve (see [15, Theorem 4.1]).

1E. Notation. An inequality such as x ≤ y between complex numbers means that the relation holds
between the real parts. The function log denotes the natural logarithm.

2. Ray class characters

This section summarizes the definitions, notation and facts related to ray class characters that will be
used throughout the paper.

Recall that a ray class character modulo m is a Größencharakter χ : Im(K )→ C× that factors through
the ray class group Clm(K ) (via the canonical projection). A character is principal if it takes only the
value 1. Let δ(χ) be 1 if χ is principal and 0 otherwise. A ray class character is primitive modulo m if
it does not factor through Clm′(K ) for any modulus m′ smaller1 than m. The conductor fχ of χ is the
smallest modulus f such that χ is the restriction of a ray class character modulo f. Let βχ = |f∞| be the
number of infinite places in the conductor f. From [16, Proposition 6.9], any ray class character χ is the
restriction of a primitive ray class character of modulus fχ , which is also primitive as a Größencharakter.

The Hecke L-function associated to a character χ modulo m is defined as

Lχ (s)=
∑
a

χ(a)

N (a)s

for Re(s) > 1, where the sum is taken over all ideals of OK . Note that χ is implicitly extended to all
ideals by defining χ(a)= 0 whenever (a,m0) 6= 1. When χ is the trivial character on I(K ), we obtain
the Dedekind zeta function of K, ζK (s)=

∑
a N (a)−s. These L-functions are extended meromorphically

on the complex plane with at most a simple pole at s = 1, which occurs if and only if χ is principal.
Let Rχ be the set of zeros of Lχ on the critical strip 0 <Re(s) < 1. The ERH implies that all Hecke
L-functions are zero-free in the half-plane Re(s) > 1

2 .
We will extensively use the logarithmic derivatives L ′χ/Lχ . When Re(s) > 1, they admit the abso-

lutely convergent representation
L ′χ
Lχ
(s)=−

∑
a

3(a)χ(a)

N (a)s
, (2-1)

1A modulus m′ is (strictly) smaller than m if m′0 |m0, m′∞ ⊆m∞ and m′ 6=m.
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place residue of ζ ′K /ζK residue of L ′χ/Lχ

1 −1 0
ρ ∈ R1 1 0 if ρ 6∈ Rχ , 1 otherwise
ρ ∈ Rχ 0 if ρ 6∈ R1, 1 otherwise 1

0 r1+ r2− 1 r1+ r2−βχ

−2n+ 1, n ∈ N>0 r2 r2+βχ

−2n, n ∈ N>0 r1+ r2 r1+ r2−βχ

Table 1. Residues of the logarithmic derivative of Hecke L-functions, when χ is a primitive ray class
character [1, p. 361].

where 3 is the von Mangoldt function (i.e., 3(a) = log N (p) if a is a power of a prime ideal p, and 0
otherwise). The residues of L ′χ/Lχ when χ is primitive modulo m are summarized in Table 1, which
comes from [1, p. 361] (with the observation that β in [1] coincides with βχ = |m∞| for characters χ
which are primitive modulo m).

Let ψ be the logarithmic derivative of the gamma function, and for any ray class character χ on K,
define

ψχ (s)=
r1+ r2−βχ

2
ψ

(
s
2

)
+

r2+βχ

2
ψ

(
s+ 1

2

)
−

n logπ
2

. (2-2)

The main reason to introduce these functions is the following formula: for any complex number s, if χ
is primitive then

−Re
L ′χ
Lχ
(s)= 1

2 log(1N (fχ ))+Re

(
δ(χ)

(
1
s
+

1
s−1

)
−

∑
ρ∈Rχ

1
s−ρ
+ψχ (s)

)
. (2-3)

A proof can be found in [12, Lemma 5.1].

3. Proof of the main theorem

Throughout this section, consider a ray class character χ modulo m that is not trivial on a given subgroup
H of G = Clm(K ).

3A. Outline of the proof. For any 0< a < 1, x > 0, and ideal a, let

P(a, x)=3(a)
(

N (a)
x

)a

log
(

x
N (a)

)
.

Let us start by recalling a lemma that is the starting point of the original proof of Bach’s bounds.

Lemma 3.1 [1, Lemma 4.2]. For 0< a < 1 and any character η,∑
N (a)<x

η(a)P(a, x)=−
1

2π i

∫ 2+i∞

2−i∞

x s

(s+ a)2
·

L ′η
Lη
(s) ds.
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Bach then considers the difference between two instances of this equality at η = 1 and at η = χ , and
proves the bounds by estimating the right-hand side as x + O(

√
x), while the left-hand side is zero if the

character is trivial on all prime ideals of norm smaller than x ; therefore such an x cannot be too large.
The proof of Theorem 1.1 follows the same strategy. It exploits the series of lemmata provided in [1,

Section 5], interlacing them with a game of characters of G/H in order to account for the new condition
[a]m ∈ H. Consider the group of characters of the quotient G/H, namely Ĝ/H =Hom(G/H,C×). Given
any character θ ∈ Ĝ/H, let θ∗ be the primitive ray class character such that θ∗(a)= θ([a]mH) whenever
(a,m0)= 1. For any θ ∈ Ĝ/H, write Lθ for the L-function of θ∗. For any ray class character η and any
θ ∈ Ĝ/H, let ηθ denote the primitive character inducing the product ηθ∗.

Lemma 3.2. Let a be any ideal in K. Let n0 be the largest divisor of m0 coprime to a, and n = n0m∞.
Let π : Clm(K )→ Cln(K ) be the natural projection. Then,

∑
θ∈Ĝ/H

θ∗(a)=

{
[Cln(K ) : π(H)] if [a]n ∈ π(H),
0 otherwise.

Proof. Let 2a = {θ ∈ Ĝ/H | θ∗(a) 6= 0} = {θ ∈ Ĝ/H | (fθ∗, a) = 1}. This set is naturally in bijection
with the group X of characters of Cln(K )/π(H). We obtain

∑
θ∈Ĝ/H

θ∗(a)=
∑
θ∈2a

θ∗(a)=
∑
ν∈X

ν([a]n)=

{
[Cln(K ) :π(H)] if [a]n ∈π(H),
0 otherwise. �

Lemma 3.3. For any 0< a < 1, we have

Sm(x)+SH (x)=−
1

[G : H ]

∑
θ∈Ĝ/H

I (x, θ),

where

SH (x)=
∑

N (a)<x
[a]m∈H

(1−χ(a))P(a, x),

Sm(x)=
1

[G : H ]

∑
θ∈Ĝ/H

∑
N (a)<x
(a,m) 6=1

(θ∗(a)−χθ (a))P(a, x), and

I (x, θ)=
1

2π i

∫ 2+i∞

2−i∞

x s

(s+ a)2

(
L ′θ
Lθ
−

L ′χθ
Lχθ

)
(s) ds.

Proof. From Lemma 3.2, for any ray class character η, we have

∑
N (a)<x
[a]m∈H

η(a)P(a, x)=
∑

N (a)<x
(a,m)=1

∑
θ∈Ĝ/H θ

∗(a)

[G : H ]
η(a)P(a, x)=

1
[G : H ]

∑
θ∈Ĝ/H

∑
N (a)<x
(a,m)=1

ηθ (a)P(a, x).
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Subtracting two instances of this equality, for η = 1 and η = χ , we get

SH (x)=
1

[G : H ]

∑
θ∈Ĝ/H

∑
N (a)<x

(θ∗(a)−χθ (a))P(a, x)−Sm(x)

and conclude by applying Lemma 3.1. �

Lemma 3.4. For 0< a < 1, and with the notation from Lemma 3.3,
x

(a+ 1)2
= [G : H ](SH (x)+Sm(x))+

∑
θ∈Ĝ/H

(I1/2(x, θ)+ I0(x, θ)+ I−(x, θ)),

where

I−(x, θ)= (βχθ−βθ )
∞∑

k=2

(−1)k

(a−k)2xk ,

I1/2(x, θ)=
∑
ρ∈Rθ

xρ

(ρ+a)2
−

∑
ρ∈Rχθ

xρ

(ρ+a)2
, and

I0(x, θ)=
log x

xa

(
L ′θ
Lθ
−

L ′χθ
Lχθ

)
(−a)+

1
xa

(
L ′θ
Lθ
−

L ′χθ
Lχθ

)′
(−a)+(βχθ−βθ )

(
1
a2 −

1
x(a−1)2

)
−
δ(θ)

a2 .

Recall that for any character η, Rη is the set of zeros of Lη on the strip 0<Re(s) < 1.

Proof. This lemma is an analogue of [1, Lemma 4.4]. Evaluating each integral I (x, θ) by residue using
Table 1 yields

I (x, θ)= I1/2(x, θ)+ I0(x, θ)+ I−(x, θ)−
δ(θ)x
(a+ 1)2

.

The residue calculations can be justified as in the proof of [12, Theorem 28]. The result follows from
Lemma 3.3. �

3B. Explicit estimates. This section adopts the notation from Lemmas 3.3 and 3.4. The remainder of
the proof consists in evaluating each term in the formula of Lemma 3.4. More precisely, we bound the
quantities

(1) I1/2 in Lemma 3.7,

(2) I0 in Lemma 3.9,

(3) Sm in Lemma 3.10,

(4) SH in Lemma 3.12.

The quantity I− remains, which is easy to bound thanks to [1, Lemma 5.1]. All these estimates are
combined in Lemma 3.11. Let

R(a, χ)=
∑
θ∈Ĝ/H

(∑
ρ∈Rθ

1
|ρ+ a|2

+

∑
ρ∈Rχθ

1
|ρ+ a|2

)
.
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We bound that quantity in Lemma 3.6, but first, we need the following lemma.

Lemma 3.5. For Re(s) > 1, we have ∑
θ∈Ĝ/H

(
L ′θ
Lθ
+

L ′χθ
Lχθ

)
(s)≤ 0.

Proof. Equation (2-1) yields∑
θ∈Ĝ/H

(
L ′θ
Lθ
+

L ′χθ
Lχθ

)
(s)=−

∑
θ∈Ĝ/H

∑
a

3(a)(χθ (a)+ θ
∗(a))

N (a)s
=−

∑
a

3(a)

N (a)s
∑
θ∈Ĝ/H

(χθ (a)+ θ
∗(a)).

Fix an ideal a. If χθ (a)= 0 for all θ , Lemma 3.2 implies∑
θ∈Ĝ/H

(χθ (a)+ θ
∗(a))≥ 0.

Now suppose that there exists an η ∈ Ĝ/H such that χη(a) 6= 0. The fact that any given character is
induced by a unique primitive character implies that for any θ ∈ Ĝ/H, we have χθ (a)= χη(a)(θη−1)∗(a).
Indeed, if (θη−1)∗(a) 6= 0, the equality follows from the fact that χθ is the primitive character inducing
χη · (θη

−1)∗, and if (θη−1)∗(a) = 0, then one must have χθ (a) = 0 because (θη−1)∗ is the primitive
character inducing χθ/χη. We deduce that∑

θ∈Ĝ/H

(χθ (a)+ θ
∗(a))= χη(a)

∑
θ∈Ĝ/H

(
θ

η

)∗
(a)+

∑
θ∈Ĝ/H

θ∗(a)= (χη(a)+ 1)
∑
θ∈Ĝ/H

θ∗(a),

whose real part is nonnegative (using again Lemma 3.2). �

Lemma 3.6 (ERH). Let 0< a < 1. The sum R(a, χ) is at most

2[G : H ]
2a+1

(
log(1N (m0))+n(ψ(a+1)−log(2π))−

|m∞|

2

(
ψ

(
a+1

2

)
−ψ

(
a+2

2

)))
+

2
2a+1

(
1

a+1
+

1
a

)
.

Proof. Writing σ = 1+ a, we have

2a+ 1
|ρ+ a|2

=
1

σ − ρ
+

1
σ − ρ

for any Re(ρ)= 1
2 (as observed in [1, Lemma 5.5]), so for any ray class character η∑

ρ∈Rη

1
|ρ+ a|2

=
1

2a+ 1

∑
ρ∈Rη

(
1

σ − ρ
+

1
σ − ρ

)
.

As in [12, Lemma 5.1], we get from (2-3) that∑
ρ∈Rη

(
1

σ − ρ
+

1
σ − ρ

)
= 2Re

L ′η
Lη
(σ )+ log(1N (fη))+ 2δ(η)

(
1
σ
+

1
σ − 1

)
+ 2ψη(σ ).
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Then, R(a, η) is at most

1
2a+1

∑
θ∈Ĝ/H

(
2Re

(
L ′θ
Lθ
+

L ′χθ
Lχθ

)
(σ )+log(12 N (fθ fχθ ))+2δ(θ)

(
1
σ
+

1
σ−1

)
+2(ψθ (σ )+ψχθ (σ ))

)
. (3-1)

From Lemma 3.5, we have
∑

θ∈Ĝ/H (L
′

θ/Lθ + L ′χθ /Lχθ )(σ ) ≤ 0, and the corresponding term can be
discarded from the expression in (3-1). Also, with αχθ = r1−βχθ ,

2(ψθ (σ )+ψχθ (σ ))= (n+αχθ−βθ )ψ
(

a+1
2

)
+(n−αχθ+βθ )ψ

(
a+2

2

)
−2n logπ

= 2n(ψ(a+1)−log(2π))+(αχθ−βθ )
(
ψ

(
a+1

2

)
−ψ

(
a+2

2

))
≤ 2n(ψ(a+1)−log(2π))−|m∞|

(
ψ

(
a+1

2

)
−ψ

(
a+2

2

))
,

where the first equality uses the expression (2-2) and the second one follows from the duplication formula
(ψ(z/2)+ψ((z+ 1)/2)= 2(ψ(z)− log 2)). �

Lemma 3.7 (ERH). For 0< a < 1 and x ≥ 1, we have
∑

θ∈Ĝ/H |I1/2(x, θ)| ≤
√

x ·R(a, χ).

Proof. From the ERH, for any ray class character η and any zero ρ ∈ Rη of Lη on the critical strip, we
have Re(ρ)≤ 1

2 . Therefore |xρ | = |x |Re(ρ)
≤
√

x . �

Lemma 3.8. For any s,(
L ′θ
Lθ
−

L ′χθ
Lχθ

)
(s)=

∑
ρ∈Rθ

(
1

s− ρ
−

1
2− ρ

)
−

∑
ρ∈Rχθ

(
1

s− ρ
−

1
2− ρ

)

−
βχθ −βθ

2

(
ψ

(
s
2

)
−ψ

(
s+ 3

2

)
−ψ(1)+ψ

(
3
2

))
−
βχθ −βθ

s+ 1
+ δ(θ)

(
3
2
−

1
s
−

1
s− 1

)
+

(
L ′θ
Lθ
−

L ′χθ
Lχθ

)
(2),

and(
L ′θ
Lθ
−

L ′χθ
Lχθ

)′
(s)=

∑
ρ∈Rχθ

1
(s− ρ)2

−

∑
ρ∈Rθ

1
(s− ρ)2

−
βχθ −βθ

4

(
ψ ′
(

s
2

)
−ψ ′

(
s+ 3

2

))
+
βχθ −βθ

(s+ 1)2
+ δ(θ)

(
1
s2 +

1
(s− 1)2

)
.

Proof. This is essentially the same proof as [1, Lemma 5.2], with an additional use of the recurrence
relations ψ(z)= ψ(z+ 1)− 1/z and ψ ′(z)= ψ ′(z+ 1)+ 1/z2. �
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Lemma 3.9 (ERH). Let 0< a < 1 and x ≥ 1. Then,∑
θ∈Ĝ/H

I0(x, θ)≤
(2+ a) log x + 1

xa ·R(a, χ)+
[G : H ]|m∞|

a2 −
1
a2

+
log x

xa

(
3
2
+

1
a
+

1
a+ 1

)
+

1
xa

(
1
a2 +

1
(a+ 1)2

)
+
[G : H ]|m∞|

x

(
1

(1− a)2
−

log x
(a− 1)xa−1 −

1
(a− 1)2xa−1

)
.

Proof. For any 0< a < 1, Lemma 3.8 implies∑
θ∈Ĝ/H

(
L ′θ
Lθ
−

L ′χθ
Lχθ

)
(−a)≤ (2+ a) ·R(a, χ)+

3
2
+

1
a
+

1
a+ 1

−

∑
θ∈Ĝ/H

βχθ −βθ

1− a

and ∑
θ∈Ĝ/H

(
L ′θ
Lθ
−

L ′χθ
Lχθ

)′
(−a)≤R(a, χ)+

1
a2 +

1
(a+ 1)2

+

∑
θ∈Ĝ/H

βχθ −βθ

(1− a)2
.

We used the facts that ψ(−a/2)−ψ((3−a)/2)−ψ(1)+ψ
( 3

2

)
≥ 0, and ψ ′(−a/2)−ψ ′((3−a)/2)≥ 0,

which are easily derived from the recurrence relations ψ(z)=ψ(z+1)−1/z and ψ ′(z)=ψ ′(z+1)+1/z2,
and the monotonicity of ψ and ψ ′. From [1, Lemma 5.3], for any 0< a < 1, we have(

log x
(a− 1)xa−1 +

1
(a− 1)2xa−1 −

1
(1− a)2

)
≤ 0;

therefore∑
θ∈Ĝ/H

βχθ −βθ

x

(
log x

(a− 1)xa−1 +
1

(a− 1)2xa−1 −
1

(1− a)2

)

≤
[G : H ]|m∞|

x

(
1

(1− a)2
−

log x
(a− 1)xa−1 −

1
(a− 1)2xa−1

)
.

The result follows by applying these estimates to I0(x, θ) (as defined in Lemma 3.4). �

Lemma 3.10. For any 0< a < 1,

Sm(x)≤
2 log x

ea
ω(m0)≤

2 log x
ea log 2

log(N (m0)),

where ω(m0) is the number of distinct prime ideals dividing m0.

Proof. We have

Sm(x)=
1

[G : H ]

∑
N (a)<x
(a,m) 6=1

( ∑
θ∈Ĝ/H

(θ∗(a)−χθ (a))

)
P(a, x)≤

∑
N (a)<x
(a,m) 6=1

2P(a, x),

and the result follows from [1, Lemma 5.7]. �
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Lemma 3.11 (ERH). For any 0< a < 1, the fraction
√

x/(a+ 1)2 is at most

[G : H ]
(

s1(x) log(1N (m0))+ s5(x)n+ s4(x)|m∞| + s3(x)ω(m0)+
SH (x)
√

x

)
+ s2(x),

where

s1(x)=
2

2a+ 1

(
1+

(2+ a) log x + 1
xa+1/2

)
,

s2(x)= s1(x)
(

1
a
+

1
a+ 1

)
+

log x
xa+1/2

(
3
2
+

1
a
+

1
a+ 1

)
+

1
xa+1/2

(
1
a2 +

1
(a+ 1)2

)
,

s3(x)=
2 log x
ea
√

x
,

s4(x)=
1

(a− 2)2x5/2 −
s1(x)

2

(
ψ

(
a+ 1

2

)
−ψ

(
a+ 2

2

))
+

1
a2√x

+
1

x3/2

(
1

(1− a)2
−

log x
(a− 1)xa−1 −

1
(a− 1)2xa−1

)
,

s5(x)= s1(x)(ψ(a+ 1)− log(2π)).

Proof. As in [1, Lemma 5.1], we have

0≤
∞∑

k=2

(−1)k

(a− k)2xk ≤
1

(a− 2)2x2 .

We deduce that

I−(x, θ)≤
|βχθ −βθ |

(a− 2)2x2 ≤
|m∞|

(a− 2)2x2 .

Together with Lemma 3.7, the bound from Lemma 3.4 becomes
√

x
(a+ 1)2

≤
[G : H ]|m∞|
(a− 2)2x5/2 +R(a, χ)+

1
√

x

∑
θ∈Ĝ/H

I0(x, θ)+ [G : H ]
SH (x)+Sm(x)

√
x

.

The result then follows from Lemmas 3.6, 3.9 and 3.10. �

Lemma 3.12. Suppose that χ(p)= 1 for all prime ideals p such that N (p) < x , [p]m ∈ H, and deg(p)= 1.
Then, for any 0< a < 1,

SH (x)≤
2n
ea

∑
m<
√

x

3(m).

Proof. We start as in [1, Lemma 5.7] by observing that when t ≥ 1, the function t−a log t is bounded
above by 1/(ea). We deduce

SH (x)=
∑

N (a)<x
[a]m∈H

(1−χ(a))P(a, x)≤
2

ea

∑
N (a)<x
[a]m∈H
χ(a) 6=1

3(a). (3-2)
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Fix a prime ideal p (above a rational prime p) of norm smaller than x and consider the contribution of
its powers to the above sum. First suppose that deg(p) > 1. Then,∑

N (pk)<x
[pk
]m∈H

χ(pk) 6=1

3(pk)≤
∑

N (pk)<x

deg(p)3(pk)≤ deg(p)
∑

pk<
√

x

3(pk).

Now suppose that deg(p) = 1, and let ` be the smallest integer such that [p`]m ∈ H. If ` = 1, then
χ(pk)= 1 for any integer k, so the contribution of p is zero. Suppose that `≥ 2. Then,∑

N (pk)<x
[pk
]m∈H

χ(pk) 6=1

3(pk)≤
∑

N (pk`)<x

3(pk`)≤ deg(p)
∑

pk<
√

x

3(pk).

Summing over all rational primes p and ideals p above p, we obtain∑
p

∑
p | p

∑
N (pk)<x
[pk
]m∈H

χ(pk) 6=1

3(pk)≤
∑

p

∑
p | p

deg(p)
∑

pk<
√

x

3(pk)≤ n
∑

m<
√

x

3(m).

We conclude by applying this inequality to (3-2). �

Lemma 3.13. For any x > 0,

lim
a→1

(
1

(1− a)2
−

log x
(a− 1)xa−1 −

1
(a− 1)2xa−1

)
=
(log x)2

2
.

Proof. A simple application of L’Hôpital’s rule yields

lim
a→1

(
1

(1− a)2
−

log x
(a− 1)xa−1 −

1
(a− 1)2xa−1

)
= lim

b→0

(
xb
− b log x − 1

b2xb

)
= lim

b→0

(
xb log x − log x

bxb(b log(x)+ 2)

)
= lim

b→0

(
(log x)2

b2(log x)2+ 4b log x + 2

)
=
(log x)2

2
. �

3C. Proof of Theorem 1.1. Let x be the norm of the smallest prime ideal p such that [p]m∈H, deg(p)=1
and χ(p) 6= 1. First suppose that x ≤ 95, and consider the quantity

B =
(
[G : H ](2.71 log(1N (m0))+ 1.29|m∞| + 1.38ω(m0))+ 4.13

)2
.

We want to show that x ≤ B.

Suppose n= 1. For the ray class group G to be nontrivial, one must have either |m∞| = 1 and N (m0)≥ 3,
in which case

B ≥ (2.71 log(3)+ 1.29+ 1.38+ 4.13)2 = 95.59 . . .≥ x,

or |m∞| = 0 and N (m0)≥ 5, in which case

B ≥ (2.71 log(5)+ 1.38+ 4.13)2 = 97.44 . . .≥ x .
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Suppose n = 2. Suppose that 1N (m0)≥ 8. Then

B ≥ (2.71 log(8)+ 4.13)2 = 95.36 . . .≥ x .

Now, one must investigate the cases where 1N (m0) ≤ 7. All quadratic fields with a discriminant of
absolute value at most 7 have a trivial (narrow) class group. Therefore, one must have N (m0) ≥ 2.
There is only one quadratic field of discriminant of absolute value at most 3, namely Q(

√
−3). It has

discriminant of absolute value 3 and no ideal of norm 2, so the condition 1N (m0)≤ 7 is impossible.

Suppose n > 2. From [1, Lemma 7.1], we get

log(1N (f))≥ n(log(2π)−ψ(2))− 3
2 ≥ 2.74,

and we deduce

B ≥ (2.71 · 2.74+ 4.13)2 = 133.52 . . .≥ x .

It remains to consider the case x > 95. From Lemma 3.12 and [18, Theorem 12],

SH (x)≤
2n
ea

∑
m<
√

x

3(m)≤
2nC
√

x
ea

,

where C = 1.03883. We now apply Lemma 3.11 with a→ 1. From Lemma 3.13 (applied to the term s4),
and the facts that, for x ≥ 95, (s5(x)+ 2C/(ea)) is negative and s1, s2, s3 and s4 are decreasing, we get

x ≤ 24(
[G : H ]

(
s1(95) log(1N (m0))+ s4(95)|m∞| + s3(95)ω(m0)

)
+ s2(95)

)2

≤
(
[G : H ]

(
2.71 log(1N (m0))+ 1.29|m∞| + 1.38ω(m0)

)
+ 4.13

)2
,

which proves the theorem. �

4. Consequences

With Theorem 1.1 at hand, we can now derive a few important consequences. The first, Theorem 1.2,
asserts that a subgroup H of the ray class group Clm(K ) is always generated by ideals of bounded prime
norm.

4A. Proof of Theorem 1.2. Recall that K is a number field, 1 is the absolute value of the discriminant
of K, and m is a modulus of K, with finite part m0 and infinite part m∞. Also, h is an ideal in K, and H
is a nontrivial subgroup of the ray class group Clm(K ). Let

B =
(
[G : H ](2.71 log(1N (hm0))+ 1.29|m∞| + 1.38ω(hm0))+ 4.13

)2
,

N= {p ∈ Im(K ) | p is prime, (p, h)= 1, [p]m ∈ H, deg(p)= 1 and N (p) < B},

and N be the subgroup of H generated by N. By contradiction, suppose N 6= H. Then, there is a nontrivial
character of H that is trivial on N. Since G is abelian, this character on H extends to a character on G,
thereby defining a ray class character χ modulo m that is not trivial on H. From Theorem 1.1, there is a
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prime ideal p ∈ Ihm(K ) such that [p]m ∈ H, χ(p) 6= 1, deg(p)= 1 and N (p)≤ B. All these conditions
imply p ∈ N⊆ N, whence χ(p)= 1, a contradiction. �

The next consequence, Theorem 1.3, is a specialization of Theorem 1.2 to the field of rational numbers,
and asserts that a subgroup H of a group of the form (Z/mZ)× is generated by prime numbers bounded
polynomially in the subgroup index and log(m).

4B. Proof of Theorem 1.3. Recall that m is a positive integer, and H is a nontrivial subgroup of G =
(Z/mZ)×. Let m = m0m∞, where m0 = mZ and m∞ is the real embedding of Q. Then, Clm(Q) is
isomorphic to G = (Z/mZ)×. An isomorphism is given by the map sending the class of aZ to a mod m.
The subgroup H of (Z/mZ)× corresponds to a subgroup H ′ of Clm(Q) through this isomorphism. From
Theorem 1.2, H ′ is generated by prime numbers smaller than

B =
(
[G : H ](2.71 log(m)+ 1.29+ 1.38ω(m))+ 4.13

)2
,

and so is H. If H is the full group, then the theorem follows from [1, Theorem 3], and for m ≤ 11000, the
result is easy to check by an exhaustive computation. So we can assume that m/|H | ≥ 2 and m > 11000.
From [1, Lemma 6.4],

ω(m)
log m

≤
li(log m)+ 0.12

√
log m

log m
≤

li(log 11000)+ 0.12
√

log 11000
log 11000

≤ 0.67,

where li is the logarithmic integral function. We get

B ≤
(
[G : H ] log(m)

(
2.71+

1.29+ 4.13/2
log 11000

+ 1.38 · 0.67
))2

,

and we conclude by computing the constant. �

The third consequence is a bound on the degrees of the cyclic isogenies required to connect all isoge-
nous principally polarizable abelian varieties over a finite field sharing the same endomorphism ring.

4C. Proof of Theorem 1.4. Recall that A is a principally polarized, absolutely simple, ordinary abelian
variety over a finite field Fq , with endomorphism algebra K and endomorphism ring isomorphic to an
order O in K. The field K0 is the maximal real subfield of K, and f is the conductor of O. For any B > 0,
G(B) is the isogeny graph whose vertices are the principally polarizable varieties isogenous to A and with
the same endomorphism ring, and whose edges are isogenies connecting them, of prime degree (therefore
cyclic) smaller than B. By the theory of complex multiplication, the graph G(B) is isomorphic to the
Cayley graph of

P(O)= ker(Cl(O)→ Cl+(O∩ K0))

with set of generators the classes of ideals of prime norm smaller than B (see [10, Section 2.5] for a
detailed discussion of this isomorphism). Let g ≥ 2 be the dimension of A and n = 2g the degree of
its endomorphism algebra K. The natural map π : Clf(K )→ Cl(O) is a surjection (see for instance [10,
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Section 2.2]), so it is sufficient to find a generating set for H = π−1(P(O)). From [10, Lemma 2.1], we
have the inequality

[Clf(K ) : H ] ≤ [Cl(O) : P(O)] ≤ h+O0
.

From Theorem 1.2, G(B) is connected for

B =
(

2.71+ 1.38
ω(f)

log(1N (f))
+

4.13
log(1N (f))

)2

(h+O0
log(1N (f)))2, (4-1)

and it remains to show that the constant factor in this expression is at most 26. First, we need a lower
bound on the quantity log(1N (f)). From [17, Table 3], if n = 4, then log(1N (f))≥ 4 log(3.263)≥ 4.73
(this result assumes the ERH). For n ≥ 6, [1, Lemma 7.1] implies

log(1N (f))≥ n(log(2π)−ψ(2))− 3
2 ≥ 6.99.

Therefore for any degree n ≥ 4, we have log(1N (f)) ≥ 4.73. Now, for n = 2, smaller values of
log(1N (f)) are possible. One can easily check that the constant factor in the expression (4-1) is at
most 26 for all pairs (1, N (f)) such that log(1N (f)) < 4.73 by an exhaustive computation. There
are however five exceptions: when the field is Q(

√
−1) and N (f) ∈ {1, 2}, when the field is Q(

√
−3)

and N (f) ∈ {1, 3}, and when the field is Q(
√

5) and N (f) = 1. Since f is the conductor of an order
in a quadratic field, it is generated by an integer, so N (f) must be a square. This discards the cases
N (f) ∈ {2, 3}. When N (f) = 1, the order O is the ring of integers, which has a trivial (narrow) class
group for Q(

√
−1), Q(

√
−3) and Q(

√
5).

Then, irrespective of the value of n, we can assume in the rest of the proof that log(1N (f))≥ 4.73.
If ω(f)≤ 5, then

ω(f)

log(1N (f))
≤

5
4.73
≤ 1.06.

If ω(f) > 5, then N (f)≥ 2 · 3 · 5 · 7 · 11 · 13ω(f)−5, and

ω(f)

log(1N (f))
≤

ω(f)

log(2 · 3 · 5 · 7 · 11 · 13ω(f)−5)
≤

5
log(2 · 3 · 5 · 7 · 11)

+
1

log(13)
≤ 1.06.

Then, (
2.71+

1.38 ·ω(f)
log(1N (f))

+
4.13

log(1N (f))

)2

≤ (2.71+ 1.38 · 1.06+ 4.13/4.73)2 ≤ 26,

which concludes the proof. �
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