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Preface

Poincaré duality complexes model the homotopy types of closed manifolds. The subject began in 1967
with a paper by C. T. C. Wall, in which such complexes were first defined, and the thesis of M. D. Spivak,
which introduced the stable normal spherical fibration. The interest at the time was in providing foun-
dations for high-dimensional surgery, but Wall’s paper considered also the lowest-dimensional cases as
illustrative examples, and raised the questions which are the focus of this book.

In dimensions n = 1 and n = 2, all PDn-complexes (Poincaré duality complexes of formal dimension
n) are homotopy equivalent to n-manifolds, and the homotopy types are well understood. The case n = 3
is critical in various respects. With the well-understood exception of quotients of S3 or S2

× S1, inde-
composable closed 3-manifolds are aspherical, and are homeomorphic if and only if their fundamental
groups are isomorphic. These groups are PD3-groups, and it is natural to ask whether every such group
arises in this way. On the other hand, in dimensions 4 and higher there is a plethora of exotic examples;
indeed there are uncountably many PD4-groups, by a recent result of I. J. Leary.

Every orientable PD3-complex is a connected sum of indecomposables, which are either aspherical
or have virtually free fundamental group. There are examples of the latter type which are not homotopy
equivalent to 3-manifolds. The first such were constructed by R. G. Swan in another context (before the
notion of PDn-complex existed). This book shall give an account of the reduction to indecomposables
for PD3-complexes, and what is presently known about them. The primary interest is in the aspherical
case.

H. Hendriks showed that PD3-complexes were classified by “fundamental triples,” extending work
of G. A. Swarup, who in turn had reinterpreted work of C. B. Thomas on homotopy invariants for 3-
manifolds. This was complemented by V. G. Turaev, who determined which such triples were realized
by PD3-complexes and proved splitting and unique factorization theorems. The indecomposables have
been largely determined, through the work of J. S. Crisp and myself. (There remain some cases which
have resisted analysis.) The work of Hendriks and Turaev has been extended to the relative case (PD3-
pairs) by B. Bleile.

The study of Poincaré duality groups has involved rather more people. F. E. A. Johnson and Wall
defined a Poincaré duality group as one with a classifying space which is a Poincaré duality complex,
and shortly thereafter R. Bieri and B. Eckmann gave a more algebraic definition. Eckmann, H. Müller,
and P. A. Linnell showed that in dimension 2 all such groups are surface groups. Many people have
contributed to the further study of Poincaré duality groups, often as an application of wider programmes
in group theory. I shall mention here only the work of P. H. Kropholler and M. A. Roller on splitting
PDn-groups along codimension-1 subgroups; the hyperbolization construction of M. W. Davis, with the
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xii JONATHAN A. HILLMAN

consequence that any bad behaviour in groups of cohomological dimension 2 is manifest in PDn-groups
if n ≥ 4; and most recently the use of coarse geometry by M. Kapovich and B. Kleiner.

My interest in this area began in the early 1980s, when I found a simple characterization of Seifert
fibred 3-manifolds in terms of PD3-groups (later much improved by B. H. Bowditch) in the course of
work on 2-knots with aspherical knot manifold. This led me to write up as an aide-memoire a list of
questions about subgroups of PD3-groups, in the hope of understanding properties of 3-manifold groups
through homological algebra. The QMC lecture notes of Bieri were a major guide for me then and since.

The first chapter covers the basic definitions, notation, and properties of groups; the homotopy type of
modules; cell-complexes and Poincaré duality; and the known results in dimensions 1 and 2. Our general
approach is to try to prove most assertions which are specifically about Poincaré duality in dimension 3,
but otherwise to cite standard references for many of the major relevant supporting results, such as Bieri’s
work on normal subgroups of groups of finite cohomological dimension, the Algebraic Core Theorem
of Kapovich and Kleiner, and the existence of JSJ decompositions for PDn-groups. (We give statements
of such results in Chapters 8 and 10.)

In Chapter 2 we consider the work of Hendriks and Turaev on classification by fundamental triples,
realization of invariants, and splitting theorems. While our focus is primarily on the absolute case, the
potential utility of the JSJ decomposition almost obliges us to deal with the relative case. Chapter 3
gives the parallel results of Bleile for PD3-pairs, and also gives the Algebraic Loop Theorem of Crisp.
Turaev showed that every PD3-complex has an essentially unique factorization as a connected sum of
indecomposables. Chapter 4 follows Crisp in showing that (when orientable) these are either aspherical
or have virtually free fundamental group, and gives also his restriction on centralizers of torsion elements.
The next three chapters consider the case when the fundamental group π is virtually free. The case when
π is finite has been well understood since the work of Swan, and has been of continuing interest as an
aspect of the Spherical Space Form problem. We give a brief account of this case, and of the case when
π has two ends, in Chapter 5. The Centralizer Condition of Crisp is used in Chapters 6 and 7 to analyze
indecomposable PD3-complexes with virtually free fundamental group. There are many examples of the
latter type which are not homotopy equivalent to 3-manifolds, but the possible groups are largely known.

The remainder of the book is devoted to the aspherical case. In Chapter 8 we sketch three strategies
for attempting to show that PD3-groups are 3-manifold groups, and we identify the groups of aspherical
closed geometric 3-manifolds (with the exception of the geometry H3) and 3-dimensional mapping tori
in terms of PD3-groups. We also state without proof some further results on the cohomology of groups
that we shall draw upon. In Chapter 9 we consider centralizers and normalizers of FP2 subgroups, and
we show that PD3-groups satisfy max-c: properly increasing sequences of centralizers are finite. We
show also that, in general, ascendant subgroups are usually close to being normal subgroups. The next
two chapters are somewhat different in character, in that they depend more substantially on references to
the original papers for many of the arguments. In Chapter 10 we state the JSJ Decomposition Theorem,
and follow F. Castel in using it to further understand the centralizers of cyclic subgroups and to show
that no nontrivial Baumslag–Solitar relation holds in any PD3-group. In Chapter 11 we give some of the
results of M. Boileau and S. Boyer on the Tits alternative for almost coherent PD3-groups. We conclude
in Chapter 12 by giving algebraic proofs of results of S. C. Wang on the existence of degree-1 maps
between geometric 3-manifolds.
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CHAPTER 1

Generalities

In this chapter we shall collect basic notation, terminology and results from areas beyond our specific
concern with 3-dimensional spaces. Terms used in only one chapter are usually defined there.

1.1. Group theoretic preliminaries

If G is a group, |G|, G ′, ζG and
√

G are the order, commutator subgroup, centre and Hirsch–Plotkin
radical of G, respectively. (In all cases considered in this book, the Hirsch–Plotkin radical is the max-
imal nilpotent normal subgroup.) If H 6 G is a subgroup, CG(H) and NG(H) are the centralizer and
normalizer of H in G. We shall usually write CG(h) for CG(〈h〉).

If g ∈ G, let cg be the automorphism of G defined by cg(h) = ghg−1, for all h ∈ G. The action of
NG(H) on H by conjugation induces a homomorphism from NG(H) to Aut(H), with kernel CG(H).
Thus if H is a finite subgroup of G then CG(H) has finite index in NG(H). The Normalizer Condition
[Ro, 5.2.4] asserts that a proper subgroup of a nilpotent group is properly contained in its normalizer.

Two subgroups H, K 6 G are commensurable if H ∩ K has finite index in each. The commensurator
of H in G is the subgroup CommG(H) of g ∈ G such that H and gHg−1 are commensurable.

If S ⊆ G then 〈S〉 and 〈〈S〉〉G (or just 〈〈S〉〉) are the subgroup generated by S and the normal closure of
S in G, respectively.

A group virtually has some property (inherited by subgroups of finite index) if it has a subgroup of
finite index with that property. If G is virtually solvable let h(G) be its Hirsch length. A group has max-c
(the maximum condition on centralizers) if every strictly increasing sequence of centralizer subgroups
in G is finite. It is polycyclic if it has a finite composition series with cyclic factors.

Let D∞ = Z/2Z ∗Z/2Z∼= Zo−1 Z/2Z be the infinite dihedral group, F(r) the free group of rank r ,
and Kb = Z o−1 Z the Klein bottle group. If K is a classical knot then πK = π1(S3

\ K ) is the knot
group. (Thus, for instance, π31 is our notation for the group of the trefoil knot.)

Let p, q be nonzero integers, and let BS(p, q) be the Baumslag–Solitar group with presentation 〈x, y |
xy px−1

= yq
〉. When p = 1 these groups are ascending HNN extensions, and we write also Z∗q =

BS(1, q). (Note that BS(1, 1)∼= Z2 and BS(1,−1)∼= Kb.)

We shall usually use π to denote a fundamental group, and G to denote a generic group, and more
particularly a PD3-group.

Our principal reference for group theory is [Ro].

1



2 HILLMAN ∼∼∼ POINCARÉ DUALITY IN DIMENSION 3

1.2. Group rings and finiteness conditions

Let R be a ring with an anti-involution r 7→ r̄ . If M is a left R-module, let M denote the conjugate right
module with underlying abelian group M and right module structure given by

m · r = r̄ ·m for all r ∈ R and m ∈ M .

(Similarly, if N is a right R-module then N shall denote the conjugate left module.) If M is a left R-
module then HomR(M, R) is naturally a right R-module. Let M†

=HomR(M, R), and let evM :M→M††

be the homomorphism defined by evM(m)(λ) = λ(m), for all m ∈ M and λ ∈ M†. If M is a finitely
generated free module then evM is an isomorphism.

If G is a group, ε : Z[G] → Z and I (G)= Ker(ε) shall denote the augmentation homomorphism and
augmentation ideal, respectively. A homomorphism w : G→ Z× = {±1} defines an anti-involution of
Z[G] by ḡ = w(g)g−1, for all g ∈ G. Let Zw be the (two-sided) Z[G]-module with underlying group
infinite cyclic and G acting via w.

The group G is FPn if the augmentation module has a projective resolution which is finitely generated
in degrees 6 n, and is FP if it also has cohomological dimension cd G = n. A group is almost coherent
if every finitely generated subgroup is FP2 (almost finitely presentable). (In so far as our arguments are
largely homological, this is more natural than the usual notion of coherence, and is implied by either
coherence of the group or coherence of the group ring.)

If G is FP2 then I (G) has a finite presentation matrix M . Let D(I (G);M)= Coker(M†). (We shall
usually write just DI (G) for D(I (G);M), for simplicity. See §3.) If G has a finite presentation P then
P determines such a matrix M , which we shall call the Fox–Lyndon matrix associated to P , via the free
differential calculus [40].

If G is virtually FP it has an FP subgroup K of finite index, and the rational Euler characteristic
χvirt(G)= χ(K )/[G : K ] is well defined [Br, Chapter IX.7].

Let C∗ be a Z[G]-chain complex with an augmentation ε : C0→ Z. An equivariant diagonal approx-
imation for C∗ is a chain homomorphism 1 : C∗→ C∗⊗Z C∗ such that

(ε⊗ 1)1(c)= (1⊗ ε)1(c)= c

and

1(gc)= (g⊗ g)1(c),

for all g ∈ π and c ∈ C∗. If C∗ is a projective complex it has such a diagonal approximation, and 1 is
unique up to chain homotopy.

If G is a group with a normal subgroup N and A is a left Z[G]-module, there is a Lyndon–Hochschild–
Serre spectral sequence (LHSSS) for G as an extension of G/N by N , with coefficients A:

E2 = H p(G/N ; Hq(N ; A))⇒ H p+q(G; A),

the r -th differential having bidegree (r, 1−r). (See [McC, Section 10.1].)
With one fleeting exception (in the first paragraph of §5 of Chapter 2), all chain complexes considered

shall be 0 in negative degrees.



GENERALITIES 3

1.3. Projective homotopy of modules

Let R be a ring. If M, N are finitely generated left R-modules, two homomorphisms f, g : M → N
are projectively homotopic if the difference f − g factors through a free module of finite rank. The set
of homotopy classes of R-module homomorphisms from M to N is an abelian group [M, N ]. A homo-
morphism f is a projective homotopy equivalence if there is a homomorphism g : N → M such that
g f ∼ idM and f g ∼ idN .

Two R-modules M and N are freely stably isomorphic if M1⊕ Ra ∼= N ⊕ Rb for some a, b > 0.
More generally, M and N are projectively stably isomorphic if M1 ⊕ P ∼= N ⊕ Q for some finitely
generated projective R-modules P and Q. Let [M] and [M]pr denote the free stable isomorphism class
and projective stable isomorphism class of M , respectively. Tietze move considerations show that if G
is a group, the stable isomorphism class of D(I (G);M) is independent of the presentation matrix M for
I (G). Hence [DI (G)] and [DI (G)]pr are also well defined.

It is easy to see that projectively stably isomorphic modules are homotopy equivalent. The following
converse combines the statements of Lemmas 2.2 and 5.1 of [147].

Lemma. Let M and N be R-modules, and f : M→ N a projective homotopy equivalence. Then f is
the composite

M→ M ⊕ L
j

−−−→ N ⊕ Rm
→ N ,

where L is a finitely generated projective R-module, m > 0, the left- and right-hand maps are the obvious
inclusion and projection (respectively), and j is an isomorphism. The class 8([ f ]) = [L] ∈ K̃0(R)
depends only on the homotopy class of f . �

1.4. Graphs of groups

A graph of groups (G, 0) consists of a graph 0 with origin and target functions o and t from the set of
edges E(0) to the set of vertices V (0), and a family G of groups Gv for each vertex v and subgroups
Ge 6 Go(e) for each edge e, with monomorphisms φe : Ge → G t (e). (We shall usually suppress the
maps φe from our notation.) In considering paths or circuits in 0 we shall not require that the edges be
compatibly oriented. We shall use terms such as “graph” and “tree” to refer to both the combinatorial
object and the associated geometric realization.

The fundamental group of (G, 0) is the group πG with presentation

〈Gv, te | tegt−1
e = φe(g) ∀g ∈ Ge, te = 1 ∀e ∈ E(T )〉,

where T is some maximal tree for 0. Different choices of maximal tree give isomorphic groups. We may
assume that (G, 0) is reduced: if an edge joins distinct vertices then the edge group is isomorphic to a
proper subgroup of each of these vertex groups (i.e., that if o(e) 6= t (e) then Ge is properly contained in
each of Go(e) and G t (e).) A graph of groups (G, 0) is indecomposable if all edge groups are nontrivial.
It is admissible if it is reduced, all vertex groups are finite or one-ended groups and all edge groups are
nontrivial finite groups. An edge e is a loop isomorphism at v if o(e) = t (e) = v and the inclusions
induce isomorphisms Ge ∼= Gv.

Lemma 1.1. Let π = πG, where (G, 0) is a finite graph of finite groups and 0 is a tree. If all the edge
groups are nontrivial then π is indecomposable.
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Proof. If π ∼= A ∗ B then π acts without global fixed points on the Bass–Serre tree ϒ associated to the
splitting. Each finite subgroup of π fixes a point in this tree. If xo and xt are fixed by adjacent vertex
groups Go(e) and G t (e) then Ge fixes the interval [xo, xt ] joining these points. Hence xo = xt , since edge-
stabilizers in ϒ are trivial. Induction on the size of 0 now shows that xo is fixed by π , contradicting the
first sentence of the proof. �

The argument extends easily to all finite graphs of finite groups with nontrivial edge groups.
A finitely generated group G is accessible if G∼=πG, where (G, 0) is a finite graph of finitely generated

groups, in which all vertex groups are finite or have one end and all edge groups are finite. Almost finitely
presentable (FP2) groups are accessible [DD, Theorem VI.6.3].

If G is a finitely generated group then it has e(G)= 0, 1, 2 or infinitely many ends. It is finite if and
only if e(G)= 0. If G is infinite then the end module E(G)= H 1(G;Z[G]) is a free abelian group of
rank e(G)− 1 [Ge, Theorem 13.5.5]. It has a natural right Z[G]-module structure.

Theorem 1.2 (End Module Theorem). Let G = πG be the fundamental group of a finite graph of finitely
generated groups (G, 0), in which all vertex groups are finite or have one end and all edge groups are
finite. Let f V be the set of vertices v of 0 such that Gv is finite. Then there is a short exact sequence of
right Z[G]-modules

0→
⊕

v∈ f V Z[Gv\π ]
ϒ
−−−→

⊕
e∈E Z[Ge\π ] → H 1(π;Z[G])→ 0,

where the image of a coset Gvg in π under ϒ is

ϒ(Gvg)=
∑

o(e)=v

∑
Geh⊂Gv

Gehg−
∑

t (e)=v

∑
Geh⊂Gv

Gehg,

with outer sums over edges e and inner sums over cosets Geh.

Proof. The Mayer–Vietoris sequence of Chiswell [21] gives an exact sequence

0→
⊕
v∈ f V

H 0(Gv;Z[G])→
⊕
e∈E

H 0(Ge;Z[G])→ H 1(G;Z[G])→ 0,

since the next term is
⊕

v∈ f V H 1(Gv;Z[G]), and each vertex group is finite or has one end. The co-
homology groups H 0(H ;Z[G]) may be identified with Z[H\G], the right Z[G]-module with Z-basis
the right cosets of the subgroup H in G, if H is finite, and are 0 if H is infinite. The lemma follows
easily. �

A group G splits over a subgroup H if it is either a nontrivial free product with amalgamation A ∗H B
where H < A and H < B, or an HNN extension A ∗H ϕ, where H 6 A and ϕ : H→ A is a monomorphism.
(In other words, G is the fundamental group of a graph of groups, in which the underlying graph has one
edge and two or one vertices.)

Let X denote the class of groups πG, where (G, 0) is a finite graph of groups, in which every edge
group and vertex group is infinite cyclic. These groups may also be characterized as groups of coho-
mological dimension 2 which have an infinite cyclic subgroup which is commensurable with all of its
conjugates [95]. This class includes the Baumslag–Solitar groups and also the fundamental groups of
Seifert fibred 3-manifolds with nonempty boundary.

Our references for graphs of groups are [DD] and [Se].
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1.5. Covering spaces

Let X be a connected cell complex and let X [k] denote its k-skeleton. Let X̃ be the universal covering
space of X . If H is a normal subgroup of G = π1(X), we may lift the cellular decomposition of X to an
equivariant cellular decomposition of the corresponding covering space X H . The cellular chain complex
of X H with coefficients in a commutative ring R is then a complex C∗(X; R[G/H ])=C∗(X H ; R) of left
R[G/H ]-modules, with respect to the action of the covering group G/H . A choice of lifts of the q-cells
of X determines a free basis for Cq(X; R[G/H ]), for all q , and so C∗(X; R[G/H ]) is a complex of free
modules. If X is a finite complex then G is finitely presentable and these modules are finitely generated.
If X is finitely dominated, i.e., is a retract of a finite complex, then G is again finitely presentable, and
C∗(X; R[G]) = C∗(X̃; R) is chain homotopy equivalent over R[G] to a complex of finitely generated
projective modules [148].

The Betti numbers of X with coefficients in a field F shall be denoted by βi (X; F)= dimF Hi (X; F)
(or just βi (X), if F =Q). If G is a group let

vβ(G)= sup{β1(H) | [G : H ]<∞},

vβ(G; p)= sup{β1(H ; Fp) | [G : H ]<∞}.

The i-th equivariant homology module of X with coefficients R[G/H ] is the left module

Hi (X; R[G/H ])= Hi (C∗(X H ; R)),

which is clearly isomorphic to Hi (X H ; R) as an R-module, with the action of the covering group deter-
mining its R[G/H ]-module structure. The i-th equivariant cohomology module of X with coefficients
R[G/H ] is

H i (X; R[G/H ])= H i (HomR[G/H ](C∗(X; R[G/H ]), R[G/H ])).

(Since the cochain groups HomR[G/H ](C∗(X; R[G/H ]), R[G/H ]) are right R[G/H ]-modules, this is
also a right module.) More generally, if A and B are right and left R[G/H ]-modules (respectively) let

H j (X; A)= H j (A⊗R[G/H ] C∗(X; R[G/H ])),

H n− j (X; B)= H n− j (HomR[G/H ](C∗(X; R[G/H ]), B)).

(These are R-modules, with no natural R[G]-module structure, unless A or B is a bimodule.) There is a
universal coefficient spectral sequence relating equivariant homology and cohomology:

E pq
2 = ExtqR[G/H ](Hp(X; R[G/H ]), R[G/H ])⇒ H p+q(X; R[G/H ]),

with r -th differential dr of bidegree (1−r, r). (See [McC].)
If M is a cell complex, cM : M→ K (π1(M), 1) denotes the classifying map for the fundamental group.
A finite presentation P for a group G determines a finite 2-complex K (P) with one 0-cell and with

π1(K (P)) ∼= G. The cellular chain complex C∗(K̃ (P);Z) is called the Fox–Lyndon complex of the
presentation; the second differential is given by the Fox–Lyndon matrix associated to P .
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1.6. Poincaré duality

A PDn-space is a space homotopy equivalent to a cell complex which satisfies Poincaré duality of formal
dimension n with local coefficients. (We shall give a more precise definition in the following paragraphs.)
It is a PDn-complex if it is finitely dominated. Poincaré duality complexes were introduced by Wall to
model the homotopy types of closed manifolds [150]. However, they also arise in situations where
the geometry does not immediately provide a corresponding manifold. (See §10 of this chapter for an
example.)

Let P be a connected cell complex with π1(P)= π , and let w : π→ Z× be a homomorphism. If B
is a left Z[π ]-module define a cochain complex C∗(P; B) by

Cq(P; B)= HomZ[π ](Cq(P;Z[π ]), B).

In general this is just a complex of abelian groups, unless B is a bimodule.
The space P satisfies Poincaré duality of formal dimension n with orientation character w if there is a

chain x in Cn(P;Z[π ]) such that 1⊗ x ∈ Zw⊗Z[π ]Cn(P;Z[π ]) is an n-cycle for Zw⊗Z[π ]C∗(P;Z[π ])
and cap product with 1⊗ x defines (Z-linear) chain homotopy equivalences

ϕ 7→ ϕ ∩ x : Cn−∗(P; B)' B⊗Z[π ] C∗(P;Z[π ]),

for all coefficient modules B. This cap product is defined as follows. Let 1 be an equivariant diagonal
approximation for C∗(P;Z[π ]), and suppose that 1(x) =

∑
yi ⊗ zn−i with yi and zi in Ci (P;Z[π ]).

Then

ϕ ∩ x = ϕ(yq)⊗Z[π ] zn−q

for all ϕ ∈Cq(P; B). The chain homotopy class of ∩ x does not depend on the choice of diagonal approx-
imation or chain x representing [1⊗ x]. Hence Poincaré duality gives rise to (Z-linear) isomorphisms
from H j (P; B) to Hn− j (P; B). Note in particular that

H n(P; B)∼= H0(P; B)∼= B⊗Z[π ] Z∼= Zw⊗Z[π ] B

as abelian groups. (See [Ra, Section 4.5] for more details.)
We shall call such a complex P a PDn-space. The image [P] of x generates Hn(P;Zw)∼= Z, and is

called a fundamental class for P . While it is easy to extend the definition to complexes with more than
one component, and it is essential to do so when we consider boundaries of PDn-pairs, we shall assume
without further comment that all PD3-spaces considered in this book are connected.

Homology commutes with direct limits of coefficient modules. Since H j (P; B)∼= Hn− j (P; B), for
all left Z[π ]-modules B, cohomology also commutes with such direct limits. Therefore C∗(P;Z[π ])
is chain homotopy equivalent to a finite projective Z[π ]-complex [148]. In particular, π is FP2. The
PDn-space P is finite if C∗(P;Z[π ]) is Z[π ]-chain homotopy equivalent to a finite free Z[π ]-complex.
A PDn-space P is a PDn-complex if and only if π is finitely presentable [148]. Finite PDn-spaces
with π finitely presentable are homotopy equivalent to finite complexes. (Thus “finite PDn-complex” is
unambiguous.)
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If P is a finite complex or, more generally, if we assume a priori that C∗(P;Z[π ]) is chain homotopy
equivalent to a complex C∗ of finitely generated projective modules, then to show that P satisfies Poincaré
duality of formal dimension n with orientation character w it is enough to assume that ∩ x induces a chain
homotopy equivalence

−∩ x : Cn−∗(P;Z[π ])' Cn−∗
= C†

n−∗→ C∗ ' C∗(P;Z[π ]).

For if Cq is a finitely generated projective module there are natural (Z-linear) isomorphisms

HomZ[π ](Cq , B)∼= HomZ[π ](Cq ,Z[π ])⊗Z[π ] B

for any left Z[π ]-module B, and hence

Cq(P; B)∼= B⊗Z[π ] Cq(P;Z[π ]).

Thus we may get chain homotopy equivalences with general coefficients by taking tensor products.

Lemma 1.3. Let P be a connected cell complex with π1(X)= π , and let σ be a normal subgroup of finite
index in π . Then P is a PDn-space if and only if Pσ is a PDn-space. Moreover, if [X ] is a fundamental
class for X then the transfer tr[X ] is a fundamental class for Xσ .

Proof. Since P̃σ = P̃ we have C∗(Pσ ;Z[σ ]) = C∗(P;Z[π ])|σ , and there is a natural isomorphism
C∗(Pσ ;Z[σ ]) ∼= C∗(P;Z[π ])|σ , since [π : σ ] is finite. The lemma then follows from the functoriality
of the cap product. �

Let w =w1(P) and π+ =Ker(w), and let P+ = Pπ+ be the associated covering space. If H 6 π then
we shall write H+ = H ∩π+. It is convenient to say that such a subgroup H is orientable if H = H+.
(This usage depends upon the orientation character w.) Let Z/2Z− denote a subgroup of order two on
which w 6= 1. If P and Q are PDn-spaces then f : P→ Q has degree ±1 if w1(P) = w1(Q) ◦ π1( f )
and Hn( f +) is an isomorphism.

A group G is a PDn-group if and only if K (G, 1) is a PDn-space. (A purely algebraic definition is
given in the next section.) For every n > 4 there are PDn-groups which are not finitely presentable [24].
It is not known whether there are such examples when n = 3, and it is for this reason that we have defined
PDn-spaces as well as PDn-complexes. (See also [87].)

A finite PDn-complex P is simple if the chain homotopy equivalence Cn−∗(P;Z[π ])' C∗(P;Z[π ])
given by cap product has Whitehead torsion 0 in Wh(π). (In general, there is a well-defined torsion
τ(P) ∈Wh(π).) Closed connected PL n-manifolds are simple finite PDn-complexes, but there are 1-
connected PDn-complexes which are not homotopy equivalent to manifolds, for all n > 4 [150].

Wall showed that every PDn-complex is homotopy equivalent to an n-dimensional complex, and in
all dimensions except n = 3 we may assume that there is a single n-cell. When n = 3 we may write P as
a union P = Y ∪ e3, where Y is homologically 2-dimensional [150, Theorem 2.4]. (Thus the exceptional
case relates to the Eilenberg–Ganea Conjecture.) We shall say that a finite PD3-complex P is standard
if P ' Y ∪ e3, where Y is a finite 2-complex [Jo].

The top cell is essentially unique, and so there is a well-defined connected sum, for oriented PDn-
complexes [150, Corollary 2.4.1].



8 HILLMAN ∼∼∼ POINCARÉ DUALITY IN DIMENSION 3

1.7. Poincaré duality groups

The notion of Poincaré duality group of dimension n (or PDn-group, for short) is an algebraic analogue
of the notion of aspherical n-manifold. A finitely presentable group G is a PDn-group in the sense of
Johnson and Wall if K (G, 1) is homotopy equivalent to a PDn-complex [78]. Bieri and Eckmann gave
an alternative purely algebraic formulation: a group G is a PDn-group if it is FP (the augmentation
Z[G]-module Z has a finite projective resolution), H i (G;Z[G])= Extp

Z[G](Z,Z[G]) is 0 for i < n and
H n(G;Z[G]) is infinite cyclic as an abelian group [Bi; 8]. These conditions hold if and only if K (G, 1)
is an (aspherical) PDn-space. The dualizing module H n(G;Z[G]) is a right Z[G]-module, with G-action
determined by a homomorphism w = w1(G) : G→ Z×. The group is orientable (or is a PD+n -group) if
w is trivial, i.e., if H n(G;Z[G]) is isomorphic to the augmentation module Z. (See [Bi].)

The only PD1-group is Z. Eckmann, Linnell and Müller showed that every PD2-group is the funda-
mental group of an aspherical closed surface. (See [DD, Chapter VI].) Bowditch has since found a much
stronger result.

Theorem (Bowditch [15]). Let G be an FP2 group and F a field. Then G is virtually the fundamental
group of an aspherical closed surface if and only if H 2(G; F[G]) has a 1-dimensional G-invariant
subspace. �

Bowditch used ideas from geometric group theory to show that any such group acts properly discon-
tinuously on E2 or H2, and so is commensurable with a surface group [15].

This theorem applies if H 2(G;Z[G]) is infinite cyclic, for then its image in H 2(G; F2[G]) under
reduction modulo 2 is such a subspace.

PDn-groups are FP, and thus finitely generated, but there are examples which are not finitely pre-
sentable, for all n > 4 [24]. Indeed, there are uncountably many [102, Theorem 18.1]. Whether there are
PD3-groups which are not finitely presentable remains unknown. (The case n = 3 is critical; there are
PDn-groups with all sorts of bad behaviour when n > 3. See [24].)

It is still an open question whether every finitely presentable PDn-group is the fundamental group of
a closed n-manifold. (This is one aspect of the circle of ideas around the Novikov Conjecture.)

Our references for cohomological group theory are [Bi] and [Br].

1.8. Poincaré duality pairs

The notion of PDn-space can be elaborated to consider pairs (corresponding to manifolds with boundary).
Such PDn-pairs arise naturally even when the primary interest is in the absolute case.

Let P be a connected cell complex with π1(P)= π . If Y is a subcomplex of P then (P, Y ) is a PDn-
pair with orientation character w1(P)= w : π→ Z× and fundamental class [P, Y ] in Hn(P, Y ;Zw) if
each component Yi of Y is a PDn−1-space with orientation character w|Yi and fundamental class the image
of [P, Y ] in Hn−1(Yi ;Z

w) under the connecting homomorphism, and there is a chain x ∈Cn(P, Y ;Z[π ])
such that 1⊗ x is an n-cycle representing [P, Y ] and cap product with x induces a chain homotopy
equivalence

−∩ x : Cn−∗(P;Z[π ])→ C∗(P, Y ;Z[π ]).

(Cap product −∩ x : Cn−∗(P, Y ;Z[π ])→ C∗(P;Z[π ]) is then also a chain homotopy equivalence.) We
shall also say that (P, Y ) satisfies Poincaré–Lefshetz duality. We shall usually write ∂P for Y and ∂ P̃
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for the preimage of Y in P̃ . (The components of ∂ P̃ need not be 1-connected.) See [87] for a detailed
exposition of relative duality, and the necessity of some hypothesis on the boundary subcomplex.

A PDn-pair of groups is the analogue of an aspherical compact manifold with π1-injective, aspherical
boundary components. This notion was introduced by Bieri and Eckmann, and arises in connection with
JSJ decompositions of PD3-groups. Such a pair consists of a group G of finite cohomological dimension
and a finite set S of conjugacy classes of monomorphisms σ : S→ G (for various groups S) satisfying
a modified form of Poincaré–Lefshetz duality [8].

We shall use also a reformulation given in [DD, Chapter 7]. If G is a group and � is a left G-set, let
Z[�] be the left Z[G]-module with basis� as an abelian group. Let ε� :Z[�]→Z be the homomorphism
given by ε�(u)= 1, for all u ∈�, and let

1(G, �)= Ker(ε�).

If M is a left Z[G]-module and k ∈ Z, let

H k(G, �;M)= H k−1(G;HomZ[G](1(G, �),M)).

Then (G, �) is a PDn-pair of groups, with ambient group G, if G is FP, H i (G, �;Z[G]) = 0 for
i < n and H n(G, �;Z[G])∼= Z. The G-action on the latter group determines the orientation character
w = w(G,�) : G→ Z×.

If we usew to define conjugate right Z[G]-modules M , there are natural isomorphisms H k(G, �;M)∼=
Hn−k(G;M) for all left modules M and k ∈ Z, given by cap product with a class in Hn(G;Zw).

The boundary � has finitely many G-orbits, and the point stabilizers are PDn−1-groups [DD, Theorem
V.7.11]. We shall call these subgroups the boundary components of the pair. If �=∅ then G is a PDn-
group; otherwise cd G = n− 1.

If (P, ∂P) is a PDn-pair with P aspherical and π1-injective, aspherical boundary components then
(π, π0(∂ P̃)) is a PDn-pair of groups.

We may recover the Bieri–Eckmann approach by taking S to be the set of conjugacy classes of embed-
dings of boundary components. There may be repetitions, the simplest example being the fundamental
group system of the interval [0, 1] with its boundary, with G = 1 and |�| = 2. (See also Lemmas 8.6
and 10.3 below.)

If H is a subgroup of finite index in G there is an induced PDn-pair of groups (H, �H ). The pair
(G, �) is atoroidal if every virtually polycyclic subgroup of G of Hirsch length n− 1 fixes some point
of �, but G is not itself virtually polycyclic. It is of Seifert type if G has a normal, virtually polycyclic
subgroup N of Hirsch length h(N ) = n− 2. The boundary components are then virtually polycyclic
subgroups of Hirsch length n− 1. In particular, a PD3-group G with no abelian subgroup of rank > 1 is
atoroidal, while one with an infinite cyclic normal subgroup is of Seifert type.

Prompted by the Algebraic Core Theorem of [81], we define an open PDn-group to be a count-
able group G of cohomological dimension 6 n − 1 such that if H is a nontrivial FP subgroup with
H s(H ;Z[H ]) = 0 for s < n − 1 then H is the ambient group of a PDn-pair (H, �). Every subgroup
of infinite index in a PD3-group G is an open PD3-group in our sense, by the Algebraic Core Theorem.
(The analogies are precise if n = 2, but these definitions are too broad when n > 4. We shall consider
only n = 2 or 3).
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1.9. Poincaré duality complexes of dimension 1 or 2

In the lowest dimensions the the modelling of n-manifolds by PDn-complexes is precise: every PDn-
complex is homotopy equivalent to S1 or to a closed surface, when n = 1 or 2, and two such manifolds
are homeomorphic if and only if their fundamental groups are isomorphic. Similarly, proper PDn-pairs
in these dimensions are equivalent to the interval or to a bounded surface.

It is easy to see that a PD1-complex X must be aspherical, π = π1(X) has two ends and cdπ = 1.
Let G be a PD1-group. Then cd G = 1, so G is torsion-free, and H 1(G;Z[G])∼= Z, so G has two ends.
Therefore G ∼= Z and G is orientable. Alternatively, G is free of finite rank r , and so H1(G;Z) ∼= Zr .
Hence r = 1, i.e., G ∼= Z, and G is orientable.

Here is an argument not requiring cohomological characterizations of ends or free groups. If G is a
PD1-group and w = w1(G) then H1(G;Z) ∼= H 0(G;Zw). If w = w1(G) 6= 0 then H1(G;Z) 6= 0 but
H 0(G;Zw)= 0. This is a contradiction, so w= 0 and G is orientable. Hence H1(G;Z)∼= H0(G;Z)= Z,
and so there is an epimorphism φ : G → Z. Let K = Ker(φ), and let M be a left K -module. Let
W = HomZ[K ](Z[G],M) be the coinduced left G-module, and let W be the conjugate right G-module.
Then H 1(K ;M) ∼= H 1(G;W ), by Shapiro’s Lemma. This in turn is isomorphic to H0(G;W ), by
Poincaré duality, and is easily seen to be 0. Therefore cd K = 0 and so K is trivial; see [Br, Exercise
VIII.2.1]. Therefore φ is an isomorphism, and so G ∼= Z.

Every PD2-complex X is homotopy equivalent to a closed surface. While this was expected to be so,
the proofs are not easy. If the fundamental group is finite then X is homotopy equivalent to one of S2 or the
real projective plane RP2 [150]. All others are aspherical. Eckmann and Müller showed that every PD2-
complex with χ(X)6 0 is homotopy equivalent to a closed surface, by first proving the corresponding
result for PD2-pairs with nonempty boundary and then showing that every PD2-group splits over a copy
of Z [32]. The argument involves delicate combinatorial group theory. Shortly afterwards, Eckmann and
Linnell showed that there is no aspherical PD2-complex X with χ(X) > 0 [31]. (See [DD, Chapter VI]
for an exposition of this work.) Much later Bowditch proved the theorem cited in §7 above, which must
be close to the optimal characterization of virtual PD2-groups [15]. However, we need the relative case
also. See also [85] for a succinct characterization based on geometric group theory.

Higher dimensional considerations suggest another, more topological strategy, which can be justified
a posteriori. If X is an orientable PD2-space then there is a degree-1 map f : M→ X with domain a
closed orientable surface. Choose compatible basepoints mo and xo = f (mo), and let π = π1(X, xo) and
f∗ = π1( f ). Then

f is a homotopy equivalence ⇔ Ker( f∗)= 1 ⇔ χ(M)= χ(X).

If Ker( f∗) contains the class of a non-separating simple closed curve γ we may reduce |χ(M)| by surgery
on γ . If X is also a closed orientable surface and χ(M) < χ(X) then there is a separating nontrivial
simple closed curve γ such that M \ γ = M0 tM1, where f |M0 ∼ ∗ and f |M1 has degree 1 [34]. Since
any simple closed curve in M0 is in Ker(π1( f )), there is also a non-separating curve γ ⊂ M with
image in the kernel of π1( f ). After finitely many iterations we obtain a degree-1 map f̂ : M̂→ X , with
χ(M̂)= χ(X). Such a map must be a homotopy equivalence. However it seems that Edmonds’ argument
requires the codomain X to also be a 2-manifold, which is what we want to prove! Can we avoid a vicious
circle?
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1.10. Infinite cyclic covers of 4-manifolds

In dimensions other than n = 4 or 5 there are good geometric fibration theorems, showing that a map
f : Mn

→ S1 such that π1( f ) is an epimorphism is homotopic to the projection of a fibre bundle (and
so M is a mapping torus) if and only if the homotopy fibre is suitably finite and a Whitehead torsion is
0, by the work of Stallings (n = 3) and Farrell (n > 6). (When n = 5 this holds also topologically, if the
Disc Embedding Conjecture holds over π1(M).)

In dimension 4 there is the following analogue, which illustrates how PD3-complexes arise in a natural
way.

Theorem [72; Hi]. Let M be a closed 4-manifold such that π = π1(M) has a finitely generated normal
subgroup ν with π/ν ∼= Z. Then χ(M)> 0. Moreover:

(1) χ(M)= 0 ⇔ Mν is a PD3-space.

(2) If χ(M)= 0, then M is aspherical ⇔ ν has one end.

(3) If M is aspherical, then χ(M)= 0 ⇔ ν is FP2. �

The proof can be simplified if ν is finitely presentable, and Mν is then homotopy equivalent to a PD3-
complex. If M ' Mν × S1 then Mν must be finite, since n-manifolds are simple PDn-complexes [118].
However, the arguments of [52] give such examples with ν finite, but for which Mν is not homotopy
equivalent to a 3-manifold.

The argument for the above theorem is algebraic, and so it holds also for M a PD4-space. Work of
Gottlieb and Quinn shows that if f : E→ B is a fibration with homotopy fibre F and the base B is a
PDr -complex, then F is a PDn−r -complex if and only if it is finitely dominated and E is a PDn-complex.
However, when B = S1 and n = 4 these hypotheses are stronger than those in the theorem.





CHAPTER 2

Classification, Realization and Splitting

This chapter is based on the work of Hendriks and Turaev [58; 145; 147], and is central to the first half
of this book. We begin with a simplification of the definition of PD3-complex. In §2 we define the
fundamental triple, and follow Hendriks in showing that it is a complete invariant for the homotopy type
of a PD3-complex. There is an alternative system of invariants, involving the first nonzero k-invariant, and
in §3 we ask how these two systems may be related. The Realization Theorem of Turaev characterizes the
fundamental triples realized by PD3-complexes. We defer the proof to Chapter 3, where we shall give an
extension which applies also to certain PD3-pairs. In §4 we prove a weak version, which ignores the role
of the fundamental class, and in §5 we state the full version. In the next two sections we give Turaev’s
proofs of his other major results, that a PD3-complex P is a proper connected sum if and only if π1(P)
is a proper free product, and that an oriented PD3-complex has an essentially unique factorization as a
connected sum of indecomposable complexes. Turaev showed also that the finiteness obstruction may
be defined in terms of the ideas he introduced. In §8 we state his result, and comment briefly on issues
related to Whitehead torsion and surgery. The final section describes π2(P) as a Z[π1(P)]-module.

2.1. A low-dimensional simplification

In dimensions n < 3 the criterion for a finitely dominated cell complex to be a PDn-complex may be
simplified, in that we do not need to know a priori that the chain homotopy equivalence establishing
duality is given by cap product with an n-cycle. The following proof of this assertion for the case n = 3
is based on ideas from [147], but has somewhat different hypotheses.

If E∗ is a chain complex, let DE∗ = E3−∗ be the chain complex given by re-indexing the dual cochain
complex. If M is a Z[π ]-module let ei M = ExtZ[π ](M;Z[π ]), for i > 0.

Theorem 2.1. Let K be a connected 3-complex and let w : π = π1(K )→ {±1} be a homomorphism.
If C∗(K ;Z[π ]) is chain homotopy equivalent to a finite projective Z[π ]-complex C∗ such that the chain
complexes DC∗ = HomZ[π ](C3−∗,Z[π ]) and C∗ are chain homotopy equivalent, then K is a PD3-space.

Proof. If π is finite then H2(C∗)∼= H 1(C∗)= 0 and H3(C∗)∼= H 0(C∗)∼= Z. Therefore K̃ ' S3 and so
K is a PD3-complex by Lemma 1.3. We may assume henceforth that π is infinite.

Let C∗⊗Z C∗ have the diagonal left π -action, and let τ(x⊗ y)= (−1)pq y⊗x for all x ∈C p and y ∈Cq .
Let 1 : C∗→ C∗⊗Z C∗ be a diagonal approximation. Then τ1 is also a diagonal approximation, and so
is chain homotopic to1. Let κ ∈C3 be a 3-chain such that 1⊗κ is a cycle representing a generator [K ] of

H3(Z
w
⊗Z[π ] C∗)∼= H3(Z

w
⊗Z[π ] DC∗)= H 0(C∗;Zw)∼= Z,

and let 1(κ) =
∑∑

xi, j ⊗ y3−i, j . Cap product with 1⊗ κ defines a chain map θ∗ : DC∗ → C∗ by
θ(φ)=

∑
φ(x3−i, j )yi, j for all φ ∈ C3−i . We shall show that θ∗ is a chain homotopy equivalence. The

13



14 HILLMAN ∼∼∼ POINCARÉ DUALITY IN DIMENSION 3

double dual DDC∗ is naturally isomorphic to C∗, and θ∗ induces a dual map Dθ∗ : DC∗→ DDC∗ = C∗.
The “symmetry” of 1 with respect to τ implies that Dθ∗ and θ∗ are chain homotopic, as in [147].

The epimorphism C3
→H 3(C∗)=H0(DC∗)∼=H0(C∗)∼=Z factors through Z⊗Z[π ]C3

=Hom(Zw⊗Z[π ]

C3,Z). Hence there is a φ ∈ C3 such that φ(κ) = 1 and so H0(θ∗) is an isomorphism (since 1 is a
diagonal approximation). Since π is infinite, H 0(DC∗)= H 0(C∗)= 0. Hence H3(C∗)= H3(DC∗)=
H1(C∗) = H1(DC∗) = 0, and so H1(θ∗) and H3(θ∗) are trivially isomorphisms. In particular, the dual
θ∗ :C∗→ DC∗ induces an isomorphism e1 H0(DC∗)∼= e1 H0(C∗), since H0(θ∗) is an isomorphism. It fol-
lows that H2(θ∗)= H2(Dθ∗) is also an isomorphism, since H2(DC∗)= H 1(C∗) and H2(C∗)= H 1(DC∗)
are naturally isomorphic to e1 H0(C∗) and e1 H0(DC∗), respectively. Hence θ is a chain homotopy equiv-
alence, and so K is a PD3-space. �

A similar (and easier) result is true for complexes of dimension 1 or 2. On the other hand, the 1-
connected space S2

∨ S4 is not a PD4-complex, although it has a cell structure with just 3 cells, and the
cellular chain complex is obviously isomorphic to its linear dual.

2.2. The Classification Theorem

The fundamental triple of a PD3-complex P is [π1(P), w1(P), cP∗[P]], where cP : P→ K (π1(P), 1)
is the classifying map and [P] is the fundamental class in H3(P;Zw1(P)). There is an obvious notion
of isomorphism for such triples. Note, however, that if P and Q are nonorientable PDn-spaces then a
map f : P→ Q such that f ∗w1(Q) = w1(P) only determines a homomorphism from Hn(P;Zw1(P))

to Hn(Q;Zw1(Q)) up to sign, as one must choose a lift f + : P+ → Q+. Thus it is only meaningful
to specify the sign of [P] if we work with pointed spaces. (See [139] for a thorough discussion of the
subtleties here. This issue has no serious consequences for the present work, and it is convenient to keep
track of the signs when considering orientable complexes.)

Hendriks showed that this triple is a complete homotopy invariant for such complexes [58]. (For
orientable 3-manifolds, this was shown earlier by Swarup [138].)

Lemma 2.2. Let f : P→ Q be a map between two PD3-complexes. Then f is a homotopy equivalence
if and only if π1( f ) is an isomorphism, w1(P)= f ∗w1(Q) and H3( f ;Zw1(Q)) is an isomorphism.

Proof. The conditions are clearly necessary. Suppose that they hold, and let f̃ : P̃→ Q̃ be a lift of f . If
π = π1(P) is finite then P̃, Q̃ ' S3, and π3( f )= H3( f̃ ;Z) is an isomorphism.

If π is infinite then f induces an isomorphism of end modules E(π1(Q))∼= E(π1(P)). Hence π2( f )=
H2( f̃ ;Z) is an isomorphism, by Poincaré duality.

In each case Hi ( f̃ ;Z) is an isomorphism for all i > 0, and so the lemma follows from the Hurewicz
and Whitehead Theorems. �

If P and Q are orientable and P has an aspherical summand, P1 say, so P = P1 ] P2, then the
hypotheses may be simplified [138]. (Let c : P→ P1 collapse the second summand, and let g : Q→ P1

be a map inducing π1(c)π1( f )−1. Then g f ∼ c, since P1 is aspherical, and so deg g deg f = deg c=±1.
Thus f must have degree ±1.) We shall see in Chapter 4 that P must have such a summand if π is not
virtually free.

We need some ingredients from obstruction theory. Let P and Q be PD3-complexes such that P =
Po ∪g e3 and Q = Qo ∪g′ e3, where Po and Qo are homologically 2-dimensional. If f o

: Po→ Qo is a
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map and f [1] is its restriction to the 1-skeleton P [1] then the primary obstruction to extending f [1] to a
map from P to Qo is a class

O( f o) ∈ H 3(P; ( f o)∗π2(Qo)).

(This obstruction depends only on f [1].) In particular, the primary obstruction to retracting P onto Po is
A(P)=O(ιo), where ιo : Po→ P is the inclusion. The latter obstruction is represented by the cocycle
with value [g] on the 3-cell P \ Po and 0 on all other 3-cells. Let

A(P)= A(P)∩ [P] ∈ H0(P;Zw⊗π2(Po)).

Returning to the map f o
: Po→ Qo, we have O( f o)= ϕ# A(P), where ϕ# is the change of coefficients

homomorphism. If f [1] can be extended to a map f : P→ Q then O( f o)= f ∗A(P). Hence

f∗(ϕ#A(P))= f∗(ϕ# A(P)∩ [P])= f∗( f ∗A(Q)∩ [P])= A(Q)∩ f∗[Q],

and so f∗(ϕ#A(P))= dA(Q), if f∗[P] = d[Q].
Suppose conversely that f [1]∗ (ϕ#A(P)) = dA(Q). Then O( f o) is represented by the cocycle with

value d[g′] on the 3-cell P \ Po and 0 on all other 3-cells. Since g′ = 0 ∈ π2(Q), the function f [1]

extends to a map f : P→ Q such that f∗(ϕ#A(P)) = dA(Q). By the equations displayed above, this
map f must have degree ±d .

We now translate these observations into terms involving the fundamental group.

Theorem 2.3 [58]. Let P and Q be PD3-complexes, and let ϕ be an epimorphism from π = π1(P) to
ρ = π1(Q) such that w1(P)= w1(Q) ◦ϕ. Let d 6= 0 be an integer. Then there is a map f : P→ Q such
that π1( f )= ϕ and f∗[P] = ±d[Q] if and only if ϕ∗(cP∗[P])= cQ∗[Q].

Proof. The condition is clearly necessary.
Suppose that ϕ satisfies it. We may assume that P = Po ∪g e3 and Q = Qo ∪g′ e3, where Po and Qo

are homologically 2-dimensional, and g and g′ are the attaching maps. Let w = w1(Q). There is a map
f : Po→ Q which induces ϕ, and there is no obstruction to homotoping f |Po to have image in Qo.

We may construct an Eilenberg–Mac Lane space K = K (π, 1) by adjoining cells of dimension > 3
to P . The relative Hurewicz homomorphism in K̃ projects to give an isomorphism

hwz : Zw⊗Z[π ] π3(K , Po)∼= H3(K , Po;Z
w).

The natural homomorphism e : H3(K ;Zw)→ H3(K , Po;Z
w) is a monomorphism, since H3(Po;Z

w)= 0,
while the connecting homomorphism ∂ : π3(K , Po)→ π2(Po) in the exact sequence of homotopy for
(K , Po) is an isomorphism, since K is aspherical. Hence h P = (1⊗ ∂)(hwz)−1e is a monomorphism.

We may identify Zw⊗Z[π ] π2(Po) with H0(P;π2(Po)). Then

h P(cP∗[P])= [1⊗[g]] = A(P).

Since h P is a monomorphism and is natural with respect to fundamental group homomorphisms compat-
ible with the orientation characters, the result follows. �

Taking d =±1 gives the following.

Corollary 2.3.1 (Classification Theorem [58]). Two PD3-complexes P and Q are homotopy equivalent
if and only if their fundamental triples are isomorphic. �
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Turaev gave another proof of the Classification Theorem, related to his proofs of the Realization and
Splitting Theorems [147].

2.3. Homological triple versus algebraic 2-type

C. B. Thomas gave an alternative set of invariants, based on the Postnikov approach, for orientable 3-
manifolds [141]. This applies equally well for PD3-complexes. When π is finite, the approaches are
equivalent, but the connection is not clear when π is infinite.

Let P be a PD3-space with fundamental group π and orientation character w. If π is finite then
w = 0 and π2(P) = 0, and P is determined by k2(P) ∈ H 4(π;Z), which is the first nontrivial k-
invariant. (See Theorem 5.2.) In this case, k2(P) and cP∗[P] ∈ H3(π;Z) are essentially equivalent.
The image of the orientation class of X generates H3(π;Z)∼= Z/|π |Z. The Bockstein homomorphism
β : H 3(π;Q/Z)→ H 4(π;Z) is an isomorphism, since Hq(π;Q)= 0 for q > 0, and the bilinear pairing
from H3(π;Z)× H 4(π;Z) to Q/Z given by (h, c) 7→ β−1(c)(h) is nonsingular. Each generator g of
H3(π;Z) determines an unique kg ∈ H 4(π;Z) such that β−1(kg)(g)= 1

|π |
mod Z. Thomas showed that

if g = cX∗[X ] then kg = k2(P).
Suppose that π is infinite. If N is another PD3-space and there is an isomorphism θ : ν = π1(N )→ π

such that w1(N )= θ∗w then π2(N )∼= θ∗π2(P) as Z[ν]-modules. If moreover k1(N )= θ∗k1(P) (modulo
automorphisms of the pair (ν, π2(N ))) then P2(N )' P2(P). Since we may construct these Postnikov
2-stages by adjoining cells of dimension > 4 it follows that there is a map f : N→ P such that π1( f )= θ
and π2( f ) is an isomorphism. Since Hi (Ñ )= Hi (P̃)= 0 if i > 2, the map f is a homotopy equivalence,
by the Hurewicz and Whitehead Theorems. Thus the homotopy type of P is determined by the triple
(π,w, k1(P)). One may ask how cP∗[P] and k1(P) determine each other.

In the Realization Theorem the element of H3(π;Z
w) is used to construct a cell complex X by attach-

ing 2- and 3-cells to the 2-skeleton of K (π, 1). (See Chapter 3.) If C∗ is the cellular chain complex of
X̃ then k1(X) is the class of

0→ π2(X)→ C2/∂C3→ C1→ C0→ Z→ 0

in H 3(π;π2(X))= Ext3Z[π ](Z, π2(X)).
Conversely, a class κ ∈ Ext3Z[π ](Z,5) corresponds to an extension

0→5→ D2→ D1→ D0→ Z→ 0,

with D0 and D1 finitely generated free Z[π ]-modules. Let D∗ be the complex D2→ D1→ D0, with
augmentation ε to Z. If κ = k1(P) for a PD3-complex P then TorZ[π ]

3 (Zw,D∗) ∼= H3(P2(P);Zw) ∼= Z

(where Tor denotes hyperhomology), and the augmentation then determines a class in H3(π;Z
w) =

TorZ[π ]
3 (Zw,Z) (up to sign). Can these connections be made more explicit?

2.4. The Group Realization Theorem

The characterization of the pairs (π,w) realized by PD3-complexes follows from the Realization Theo-
rem of Turaev, which we formulate later (and prove in Chapter 3). We derive it here as a fairly straight-
forward consequence of the arguments for Theorem 2.1.
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Theorem 2.4 (Group Realization Theorem). Let π be a finitely presentable group and w : π → {±1}
a homomorphism. Then there is a finite PD3-complex P with π1(P)∼= π and w1(P)= w if and only if
[DI (π)] = [I (π)]. There is a standard PD3-complex realizing (π,w) if and only if π has a presentation
of deficiency 0 and D(I (π);M) ∼= I (π), where M is the associated square Fox–Lyndon presentation
matrix for I (π).

Proof. Let P be a connected PD3-complex with π1(P)∼= π and w1(P)=w. We may assume that P has a
single 0-cell and finite 2-skeleton, and that C∗ and DC∗ are finitely generated projective Z[π ]-complexes.
Then C0 ∼= Z[π ] and Coker(∂C

2 )= Im(∂C
1 ) is the augmentation ideal I (π). Let M be the matrix for ∂C

2
with respect to the bases represented by chosen lifts of the cells of P . (This is essentially a Fox–Lyndon
matrix.) Since H0(C∗)∼= H0(DC∗)∼= Z and I (π)= Coker(∂C

2 ), Schanuel’s Lemma implies that

I (π)⊕ DC0 ∼= Coker(∂D
2 )⊕C0.

Since ∂D
2 has matrix M tr it follows that [DI (π)] = [I (π)].

If P = Po ∪ e3 is standard then, after collapsing a maximal tree in P [1], if necessary, we may assume
also that Po has one 0-cell. Since χ(Po) = 1, it is then clear that π has a presentation of deficiency 0.
Moreover, D(I (π);M) is the kernel of the epimorphism from C3 ∼= Z[π ] to H 3(C∗)∼= Z. This must be
equivalent to the augmentation homomorphism, and so D(I (π);M)∼= I (π).

Conversely, let K be the finite 2-complex associated to a presentation for π , and let M be the
corresponding Fox–Lyndon presentation matrix for I (π). Suppose first that D(I (π);M)⊕ Z[π ]m ∼=

I (π) ⊕ Z[π ]n . Let L = K ∨ mS2. Then π1(L) ∼= π1(K ) and Coker(∂L
2 )
∼= I (π) ⊕ Z[π ]n . Let

DC1 = HomZ[π ](C2(L;Z[π ]),Z[π ]) and let α be the composite

DC1→ D(I (π);M)⊕Z[π ]m ∼= I (π)⊕Z[π ]n→ Z[π ]n+1.

Then α tr
: Z[π ]n+1

→ C2(L;Z[π ]) has image in π2(L) = H2(L;Z[π ]). Let {e1, . . . , en+1} be the
standard basis of Z[π ]n+1, and let fi be a map in the homotopy class of α tr(ei ), for i 6 n+ 1. Let P
be the 3-complex obtained by adjoining 3-cells to L along the n+ 1 maps { f1, . . . , fn+1}. Then P is a
finite 3-complex, and π1(P)∼= π .

The arguments of Theorem 2.1 apply to P , as we now show. Let DC∗ be the chain complex obtained by
reindexing the dual cochain complex, so DCq =HomZ[π ](C3−q ,Z[π ]). Clearly H0(C∗)= H0(DC∗)=Z.
If π is finite then H 0(C∗)∼= H 0(DC∗)∼= Z and H1(C∗)= H1(DC∗)= H 1(C∗)= H 1(DC∗)= 0. Hence
P̃ ' S3 and so P is a PD3-complex, by Lemma 1.3. If π is infinite then

H1(C∗)= H1(DC∗)= 0, H 1(C∗)∼= H 1(C D∗)∼= E(π),

and H 0(C∗)= H 0(DC∗)= 0, so H3(C∗)= H3(DC∗)= 0. Let x ∈C3 represent a generator of H3(P;Zw).
Then cap product with x gives a chain homomorphism θ∗ from DC∗ to C∗ which induces isomorphisms
in degrees 0 and 1. Hence it induces isomorphisms H 1(C∗)∼= H 1(DC∗), and so

H2(θ∗) : H2(DC∗)= H 1(C∗)→ H2(C∗)= H 1(DC∗)

is an isomorphism. Since Hi (θ∗) is an isomorphism for all i and C∗ and DC∗ are projective chain
complexes, θ∗ is a chain homotopy equivalence. Hence P is a PD3-complex.
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If π has a presentation of deficiency 0 and D(I (π);M) ∼= I (π), then m = n = 0 and so the above
argument shows that K ∪ e3 is a standard PD3-complex. �

If D(I (π);M)⊕ L ∼= I (π)⊕N , where L and N are finitely generated projective Z[π ]-modules which
are not stably isomorphic, we must adjoin infinitely many 2- and 3-cells to get a finitely dominated PD3-
complex, as in [147]. This can be further extended to realize groups which are FP2 but not finitely
presentable by PD3-spaces.

It can be shown that if P is a finite PD3-space then I (π) has a square presentation matrix.
Changing coefficients gives a weaker but useful condition:

Corollary 2.4.1. Let f : Z[π ] → R be a homomorphism of rings. If π = π1(P) for some PD3-complex
P then

(R⊗ f I (π))⊕ R⊗ L ∼= (R⊗ f D(I (π);M))⊕ R⊗ N

for some projective R-modules L and M. �

We shall use such conditions in Chapters 6 and 7 to exclude some pairs (π,w). On the other hand,
we shall justify our constructions of new orientable examples by means of Theorem 2.1.

We emphasize that Theorem 2.4 is only part of Turaev’s determination of the triples [π,w,µ] realized
by PD3-complexes. We shall need the full Realization Theorem to establish the Splitting Theorem.
However, we shall defer the proof to Chapter 3, where we give a similar result for certain PD3-pairs.

2.5. Statement of the Realization Theorem of Turaev

In this section we shall follow [147] closely.
Suppose that R is a ring with an anti-involution r 7→ r̄ . Let C∗ be a projective R-chain complex and

let C∗ be the dual cochain complex, with Cq
= C†

q . By reversing the indexing, we obtain another chain
complex C−∗. Let Gr (C∗)=Cr/∂Cr+1. If Cr is finitely generated let Fr (C∗)=G−r (C−∗)=Cr/∂Cr−1.
These formulae clearly give rise to functors from chain complexes to modules.

Lemma 2.5. Let f, g : C∗→ D∗ be chain homotopic homomorphisms of projective chain complexes C∗
and D∗. If Cr is finitely generated then Gr ( f ) and Gr (g) are projectively homotopic.

Proof. This is a simple consequence of the definitions of homotopy used here, since Gr ( f )− Gr (g)
factors through Cr . �

In particular, if f : C∗→ D∗ is a chain homotopy equivalence of finitely generated projective com-
plexes then Gr ( f ) and Fr ( f ) are projective homotopy equivalences.

Let C∗ be a free Z[π ]-chain complex and let w : π → Z× be a homomorphism. Tensoring C∗ over
Z[π ] with the short exact sequence

0→ I (π)→ Z[π ] → Zw→ 0

gives a short exact sequence of chain complexes

0→ I (π)C∗→ C∗→ Zw⊗Z[π ] C∗→ 0.

Let δr : Hr+1(Z
w
⊗Z[π ] C∗)→ Hr (I (π)C∗) be the connecting homomorphism. If c ∈ I (π)Cr is a cycle,

evaluation on c determines a homomorphism evr (c) : Fr (C∗)→ I (π), given by evr (c)([φ])= φ(c), for
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all φ ∈Cr . If c′= c+α∂(e) for some e ∈Cr+1 and α ∈ I (π) then (evr (c′)−evr (c))[φ] =φ(∂(e))α. Thus
evr (c′)− evr (c) factors through right multiplication by α from Z[π ] to I (π), and so is null-homotopic.
Hence evr defines an (additive) homomorphism from Hr (I (π)C∗) to [Fr (C∗), I (π)], which we shall
also call evr , for simplicity of notation. We set

νC∗,r = evr ◦δr : Hr+1(Z
w
⊗Z[π ] C∗)→ [Fr (C∗), I (π)].

If f :C∗→ D∗ is a chain homotopy equivalence of free Z[π ]-chain complexes, then νD∗,r ( f∗ξ)= νC∗,r (ξ)

for all ξ ∈ Hr+1(Z
w
⊗Z[π ] C∗).

Lemma 2.6 [147, Lemma 2.5]. Let C∗ be a free Z[π ]-chain complex such that C2 is finitely generated
and H2(C∗)= H3(C∗)= 0. Then νC∗,2 : H3(Z

w
⊗Z[π ] C∗)∼= [F2(C∗), I (π)] is an isomorphism.

Proof. Since H2(C∗)= H3(C∗)= 0, the connecting homomorphism δ2 : H3(Z
w
⊗Z[π ]C∗)→ H2(I (π)C∗)

is an isomorphism.
Let g : F2(C∗)→ I (π) be a homomorphism. Since C2 is finitely generated, there is a canonical

isomorphism C††
2
∼= C2, and so the composite

C2
→ F2(C∗)

g
−−−→ I (π)→ Z[π ]

is given by x 7→ x (c), for some c ∈C2 and all x ∈C2. Since this composite is 0 on ∂C1, we have ∂(c)= 0,
and c ∈ I (π)C2, since x (c) ∈ I (π) for all x ∈ C2. Hence ev2[c] = [g] in [F2(C∗), I (π)], and so ev2 is
onto.

Suppose now c∈ I (π)C2 is a cycle such that ev2[c] = 0. Then there are homomorphisms h : F2(C∗)→
Z[π ]m and β : Z[π ]m→ I (π) such that ev2(c)= β ◦ [h]. Then there are cycles c1, . . . , cm ∈C2 such that
the composite C2

→ F2(C∗)→ Z[π ]m is given by x 7→ (x (c1), . . . , x (cm )). Let βi be the image in I (π)
of the i-th standard generator of Z[π ]m . Then c =

∑
βi ci . There are chains di ∈ C3 such that ∂di = ci ,

for i 6 m, since the ci are cycles and H2(C∗) = 0. Hence c = ∂
(∑

βi di
)
, which is in ∂ I (π)C3. Thus

ev2 is also an isomorphism and so νC∗,2 is an isomorphism. �

Theorem (Turaev’s Realization Theorem [147]). Let π be an FP2 group, w : π→ Z× a homomorphism
and µ ∈ H3(π;Z

w). Let C∗ be a free Z[π ]-resolution of Z which is finitely generated in degrees 6 2.
Then there is a PD3-space realizing the triple [π,w,µ] if and only if νC∗,2(µ) is a projective homotopy
equivalence. �

We shall give Bleile’s extension of this result to a Realization Theorem for certain PD3-pairs in Chapter 3.
The Classification and Realization Theorems have a slightly more precise common formulation. In

[4], Baues and Bleile define three categories:

(1) PD3
+
/∼ : homotopy types of PD3-complexes (with pointed universal covers) and degree-1 maps;

(2) PD3
∗+
/∼ : chain homotopy types of “PD3-chain complexes” and degree-1 chain morphisms; and

(3) Trp3
+ν : Hendriks triples and epimorphisms of groups which are compatible with the other data.

They observed that the natural invariants define functors

PD3
+
/∼→ PD3

∗+
/∼→ Trp3

+ν,
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which are full (surjective on morphisms) and reflect isomorphisms (a morphism is an isomorphism if its
image is an isomorphism).

The homotopy type of a higher dimensional PDn-complex X is determined by the triple

(Pn−2(X), w, fX∗[X ]),

where fX : X→ Pn−2(X) is the Postnikov (n− 2)-stage and w = w1(X) [4]. If X̃ is (n− 2)-connected
then Pn−2(X)' K (π, 1), so this triple is a direct analogue of Hendriks’ invariant.

2.6. Connected sum decompositions

It is a well known consequence of the Sphere Theorem that every closed orientable 3-manifold is a
connected sum of indecomposable factors, which are either aspherical or have fundamental group Z or a
finite group. In his foundational 1967 paper, Wall asked whether PD3-complexes behave like 3-manifolds
with regards to connected sum [150]. Consider the following conditions for a PD3-complex P:

(1) P is a proper connected sum (the sum of two PD3-complexes neither of which is 1-connected).

(2) π = π1(P) is a proper free product.

(3) Either e(π)=∞ or π ∼= Z/2Z ∗Z/2Z.

Clearly (1)⇒ (2)⇒ (3), and these conditions are equivalent if P is a closed, orientable 3-manifold. Wall
asked whether either of these implications could be reversed for general PD3-complexes, and observed
that the implication (2)⇒ (1) seemed more likely [150]. Turaev used his Realization Theorem to show
that (1)⇔ (2) (the “Splitting Theorem”), while Crisp showed that every indecomposable orientable PD3-
complex is either aspherical or its fundamental group is the fundamental group of a finite graph of finite
groups [22]. (We shall give his proof in Chapter 4.) However, the group may have infinitely many ends,
in contrast to the situation for 3-manifolds. We shall give an explicit example with π ∼= S3 ∗Z/2Z S3 in
Chapter 6.

We shall say that a PD3-complex is indecomposable if it is not a proper connected sum.

Theorem 2.7 (Splitting Theorem [147]). A PD3-complex P with fundamental triple [π,w,µ] is a proper
connected sum P1 ] P2 if and only if π is a proper free product.

Proof. The condition is clearly necessary. Suppose that it holds. Then π = π1(P)∼= G1 ∗G2 where G1

and G2 are nontrivial groups. Let ιi : Gi → π be the inclusion, and let ρi : π→ Gi be the retraction, for
i = 1, 2. Let wi = w|Gi , for i = 1, 2. Then w = w1 ◦ ρ1+w2 ◦ ρ2, and

H3(π;Z
w)∼= H3(G1;Z

w1)⊕ H3(G2;Z
w2).

Let µi = H3(ρi )(µ) ∈ H3(Gi ;Z
wi ), for i = 1, 2. Then µ= µ1+µ2. We shall construct PD3-complexes

P1 and P2 with fundamental triples [Gi , wi , µi ], for i = 1, 2.
Since π is finitely presentable, so are the factors G1 and G2. Hence there are K (Gi , 1)-complexes

Ki , with one 0-cell and finite 2-skeleton, for i = 1, 2, and K = K1 ∨ K2 is a K (π, 1)-complex. Let
C(i)∗=C∗(K̃i ), for i = 1, 2, and C∗=C∗(K̃ ). Let αi be the change of coefficients functor Z[π ]⊗Z[Gi ]−,
and let β i be the left inverse induced by the projection of π onto Gi , for i = 1, 2. Then

Cq = α
1C(1)q ⊕α2C(2)q
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when q > 0. Hence F2(C∗)= α1 F2(C(1)∗)⊕α2 F2(C(2)∗). Similarly, I (π)= α1 I (G1)⊕α
2 I (G2).

Let fi : F2(C(i)∗)→ I (Gi ) be a representative of νC(i)∗(µi ), for i = 1, 2. Then νC∗(µ) is represented
by the homomorphism

α1 f1⊕α
2 f2 : α

1 F2(C(1)∗)⊕α2 F2(C(2)∗)→ α1 I (G1)⊕α
2 I (G2).

We shall show that each fi is a projective homotopy equivalence. Since νC∗(µ) is a projective homotopy
equivalence there are finitely generated projective modules L and M and a homomorphism j such that
the following diagram commutes

α1 F2(C(1)∗)⊕α2 F2(C(2)∗)
α1 f1⊕α

2 f2
−−−−−−→ α1 I (G1)⊕α

2 I (G2)y y
α1 F2(C(1)∗)⊕α2 F2(C(2)∗)⊕ L

j
−−−→ α1 I (G1)⊕α

2 I (G2)⊕M.

We apply the functor β i . Clearly β i
◦αi
= id and β i L and β i M are finitely generated projective Z[Gi ]-

modules. Applying β i to a finitely generated Z[G3−i ]-module gives a module of the form Z[Gi ] ⊗ A,
where A is a finitely generated abelian group. Hence Z[Gi ]⊗ A is the direct sum of a finitely generated
free Z[Gi ]-module with a Z-torsion module of finite exponent. In particular, when i = 1 we obtain a
diagram

F2(C(1)∗)⊕ F ⊕ T
f1⊕(β

1α2) f2
−−−−−−−→ I (G1)⊕ F ′⊕ T ′y y

F2(C(1)∗)⊕ F ⊕ T ⊕β1L
β1 j
−−−→ I (G1)⊕ F ′⊕ T ′⊕β1 M,

where F and F ′ are free Z[G1]-modules and T and T ′ have finite exponent. It follows from the com-
mutativity of the diagram and the nature of the homomorphism f1⊕ (β

1α2) f2 that β1 j (F2(C(1)∗) 6
I (G1)⊕β

1 M . Since β1 j is an isomorphism and I (G1) and β1 M are torsion-free, so is F2(C(1)∗).
Therefore we may factor out the torsion submodules to get a simpler commuting diagram

F2(C(1)∗)⊕ F
f1⊕h
−−−→ I (G1)⊕ F ′y y

F2(C(1)∗)⊕ F ⊕β1L
β1 j
−−−→ I (G1)⊕ F ′⊕β1 M,

where h is a homomorphism of free modules. By the commutativity of this diagram, f1 is the composite

F2(C(1)∗)→ F2(C(1)∗)⊕ F ⊕β1L ∼= I (G1)⊕ F ′⊕β1 M→ I (G1),

where the left- and right-hand maps are the obvious inclusion and projection, respectively. Hence f1

is a projective homotopy equivalence, and so [G1, w1, µ1] is the fundamental triple of a PD3-complex
Q1, by the Realization Theorem. Similarly, [G2, w2, µ2] is the fundamental triple of a PD3-complex Q2.
Since the fundamental triple of the sum Q1 ] Q2 is [G1 ∗G2, w1ρ1+w2ρ2, µ1+µ2], we may conclude
that P ' Q1 ] Q2. �
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The analysis of indecomposable PD3-complexes P with π = π1(P) (in Chapter 4) relies on the
following observations:

(1) π2(P)∼= E(π), by Poincaré duality.

(2) E(π) has Chiswell–Mayer–Vietoris presentations.

(3) The action of π on π2(P) has the property stated in Lemma 4.6.

(4) If an orientable PD3-complex P is indecomposable, either it is aspherical or π1(P) is virtually free.

This last was proved by Crisp through an ingenious combinatorial argument, and is a substantial partial
answer to the second part of Wall’s question.

The arguments of Turaev and Crisp extend to PD3-spaces in a straightforward manner. In particular,
they imply that if P is a PD3-space then π = π1(P) is virtually torsion-free. However, there is an
indecomposable orientable PD3-complex with π ∼= S3 ∗Z/2Z S3 ∼= F(2) o S3 whose double cover is
homotopy equivalent to L(3, 1) ] L(3, 1). “Most” indecomposable PD3-complexes with π virtually free
have double covers which are homotopy equivalent to connected sums of S3-manifolds. (See Chapter 6.)

The situation is somewhat different in the nonorientable case. If a nonorientable PD3-complex P is
indecomposable then either P ' R P2

× S1 or S2
×̃ S1, or π ∼= πG, where each vertex group of (G, 0)

has one end, and each edge group has order 2. (See Chapter 7.) The orientation-preserving subgroups of
the vertex groups are then PD3-groups. Such 3-manifolds are unions of quotients of punctured aspherical
3-manifolds by free involutions. However, it is not known whether the vertices of 0 must all have even
valence, nor whether a PD3-complex with orientation cover homotopy equivalent to a 3-manifold must
be homotopy equivalent to a 3-manifold.

The above arguments apply with little change to the study of PDn-complexes with (n− 2)-connected
universal cover. When n is odd, the results are similar. However when n is even it is not known whether
the group must be virtually torsion-free. On the other hand, if the group is indecomposable, virtually
free and has no dihedral subgroups of order > 2, then either it has order 6 2 or it has two ends and its
maximal finite subgroups have cohomology of period dividing n. (See [13].)

2.7. Uniqueness of factorization

The Unique Factorization Theorem for orientable PD3-complexes follows easily from the Classification
and Splitting Theorems.

Theorem 2.8 (Unique Factorization Theorem [147]). Let {Pi : i ∈ I } and {Q j : j ∈ J } be finite sets
of indecomposable orientable PD3-complexes such that P = ] i∈I Pi ' Q = ] j∈J Q j . Then there is a
bijection f : I → J such that Pi ' Q f (i), for all i ∈ I .

Proof. Suppose that h is a homotopy equivalence. Since the groups ρi = π1(Pi ) and σ j = π1(Q j ) are
indecomposable, by the Splitting Theorem, and since π1(P)= ∗i∈I ρi and π1(Q)= ∗ j∈J σ j , the images
under h∗ = π1(h) of the non-free factors of π1(P) are conjugate to factors of π1(Q), and the numbers
of free factors in π1(P) and π1(Q) are the same, by the Kurosh Subgroup Theorem for free products.
Thus we may assume that I = J = {1, . . . ,m} and that there is a k 6 m such that h∗(ρi ) = ai (σi )a−1

i ,
for some ai ∈ π1(Q) and all i 6 k, while ρi ∼= σi ∼= Z if i > k.
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Let hi : ρi → σi be the homomorphism defined by hi (x)= a−1
i h∗(x)ai , for i 6 k. The isomorphism

H3(h∗) : H3(π1(P))=
⊕
i6k

H3(ρi )∼= H3(π1(Q))=
⊕
i6k

H3(σi )

restricts to isomorphisms of corresponding summands, since inner automorphisms induce the identity on
(co)homology. Since µP =

∑
µPi and µQ =

∑
µQ j and H3(h∗) preserves the direct sum decomposition,

we have H3(hi )(µPi )= µQi , for i 6 k. Hence Pi ' Qi , for i 6 k. Since Pi ' Qi ' S2
× S1 if i > k, the

theorem is proven. �

The situation is slightly more complicated in the nonorientable case, but the result is familiar from the
case of manifolds. It is well-known that if M is a nonorientable closed n-manifold and we attach a 1-
handle to get the sum M ](Sn−1

×S1) then we may isotope the attaching map to obtain M ](Sn−1
×̃ S1). In

our context it is not clear how to justify such an argument, but it is easy to see that if P is a nonorientable
PD3-complex then the fundamental triples of P ] (S2

× S1) and P ] (S2
×̃ S1) are isomorphic. The

statement of the factorization theorem is then as follows. The proof is similar, except that we must
consider also the orientation characters.

Theorem [147]. Let P be a nonorientable PD-complex. Then P has an essentially unique factorization
as a sum ] i∈I Pi , where Pi is indecomposable and Pi 6' S2

× S1, for all i . �

2.8. The finiteness obstruction

The obstruction to a PD3-complex being homotopy finite may be determined from its fundamental
triple. If P is a PDn-complex then C∗(P;Z[π ]) is chain homotopy equivalent to a finite projective
Z[π ]-complex, E∗ say. Then P is homotopy equivalent to a finite complex if and only if the finiteness
obstruction σ(P) =

∑
(−1)i [Ei ] in K̃0(Z[π ]) is 0 [148]. Let ∗ be the involution of K̃0(Z[π ]) defined

by [P] 7→ [P†
]. Then σ(P)∗ = (−1)nσ(P), by [150, Theorem 1.3].

Let 8 : [F2(C∗), I (π)]→ K̃0(Z[π ]) be the homomorphism defined in the lemma of 1.3. Then Turaev
showed:

Theorem [147, Theorem 6]. Let [π,w,µ] be the fundamental triple of a PD3-complex, and let C∗ be a
finite free Z[π ]-chain complex such that H0(C∗) ∼= Z and H1(C∗) = 0. Then the finiteness obstruction
for P is 8(νC∗,2(µ))

∗. �

We mention briefly two issues that shall play no further role in this book.
It is well known that there are lens spaces which homotopy equivalent but not simple homotopy

equivalent, and thus not homeomorphic. If P is a finite PD3-complex with fundamental group π , which
elements of Wh(π) are the torsions of self-homotopy equivalences? The torsion τ(X) of the duality chain
homotopy equivalence of a non-simple finite PDn-complex also satisfies a duality condition τ(P)∗ =
(−1)nτ(P) [118]. Which elements of Wh(π) are realized as torsions of finite PD3-complexes? It is
widely expected that Wh(π) should be 0 if π is torsion-free, so these questions may only be of interest
when π is virtually free.

The Spivak normal fibration of any PD3-complex has a linear reduction. It was realized early in the
development of surgery that some of the theory remains valid in low dimensions, provided the notion of
structure set is modified. Following [86], we approximate PD3-complexes P by maps f : M→ P with
domain a closed 3-manifold and which induce isomorphisms in homology with coefficients Z[π ], where
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π = π1(P). We require also that these maps have torsion 0 in Wh(π). Two such maps f : M → P
and f ′ : M ′→ P are equivalent if there is a normal bordism F : W → P × [0, 1], a Rn-bundle ζ over
P ×[0, 1] and a bundle map b : νW → F∗ζ with surgery obstruction 0 in L4(π,w). Let S TOP(P) be the
set of equivalence classes of such maps. Then there is an exact sequence

S TOP(P)
Nx
−−−→ [P,G/TOP]

θx
−−−→ L3(π,w).

If π is “good” in the sense of [FQ] (for instance, if it is finite) then we may require that W be a TOP
s-cobordism in the equivalence relation defining the structure set.

2.9. π2 as a Z[π]-module

If P is an orientable 3-manifold which is the connected sum of a 3-manifold whose fundamental group is
free of rank r with s > 1 aspherical 3-manifolds, then π2(P) is a finitely generated free Z[π ]-module of
rank r+s−1 [137]. We shall give a direct homological argument that applies for PD3-spaces with torsion-
free fundamental group, and we shall also compute H 2(P;π2(P)) for such spaces. (This cohomology
group contains the primary obstruction to homotoping a self map f of P such that π1( f )= idπ to the
identity [59].)

Let P be a PD3-space with fundamental group π , and let w = w1(P). The Hurewicz Theorem,
Poincaré duality and a choice of orientation together determine an isomorphism π2(P) ∼= E(π). In
particular, π2(P)= 0 if and only if π is finite or has one end.

Theorem 2.9. Let P be a PD3-space such that π = π1(P) is nontrivial and torsion-free, and let w =
w1(P).

(1) If π is a free group, the Z[π ]-module π2(P) is finitely generated and of projective dimension 1 and
H 2(P;π2(P)) is infinite cyclic.

(2) iIf π is not free, then cdπ = 3, the Z[π ]-module π2(P) is finitely generated and free, H3(cP;Z
w) is

a monomorphism and H 2(P;π2(P))= 0.

(3) P is homotopy equivalent to a finite PD3-complex if and only if π is finitely presentable and finite
free (FF).

Proof. Poincaré duality with coefficients π2(P) gives an isomorphism

H 2(P;π2(P))∼= H1(P; E(π))= H1(π; E(π)).

Since π is FP2 we have π ∼=πG, where G is a finite graph of groups with vertex groups finite or one-ended
and edge groups finite, and so Theorem 1.2 applies.

If π is free of rank r > 0 we may assume there is one vertex, with trivial vertex group, and r edges.
The right Z[π ]-module E(π)= H 1(π;Z[π ]) then has a presentation

0→ Z[π ] → Z[π ]r → E(π)→ 0.

On applying the functor −⊗Z[π ] Z, the left-hand homomorphism becomes the trivial homomorphism
from Z→ Zr . Hence

H 2(P;π2(P))∼= H1(π; E(π))= TorZ[π ]
1 (E(π),Z)∼= Z,
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by the exact sequence of Tor. Moreover π2(P) has projective dimension 1. As π is finitely presentable
and projective Z[F(r)]-modules are free [3], P is homotopy equivalent to a finite PD3-complex.

If π is torsion-free but not free then we may assume that the vertex groups are finitely generated and
have one end, and that the edge groups are trivial. Hence E(π) is a free right Z[π ]-module with basis
corresponding to the edges of G, and so H 2(P;π2(P))= 0. We may assume that P is 3-dimensional and
C∗(P;Z[π ]) is chain homotopy equivalent to a finitely generated projective Z[π ]-complex C∗, where
Ci is free if i 6 2 and is 0 if i > 3. Let Z2 be the module of 2-cycles. Then the sequences

0→ Z2→ C2→ C1→ C0→ Z→ 0
and

0→ C3→ Z2→ π2(P)→ 0

are exact, since H3(P;Z[π ]) = H3(P̃;Z) = 0. Attaching 3-cells to P along a basis for π2(P) gives
an aspherical 3-dimensional complex K with fundamental group π . The inclusion of P into K may
be identified with cP , and clearly induces monomorphisms H3(P; A)→ H3(π; A) for any coefficient
module A. Hence cdπ = 3.

If π is FF there is a finite free resolution

0→ D3→ D2→ D1→ D0→ Z→ 0.

Therefore Z2 is finitely generated and stably free, by Schanuel’s Lemma. Since π2(P) is free, we have
Z2 ∼= π2(P)⊕ C3, and so C3 is also stably free. Hence if moreover π is finitely presentable then P
is homotopy equivalent to a finite PD3-complex. The converse is clear, by the above construction of
K (π, 1)' K . �

The Splitting Theorem may be used show that if π ∼= F(r) then P ' ]r (S2
× S1) or ]r (S2

×̃ S1).
This can be seen more directly. (Suppose that P ' Po ∪φ e3, where Po is homologically 2-dimensional.
Schanuel’s Lemma may be used to show that Po '

∨r S1
∨
∨r S2. Hence π2(Po) is a free Z[F(r)]-

module of rank r . Changes of base via automorphisms of F(r) and π2(Po) then show that P is standard.
Compare [66].)

We may relax the condition that π be torsion-free.

Corollary 2.9.1. If P is a PD3-space such that π = π1(P) is virtually torsion-free then the Z[π ]-module
π2(P) is finitely presentable. Moreover, H 2(P;π2(P)) is a finitely generated abelian group of rank 1 if
π is infinite and virtually free, and is finite otherwise. If π is infinite but not torsion-free, the projective
dimension of π2(P) is infinite.

Proof. The first two assertions follow from the theorem, since they are stable under passage to finite
overgroups. If π is infinite and π2(P) has finite projective dimension then so does Z2, and so cdπ <∞,
and then π is torsion-free. �

We shall see that π is always virtually torsion-free.
There is a slightly stronger result in the 3-manifold case. Hendriks and Laudenbach showed that

if V is a P2-irreducible closed 3-manifold then H 2(V ;π2(V )) ∼= Z if π1(V ) is virtually free, and is 0
otherwise.They used this to show that a based self-map h of V such that π1(h)= idπ and H3(h)= 1 is
homotopic to idV [59].





CHAPTER 3

The relative case

In this chapter, which is based on work of Turaev, Bleile and Crisp [12; 23; 147], we shall give partial
extensions of the Classification, Realization and Splitting Theorems to certain PD3-pairs. The fundamen-
tal triple has a straightforward extension to all PD3-pairs, but the Classification Theorem has only been
proven for pairs with aspherical boundary components. We shall state this without proof in §1. In §2 we
give Bleile’s extension of the Realization Theorem to pairs which have π1-injective, aspherical boundary
components. There are two notions of sum in the relative case: interior connected sum and boundary
connected sum. We state the corresponding decomposition theorems in §3 (again without proof). In
so far as these rely upon the Realization Theorem, the same constraints apply to the boundaries. In
§4 we give Crisp’s proof of his Algebraic Loop Theorem, and in §5 we consider PD3-pairs with free
fundamental group. This is the simplest case in which π1-injectivity usually fails.

3.1. The basic invariants

Let (P, ∂P) be a PD3-pair with ∂P =
∐

i∈I Yi . Since every PD2-complex is homotopy equivalent to a
closed surface, adjoining the mapping cylinders of homotopy equivalences with domains closed surfaces
along each boundary component gives an equivalent pair with boundary a 2-manifold, which has a
collared neighbourhood. We shall assume henceforth that this is the case for all PD3-pairs considered.

The pair (P, ∂P) is reduced if no component of ∂P is 1-connected. Let κi : Si = π1(Yi )→ π = π1(P)
be the homomorphism induced by the inclusion of the i-th boundary component. (These homomorphisms
depend on the choice of paths connecting basepoints, and so are only well-defined up to conjugacy in π .)
The family {κi } is the peripheral system of the pair, and is π1-injective if the κi are all monomorphisms.
(Thus the components of ∂ P̃ are 1-connected.)

Lemma 3.1. Let (P, ∂P) be a PD3-pair with ∂P 6=∅. Then:

(1) χ(P)= 2χ(∂P).

(2) If a boundary component Y is aspherical then the preimages of Y in ∂ P̃ are open surfaces.

(3) If, moreover, P is orientable then β1(Y )6 2 rank(B), where B is the image of H1(Y ;Z) in H1(P;Z).

(4) If all the components of ∂P are aspherical then the differential ∂2 : C2(∂ P̃)→ C1(∂ P̃) is injective.

(5) H 3(P;M)= 0 for any left Z[π ]-module M.

(6) If P is aspherical and π 6= 1 then the components of ∂P are aspherical.

(7) If π has one end then the peripheral system is π1-injective.

(8) P is aspherical and the peripheral system is π1-injective if and only if π has one end and the
components of ∂P are aspherical.

27
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Proof. The first assertion follows from the long exact sequence of the pair (P, ∂P), with coefficients F2,
and duality.

If a boundary component Y is aspherical then so are its preimages in P+, and so we may assume that
P is orientable, for (2) and (3). Suppose first that ∂P = Y , and let ιY : Y → P be the inclusion. We then
have an exact sequence

0→ H2(P;Z)→ H 1(P;Z)→ H1(Y ;Z)→ H1(P;Z)→ H 2(P;Z)→ 0.

If some component of ∂ P̃= p−1(Y ) is closed then the image of π1(Y ) in π is finite. But then H1(Y ;Z)=0,
contrary to the assumption that Y is aspherical.

It is clear that B= Im(H1(ιY )) and Ker(H1(ιY )) each have rank β1(P)−β2(P). Moreover, as H1(Y ;Z)
is torsion-free and the torsion subgroups of H1(P;Z) and H 2(P;Z) have the same cardinality, by the
Universal Coefficient Theorem, B is a free direct summand of H1(P;Z). Hence β1(Y )= 2 rank(B).

In general, we may reduce to the case when ∂P = Y , by capping off the other components of ∂P with
handlebodies. Although these reductions may replace π by a quotient group, we may conclude that the
preimages of Y in some intermediate covering of P are open surfaces, and (2) then follows. In (3) the
equality of the previous paragraph may become an inequality.

Since ∂ P̃ is a union of open surfaces, (4) is immediate.
The remaining assertions follow from duality with coefficients in more general modules. Since ∂P is

nonempty, H 3(P;M)= H0(P, ∂P;M)= 0 for any coefficient module M. Assertions (6)–(8) follow
similarly from the long exact sequence with coefficients Z[π ] and duality. �

Let K = P ∪ e>3 be a K (π, 1)-complex obtained by adjoining cells of dimension > 3 to kill higher
homotopy groups of P . Then inclusion defines a map of pairs cP : (P, ∂P)→ (K , ∂P). Let

µP = cP∗[P, ∂P] ∈ H3(π, {κi };Z
w)= H3(K , ∂P;Zw).

The fundamental triple of the pair is [{κi }, w1(P), µP ]. (When the components of ∂P are aspherical
and the peripheral system is π1-injective, the group H3(π, {κi };Z

w) may be defined in purely algebraic
terms. See §8 of Chapter 1.)

Two such triples [{κi }, w,µ] and [{κ̂i }, ŵ, µ̂] are equivalent if there are isomorphisms θ (of the am-
bient groups) and θi (of the domains of the peripheral system) such that θκi is conjugate to κ̂iθi for all i ,
w = ŵθ and θ∗µ=±µ̂.

Bleile extended Turaev’s arguments to give a Classification Theorem for pairs.

Theorem [12]. Two PD3-pairs (P, ∂P) and (Q, ∂Q) with aspherical boundary components are homo-
topy equivalent if and only if their fundamental triples are equivalent. �

She also extended the Realization Theorem, with a restriction on the boundary conditions. We shall
not prove the Classification Theorem for pairs, but we shall prove her version of the Realization Theorem
in the next section.

When P is an irreducible, orientable 3-manifold with nonempty, π1-injective boundary it is determined
up to a finite ambiguity by π alone; if, moreover, P has no essential annuli then it is the only 3-manifold
with fundamental group π [AFW, Chapter 2.2]. No corresponding results for PD3-complexes are yet
known.
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3.2. A Realization Theorem for certain pairs

The central invariant of the Realization Theorem is Turaev’s homomorphism νC∗,2 (defined in §5 of
Chapter 2), which requires that C∗ be a free chain complex which is finitely generated in degrees 6 2.
The cellular chain complex of a PD3-space P may not have this property, but is always chain homotopy
equivalent to such a complex. The first lemma ensures that the criterion of the Realization Theorem does
not depend on the choice of such a complex within the chain homotopy type.

Lemma 3.2 [147, Lemma 4.1.2]. Let C∗ and D∗ be free chain complexes which are finitely generated in
degrees 6 r . If f : C∗→ D∗ is a homomorphism such that Hi ( f ) is an isomorphism for all i < r , then
Fr ( f ) is a projective homotopy equivalence.

Proof. Suppose first that the homomorphisms fi :Ci→ Di are isomorphisms, for i < r . Then fr−1(∂Cr )=

∂Dr , since Hr−1( f ) is an isomorphism. Hence there is a homomorphism g : Dr→Cr such that ∂ fr g= ∂ ,
since Dr is a free module. Consider the diagram

D†
r−1

id
−−−→ D†

r−1

f †
r−1
−−−→ C†

r−1
id
−−−→ C†

r−1y∂†

y(∂†,0)

y(∂†,0)

y∂†

D†
r

(id,0)
−−−→ D†

r ⊕C†
r

j
−−−→ C†

r ⊕ D†
r

pr
−−−→ C†

r

where

j (x, y)= ( f †
r (x)+ y, x − g†( f †

r (x)+ y)) ∀x ∈ D†
r and y ∈ C†

r ,

and where the vertical homomorphisms are the codifferentials. It is easy to see that j is an isomorphism
and the diagram commutes. Taking cokernels of the vertical homomorphisms, we get a sequence

Coker(∂†)→ Coker(∂†)⊕ D†
r
∼= D†

r ⊕Coker(∂†)→ Coker(∂†)

with composite Fr ( f ). Hence Fr ( f ) is a projective homotopy equivalence.
In general, there is an inductive argument. We assume that for some n 6 r the homomorphisms

fi are isomorphisms for all i < n. Since Hn( f∗) is an isomorphism f∗ also induces an isomorphism
Cn/∂Cn+1∼= Dn/∂Dn+1, and since Dn is free there are homomorphisms g : Dn→Cn and λ : Dn→ Dn+1

such that idDn − fng = ∂λ. We define new complexes Ĉ∗ and D̂∗ by modifying C∗ and D∗ in degrees
n+ 1 and n only. We take the direct sum of C∗ with idDn : Dn→ Dn , and similarly add idCn : Cn→ Cn

to D∗. The new chain map f̂ is defined by f̂i = fi if i 6= n or n+ 1,

f̂n(c, d)= (d + fn(c− g(d)), c− g(d)) ∀c ∈ Cn and d ∈ Dn

and

f̂n+1(c, d)= ( fn+1(c)+ λ(d), ∂c− g(d)) ∀c ∈ Cn+1 and d ∈ Dn+1.

The inclusion of C∗ into Ĉ∗ and the projection of D̂∗ onto D∗ induce homotopy equivalences of the
modules F i for all i , and the lemma holds for f∗ if it holds for f̂∗. Thus after a finite induction we are
reduced to the case already treated. �
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Suppose C∗ and C ′
∗

are Z[π ]-chain complexes which are finitely generated in degrees 6 2 and such
that H0(C∗)∼= H0(C ′∗)∼= Z and H1(C∗)= H1(C ′∗)= 0. If f : C∗→ C ′

∗
is a chain homotopy equivalence

such that H0( f )= idZ, we get as an immediate consequence of Lemma 3.2 that νC∗,2 = νC ′∗,2
◦ F2( f ).

Lemma 3.3. Let (P, ∂P) be a PD3-pair, with π1(P)= π and w1(P)=w. Let ẽ be a 0-cell of P̃, and let
x ∈ C3(P, ∂P;Z[π ]) represent a generator of H3(P, ∂P;Zw). Then there is a 1-chain v ∈ C1(P;Z[π ])
such that

ϕ ∩ x = ϕ(x)(ẽ+ ∂v),

for all ϕ ∈ C3(P, ∂P;Z[π ]).

Proof. Let 1 be an equivariant diagonal approximation for C∗(P;Z[π ]). Let y ∈ C3(P;Z[π ]) have
image x ∈ C3(P, ∂P;Z[π ]), and suppose that 1(y) =

∑
yi ⊗ z3−i , with yi , zi ∈ Ci (P;Z[π ]). Then

y = (id⊗ε)1(y) implies that y3ε(z0)= y. As the image of x generates H3(P, ∂P;Zw)∼= Z, the chains
x and y are indivisible, and so ε(z0)=±1. We may assume that ε(z0)= 1, so y3 = y, and z0− ẽ = ∂v
for some v ∈ C1(P;Z[π ]). Hence ϕ ∩ x = ϕ(x)(ẽ+ ∂v), for all ϕ ∈ C3(P, ∂P;Z[π ]). �

Let G be a group and {κi : Si → G} a finite family of homomorphisms. We may realize these by maps
fi : Yi = K (Si , 1)→ K (G, 1). Let K be the mapping cylinder of t fi : Y = tYi → K (G, 1), and let
Hi (π, {κi };M) = Hi (M ⊗Z[G] C∗(K , Y ;Z[G])) for any right Z[G]-module M . If G and the Si are all
F P2 the chain complex C∗(K , Y ;Z[G]) is chain homotopy equivalent to a free complex which is finitely
generated in degrees 6 2. Let w : G→ Z× be a homomorphism. We shall say that µ ∈ H3(π, {κi };Z

w)

satisfies the Turaev condition if νC∗,2(µ) is a projective homotopy equivalence for some such chain
complex C∗. (If so, it holds for any such complex, by Lemma 3.2.)

The next result shall become the criterion of the Realization Theorem. However, we do not assume
here that the components of ∂P are aspherical, or that the peripheral system is π1-injective. (These
hypotheses are needed later for our proof of the sufficiency of the criterion.)

Theorem 3.4. Let (P, ∂P) be a PD3-pair, let K = P ∪ e>3 be a K (π, 1)-complex obtained by adjoining
cells of dimension > 3 to P, and let µ= cP∗[P, ∂P]. Then µ satisfies the Turaev condition.

Proof. We shall assume first that P has finite 2-skeleton. Then CKP∗ = C∗(K , ∂P;Z[π ]) is finitely
generated in degrees ≤ 2, since K [2] = P [2] and ∂P are finite. Let C∗ = C∗(P;Z[π ]) and C rel

∗
=

C∗(P, ∂P;Z[π ]). Cap product defines a chain homotopy equivalence from C3−∗(P, ∂P;Z[π ]) to C∗,
and hence (by Lemma 2.5) a projective homotopy equivalence

F2(C rel
∗
)= G1(C3−∗(P, ∂P;Z[π ]))' G1(C∗).

Let P [0]={e0
i | i 6 n} be the 0-skeleton of P and let10 be the submodule of C0 with basis {e0

i −e0
j | j < i}.

Then we may identify C0/10 with Z[π ], since it has a canonical generator. Let [∂1] be the composite of
∂1 : C1→ C0 with the projection onto C0/10 = Z[π ]. The induced epimorphism ϑ : G1(C∗)→ I (π) is
a projective homotopy equivalence since it factors through I (π)⊕Z[π ]n−1.

Composition gives a projective homotopy equivalence

F2(CKP∗)= F2(C rel
∗
)' G1(C∗)' I (π).
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Lemma 3.3 together with the fact that ∩ x is a chain map gives an explicit formula for this homomorphism:

[ϕ] 7→ ϑ ◦G1(ϕ ∩ x)= ∂2ϕ(x)(1+ [∂1](v)),

for all [ϕ] ∈ F2(C rel
∗
). The Turaev homomorphism is given by

νCKP∗,2(µ)([ϕ])= ϕ(δ2(1⊗ x)),

where δ2 : H3(Z
w
⊗Z[π ] C∗)→ H2(I C∗) is the connecting homomorphism and x is a 3-chain such that

1⊗ x ∈ Zw ⊗Z[π ] C3. It follows directly from the standard construction of δ∗ that δ2([1⊗ x]) = [∂3x].
(Note that ∂3x is a 2-cycle for I C∗, but is only a boundary in the larger complex C∗!) Hence

νCKP∗,2(µ)([ϕ])= ϕ(δ2(1⊗ x))= δ2ϕ(x).

The homomorphism which sends [ϕ] to ∂2ϕ(x)[∂1](v) ∈ I (π) is null homotopic, since it factors through
a map to C1, and so νCKP∗,2(µ) is a projective homotopy equivalence.

In general, C rel
∗

is chain homotopy equivalent to a chain complex of free Z[π ]-modules which is
finitely generated in degrees 6 2, and therefore so is C∗, since ∂P is a finite union of finite 2-complexes.
We may then apply Lemma 3.2. �

We would like to have an explicit characterization of the group systems that can be realized. The
following partial extension of Theorem 2.4 is a step in this direction.

Corollary 3.4.1 [144]. Let (P, ∂P) be a PD3-pair with nonempty boundary boundary, and let π = π1(P)
and �= π0(∂ P̃). Then

[I (π)] = [D1(π,�)].

Proof. Since projective homotopy equivalent modules are stably isomorphic (see §1.1), the theorem gives

[I (π)] = [F2(C rel
∗
)] = [D Coker(∂ rel

2 )].

Since ∂P is nonempty, H0(C rel
∗
)=0, and so ∂ rel

1 splits. Therefore Coker(∂ rel
2 )∼=C rel

0 ⊕H1(P,∂P;Z[π ]).
Now H1(P, ∂P;Z[π ]) is the kernel of the natural epimorphism

H0(∂P;Z[π ])= Z[�] → H0(P;Z[π ])= Z,

and so H1(P, ∂P;Z[π ]) = 1(π,�). Hence [I (π)] = [D1(π,�]. Since H0(Y j ;Z[π ]) ∼= Z[B j\π ],
where B j = Im(κ j ), for all j ∈ J , we have H1(P, ∂P;Z[π ])∼=1(π, {κi }). Hence [I (π)]=[D1(π, {κi })].

�

Let K be a complex with a subcomplex Y which is a closed surface, and let w : π1(K )→ Z× be a ho-
momorphism whose restriction to each component Yi of Y is w1(Yi ). A class µ ∈ H3(K , Y ;Zw) satisfies
the boundary compatibility condition if its image in H2(Y ;Zw) under the connecting homomorphism is
a fundamental class for Y .

Theorem 3.5 (Realization Theorem [12; 147]). Let π be an FP2 group, let {κi : Si → π | i ∈ I } be a
finite set of monomorphisms where the domains Si are PD2-groups, and let w : π→ Z× be a homomor-
phism such that w ◦ κi = w1(Si ), for all i ∈ I . Let µ ∈ H3(π, {κi };Z

w). Then the triple [{κi }, w,µ] is
the fundamental triple of a PD3-pair with aspherical boundary components and π1-injective peripheral
system if and only if µ satisfies the boundary compatibility and Turaev conditions.
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Proof. Let Yi be a closed surface with fundamental group Si , for all i ∈ I , and let Z be a K (π, 1)-
complex. The homomorphisms κi may be realized by maps fi : Yi → Z , and the mapping cylinder K of⊔

fi : Y =
⊔

Yi → Z is a K (π, 1)-complex which is as in the statement of the theorem. Let p : K̃ → K
be the covering projection.

Suppose first that π is finitely presentable. Then we may assume that Z and K have finite 2-skeleta,
and set CK Y∗ = C∗(K ,

⊔
Yi ;Z[π ]). Since the Yi are aspherical and the κi are monomorphisms, the

inclusion
C∗(K ;Z[π ])→ C∗(K , Y ;Z[π ])

induces isomorphisms on homology in degrees > 2. Hence

H2(CK Y∗)= H3(CK Y∗)= 0,

and so νCK Y∗,2 is an isomorphism, by Lemma 2.6.
On the other hand, H1(C∗(K ;Z[π ]))= 0 and H0(C∗(K ;Z[π ]))∼= Z, whereas

H1(CK Y∗)∼=1(π, π0(p−1(Y )))

and H0(CK Y∗)= 0. We note also that K [1] is a finite 1-complex, and Y ⊂ K [2].
It is clear from Lemma 3.2 and Theorem 3.4 that the conditions are necessary. Suppose that [{κi }, w,µ]

is a triple for which νCK Y∗,2(µ) is a projective homotopy equivalence. Let h : F2(CK Y∗)→ I (π) be a
homomorphism representing νCK Y∗,2(µ). Then we may factor h as a composite

h : F2(CK Y∗)→ F2(CK Y∗)⊕Z[π ]m→ I (π)⊕ L→ I (π),

where m <∞ and L is a finitely generated projective module. After replacing K by K ∨m D3, where
each 3-ball has the cellular decomposition D3

= e0
∪ e2
∪ e3, we may assume m = 0.

We now assume that L is a free module of finite rank n. Let

φ : Z[π ]n+1
= Z[π ]⊕ L†

→ CK Y2

be the homomorphism with dual φ† the composite

CK Y †
2 → F2(CK Y∗)∼= I (π)⊕ L→ Z[π ]n+1,

and let pr1 and prL be the projections of Z[π ] ⊕ L onto its summands. Then h([ψ]) = pr1φ
†(ψ) =

ψ(φ(x)), where x = (1, 0) ∈ Z[π ]⊕ L†, for all ψ ∈ CK Y2
†.

Let ∂ = ∂2 : C K Y2→ C K Y1. Since

∂ ◦φ = (φ†
◦ ∂†)† = 0,

we see that Im(φ) 6 Ker(∂) = H2(K [2], Y ;Z[π ]). The inclusion of K [2] into (K [2], Y ) induces an
isomorphism

H2(K [2];Z[π ])∼= Ker(∂),

since the components of p−1(Y ) are contractible. Let hwz : π2(K [2])→ Ker(∂) be the Hurewicz iso-
morphism for K̃ [2]. Let X = K [2] ∪ (n+ 1)e3, where the 3-cells are attached along the images of the
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standard basis for Z[π ]n+1 under (hwz)−1
◦ φ. The inclusion of K [2] into K extends to cX : X → K .

Let D∗ = C∗(X, Y ;Z[π ]). Then Di = CK Yi for i 6 2 and D3 = Z[π ] ⊕ L†. Since prLφ
† is an

epimorphism, ε⊗Z[π ] φ has rank n. Hence H3(X, Y ;Zw) = H3(Z
w
⊗ D∗) ∼= Z, with generator [X, Y ]

represented by the 3-cycle 1 ⊗ x . The image of x ∈ D3 under the differential ∂D is φ(x), and so
δ2([1⊗ x])= [φ(x)] ∈ H2(I D2).

Clearly H i (X;Z[π ])= H3−i (D∗)= 0 for i = 0 or 2, while H 3(X;Z[π ])∼= Coker(φ)† ∼= Z, and so

∩ [X, Y ] : H i (X;Z[π ])→ H3−i (D∗)

is an isomorphism when i 6= 1. The case i = 1 follows by the argument in the last paragraph of the proof
of Theorem 2.1. Thus (X, Y ) is a PD3-pair with orientation character w and fundamental class [X, Y ].

Since 1⊗ x represents [X, Y ] and δ2([1⊗ x]) = [φ(x)] in H2(I D2), ev2(δ2(1⊗ x)) = ev2(φ(x)) as
elements of [F2(CK Y∗), I (π)]. Hence νD∗,2([X, Y ])= h, and so

νCK Y∗,2(cX∗[X, Y ])= νD∗,2([X, Y ])= νCK Y∗,2(µ).

Since νCK Y∗,2 is an isomorphism, cX∗[X, Y ] = µ. Thus X realizes the triple [{κi }, w,µ].
In general, when L is projective but not free (or when π is FP2 but not finitely presentable), we must

expect X (or both K [2] and X ) to have infinitely many 2- and 3-cells. Nevertheless, the construction and
verification that (X, Y ) is a PD3-pair goes through as before. If π is finitely presentable (but L is not free),
then D∗ is chain homotopy equivalent to a free complex which is finitely generated in every degree, and
X is homotopy equivalent to a cell complex with finite skeleta. Hence X is finitely dominated [149]. �

3.3. Connected sums

There are two distinct notions of splitting for PD3-complexes with nonempty boundary, corresponding
to the internal connected sum and boundary connected sum of 3-manifolds. Bleile has extended Tu-
raev’s Splitting Theorem in each case, for PD3-complexes with aspherical boundary components and
π1-injective peripheral systems. In order to formulate her results properly we need two definitions.

Let {κ1, j : j ∈ J } and {κ2,` : ` ∈ L} be two finite systems of monomorphisms from PD2-groups into
ambient groups G1 and G2, respectively. The free product is the system

{ι1 ◦ κ1, j : j ∈ J } ∪ {ι2 ◦ κ2,` : ` ∈ L},

where ιi : Gi → G1 ∗G2 is the canonical inclusion, for i = 1, 2. We say also that the resulting system
decomposes as a free product.

Theorem (Decomposition Theorem I [12]). Let (P, ∂P) be a finitely dominated PD3-pair with aspher-
ical boundary components and π1-injective peripheral system. Then (P, ∂P) is the internal connected
sum of two such pairs if and only if its peripheral system decomposes as a free product of two π1-injective
systems. �

If (P, ∂P) is as above and π1(P) is a nontrivial free product then the images of the terms of the
peripheral system are indecomposable and not infinite cyclic, and so are each conjugate into one or the
other of these factors, by the Kurosh Subgroup Theorem. Hence this Decomposition Theorem applies.

When ∂P is empty, this reduces to the Splitting Theorem of Chapter 2.
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The peripheral system corresponding to forming the connected sum along a pair of boundary compo-
nents ∂Pi and ∂Qk , for some i ∈ J and k ∈ L , is the system

{ι1 ◦ κ1, j : j ∈ J, j 6= i} ∪ {ι2 ◦ κ2,` : ` ∈ L , ` 6= k} ∪ {κ#},

where κ# : π1(∂Pi ] ∂Qk)→ G1 ∗G2 is the composition of the canonical epimorphism with κ1,i ∗ κ2,k .

Theorem (Decomposition Theorem II [12]). Let (P, ∂P) be a finitely dominated PD3-pair with nonempty,
aspherical boundary. Then (P, ∂P) is the boundary connected sum of two pairs with aspherical bound-
ary components and π1-injective peripheral systems if and only if its peripheral system decomposes as a
free product of two π1-injective systems along a pair of boundary components.

Note that in this case the peripheral system of (P, ∂P) is not π1-injective. However, that condition
is only needed in these two theorems to construct the summands; recognizing (P, ∂P) as the sum then
uses only the Classification Theorem for pairs.

3.4. The Algebraic Loop Theorem

Most of this section is taken from [23].

Lemma 3.6 [152, Lemma 3.3]. Let (P, ∂P) be a PD3-pair. Then every component of ∂̃P is planar.

Proof. Let i : ∂̃P→ P̃ be the inclusion. Suppose that ∂̃P has a non-planar component F̃ . Since F̃ is
orientable there are simple closed curves α, β in F̃ which meet transversely in just one point. As P̃ is
1-connected, β bounds a 2-cycle, which defines a relative homology class in H2(P, ∂P;Z[π ]). Let Dβ
be the Poincaré dual class in H 1(P;Z[π ]). Then Dβ ∩ i∗[α] = i∗Dβ([α])= 1, and so i∗[α] 6= 0. This
contradicts the 1-connectivity of P̃ . �

Lemma 3.7 (Weak Loop Theorem). Let (X, ∂X) be a PD3-pair. If F is a component of ∂X then there is a
finite family of disjoint orientation-preserving simple loops u1, . . . , uk in F and integers n1, . . . , nk > 0
such that the kernel of the homomorphism from π1(F) to π1(X) induced by the inclusion is normally
generated by the classes [u1]

n1, . . . , [uk]
nk .

Proof. Since the components of ∂ X̃ are planar, the lemma follows from [107, Theorem 3]. �

The triangle group T (m, n, p) is the group with presentation

〈x, y, z | xm
= yn

= z p
= 1, xyz = 1〉,

where m, n, p> 1 are positive integers. It is spherical, flat or hyperbolic according as 1
m+

1
n+

1
p−1 is pos-

itive, 0, or negative, respectively. (Such groups are virtually free, and this quantity is χvirt(T (m, n, p).)

Lemma 3.8. Let F be an oriented closed surface and let

8= π1(F)/〈〈[u1]
n1, . . . , [uk]

nk 〉〉,

where u1, . . . , uk is a nonempty finite family of disjoint simple loops in F and n1, . . . , nk are positive
integers. Suppose that the image of each ui in 8 is nontrivial. Then:
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(1) 8 is freely indecomposable.

(2) If 8 is virtually free and e(8) <∞ then 8 ∼= Z⊕Z/nZ for some n > 2 (and in this case F is a
torus and k = 1).

(3) If 8 is virtually free and e(8)=∞ then 8 is the fundamental group of a trivalent graph of groups
with vertex groups isomorphic to spherical triangle groups T (m, n, p) and cyclic edge groups, gen-
erated by conjugates of the standard generators x, y, z in each triangle group.

Proof. We may assume that the order of the image of ui in 8 is ni > 2, for each i 6 k. We may also
assume that no two loops ui , u j are parallel. Cut F open along the loops ui to obtain a collection of
bounded surfaces F j , with 16 j 6 m, and attach discs to each boundary component via degree-d maps,
where d = ni if the boundary component arose from cutting along ui . We obtain a finite family of
2-orbifolds F̂1, . . . , F̂m . Let F̂ = F ∪ ke2 be the 2-complex obtained from F by adjoining 2-discs Di

via degree-ni maps from ∂Di onto ui , for i 6 k. Let 0 be the graph with vertices the components of
F \ {u1, . . . , uk} and edges {u1, . . . , uk}, and let (G, 0) be the graph of groups with vertex groups the
2-orbifold groups just described and edge groups the cyclic groups Z/ni Z. Then 8∼= πG.

Since the vertex groups are freely indecomposable and the edge groups are nontrivial, 8 is freely
indecomposable.

If π is virtually free then the vertex groups are all finite (for otherwise they are virtually PD2-groups).
Hence they are either spherical triangle groups T (m, n, p), or are finite cyclic. Since no pair of loops
ui are parallel, the latter case can occur only if F is a torus and k = 1. Otherwise, the vertices all
have valence 3 (corresponding to a pair-of-pants decomposition of F) and the associated groups are as
asserted. �

Lemma 3.9. If the group 8 of the previous lemma is virtually free then there is an element g ∈ 8 of
prime order with infinite centralizer.

Proof. It suffices to find a finite subgroup with infinite normalizer. This is clear if 8 ∼= Z⊕Z/nZ for
some n > 2, so we may assume that e(8)=∞ and 8∼= πG, as in Lemma 3.8.

Let T = T (m, n, p), where m > n > p, and let A be a cyclic subgroup of order m. If m > 4 then
inspection shows that A has index 2 in its normalizer. Thus if there is an edge group of order > 4 common
to two vertex groups T and T ′ then N8(A) contains the infinite group NT (A) ∗A NT ′(A).

If there are no such edge groups then (m, n, p)= (3, 3, 2), (3, 2, 2) or (2, 2, 2), with corresponding
vertex groups A4, S3 or D4 = (Z/2Z)2. The elements of A4 of order 3 are all conjugate, and generate
their own normalizers, while S3 has an unique subgroup of order 3. The subgroups of order 2 in A4 and
D4 are properly contained in their normalizers.

The remaining case is when each edge group is its own normalizer in at least one of the adjacent
vertex groups. In this case 0 contains a path (i.e., a linear subgraph) connecting vertices v and w with
extreme vertex groups Gv

∼= Gw
∼= S3 and intermediate vertex groups A4, and all edge groups of order 3.

The subgroup of 8 corresponding to this subgraph has the form Gv ∗A B ∗A′ Gw, where A and A′ have
order 3 and B is generated by all the intermediate vertex groups. Clearly A is normal in Gv and A′ is
normal in Gw. The images of A and A′ are conjugate, and so A is also normalized by a conjugate of Gw.
It follows easily that A has infinite normalizer. �

We now state the main result of this section. (The argument uses one result from Chapter 4.)
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Theorem 3.10 (Algebraic Loop Theorem [23]). Let (P, ∂P) be a PD3-pair. If ∂P has a component F
such that the homomorphism from π1(F) to π1(P) induced by the inclusion is not injective then there is
an orientation-preserving, essential simple loop u in F which is null-homotopic in P.

Proof. Let 0F be the image of π1(F) in π = π1(P). Then there is a nonempty finite family of disjoint
orientation-preserving simple loops u1, . . . , uk in F and integers n1, . . . , nk > 0 such that

0F ∼= π1(F)/〈〈[u1]
n1, . . . , [uk]

nk 〉〉,

by Lemma 3.7. We may assume that each ui is essential in F . Suppose that they are all essential in
P , and suppose also that P is orientable. Double P along ∂P to obtain an orientable PD3-complex
Z = P ∪∂P P ′, where P ′ is a second copy of P . Let 0 be the graph with two vertices v,w and |π0(∂P)|
edges connecting these vertices, and let (G, 0) be the graph of groups with vertex groups Gv = π and
Gw = π1(P ′)∼= π , and edge groups the images of the fundamental groups of the boundary components
(with the associated inclusions). Then π1(Z)∼= πG.

The closed PD3-complex Z is homotopy equivalent to a connected sum V ] P1 ] · · · ] Pr , where
each summand Pi is aspherical and π1(V ) is virtually free. Thus π1(Z)∼= π1(V ) ∗G1 ∗ · · · ∗Gr , where
Gi = π1(Pi ), for i 6 r .

Since 0F is indecomposable it is either infinite cyclic or is conjugate into one of the factors, by the
Kurosh Subgroup Theorem. Since 0F has nontrivial torsion it must be conjugate into π1(V ), and so is
virtually free. But it has elements of prime order which have infinite centralizer in π1(Z), by Lemma
3.9. This contradicts the Centralizer Condition of Chapter 4.

If X is not orientable we choose a component F ′ of ∂P+ which covers F . Each loop ui lifts to a
simple loop in F ′, and the above argument shows that one of these lifts is null-homotopic in P+. Hence
its image in F (which is a simple loop) is null-homotopic in P . �

Corollary 3.10.1. Let (P, ∂P) be a PD3-pair. Then there is a finite family of disjoint (essential ) simple
loops u1, . . . , uk in ∂P such that attaching D2

× [−1, 1] along a neighbourhood of each loop yields a
PD3-pair (P̂, ∂ P̂) with the same fundamental group and such that each component of ∂ P̂ is π1-injective.

Proof. If F is a non-aspherical boundary component then either F ∼= S2 or F ∼= R P2. In the latter case
P is nonorientable, and w1(P) splits the homomorphism Z/2Z→ π induced by the inclusion of F into
P . Thus such components are π1-injective.

For all other components a simple inductive argument using |χ(F)| shows that after finitely many
applications of the theorem we may modify F by elementary surgeries so that it is π1-injective. �

The next corollary follows from the Algebraic Loop Theorem and the argument for 3-manifolds in
[76, Proposition 1.1].

Corollary 3.10.2. Let (P, ∂P) be a PD3-pair, with aspherical boundary components and peripheral
system {κ j : j ∈ J }. Then Im(κ j ) is a free product of PD2-groups, copies of Z/2Z and a free group. �

In [71] we show that the π1-injectivity condition in Theorem 3.5 may be replaced by the necessary
conditions imposed by this corollary, if the images Im(κ j ) are all torsion free, and provided that the
ambient group has a sufficiently large free factor.
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3.5. Cubes with handles

A cube with handles of genus g is a 3-manifold H obtained by attaching g 1-handles to D3. Thus
H '

∨g S1, and H ∼= \g S1
× D2 if it is orientable, while H ∼= \g S1

×̃ D2 ∼= (S1
×̃ D2) \g−1 S1

× D2

otherwise. The boundary ∂H is a closed surface with χ(∂H)= 2− 2g, and is orientable if and only if
H is orientable. Every closed 3-manifold has a Heegaard decomposition as the union of two such cubes
with handles (for all g� 0).

One might ask how far this extends to PD3-complexes. Are they unions X ∪F Y of PD3-pairs (X, F)
and (Y, F) with X ' Y '

∨g S1? We shall show that such PD3-pairs are homotopy equivalent rel ∂ to
cubes with handles, and so PD3-complexes with such decompositions are homotopy equivalent to closed
3-manifolds.

Lemma 3.11. Let (P, ∂P) be a PD3-pair with π = π1(P) ∼= F(g). Then χ(P) > 1 − g, and P is
aspherical if and only if ∂P 6= ∅ and χ(P) = 1 − g. In that case, P '

∨g S1, ∂P is connected,
χ(∂P)= 2− 2g and the inclusion induces an epimorphism π1(∂P)→ π1(P).

Proof. If ∂P is empty then χ(P)= 0, while if ∂P 6=∅ then H3(P;Z)= 0, and so χ(P)> 1− β1(P).
In each case, χ(P)> 1− g, and χ(P)= 1− g if P is aspherical,

Let 0=Z[F(g)], for simplicity of notation. If χ(P)=1−g and ∂P 6=∅ then C∗(P) is chain homotopy
equivalent to a finite projective complex C∗ of length 6 2, which is in fact free since projective 0-modules
are free [3]. On comparing the exact sequence

0→ π2(P)→ C2→ C1→ C0→ Z→ 0

with the standard 0-resolution of Z we see that

π2(P)⊕C1⊕0 ∼= C2⊕0
g
⊕C0,

by Schanuel’s Lemma. But C1⊕0 ∼= C2⊕0
g
⊕C0, since χ(P)= 1− g. Therefore π2(P)= 0 and so

P is aspherical. Hence P '
∨g S1.

Applying Poincaré duality with coefficients F2, we see that ∂P is connected and χ(∂P) = 2− 2g.
Moreover, H1(P, ∂P;0) = H 2(P;0) = 0 and so H0(∂ P̃;Z) ∼= H0(P̃;Z). Hence the homomorphism
from π1(∂P) to π1(P) induced by the inclusion is an epimorphism. �

A similar result holds when g = 1 and ∂P 6=∅.
Jaco has shown that in the orientable case every such epimorphism is realized by the inclusion of

the boundary of a cube with handles, and thus by a PD+3 -pair [75]. (In particular, Aut(π1(Tg)) acts
transitively on the set of epimorphisms from π1(Tg) to F(g).)

Lemma [75, Lemma 4.1]. Let F be a closed orientable surface of genus g and let f : π1(F)→ F(g)
be an epimorphism. Let P be the mapping cylinder of a map φ : F→

∨g S1 such that π1(φ)= f . Then
(P, F)' (H, ∂H), where H is a cube with handles of genus g. �

Theorem 3.12. Let (P, ∂P) be a PD+3 -pair. If P '
∨g S1 then (P, ∂P)' (H, ∂H), where H is a cube

with handles of genus g.

Proof. This follows immediately from Lemma 3.11 and [75, Lemma 4.1]. �
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We may give a more self-contained argument for the theorem which extends to the nonorientable case
(but leaves the issue of which epimorphisms are realizable aside) as follows. Let F be a closed surface,
and let P be the mapping torus of a map φ : F →

∨g S1 which induces an epimorphism π1(φ). Let
w = w1(F). Straightforward applications of the long exact sequences of (co)homology with coefficients
Zw and then 0 = Z[F(g)] show that H3(P, F;Zw) ∼= H2(F;Zw), and that Hi (P, F;0) = 0 for i 6= 2,
while H j (P;0)= 0 for j 6= 1. Cup product with a generator [P, F] of H3(P, F;Zw) then induces duality
isomorphisms if and only if restriction from H 1(P;0) to H 1(F;0) is an isomorphism (equivalently, if
H 2(P, F;0) = 0). If (P, ∂P) is a PD+3 -pair with P '

∨g S1 then there is a simple closed curve γ on
∂P which is null-homotopic in P , by the Algebraic Loop Theorem or, more simply, by [133, Theorem
2]. Hence the homomorphism from π1(F) to π1(P) factors through π1(F1 ∨ F2), where F1 and F2

are closed surfaces with χ(Fi ) = 2− 2hi > χ(F) (if γ separates ∂P) or through π1(F1 ∨ S1), where
χ(F1) > χ(F) (if γ does not separate ∂P). The images of the groups π1(Fi ) in F(g) are free, and their
ranks are bounded by the maximal dimension of a self-orthogonal subspace of H 1(Fi ; F2). We then see
that they must be free factors of rank hi , and the condition H 2(P, F;0)= 0 is inherited by the new pairs(∨h S1, Fi

)
. We complete the argument by induction on g and appeal to the Classification Theorem.

This argument extends to PD3-pairs (P, ∂P) with π = π1(P) free, all boundary components aspherical
and ∗i π1(∂Pi ) mapping onto π .

In the simplest case, when π =1, it is easy to see that ∂P=
∐χ S2 and π2(P)∼=Zχ−1, where χ =χ(P).

Hence P '
∨χ−1S2

' ]χ D3. The group of self homotopy equivalences of ]χ D3 is isomorphic to
GL(χ − 1,Z), and so we may choose a homotopy equivalence P ' ]χ D3 so that it induces a homotopy
equivalence of pairs (P, ∂P) ' (]χ D3,

∐χ S2). In [71] we show that every PD3-pair (P, ∂P) with
π = π1(P) a free group is homotopy equivalent to a 3-manifold pair.



CHAPTER 4

The Centralizer Condition

Let P be a PD3-complex with infinite fundamental group π , and let w = w1(P). We may view Poincaré
duality as giving an isomorphism of right modules E(π) = H 1(P;Z[π ]) ∼= π2(P), and Theorem 1.2
gives us a short exact sequence presenting E(π) as a quotient of Z[C]-modules defined in terms of a
graph of groups description of π . On the other hand, a very simple argument (Lemma 4.6) shows that
if C < π then Hs(C;π2(P))∼= Hs+3(C;Z), for s > 1. When we choose C to be a subgroup of an edge
group in a graph of groups description of π , comparison of these two aspects of the action of C on E(π)
leads to strong restrictions on how C sits in the neighbouring vertex groups, and ultimately on the edge
groups.

This chapter is largely based on [22]. The first two sections consider the combinatorics of G-trees
“with∞-vertices”. The results of these sections are used in §3, together with a simple lemma on the
action of free automorphisms of a Moore space, to show that an indecomposable orientable PD3-complex
is either aspherical or has virtually free fundamental group, and to derive Crisp’s “Centralizer Condition”.
In Chapters 6 and 7 we shall see that the Normalizer and Centralizer conditions together lead to a very
substantial understanding of PD3-complexes with virtually free fundamental groups.

4.1. Trees with∞-vertices and the invariant ξ

Let X be a tree, i.e., a contractible simplicial 1-complex. (We shall assume that X is the realization of
a graph with vertices V X and edges E X , and well defined with origin and target functions o and t .)
Any two vertices v,w determine a geodesic segment [v,w] in X . A geodesic ray or line in X is a
subcomplex of X which is homeomorphic to [0,∞) or the real line R, respectively. Two geodesic rays
ρ, ρ ′ are equivalent if ρ∩ρ ′ is also a geodesic ray. The ends of X are the equivalence classes of geodesic
rays.

A G-tree is a tree X with a simplicial left G action such that g ·o(e)= o(g ·e) and g · t (e)= t (g ·e) for
all edges e ∈ E X . If G ∼= πG where (G, 0) is a graph of groups then the universal cover of 0̃ is a G-tree
in which the stabilizers of the edges and vertices over e and v are conjugates of the images of Ge and
Gv , respectively. If (G, 0) is reduced the corresponding G-tree is incompressible, in the terminology of
[DD], and so this G-tree and G are essentially unique [DD, Proposition IV.7.4].

A G-tree X is terminal if each edge stabilizer is finite and each vertex stabilizer is finite or has one
end. If G is finitely generated, then it is accessible if there is a terminal G-tree such that 0 = G \X is a
finite graph.

A G-tree with∞-vertices is a G-tree X with a distinguished G-invariant subset V f X ⊆ V X of vertices
of finite valence. Vertices not in V f X are said to be∞-vertices. (We shall also use the expression “tree
with∞ vertices” when the group action is not relevant.)
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Assume now that X is a tree with∞-vertices, and let |e(X)| and |∞(X)| be the numbers of ends and
∞-vertices of X , respectively. Let ξ(X) = |e(X)| + |∞(X)| − 1, and let 5(X) be the cokernel of the
map 1 : Z[V f X ] → Z[E X ] given by

1(v)=
∑

t (e)=v
e −

∑
o(e)=v

e,

where Z[V f ]X and Z[E X ] are the free abelian groups with bases V f X and E X , respectively. If X is a
G-tree this is naturally a left Z[G]-module. (The presentation in Theorem 1.2 looks very similar, but it
involves right modules.) We shall call this the G-tree module presented by X .

Let [e]X ∈5(X) be the image of the edge e, for all e ∈ E X .

Theorem 4.1. Let X be a tree with∞-vertices. Then 5(X) is a free abelian group of rank max(ξ(X), 0).

Proof. Fix a vertex ∗ as a basepoint. We may assume that X is oriented radially outwards from ∗, so that
o(e) is in the segment [∗, t (e)], for all edges e. For each vertex v let Xv be the subtree spanned by the
vertices w such that v ∈ [∗, w], and let

E+v = {e : o(e)= v}

be the set of edges starting at v. Let X ′ be the subgraph spanned by ∗ and the vertices v for which
either Xv is infinite or contains an∞-vertex. If w is a vertex of X ′ other than ∗ then [∗, w] ⊂ X ′, since
Xw ⊂ Xu for each u ∈ [∗, w]. Hence X ′ is a subtree of X . The edges of X ′ are the edges e such that
either X t (e) is infinite or has an∞-vertex. Thus if e is not an edge of X ′ then X t (e) is a finite tree with
no∞-vertices. It is easily seen that e =

∑
v∈V X t (e)

1(v) in Z[E], and hence [e]X = 0. It follows that
5(X)∼=5(X ′).

Clearly X = X∗ is finite with no∞-vertices if and only if ξ(X) = −1, and then X ′ = {∗} is trivial.
Hence 5(X)= 0, so the theorem holds in this case. We may assume henceforth that X∗ is either infinite
or contains an∞-vertex.

If v ∈ V X ′ is not an∞-vertex then E+v is finite, and E X ′ ∩ E+v is nonempty, for if X t(e) were finite
with no∞-vertices for all edges e ∈ E+v then the same would be true of Xv . Choose an edge succ(v) in
E X ′ ∩ E+v , for each v ∈ V f X ′. We claim that

E = E X ′ \ {succ(v) : v ∈ V f X ′}

represents a basis for the abelian group 5(X ′). The claim follows immediately from the observation that
each relation 1(w)= 0 may be replaced by an equivalent relation which expresses succ(w) as a linear
combination of edges in E . This is clearly so if w = ∗. Otherwise, w = t (e) for some e ∈ E X ′, and
1(w)= 0 expresses succ(w) as a sum of signed elements of E and the edge e. The edge e is either in E
or may be assumed to be expressed as such a linear combination of elements of E , by induction on the
length of [∗, t (e)].

Let P be the union of the set of all geodesic rays starting from ∗ and the set of all geodesic segments
[∗, z] with z an∞-vertex. Clearly |P| = ξ(X)+ 1. When z is an∞-vertex every edge of E+z ∩ E X ′ is
in E , and when v ∈ V f X ′ every edge of E+v ∩ E X ′ except succ(v) is in E . Thus, for every v ∈ V X ′ there
is a maximal subcomplex pv of X ′, which is a geodesic segment or ray starting at ∗, containing [∗, v]
and containing no edges of E not in [∗, v]. In fact, pv ∈ P .
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Let E0
= E∪{0}, and define a function π : E0

→P by π(e)= pt (e) and π(0)= p∗. Then π(0) contains
no edge in E , while the edge of π(e) which is furthest from ∗ among edges also in E is e. Hence π is
injective. When E is finite π is also surjective. For if γ ∈ P then either no edge of γ is in E , in which
case γ = π(0), or γ has only finitely many edges in E , and then γ = π(e) when e is the edge furthest
from ∗.

Thus if |E| is finite then so is ξ(X), and |E| = ξ(X), while otherwise both |E| and ξ(X) are infinite. �

Corollary 4.1.1. If G is an infinite group and X is a terminal G-tree with G \X finite, then |e(X)| +
|∞(X)| is either 1, 2 or infinity, according to whether G has 1, 2 or infinitely many ends.

Proof. Let e(G) be the number of ends of G. Translating the presentation of the end module E(G) given
in Theorem 1.2 into the language of G-trees, and using the canonical anti-involution of Z[G] given by
g 7→ g−1, we see that 5(X)∼= E(G). Since G is infinite, E(G) has rank e(G)− 1 as an abelian group.
The corollary now follows from the Theorem. �

4.2. The action of cyclic subgroups on a G-tree module

Let C = 〈g〉 be a finite cyclic group of prime order p, and let νp(g) =
∑

i<p gi be the norm element
of Z[C]. If M is a Z[C]-module let MC

= Ker((g− 1) idM) and MC = M/(g− 1)M be the associated
invariant and coinvariant modules. Multiplication by νp(g) induces norm maps N : M → MC and
N : MC → MC , and Hi (C;M)∼= Ker(N ) or Coker(N ), if i > 0 and i is even or odd, respectively. We
shall compute these groups purely in terms of the subtree fixed by C , when M =5(X) for some C-tree
X . (A key point is that the Z[C]-modules arising are permutation modules.)

The fixed point set XC is a subtree of X , and setting V f XC
= (V f X)C makes XC into a tree with

∞-vertices. Let A be the set of edges of X which are not in XC but which have a vertex in XC . Each
connected component of X \ XC contains the interior of an unique element of A. For each e ∈ A let Xe

be the tree (with∞-vertices) which is the closure of the component of X \ XC containing the interior of
e. Declare the new vertex to be an∞-vertex. Let B =

⊕
e∈A 5(Xe). Then B is naturally a Z[C]-module.

Since g · e 6= e for each e ∈ A and g ·5(Xe) is equal to 5(Xg(e)), which is a free abelian group, B is a
free Z[C]-module.

We shall think of B as the module presented by the edges and vertices of X outside XC . Indeed 5
may be obtained from the Z[C]-module F = B⊕Z[EC

] by adjoining the remaining relations due to the
vertices of V f XC . Let ð : Z[V f XC

] → F be the homomorphism which maps v ∈ V f XC to the image of∑
e|t (e)=v e−

∑
e|o(e)=v e. Then 5∼= Coker(ð). Let φ : F→5 be the corresponding quotient map, and

write D for Ker(φ)= ð(Z[V f XC
]). Each element of D is fixed by g, since g ·ð(v)= ð(g · v)= ð(v) for

all v ∈ V f XC .
Since B is a free Z[C]-module, and Z[EC

] is a direct sum of copies of the augmentation module, the
kernel of νp(g) idF is (g− 1)B, while νp(g)F = BC

⊕ pZ[EC
].

Lemma 4.2. Let K be the submodule of 5 generated by the edges which do not lie in XC . Then K C
=

K ∩5C 6 Im(N ).

Proof. Suppose that x ∈ B has image φ(x) in K ∩5C . Then (g− 1)x = η ∈ D, and so must be fixed
by g. Hence p · η= νp(g)η= νp(g)(g−1)x = 0, and so η= 0, since B is free as an abelian group. Thus
x ∈ BC and hence φ(X) ∈ Im(N ). �
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Lemma 4.3. The norm map N :5C →5C has cokernel (Z/pZ)R , where R =max(ξ(XC), 0) if ξ(XC)

is finite, and R is infinite otherwise.

Proof. Let ψ :5→5/K be the canonical projection. Since 5/K ∼=5(XC), it is free of rank R as an
abelian group. Since 5 = K +5C , the restriction ψC

= ψ |5C is surjective, and Ker(ψC) = K ∩5C .
It now follows that Coker(N ) = Coker(N ) ∼= Coker(ψC

◦ N ), since K C 6 Im(N ), by Lemma 4.2.
Moreover N (K ) 6 K C , and so there is a well-defined homomorphism NK : 5/K → 5/K such that
NK ◦ψ =ψ

C
◦N . Thus Coker(ψC

◦N )=Coker(NK ). Since Im(NK )= p5/K , the lemma folllows. �

Lemma 4.4. The kernel of the norm map N :5C →5C is Z/pZ if ξ(XC)=−1, and is 0 otherwise.

Proof. Consider this commuting square, in which ψ denotes the canonical projection of 5 onto 5C :

F = B⊕Z[E XC
]

νp(g)
−−−→ νp(g)F = BC

⊕ pZ[E XC
]

ψ◦φ

y yφ|νp (g)F

5C
N

−−−→ 5C

Note that D+(g−1)B)6Ker(ψ◦φ). Conversely, if φ(x)∈Ker(φ)= (g−1)5 then φ(x)= (g−1)φ(y)=
φ((g−1)y) for some y ∈ F , and so x ∈ D+ (g−1)B. Hence Ker(ψ ◦φ)= D+ (g−1)B, and so ψ ◦φ
induces an epimorphism φ′ : BC

⊕ pZ[E XC
] →5C , with kernel νp(g)D, or simply pD, since elements

of D are fixed by g. It now follows from the diagram that

Ker(N )= φ′(Ker(φ|BC⊕pZ[E XC ]))= φ
′(D ∩ (BC

⊕ pZ[E XC
])),

and this last group may be identified with the quotient (D ∩ (BC
⊕ pZ[E XC

]))/pD.
Let a ∈ D ∩ (BC

⊕ pZ[EC
]) have image α ∈ Ker(N ). We may assume that a =

∑
v∈V XC nvð(v),

where 06 nv < p for all v ∈ V XC , and the sum is finite. The coefficient of each edge e ∈ E XC in this
expression is nt (e)− no(e), and since a is also in BC

⊕ pZ[E XC
] it follows that this coefficient must be

a multiple of p. Hence nt (e) = no(e), since 0 6 nv < p for all v. Therefore the coefficients nv have a
constant value n, for all v ∈ V XC , since XC is connected. Now n 6= 0 only if XC is finite and has no
∞-vertices, that is, only if ξ(XC) = −1, in which case putting n = 1 gives a nontrivial element α of
order p which clearly generates Ker(N ). �

Theorem 4.5. Let X be a C-tree with ∞-vertices. Let R+ = max(ξ(XC), 0) if ξ(XC) is finite, and
R+ = ℵ0 otherwise, and let R− = max(−ξ(XC), 0). Then Hi (C;5(X)) ∼= (Z/pZ)R+ for i odd and
Hi (C;5(X))∼= (Z/pZ)R− for i even.

Proof. This follows immediately from Lemmas 4.3 and 4.4. �

4.3. Consequences for PD3-complexes

We begin with a very simple lemma that has surprisingly strong consequences. In our main application,
Y is a PD3-complex, Ŷ = Ỹ and p is prime. However, this lemma has obvious extensions to other
situations.

Lemma 4.6. Let Y be a cell complex and Ŷ a covering space such that Hq(Ŷ ) = 0 for q 6= 0 or 2. If
g ∈ Aut(Ŷ/Y ) has order p <∞, then Hs(〈g〉; H2(Ŷ )) is isomorphic to Z/pZ if s > 0 is even and is 0 if
s is odd.
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Proof. Let C∗ = C∗(Ŷ ;Z), considered as a chain complex over Z[C]. Then dévissage applied to the
homology of C∗ shows that Hs(〈g〉; H2(Ŷ ))= Hs(〈g〉; H2(C∗))∼= Hs+3(〈g〉;Z), for all s > 0. �

There is a subtle point in the next lemma. If P is nonorientable, the w-twisted anti-involution involved
in the Poincaré duality isomorphism π2(P) ∼= H 1(P;Z[π ]) = E(π) is not the canonical one used in
Corollary 4.1.1, which applies to all accessible groups.

Lemma 4.7. Let P be a PD3-complex such that π = π1(P) is infinite, and let w = w1(P). Let X be a
terminal tree for π , and let g ∈ π have prime order p.

(1) If w(g)= 1 then Hs(〈g〉;5(X)) is isomorphic to Z/pZ if s > 0 is even and is 0 if s is odd.

(2) If w(g)=−1 (so p = 2) then Hs(〈g〉;5(X)) is isomorphic to Z/2Z if s is odd and is 0 if s > 0 is
even.

Proof. If w(g)= 1 then π2(P)∼= E(π)∼=5(X) as left Z[〈g〉]-modules, as outlined in Corollary 4.1.1, so
the result follows from Lemma 4.6. If w(g)=−1 then p = 2, and the w-twisted anti-involution differs
only in sign from the canonical anti-involution used in Corollary 4.1.1. The result again follows from
Lemma 4.6, with a shift of the degree as g− 1 and g+ 1 are interchanged. �

Theorem 4.5 and Lemma 4.7 together imply that if X is a terminal π -tree and g ∈ π has prime order p,
then either w(g)= 1 and ξ(X 〈g〉)=−1 or w(g)=−1 and ξ(X 〈g〉)= 1.

Theorem 4.8. Let P be an indecomposable orientable PD3-complex. Then either P is aspherical or
π = π1(P) is virtually free.

Proof. We may assume that π is infinite. Then P satisfies the hypotheses of Lemma 4.6. Let X be a
terminal π-tree and (G, 0) the associated finite graph of groups. Since P is indecomposable, π is not a
proper free product, and so all the edge groups are nontrivial.

Suppose that 0 has at least one edge e. Choose an element g ∈ Ge of prime order p. Since P is
orientable, ξ(X 〈g〉) = −1, by the remark immediately before the theorem. Thus X 〈g〉 is finite and has
no ∞-vertices, and hence has finite vertex stabilizers. But Go(e) and G t (e) each stabilize a vertex of
X 〈g〉, and so must be finite groups. It follows immediately that either all vertex groups are finite, and so
π ∼= πG is virtually free, or 0 is reduced to a single vertex v, with no edges, and π = Gv has one end,
in which case P is aspherical. �

Corollary 4.8.1. Let P be a PD3-complex. Then π1(P) is virtually torsion-free. �

The next result is central to our work in Chapters 6 and 7.

Theorem 4.9 (Centralizer Condition). Let P be a PD3-complex. If g ∈ π = π1(P) has prime order p
and Cπ (〈g〉) is infinite, then p = 2, w(g)=−1 and Cπ (〈g〉) has two ends.

Proof. Let X be a terminal π -tree. If xg= gx and e is an edge of X 〈g〉 then g ·x ·e= x ·g ·e= x ·e. Hence
Cπ (〈g〉) acts on X 〈g〉, also with finite edge stabilizers. If ξ(X 〈g〉)=−1 then X 〈g〉 is a finite graph with
finite vertex stabilizers in π . Since Aut(X 〈g〉) is then finite, so is Cπ (〈g〉), contrary to our hypothesis.
Thus ξ(X 〈g〉)) > 0. But then p = 2, w(g) = −1 and ξ(X 〈g〉) = 1, by the remark immediately before
Theorem 4.8. Thus either X 〈g〉) has two ends and no∞-vertices , or it has one end and one∞-vertex, or
it is finite and has two∞-vertices. There is an unique geodesic segment, ray or line γ joining them in
X 〈g〉. Since Cπ (〈g〉) respects the set of∞-vertices and also acts on the set of ends, it must preserve γ .
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In fact, some subgroup H of index at most 2 in Cπ (〈g〉) must fix each end or ∞-vertex. If there is
some∞-vertex involved then the infinite group H stabilizes every edge in γ , which is a contradiction.
Thus γ is a geodesic line joining two ends and H acts by translations. For any edge e in γ the quotient
H/ stabH (e)) must be Z. Since stabH (e) is finite, H and therefore Cπ (〈g〉) each have two ends.

Since every element of the maximal finite normal subgroup of a group with two ends has infinite
centralizer, the maximal finite normal subgroup of Cπ (〈g〉) is 〈g〉, and since w splits the inclusion of this
subgroup, we must have Cπ (〈g〉)∼= 〈g〉×Z or 〈g〉× D∞. �

Since the automorphism group of a finite group is finite this has the immediate consequence that if G
is a nontrivial finite subgroup of π+ then Nπ (G) is finite. In Corollary 7.10.2 we sharpen the final result
of Theorem 4.9 to show that if w(g)=−1 and Cπ (g) is infinite then Cπ (g)∼= 〈g〉×Z.

Corollary 4.9.1. Let P be a PD3-space such that π = π1(P) has a nontrivial finite normal subgroup N.
Then either P ' R P2

× S1 or π is finite.

Proof. We may assume π infinite. Then Cπ (N ) has finite index in π , and so is infinite. Hence if g ∈ N
has prime order p then p = 2, w(g)=−1 and N has two ends. Hence N ' R P2

× S1 [150]. �

This corollary was the original application of Lemma 4.6 [61].
If π1(P) has a finitely generated infinite normal subgroup of infinite index then it has one end, and so

P is aspherical. We shall discuss this case in Chapter 8.
If Y is a PD+3 -complex with a regular covering space Ŷ such that H1(Ŷ ;Z)= 0 and G =Aut(Ŷ/Y ) is

infinite, then the hypotheses of Lemma 4.6 hold, and the argument for Corollary 4.9.1 in [61] extends to
show that G has no nontrivial finite normal subgroup. Moreover, G is FP2, since the terms of C∗(Ŷ ;Z)
in degrees 6 2 give a partial Z[G]-resolution of Z which is finitely generated and free. The arguments
of this chapter imply that G ∼= (∗r

i=1 Gi ) ∗ V , where each factor Gi has one end and V is virtually free.
Since H2(Ŷ )∼= E(G), by Poincaré duality, Ŷ is acyclic if and only if G has one end. (In that case G is
a PD3-group.)

We now extend the partition of indecomposable orientable PD3-complexes to the bounded case.

Theorem 4.10. Let (P, ∂P) be an orientable PD3-pair. Then π = π1(P) either has one end, is a proper
free product, or is virtually free of finite rank. Moreover, if g ∈ π has finite order then Cπ (〈g〉) is finite.

Proof. The double of P along its boundary is a PD3-complex D P = P ∪∂P P [150, Theorem 2.1]. Since
P is a retract of D P , π is a retract of π1(D P), and so is either free, a proper free product or a subgroup
of one of the indecomposable free factors of π1(D P), by the Kurosh Subgroup Theorem. The claims
now follow from Theorems 4.8 and 4.9. �

Corollary 4.10.1. Let (P, ∂P) be an indecomposable orientable PD3-pair such that the components of
∂P are aspherical and π1-injective. Then either P is aspherical or π = π1(P) is virtually free and
∂P =∅.

Proof. Since (P, ∂P) is indecomposable, π is not a proper free product, by the first Decomposition
Theorem. (See §3.3.) If π has one end then H2(P̃, ∂ P̃;Z)= E(π)= 0. Since the components of ∂ P̃ are
open surfaces, by Lemma 3.1, H2(∂ P̃;Z)= 0 also. Hence π2(P)= H2(P̃;Z)= 0, and so P is aspherical.
If π is virtually free then ∂P =∅, since PD2-groups are not subgroups of virtually free groups. �

The corresponding result in the nonorientable case is not clear.



CHAPTER 5

Orientable PD3-complexes with π virtually cyclic

Indecomposable orientable PD3-complexes are either aspherical or have virtually free fundamental group.
In the 3-manifold case the virtually free groups are either finite or have two ends, and are well under-
stood. We shall consider PD3-complexes with such fundamental groups here, and the indecomposable
orientable PD3-complexes with groups which are virtually nonabelian free in Chapter 6. Nonorientable
PD3-complexes are considered in Chapter 7.

Swan found examples of cell complexes P with π = π1(P) finite and P̃ ' S3 before the notion of
Poincaré duality complex had been defined. These included PD3-complexes which are not homotopy
equivalent to any closed 3-manifold. In §1–§3 we give the classifications of such complexes and their
fundamental groups, and in §4 we give Swan’s example with π = S3, and show that its equivariant chain
complex is self-dual. We describe the groups of (based) self homotopy equivalences of such complexes
in §5, and consider finiteness and related issues briefly in §6. In the final section we show that if π has
two ends then P is homotopy equivalent to one of four familiar 3-manifolds.

5.1. Finite fundamental groups

Let P3(X) denote the third stage of the Postnikov tower for the cell complex X . We may construct P3(X)
by adjoining cells of dimension > 5 to kill off the higher homotopy groups. The second k-invariant k2(X)
is the obstruction to finding a section to the projection of P3(X) to P2(X), and lies in H 4(P2(X);π3(X)).

Lemma 5.1. Let P be an orientable PD3-complex such that π = π1(P) is cyclic of prime order p. Then
k2(P) 6= 0.

Proof. Since P̃ is also a PD3-complex, π2(P) = 0. Hence P2(P) = K (π, 1). The k-invariant k2(P)
is the obstruction to finding a section to cP3(P) : P3(P) → K (π, 1). Since H3(P3(P);Z) ∼= Z and
H4(P3(P);Z) = 0, we have H4(P3(P); Fp) = 0 also, by the Universal Coefficient Theorem. But
H∗(π; Fp) 6= 0 in every dimension, and so there is no map s : K (π, 1)→ X such that cX s ∼ idK (π,1). �

Our exposition of the classification of PD3-complexes with finite fundamental group is based on [150,
Theorem 4.3].

Theorem 5.2. Let P be a PD3-complex with π = π1(P) finite. Then:

(1) P̃ ' S3, P is orientable and π has cohomological period dividing 4.

(2) The homotopy type of P is determined by π and the orbit of the first nontrivial k-invariant k2(P)
under Out(π)×{±1}.

(3) k2(P) generates H 4(π;Z)∼= Z/|π |Z.
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Proof. Since P̃ is also a PD3-complex it is homotopy equivalent to S3. Splicing together translates of
C∗(P;Z[π ]) gives a periodic resolution of the augmentation module Z, with period 4. Suppose that P
is nonorientable, and let C be a cyclic subgroup of π generated by an orientation-reversing element. Let
Z̃ be the nontrivial infinite cyclic Z[C]-module. Then H 2(PC ; Z̃)∼= H1(PC ;Z)∼= C , by Poincaré duality.
But H 2(PC ; Z̃)∼= H 2(C; Z̃)= 0, since the classifying map from PC = P̃/C to K (C, 1) is 3-connected.
Therefore P must be orientable and π must act trivially on π3(P)∼= H3(P̃;Z).

We may construct the third stage of the Postnikov tower for P by adjoining cells of dimension greater
than 4 to P . The natural inclusion j : P→ P3(P) is then 4-connected. If Q is another such PD3-complex
and θ : π1(Q)→ π is an isomorphism which identifies the k-invariants, then there is a 4-connected map
j1 : Q→ P3(P) inducing θ , which is homotopic to a map with image in the 4-skeleton of P3(P), and so
there is a map h : Q→ P such that j1 is homotopic to jh. The map h induces isomorphisms on πi for
i 6 3, since j and j1 are 4-connected, and so the lift h̃ : Q̃ ' S3

→ P̃ ' S3 is a homotopy equivalence,
by the theorems of Hurewicz and Whitehead. Thus h is itself a homotopy equivalence.

Inner automorphisms of F act trivially on H 4(π;Z), while changing the orientation of P corresponds
to multiplication by −1. Thus the orbit of k2(P) under Out(π)× {±1} is the significant invariant. If
k2(P) were not a generator for H 4(π;Z)∼= Z/|π |Z then it would restrict to 0 for some cyclic subgroup
C of prime order. But this restriction is k2(PC), which is nonzero by Lemma 5.1. �

Let G be a finite group with cohomological period dividing 4, and let νG =
∑

g∈G g be the norm
element in Z[G]. Let K be a finite 2-complex with π1(K )∼= G. A Schanuel’s Lemma argument applied
to C∗(K ;Z[G]) and a periodic projective Z[G]-resolution of Z shows that π2(K ) = H2(K ;Z[G]) ∼=
L ⊕Z[G]/(νG), where L is a finitely generated projective left Z[G]-module. If L is free we may attach
3-cells to K along a basis of L and a generator for the final summand to obtain a finite 3-complex P
with universal cover ' S3. If L is not free let W =

∨NS2 and attach countably many 3-cells to K ∨W .
In each case the resulting complex is a PD3-complex, by Lemma 1.3. The construction may be varied
to realize any generator of H 4(G;Z) as the first nontrivial k-invariant [136, Lemma 7.4]. In particular,
there is an unique homotopy type of PD3-complexes with fundamental group S3 = D6 (up to change of
orientation).

5.2. Finite groups with periodic cohomology

A finite group has periodic cohomology if and only if its Sylow subgroups have periodic cohomology.
This is in turn equivalent to the p2-condition: all subgroups of order p2 are cyclic, for any prime p. The
p-subgroups are then cyclic, if p is odd, while the 2-subgroups are cyclic or generalized quaternionic.

If p, q are distinct primes, the group satisfies the pq-condition if every subgroup of order pq is cyclic.
If all the Sylow subgroups of a finite group M are cyclic then M is metacyclic, with a presentation

〈a, b | an
= bm

= 1, aba−1
= br
〉,

where rn
≡ 1 mod m and (m, n(r − 1)) = 1, so m is odd. (See [Ro, 10.1.10].) Let u = min{k | r k

≡

1 mod m}. Then M ′ and ζM are generated by the images of b and au , respectively. When n = 2 and
r =−1 we have the dihedral group D2m . If we set m = 2s+ 1 then D2m has the presentation

〈a, b | a2
= 1, absa = bs+1

〉.
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The finite groups with cyclic or generalized quaternionic Sylow subgroups were determined by Suzuki
and Zassenhaus. There are six families [AM, page 150]:

(1) Z/aZoZ/bZ;

(2) Z/aZo (Z/bZ× Q(2k)), k > 3;

(3) Z/aZo (Z/bZ× T ∗k ), k > 1;

(4) Z/aZo (Z/bZ× O∗k ), k > 1;

(5) (Z/aZoZ/bZ)×SL(2, p), p > 5 prime;

(6) Z/aZo (Z/bZ×TL(2, p)), p > 5 prime.

Here a, b and the order of the quotient by the metacyclic subgroup Z/aZoZ/bZ are relatively prime.
The generalized quaternionic group Q(2k) and the extended binary polyhedral groups T ∗k and O∗k have
these presentations:

Q(2k) : 〈x, y | x2k−2
= y2
= (xy)2〉,

T ∗k : 〈Q(8), z | z3k
= 1, zxz−1

= y, zyz−1
= xy〉,

Q∗k : 〈T
∗

k , w | w
2
= x2, wxw−1

= yx, , wzw−1
= z−1

〉.

The groups TL(2, p) of the final family may be defined as follows. Choose a nonsquare ω ∈ F×p , and
let TL(2, p)⊂ GL(2, p) be the subset of matrices with determinant 1 or ω. The multiplication ? is given
by A ? B = AB if A or B has determinant 1, and A ? B = ω−1 AB otherwise. Then SL(2, p)= TL(2, p)′

and has index 2. (Note also that SL(2, 3)∼= T ∗1 and TL(2, 3)∼= O∗1 .)

Lemma 5.3. Let G be a finite group with periodic cohomology. If G is not cyclic or metacyclic then 4
divides |G|, and G has an unique element of order 2. This element is central, and is a square.

Proof. This follows on examining the above list of finite groups with periodic cohomology. Since all
subgroups of order p2 in a finite group G with periodic cohomology are cyclic, an element g ∈ G of
order 2 is central if and only if it is the only element of order 2. �

5.3. Finite groups of cohomological period dividing 4

A finite group has cohomological period 2 if and only if it is cyclic. If a finite group G with periodic
cohomology contains a semidirect product Z/mZ oθ Z/nZ, where θ has image of order k, then the
cohomological period of G is a multiple of 2k. (See [Br, Exercise VI.9.6].) In particular, metacyclic
groups of odd order in family (1) which are not cyclic and all groups in families (5) and (6), excepting
the direct products Z/aZ×SL(2, 5), have cohomological period greater than 4.

The class of finite groups with cohomological period dividing 4 may be determined from the list given
in §1 above largely by excluding groups which contain metacyclic subgroups of odd order which are not
cyclic. Gadgil gave a direct and simple argument for excluding such groups.

Lemma 5.4 [45]. Let P be a PD3-complex such that π = π1(P) has order pq, where p and q are primes,
and either q = p or p > q > 2. Then π is cyclic.
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Proof. Suppose first that q = p. If π is not cyclic then π ∼= (Z/pZ)2. Since P̃ ' S3, we have π2(P)= 0,
and so β2(P; Fp) = β2(π; Fp) = 3. But β2(P; Fp) = β1(P; Fp) = 2, by Poincaré duality. Therefore
π ∼= Z/p2Z.

Suppose now that p > q. Since the number of p-Sylow subgroups is 1 or q, and is congruent to
1 mod p, the p-Sylow subgroup is normal. Hence we may assume that π has a presentation

〈x, y | x p
= yq

= 1, yxy−1
= xn
〉,

for some 16 n < p such that nq
≡ 1 mod p. Let P〈x〉 be the regular covering space with fundamental

group Z/pZ. The action of Z/qZ on P〈x〉 preserves the orientation and the linking form, and induces
multiplication by n on H1(P〈x〉)∼= Z/pZ. Therefore n2

≡ 1 mod p, and so n = 1, since q is odd. Thus
π is abelian, and hence cyclic, since (p, q)= 1. �

Thus finite groups which are fundamental groups of PD3-groups satisfy the pq-condition for all odd
primes p, q . This result is enough to determine the solvable groups of the Suzuki–Zassenhaus Theorem
(classes (1)–(4) of the list in §2 above) which can be fundamental groups of PD3-complexes.

Finite 3-manifold groups also satisfy the 2p-condition.

Theorem (2-Torsion Central Theorem [110]). If a group G acts freely on a Z/2Z-homology 3-sphere
then any element of order 2 is central. Hence G has no dihedral subgroup D2p with p > 1. �

Thus no 3-manifold has fundamental group S3. This theorem needs some input from manifold topol-
ogy, since there are PD3-complexes with π ∼= D2p. See [103] for an alternative proof.

To handle the groups of types (5) and (6) in the list from [AM], we need to look at metacyclic subgroups
of even order. Let U (2, p) be the subgroup of upper triangular matrices in SL(2, p). Then U (2, p) is
a semirect product Z/pZ oρ Z/(p − 1)Z, where ρ acts through squares. The subgroup of TL(2, 5)
generated by U (2, 5) and

(
1 0
0 ω

)
is TU(2, 5)∼= Z/5Zo2 Z/8Z.

Lemma 5.5. Let G be a finite group with periodic cohomology. Then G has cohomological period
greater than 4 if and only if it has a subgroup isomorphic to one of

(1) Z/pZor Z/qZ=〈a, b |aq
=bp
= 1, aba−1

=br
〉, where p is an odd prime, q is an odd prime or 4,

q divides p− 1 and rq
≡ 1 mod p but r2

6≡ 1 mod p; or

(2) Z/5Zo2 Z/8Z=〈a, b | a8
= b5
= 1, aba−1

= b2
〉.

Proof. This follows on applying the criterion of [Br, page 159] to the finite groups listed in §2 above. �

A finite group has cohomological period 4 if and only if it is a product B×Z/dZ with (|B|, d)= 1,
where B is

(1) A(a, e)= Z/aZo−1 Z/2eZ (of order 2ea), with presentation

〈x, y | x2e
= ya

= 1, xyx−1
= y−1

〉,

where a > 1 is odd and e > 1;

(2) Q(2ka, b, c) (of order 2kabc), with presentation

〈Q(2k), u | uabc
= 1, xuab

= uabx, xucx−1
= u−c, yuac

= uac y, yub y−1
= u−b

〉,

where a, b and c are odd and relatively prime, and either n = 3 and at most one of a, b and c is 1,
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or n > 3 and bc > 1;

(3) one of the groups T ∗k (of order 233k), O∗k (of order 243k), or I ∗ = SL(2, 5) (of order 23
·3·5), or

(4) P ′′48·3k−1a = Z/aZo−1 O∗k (of order 243ka), with presentation

〈O∗k , u | ua
= 1, wuw−1

= u−1, x, y, z� u〉,

where k > 1, a > 1 and (a, 6)= 1.

The only finite groups with cohomological period 4 that have dihedral subgroups D2p are the groups
A(m, 1)= D2m (with m > 1), and their products with cyclic groups. These are also the only such groups
with no central involution.

5.4. A finite complex with fundamental group S3

Let S3= D6 be the symmetric group on 3 letters. There is a simple periodic resolution of the augmentation
Z[S3]-module Z in the appendix to [136]. However we shall give our own account, which shall guide
our treatment of S3 ∗Z/2Z S3 in Chapter 6.

The group S3 has a presentation 〈a, b | a2, abab−2
〉. Let K be the corresponding 2-complex. Then

C∗(K̃ ) has the form

Z[S3]
2 ∂2
−−−→ Z[S3]

2 ∂1
−−−→ Z[S3],

where ∂1(1, 0)= a− 1, ∂1(0, 1)= b− 1, ∂2(1, 0)= (a+ 1, 0) and ∂2(0, 1)= (b2a+ 1, a− b− 1). The
2-chain ψ = (a−1,−ba+a+b2

−b) is a 2-cycle, and determines an element of π2(K )= H2(K̃ ;Z), by
the Hurewicz Theorem. Let X = K ∪ψ e3. This construction is in [136], where it is shown that X̃ ' S3

and that C∗ = C∗(X̃) extends to a periodic resolution of Z, with period 4.
We shall define new bases which display the structure of C∗ to better advantage, as follows. Let

e1= (1, 0) and e2= (−ba−b2, 1) in C1 and f1= (1, 0) and f2= (0,−a) in C2, and let g be the generator
of C3 corresponding to the top cell. Then ∂1e1 = a− 1, ∂1e2 =−b2a+ ba+ b2

− 1, ∂2 f1 = (a+ 1)e1,
∂2 f2 = (b2a + a − 1)e2, and ∂3g = ψ = (a − 1) f1 + (−b2a + ba + b− 1) f2. The matrix for ∂2 with
respect to the bases {ẽi } and { f̃ j } is diagonal, and is hermitean with respect to the canonical involution
of Z[S3], while the matrix for ∂3 is the conjugate transpose for that of ∂1. Hence the chain complex DC∗
obtained by conjugating and reindexing the cochain complex C∗(X;Z[S3]) is isomorphic to C∗.

Let B = 〈b〉 ∼= Z/3Z, and let β = b2
+ b+ 1 and γ =

∑
s∈S3

s = β(a+ 1) be the norm elements in
Z[B] and Z[S3], respectively.

Lemma 5.6. The complex X is a PD3-complex with X̃ ' S3.

Proof. Since C∗ is the cellular chain complex of a 1-connected cell complex, we have H0(C∗)∼= Z and
H1(C∗) = 0. If ∂2(r f1+ s f2) = 0 then r(a + 1) = 0 and s(b2a + a − 1) = 0. Now the left annihilator
ideals of a+ 1 and b2a+ a− 1 in Z[S3] are principal left ideals, generated by a− 1 and (b− 1)(ba− 1),
respectively. Hence r = p(a− 1) and s = q(b− 1)(ba− 1) for some p, q ∈ Z[B]. A simple calculation
gives ∂3((p(ba+ b+ 1)+ q(ba+ b))g)= r f1+ s f2 and so H2(C∗)= 0.

If ∂3hg = 0 then h(a− 1) = 0, so h = h1(a+ 1) for some h1 ∈ Z[B], and h(b2a− ba− b+ 1) = 0.
Now h(b2a−ba−b+ 1)= h1(1−b)(a+b+ 1), so h1(1−b)= 0. Therefore h1 =mβ for some m ∈ Z,
so h = mγ and H3(C∗)= Z[S3]γ g ∼= Z. Hence X̃ ' S3.



50 HILLMAN ∼∼∼ POINCARÉ DUALITY IN DIMENSION 3

Now H3(X;Z)= H3(Z⊗Z[S3]C∗)= Z[1⊗ g] and tr([1⊗ g])= γ g, where tr : H3(X;Z)→ H3(X̃;Z)
is the transfer homomorphism. The homomorphisms from Hq(C∗(X;Z[S3])) to H3−q(C∗) determined
by cap product with [X ] = [1⊗ g] may be identified with the Poincaré duality isomorphisms for X̃ , and
so X is a PD3-complex. �

The fact that X is a PD3-complex is due to [150]. The only novelty here is the diagonalization of ∂2,
which is a guiding feature in the study of an example with π = S3 ∗Z/2Z S3, in Chapter 6.

5.5. Self homotopy equivalences

In this section we shall assume that our PD3-complexes are based. Let E∗(P) be the group of based
homotopy classes of based self homotopy equivalences of P .

Theorem 5.7. Let P be a PD3-complex such that π = π1(P) is finite, of order |π | > 2. If |π | is not
divisible by 4 or by a prime p ≡ 3 mod 4, then

E∗(P)∼= {α ∈ Aut(π) | H 4(α)=±1};

otherwise,

E∗(P)∼= { f ∈ Aut(π) | H 4(α)= 1}.

Proof. If h is a self homotopy equivalence of P then π1(h) and H3(h) are automorphisms of π and
of H3(P) ∼= Z, respectively. The corresponding automorphism of H3(π) ∼= H 4(π;Z) ∼= Z/|π |Z is
multiplication by a square. To see this it is enough to consider automorphisms of Sylow subgroups.
If the p-Sylow subgroup is cyclic, the result is clear. Automorphisms of Q(8) induce the identity on
H 4(Q(8);Z) [136, Proposition 8.3], while automorphisms of quaternionic 2-groups Q(2k) of higher
order induce multiplication by squares on H 4(Q(2k);Z) [136, Proposition 8.2]. Hence H3(h)= 1 if |π |
is divisible by 4 or by a prime p ≡ 3 mod 4. Otherwise, π is metacyclic, and H3(h)=±1.

If f : P→ P is a based self-map such that π1( f )= idπ then there are no obstructions to homotoping
f to a map which is the identity on Po. We may homotope f to the identity if and only if deg f = 1.
Hence α is a monomorphism.

It remains for us to show that every such automorphism of π is realizable by a map of the appropriate
degree. Let K = P ∪ e>4 be an Eilenberg–Mac Lane space constructed by adjoining higher-dimensional
cells to P . We may realize any automorphism α of π by a map from P to K , and by cellular approxi-
mation, we may assume it has image in P . Suppose that h : P→ P induces α = π1(h), and that H 4(α)

is multiplication by ε =±1. Let h̃ be a lift of h to a self-map of P̃ . Then h̃ has degree ≡ ε mod |π |. If
deg h̃ = ε+ n|π |, we may modify h by taking its connected sum with a self-map of S3 of degree −n.
Let h1 be the resulting self-map of P ' P ] S3. Then π1(h1)= α and deg h̃1 = deg h̃+|π |(−n)= ε, and
so h1 is a self homotopy equivalence. �

The two cases with smallest fundamental group need separate consideration, since orientation-reversing
maps are not detected by H3(π) if |π |6 2. We have P ' S3 when π = 1 and P ' R P3 when π = Z/2Z,
and a degree-1 self-map is homotopic to the identity, as in the theorem. Since these spaces each have
orientation-reversing involutions which fix a basepoint, E∗(P)= Z× in each case.
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5.6. Finiteness, standardness, and S3-manifolds

Let Lα be the kernel of the projection of Z[G] onto Z/αZ (via the augmentation), where α ∈ Z. Swan
showed that if (α, |G|) = 1 then Lα is a projective module, and the classes of such modules form a
subgroup TG 6 K̃0(Z[G]). The Swan subgroup TG is a quotient of (Z/|G|Z)/± 1. The k-invariants
realized by PD3-complexes lie in a coset of TG , and so there is a finite PD3-complex with group G if and
only if an obstruction σ4(G)∈ K̃0(Z[G])/TG vanishes. The Swan obstruction σ4(G) is 0 if G∼= B×Z/dZ,
where B = T ∗k , O∗1 , I ∗ or A(m, e) (and (|B|, d)= 1), but is nonzero if, for instance, G = O∗k with k > 1
or P ′′48r with 3 | r . (See [25; 151].)

If a PD3-complex P is standard, it is homotopy equivalent to a finite 3-complex with one 0-cell and
one 3-cell. Since χ(P) = 0, the numbers of 1-cells and 2-cells agree, and so π1(P) has a balanced
presentation. If G is a finite group with cohomological period 4 and there are at most two quaternion
factors H in the Wedderburn decomposition of R[G] then G is the fundamental group of a standard PD3-
complex if and only if σ4(G)= 0 and G has a balanced presentation. The condition on quaternion factors
is equivalent to each of the conditions “all stably free Z[G]-modules are free” and “G has no quotient
which is a quaternionic group Q4n with n > 6”, and the families of such groups are known [114].

It is unknown whether all finite groups of cohomological period 4 have balanced presentations. The
groups Q(8k), T ∗k and I ∗ have balanced 2-generator presentations [Hi, Chapter 11.2], as do the groups
Q(8, p, q) (with p, q distinct odd primes) [Jo, page 249].

With the exception of the groups A(m, 1) (with m > 1), O∗k (with k > 1), Q(2na, b, c) (with either
n= 3 and at most one of a, b and c being 1 or n> 3 and bc> 1) and P ′′48 ·3k−1a (with ak> 1 and (a, 6)= 1),
and their products with cyclic groups, all finite groups with cohomological period dividing 4 have fixed
point free representations in SO(4), and so act freely on S3. We shall call such groups S3-groups. (See
[2] for a largely self-contained account.) Cyclic groups, the binary dihedral groups D∗4m = A(m, 2), with
m odd, and D∗8k = Q(8k, 1, 1), with k > 1 and the three binary polyhedral groups T ∗1 , O∗1 and I ∗ are
subgroups of S3.

Although it is now known that the S3-groups are the only finite groups which act freely on S3, the
corresponding question for free actions on homology 3-spheres remains open. Finite groups with such
actions also have cohomological period 4. Dihedral groups D2m , the groups Q(2ka, b, c) with k > 3
and bc > 1, and P ′′48a with a > 1 and (a, 6) = 1 have no such actions, by a surgery semicharacteristic
argument [103]. The unsettled cases involve the groups Q(8a, b, c)×Z/dZ, with abcd odd and bc > 1.
(See [25].)

Do any of the other PD3-complexes P with π = π1(P) finite arise in some natural context? For
instance, is P × S1 homotopy equivalent to a closed 4-manifold? (Since the group of self-homotopy
equivalences of such a complex is finite it is equivalent to ask whether there is a closed 4-manifold M
with χ(M)= 0 and π1(M)∼= π oZ [Hi, Theorem 4.7].) The case when π ∼= D2m may be ruled out by
a surgery semicharacteristic argument [52].

5.7. Fundamental group with two ends

A group G has two ends if and only if it has a finite normal subgroup F such that G/F is isomorphic to
Z or D∞. From the cohomological perspective, G has two ends if and only if E(G)∼= Z.
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Theorem 5.8 [150]. Let P be a PD3-complex such that π = π1(P) has two ends. Then P is homotopy
equivalent to one of the four S2

× E1-manifolds S2
× S1, S2

×̃ S1, R P2
× S1 or R P3 ] R P3.

Proof. Since π has two ends, π2(P)∼= E(π)= Z, by the Hurewicz theorem and Poincaré duality. The
inclusion of a generator S2

→ P̃ induces isomorphisms on homology, and so is a homotopy equivalence.
If g ∈ π has finite order > 1 then H2(〈g〉;π2(P)) 6= 0, by Lemma 4.6. Hence g acts nontrivially on
π2(P), and so g has order 2. Since the subgroup of π which acts trivially on π2(P) has index 6 2, it
follows that π is isomorphic to Z, Z/2Z⊕Z or D∞.

If π ∼= Z then, viewing cP : P→ S1
= K (Z, 1) as a fibration, we see that P ' S2

× S1 if the action
is trivial, and P ' S2

×̃ S1 otherwise. If π ∼= Z/2Z⊕Z then P has an infinite cyclic covering ' R P2.
Hence P ' R P2

× S1, since every self homotopy equivalence of R P2 is homotopic to the identity.
If π ∼= D∞ then it is generated by elements u, v of order 2. These act nontrivially on 5= π2(P)∼= Z,

and so H 3(π;5)∼= (Z/2Z)2. If g= u or v then P〈g〉' R P2, and k1(R P2) 6= 0. Therefore k1(P) restricts
nontrivially to each of the summands H 3(〈g〉;5)∼=Z/2Z corresponding to g= u or v, and so is uniquely
determined. Hence P ' R P3 ] R P3, by the argument of §3 of Chapter 2. (This case also follows from
the Splitting Theorem and Theorem 5.2.) �



CHAPTER 6

Indecomposable orientable PD3-complexes

We begin this chapter with an explicit description of a finite PD3-complex Y realizing the group π =
S3 ∗Z/2Z S3, building upon the construction of Chapter 5. This illustrates a further divergence from
the known properties of 3-manifolds. In particular, the Sphere Theorem does not extend to all PD3-
complexes. In §2 we show that there are just two homotopy types of PD3-complexes with this group,
and each is orientable. In the rest of the chapter we use the Normalizer and Centralizer conditions
to analyze the indecomposable, virtually free groups which are fundamental groups of orientable PD3-
complexes. Our main result is that if π is such a group then π ∼= πG, where (G, 0) is a finite graph of
finite groups, in which 0 is a tree, at most one edge group is not Z/2Z, and at most two vertex groups
are not dihedral. This chapter is based on [65; 67; 68].

6.1. A finite complex with group S3 ∗Z/2Z S3

Let π = S3 ∗Z/2Z S3, with presentation 〈a, b, c | r, s, t〉, where r = a2, s = abab−2 and t = acac−2. The
two obvious embeddings of S3 into π admit retractions, as π/〈〈b〉〉 ∼= π/〈〈c〉〉 ∼= S3. Let A, B and C be the
cyclic subgroups generated by the images of a, b and c, respectively. The inclusions of A into S3 and
π induce isomorphisms on abelianization, while the commutator subgroups are S′3 = B and π ′ = B ∗C .
Thus these groups are semidirect products:

S3 ∼= B oZ/2Z and π ∼= (B ∗C)oZ/2Z.

In particular, π is virtually free, and has infinitely many ends. However, it follows easily from the
Grushko–Neumann Theorem that π is indecomposable.

The above presentations determine finite 2-complexes K and L , with fundamental groups S3 and π ,
respectively. There are two obvious embeddings of K as a retract in L , with retractions rb, rc : L→ K
given by collapsing the pair of cells {c, t} and {b, s}, respectively.

Let 5= Z[π ]. The cellular chain complex for the universal covering space L̃ has the form

53 ∂2
−−−→ 53 ∂1

−−−→ 5.

The differentials are given by

∂1(1, 0, 0)= a−1,

∂1(0, 1, 0)= b−1,

∂1(0, 0, 1)= c−1,

∂2(1, 0, 0)= (a+1, 0, 0),

∂2(0, 1, 0)= (ab+1, a−b−1, 0),

∂2(0, 0, 1)= (ac+1, 0, a−c−1).

In particular, Ker(∂2)= H2(L̃;Z) and Coker(∂2)∼= I (π).

53
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Let θ = (a−1,−ba+a+b2
−b,−ca+a+c2

−c). Then ∂2(θ)= 0, and so θ determines an element of
π2(L)= H2(L̃;Z), by the Hurewicz Theorem. Let Y = L ∪θ e3 and let D∗ be the cellular chain complex
for the universal covering space Ỹ .

We define elements of 53 as in the left column, and compute some of their images under ∂1 and ∂2:

ẽ1 = (1, 0, 0) ⇒ ∂1ẽ1 = a−1,

ẽ2 = (−ba−b2, 1, 0) ⇒ ∂1ẽ2 = ba−ab+b2
−1,

ẽ3 = (−ca−c2, 0, 1) ⇒ ∂1ẽ3 = ca−ac+c2
−1,

f̃1 = (1, 0, 0) ⇒ ∂2 f̃1 = (a+1)ẽ1,

f̃2 = (0,−a, 0) ⇒ ∂2 f̃2 = (ab+a−1)ẽ2,

f̃3 = (0, 0,−a) ⇒ ∂2 f̃3 = (ac+a−1)ẽ3.

Moreover θ = (a− 1) f̃1+ (−ab+ ba+ b− 1) f̃2+ (−ac+ ca+ c− 1) f̃3. Let D∗ = Hom0(D∗,5) be
the cochain complex dual to D∗. Then it is easily seen that D∗ ∼= D3−∗.

Theorem 6.1. The complex Y is a PD3-complex.

Proof. Clearly H0(D∗) ∼= Z and H1(D∗) = 0. The argument of the first part of Lemma 5.6 extends
immediately to show that the kernel of ∂2 is generated by

(a− 1) f̃1, (b− 1)(ba− 1) f̃2 and (c− 1)(ca− 1) f̃3.

Hence these elements represent generators for H2(D∗). Let g̃ be the generator for D3 corresponding to
the top cell, so that ∂3g̃ = θ . Note that the image of g in Z⊗ε D3 is a cycle, and represents a generator
for H3(Y ;Z)= H3(Z⊗ε D∗). If hθ = 0 then (as in Lemma 5.6) h = h1(a+ 1) for some h1 ∈ Z[B ∗C]
such that h1(b− 1)= h1(c− 1)= 0. It follows that h1 = 0. Hence ∂3 is injective and so H3(D∗)= 0.

Let ĝ be the generator of D3 such that ĝ(g̃)= 1. Let1 be a diagonal approximation for D∗ and suppose
that 1(g̃)=

∑
06q63

∑
i∈I (q) xi ⊗ yi , where xi ∈ Dq and yi ∈ D3−q , for all i ∈ I (q) and 06 q 6 3. Then∑

i∈I (3) xi = g̃. Let ri = ĝ(xi ) for i ∈ I (3) and let ξ̃ denote the image of g̃ in H3(Y ;Z)= Z⊗ε D3. Then

ε(ĝ ∩ ξ̃ )= ε
( ∑

i∈I (3)
ri yi

)
= ε

( ∑
i∈I (3)

ri

)
= ε(ĝ(g̃))= 1,

and so ĝ ∩ ξ̃ generates H0(D∗). Since H1(D∗) = H3(D∗) = H 0(D∗) = H 2(D∗) = 0, the map −∩ ξ̃
induces isomorphisms Hq(D∗)∼= H3−q(D∗) for all q 6= 1. The remaining case follows as in [147] from
the facts that D∗ ∼= D3−∗ and 1 is chain homotopic to τ1, where τ : D∗ ⊗ D∗ → D∗ ⊗ D∗ is the
transposition defined by τ(α⊗ω)= (−1)pqω⊗α for all α ∈ Dp and ω ∈ Dq . Thus Y is a PD3-complex.

�

Can the last step of this argument be made more explicit? The work of Handel [53] on diagonal
approximations for dihedral groups may be adapted to give the following formulae for a diagonal ap-
proximation for the truncation to degrees 6 2 of D∗ which is compatible with the above two embeddings
of K as a retract in L:

1(1)= 1⊗ 1;
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1(ẽ1)= ẽ1⊗ a+ 1⊗ ẽ1,

1(ẽ2)= ẽ2⊗ 1− baẽ1⊗ (b− 1)− b2ẽ1⊗ (b2a− 1)− (ba− b)⊗ baẽ1− (b2
− b)⊗ b2ẽ1+ b⊗ ẽ2,

1(ẽ3)= ẽ3⊗ 1− caẽ1⊗ (c− 1)− c2ẽ1⊗ (c2a− 1)− (ca− c)⊗ caẽ1− (c2
− c)⊗ c2ẽ1+ c⊗ ẽ3;

1( f̃1)= f̃1⊗ 1+ ẽ1⊗ aẽ1+ 1⊗ f̃1,

1( f̃2)= f̃2⊗ a+ (b2
+ b) f̃1⊗ (a− ba)+ (b2a+ b2) f̃2⊗ (a− ba)

+ ((ba+ b2
− 1)ẽ1+ ẽ2)⊗ (b2aẽ1+ baẽ2)

− ((b2a+ 1)ẽ1+ baẽ2)⊗ ((ba+ a+ b2
+ b)ẽ1+ (b2a+ a)ẽ2)

− ((a+ b)ẽ1+ b2aẽ2)⊗ ((ba+ b2)ẽ1+ aẽ2)− (a+ 1)ẽ1⊗ ẽ1

+ (a− b)⊗ (b2
+ b) f̃1+ (a− b)⊗ (b2a+ b2) f̃2+ a⊗ f̃2,

1( f̃3)= f̃3⊗ a+ (c2
+ c) f̃1⊗ (a− ca)+ (c2a+ c2) f̃3⊗ (a− ca)

+ ((ca+ c2
− 1)ẽ1+ ẽ3)⊗ (c2aẽ1+ caẽ3)

− ((c2a+ 1)ẽ1+ caẽ3)⊗ ((ca+ a+ c2
+ c)ẽ1+ (c2a+ a)ẽ3)

− ((a+ c)ẽ1+ c2aẽ3)⊗ ((ca+ c2)ẽ1+ aẽ3)− (a+ 1)ẽ1⊗ ẽ1

+ (a− c)⊗ (c2
+ c) f̃1+ (a− c)⊗ (c2a+ c2) f̃3+ a⊗ f̃3.

These formulae were derived from the work of Handel by using the canonical involution of Z[S3] to
switch right and left module structures and showing that C∗ is a direct summand of a truncation of the
Wall–Hamada resolution for S3. (In Handel’s notation a = y, b = x , e1 = c2

1, e2 = −c1
1 − c2

1(x + xy),
f1 = c3

2, f2 = −c1
2 y + c2

2x2
− c3

2 y and g = −(c1
3 + c3

3)(x + y)− c4
3 y.) Handel’s work also leads to a

formula for 1(g), but it is not clear what 1(g̃) should be.

6.2. Other PD3-complexes with this group

Having constructed one PD3-complex with group π one may ask how many there are. Any such PD3-
complex P must be orientable. For let w = w1(P). Let R = Z[π/π ′] = Z[a]/(a2

− 1), and let M be
the matrix for the homomorphism ∂2 with cokernel I (π) (with respect to the standard bases) given in §1.
Then

R⊗Z[π ] I (π)∼= R/(a+ 1)⊕ (R/(a+ 1, 3))2,
while

R⊗Z[π ] D(I (π);M)∼= R/(a+w(a))⊕ (R/(a+w(a), 3))2.

These modules are projective homotopy equivalent, by Corollary 2.4.1, and so w = 1.
Two such PD3-complexes W1 and W2 are homotopy equivalent if and only µ(W1) and µ(W2) agree

up to sign and the action of Out(π). When π = S3 ∗Z/2Z S3 we have F2(C)∼= I (π), and

H3(π;Z)∼= H3(π
′
;Z)⊕ H3(Z/2Z;Z)∼= (Z/3Z)2⊕ (Z/2Z).

Let Y ′ be the double cover of Y , with fundamental group π ′ ∼= (Z/3Z) ∗ (Z/3Z). Then Y ′ is a connected
sum, by the Splitting Theorem, and so it is homotopy equivalent to one of the 3-manifolds L(3, 1)]L(3, 1)



56 HILLMAN ∼∼∼ POINCARÉ DUALITY IN DIMENSION 3

and L(3, 1) ]−L(3, 1). (These may be distinguished by the torsion linking forms on their first homology
groups). In particular, µ(Y ′) has nonzero entries in each summand. Since µ(Y ′) is the image of µ(Y )
under the transfer to H3(π

′
;Z)∼= (Z/3Z)2, the image of µ(Y ) in each Z/3Z-summand must be nonzero.

Let u ∈ H 1(Y ; F2) correspond to the abelianization homomorphism. Since β2(Y ; F2)= β1(Y ; F2)= 1=
β2(π; F2) we have u2

6= 0, and so u3
6= 0, by Poincaré duality. It follows easily that the image of µ(Y )

in the Z/2Z-summand must be nonzero also. (Note that Y ′ is Z(2)-homology equivalent to S3 and so Y
is Z(2)[Z/2Z]-homology equivalent to R P3). Since reversing the orientation of Y reverses that of Y ′, we
may conclude that there are at most two distinct homotopy types of PD3-complexes with fundamental
group π , and that they may be detected by their double covers.

Let X = K ∪ψ e3 be the PD3-complex with π1(X)∼= S3 constructed in §4 of Chapter 5. The retractions
rb and rc of L onto K extend to maps rb, rc : Y → X . These maps induce the same isomorphism
H3(Y ;Z)∼= H3(X;Z), and so their lifts to the double covers induce the same isomorphism H3(Y ′;Z)→
H3(X ′;Z). Hence Y ′ ' L(3, 1) ] L(3, 1), rather than L(3, 1) ]−L(3, 1). If we use

ξ = (a− 1) f̃1+ (−b2a+ ba+ b− 1) f̃2− (−c2a+ ca+ c− 1) f̃3

instead of θ (changing only the sign of the final term) then Z = L ∪ξ e3 is another PD3-complex with
π1(Z)∼= π , and a similar argument shows that the double cover is now Z ′ ' L(3, 1) ]−L(3, 1).

6.3. Vertex groups have periodic cohomology

In this section we shall consider orientable PD3-complexes whose fundamental groups are virtually free.
A finitely generated group G is virtually free if and only if G ∼= πG, where (G, 0) is a finite graph of
finite groups, by [DD, Theorem IV.1.6].

Lemma 6.2. Let π = πG, where (G, 0) is a nontrivial reduced finite graph of groups. If there is an edge
e with Ge = 1 then either π is a nontrivial free product or π ∼= Z.

Proof. If 0 \ {e} has two components then π is a nontrivial free product. Otherwise a maximal tree for
0 \ {e} is also a maximal tree for 0, and the stable letter te generates a free factor of π . �

Lemma 6.3. Let π = πG, where (G, 0) is a finite graph of finite groups and 0 is a tree. If all the edge
groups are nontrivial then π is indecomposable.

Proof. If π ∼= A ∗ B then π acts without global fixed points on the Bass–Serre tree ϒ associated to the
splitting. Each finite subgroup of π fixes a point in this tree. If xo and xt ∈ϒ are fixed adjacent vertex
groups Go(e) and G t (e) then Ge fixes the interval [xo, xt ] joining these points. Hence xo = xt , since edge-
stabilizers in ϒ are trivial. Induction on the size of 0 now shows that xo is fixed by π , contradicting the
first sentence of the proof. �

This argument extends easily to all finite graphs of finite groups with nontrivial edge groups, but we
need only the above case.

We shall use frequently the Centralizer Condition (Theorem 4.9) and the following simple lemma.

Lemma 6.4. Let π = πG, where (G, 0) is a finite graph of groups. If C is a subgroup of an edge group
Ge with NGe(C) properly contained in each of NGo(e)(C) and NG t (e)(C), then Nπ (C) is infinite.
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Proof. If go ∈ Go(e) \Ge and gt ∈ G t (e) \Ge each normalize C , then gogt normalizes C and has infinite
order. �

We shall also need the obvious fact that if C < π is a finite subgroup and Nπ (C) is infinite, then so
is Cπ (C).

Lemma 6.5. Let X be an orientable PD3-complex with π = π1(X) ∼= πG, where (G, 0) is a reduced
finite graph of finite groups. If (G, 0) has a loop isomorphism then π has a nontrivial free factor.

Proof. If (G, 0) has a loop isomorphism at the edge e then te normalizes Ge, and so Nπ (Ge) is infinite.
Therefore Ge = 1, by the Centralizer Condition, and so te generates a free factor of π . �

If π has a free normal subgroup F of finite index then the canonical surjection s : π→ G = π/F is
injective on every finite subgroup of π . In particular, if H is a finite subgroup of π then the subgroup
F H = s−1s(H) generated by F and H is a semidirect product F o H .

Lemma 6.6. Let X be an indecomposable orientable PD3-complex. If π = π1(X) has a free normal
subgroup F such that π/F is a finite nilpotent group, then π is cyclic or π ∼= Q(2k)×Z/dZ for some
k > 3 and odd d.

Proof. If π has a free factor then π ∼= Z. Otherwise we may assume that π = πG, where (G, 0) is a
reduced finite graph of finite groups with no loop isomorphisms. Thus each edge group Ge is a proper
subgroup of each of Go(e) and G t (e). The vertex groups are nilpotent since they map injectively to π/F .
Hence the normalizer of Ge in each of Go(e) and G t (e) is strictly larger than Ge, since nilpotent groups
satisfy the Normalizer Condition. Hence Nπ (Ge) is infinite, by Lemma 6.4, and so Ge = 1.

Since X is indecomposable so is π , and since π has no free factor 0 has one vertex and no edges.
Hence π is finite, and so X̃ ' S3. Therefore π has cohomological period dividing 4. Since it is nilpotent
it is cyclic or the direct product of a cyclic group of odd order with a quaternionic 2-group Q(2k), for
some k > 3. �

Theorem 6.7. Let X be an orientable PD3-complex with π = π1(X) ∼= πG, where (G, 0) is a reduced
finite graph of finite groups. Then the vertex groups have periodic cohomology and the edge groups are
metacyclic.

Proof. Let F be a maximal free normal subgroup of π . If S is a Sylow p-subgroup of a vertex group
Gv , then F S is the fundamental group of a finite graph of p-groups. The indecomposable factors of F S
are either infinite cyclic or are finite and have periodic cohomology, by Lemma 6.6. Therefore S has
periodic cohomology. Since a finite group has periodic cohomology if and only if this holds for all its
Sylow subgroups [Br, Proposition VI.9.3] , it follows that Gv has periodic cohomology.

If Ge is not metacyclic it has a central involution, which is a square, by Lemma 5.3. This involution
is orientation-preserving, and is also central in each of Go(e) and G t (e), since they cannot be metacyclic.
This contradicts the Centralizer Condition. �

Corollary 6.7.1. For any edge e, at least one of the vertex groups Go(e) or G t (e) is metacyclic. If they
are each metacyclic then Ge is cyclic.

Proof. If neither Go(e) nor G t (e) is metacyclic then each has a central involution, go and gt , say. If |Ge| is
even then go and gt are each in ζGe, and hence are equal. But then Nπ (go) contains both vertex groups,
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and so is infinite. If |Ge| is odd it is properly contained in each of its normalizers. In either case this
contradicts the Centralizer Condition.

If Go(e) and G t (e) are each metacyclic then G ′e is normal in each of them, and so must be trivial, by
the Centralizer Condition. �

Corollary 6.7.2. If the orders of all the edge groups have a common prime factor p then 0 is a tree, and
there is at most one vertex group V = Gv such that Ge < NV (Ge) for some edge e with v ∈ {o(e), t (e)}.

Proof. Let T be a maximal tree in 0. If there is an edge e not in T there is a cycle γ in 0 incorporating
e. Each vertex group Gv has an unique conjugacy class of subgroups Cv of order p, since its Sylow
subgroups are cyclic or quaternionic. Therefore teCo(e)t−1

e =wCo(e)w
−1, where w is a word in the union

of the vertex groups along the rest of the cycle. The element tew−1 has infinite order, and so Nπ (Co(e))

is infinite. This contradicts the Centralizer Condition.
If Ge < NV (Ge) for some V = Gv with v ∈ {o(e), t (e)}, we may assume that Cv ∈ Ge. Then

NGe(Cv) < NV (Cv), since Cv is unique up to conjugacy in Ge. Suppose there are two such vertex
groups V = Gv and W = Gw with v 6= w, and choose a (minimal) path connecting these vertices. As
before, Cw = aCva−1 for some a in the subgroup generated by the intermediate vertex groups along the
path. Thus Cw is normalized by the subgroup generated by NW (Cw) and aNV (Cv)a−1, which is infinite.
This again contradicts the Centralizer Condition. �

6.4. Eliminating groups with cohomological period > 4

The fact that the Sylow subgroups of a group G have cohomological period dividing 4 does not imply
that G has cohomological period dividing 4. Nevertheless, this is true in our situation.

Theorem 6.8. Let X be an orientable PD3-complex with π = π1(X) ∼= πG, where (G, 0) is a reduced
finite graph of finite groups. Then the vertex groups have cohomological period dividing 4.

Proof. Let F be a free normal subgroup of finite index in π . Suppose there is a vertex group with
cohomological period greater than 4. Then it has a subgroup H ∼= Z/pZoZ/qZ with a presentation

〈a, b | aq
= bp

= 1, aba−1
= br
〉,

where, by Lemma 5.5, either (1) p is an odd prime, q is an odd prime or 4 and r is a primitive q-th
root mod p, or (2) p = 5, q = 8 and r = 2, Let f : π → π/F be the canonical projection, and let
F H = f −1 f (H). Then F H ∼= F o H is the group of an orientable PD3-complex. Since every finite
subgroup of a free product is conjugate to a subgroup of one of the factors, we may assume that π = F H
and is indecomposable. We may also assume that 0 has at least one edge, for otherwise π ∼= H is finite,
and so has cohomological period 4, by Theorem 5.2.

Assume first that q is an odd prime. Since π is indecomposable and all centralizers of non-identity
elements are finite, we may assume that all edge groups have order q. Since the Sylow q-subgroups in
each vertex group are all conjugate, we may assume also that 0 is a tree, by Corollary 6.7.2, and that f
maps each vertex group isomorphically onto H . It follows that π has a presentation

〈a, b1, . . . , bn | aq
= bp

i = 1, abi a−1
= br

i ∀i〉.

Let f : Z[π ] → R = Z[Z/qZ] be the epimorphism whose kernel is the two-sided ideal generated by
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{b1 − 1, . . . , bn − 1}. The Z-torsion of R ⊗ f I (π) is (Z/pZ)n , with a acting as multiplication by r ,
whereas a acts on the Z-torsion of R⊗ f DI (π) as multiplication by r−1.

Let N ∼= R2/R(p, a−1
− r) and ρ =

∑
ai<qair i in R. Then

(a−1
− r)ρ = a−1(1− aqrq)= a−1(1− rq)≡ 0 mod p.

Therefore (a−1
− r)ρ = pσ for some σ ∈ R. Let [ρ, σ ] be the image of (ρ, σ ) in N . Then [ρ, σ ] 6= 0,

since p does not divide ρ in R. On the other hand,

p[ρ, σ ] = ρ[p, a−1
− r ] and (a−1

− r)[ρ, σ ] = σ [p, a−1
− r ] = 0.

Thus a acts as multiplication by r−1 on this nontrivial p-torsion element of N . Since R⊗ f DI (π) ∼=
I (Z/qZ)⊕ N n and r−1

6≡ r mod p, it follows that there are no projective Z[π ]-modules P, Q such that
R⊗ f (I (π)⊕ P)∼= R⊗ f (DI (π)⊕ Q). Thus the conclusion of Corollary 2.4.1 does not hold.

If q = 4 the edge groups have order 2 or 4, and at least one vertex group has an element of order 4.
We may again assume that 0 is a tree, and π now has a presentation of the form〈

a, b1, . . . , bn

∣∣∣∣∣∣
a4
= bp

i = 1
abi a−1

= br
i ∀i 6 k

a2bi a2
= b−1

i ∀i > k

〉
,

for some k > 1. We now find that a acts as multiplication by r on a summand (Z/pZ)k of the Z-torsion of
R⊗ f I (π), whereas it acts by r−1

=−r on the corresponding summand of the Z-torsion of R⊗ f DI (π).
We again find that Corollary 2.4.1 does not hold.

Suppose finally that p= 5, q = 8 and r = 2. In this case every subgroup of H of order 2 or 5 is normal
in H . Hence 0 can have no edges, contrary to our assumption.

Thus all vertex groups have cohomological period dividing 4. �

6.5. Groups with cohomological period 1, 2 or 4

We shall now use the classification of groups of cohomological period 4 to restrict further the possible
fundamental groups.

Lemma 6.9. Let G be a finite group with cohomological period 4, and let C be a cyclic subgroup of odd
prime order p. Then NG(C) is nonabelian unless p = 3 and G = B×Z/dZ with B = T ∗1 or I ∗.

Proof. This follows on examining the list of such groups G. (Note that if p > 5 then C is central, while
if p = 5 and G = I ∗ or p = 3 and G = O∗1 then NG(C) is nonabelian. If p = 3 and G = T ∗k or O∗k with
k > 1 then C is normal in G.) �

Theorem 6.10. Let X be an indecomposable orientable PD3-complex with π = π1(X) ∼= πG, where
(G, 0) is a reduced finite graph of finite groups of cohomological period dividing 4. Then:

(1) 0 is a tree and at most one edge group is not Z/2Z.

(2) If all edge groups are Z/2Z then at most one vertex group is not dihedral.

(3) If there is an edge e with |Ge| > 2, then Ge ∼= Z/6Z, the adjacent vertex groups are D2m ×Z/3Z

and B ×Z/dZ, with (m, 6) = 1, B = T ∗1 or I ∗ and (d, |B|) = 1, and the remaining vertex groups
are dihedral.
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Proof. Let Ge be an edge group. Then Ge is metacyclic, by Theorem 6.7. If 4 divides |Ge| then Ge

has a central involution, which is also central in V = Go(e) and W = G t (e), since these groups have
cohomological period dividing 4. This contradicts the Centralizer Condition, and so 4 cannot divide
|Ge|.

At least one of V,W is metacyclic, by Corollary 6.7.1. Suppose that both are metacyclic. If C 6Ge has
odd prime order then NV (C)= V and NW (C)=W , since V and W are metacyclic with cohomological
period dividing 4. As this contradicts the Centralizer Condition, Ge = Z/2Z.

If V is not metacyclic then it has a central involution, g say, and W ∼= D2m×Z/kZ for some relatively
prime odd m > 3 and k > 1. Therefore if C 6 Ge has odd prime order NW (C)=W . Hence NV (C)6 Ge

and so the central involution is in Ge. Moreover, CW (g)= Ge and so Ge ∼= Z/2kZ. Since the odd-order
subgroup of Ge is central in W its normalizer in V must be abelian. Hence either k= 3 and V = B×Z/dZ,
with B = T ∗1 or I ∗ and (d, |B|)= 1, or k = 1, by Lemma 6.9.

Since the edge groups all have even order, and groups of cohomological period 4 and order divisible by
4 have central involutions, there is at most one such vertex group and 0 is a tree, by Corollary 6.7.2. �

If Z/6Z is an edge group then some subgroup ρ of finite index in π has a reduced graph of groups
structure with a vertex group T ∗1 and an edge group Z/6Z. Factoring out the commutator subgroups of
the dihedral vertex groups gives a ring epimorphism f :Z[ρ]→Z[σ ], where σ = (D2m×Z/3Z) ∗Z/6Z T ∗1 .
(This group has the presentation 〈w, x, z | z2x = xzxz, x2

= z3, wzw = z, zm
= 1〉.) We may use f to

show that if ρ satisfies the Turaev criterion then so does σ . We know of no such examples, but think a
new idea may be needed to apply the Turaev criterion effectively in this case.

Since all involutions in π are conjugate we may modify (G, 0) so that 0 is linear: all vertices have
valence 6 2.

Corollary 6.10.1. If all the vertex groups are dihedral then π ∼= π ′oZ/2Z and π ′ is a free product of
cyclic groups of odd order. �

Corollary 6.10.2. The group π retracts onto one of its vertex groups, and the retraction induces isomor-
phisms on homology with simple coefficients.

Proof. Suppose that the vertex groups are {G1, . . . ,Gn}, where Gi is dihedral for i 6 n− 2 and Gn−1 is
dihedral or D2m ×Z/3Z. Then π/〈〈

⋃
i<n G ′i 〉〉 ∼= Gn .

The second assertion follows by a simple Mayer–Vietoris argument. �

Theorem 6.10 and Milnor’s 2-Torsion Central Theorem [110] (on involutions in finite groups acting
freely on mod-(2) homology spheres — see §3 of Chapter 5) together imply (without using the Sphere
Theorem) that if M is a closed orientable 3-manifold and π = π1(M) is freely indecomposable, then π
is a finite group, Z, Z⊕ (Z/2Z), or a PD3-group. For otherwise π would have a finite index subgroup
ν ∼= (∗i6r Z/mi Z)oZ/2Z, with mi odd for i 6 r , by Theorem 6.10. Such a group ν maps onto D2m1

with kernel κ a free product of finite cyclic groups of odd order. Thus D2m1 would act freely on the
covering space Mκ associated to κ , which is a mod-(2) homology 3-sphere. This is impossible, by the
2-Torsion Central Theorem.
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6.6. Extending the construction of §1

The Fox–Lyndon presentation matrix for the augmentation ideal of D4s+2 derived from the presentation
〈a, b | a2

= 1, absa= bs+1
〉 is

(
a+1 0

1+abs aνs−νs+1

)
, where νk = 1+b+· · ·+bk−1. The off-diagonal element

may be removed by right multiplication by
( 1 0

1+abs 1

)
, since

(1+ abs)+ (aνs − νs+1)(1+ abs)= 0.

On multiplying the second column by bs2
the entries become self-conjugate.

Let {Gi | 0 6 i 6 n} be a family of finite groups, with G0 having even order and cohomological
period 2 or 4, and Gi = D2mi being dihedral, with mi = 2si + 1, for i > 1. Each of these groups has
an unique conjugacy class of involutions, and so there is a well-defined iterated generalized free product
with amalgamation

π = G0 ∗Z/2Z G1 ∗Z/2Z · · · ∗Z/2Z Gn.

We may choose a presentation for G0 with g generators and h relators, in which the last generator, a say,
is an involution. Taking 2-generator presentations for the dihedral groups, as above, and identifying the
involutions, we obtain a presentation for π of the form

〈G0, b1, . . . , bn | abs1
1 ab−1−s1

1 = · · · = absn
n ab−1−sn

n = 1〉.

The corresponding Fox–Lyndon presentation matrix for I (π) begins with an h× g block corresponding
to the presentation matrix for IG0 and n new rows and columns. The final n elements of the g-th column
may be removed and the diagonal elements rendered self-conjugate, as before, as the new generators
interact only with a. (Note that if e1, . . . , eg+n are the generators for Iπ associated to this presentation
then (a+ 1)eg = 0 is a consequence of the first h relations.)

It is now clear that [I (π)] = [DI (π)], and so π is the fundamental group of a PD3-complex. If I (G0)

has a square presentation matrix which is conjugate to its transpose, the construction of §1 extends to
give an explicit complex with one 0-cell, g+ n 1-cells, g+ n 2-cells and one 3-cell realizing this group.
That this complex is a PD3-complex follows from Theorem 2.1.

The first such group considered in this context was S3 ∗Z/2Z S3 [61; 64; 67], but the simplest such
example is perhaps S3 ∗Z/2Z Z/4Z, with presentation

〈a, b | a4
= 1, a2ba2

= b2
〉.

This group is realized by a PD3-complex with just six cells.

6.7. Homotopy types with given fundamental group

Let W be an orientable PD3-complex with fundamental group π and fundamental class [W ] ∈ H3(W ;Z).
Let µ(W ) = cW∗[W ] ∈ H3(π;Z). If π is virtually free then H3(π;Z) is finite, and so there are only
finitely many homological triples, and hence homotopy types, with group π . Note also that if π is inde-
composable and virtually free then Out(π) is finite [18], and so the group of self-homotopy equivalences
of W is finite [57].

Suppose that π = G0 ∗Z/2Z ρ, where G0 has cohomological period dividing 4 and a central involution
and ρ is an iterated free product of dihedral groups Gi = D2mi with amalgamation over copies of Z/2Z,
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where mi = 2si + 1, for i 6 n. Then ρ ′ ∼= ∗n
i=1 Z/mi Z. Let m0 = |G0|. (We allow the possibility

G0 = Z/2Z.) Since ρ ∼= ρ ′oZ/2Z we have

H3(ρ;Z)∼= H3(Z/2Z;Z)⊕ H3(ρ
′
;Z).

A Mayer–Vietoris argument then gives

H3(π;Z)∼= H3(G0;Z)⊕ H3(ρ
′
;Z)=

n⊕
i=0

(Z/mi Z).

Let f : π→ G0 be the epimorphism with kernel normally generated by ρ ′, and let Wσ be the covering
space corresponding to σ = f −1(S), where S < G0 is a Sylow p-subgroup of G0. If p is odd, Wσ is
a connected sum of lens spaces, by the Splitting Theorem. Since µ(Wσ ) is the image of µ(W ) under
transfer, it follows that µ(W ) must project to a generator of each of the odd cyclic summands of H3(π;Z).
If p = 2 we may argue instead that the square Sq1

: H 1(Wσ ; F2)→ H 2(Wσ ; F2) is nonzero. Hence the
generator of H 3(Wσ ; F2) is a product of elements in the image of H 1(σ ; F2), by Poincaré duality. It
follows that the image of µ(W ) in the 2-primary summand must generate also.

For each 16 i 6 n and u ∈ (Z/mi Z)
× there is an automorphism which sends bi to bu

i , for bi ∈ G ′i , and
which fixes the other vertex groups. If Gi ∼= G j there is an automorphism interchanging Gi and G j . As
every automorphism of G0 fixes the central involution it extends to an automorphism of π which fixes
ρ. These automorphisms act naturally on H3(π;Z).

In particular, if G0 = Z/2Z, so π ∼= π ′oZ/2Z, the double cover W ′ is a connected sum of lens spaces.
Taking into account the actions of these automorphisms and the homotopy classification of lens spaces,
we see that W1 'W2 if and only if W ′1 'W ′2.



CHAPTER 7

Nonorientable PD3-complexes

In this chapter we turn to the nonorientable case, where the situation is somewhat different. We begin
by showing that if X is an indecomposable PD3-complex which is not orientable and π = π1(X) is
virtually free, then X is homotopy equivalent to S2

×̃ S1 or to R P2
× S1, and so π is isomorphic to Z or

to Z/2Z⊕Z. In particular, π+ is torsion-free. We then show that this remains true if π is not virtually
free. As a warm-up, we give a short proof for the case of 3-manifolds, based on the “projective plane
theorem” of [36]. (The fact that R P2 does not bound provides a further restriction in the 3-manifold
case which is not yet known in general.) Our main result is Theorem 7.10, in which we show that if P
is an indecomposable, nonorientable PD3-complex such that π = π1(P) has infinitely many ends, then
π+ is torsion-free, but not free, and π ∼= π+oZ/2Z−. By passing to Sylow subgroups of the torsion
in π , we may reduce potential counter-examples to special cases, which are eliminated by Lemmas 7.7,
7.8 and 7.9. This chapter is based on [68; 69]; the arguments are similar to those of Chapter 6.

7.1. Nonorientable PD3-complexes with π virtually free

Here we shall show that the only indecomposable nonorientable PD3-complexes with virtually free fun-
damental group are the two 3-manifolds S2

×̃ S1 and R P2
× S1.

Theorem 7.1. Let P be an indecomposable nonorientable PD3-complex with π = π1(P)∼= πG, where
(G, 0) is a finite graph of finite groups. If all the vertex groups are orientation-preserving then P '
S2
×̃ S1.

Proof. If some edge group is nontrivial then all are nontrivial, since π is indecomposable. As they are
orientation-preserving, they are also edge groups for a corresponding graph-of-groups structure for π+,
and so have even order, by Theorem 6.10. But then 0 would be a tree, as in Corollary 6.7.2, and P would
be orientable. Thus π must be a free group. Since it is nontrivial and indecomposable it must be Z. The
result now follows from Theorem 5.8. �

When there is an orientation-reversing element of finite order the argumnent is more involved, and we
need two preparatory lemmas.

Lemma 7.2. Set R = Z[Z/2Z] = Z[a]/(a2
− 1). Let π be a finitely presentable group, w : π → Z/2Z

an epimorphism, and f : Z[π ] → R the epimorphism of rings induced by w. Suppose that R⊗ f I (π)∼=
R/(a+ 1)⊕ T , where T is a Z-torsion module. Then [I (π)]pr 6= [DI (π)]pr.

Proof. Every finitely generated Z-torsion-free R-module is a direct sum of copies of R, Z= R/(a− 1)
and Zw = R/(a+ 1), and the number of summands of each type is uniquely determined [CR, Theorem
74.3]. In particular, all finitely generated projective R-modules are free, and so the numbers of summands
of types Z and Zw are invariant under stabilization.

63
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Let P be a presentation matrix for T . Then A =
(

a+1 0
0 P

)
is a presentation matrix for R⊗ f I (π). The

stable isomorphism class [R⊗ f DI (π)] contains the module presentated by A tr
=
( 1−a 0

0 P tr

)
. This has

Z as a direct summand, whereas R⊗ f I (π) does not. Therefore the conclusion of Corollary 2.4.1 does
not hold, and so [I (π)]pr 6= [DI (π)]pr. �

Lemma 7.3. Let P be an indecomposable PD3-complex with π = π1(P)∼= F(r)oG, where G is finite.
If π has an orientation-reversing element g of finite order then it has an orientation-reversing element of
order 2, and G has order 2m, for some odd m.

Proof. If an orientation-reversing element g has order 2kd with d odd then k > 1 and gd is orientation-
reversing and of order 2k . Suppose that k > 1. After passing to an indecomposable factor of a finite
covering space, if necessary, we may assume that G is generated by gd , and the graph of groups is
reduced. Hence G is cyclic of order 2k , while π is indecomposable and infinite. The vertex groups are
cyclic of order dividing 2k , and 0 has at least one edge e. The edge group Ge must be Z/2Z− by the
Normalizer and Centralizer Conditions. Since the inclusion of Ge splits w, it follows that k = 1. Thus
gd is an orientation-reversing element of order 2.

Suppose that |G| is a multiple of 4. We may assume now that G is a 2-group, π is indecomposable and
the graph of groups is reduced. The edge groups must be generated by orientation-reversing elements
of order 2, and the vertex groups must have order 4. The vertex groups are Z/2Z⊕Z/2Z−, since the
inclusion of an edge group splits w. (Thus k = 1 and each vertex group has two conjugacy classes of
orientation-reversing elements of order 2.)

All vertices of 0 have valency at most 2, for otherwise there would be an orientation-reversing invo-
lution with centralizer containing (Z/2Z) ∗ (Z/2Z) ∗ (Z/2Z). Thus either 0 is a tree or β1(0)= 1.

Let w =w1(X) and let f : Z[π ] → R = Z[Z/2Z] = Z[a]/(a2
− 1) be the epimorphism induced by w.

Then f induces an epimorphism from Iπ to IZ/2Z = R/(a+ 1), which factors through an epimorphism
h : R⊗ f Iπ → R/(a+ 1). The inclusion of an edge group splits h, and so R⊗ f Iπ ∼= R/(a+ 1)⊕ N ,
where N = Ker(h).

If 0 is a tree then π has a presentation〈
a1, . . . , an, b1, . . . , bn

∣∣∣∣ a2
i = b2

i = ai bi a−1
i b−1

i = 1 ∀ i 6 n
ai = ai+1bi+1 ∀ 16 i < n

〉
,

where w(ai ) = −1 and w(bi ) = 1 for all i 6 n. (The amalgamations must be essentially as in the
final set of relations since the edge groups are generated by orientation-reversing involutions and each
of the edge group centralizers has two ends.) Consideration of the Fox–Lyndon presentation matrix for
R⊗ f Iπ shows that Q⊗Z N = 0 in this case. Thus N is a Z-torsion module, so [Iπ ] 6= [Jπ ], by Lemma 7.2.
Therefore 0 cannot be a tree.

If β1(0)= 1 then π has a presentation〈
a1, b1, . . . , an, bn, t

∣∣∣∣∣ a2
i = b2

i = ai bi a−1
i b−1

i = 1 ∀ i 6 n
ai = ai+1bi+1 ∀ 16 i < n
tan = a1b1t

〉
,

where w(ai )=−1 and w(bi )= 1 for all i 6 n. After replacing t by tan , if necessary, we may assume
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that w(t)= 1. In this case N = Ker(h) is not a Z-torsion module. Instead we find that

R⊗ f Iπ ∼= R/(a+ 1)⊕ (R/(2, a− 1))n−1
⊕M,

where M is an indecomposable R-module with underlying abelian group Z⊕Z/2Z and R-action deter-
mined by a · (m, [n])= (m, [m+n]) for all (m, [n]) ∈ Z⊕Z/2Z. In particular, the augmentation module
Z is not a summand of R ⊗ f Iπ . On the other hand, R ⊗ f Jπ does have Z as a summand. Therefore
R⊗ f Iπ and R⊗ f Jπ are not stably isomorphic, and so [Iπ ] 6= [Jπ ].

Thus |G| is not divisible by 4, so |G| = 2m for some odd m. �

In particular, if w(Gv) 6= 1 then Gv
∼= D2m for some odd m.

Theorem 7.4. Let P be an indecomposable nonorientable PD3-complex with π = π1(P) virtually free.
If π has an orientation-reversing element of order 2 then P ' R P2

× S1.

Proof. Since π is indecomposable and has nontrivial torsion, π = πG, where (G, 0) is a reduced finite
graph of finite groups. At least one vertex group has an orientation-reversing element, by Theorem 7.1.
If there is an edge e such that Go(e) is orientable and G t (e) is nonorientable then Ge must be cyclic of odd
order, since G t (e) ∼= Z/mZoZ/2Z with m odd, by Lemma 7.3. But then it is properly contained in each
of its normalizers, contradicting the Centralizer Condition. Thus we may assume that all vertex groups
are orientation-reversing. Hence they are all such semidirect products, and the edge groups are Z/2Z.
Thus each vertex group has an unique conjugacy class of orientation-reversing elements of order 2.

Suppose that there is a vertex group of order 2m > 2. On passing to a subgroup of finite index, if
necessary, we may assume that π ∼= F(r)oG, where G has order 2p, for some odd prime p. Then the
vertex groups must all be isomorphic to G, and G ∼= D2p, by the Normalizer and Centralizer Conditions.

Let T be a maximal tree in 0. Then T omits at most one edge of 0, since the centralizer of an
orientation-reversing element of order 2 is finite or has two ends.

Suppose first that 0 is a tree. Let f : Z[π ] → R = Z[a]/(a2
− 1) be the epimorphism induced by w.

Then R⊗ f I (π)∼= R/(a+ 1)⊕M , where M is a Z-torsion module. Therefore [I (π)] 6= [DI (π)], by
Lemma 7.2, and so 0 cannot be a tree.

If β1(0)= 1 then π has a presentation〈
a, b1, . . . , bn, t

∣∣∣∣ bp
i = abi a−1b−εi = a2

= 1 ∀ i 6 n
ta = at

〉
,

where ε = 1 if G is cyclic and ε =−1 if G is dihedral. Moreover, w(a)=−1, w(bi )= 1 for all i 6 n
and w(t)= 1. Hence

R⊗ f I (π)R/(a+ 1)⊕ R/(a− 1)⊕ (R/(p, a− ε))n,

and so the Z-torsion of R⊗ f I (π) is (Z/pZ)n , with a acting as multiplication by ε =−1. On the other
hand,

R⊗ f DI (π)∼= R/(a− 1)⊕ R/(a+ 1)⊕ N n,

where N ∼= R2/R(p,−a− ε) is generated by two elements n, n′, with pn = (a+ ε)n′. Let ν = (a− ε)n.
Then ν 6= 0, but pν= (a−ε)(a+ε)n′= 0 and (a+ε)ν= (a+ε)(a−ε)n= 0. Thus a acts as multiplication
by −ε on this nontrivial p-torsion element of N . Since −ε 6≡ ε mod p it follows that R⊗ f I (π) and
R⊗ f DI (π) are not stably isomorphic, and so [I (π)] 6= [DI (π)].
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Since π is infinite, the only remaining possibility is that 0 has one vertex v and one edge e, with
Ge = Gv = Z/2Z. Thus π ∼= Z/2Z⊕Z, and so P ' R P2

× S1, by Theorem 5.8. �

7.2. Indecomposable nonorientable 3-manifolds

The main result of this chapter (Theorem 7.10) is relatively easy (and no doubt well-known) in the case
of irreducible 3-manifolds, as we may use the Sphere Theorem, as strengthened by Epstein [36].

Theorem 7.5. Let M be an indecomposable nonorientable 3-manifold with fundamental group π . If π
has infinitely many ends then π ∼= π+oZ/2Z− and π+ is torsion-free, but not free.

Proof. Let P be a maximal set of pairwise non-parallel 2-sided projective planes in M . Then P is
nonempty, since M is indecomposable and π has infinitely many ends. In particular, π ∼= π+oZ/2Z−,
since the inclusion of a member of P splits w = w1(M) : π→ Z/2Z. The preimage of P in M+ is a set
P+ of disjoint 2-spheres, and each of the components of M+ \P+ is a double cover of a component of
M \P . Each such component of M \P is indecomposable [36].

Suppose that M \P has a component Y such that π1(Y ) is virtually free. The double DY is indecom-
posable (see Lemma 1.4), nonorientable and π1(DY ) is virtually free. Moreover, DY ∼= R P2

× S1, by
Theorem 7.4, since the inclusion of a boundary component of Y splits w. Therefore Y ∼= R P2

×[0, 1].
This is contrary to the hypothesis that the members of P are non-parallel. Thus the components of M \P
are punctured aspherical 3-manifolds.

Let 0 be the graph with vertex set π0(M \ P) and edge set P , with an edge joining contiguous
components. Then π+ ∼= G ∗ F(s), where G is a free product of PD3-groups (corresponding to the
fundamental groups of the components of M \P), and s = β1(0). Hence π+ is torsion-free. �

We remark also that each component Y of M \P has an even number of boundary components, since
χ(∂Y ) is even (for any odd-dimensional manifold Y ), by Poincaré duality. Thus the vertices of the graph
0 have even valence.

Example. The canonical involution ι of the topological group T 3
= R3/Z3 has 8 isolated fixed points

(the points of order 2). Let X be the complement of an equivariant open regular neighbourhood of
the fixed point set, and let M = D(X/〈ι〉). Then M is indecomposable and nonorientable, and π ∼=
(Z3
∗Z3
∗ F(7))oZ/2Z−.

7.3. Indecomposable nonorientable PD3-complexes

We return to the setting of PD3-complexes.

Lemma 7.6. Let P be an indecomposable nonorientable PD3-complex with π = π1(P) and w = w1(P).
Suppose that π ∼= πG, where (G, 0) is an admissible graph of groups.

(1) If e is an edge with Go(e) or G t (e) infinite, then Ge = Z/2Z−.

(2) If P 6' S2
×̃ S1 then π ∼= π+oZ/2Z−.

(3) If all finite vertex groups are 2-groups, then they are nonorientable, and all edge groups are Z/2Z−.

Proof. Suppose first that the vertex groups are all finite. Then P ' S2
×̃ S1 (if all the vertex groups

are orientation-preserving) or R P2
× S1 (otherwise), by Theorems 7.1 and 7.4, respectively, and so the
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lemma holds. Hence we may assume that (G, 0) has at least one infinite vertex group Gv and at least
one edge e with o(e)= v or t (e)= v. If w(g)= 1 for some g ∈ Ge of prime order then both G+o(e) and
G+t (e) would be finite, by the Centralizer Condition. But then Gv would be finite, contrary to hypothesis.
Thus Ge = Z/2Z−, and the inclusion of Ge into π splits w, so π ∼= π+oZ/2Z−.

Suppose that all finite subgroups are 2-groups. Let f be an edge such that the vertex groups Go( f )

and G t ( f ) are finite. If G f = Go( f ) (or G f = G t ( f )) then f must be a loop isomorphism, since (G, 0) is
reduced. But then Cπ (G f ) is infinite, and so G f = Z/2Z−, by the Centralizer Condition. Since (G, 0) is
reduced, f must be the only edge, contrary to the assumption that there is an infinite vertex group. Thus
we may assume that Go( f ) and G t ( f ) each properly contain G f . Since Go( f ) and G t ( f ) are 2-groups
and hence nilpotent, Nπ (G f ) is infinite, by the Normalizer Condition. Since Cπ (G f ) has finite index in
Nπ (Ge) we must have G f = Z/2Z−, by the Centralizer Condition. Since 0 is connected it follows easily
that every finite vertex group is nonorientable and every edge group is Z/2Z−. �

The next two lemmas consider two parallel special cases, involving a prime p, which is odd or 2,
respectively.

Lemma 7.7. Let P be an indecomposable PD3-complex with π = π1(P) ∼= κ oW , where κ is orientable
and torsion-free, and W has order 2p, for some odd prime p. Then P is orientable.

Proof. Suppose that P is not orientable. Then π and κ are infinite. Since π has a subgroup W of finite
order > 2, we may assume that π ∼= πG, where (G, 0) is an admissible graph of groups with r > 1 finite
vertex groups and at least one edge. Let s = β1(0).

Each finite vertex group is mapped injectively by any projection from π onto W with kernel κ . If a
vertex group Gv has prime order then every edge e with one vertex at v is a loop isomorphism, since (G, 0)
is reduced. But then 0 has just one vertex and π ∼= Gv o F , which contradicts the hypothesis. Hence all
finite vertex groups are isomorphic to W . If an edge e is a loop isomorphism then G+e ∼=Z/pZ has infinite
normalizer, contradicting the Centralizer Condition. If there is an edge e with Ge of order p then both of
the vertex groups Go(e) and G t (e) are finite, by Lemma 7.6. But then [Go(e) : Ge] = [G t (e) : Ge] = 2, and
so Nπ (Ge) is infinite, which again contradicts the Centralizer Condition. Since the orientation character
w factors through W it follows that every edge group is Z/2Z− and w is nontrivial on every vertex group.

Since each edge group is Z/2Z−, w is nontrivial on each vertex group and so π+ = πG+, where
(G+, 0) is a graph of groups with the same underlying graph 0, trivial edge groups and vertex groups
G+v , for all v ∈ V (0). Hence π+ ∼= G ∗ F(s) ∗ J , where G is a free product of orientable PD3-groups
and J is a free product of r copies of Z/pZ. We have J ∼= F(t)oZ/pZ for some t > 0. (In fact,
t = (p− 1)(r − 1), by a simple virtual Euler characteristic argument.)

Let a ∈ π be such that a2
= 1 and w(a) = −1. The involution of π+ induced by conjugation by a

maps each indecomposable factor which is not infinite cyclic to a conjugate of an isomorphic factor [47].
However, its behaviour on the free factor F(s) may be more complicated. The subgroup λ∼= κ oZ/2Z−

generated by κ and a is also the group of a PD3-complex, since it has finite index in π .
Let w : Z[π ] → R = Z[〈a〉] = Z[a]/(a2

− 1) be the linear extension of the orientation character. Then
I (〈a〉) ∼= Z̃ = R/(a+ 1). We may factor out the action of π+ on a Z[π ]-module by tensoring with R.
The derived sequence of the functor R⊗w − applied to the augmentation sequence

0→ I (π)→ Z[π ] → Z
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gives an exact sequence

0→ H1(π; R)= κ/κ ′→ R⊗w I (π)→ R→ Z→ 0.

The inclusion of 〈a〉 into π splits the epimorphism from R⊗w I (π) onto I (〈a〉), and so R⊗w I (π)∼=
κ/κ ′⊕ Z̃.

Let γ be the normal subgroup of π generated by G ∪ F(s), and let H be the image of γ in κ/κ ′. Then
similar arguments show that

R⊗w I (π)= H ⊕ (R⊗w I (π/γ )) and R⊗w I (λ)= H ⊕ (R⊗w I (λ/γ )).

The group J and its free normal subgroup F(t) have presentations

J = 〈bi , 16 i 6 r | bp
i = 1 ∀i〉 and F(t)= 〈xi, j , 16 i 6 r − 1, 16 j 6 p− 1 | 〉,

where xi, j has image b j
1b− j

i+1 in J , for 16 i 6 r − 1 and 16 j 6 p− 1.
The quotient π/〈〈G〉〉 is the fundamental group of the (possibly unreduced) graph of groups (G, 0)

with vertex groups W (or Z/2Z−) and edge groups Z/2Z−, obtained by replacing each infinite vertex
group Gv of (G, 0) by Gv/G+v = Z/2Z−. Thus if W is abelian (and so has an unique element of order 2)
then π/〈〈G〉〉 ∼= (F(s) ∗ J )×Z/2Z−. Hence π/γ ∼= J ×Z/2Z− and λ/γ ∼= F(t)×Z/2Z−, and so

R⊗w I (π/γ )∼= (R/(p, a− 1))r ⊕ Z̃ and R⊗w I (λ/γ )∼= (R/(a− 1))t ⊕ Z̃= Zt
⊕ Z̃.

The quotient ring R/pR = Fp[a]/(a2
− 1) is semisimple, and so p-torsion R-modules have unique

factorizations as sums of simple modules. Since I (π)⊗w R and I (λ)⊗w R satisfy Corollary 2.4.1 (and
projective R-modules are Z-torsion-free), the p-torsion submodule of R⊗w I (π) has the same numbers
of summands of types R/(p, a− 1) and R/(p, a+1), and similarly for R⊗w I (λ). Since R⊗w I (λ/γ ) is
p-torsion-free, the number of summands of types R/(p, a−1) and R/(p, a+1) in H must also be equal.
On the other hand, R⊗w I (π/γ ) has r > 0 summands of type R/(p, a−1) and none of type R/(p, a+1).
These conditions are inconsistent, and so π is not the group of a nonorientable PD3-complex.

If W is not abelian then it has an unique conjugacy class of elements of order 2, and π/γ ∼= J oZ/2Z−

and λ/γ ∼= F(t)oZ/2Z− have presentations

〈a, bi , 16 i 6 r | a2
= 1, bp

i = 1, abi a = b−1
i ∀i〉,

and
〈a, xi, j , 16 i 6 r − 1, 16 j 6 p− 1 | a2

= 1, axi j a = xi,p− j ∀i, j〉,

respectively. (In particular, λ/γ ∼= F(t/2) ∗Z/2Z−.) In this case

R⊗w I (π/γ )∼= (R/(p, a+ 1))r ⊕ Z̃ and R⊗w I (λ/γ )∼= Rt/2
⊕ Z̃.

Consideration of the p-torsion submodules again shows that the conclusion of Corollary 2.4.1 does not
hold, and so π is not the group of a nonorientable PD3-complex. Thus P must be orientable. �

The case p = 2 involves slightly different calculations.

Lemma 7.8. Let P be an indecomposable PD3-complex with π = π1(P)∼= κ oW , where κ is orientable
and torsion-free, and W has order 4. Then P is orientable.
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Proof. As in Lemma 7.7, we suppose that P is not orientable, so π and κ are infinite, and may assume
that π ∼= πG, where (G, 0) is an admissible graph of groups with r > 1 finite vertex groups and at least
one edge. We continue the notation J , γ , a and R from Lemma 7.7. Note that J is now a free product
of r copies of Z/2Z.

The inclusions of the edge groups split w, by Lemma 7.6. In this case W ∼= (Z/2Z)2 = Z/2Z⊕Z/2Z−

and has two orientation-reversing elements. The quotient π/γ is the group of a finite graph of groups
with all vertex groups W and edge groups Z/2Z−. Since J is a free product of cyclic groups, π/γ has
a presentation

〈a, bi , 16 i 6 r | a2
= 1, b2

i = (awi )
2
= (awi bi )

2
= 1 ∀i〉,

where w1 = 1 and wi ∈ F(t) for 26 i 6 r . The free subgroup F(t) has basis {xi | 16 i 6 r − 1}, where
xi has image b1bi+1 in J , and λ/γ has a presentation

〈a, xi , 16 i 6 r − 1 | a2
= 1, axi a = xi bi+1wi+1bi+1w

−1
i+1 ∀i〉.

In this case

R⊗w I (π/γ )∼= (R/(2, a− 1))r ⊕ Z̃ and R⊗w I (λ/γ )∼= Zr−1
⊕ Z̃.

Since R/(2, a+ 1)= R/(2, a− 1), torsion considerations do not appear to help. If r > 1 we may instead
compare the quotients by the Z-torsion submodules, since finitely generated torsion-free R-modules are
direct sums of copies of R, Z and Z̃ [CR, Theorem 74.3]. We again see that π is not the group of a
nonorientable PD3-complex.

The case when p = 2 and r = 1 requires a little more work. Let N be the R-module presented by the
transposed conjugate of

(
2

a−1
)
. If {e, f } is the standard basis for R2 then N = R2/R(2e+ (a+ 1) f ).

The Z-torsion submodule of N is generated by the image of (a− 1)e, and has order 2, but is not a direct
summand. The quotient of N by its Z-torsion submodule is generated by the images of e and f −e, and is
a direct sum Z⊕ Z̃. In particular, it has no free summand. It now follows easily that H⊕ Z̃⊕ R/(2, a− 1)
is not stably isomorphic to H ⊕ Z̃⊕ N . Therefore the conclusion of Corollary 2.4.1 does not hold, and
so π is not the group of a nonorientable PD3-complex. Thus P must be orientable. �

Our final lemma is needed to cope with three exceptional cases.

Lemma 7.9. Let G = H oZ/2Z, where H = T ∗1 , O∗1 or I ∗. Suppose that every element of G of order
divisible by 4 is in H. Then G has a subgroup W of order 6 such that [W :W ∩ H ] = 2.

Proof. Let g be an element of order 2 in G \ H .
Suppose first that H = T ∗1 , with presentation

〈x, y, z | x2
= (xy)2 = y2, z3

= 1, zxz−1
= y, zyz−1

= xy〉.

Then ζT ∗1 = 〈x
2
〉 has order 2. The outer automorphism group Out(T ∗1 ) is generated by the class of the

involution ρ which sends x , y and z to y−1, x−1 and z2, respectively. (See [Hi, page 221].) Hence ρ
preserves the subgroup S of order 3 generated by z.

If conjugation by g induces an inner automorphism of T ∗1 there is an h ∈ T ∗1 such that gxg−1
= hxh−1

for all x ∈ T ∗1 . Then gh = hg and h2 is central in T ∗1 , so (h−1g)2 = h2 has order dividing 4. Therefore
h−1g has order 2, by hypothesis.
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Otherwise we may assume that there is an h ∈ G+ such that gxg−1
= hρ(x)h−1 for all x ∈ T ∗1 , and

so ρ is conjugation by h−1g. Since ρ is an involution (h−1g)2 is central in T ∗1 . We again see that
h−1g has order 2. In each case h−1g normalizes S, so W = 〈S, h−1g〉 has order 6, while h−1g 6∈ H , so
[W :W ∩ H ] = 2.

The commutator subgroup of O∗1 is T ∗1 . Since this is a characteristic subgroup, it is preserved by g.
The group T ∗1 is a non-normal subgroup of I ∗, of index 5. Since g acts as an involution on the set of
conjugates of T ∗1 we may assume that it preserves T ∗1 . In each case the lemma follows easily from its
validity for H = T ∗1 . �

We may now give our main result.

Theorem 7.10. Let P be an indecomposable nonorientable PD3-complex such that π = π1(P) has
infinitely many ends. Then:

(1) π ∼= πG, where (G, 0) is an admissible graph of groups with all vertex groups one-ended and all
edge groups Z/2Z−.

(2) π ∼= π+oZ/2Z−.

(3) π+ ∼= G ∗ H, where G is a nontrivial free product of PD3-groups and H is free. In particular, π+ is
torsion-free.

Proof. Let π ∼= πG, where (G, 0) is an admissible graph of groups. At least one vertex group is infinite,
for otherwise π has two ends, by Theorems 7.1 and 7.4. Hence π+ ∼= G ∗ H , where G is a nontrivial
free product of PD3-groups and H is virtually free. Therefore π+ is virtually torsion-free. Let κ be the
intersection of the conjugates in π of a torsion-free subgroup of finite index in π+, and let φ :π→π/κ be
the canonical projection. Then κ is orientable, torsion-free and of finite index, and w factors through π/κ .

If F is a finite subgroup then φ|F is injective, and φ−1(φ(F)) has finite index in π . Hence φ−1(φ(F))
has a graph of groups structure in which all finite vertex groups are isomorphic to subgroups of F . In
particular, if F is a nonorientable 2-group then at least one of these vertex groups is a nonorientable
2-group, and so there is a g ∈ F such that g2

= 1 and w(g)=−1, by part (3) of Lemma 7.6. Hence if,
moreover, F is cyclic then it has order 2.

Assume that there is a nonorientable finite vertex group Gv. Then Gv has a nonorientable Sylow
2-subgroup S(2), and so there is a g ∈ S(2) such that g2

= 1 and w(g)=−1. The orientable subgroup
G+v has periodic cohomology, with period dividing 4, by Theorem 6.8. Moreover, every element of Gv

divisible by 4 is in G+v , by the argument of the previous paragraph.
Let g be an element of order 2 whose image generates Gv/G+v . We may assume that G+v ∼= B×Z/dZ,

where B is either Z/aZo Q(2i ) (with a odd and i > 3), T ∗k or O∗k (for some k > 1), I ∗, P ′′48·3k−1a (with
a > 1 odd) or A(a, e) (with a > 1 odd and e > 1). Suppose first that G+v is not a 2-group. Then it has
a nontrivial subgroup S of order p, for some odd prime p. If d > 1 we may assume that p divides d,
and then S is characteristic in G+v . This is also the case if G+v is isomorphic to Z/aZo Q(8), A(a, e) or
P ′′48·3k−1a with a odd (so p divides a or p = 3), or T ∗k or O∗k with k > 1 (so p = 3). In these cases S is
normalized by g, and the subgroup H generated by S and g has order 2p. The remaining possibilities
are that G+v is isomorphic to T ∗1 ×Z/dZ, O∗1 ×Z/dZ or I ∗×Z/dZ. For these cases we appeal to Lemma
7.9, to see that Gv has a nonorientable subgroup W of order 2p.
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Since φ−1φ(W ) has finite index in π , it is again the group of a nonorientable PD3-complex. This
complex has an indecomposable factor whose group has W as one of its finite vertex groups, and so has
fundamental group κ o W . But this factor is nonorientable, and so contradicts Lemma 7.7.

Therefore we may assume that G+v is a 2-group. If S(2)+ 6= 1 (i.e., if G+v is a nontrivial 2-group) it
is cyclic or generalized quaternionic, and so has an unique central element of order 2, by Lemma 5.3.
Hence Gv has a subgroup W ∼= Z/2Z×Z/2Z− of finite index. Passage to φ−1φ(W ) again leads to a
contradiction, by Lemma 7.8.

Therefore all finite vertex groups are orientable. But the graph 0 is connected, and any edge connecting
a finite vertex group to an infinite vertex group must be nonorientable, as in Lemma 7.6. Since at least
one vertex group is infinite, there are no finite vertex groups.

The second assertion follows from part (2) of Lemma 7.6, and π+ = πG+ is the fundamental group
of a graph of groups (G+, 0) with the same underlying graph 0, trivial edge groups and vertex groups
G+v all PD3-groups. Hence π+ is torsion-free, but not free. �

As observed at the end of §2, when M is a 3-manifold and (G, 0) is an admissible graph of groups such
that π1(M)= πG, all vertices of 0 have even valence. Can this observation be extended to the case of
PD3-complexes? Although there are indecomposable orientable PD3-complexes which are not homotopy
equivalent to 3-manifolds, it remains possible that every indecomposable nonorientable PD3-complex is
homotopy equivalent to a 3-manifold.

We shall say that a nonorientable PD3-complex P is algebraically P2-irreducible if π is indecompos-
able and w1(P) does not split.

Corollary 7.10.1. Let P be a nonorientable PD3-complex. If P is algebraically P2-irreducible then
either P is aspherical or P ' S2

×̃ S1.

Proof. This follows from Theorems 7.1, 7.4 and 7.10. �

We may now refine the Centralizer Condition of Chapter 4.

Corollary 7.10.2. Let P be a PD3-complex and g ∈ π = π1(P) a nontrivial element of finite order. If
Cπ (g) is infinite then g has order 2 and is orientation-reversing, and Cπ (g)= 〈g〉×Z.

Proof. If π is virtually free this follows from Theorem 7.4. Otherwise it follows from the Centralizer
Condition and Theorem 7.10. �





CHAPTER 8

Asphericity and 3-manifolds

As a consequence of the results of Chapters 2–7, the study of PD3-complexes reduces largely to the study
of PD3-groups. Every homotopy equivalence between aspherical 3-manifolds is homotopic to a home-
omorphism. It is natural to ask also whether every PD3-group is a 3-manifold group. The fundamental
groups of aspherical 3-manifolds which are Seifert fibred or are finitely covered by surface bundles may
be characterized among all PD3-groups in simple group-theoretic terms. An affirmative answer in general
would suggest that a large part of the study of 3-manifolds may be reduced to algebra.

We begin with some brief observations on the good behaviour of 3-manifold groups and the bad
behaviour of PDn-groups when n > 3. We then propose three possible approaches to showing that PD3-
groups are 3-manifold groups. In §3 we give several lemmas relating to the third of these approaches, and
in §4 we state a number of results that we shall use in later chapters. (These results are not specifically
about 3-dimensional issues, so we choose to treat them as “black box” tools.) In the final two sections
we show that the groups of aspherical mapping tori, aspherical Seifert fibred 3-manifolds, and Sol3-
manifolds are (virtually) the PD3-groups with nontrivial FP2 normal subgroups of infinite index. (We give
two characterizations of groups of Seifert type, one using relatively simple arguments and an additional
hypothesis, and the other using the much deeper Bowditch Theorem.) In Chapter 9 we shall see that
allowing the subgroup to be merely subnormal, or even ascendant, leads to similar outcomes.

8.1. Some properties of 3-manifold groups

We shall henceforth use “3-manifold group” to mean the fundamental group of an aspherical closed
3-manifold, and shall summarize here a few of their properties. See [AFW] for further details.

If M is a closed 3-manifold we may assume it has one 0-cell and one 3-cell, and equal numbers of 1-
and 2-cells. Hence π = π1(M) has a finite presentation of deficiency 0; if M is aspherical this is clearly
best possible, since β1(π; F2) = β2(π; F2). Moreover, π is FF, i.e., the augmentation module Z has a
finite free Z[π ]-resolution.

As a consequence of the Geometrization Theorem of Perelman and Thurston, and the earlier work of
Farrell and Jones, K̃0(Z[π ])=Wh(π)= 0 and the Novikov Conjecture holds for 3-manifold groups [77;
121]. Moreover, M̃ ∼= R3, so π is 1-connected at∞, and π is residually finite. With the exception of
certain proper graph manifolds, most aspherical 3-manifolds are virtually mapping tori [1].

The central role played by incompressible surfaces in the topology of 3-manifolds suggests strongly
the importance of studying subgroups of infinite index in PD3-groups. There are substantial constraints
on the subgroups of 3-manifold groups. Every finitely generated subgroup of a 3-manifold group is
the fundamental group of a compact 3-manifold (possibly with boundary), by Scott’s Core Theorem
[123], and thus is finitely presentable. The Tits alternative holds; subgroups are either virtually solvable
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(in which case they are polycyclic) or contain nonabelian free groups. The centralizer of any element
in a 3-manifold group is finitely generated. One of our goals is to try to establish such properties for
PD3-groups.

In contrast, the product of two nonabelian PD+2 -groups contains a copy of F(2)× F(2), and so is a
PD+4 -group which is not almost coherent. Moreover, any group of finite geometric dimension 2 is the
fundamental group of a compact aspherical 4-manifold with boundary, obtained by attaching 1- and 2-
handles to D4. On applying the reflection group trick of Davis [24] to the boundary we see that each such
group embeds in a PD4-group. This leads to many interesting examples. For instance, there are PD4-
groups which have Baumslag–Solitar groups as subgroups. Such groups have abelian subgroups which
are not finitely generated, and are not residually finite (since this property is inherited by subgroups).
Davis has shown that if n > 4 then there are PDn-groups which are not finitely presentable, and Leary
has extended this to show that there are uncountably many such PDn-groups [102, Theorem 18.1].

Thus the position of PD3-groups is critical, being between the now fairly well delineated world of
surfaces and 3-manifolds and the wilderness of exotic phenomena in dimensions > 4.

8.2. Are PD3-groups 3-manifold groups?

The key approaches to this question seem to be through

(1) splitting over proper subgroups/geometric group theory;

(2) homological algebra; or

(3) topology.

Of course, there are overlaps between these. The fact that PD2-groups are surface groups is one common
ingredient.

We shall see that it is no loss of generality to assume that G is orientable. It may also be convenient
to assume also that G is coherent, and, in particular, finitely presentable.

(1) This approach has been most studied, particularly in the form of the Cannon Conjecture: that an
atoroidal Gromov hyperbolic PD3-group should be a cocompact lattice in PSL(2,C). There is a good
exposition based on JSJ decompositions of (finitely presentable) PD3-groups and pairs of groups (as in
[27]) in [152]. If one takes this approach it is natural to consider also the question of realizing PD3-pairs
of groups.

Splitting of PD3-groups over proper subgroups was first considered by Thomas [142]. Kropholler
showed that PDn-groups with max-c have canonical splittings along codimension-1 polycyclic subgroups
[94]. (When n = 3 such subgroups are Z2 or Kb.) Castel used [127] to give a JSJ decomposition for
arbitrary PD3-groups (i.e., not assuming finite presentability), and showed that all PD3-groups have max-c
[20]. (We give another proof of max-c for PD3-groups in Chapter 9, and state Kropholler’s decomposition
theorem in Chapter 10.)

In the simplest cases, G is either solvable, of Seifert type or atoroidal. The solvable case is easy,
and the Seifert case was settled by Bowditch [15]. (See Theorem 8.9.) Suppose that G is atoroidal.
If, moreover, G acts geometrically on a locally compact CAT(0) space then it is Gromov hyperbolic
[82]. Hence it is finitely presentable, K̃0(Z[G])= 0 and Wh(G)= 0, and so K (G, 1) is a finite simple
PD3-complex. Moreover G has boundary S2 [7]. (Note also the related result of [143] for the bounded
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case.) If the problem is stabilized by taking products with a closed manifold then surgery methods are
applicable. In [39] it is shown that G×Zd is the fundamental group of an aspherical (d + 3)-manifold,
for all d > 2.

(2) The homological approach perhaps has the least prospect of success, as it starts from the bare defini-
tion of a PD3-group, and needs something else to connect with topology. However, it has proven useful
in the subsidiary task of finding purely algebraic proofs for algebraic properties of 3-manifold groups,
an activity that shall be pursued in later chapters. One can also show that if G has sufficiently nice
subgroups then it is a 3-manifold group. For instance, if G has a nontrivial FP2 ascendant subgroup of
infinite index, then either G is the group of a Seifert fibred 3-manifold or it is virtually the group of a
mapping torus. (See Chapters 9 and 10.)

This strategy seems to work best when there are subgroups which are surface groups. One relatively
new ingredient is the Algebraic Core Theorem, which ensures that this is so if G has an FP2 subgroup
with one end. However, it remains possible that there may be PD3-groups which are simple groups, or
even Tarski monsters, whose only proper subgroups are infinite cyclic. It is then unclear what to do. (The
Davis construction may be used to give PDn-groups containing Tarski monsters, for all n > 3 [122].)

(3) To the best of my knowledge, no-one has explored the third option in any detail. It has the advantage
of direction connection with topology, but needs G to be finitely presentable. Here one starts from the fact
that if P is an orientable PD3-complex then there is a degree-1 map f : M→ P with domain a closed
orientable 3-manifold. (This follows from the Atiyah–Hirzebruch Spectral Sequence, but can also be
seen by “bare hands”; we may represent a generator of H3(P;Z) by a finite union of tetrahedra, with
faces identified in pairs. The resulting “Euler complex” has finitely many non-manifold points, which
are cones over surfaces. Replacing these conical neighbourhoods by handlebodies gives a 3-manifold
M .) Then f is a homotopy equivalence if and only if Ker( f∗)= 1. Since π1( f ) is surjective and π1(M)
and π = π1(P) are finitely presentable, Ker(π1( f )) is normally generated by finitely many elements
of π1(M), which may be represented by the components of a link L ⊂ M . (The link L is far from
being unique!) We might hope to modify M by Dehn surgery on L to render the kernel trivial. This
is possible if P is homotopy equivalent to a closed orientable 3-manifold N , for M and N may then
be obtained from each other by Dehn surgeries on links whose components are null-homotopic in N
[46]. However, there are PD3-complexes which are not homotopy equivalent to manifolds, and so this
cannot be carried through in all cases. The known counterexamples have finite covering spaces which are
homotopy equivalent to ]r (S2

× S1) for some r > 0. Thus it remains possible that every PD3-complex
is virtually a 3-manifold, i.e., has a finite covering space which is homotopy equivalent to a closed
orientable 3-manifold. If this is true it must be possible to kill Ker( f∗) by surgery and passing to finite
covering spaces.

In general, we might expect to encounter obstructions in L3(π,w) to obtaining a Z[π ]-homology
equivalence by integral surgery. For instance, there are finite PD3-complexes with π dihedral, but such
groups do not act freely on homology 3-spheres. However, the validity of the Novikov conjecture for
aspherical 3-manifolds suggests that such obstructions may never arise in the cases of most interest to
us. (See [77; 86].) In any case, we allow Dehn surgeries also.

We shall say that a link L =
∐

i6m L i in a 3-manifold N with an open regular neighbourhood n(L)=∐
i6m n(L i ) admits a drastic surgery if there is a family of slopes γi ⊂ ∂n(L i ) such that the normal
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closure of {[γ1], . . . , [γn]} in π1(N \ n(L)) meets the image of each peripheral subgroup π1(∂n(L i )) in
a subgroup of finite index.

If P is an aspherical orientable PD3-complex and f : M→ P is a degree-1 map such that Ker( f∗) is
represented by a link L which admits a drastic surgery, then after the surgery we may assume that Ker( f∗)
is normally generated by finitely many elements of finite order. Let M = ]r

i=1 Mi be the decomposition
into irreducibles. Since P is aspherical, the map f extends to a map f∨ :

∨r
i=1 Mi → P . Elementary con-

siderations then show that f∨ restricts to a homotopy equivalence from one of the aspherical summands
of M to P .

Unfortunately, there are knots which admit no drastic surgery. The following example was suggested
by Cameron Gordon. Let M be an orientable 3-manifold which is Seifert fibred over the 2-orbifold
S2(p, q, r), where 1

p +
1
q +

1
r 6 1, and let K ⊂ M be a regular fibre. Let φ,µ ⊂ ∂n(K ) be a regular

fibre and a meridian, respectively. Then surgery on the slope sµ+ tφ gives a 3-manifold which is Seifert
fibred over S2(p, q, r, s), if s 6= 0, or is a connected sum of lens spaces, if s = 0. If s 6= 0 the image of
φ has infinite order in π1(N ); otherwise, the image of µ has infinite order there. Thus no surgery on a
regular fibre of M is drastic. (We may modify this example to obtain one with M not Seifert fibred, by
replacing a tubular neighbourhood of another regular fibre by the exterior of a hyperbolic knot.)

However, we do have considerable latitude in our choice of link L representing Ker( f∗). In particular,
we may modify L by a link homotopy, and so the key question may be whether every knot K ⊂ M is
homotopic to one which admits a drastic surgery.

The existence of PD3-complexes which are not homotopy equivalent to 3-manifolds shows that we
cannot expect a stronger result, in which “contains the image of each peripheral subgroup π1(∂n(L i ))”
replaces “meets the image . . . finite index” in the definition of drastic surgery. Can we combine Dehn
surgery with passage to finite covers and varying L by link-homotopy?

The argument for the existence of a degree-1 map f : M→ P does not require us to assume a priori
that P be finite, nor even that π1(P) be finitely presentable. The latter condition is needed to ensure that
Ker( f∗) is represented by a link in M . This leaves the question: are PD3-groups finitely presentable?
Our strategy does not address this issue.

8.3. Some reductions

Lemma 8.1. Let P = P1 ] P2 be a PD3-complex which is the connected sum of PD3-complexes which are
virtually 3-manifolds. Then P is virtually a 3-manifold.

Proof. Let P̂i be a finite regular covering space of Pi which is homotopy equivalent to a closed 3-
manifold Mi , where i = 1, 2. Let Gi = Aut(P̂i/Pi ) and let H be the kernel of the natural projection
of π1(P) = π1(P1) ∗π1(P2) onto G1×G2. Then the associated covering space PH with fundamental
group H is homotopy equivalent to a connected sum of copies of M1 and M2. �

We shall assume henceforth that P is aspherical.

Lemma 8.2. If an aspherical PD3-complex P is virtually a 3-manifold then P is homotopy equivalent to
a 3-manifold.

Proof. Let f :M→ P̂ be a homotopy equivalence from a closed 3-manifold M to a finite regular covering
space P̂ . Then M is aspherical, and is either Seifert fibred, hyperbolic or Haken, by the Geometrization
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Theorem of Thurston and Perelman. If M is Seifert fibred then P is homotopy equivalent to a Seifert
fibred 3-manifold [15, Corollary 15.2]. If M is hyperbolic then G = Aut(P̂/P) is isomorphic to a
group of isometries of M , by Mostow rigidity. The group 0 of all lifts of such isometries to M̃ =H3 is
isomorphic to π1(P) and acts properly discontinuously on H3. Since 0 is torsion-free the action is free,
and so H3/0 is a closed hyperbolic 3-manifold homotopy equivalent to P . If M is Haken then it has
a canonical JSJ decomposition into Seifert fibred and hyperbolic pieces, and a similar conclusion holds
[158]. (Zimmermann assumes M orientable, but his argument holds more generally.) �

Thus we may further assume that P is orientable. There is a degree-1 map f : M→ P with domain a
closed 3-manifold, as observed above. As every closed orientable 3-manifold is the target of a degree-1
map from a hyperbolic 3-manifold [83], we could also assume that M is aspherical. As we may lose
asphericity of M under surgery, we shall settle for a simpler result.

Lemma 8.3. Let P be an aspherical PD3-complex and f : M→ P a degree-1 map. Then we may assume
that the irreducible factors of M are aspherical.

Proof. Let M = ] i=k
i=1 Mi be a factorization of M as a connected sum of irreducible 3-manifolds, with Mi

aspherical if i 6 r and π1(Mi ) finite, Z or Z/2Z⊕Z if i > r . Since P is aspherical, f extends to a map
F :

∨i=k
i=1 Mi → P . If π1(Mi ) is finite then F |Mi is null-homotopic, while if π1(Mi ) is isomorphic to Z or

Z/2Z⊕Z then F |Mi factors through S1. In either case the restriction to such terms has degree 0. Hence
F induces a degree-1 map from ] i=r

i=1 Mi to P . �

Let L ⊂ M be a link whose components represent a subset of π1(M) whose normal closure is Ker( f∗).
We may assume that the number of components of L is minimal among all such pairs ( f, L).

Lemma 8.4. If P is an aspherical PD3-complex and L admits a drastic surgery, then P is homotopy
equivalent to a 3-manifold.

Proof. After a drastic surgery on L we may assume that Ker( f∗) is normally generated by finitely many
elements of finite order. Let M = N ] N ′, where π1(N ) is torsion-free and the fundamental groups of
the irreducible summands of N ′ are finite. As in the previous lemma, f factors through the collapse of
M onto N , and so induces a degree-1 map g : N → P . This map is clearly π1-injective, and so it is a
homotopy equivalence. �

8.4. A compendium of frequently cited theorems

Here we collate some useful general results about PDn-groups and related issues, in some cases simplified
to meet our needs.

We begin with several results from [Bi]. We shall refer to these in the standard way, rather than give
them names, but it may be useful to have the statements immediately at hand. (There are many other
results in this book which we use, but shall not single out here.)

Theorem [Bi, Theorem 8.4]. Let G be a finitely generated group such that cd G = 2 and let N be a
finitely generated, free normal subgroup of G. Then G/N is virtually free. �

(The original version of this theorem considers finitely generated groups G such that cd G = n <∞,
and normal subgroups N which are duality groups of dimension n− 1; the conclusion is the same.)
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Lemma [Bi, Corollary 8.6]. Let G be a group such that cd G = 2, and let N be a normal FP2 subgroup
of G. Then either [G : N ] is finite or N is free. �

Theorem [Bi, Theorem 8.8]. Let G be a nonabelian group such that cd G = n <∞. Then:

(1) cd ζG < n.

(2) If ζG ∼= Zn−1 then G ′ is free. �

It is easy to see that a torsion-free virtually polycyclic group of Hirsch length n is a PDn-group.
Conversely:

Theorem [Bi, Theorem 9.23]. Every virtually solvable PDn-group is virtually polycyclic. �

The next result is particularly useful when G is almost coherent, for then the base and associated
subgroups are again FP2.

Theorem (Bieri–Strebel Theorem [10]). Let G be an FP2 group with G/G ′ infinite. Then G is an HNN
extension with finitely generated base and associated subgroups. �

Infinite covering spaces of closed n-manifolds are open, and so have cohomological dimension < n.
In the PL case this is easy to see, as open PL n-manifolds collapse into their (n− 1)-skeleton. Strebel
showed that a similar result holds for subgroups of infinite index in PDn groups [134].

Theorem (Strebel Theorem). Let G be a PDn-group and let H be a subgroup of infinite index in G. Then
cd H < n. �

When n = 3, either H is free or cd H = 2. Under more stringent conditions on the subgroup, Shapiro’s
Lemma with Poincaré duality (for each of the ambient and quotient groups) together imply the next result.
(See [Hi, Theorem 1.19] for the general case.)

Theorem (PD Extension Theorem). Let π be a PDn-group with a normal subgroup K such that π/K is
a PDr -group. Then K is a PDn−r -group if and only if it is FP[n/2]. �

The easiest part of the argument gives a useful special case of the Strebel Theorem. Let A be a left
Z[K ]-module, and let W =HomZ[K ](Z[π ], A) be the coinduced module. Then H s(K ; A)∼= H s(π;W )∼=

Hn−s(π;W ), by Shapiro’s Lemma and Poincaré duality for π . In particular, if π/K is infinite then
H n(K ; A)= 0 for all A, and so cd K < n.

Theorem 3.3 of [49] gives a criterion for the vanishing of certain cohomology modules for a group
which is a union of an increasing chain of FP subgroups. In our context, their argument gives the
following result, which we use together with the Strebel Theorem.

Theorem (Gildenhuys–Strebel Theorem). Let G =
⋃

n∈I Gn be the union of an increasing sequence of
FP2, one-ended subgroups, indexed by an interval I ⊆ N. If [Gn+1 : Gn]<∞ for all n ∈ I and cd G 6 2,
then the sequence is finite, so G is FP, cd G = 2 and G has one end. �

The enunciation of this theorem in [49] assumes that Gn is FP, cd Gn = r and H s(Gn;Z[Gn]) = 0
for all s < r and all n > 1, and concludes that if G is not finitely generated then H s(G;W )= 0 for all
free Z[G]-modules W and all s 6 r . However, the argument establishes the above assertion.

Kapovich and Kleiner have introduced ideas from “coarse geometry” to the study of PDn-groups [81].
Their principal results are formulated in terms of discrete groups acting on “coarse PD(n)-complexes”,
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and apply to PDn-groups through their Example 11.6. For our purposes, their main result is their Corol-
lary 1.2:

Theorem (Algebraic Core Theorem). Let G be an FP2 subgroup of infinite index in a PD3-group π . Then
each factor of G with one end is the ambient group of a PD3-pair. Hence either G contains a surface
group or G is free. If G has one end then χ(G)6 0. �

Finally, we note that if (G, �) is a PDn-pair of groups with nonempty boundary, we may double
G along its boundary to obtain a PDn-group D(G, �) in which G embeds, and so questions about
subgroups of PDn-pairs of groups may often be reduced to questions about subgroups of infinite index
in PDn-groups. This is a special case of the following result [8, Theorem 8.4].

Theorem (Bieri–Eckmann Splitting Theorem). Let (G, 0) be a finite graph of groups, in which all
edge groups are PDn−1-groups. For each vertex v let Ev =

⊔
o(e)=v Gv/Ge t

⊔
t (e)=v Gv/Ge, and

suppose that �v is a Gv-set with finitely many Gv-orbits and all point stabilizers PDn−1-groups. Let
�=

⊔
v∈V (G×Gv

�v) be the disjoint union of the induced G-sets. Then (πG, T ) is a PDn-pair of groups
if and only if (Gv, Ev t�v) is a PDn-pair of groups for all v. �

We note here one immediate consequence of the Algebraic Core Theorem. If (H, T ) is a PD3-pair of
groups then

∑
H ·τ χ(Hτ )= 2χ(H) (where the sum is over representatives of the boundary components),

by Lemma 3.1. If r, s > 1 then H = F(r)× F(s) is finitely presentable and has one end. However,
χ(H)= (1− r)(1− s) > 0, and so no such product is a subgroup of a PD3-group. (This was first proven
in [101].) It is well known that F(r)× F(s) has subgroups which are finitely generated but not FP2.
Thus this result supports the hope that PD3-groups may all be coherent.

We shall also use the following simple consequence of the Strebel Theorem. If f : G → H is a
homomorphism of PD+n -groups, then deg f is the integer g > 0 such that f∗[G] = ±d[H ], for any
choice of fundamental classes [G], [H ].

Lemma 8.5. Let G and H be PD+n -groups and φ : G→ H a homomorphism.

(1) If degφ 6= 0 then [H : φ(G)] is finite and cd Ker(φ) < n.

(2) If φ : G→ H is a monomorphism then [H : φ(G)] is finite and |degφ| = [H : φ(G)].

Proof. Let w = wH . Since φ factors through φ(G) and Hn(φ) 6= 0, we see that Hn(φ(G);Zw) 6= 0 and
so cdφ(G)= n. Therefore [H : φ(G)] is finite, by the Strebel Theorem. Since [G : Ker(φ)] = |φ(G)| is
infinite, the same result implies that cd Ker(φ) < n.

If φ : G→ H a monomorphism then [H : φ(G)] is finite, and so the restriction of w = wH to G is
wG , by the Strebel Theorem again. The restriction homomorphism Res : Hn(H ;Zw)→ Hn(G;Zw) is
an isomorphism [Bi, Section 5.3]. As deg(φ ◦Res) is multiplication by the index, the second assertion
holds also. �

Note also that if [H : G] is finite then χ(G)= [H : G]χ(H).
In general, finiteness of the index [H : φ(G)] does not imply that degφ 6= 0. For instance, if π =

F(a, b) ∗Z F(x, y) is the fundamental group of the orientable surface of genus 2, with presentation
〈a, b, x, y | [a, b] = [x, y]〉, the epimorphism p : π → π/〈〈b, y, [a, x]〉〉 ∼= Z2 factors through the free
group F(a, x) and so has degree 0.

If degφ 6= 0 and Ker(φ) 6= 1 then Ker(φ) is not FPn−1 [Bi, Theorem 9.11].
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8.5. Mapping tori and Seifert fibred 3-manifolds

Let M be a closed 3-manifold. Hempel and Jaco showed that a nontrivial finitely generated normal
subgroup of infinite index in π = π1(M) is either Z or a surface group, and in the latter case the quotient
group has two ends [56]. Subsequently, Gabai [44] and Casson and Jungreis [19] showed that if π has
an infinite cyclic normal subgroup then M is homotopy equivalent to a Seifert fibred 3-manifold. In this
section we shall establish the corresponding results for PD3-groups. The full result for the Seifert case
rests substantially on the Bowditch Theorem, but we shall first give an earlier argument from [60], which
assumes that vβ(G) > 0 and uses [31; 32] instead of [15] to make the connection with surfaces.

Lemma 8.6. Let (G, �) be a PDn-pair of groups. If � has a finite G-orbit then |�| = 2.

Proof. If G · ω is finite for some ω ∈ � then [G : Gω] < ∞, and so G is a PDn−1-group. Hence
[G : Gη]<∞ for all η ∈�, by the Strebel Theorem, and so every orbit is finite.

The exact sequence of coefficients

0→ F2⊗1(G, �)→ F2[�] → F2→ 0

gives rise to an exact sequence

0→ Hn(G, �; F2)= F2→ Hn−1(G; F2[�])→ Hn−1(G; F2)= F2.

Since Hn−1(G; F2[�])∼=⊕Hn−1(Gη; F2) summed over representatives of the orbits, there are at most
two orbits.

If Gη < G then � has at most two Gη-orbits, since (Gη, �|Gη
) is again a PDn-pair of groups. Since

the Gη-orbits in G · η are singletons, we have [G : Gη] = 2, and |�| = 2, with G acting nontrivially
on �. If all boundary components are G then the orbits are singletons, and ⊕Hn−1(Gη; F2) maps onto
Hn−1(G; F2). Hence we again have |�| = 2. �

When n = 3 such pairs are realized by I -bundles over closed surfaces — the product when G acts
trivially on �, and the mapping cylinder of a double cover otherwise. We shall say that such pairs are of
I -bundle type. Note that if |�| = 2 and G acts nontrivially then w(G,�) is not the canonical orientation
character of G; the difference is the first Stiefel–Whitney class of the I -bundle.

A Seifert 3-manifold group is the fundamental group of an aspherical closed Seifert-fibred 3-manifold.

Theorem 8.7. A PD3-group G is a Seifert 3-manifold group if and only if it has a normal subgroup
C ∼= Z and vβ(G) > 0.

Proof. An aspherical Seifert fibred 3-manifold is finitely covered by the total space of an S1-bundle
over an aspherical closed surface, and every such bundle space is Seifert fibred. Thus Seifert 3-manifold
groups have such subgroups. Suppose G is such a group. A subgroup of finite index in a group with these
properties has them also. On the other hand, if a subgroup of finite index is a Seifert 3-manifold group
then so is G, by Lemma 8.2. Thus we may assume that G is orientable, G/G ′ is infinite and C is central.

Suppose first that C has finite image in G/G ′. Let θ : G→ Z be an epimorphism, with kernel K , and
let t ∈ G represent a generator of G/K . Then hd K = cd K = 2 and C 6 ζK . Hence either K is abelian
or K ′ is a nontrivial free group [Bi, Theorem 8.8].

If K is abelian then K ∼= Z2, since hd K = cd K = 2. If K ′ ∼= Z then K ∼= Kb. In either case, G/C is
virtually Z2.
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If K ′ is a nonabelian free group then C ∩ K ′ = 1. Hence C embeds as a submodule of the 3-module
M = K/K ′, where 3 = Z[G/K ] ∼= Z[t, t−1

]. Since G is finitely generated as a group, M is finitely
generated as a 3-module. Let (t − 1)s be the highest power of t − 1 which divides the order ideal of the
3-torsion submodule of M . Then C embeds in N = M/(t − 1)s M , which is a finitely generated abelian
group, and so C is an abelian group direct summand of m N for some m > 1. The preimage of m N in
G is a direct product K1 ∼= C × H which is of finite index in K and normal in G. Then cd H = 1, since
cd C + cd H = 2. Let G1 be the subgroup generated by K1 and t . Then G1 has finite index in G and
G1/C is an extension of K1/ζG ∼= H . Hence cd G1/C = 2.

If C has infinite image in G/G ′ then C ∩G ′ = 1, so G is virtually a product G1 = C × J . We again
have cd G1/C = 2.

In each case cd G1/C <∞ and H 2(G1/C;Z[G1/C])∼= Z, by an LHS spectral sequence corner argu-
ment. Hence G1/C is a PD2-group, and so G1/C ∼=π1(F), for some aspherical closed surface F [31; 32].
Therefore G1 is the fundamental group of an S1-bundle over F , and so G is a Seifert 3-manifold group. �

There is an analogous result for PD3-pairs of groups.

Theorem 8.8. Let (G, �) be a PD3-pair of groups with nonempty boundary. If G has a normal subgroup
A ∼= Z then each boundary component is Z2 or Kb, and (G, �) is the peripheral system of a Seifert fibred
3-manifold M with nonempty boundary.

Proof. Since cd G = 2 and each boundary component S is a PD2-group, we have A∩ S 6= 1, for otherwise
cd AS = 3. Since A∩ S ∼= Z is normal in S, it follows that S ∼= Z2 or S ∼= Kb.

We may assume that [G : S] =∞ for each boundary component S, for otherwise the result follows
immediately from Lemma 8.6.

Suppose first that A is central in G. Then ζG ∼= Z, and G ′ is a nonabelian free group, by [Bi, Theorem
8.8]. Hence there is an epimorphism φ : G → Z such that φ|A is injective. Let N = Ker(φ), and let
H = AN . Then H is normal in G and G/H is a finite cyclic group, and H ∼= N × Z. Hence N is a
finitely generated free group, and there is a PD2-pair (N , T ) such that (H, �|H )∼= (N , T )×Z. The pair
(N , T ) is the peripheral system of a bounded surface F [32].

Let α be the automorphism of N induced by conjugation in G by an element representing a generator
of G/N . The image of α in Out(N ) has finite order, k say, and preserves the set of conjugacy classes
corresponding to the boundary components of F , and so is induced by a self-homeomorphism h of F ,
of order k, by the Dehn–Nielsen–Baer Theorem [FM, Theorem 8.8]. Let M be the mapping torus of h.
Then π1(M)∼= N oα Z∼= G, and the peripheral system of (M, ∂M) is isomorphic to (G, �).

If A is not central in G then [G : CG(A)] = 2. Let C = CG(A). Since A 6 ζC and (G, �) is not
of I -bundle type, C ′ is a nonabelian free group, and A ∩C ′ = 1. Let t ∈ G \C . Then conjugation in
G gives Cab the structure of a Z[t]/(t2

− 1)-module. Let D be the quotient of Cab/(t + 1)Cab by its
torsion subgroup. Then t acts by −1 on D, and A maps injectively to D. It follows easily that there is
an epimorphism ψ : C→ Z such that ψ |A is injective, and K = Ker(ψ) is normalized by t . Hence ψ
extends to an epimorphism 9 : G→ D∞, and G ∼= H ∗K J , where [H : K ] = [J : K ] = 2.

Since K A ∼= K × A has finite index in G, it is FP2, and (K A, �|K A) is a PD3-pair of groups. Hence
K is a finitely generated free group, and (K , �/A) is a PD2-pair of groups such that (K A, �|K A) ∼=

(K , �/A)×Z. Let h ∈ H \ K . Then H is also a finitely generated free group, and h2
∈ K . The pair

(H, �/A) restricts to (K , �/A), and so is also a PD2-pair of groups [8, Theorem 7.6]. Similarly, J is
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the ambient group of a PD2-pair of groups which restricts to (K , T ). These PD2-pairs of groups are the
peripheral systems of compact surfaces with nonempty boundary [32]. Hence (G, �) is the peripheral
system of a bounded 3-manifold which is the union of two I -bundles over bounded surfaces. �

This result supports Kropholler’s version of the JSJ decomposition for PD3-pairs of groups, considered
in Chapter 10.

It follows easily from Theorem 8.7 that if a PD3-group G with nontrivial centre is virtually split over
a PD2-group, then it is a Seifert 3-manifold group. However, if we use the Bowditch Theorem, we do
not need any hypotheses on vβ(G) or splitting.

Theorem 8.9. Let G be a PD3-group with a nontrivial FP2 normal subgroup N of infinite index. Then
either

(1) N ∼= Z and G/N is virtually a PD2-group, or

(2) N is a PD2-group and G/N has two ends.

Proof. If N is free then H 3(G;Z[G]) ∼= H 2(G/N ; H 1(N ;Z[G])). Since N is finitely generated and
G/N is FP2, this is in turn isomorphic to H 2(G/N ;Z[G/N ])e(N )−1. Since G is a PD3-group we must
have e(N )− 1= 1, and so N ∼= Z. We then have

H 2(G/N ;Z[G/N ])∼= H 3(G;Z[G])∼= Zw1(G).

Hence G/N is virtually a PD2-group, by the Bowditch Theorem.
Otherwise cd N = 2 and so e(N )= 1 or∞. The Lyndon–Hochschild–Serre spectral sequence gives

H 2(G;Z[G])∼= H 1(G/N ;Z[G/N ])⊗ H 1(N ;Z[N ])∼= E(G/N )e(N )−1.

Hence either e(N )= 1 or E(G/N )= 0. In the latter case, H 3(G;Z[G])∼= H 2(G/N ;Z[G/N ])⊗ E(N )
and so H 3(G;Z[G]) is either 0 or infinite dimensional. Therefore e(N )= 1, and so

H 3(G;Z[G])∼= H 1(G/N ;Z[G/N ])⊗ H 2(N ;Z[N ]).

Hence e(G/N )= 2 and H 2(N ;Z[N ]) ∼= Zw1(G)|N , so N is a PD2-group. �

A version of this theorem was first given by Thomas [142], under the additional hypothesis that G/N
have an element of infinite order. (This was perhaps the first evidence suggesting that all PD3-groups
might be 3-manifold groups.)

Corollary 8.9.1. A PD3-space P is homotopy equivalent to the mapping torus of a self homeomorphism
of a closed surface if and only if there is an epimorphism φ : π1(P)→ Z with finitely generated kernel.

Proof. If Ker(φ) is finite this follows from Theorem 5.8. Otherwise π1(P) has one end, so P is aspherical,
and we may apply the PD Extension Theorem. �

If π1(P) is infinite and is a nontrivial direct product, then P is homotopy equivalent to the product of
S1 with a closed surface.
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8.6. The groups of aspherical geometric 3-manifolds

The fundamental groups of 3-manifolds with geometry E3, Nil3, Sol3, H2
× E1 or S̃L have nontrivial

abelian normal subgroups [126]. For four of these, the group is virtually a central extension of a PD+2 -
group by Z, while Sol3-groups are virtually extensions of Z by Z2.

Theorem 8.10. Let G be a PD3-group. Then G is the fundamental group of an aspherical Seifert fibred
3-manifold or a Sol3-manifold if and only if

√
G 6= 1. Moreover:

(1) h(
√

G)= 1 if and only if G is the group of an H2
× E1- or S̃L -manifold.

(2) h(
√

G)= 2 if and only if G is the group of a Sol3-manifold.

(3) h(
√

G)= 3 if and only if G is the group of an E3- or Nil3-manifold.

In all cases,
√

G is finitely generated.

Proof. The necessity of the conditions is clear.
In general, h(

√
G)6 cd

√
G 6 3. Moreover cd

√
G = 3 if and only if [G :

√
G] is finite, by the Strebel

Theorem. Hence G is virtually nilpotent if and only if h(
√

G) = 3. If h(
√

G) = 2 then
√

G is locally
abelian, and hence abelian. Moreover

√
G must be finitely generated, for otherwise cd

√
G = 3. Thus

√
G ∼= Z2 and case (2) follows from Theorem 8.9.
Suppose now that h(

√
G) = 1 and let C = CG(

√
G). Then

√
G is torsion-free abelian of rank 1,

so Aut(
√

G) is isomorphic to a subgroup of Q×. Therefore G/C is abelian. If G/C is infinite then
cd C 6 2, by the Strebel Theorem. Moreover, Aut(

√
G) is infinite, so

√
G 6∼= Z. Therefore C is abelian

[Bi, Theorem 8.8], and hence G is solvable. But then G is polycyclic, with h(G) = 3 [Bi, Theorem
9.23], and so h(

√
G) > 1, which is contrary to our hypothesis. Therefore G/C is isomorphic to a finite

subgroup of Q× ∼= Z∞⊕Z/2Z. We again see that [G : C] 6 2. In particular, if A is an infinite cyclic
subgroup of

√
G then A is normal in G, and so G/A is virtually a PD2-group, by Theorem 8.9. If G/A

is a PD2-group then G is the fundamental group of an S1-bundle over a closed surface. In general, a
finite torsion-free extension of a Seifert 3-manifold group is again such a group, by Lemma 8.2.

The final assertion is clear. �

Case-by-case inspection shows that torsion-free virtually polycyclic groups of Hirsch length 6 3 are
polycyclic. (This is also so when n = 4, by the results of [Hi, Chapter 8]. The smallest value of n known
to us for which there is a torsion-free, virtually polycyclic group which is not solvable is n = 15: there
is a torsion-free extension of I ∗ = PSL(2, 5) by Z15 [116].) Henceforth we shall use “polycyclic”, rather
than “virtually polycyclic”, when considering PD3-groups.

A recent and much deeper result is that H3-groups are virtually extensions of Z by nonabelian PD+2 -
groups [1]. In this light, the Cannon Conjecture is that every atoroidal PD3-group is virtually such an
extension.

This may be reformulated in terms of two other properties. A finitely generated group G which is
virtually RFRS (residually finite and rationally solvable) is virtually a semidirect product H oZ with
H finitely generated if and only if β(2)1 (G) = 0 [84]. If such a group G is a PD3-group then it is
virtually the group of a mapping torus, by Corollary 8.9.1. Atoroidal mapping tori are hyperbolic, by the
Geometrization Theorem.





CHAPTER 9

Centralizers, normalizers and ascendant subgroups

In this chapter we shall consider centralizers and normalizers of subgroups of PD3-groups, PD3-group
pairs and open PD3-groups. In §1 we show that there are essentially three types of pairs {C, H} where
C = CG(H) is the centralizer of a subgroup of a PD3-group G and H = CG(C) is the maximal subgroup
centralized by C . We then adapt an argument of Kropholler to show that every strictly increasing chain of
centralizers in a PD3-group has length at most 4. (This bound is best possible.) In particular, Kropholler’s
pioneering work on JSJ decompositions for PDn-groups with max-c applies to all PD3-groups. (See
Chapter 10.) In §3 and §4 we consider normalizers of subgroups of PD3-groups that are abelian and FP2;
our arguments also apply to subgroups of open PD3-groups. In §5 we show that if K is an ascendant FP2

subgroup of a PD3-group G then either NG(K ) has finite index in G or K ∼= Z and G is polycyclic. In §6
we summarize work of Elkalla [35] on subnormal subgroups in 3-manifolds groups, which we have not
been able to prove in the present setting. Finally, we give short proofs of work of Heil [54] on 3-manifold
groups which split over subgroups which are PD2-groups and are properly contained in their normalizers.

9.1. Centralizers

If H is a subgroup of G then ζH = H ∩CG(H), and H is abelian if and only if H 6 ζCG(H). Let
H◦=CG(CG(H)). Then H ⊆ H◦, while CG(H◦)=CG(H)◦=CG(H) and so H◦◦= H◦. Thus “CG(−)”
is an inclusion-reversing involution on the set of centralizers of subgroups of G, and H◦ is the unique
maximal subgroup centralized by CG(H).

Lemma 9.1. Let G be a PD3-group such that ζG is not cyclic. Then G ∼= Z3 or G ∼= Kb×Z.

Proof. Since ζG 6
√

G, we have h(
√

G) > 2, and so we may apply Theorem 8.10. The centres of
Sol3-groups are trivial, while the centres of Nil3-groups are cyclic. Hence G must be virtually Z3, and
the lemma follows on examination of the ten posssibilities. �

Theorem 9.2. Let G be a PD3-group. If H is a nontrivial subgroup and CG(H) 6= 1, we are in one of
the following situations.

(1) CG(H)= H◦ and H◦ is a maximal abelian subgroup of rank 6 2.

(2) CG(H)∼= Z, H◦ is not abelian and cd H◦ = 2.

(3) CG(H)∼= Z, H◦ is not abelian and [G : H◦]6 2.

(4) CG(H) is not abelian, cd CG(H)= 2 and H◦ ∼= Z.

(5) [G : CG(H)]6 2, H◦ is isomorphic to Z and is normal in G.

(6) G ∼= Kb×Z, CG(H)= ζG ∼= Z2 and H◦ = G.

85
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(7) G ∼= Kb×Z, CG(H)= G and H◦ = ζG.

(8) G ∼= Z3.

Proof. If ζH = 1, we have H ·CG(H) ∼= H × CG(H). Since H and CG(H) are nontrivial either
cd H + cd CG(H) = 3, in which case H is a PD2-group and CG(H) ∼= Z, or H and CG(H) are both
free, in which case we again have CG(H) ∼= Z, since H 6∼= Z and PD3-groups do not contain products
of nonabelian free groups [101]. (As observed in Chapter 8, this follows easily from the Algebraic Core
Theorem.) Thus we may assume that H ∩CG(H)= ζH 6= 1.

If CG(H) is abelian then CG(H) = ζH◦; if moreover cd CG(H) = cd H◦ then H◦ is abelian [Bi,
Theorem 8.8]. Thus if cd H◦ 6 2 either (1) or (2) holds. If cd H◦ = 3 then [G : H◦] is finite, by the
Strebel Theorem. Let B =

⋂
gH◦g−1 be the intersection of the conjugates of H◦ in G. Then B and

CG(B) are normal in G and [CG(B) : ζ B] 6 [G : B] <∞. If G is not virtually Z3 then ζ B ∼= Z, by
Lemma 9.1. Hence CG(B)∼= Z, since G is torsion-free. As CG(H)6 CG(B) it follows that CG(H)∼= Z

and is normal in G. Hence H◦ is also normal in G and [G : H◦]6 2, and so (3) holds.
If CG(H) is free then it is infinite cyclic, since it has nontrivial centre. Thus if CG(H) is nonabelian

cd CG(H) = 2 or 3. If cd CG(H) = 2 then cd ζCG(H) 6 1 [Bi, Theorem 8.8], and so ζCG(H) ∼= Z,
since it is nontrivial. If H◦ = ζCG(H) then (4) holds. Otherwise, let J be an infinite cyclic subgroup of
CG(H) such that J ∩ ζCG(H)= 1. Then J H◦ ∼= Z× H◦ and cd J H◦ = 3. Since ζ J H◦ ∼= Z2, it follows
that J H ∼= Kb×Z, by Lemma 9.1, so G is virtually Z3.

If cd CG(H)= 3, arguing as for (3), we see that either H◦∼=Z and is normal in G, so [G :CG(H)]6 2
and (5) holds, or G is virtually Z3.

If none of the above five cases apply then G is virtually Z3, and then examination of the ten such
groups G shows that nonabelian centralizers have finite index in G, so cases (2) and (4) cannot occur,
and the remaining possibilities are as in (6), (7) and (8). �

In particular, a centralizer CG(H) is never a nonabelian free group. The pairs of cases (2) and (4),
(3) and (5), and (6) and (7) are interchanged on applying “CG(−)”, while cases (1) and (8) are invariant
under this involution.

Let G = π31 ∗Z2 π41 be obtained by amalgamating the trefoil and figure-eight knot groups along their
peripheral subgroups, and let H be the image of π31 and H̃ ∼=Z be the subgroup generated by a nontrivial
element of π41 which is not conjugate to a peripheral element. Then CG(H̃)= H̃ and CG(H)∼= Z= ζH
are examples representing cases (1) and (2). The common Z2 subgroup in the amalgamation of two copies
of π41 gives an example of rank 2 in case (1). If C is a PD2-group with trivial centre then G = C ×Z

gives an example for cases (3) and (5).

Theorem 9.3. Let G be an atoroidal PD3-group and h ∈ G \ {1}. Then C = CG(h) is a maximal abelian
subgroup, and has rank 1.

Proof. If [G : C]<∞ then C is a PD3-group of Seifert type, and so G is not atoroidal. If cd C = 2 then
either C ∼= Z or Kb, or C ′ is a nonabelian free group, or C is an abelian group of rank 1. The first three
possibilities are again inconsistent with G being atoroidal. Finally, if cd C 6 1 then C ∼= Z, since it is a
free group with nontrivial centre.

If C 6 D, where D is an abelian group, then hd = dh for all d ∈ D, since h ∈ C . Hence D 6 C and
so C is maximal abelian. �
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We do not yet know whether CG(h) must be finitely generated.

Theorem 9.4. Let G be a PD3-group. If CG(K ) is finitely generated for all infinite cyclic subgroups
K < G then CG(H) is finitely generated for all subgroups H < G, and every abelian subgroup of G is
finitely generated.

Proof. We may assume that G is not polycyclic, since all subgroups of such groups are finitely generated.
The first assertion follows immediately from Theorem 9.2 if H ∼= Z2 or if H is nonabelian, for then
CG(H)∼= Z2 or Z or 1, respectively. Suppose that H is abelian of rank 1, but is not finitely generated.
Let K be an infinite cyclic subgroup of H . Then K 6 H 6 CG(K ), so H/K 6 CG(K )/K , and CG(K )
is finitely generated, by hypothesis. If cd CG(K )= 2 then CG(K )/K is virtually free [Bi, Theorem 8.4],
while if cd CG(K ) = 3 then CG(K )/K is virtually a PD2-group, by the Bowditch Theorem. In either
case the torsion subgroups of CG(K )/K are finite, and so H must be finitely generated, contrary to the
assumption. �

Castel showed that if every abelian subgroup of G is finitely generated then G has no nontrivial
infinitely divisible elements, and hence that the three conditions in Theorem 9.4 are equivalent [20,
Theorem 1]. (We shall return to this in Chapter 10.) All known abelian subgroups of PD3-groups are
finitely generated.

9.2. The maximum condition on centralizers

Kropholler [96] showed that if M is a 3-manifold, every strictly increasing sequence of centralizers
16C0 <C2 < . . .Cn =G in G = π1(M) has length n at most 16, while if M is aspherical, n6 11. (Note
that in [96] such a sequence is said to have length n+ 1.) Using the JSJ decomposition theory of Scott
and Swarup [127], Castel has shown that every such sequence of centralizers in a PD3-group is finite
[20]. We shall reprove and sharpen this result. Our argument follows [96, Lemma 8] closely, using the
geometry of plane isometry groups instead of imbedding flat 3-manifold groups in matrix groups, and
using the Algebraic Core Theorem rather than the 3-manifold version. In particular, it does not use any
JSJ decomposition theory.

Theorem 9.5. Let G be a PD3-group. Then every strictly increasing sequence of centralizers in G has
length at most 4.

Proof. Suppose first that G has an infinite cyclic normal subgroup N . Then G/N is virtually a PD2-group,
by Theorem 8.9. We may assume that G/N has no finite normal subgroup, and hence is isomorphic to
a discrete cocompact group of isometries of the euclidean or hyperbolic plane [33]. Proper centralizers
in such groups are maximal abelian: cyclic, (Z/2Z)2, Z/2Z⊕Z or Z2, the latter in the euclidean case
only. It follows easily that chains of centralizers in CG(N ) have length at most 2, and hence that chains
of centralizers in G have length at most 3.

Suppose now that G has no infinite cyclic normal subgroup, and that G has a centralizer sequence 1<
C1 < · · ·<C5 =G of length 5. Then either C3 is nonabelian or CG(C3) is nonabelian or C3 =CG(C3) is
self-centralizing and maximal abelian, so CG(C2) is nonabelian. In each case either C3<C4 or CG(C2)<

CG(C1) are proper nonabelian centralisers. (This argument is from [96, Lemma 7].) Relabelling, we let
C1 < C2 denote such a nested pair of proper centralizers. Since G has no infinite cyclic normal subgroup,
[G : C2] is infinite. In particular, Zi = CG(Ci )= ζCi ∼= Z for i 6 2, by Theorem 9.2. Moreover C1 is not
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normal in C2, for otherwise ζC1 ∼= Z would be central in C2. Let H be a finitely generated subgroup of
C2 such that Z1 < H ∩C1 < H and (H ∩C1)/Z1 is infinite and nonabelian. Then Z2 6 ζH < Z1 and so
H has one end, since it has nontrivial centre but is not virtually Z. Since cd H 6 2 and ζH ∼= Z, H/ζH
is virtually free [Bi, Theorem 8.4]. Hence H is finitely presentable, and so it is the ambient group of a
PD3-pair of groups (H, T ), by the Algebraic Core Theorem. Doubling H along T gives a PD3-group
DH with nontrivial centre [8]. Proper centralizers in DH/ζDH are abelian, as in the first paragraph.
But (H ∩C1)/ζH is nonabelian and centralizes the nontrivial subgroup Z1/ζH . Thus every centralizer
sequence in G has length at most 4. �

This proof of Theorem 9.5 uses the Algebraic Core Theorem. The first proof that PD3-groups have
max-c used Scott–Swarup JSJ decomposition theory [20]. However, Theorem 9.5 shows that Kropholler’s
earlier work on JSJ decompositions of PD3-groups [94] applies in full generality.

The bound 4 is best possible. For let M be the 3-manifold obtained by replacing a neighbourhood of
an S1-fibre in S1

×S1
×S1 by the exterior of a hyperbolic knot K . Then G=π1(M)∼= (Z×F(2)) ∗Z2 πK ,

and G has a centralizer sequence

1< Z< Z2 < Z× F(2) < G.

(It follows easily from the argument for Theorem 9.5 that the middle term of any centralizer sequence
of length 4 must be a self-centralizing maximal abelian subgroup.)

If the fundamental group G of an open 3-manifold is not finitely generated and has nontrivial centre,
then G is torsion-free and either G is abelian of rank 1 or ζG ∼= Z [124]. The arguments of Theorem 9.2
extend easily to show that if G is an open PD3-group and H is a nontrivial subgroup with nontrivial
centralizer then either (1), (2) or (4) holds. The argument of the second paragraph of the proof of
Theorem 9.5 applies almost without change to show that any centralizer sequence in an open PD3-group
has length at most 4. This estimate is again best possible, for the fundamental group Zo F(2) of the
nontrivial S1-bundle over the once-punctured torus has a centralizer sequence of length 4. In particular,
if (G, �) is a PD3-pair of groups then G has max-c.

If θ is an automorphism of finite order of a finitely generated free group F , the semidirect product
F oθ Z has cohomological dimension 2 and nontrivial centre. It is easy to find such groups with proper
nonabelian centralizers. The following example suggests that some additional topological input (such as
the appeal to [33]) may be necessary for the final step of Kropholler’s argument.

Example. Let F be the free group with basis {xi | i > 2}, and let θ : F → F be the automorphism
determined by θ(xi )= xi+1 if i +1 is not a power of 2, and θ(x2k−1)= x2k−1 for k > 1. The subgroup Fn

generated by {xi | 26 i < 2n
} is invariant under θ , for each n > 2, and F =

⋃
n>2 Fn . Let Bn = Fn oθ Z.

Then ζ Bn = 〈t2n−1
〉, and Bn is the fundamental group of a bounded aspherical 3-manifold. Hence H =

F oθ Z=
⋃

n>2 Bn is an open PD3-group, and is coherent (although not finitely generated). The sequence
of centralizers Hn = CH (ζ Bn) is properly increasing, with union H , and so H does not have max-c.

9.3. Normalizers of rank 1 abelian subgroups

Let G be a PD3-group and A < G an infinite cyclic subgroup. Then [NG(A) : CG(A)] 6 2, since
Aut(A)= {±1}. If CG(A) is finitely generated then either NG(A)= CG(A)∼= Z, or cd NG(A)6 2 and
NG(A)/A is virtually free, or [G : NG(A)] <∞. In this last case G is the fundamental group of an
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aspherical closed Seifert fibred 3-manifold and either A is normal in G or G is polycyclic.
If C = CG(A) is not finitely generated then it is a rank 1 abelian group [20, Theorem 1] (see Theorem

10.11), and so is maximal abelian, by Theorem 9.2. The quotient NG(C)/C is isomorphic to a subgroup
of Aut(C)6Q×, and hence is free abelian (since NG(C) is torsion-free). Hence [G : NG(C)] is infinite.
For otherwise G would be virtually solvable and hence polycyclic [Bi, Theorem 9.23], and so every
subgroup of G would be finitely generated. Suppose that C < NG(C) and choose elements c ∈ C \ {1}
and n ∈ NG(C) \ C . The subgroup H generated by {c, n} is solvable and cd H 6 2. Since H is not
virtually abelian, we have H ∼= BS(1, q)= Z∗q for some q /∈ {0,±1} [48]. As H is finitely presentable
and has one end, it is the ambient group of a PD3-pair of groups, by the Algebraic Core Theorem. But
this is impossible (see §5 of Chapter 10), and so C = NG(C). In particular, no such subgroup A is normal
in G.

Suppose now that G is an open PD3-group. If A is an infinite cyclic subgroup of G then either
NG(A) ∼= Z or cd NG(A) = 2 and NG(A)/A is locally virtually free. However, if G = Z× F(∞) and
A = ζG then NG(A) is not finitely generated. If C is an abelian subgroup of G which is not finitely
generated then CG(C) is maximal abelian of rank 1. The argument given for the closed case again
implies that NG(C) = CG(C). Every rank 1 abelian group is trivially an open PD3-group, as it has
no finitely generated subgroup with one end. (In fact such groups are the fundamental groups of open
3-manifolds given by increasing unions of solid tori S1

× D2.) Is there a nonabelian open PD3-group
with a non-finitely generated abelian subgroup?

9.4. Normalizers of other FP2 subgroups

Let G be a PD3-group and A < G an abelian subgroup of rank r > 1. Then 2 6 r 6 cd A 6 3, and
therefore either r = cd A = 2 or cd A = 3. In either case, A is finitely generated. The determination of
NG(A) follows easily from the next lemma.

Lemma 9.6. Let G be a PD3-group with subgroups H and J such that H is FP2, has one end and is
normal in J . Then either [J : H ] or [G : J ] is finite.

Proof. Suppose that [J : H ] and [G : J ] are both infinite. Since H has one end it is not free and so
cd H = cd J = 2, by the Strebel Theorem. Hence there is a free Z[J ]-module W such that H 2(J ;W ) 6= 0
[Bi, Proposition 5.1]. Since H is FP2 and has one end, Hq(H ;W )= 0 for q = 0 or 1 and H 2(H ;W ) is
an induced Z[J/H ]-module. Since [J : H ] is infinite, H 0(J/H ; H 2(H ;W ))= 0 [Bi, Lemma 8.1]. The
LHSSS for J as an extension of J/H by H now gives H r (J ;W )= 0 for r 6 2, which is a contradiction.

�

If G is a PD3-group and K is an FP2 subgroup of G which is not free then either [G : NG(K )] is finite
or [NG(K ) : K ] is finite, by Lemma 9.6 (in the one-ended case) and the following result.

Theorem 9.7. Let G be a PD3-group with an FP2 subgroup K which is a nontrivial free product but is
not free. Then [NG(K ) : K ] is finite and CG(K )= 1.

Proof. Since K has infinitely many ends, cd NG(K ) 6 2, by a spectral sequence corner argument and
Poincaré duality, and since K is not free, cd K = cd NG(K ) = 2. Hence [NG(K ) : K ] is finite [Bi,
Corollary 8.6]. Since nontrivial free products have trivial centre and G is torsion-free it follows that
CG(K )= 1. �
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Theorem 9.8. Let G be a PD3-group. If F is a finitely generated nonabelian free subgroup of G then
NG(F) is finitely generated and NG(F)/F is finite or virtually Z. Moreover CG(F)∼= Z or 1.

Proof. Since F is not cyclic, NG(F) cannot be a PD3-group, by Theorem 8.9, and so cd NG(F) 6 2.
Let H be a finitely generated subgroup of NG(F) which contains F . Then H/F is virtually free [Bi,
Theorem 8.4], and so H is finitely presentable. In particular, χ(H) = χ(F)χ(H/F). Now χ(H) 6 0,
by the Algebraic Core Theorem and Lemma 3.1. Since χ(F) < 0 this is only possible if χ(H/F)> 0.
Therefore either H/F is finite, in which case H is free and [H : F] = χ(F)/χ(H)6 |χ(F)|, or H/F
is virtually Z and H has one end.

If NG(F)/F is locally finite it is finite (and [NG(F) : F] 6 |χ(F)|). Hence we may assume that
NG(F) is the union of an increasing sequence N0 = F < N1 6 · · · of finitely generated subgroups with
Ni/F virtually Z, for i > 1. For each i > 1 the group Ni is FP2, cd Ni = 2, H s(Ni ;Z[Ni ])= 0 for s 6 1
and [Ni+1 : Ni ] is finite. Hence NG(F) is finitely generated, by the Gildenhuys–Strebel Theorem, and
so NG(F)/F is virtually Z.

Since CG(F)∩ F = ζ F is trivial, projection to NG(F)/F is injective on CG(F), and so CG(F) is
infinite cyclic or trivial. �

After replacing F by a finite extension F̂ with [F̂ : F] maximal, if necessary, we may assume that
either F = NG(F) or that NG(F)/F ∼=Z or D∞. Both possibilities can occur; if G = K×Z, where K is a
PD2-group and χ(K )< 0, then any noncyclic 2-generator subgroup F of K is free and its normalizer in G
is the direct product F ×Z. The fundamental group of a closed hyperbolic 3-manifold M is atoroidal. If
moreover β1(M;Z)> 3 then G = π1(M) has noncyclic 2-generator subgroups, and every such subgroup
F has infinite index. Hence F is free [JS, Theorem VI.4.1], and F = NG(F), for otherwise [NG(F) : F]
would be infinite and G would contain a copy of Z2, by the argument of the Corollary below.

Can the fact that χ(H)6 0 be proven directly without appeal to the Algebraic Core Theorem?

Corollary 9.8.1. If G is an atoroidal PD3-group and F is a finitely generated nonabelian free subgroup
of G then [NG(F) : F] is finite.

Proof. If [NG(F) : F] is infinite then N = NG(F) is FP2 and has one end. Hence it is the ambient group
of a PD3-pair of groups, by the Algebraic Core Theorem. Since N/F is virtually Z, cd N = 2, so the
boundary is nonempty, and since χ(N )= χ(F)χ(N/F)= 0 the boundary components are copies of Z2

or Kb, contrary to the hypothesis that G be atoroidal. �

If G has no PD2-subgroup of genus less than k, and H is a one-ended FP2 subgroup of infinite index
in G, then the Algebraic Core Theorem implies that χ(H)6 1− k. In the 3-manifold case every finitely
generated subgroup H of infinite index in a 3-manifold group has a finite 2-dimensional K (H, 1) space,
and there is a stronger result [5]. For if K (H, 1) is a finite 2-complex and χ(H) 6 1− k, then H has
deficiency at least k. Now a k-generator group with a finite presentation of deficiency k is free [Ro,
14.1.7]. Therefore, if H is generated by at most k elements then H is free. In particular, if G is atoroidal
then all 2-generator subgroups of infinite index and with finite 2-dimensional classifying spaces are free.

If F 6 G are as in Theorem 9.8 and [NG(F) : F] is infinite, then NG(F) is the ambient group of a
PD3-pair of groups with nonempty boundary and a nontrivial finitely generated normal subgroup, by the
Algebraic Core Theorem.
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Theorem 9.9. Let (G, �) be a PD3-pair of groups with nonempty boundary, and let N be a nontrivial
finitely generated normal subgroup of infinite index in G. Then:

(1) N is free and G/N is virtually free of positive rank.

(2) If S is a boundary component of (G, �) then S ∼= Z2 or S ∼= Kb, and S ∩ N ∼= Z.

(3) If N ∼= Z there is a subgroup H of finite index in G and a PD2-pair of groups (F, T ) such that
(H, �|H )∼= Z× (F, T ).

(4) If rank(N ) > 1 then G/N has two ends and rank(N )> |�/G| − 1.

Proof. Since G has a finitely generated infinite normal subgroup of infinite index, β(2)1 (G)= 0, and so
χ(G)> 0. Hence χ(G)= 0, and so N is FP2 [88].

The first assertion follows from [Bi, Corollary 8.6], since cd G = 2. It follows that χ(N ) and χ(G/N )
are well-defined, and nonpositive. Hence χ(G)= χ(N )χ(G/N )> 0. But 2χ(G)=

∑
χ(Gη)6 0, where

the sum is over G-orbits Gη in �, by Lemma 3.1. Hence χ(G)= 0 and either χ(N )= 0 or χ(G/N )= 0.
Moreover χ(S)= 0 and so S ∼= Z2 or S ∼= Kb, for all boundary components S. Each of the subgroups
S ∩ N is free, and is nontrivial, for otherwise the PD2-group S would map injectively to the virtually free
group G/N . Therefore S ∩ N ∼= Z, for all such S.

If N ∼= Z then (on passing to a subgroup of finite index in G, if necessary) we may assume that N
is central in G and that G/N is free. Then G ∼= N × (G/N ). Choose a splitting p : G → N . Then
F = Ker(p) is a finitely generated free group and F ∩ S ∼= Z, for each boundary component S. Let
K = N ∩

⋂
S and H = K · F ∼= K × F . Then K ∼= Z and cd F 6 cd G <∞, so (F, �/N ) is a PD2-pair

of groups and (H, �|H )∼= Z× (F, �/N ), by [8, Theorem 7.3].
If N has rank > 1 then χ(N ) < 0, so χ(G/N )= 0 and G/N is virtually Z. The coset space G/N S

is finite, for each boundary component S. Let TS ⊂ G be a transversal to this coset space. Then N is the
ambient group for a PD2-pair of groups (N ,N ), for which the boundary components are represented by
the infinite cyclic subgroups t (N ∩ S)t−1, taken over all t ∈ TS and boundary components S. (See [8,
Theorem 6.2].) Hence rank(N )> |N | − 1> |�/G| − 1. �

If N ∼= Z then (G, �) is the peripheral system of a Seifert fibre space M with nonempty boundary. If
N has rank > 1 then G has a normal subgroup K which contains N as a subgroup of finite index and
such that G/K is isomorphic to Z or D∞, and so G is virtually the group of a surface bundle over a
circle. (As in the closed case, it is easy to construct examples with G/N ∼= D∞ from unions of twisted
I -bundles over bounded surfaces.) See Theorem 8.8.

Let M be the mapping torus of a rotation of the thrice-punctured sphere which permutes the punctures.
Then G = π1(M) has the presentation 〈x, t | xtxtx = t2

〉, and S = π1(∂M)= 〈x, t3
〉 ∼= Z2. The normal

subgroup N = 〈〈x〉〉 is free of rank 2> |∂M |− 1= 0, and the boundary components of N are represented
by S ∩ N , t (S ∩ N )t−1 and t2(S ∩ N )t−2 (corresponding to the cosets in G/Nσ(S)∼= Z/3Z).

9.5. Ascendant FP2 subgroups

A subgroup K of a group G is ascendant if there is a series

K = K0 < K1 < · · ·< Ki = G

of subgroups indexed by ordinals 6 i, such that Kα is normal in Kα+1 if α < i, and Kβ =
⋃
α<β Kα
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for all limit ordinals β 6 i. If i is finite, K is subnormal in G. Such ascendant series are well suited to
arguments by transfinite induction. For instance, it is easily seen that

√
K 6
√

Kα, for all α 6 i.
We may extend [Bi, Corollary 8.6] to ascendant FP2 subgroups.

Lemma 9.10. Let G be a group such that cd G = 2. If K is an ascendant FP2 subgroup of G then either
[G : K ] is finite or K is free.

Proof. We may assume that K is not free, and so cd K = cd G = 2. Suppose first that K is normal
in G. Then G/K is locally finite [Bi, Corollary 8.6], and so G is the increasing union of a (possibly
finite) sequence of FP2 subgroups Ui such that U0 = K and [Ui+1 :Ui ] is finite, for all i > 0. It follows
from the Kurosh subgroup theorem that if U 6 V are finitely generated groups and [V : U ] is finite,
then V has strictly fewer indecomposable factors than U , unless both groups are indecomposable [124,
Lemma 1.4]. Hence if K is a nontrivial free product then [G : K ] is finite. Otherwise K has one end,
and so H s(Ui ;Z[Ui ]) = 0 for s 6 1 and i > 0. Since K is FP2, the successive indices are finite and
cd Ui = 2 = cd G for all i > 0, we see that the union is finitely generated, by the Gildenhuys–Strebel
Theorem. Hence the sequence terminates and [G : K ] is again finite.

If K = K0 < K1 < · · · < Ki = G is an ascendant series then [Kα+1 : Kα] <∞ for all α, by the
argument just given. Let ω be the union of the finite ordinals in i. Then

⋃
α<ωKα is finitely generated,

by the Gildenhuys–Strebel Theorem, and so ω is finite. Hence the series is finite, and so [G : K ]<∞. �

This lemma indicates how the interaction between the Gildenhuys–Strebel Theorem and the Strebel
Theorem may be the key to showing that ascendant FP2 groups are virtually normal.

It follows from Lemma 9.6, Theorem 9.7 and Theorem 9.8 that if H is an FP2 subgroup of a PD3-group
G and NG(H) is not finitely generated, then H ∼= Z. Our next theorem extends this result.

Theorem 9.11. Let G be an open PD3-group. If K is a nontrivial FP2 ascendant subgroup of G, then
either

(1) G is FP2 and [G : NG(K )] is finite, or

(2) K is isomorphic to Z and normal in G.

Proof. Let K = K0 < K1 < · · ·< Ki =G be an ascendant series. We may assume that [G : K ] =∞, and
so K is free, by Lemma 9.10. Suppose first that K is nonabelian. If [Kα : K ] is finite then α 6 |χ(K )|,
so j =min{α | [Kα+1 : K ] =∞} is a finite ordinal. Then K j is a finitely generated nonabelian free group,
and so K j+1/K j is virtually Z, by Theorem 9.8. Hence K j+1 is FP2 and cd K j+1 = 2. Since K j+1 is
ascendant, [G : K j+1] is finite, by Lemma 9.10, and so G is FP2 also. Since K j is finitely generated, it
has only finitely many subgroups of index [K j : K ]. Therefore NG(K )∩ K j+1 has finite index in K j+1

and so [G : NG(K )] is finite.
If K ∼= Z then K 6

√
Kα , for all α 6 i, and so K 6

√
G. Moreover cd

√
G 6 cd G 6 2, and so

√
G is

a torsion-free abelian group. If
√

G ∼= Z then G acts on
√

G through {±1}, and so K is normal in G. If
√

G ∼= Z2 then [G :
√

G] is finite, by Lemma 9.10, so G ∼= Z2 or G ∼=Kb. Otherwise
√

G is a nonfinitely
generated rank 1 abelian group. In the latter case

√
G = CG(

√
G) [Bi, Theorem 8.8], and Aut(

√
G) is

abelian, so G is solvable. If G is finitely generated it is FP2 and one-ended [48], and so is the ambient
group of a PD3-pair of groups (G,S) (by the definition of open PD3-group). Since cd G < 3 the set S
is nonempty, and so Z2 is a subgroup of G. It follows easily that G ∼= Z2 or G ∼= Kb, contradicting the
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hypothesis on
√

G. Hence G is not finitely generated, and so is a rank 1 abelian group [48]. In this case
K is again normal in G. �

The corresponding result for normal subgroups of the fundamental group of an open 3-manifold is
due to Scott [124]. (Our argument and that of Scott have some parallel features.)

Theorem 9.12. If G is a PD3-group and K is a nontrivial FP2 ascendant subgroup of infinite index in G,
we are in one of the following situations:

(1) K is a PD2-group, [G : NG(K )] is finite and NG(K )/K has two ends.

(2) K ∼= Z and K is normal in G.

(3) K ∼= Z and G is polycyclic.

Proof. Let K = K0 < K1 < · · ·< Ki = G be an ascendant series, and let β =min{α | [Kα : K ] =∞}. If
Kβ is finitely generated then β is not a limit ordinal. Hence β = j + 1 for some finite ordinal j , and K j

is FP2. Hence K j is indecomposable or free, by Theorem 9.7. If K has one end then so does K j , and
[G : K j+1] is finite, by Lemma 9.6. Hence [G : NG(K )] is finite (by the argument in the first paragraph
of the proof of Theorem 9.11). Since NG(K ) is a PD3-group, [NG(K ) : K ] is infinite and K has one end,
we see that K is a PD2-group and NG(K )/K has two ends, by Theorem 8.9.

If K is free then so is K j . Hence K j+1 is FP2 and one-ended, by Theorem 9.8, and so is a PD2-group,
by the argument just given. But then K j ∼= Z and so K ∼= Z.

If Kβ is not finitely generated then it is an open PD3-group, and so K ∼= Z, by Theorem 9.11.
In each of these last two cases K ∼= Z, and so K 6

√
G, since K is ascendant. Hence either K is

normal in G or G is polycyclic, by Theorem 8.10. �

The original version of this result [9] assumed that K is subnormal in G, and did not use the Bowditch
or Algebraic Core Theorems.

The groups considered in Theorem 9.12 are 3-manifold groups π1(M), where M is either Seifert
fibred or is finitely covered by the total space of a surface bundle over S1. If K is a PD2-group, NG(K )
is the fundamental group of a 3-manifold which is double covered by the mapping torus of a surface
homeomorphism. There are, however, Nil3-groups with no normal PD2-subgroup (although they always
have subnormal copies of Z2).

Corollary 9.12.1. Let G be a PD3-group and H = H0 an FP2 subgroup with one end and of infinite index
in G. Let Hi+1 = NG(Hi ), for i > 0. Then Ĥ =

⋃
Hi is FP2 and has one end, and either cd Ĥ = 2 and

NG(Ĥ)= Ĥ , or [G : Ĥ ]<∞ and G is virtually the group of a surface bundle.

Proof. Let Ĥ =
⋃

Hi . Then cd Ĥ > 2, since it has a subgroup H with one end. If [G : Ĥ ] = ∞ then
cd Ĥ = 2, and so [Ĥ : H ]<∞, by Lemma 9.10. Hence Ĥ is FP2 and has one end. If [G : Ĥ ]<∞ then
Ĥ is again FP2. In each case, Ĥ = Hi for all i � 0, and so NG(Ĥ) = Ĥ . The final assertion follows
from Theorem 9.12. �

Corollary 9.12.2. If G has a subgroup H which is a PD2-group with χ(H)= 0 (respectively, χ(H) < 0),
then either G has a subgroup I which is also a PD2-group with χ(I ) = 0 (respectively, χ(I ) < 0) and
which is its own normalizer in G, or G is virtually the group of a surface bundle.

Proof. If cd Ĥ = 2 then [Ĥ : H ]<∞, so Ĥ is a PD2-group, and χ(H)= [Ĥ : H ]χ(Ĥ). �
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If H is a subgroup of G which is a PD2-group such that χ(H) < 0, then it follows easily from the
finite divisibility of χ(H) that H has finite index in a maximal such subgroup. If χ(H) = 0 we may
argue instead that an infinite increasing union of copies of Z2 must have cohomological dimension 3.

The geometric conclusions of Theorem 8.10 and the coherence of 3-manifold groups suggest that
Theorems 8.9 and 9.12 should hold under the weaker hypothesis that the ascendant subgroup be finitely
generated. (Compare the PD Extension Theorem.)

9.6. Extending Elkalla’s results?

The argument of Scott in [124] was extended to subnormal subgroups by Elkalla, who showed in [35]
that

(1) if π is a non-finitely generated 3-manifold group with subgroups 1 6= N 6 U < π such that N is
subnormal in π and U is finitely generated then N ∼= Z and is normal in π ; and

(2) if M is a compact P2-irreducible 3-manifold and N 6 U are such subgroups of π = π1(M) with
U indecomposable and [G : U ] = ∞, and if π is U -residually finite, then either N ∼= Z or M is
virtually a mapping torus and U is commensurable with π1(F), where F is the fibre.

(Here G is U-residually finite means that if g ∈ G \U then there is a subgroup G1 < G such that U 6 G1,
[G : G1]<∞ and g 6∈ G1. In [AFW] the subgroup U is said to be separable in G.) When N =U these
results follow from Theorems 9.11 and 9.12, since 3-manifold groups are coherent.

If N is normal in G then it is contained in all of the conjugates of U , and so N 6 CoreG(U ) =⋂
g∈G gUg−1. Thus if U is a finitely generated subgroup of a 3-manifold group π and π is U -residually

finite, these results imply that either Coreπ (U ) is cyclic or U is commensurable with a subgroup V such
that [π : Nπ (V )]<∞, since Coreπ (U )6U and is normal in π .

We cannot expect that CoreG(U ) is always finitely generated. Let M be a closed 3-manifold with
H1(M;Z) finite of odd order. Then π = π1(M) has no quotient with two ends. If M is hyperbolic
it is virtually fibred, and π is LERF, i.e., is U -residually finite for all finitely generated subgroups U
[1; AFW, Chapter 5]. Let K < π be a subgroup which is a PD2-group such that [π : Nπ (K )] <∞.
Let N = Coreπ (Nπ (K )) and L = K ∩ N . Then N is normal in π , [π : N ] is finite and N/L has two
ends. After replacing N by the preimage of

√
N/L and enlarging L , if necessary, we may assume that

N/L ∼= Z. Hence N ′ 6 L , and so N ′ 6 CL = Coreπ (L). Since M is hyperbolic, N ′ 6= 1, so CL 6= 1,
while [L : CL] =∞, since π/CL does not have two ends. Hence CL is not finitely generated.

Can we extend Elkalla’s results to our setting? Neither the main result of [35] nor Theorem 9.12 fully
encompasses the other.

9.7. Splitting PD2-subgroups with nontrivial normalizers

Let M be a P2-irreducible 3-manifold. If F is an incompressible closed 2-sided surface in M then either
F ⊆ ∂M or G = π1(M) splits as an HNN extension A ∗H φ or a free product with amalgamation A ∗H B,
where H is the image of π1(F) in G. Moreover, either M is the total space of an F-bundle over S1, or
F bounds a submanifold of M which is the total space of a twisted I -bundle over a closed surface, or
H = NG(H) [54]. (The cases with F a bounded surface are considered in [55].) In particular, either H is
normal in G or [NG(H) : H ]6 2. We shall give a short algebraic proof of these facts, with the topological
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hypothesis M has an incompressible embedded surface F replaced by the algebraic consequence G splits
over a subgroup H .

Theorem 9.13. Let (G, �) be a PD3-pair of groups. If there is a boundary component H such that
NG(H) 6= H, then [G : H ] = 2 and (G, �) is the peripheral system of a twisted I -bundle.

Proof. The double DG = D�(G, �) is a PD3-group [8, Theorem 8.1]. Since [NDG(H) : H ] is clearly
infinite, [DG : NDG(H)] is finite, by Lemma 9.6. Therefore [G : NG(H)] is also finite. Since G is
finitely generated, cd G = 2 and H is an FP2 subgroup with one end, we see that [G : H ] is also finite
[Bi, Theorem 8.2]. In particular, G is also a PD2-group. Since H < NG(H), it follows from Lemma 8.6
that [G : H ] = 2, and that (G, �) is the peripheral system of a twisted I -bundle. �

Corollary 9.13.1. If G = A ∗H B is a PD3-group which is a nontrivial free product with amalgamation
over an FP2 subgroup H, and if [G : NG(H)] is finite, then H is normal in G and G is the group of the
union of two twisted I -bundles.

Proof. Since G is a nontrivial free product, [G : H ] is infinite. A Mayer–Vietoris argument shows that H
cannot be free (compare [Bi, Proposition 9.14]). As H is a normal subgroup of NG(H), which is a PD3-
group, it must be a PD2-subgroup. Therefore (A, H) and (B, H) are PD3-group pairs [8]. Moreover, H
is a proper subgroup of each of NA(H) and NB(H), and so [A : H ] = [B : H ] = 2, by Theorem 9.13.
Hence H is normal in G. The final assertion also follows from Theorem 9.13. �

Similarly, if G is a nontrivial HNN extension with base A and associated subgroups H and φ(H),
where H is FP2 and has one end, and if [G : NG(H)] is finite, then G is the group of a surface bundle,
and H is normal in G and is the image of the group of a fibre.

In the final corollary we need to assume that the group splits over a surface group. (There is again a
similar result for HNN extensions.)

Corollary 9.13.2. If G = A ∗H B is a PD3-group which is a nontrivial free product with amalgamation
over a PD2-group H, and if [G : NG(H)] is infinite, then [NG(H) : H ]6 2.

Proof. The index [NG(H) : H ] is finite, by Lemma 9.6. Therefore [NA(H) : H ] and [NB(H) : H ] are also
finite, and at least one is 1. If NA(H) 6= H , say, then [A : H ] = 2 (by Theorem 9.13) and so NG(A)= A
and the corollary follows. �





CHAPTER 10

Splitting along PD2-subgroups

In §1 we shall give a brief summary of the key definitions and results of the work of Kropholler and
Roller on splitting PDn-groups (with max-c) over subgroups which are PDn−1-groups, and in §2 we
extend some results of theirs on commensurators of PD2-subgroups. Their work led to Kropholler’s JSJ
decomposition for such groups, which we outline in §3. There have subsequently been other extensions
of the notion of JSJ decomposition, but Kropholler’s arguments apply to all PD3-pairs of groups, since
they all have max-c. In contrast to the earlier chapters, we shall only give the main definitions and some
of the simpler supporting lemmas, and shall not attempt to prove the main results, as the arguments are
quite long, and do not involve specifically 3-dimensional aspects. In §4 and §5 we outline in some detail
Castel’s applications of JSJ decompositions to centralizers and Baumslag–Solitar relations.

10.1. Kropholler–Roller splitting theorems

Kropholler and Roller wrote a series of three papers on splitting PDn-pairs of groups along subgroups
which are PDn−1-groups. These considered in turn the absolute case [98], the relative case [99], and
splitting along virtually solvable groups [101], and ideas from these papers were used also in Kropholler’s
work on JSJ decompositions of PDn-groups with max-c [94].

Let G a group with a subgroup H , and let PH be the set of all subsets of H . A subset B ⊆ G is
H-finite if B ⊆ H X , for some finite X ⊂ G. The set FH G of H -finite subsets of G is an abelian group
(of exponent 2) with respect to symmetric difference, and has a natural right G-action: B 7→ Bg. There
is a natural isomorphism

FH G ∼= PH ⊗F2[H ] F2[G],

and so FH G is an induced (right) F2[G]-module.
Let H and J be subgroups which are PDn−1-groups, and let K = J ∩ H . If J is H -finite then
[J : K ]<∞, and so K is also a PDn−1-group. But then [H : J ] is finite also, by the Strebel Theorem,
and so H and J are commensurable.

The key definition is based on the following simple lemma.

Lemma 10.1 [99, Lemma 2.1]. Let (G, �) be a PDn-pair of groups and H a subgroup which is a PDn−1-
group. Then

H 1(G, �;FH G)∼= F2.

Proof. Poincaré duality for the pair gives H 1(G, �;FH G) ∼= Hn−1(G;FH G), which, by Shapiro’s
Lemma and Poincaré duality for H , reduces to Hn−1(H ;PH)∼= H 0(H ;PH)∼= F2. �

Let singG,�(H) be the restriction to H of the nonzero element of H 1(G, �;FH G). If G is a PDn-
group we shall write just sing(H).

97
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We may now state some of the principal results of [98] and [101]. In each case G is assumed to be a
PDn-group.

Theorem [98, Theorem A]. Let S a subgroup which is a PDn−1-group. Then G splits over a subgroup
H commensurable with S if and only if sing(S)= 0. �

If G splits thus, there is exactly one such subgroup H .
In [70] it is shown that if a PD+3 -group G splits as an HNN extension A ∗C ϕ over a PD2-group C then

the image of [C] in H2(G;Z) is Poincaré dual to the epimorphism from G to Z with kernel 〈〈A〉〉. This
leads to a slight modification of [98]: G splits as an HNN extension over S if and only if sing(S)= 0
and [S] generates a Z direct summand of H2(G;Z).

Theorem [98, Corollaries A1 and A2]. If G splits over a subgroup H which is a PDn−1-group, then
w1(G)|H = w1(H), and H is maximal among groups commensurable with H satisfying such a condition
on orientation characters. Moreover:

(1) NG(H)= CommG(H), and either [NG(H) : H ]6 2 or H is normal in G.

(2) If H is normal in G then G/H has two ends.

(3) If [NG(H) : H ] = 2 then G ∼= NG(H) ∗H J for some PDn-pair of groups (J, H). �

Theorem [98, Theorem B]. Let S be a subgroup which is a PDn−1-group. If there is no g ∈ G such that
cd(S ∩ gSg−1)= n− 2, then G splits over a subgroup commensurable with S. �

A subgroup L is malnormal in G if L ∩ gLg−1
= 1 for all g 6∈ L . If S is malnormal in G then

CommG(S)= S, and so if also n > 2 then G splits over S, by the above results. However, S×Z splits
over S, so malnormality is not necessary for splitting.

Lemma [98, Lemma 2.5]. If a subgroup S is a PDn−1-group which is closed in the profinite topology on
G, then G has a subgroup of finite index which splits over a subgroup commensurable with S. �

This lemma applies if G is residually finite and S is polycyclic [98, Theorem C]. We shall use this
result in Theorem 11.19.

Theorem [101, Theorem A]. If G splits over a virtually solvable subgroup H, then H is virtually poly-
cyclic and h(H)= n− 1. �

Theorem [101, Theorem C]. If a subgroup H is isomorphic to a direct product of n−1 nontrivial groups,
then at most one factor is not cyclic, and any such factor is either free or a PD2-group. �

In particular, direct products of two nonabelian free groups cannot be subgroups of PD3-groups. As we
observed in Chapter 8, this also follows from the (more recent) Algebraic Core Theorem.

There are analogous results for the relative case in [99]. As these are somewhat more complicated in
their formulation, we shall not give them here.

10.2. Commensurators of PD2-subgroups

In a fourth joint paper, Kropholler and Roller introduced a variant of the relative end invariant of
Houghton and Scott [100]. One of their applications was to show that if S is a PD2-subgroup of a
PD3-group G with [CommG(S) : S] = ∞, then [G : CommG(S)] <∞ and G is virtually a semidirect
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product S0 oZ, for some S0 of finite index in S [100, Theorem 1.3 and Proposition 4.4]. We shall give
an alternative argument, using results from §4 and §5 of Chapter 8.

Theorem 10.2. Let G be a PD3-group with an FP2 subgroup S which has one end. If [CommG(S) : S] =
∞ then G is virtually a semidirect product T oZ, where S and T are commensurable.

Proof. We use the notation of [95]. If X is a subset of G let SX be the subgroup generated by the
conjugates Sx

= x Sx−1, for x ∈ X , and let SX =
⋂

x∈X Sx . Then SX is normal in SX . The union of SX

over all finite subsets X of C = CommG(S) is SC
= 〈〈S〉〉C =

⋃
SX .

If X ⊂C is finite and 1 ∈ X , then SX has finite index in S, and so is again FP2 and has one end. Hence
if [CommG(S) : S] =∞ and [G : SX

]<∞ then we may apply Theorem 8.9: SX is normal in SX , and
so SX is virtually SX oZ.

If [G : SX
] =∞ then cd SX

= 2, and so [SX
: SX ]<∞, by [Bi, Corollary 8.6]. Hence SX is again FP2

and has one end. Thus if [G : SX
] =∞ for all finite X ⊂ C then [SC

: S] is finite, by the Gildenhuys–
Strebel Theorem. Since SC is normal in C , either [C : SC

] or [G : C] is finite. Thus either [C : S] is
finite, or C is a PD3-group. In the latter case we may again apply Theorem 8.9. �

Corollary 10.2.1. If [G : S]=∞ and S is FP2 and has one end, but is not a PD2-group, then [CommG(S) :
S]<∞. �

Let G be a torsion-free central extension of a flat 2-orbifold group, such as S(2, 3, 6), S(2, 4, 4) or
S(3, 3, 3), by Z. Then G is a polycyclic PD3-group with subgroups S ∼= Z2 such that CommG(S)= S.

Margolis has used coarse geometry to show that if H is an FP2 subgroup of a PD3-group G such that
CommG(H)= G, then H is commensurable with a normal subgroup of G [106].

The next result is a useful complement to Lemma 8.6.

Lemma 10.3 [99, Lemma 2.2]. Let (G, �) be a PDn-pair of groups with nonempty boundary. If G is not
of I -bundle type then

(1) CommG(S)= S, for all boundary components S, and

(2) stabilizers of points in distinct G-orbits in � are not conjugate to commensurable subgroups.

Proof. Let T < G be a subgroup which is a PDn−1-group. Since (G, �) is not of I -bundle type, G is
not a PDn−1-group, and so [G : T ] = ∞. (In particular, [G : S] = ∞ for all boundary components S.)
Then H 0(G;FT G)= 0, since FT G is induced from an F2[T ]-module. Hence

H 0(�;FT G)=⊕Gη⊂� H 0(Gη;FT G)=⊕Gη⊂� (FT G)Gη

is a submodule of H 1(G, �;FT G). Since the latter module is F2, at most one of the summands is
nonzero. If T = Gτ for some τ ∈ � then T is itself a T -finite subset which is invariant under right
multiplication by Gτ , and then the summand corresponding to τ is nonzero.

If g ∈ CommG(S), where S is a boundary component, then gSg−1 is S-finite, so gS is S-finite. Since
it is clearly invariant under right multiplication by S, and there is just one such nonempty subset, gS = S.
Hence g ∈ S, and so CommG(S)= S.

If Gη and gGτ g−1 are commensurable, then they are equal, since these groups are their own com-
mensurators, by the preceding paragraph. Since H 0(�;FT G) has dimension 6 1 this is only possible if
η = gτ , i.e., they are in the same G-orbit. �
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In particular, the boundary components corresponding to distinct G-orbits in � are pairwise non-
conjugate, and are maximal among PDn−1-subgroups. (See [81, Lemma 3.3] for a proof of these asser-
tions based on doubling G over S and applying the Strebel Theorem.)

The uniqueness results of [98, Corollaries A1 and A2] cited above largely follow from Theorem 10.2
and Lemma 10.3, for n= 3. For suppose that G∼= A ∗H B and [CommG(H) : H ]<∞. If g∈CommG(H)
then some power of g is in H , and so g is in either A or B, by a normal form argument. Hence either
both of (A, H) and (B, H) are of I -bundle type and H is normal in G, or just one is of I -bundle type
and [NG(H) : H ] = 2, or g ∈ H , by Lemma 10.3. A similar argument applies if G ∼= A ∗H ϕ.

10.3. Kropholler’s JSJ Decomposition Theorem

Let (G, �) be a PDn-pair of groups. A reduced G-tree T is adapted to � if

(1) each boundary component fixes a vertex of T , and

(2) all edge stabilizers are PDn−1-groups.

If v ∈ V (T ), let Star(v)= {e ∈ E(T ) | v = o(e) or v = t (e)}, and let

�v = {Gη | Gη 6 Gv} t {ιe | e ∈ Star(v)},

where ιe : Ge→ Gv is the canonical inclusion. The pair (Gv, �v) is again a PDn-pair of groups, by the
Bieri–Eckmann Splitting Theorem [8, Theorem 8.4].

Theorem [94]. Let (G, �) be a PDn-pair of groups with n > 3. If G has max-c but is not virtually poly-
cyclic, then there is a reduced G-tree T , adapted to �, with G \T finite and satisfying these conditions:

(1) Ge is virtually polycyclic of Hirsch length n− 1 for all e ∈ E(T ).

(2) (Gv, �v) is either atoroidal or of Seifert type for all v ∈ V (T ).

(3) Every virtually polycyclic subgroup H < G with h(H)= n− 1 lies in some vertex stabilizer.

Any two such G-trees are G-isomorphic. �

All PD3-groups and PD3-pairs of groups have max-c, by Theorem 9.5 and the subsequent remarks.
Hence we obtain:

Theorem (JSJ Decomposition Theorem [94]). Let (G, �) be a PD3-pair of groups. If G is not polycyclic
then there is a reduced G-tree T , adapted to �, with G \T finite and satisfying these conditions:

(1) Ge is isomorphic to Z2 or to Kb for all e ∈ E(T ).

(2) (Gv, �v) is either atoroidal or of Seifert type for all v ∈ V (T ).

(3) Every subgroup H < G which is isomorphic to Z2 or to Kb lies in some vertex stabilizer.

Any two such G-trees are G-isomorphic. �

At this point, we should observe that the atoroidal vertex groups are never of Seifert type. This follows
from the following lemma.

Lemma 10.4. Let G be an extension of a finite group J by a free group F of finite rank r > 1. Then G
has infinitely many conjugacy classes of maximal infinite cyclic subgroups.
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Proof. If G/G ′ has rank at least 2 this is obvious, since conjugate elements of G have the same image
in G/G ′, and G/G ′ has infinitely many primitive elements. In general, let s : J → G be a section for
the epimorphism G→ J . If w1 = gwg−1 in G and wm

∈ F then wm
1 = f s( j)wms( j)−1 f −1 in F , for

some j ∈ J and f ∈ F . Since there are only finitely many possibilities for s( j) and since F/F ′ ∼= Zr ,
the result follows. �

If (H, T ) is a PD3-pair of groups of Seifert type and with nonempty boundary, then cd H 6 2, and so
H/
√

H is virtually free. If, moreover, every subgroup S ∼= Z2 is conjugate to the image of a member of
T then H ∼= Z2 or H ∼= Kb, by Lemma 10.4. Thus (H, T ) is of I -bundle type, by Lemma 8.6, and is
not atoroidal.

Condition (3) of the JSJ Decomposition Theorem implies that the decomposition is minimal, in that if
e is an edge such that o(e) 6= t (e) then J = 〈Go(e),G t (e)〉 is not of Seifert type. For if

√
J = 〈 j〉 for some

j 6= 1 then j ∈ Ge. Since T is reduced, Ge 6= Go(e) and Ge 6= G t (e), and we may choose a ∈ Go(e) and
b ∈ G t (e) such that neither a nor b is in any edge stabilizer, by Lemma 10.3. Since a and b normalize 〈 j〉,
the group 〈ab, j〉 is isomorphic to Z2 to Kb. But this subgroup is not contained in any vertex stabilizer,
and so (3) fails. (Similarly, if o(e)= t (e) then 〈Go(e), te〉 is not of Seifert type.)

We shall refer to the associated graph-of-groups structure for G as the JSJ decomposition of (G, �),
and T as the associated Bass–Serre tree. The decomposition is proper if G \T is not a single point. We
shall also say that a vertex group Gv is atoroidal or of Seifert type if the pair (Gv, �v) is atoroidal or
of Seifert type. If a PD3-group G is of Seifert type then it is a Seifert 3-manifold group, by Theorems
8.7 and 8.10. In general, the vertex pairs (Gv, �v) of Seifert type are the peripheral systems of bounded
aspherical Seifert fibred 3-manifolds, by Theorem 8.8.

Similar results have since been obtained by Dunwoody and Swenson for PD3-pairs of groups with G
finitely presentable [27], and for a much broader class of groups by Scott and Swarup [127; 128].

The main result of [94] applies to PDn-groups with max-c, in all dimensions n. Kropholler gave
another argument in [97] for the case n = 3, which did not assume max-c, but had a somewhat weaker
conclusion. He showed that if a PD3-group G has an abelian subgroup A ∼= Z2 then either G has an
infinite cyclic normal subgroup or it is a generalized free product with amalgamation H ∗K J or an HNN
extension H ∗K ϕ, where K is in the class X (see page 4). The Algebraic Core Theorem implies that non-
cyclic groups in X which are subgroups of PD3-groups are the ambient groups of PD3-pairs of groups
of Seifert type. See Corollary 10.14.1.

The following result of Dunwoody, showing that PDn-groups do not have unbounded splittings over
PDn−1-groups, is used in [94].

Theorem [26]. Let G be a PDn-group and T a reduced G-tree in which all edge stabilizers are PDn−1-
groups. Then there is an integer n(G) such that G \V (T )6 n(G) and G \E(T )6 n(G). �

10.4. Castel’s Centralizer Theorem

Castel adapted the JSJ decomposition theory of Scott and Swarup to obtain several striking results on
PD3-groups. We shall follow his strategy closely, but shall modify some of the details of the proofs. In
particular, we shall cite Kropholler’s JSJ Decomposition Theorem rather than the later Scott–Swarup
theory.
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We begin with two special cases of Castel’s theorem on centralizers which are also ingredients in its
proof.

Theorem 10.5. Let (G, �) be a PD3-pair of groups such that
√

G 6= 1 but G is not polycyclic.

(1) If h ∈
√

G then [G : CG(h)]6 2.

(2) If h 6∈
√

G then CG(h) is isomorphic to Z, Z2 or Kb.

(3)
√

G < S, for all boundary components S.

Proof. Since G is not polycyclic, we have
√

G ∼= Z, and G/
√

G has no nontrivial finite normal subgroup.
(For the preimage of any such subgroup in G would be normal, virtually Z, and torsion-free. Hence it
would have to be

√
G.) Moreover, G/

√
G is isomorphic to a lattice in PGL(2,R), which is cocompact

if G is a PD3-group, and is virtually free otherwise [33].
If h ∈

√
G then G = NG(〈h〉) and [G : CG(h)] 6 2. Elementary matrix calculations show that

centralizers of nontrivial elements of PSL(2,R) are virtually cyclic. Therefore, if h 6∈
√

G then the
image of CG(h) in G/

√
G is virtually cyclic, and so CG(h) is virtually abelian of rank 6 2. Hence

CG(h) is isomorphic to Z, Z2 or Kb.
If � is nonempty then cd G = 2, and so cd

√
GS 6 2, for each boundary component S. Since S ∼= Z2

or S ∼= Kb, and
√

G is normal in G, it follows that S has finite index in
√

GS. But CommG(S)= S, by
Lemma 10.3. Therefore

√
G < S. �

The next theorem is based on [20, Lemme 3 and Proposition 1], and extends Theorem 9.3 to certain
atoroidal PD3-pairs of groups.

Theorem 10.6. Let (G, �) be an atoroidal PD3-pair of groups such that each boundary component
S ∼= Z2 is malnormal in G. If G has a subgroup H ∼= Z× F(r) then r 6 1. Hence if h ∈ G \ {1} then
CG(h) is a maximal abelian subgroup of G.

Proof. We may assume that (G, �) is orientable, and that the boundary is nonempty. If G has such a
subgroup with r > 1, we may assume that r = 2 and that H has the presentation 〈a, x, y | a � x, y〉.
Since (G, �) is atoroidal, there are boundary components Si and gi ∈ G, for 1 6 i 6 3, such that
B = 〈a, x〉6 g1S1g−1

1 , C = 〈a, y〉6 g2S2g−1
2 and D = 〈a, xy〉6 g3S3g−1

3 .
Let Doo be the “pair of pants” surface. Then B,C, D < H are boundary components for a PD3-pair

of groups (H, T ) which is the peripheral system of Doo× S1. The inclusion of H into G induces a
map of PD3-pairs of groups, from (H, T ) to (G, �), and the restrictions to the boundary components
B 7→ g1S1g−1

1 , C 7→ g2S2g−1
2 and D 7→ g3S3g−1

3 each have nonzero degree. There is an associated
commutative diagram of exact sequences of homology.

If S2= j S1 j−1 then g−1
1 ag1 ∈ S1∩hS1h−1, where h= g−1

1 g2 j , contrary to the malnormality hypothesis.
Therefore no two of the boundary components Si are conjugate in G. Consideration of the commutative
diagram of homologies shows that H3(H, T ;Z) maps injectively to H3(G, �;Z). (See [20, Lemme 3].)
Hence the induced map of the doubles D(H, T )→ D(G, �) has nonzero degree, and so the image has
finite index, by Lemma 8.5. Therefore [G : H ] is finite, and so H is atoroidal. But then r 6 1, by
Lemma 10.4.

If h ∈ G \ {1} and C = CG(h) is nonabelian then cd C = cd G = 2, since C is not free, and C ′ is a free
group such that C ′ ∩ 〈h〉 = 1. Hence C has a subgroup H ∼= Z2, which contains h. This is conjugate into
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one of the boundary components S, since (G, �) is atoroidal. Clearly S ∼= Z2, and so S is malnormal in
G. We may assume that H 6 S. Then C 6 S also, since S is malnormal in G, and so C is abelian after
all. It is clearly maximal among such subgroups. �

In order to prove the main theorem, which extends Theorems 10.5 and 10.6 to the cases with proper
JSJ decompositions, we shall need to show that if (G, �) is an atoroidal PD3-pair of groups and a
boundary component S is abelian then S is malnormal in G. As we have not understood some details of
the argument for this in [20, Lemme 2], we shall cite a parallel result of Scott and Swarup, which is a
consequence of their work on JSJ decompositions. (We have paraphrased their result.)

Theorem [128, Proposition 5.3]. Let (G, �) be an atoroidal orientable PDn-pair of groups which is not
of I -bundle type. Suppose that η, ω ∈� are such that Gη and Gω are virtually polycyclic, and that there
are subgroups S < Gη and T < Gω of Hirsch length n− 2 and an element g ∈ G such that S = gT g−1.
Then ω = η and g ∈ Gη. �

When n = 3 the malnormality condition follows from Lemma 10.3 and this result.

Lemma 10.7 [20, Lemme 2]. Let (G, �) be an atoroidal orientable PD3-pair of groups. If Gω
∼= Z2 for

some ω ∈�, then Gω is malnormal in G.

Proof. Suppose that g ∈ G, and let S = gGωg−1
∩Gω and T = Gω ∩ g−1Gωg. Then S = gT g−1. If

g /∈ Gω then Gω and gGωg−1 are not commensurable, by Lemma 10.3, and so cd S = cd T 6 1. We
cannot have S ∼= T ∼= Z, by the result just cited, and so gGωg−1

∩Gω = 1. �

Lemma 10.8 [DD, Proposition I.4.7]. Let G be a group which acts on a tree T . Then G stabilizes a
vertex of T if and only if there is a vertex v and an integer N such that d(v, g · v)6 N for all g ∈ G.

Proof. The condition is clearly necessary. Suppose that it holds, and let U be the subtree with vertex set
the orbit G · v. Then U is G-invariant, and has diameter 6 2N . The extreme distance is realized by pairs
of vertices of valence 1. Since this subset is invariant under G, discarding the extreme vertices gives a
G-tree of strictly smaller diameter. The lemma follows by induction on the diameter. �

Lemma 10.9 [20, Lemme 4]. Let (G, �) be a PD3-pair of groups with a proper JSJ decomposition. Let
γ be a path in the Bass–Serre tree T associated to the JSJ decomposition. If there is a nontrivial element
h ∈ G which fixes γ pointwise, then γ has length 6 2.

Proof. We note first that if v is a vertex of γ which is not an endpoint, then Gv must be of Seifert type.
For if Gv is atoroidal and e, f are edges of γ meeting at v, then the edge groups Ge,G f both contain
h. Since h is central in 〈Ge,G f 〉 and Gv is not of Seifert type, 〈Ge,G f 〉/〈h〉 is virtually free, and so
〈Ge,G f 〉 must be virtually Z2, by Theorem 10.6. But this contradicts Lemma 10.3.

If γ has length > 2 then there are a pair of adjacent interior vertices, w and z, say, connected by an
edge e. Since h fixes each of the edges ending at w, it is in

√
Gw. (For otherwise the corresponding

edge groups would be commensurable, since they each meet
√

Gw nontrivially. But this would again
contradict [98, Corollary A1].) A similar argument applies for the vertex z, and so h ∈

√
Gw ∩

√
Gz .

Thus 〈h〉 is normal in H = 〈Gw,Gz〉 = Gw ∗Ge Gz , and so
√

H 6= 1. Let gw ∈ Gw and gz ∈ Gz be
elements which are not in

√
H . Then k = (gwgz)

2 commutes with h, but 〈h, k〉 is not conjugate into any
vertex group of the JSJ decomposition. This contradicts property (3) of the decomposition. Thus γ has
at most one internal vertex, and so has length 6 2. �
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Lemma 10.10 [20, Lemme 5]. Let (G, �) be a PD3-pair of groups which has a proper JSJ decomposi-
tion. If h ∈ G \ {1} fixes a vertex v of the the Bass–Serre tree T associated to the JSJ decomposition of
G, then CG(h) fixes a vertex of T .

Proof. Let a ∈ CG(h). If A = 〈a, h〉 ∼= Z2 then A fixes a vertex v′ of T , by condition (3) of the JSJ
Decomposition Theorem. If A ∼= Z= 〈t〉, say, then a = tm and h = tn for some exponents m, n. Since
tn fixes v, t must fix a vertex v′, say. Hence h fixes v and v′ also. In each case, d(v, v′)6 2, by Lemma
10.9. Hence

d(v, a · v)6 d(v, v′)+ d(v′, a · v)= d(v, v′)+ d(a · v′, a, v)6 4.

Since this estimate holds for each a ∈ CG(h), it follows that CG(h) fixes a vertex of T . �

The next theorem is the main result of this section.

Theorem 10.11 (Castel’s Centralizer Theorem [20, Théorème 1]). Let (G, �) be a PD3-pair of groups.
If h ∈ G is not infinitely divisible, we are in one of these situations:

(1) CG(h) is isomorphic to Z.

(2) CG(h) is isomorphic to Z2 or Kb.

(3) CG(h) is conjugate to a subgroup of index at most 2 in one of the Seifert pieces of the JSJ decompo-
sition of G.

If h is infinitely divisible and h 6= 1, then CG(h) fixes an atoroidal vertex of the JSJ decomposition of G,
and is abelian of rank 1, but not finitely generated.

Proof. We may assume that G is not polycyclic. We may also assume that G is orientable. (Note that a
torsion-free group which is virtually abelian of rank 1 must be abelian.)

Assume first that h is not infinitely divisible, and let C = CG(h). If cd C = 1 then C ∼= Z, while if
cd C = 3 then

√
G 6= 1, and (3) holds. Hence we may assume that cd C = 2, and that C is not virtually Z2.

Therefore C ′ is a nonabelian free group and ζC ∼= Z. We may assume without loss of generality that h
generates ζC . As in Theorem 10.6, C has a subgroup H ∼= Z2, which contains h. This must fix a vertex
of the Bass–Serre tree T associated to the JSJ decomposition, by part (3) of the JSJ Decomposition
Theorem. But then C also fixes a vertex v ∈ V (T ), by Lemma 10.10. Since C has nontrivial centre, Gv

is of Seifert type, and (3) then follows from Theorem 10.5.
Assume now that h 6= 1 is infinitely divisible. If h does not fix a vertex of T then there is an unique

axis which is invariant under h, and along which h has a well-defined, integral translation length `(h) 6= 0
[Se, Proposition 24]. If h = gk for some g ∈ G then g is also fixed-point free, and `(h)= k`(g). Hence
|k|6 `(g), contrary to hypothesis. Therefore h fixes a vertex of T . It follows from Lemma 10.10 that
CG(h) also fixes a vertex v ∈ V (T ). Since groups of Seifert type do not have infinitely divisible elements,
Gv must be atoroidal. Hence CG(h) is abelian, by Theorem 10.6. It is not finitely generated, since h is
infinitely divisible. Therefore cd CG(h)6 2, and so CG(h) has rank 1. �

With Theorem 9.5, it follows that if every abelian subgroup is finitely generated then all centralizers
are finitely generated, as asserted at the end of §1 of Chapter 9.

It is a consequence of the Geometrization Theorem that 3-manifold groups have no infinitely divisible
elements. However, this remains an open question for PD3-groups in general.
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10.5. No nontrivial Baumslag–Solitar relations

If G is a torsion-free group then we shall say that x, y ∈ G satisfy a nontrivial Baumslag–Solitar relation
if x, y 6= 1 and xy px−1

= yq for some exponents p, q 6= 0 such that |p| 6= |q|. Castel showed that no
nontrivial Baumslag–Solitar relation holds in any PD3-group. The argument involves reduction to the
following special case.

Theorem 10.12 [81]. Let G be a PD3-group. If the Baumslag–Solitar group BS(1, q) is a subgroup of G,
then q =±1.

Proof. The Baumslag–Solitar groups BS(p, q) are finitely presentable and have one end. Therefore if
H = BS(1, q) < G then H is the ambient group of a PD3-pair (H, T ), by the Algebraic Core Theorem.
On passing to a subgroup of index 2, if necessary, we may assume that (H, T ) is orientable. Since
H1(H ;Z)= Z⊕ (Z/(q−1)Z) and Hi (H ;Z)= 0 for i > 1, it follows from the exact sequence of the pair
that there are 1 or 2 boundary components, each with group Z2. But Z2 is only a subgroup of BS(1, q)
if q =±1. �

We shall use the following lemma, rather than appealing to the topology of Seifert fibred 3-manifolds.

Lemma 10.13. Let (G, �) be a PD3-pair of groups of Seifert type. Then no nontrivial Baumslag–Solitar
relation holds in G.

Proof. We may assume that G is not polycyclic. Then
√

G ∼= Z and G/
√

G has a subgroup K of finite
index m which is either a PD2-group (if S is empty) or a free group. We may also assume that

√
G is

central in the preimage of K in G. Suppose that x, y ∈ G satisfy x p
= yxq y−1, and let r = pm and

s = qm . Then u = xm and v= ym satisfy ur
= vusv−1, and the images of u and v in G/

√
G are in K . No

nontrivial Baumslag Solitar relation holds in any PD2-group or free group, so either r =±s, in which
case p =±q, or u ∈

√
G. But in the latter case ur

= vusv−1
= us , so either r = s and p = q, or u = 1,

in which case x = 1. �

We may now give Castel’s proof of his theorem.

Theorem 10.14 [20, Théorème 2]. Let (G, �) be a PD3-pair of groups. Then no nontrivial Baumslag–
Solitar relation holds in G.

Proof. It is sufficient to prove this in the absolute case, for if a nontrivial Baumslag–Solitar relation holds
in G then it holds also in the PD3-group obtained by doubling (G, �) along its boundary.

Suppose then that G is a PD3-group and xy px−1
= yq for some x, y ∈ G \ {1}. Let H be the subgroup

generated by x and y. It is clear that x, y ∈ CommH (〈y〉), and so CommH (〈y〉)= H . Therefore, there
are functions p, q : H → Z \ {0} such that

gy p(g)g−1
= yq(g), for all g ∈ H.

Following [96], we may define a homomorphism 9 : H →Q×+ by

9(g)=
∣∣∣∣ p(g)
q(g)

∣∣∣∣ , for all g ∈ H.

Clearly 9(x)=
∣∣ p

q

∣∣ 6= 1, while 9(y)= 1, and so Im(9)∼= Z.
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Let T be the G-tree associated to the JSJ decomposition of G. If y fixes no vertex of T then it has an
invariant axis, on which y acts by translation, with translation length `(y)= d(a, y · a) > 0, for all a ∈ A
[Se, Proposition 24]. The translation length is additive and invariant under conjugation, which quickly
leads to a contradiction, since `(y p)= `(xy px−1)= `(yq). Therefore y fixes some v ∈ V (T ). For each
g ∈ H we have

d(g−1
· v, y p(g)g−1

· v)= d(v, gy p(g)g−1
· v)= d(v, yq(g)

· v)= 0.

Since y p(g)
6= 1 fixes both v and g−1

· v, it follows from Lemma 10.9 that d(v, g−1
· v)6 2. Thus H · v

lies in a bounded neighbourhood of v and so is finite. Therefore H fixes a vertex w ∈ V (T ).
Since no nontrivial Baumslag–Solitar relation holds in any group of Seifert type, by Lemma 10.13,

Gw is atoroidal. Let g ∈ Ker(9). Then g2 y p(g)g−2
= y p(g), and so y p(g)

∈ CGw
(g2). Since Gw is

atoroidal this centralizer is abelian, and so g commutes with y p(g). If h is another element of Ker(9)
then g, h are both in CGw

(y p(g)p(h)), which is again abelian. Hence Ker(9) is abelian.
Since Im(9) ∼= Z and Ker(9) is abelian, H is solvable. If [G : H ] is finite then H is polycyclic of

Hirsch length 3, and it is easy to see that no nontrivial Baumslag–Solitar relation holds in any such group.
Therefore cd H = 2, and so H must be an ascending HNN extension BS(1,m)= Z∗m , for some m 6= 0.
But then m =±1, by Theorem 10.12. �

Corollary 10.14.1. Let (G, �) be a PD3-pair of groups. Let H be a subgroup of G which is in the class
X . Then

√
H 6= 1, and either H ∼= Z or H is the ambient group of a PD3-pair of groups of Seifert type.

In the latter case,
√

H ∼= Z or
√

H ∼= Z2.

Proof. We may assume that H 6∼=Z, and so cd H = 2. As H is FP2 and has one end, it is the ambient group
of a PD3-pair of groups (H, T ), by the Algebraic Core Theorem. We also have H ∼= πG, where (G, 0)
is a finite graph of groups in which all vertex and edge groups are infinite cyclic. Since no nontrivial
Baumslag–Solitar relations hold in G, we must have [Go(e) : Ge] = [G t (e) : Ge] for all edges e ∈ E(0).
It follows easily that

√
H 6= 1. Hence (H, T ) is of Seifert type. The final assertion is clear. �

As an easy consequence of his two main results, Castel gave a parallel result for commensurators.

Theorem 10.15 [20, Proposition 4]. Let (G, �) be a PD3-pair of groups. If h ∈ G is not infinitely
divisible, we are in one of these situations:

(1) CommG(〈h〉) is isomorphic to Z.

(2) CommG(〈h〉) is isomorphic to Z2 or Kb.

(3) CommG(〈h〉) is isomorphic to the fundamental group of a Seifert fibred 3-manifold.

If h is infinitely divisible and h 6= 1, then CommG(〈h〉) is isomorphic to a non-cyclic subgroup of Q.

Proof. Let x ∈ CommG(〈h〉). Then there are exponents p(x) and q(x) such that xh p(x)x−1
= hq(x),

by the definition of the commensurator. Since |p(x)| = |q(x)|, by Theorem 10.14, x2 commutes with
h p(x). The chain of centralizers CG(hn!) is finite, by Theorem 9.5, and so there is an exponent p such
that x2

∈ CG(h p) for all x ∈ CommG(〈h〉). The result now follows from Theorem 10.11. �

The argument shows that CommG(〈h〉)= NG(〈hn!
〉) for n large.



CHAPTER 11

The Tits Alternative

A group satisfies the Tits Alternative if every finitely generated subgroup is either virtually solvable or
has a nonabelian free subgroup. This expression derives from a well-known result of Tits, who showed
that linear groups (in characteristic 0) satisfy this alternative. Thus it is a necessary condition for the
group to have a faithful linear representation.

Interestingly, much of the work towards showing that PD3-groups might satisfy the Tits Alternative
makes use of profinite or pro-p completions, or related ideas like p-adic analytic groups [89; 90; 109;
115]. (This is implicit also in [14].)

We begin with a relatively simple argument (from [63]) for the Tits Alternative for almost coherent
subgroups of infinite index. We then recall the definition of profinite and pro-p completions, and show
that the derived series and lower central series of PD3-groups either terminate early or continue indefi-
nitely. In Sections 4 and 5 (which are based on [14]) we show that the Tits Alternative holds for almost
coherent PD3-groups which are not virtually “properly locally cyclic”. In the final section we consider
“largeness”.

11.1. The virtually Haken case

Most 3-manifold groups are linear over Z [AFW, Flowchart 4]. (This is not known for the fundamental
groups of proper graph manifolds admitting no non-positively curved metric.) All 3-manifold groups
satisfy the Tits Alternative. This is easy to see for Seifert fibred 3-manifolds and hyperbolic 3-manifolds,
and was proven for virtually Haken 3-manifolds in [37]. These three classes include all aspherical closed
3-manifolds, by the Geometrization Theorem.

Theorem 11.1. Let H be an FP2 group and φ : H→ H an injective endomorphism. If the HNN extension
G = H ∗φ is a PD3-group then φ is an isomorphism. and hence H is normal in G.

Proof. If G is a PD3-group then cd H = 2, by the Strebel Theorem. Let X be the tree associated to
the HNN extension. Let D2 be the local coefficient system on X which associates to each vertex or
edge the group H 2(H ;Z[H ]), and to the inclusions of the initial and terminal vertices of an edge the
identity homomorphism and the restriction induced by φ, respectively. Then H 3(G;Z[G])∼= H 1

c (X;D2)

[16, Theorem 3.2]. This is in turn a direct limit lim
−−→

Mk , indexed by Z, where the map from Mk to
Mk+1 is equivalent to the direct sum of [H : φ(H)] copies of the restriction map from H 2(H ;Z[H ]) to
H 2(φ(H);Z[H ]) [16, Remark 3.5]. Thus this direct limit can only be infinite cyclic if [H : φ(H)] = 1.

�

In [70] the Algebraic Core Theorem and [16] are used to show that no FP2 subgroup of a PD3-group
is a properly ascending HNN extension. (See also Theorems 11.1 and 11.2.)

107



108 HILLMAN ∼∼∼ POINCARÉ DUALITY IN DIMENSION 3

A group G is restrained if it has no nonabelian free subgroup.

Theorem 11.2. Let G be a PD3-group and H an almost coherent restrained subgroup of infinite index.
Then either H ∼= Z2 or H ∼= Kb or H is abelian of rank 1.

Proof. We may assume that H is not abelian of rank 1. Suppose first that H is finitely generated, and
hence FP2 (since it is almost coherent). Since H is restrained and not Z, it has one end, and c.d.H = 2.
Hence H is the ambient group of a PD3-pair of groups (H,S), by the Algebraic Core Theorem. Moreover,
χ(Im(σ ))= 0 for all σ ∈S, since H is restrained, and so χ(H)= 0, by Lemma 3.1. Hence H 1(H ;Z) 6= 0,
and so H is an HNN extension with finitely generated base, by the Bieri–Strebel Theorem. The extension
must be ascending, since H is restrained, and the base B is again FP2, since H is almost coherent. Now
H 2(H ;Z[H ]) 6= 0, since c.d.H = 2, and so H 1(B;Z[H ]) 6= 0 [16, Theorem 0.1]. Hence B has one end,
and so H ∼= BS(1,m), for some m 6= 0. In fact, we must have m =±1, and so H ∼= Z2 or H ∼= Kb, by
Theorem 10.12.

In general, H is an increasing union of such subgroups, and so is virtually abelian of rank 2. Since
cd H = 2, by the Strebel Theorem, H must be finitely generated. �

Corollary 11.2.1. Let G be a PD3-group. Then G is polycyclic if and only if it is coherent, it is restrained
and either vβ(G) > 0 or G is virtually split over a finitely generated subgroup.

Proof. The conditions are clearly necessary. For the converse, we may assume that G is orientable
and either G/G ′ is infinite or G ∼= A ∗C B, where C is a PD2-group. In the first case, G is an HNN
extension with finitely generated base B and associated subgroups, by the Bieri–Strebel Theorem. The
HNN extension is ascending, since G is restrained, and B is FP2, since G is almost coherent. Hence
B is a restrained PD2-group, and G ∼= B oZ, by Theorems 8.9 and 11.1. Thus G is polycyclic. In the
second case, A, B and C are each finitely generated [Bi, Proposition 2.13] and of infinite index, and
cd A = cd B = cd C = 2. Hence A, B and C are virtually abelian of rank 2, by Theorem 11.2, and so
[A : C] and [B : C] are finite. Therefore [A : C] = [B : C] = 2, by Lemma 8.6, and so C is a normal
subgroup of G with quotient G/C ∼= D∞. �

Theorem 11.2 and Corollary 11.2.1 show that the fundamental groups of virtually Haken 3-manifolds
satisfy the Tits Alternative, since such groups are coherent PD3-groups.

In any group the subgroup generated by normal restrained subgroups is again normal and restrained,
and so there is an unique maximal normal restrained subgroup.

Corollary 11.2.2. Let G be an almost coherent PD3-group, and let N be its maximal normal restrained
subgroup. If N 6= G then N ∼= Z or N = 1.

Proof. Since N 6= G, it has infinite index in G. Moreover,
√

G is cyclic, by Theorem 8.9, since G is
not itself restrained. If N is not abelian then N ∼= Kb, by Theorem 11.2. But then h(

√
N ) = 2 and so

h(
√

G)> 2, contradicting Theorem 8.9. If N is abelian then N 6
√

G, and so N ∼= Z or N = 1. �

We expect that if N = G then G is polycyclic. The maximal elementary amenable normal subgroup
E is virtually solvable [73]. If E 6= 1 then

√
G 6= 1, and so either E is cyclic or G is polycyclic. by

Theorem 8.10.
A group G is indicable if there is an epimorphism from G to Z, and is locally indicable if all of its

finitely generated subgroups are indicable.
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Theorem 11.3. Let G be an almost coherent PD3-group such that G/G ′ is infinite. Then G is locally
indicable.

Proof. Let H be a finitely generated subgroup of G. If H has finite index in G then its image in G/G ′

is infinite. If [G : H ] =∞ then the indecomposable factors of H are either Z or are ambient groups of
PD3-pairs of groups, by the Algebraic Core Theorem. In all cases H is indicable. �

Can this result be strengthened to show that every PD3-group is virtually residually solvable?

11.2. Profinite and pro- p completions

The set of all normal subgroups N of finite index in a (finitely generated) group G forms a directed
system N, and G is residually finite if

⋂
N= 1. The profinite completion of G is

Ĝ = lim
←−−
N∈N

G/N .

There is a natural homomorphism from G to Ĝ, which is a monomorphism if and only if G is residually
finite. Since the projective limit is a subgroup of the direct product

∏
N∈N N defined by equations, Ĝ

has a natural (metrizable) topology, as a compact totally disconnected topological group. The kernels of
the projections of Ĝ onto G/N , for N ∈N, form a basis of open neighbourhoods of the identity. The
image of G in Ĝ under the natural homomorphism is dense. If p is a prime, the pro-p completion Ĝ p is
defined similarly, using the set of all normal subgroups of index a power of p. Clearly, if Ĝ p is infinite
then so is Ĝ.

Pro-p completions were used in [29] to study PD2-groups, and the profinite topology was used in
connection with the relative end invariant by Scott [125]. The latter use played a part in the proof of
[98, Theorem C], which is used in Theorem 11.19 below. The related notion of p-adic analytic group
underlies part of the arguments of [109].

The cohomological properties of pro-p groups are in some ways better understood than those of
general profinite groups, but requiring that Ĝ p be infinite is a more restrictive condition. We refer to [90;
156] for the notion of pro-p Poincaré duality group. In [90] it is shown that if G is a PD3-group such
that Ĝ p is infinite, then either Ĝ p ∼= Ẑp, or Ĝ p is a pro-p Poincaré duality group and every subgroup of
finite index in Ĝ p has deficiency 0, or Ĝ p is not a pro-p Poincaré duality group and Ĝ p has subgroups
of finite index with arbitrarily large deficiency. (This includes the result of [156] that if Ĝ p is infinite,
and if every subgroup of finite index in G has finite abelianization, then Ĝ p is a pro-p Poincaré duality
group.)

If G is residually finite and {Nk} is a descending sequence of normal subgroups of finite index such
that

⋂
Nk = 1, then

lim sup
β1(Nk)

[G : Nk]
= β

(2)
1 (G),

by the L2-Approximation Theorem [Lu, page 453]. (It is easy to see that if G is any quotient of F(r) and
N is any subgroup, then β1(N )/[G : N ]6 r .) If π is a 3-manifold group then it is residually finite [AFW],
and β(2)1 (π)= 0 [Lu, Theorem 4.1]. (Each of these results relies on the Geometrization Theorem.)
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11.3. Nilpotent and solvable quotients

The derived series G(n) and lower central series G[n] of a group G are defined inductively by G(0)
= G

and G(n+1)
=G(n)′ , and G[0]=G and G[n+1]= [G,G[n]], for n> 0, respectively. We shall show that if G

is a PD3-group such that one of these series terminates, then the maximal quotient is strongly restricted.

Theorem 11.4 [62]. Let P be a PD3-space with fundamental group π , and such that π (n+1)
= π (n) for

some n > 0. Then we are in one of the following situations:

(1) π/π (n) is finite and has cohomological period dividing 4, and π is orientable.

(2) π/π (n) is isomorphic to one of Z, Z⊕ (Z/2Z) or D∞.

(3) π/π (n) is torsion-free and polycyclic, and h(π/π (n))= 3.

In each case, n 6 3.

Proof. Let κ = π (n). Then κ is a perfect normal subgroup and G = π/κ is solvable. Since κ acts trivially
on Z[G] and is perfect,

H 1(κ;Z[G])= Hom(κ,Z[G])= 0.

Hence the canonical homomorphism H 1(G;Z[G])→ H 1(π;Z[G]) is an isomorphism.
Since G is solvable it has finitely many ends. If G is finite then the covering space Pκ is again a

PD3-complex, and so H2(Pκ;Z) = H 1(κ;Z) = 0. Moreover, Pκ is orientable, since H1(κ; F2) = 0.
Considering the Serre spectral sequence for the projection of Xκ onto P (with coefficients Z), we see
that G acts orientably on Pκ and has cohomological period dividing 4.

Lemma 4.6 and Corollary 4.9.1 extend to show that if G is infinite then it has no nontrivial finite
normal subgroup other than Z/2Z−. Hence if G has two ends then it is either Z, Z⊕ (Z/2Z) or D∞.

If G has one end then

H2(Pκ;Z)= H2(π;Z[G])∼= H 1(π;Z[G])= H 1(G;Z[G])= 0,

while H3(Pκ;Z) = 0. We may assume that C∗(P;Z[π ]) ' C∗, where C∗ is a finite projective Z[π ]-
chain complex of length 3. Hence Z[G] ⊗Z[π ] C∗ is a finite projective resolution of the augmentation
Z[G]-module Z. Hence G is FP, and cd G 6 3. Since H j (Pκ;Z[G]) = 0 for j > 0, we also have
H j (Pκ;Z[G])= 0 for j > 0, by the Universal Coefficient Theorem with simple coefficients Z[G]. Hence
the Serre spectral sequence with these coefficients collapses, to give H 3(G;Z[G])∼= H 3(π;Z[G])∼= Z.
Hence G is a PD3-group. Since it is solvable, it is polycyclic and of Hirsch length 3.

The final assertion holds for each possible quotient π/π (n). �

If G has two ends and κ = π (n) is infinite, then it is not finitely generated. For otherwise π would have
one end, and so P would be aspherical. Then κ would be a PD2-group, by the PD Extension Theorem,
but no PD2-group is perfect.

Each of the possible quotients π/κ is a 3-manifold group. Examples with κ 6= 1 may be constructed
from such manifolds M by replacing a regular neighbourhood of an essential simple closed curve by the
exterior of a nontrivial knot with Alexander polynomial 1.

There is an analogous result for the lower central series.

Lemma 11.5 [140, Lemma 4]. Let N be a finitely generated nilpotent group. If there is a k > 0 such that
Hi (N ;Z)= 0 for all i > k, then N is torsion-free and h(N )6 k.
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Proof. If h(N )= 0 then N is finite, and so N = 1, since nontrivial finite groups have nonzero homology
in infinitely many degrees [135]. If h(N ) > 0 then N/N ′ is infinite [Ro, 5.2.6], and so there is an
epimorphism f : N → Z. Let U1 = U = Ker( f ), and let Uk+1 = [N ,Uk], for k > 0. Then N/U acts
trivially on Uk/Uk+1, by definition. Assume that N/U acts nilpotently on the homology of U/Uk . It then
follows from the LHSSS for U/Uk+1 as an extension of U/Uk by Uk/Uk+1 that N/U acts nilpotently
on the homology of U/Uk+1. Hence N/U acts nilpotently on Hi (U ), for all i > 0.

The LHSSS for N as an extension of Z by U reduces to a long exact (“Wang”) sequence

Hi (U )→ Hi (U )→ Hi (N )→ Hi−1(U )→ . . . ,

where Hi (−) denotes homology with integral coefficients. Hence Hi (U )= (t−1)Hi (U ), for i > k, since
Hi (N )= 0 for i > k. But then Hi (U )= (t −1) j Hi (U ) for all j > 0, and so Hi (U )= 0. The lemma now
follows by induction on h(N ). �

If N is torsion-free then it is a PD+h(N )-group, so Hh(N )(N ;Z) 6= 0, while Hi (N ;Z)= 0 for all i > h(N ).

Lemma [28]. Let N be a finitely generated nilpotent group and M a finitely generated Z[N ]-module. If
H0(N ;M)= 0 then Hi (N ;M)= 0 for all i > 0. �

Let 0q be the central extension of Z2 by Z with characteristic class ±q ∈ H 2(Z2
;Z) ∼= Z. Then 0q

has the presentation
〈x, y, z | x, y� z, [x, y] = zq

〉.

Theorem 11.6 [140]. Let P be an orientable PD3-space with fundamental group π , such that π[n] =
π[n+1] for some n. Then we are in one of the following situations:

(1) π/π[n] is isomorphic to Z/mZ or to Q(2k)×Z/(2k+ 1)Z, for some k > 3 and m > 1.

(2) π/π[n] ∼= Z.

(3) π/π[n] is isomorphic to Z3 or to 0q , for some q > 1.

Proof. Let N = π[n] and G = π/N . Since G is nilpotent it has finitely many ends.
If G is finite then it is the direct product of its Sylow p-subgroups. Since G is the maximal nilpotent

quotient of π , N has no characteristic quotient which is a p-group for any p dividing |G|. Hence N/N ′

is finite and (|G|, |N/N ′|)= 1, and so the PD3-space PN is a Z(p)-homology 3-sphere. It follows easily
that each Sylow p-subgroup has cohomological period dividing 4, and so the same is true for G. The
finer detail in (1) then follows from inspection of the list of such groups in Chapter 5.

If G has two ends then it is an extension of Z by a finite normal subgroup, since D∞ is not nilpotent.
We refer to the original paper [140] for the proof that this finite subgroup is trivial, and so G ∼= Z. (We
do not need this detail for the corollary below.)

If G has one end then Hi (PN ;Z) = Hi (P;Z[G]) = 0 for i > 2, by Poincaré duality for P , while
H0(G; H1(PN ;Z))= N/[π, N ] = 0. Hence Hi (G; H1(PN ;Z))= 0 for all i > 0 [28, Lemma 4], and so
the spectral sequence

Hp(G; Hq(PN ;Z))⇒ Hp+q(P;Z)

for the covering PN → P collapses to give isomorphisms Hi (P;Z)∼= Hi (G;Z), for all i > 0. Since P
is an orientable PD3-complex, G is torsion-free and h(G)= 3, by Lemma 11.5. Hence G is isomorphic
to Z3 or to 0q , for some q > 1. �
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Corollary 11.6.1. If β1(G; Fp) > 1 for an odd prime p then the pro-p completion of G is infinite. Simi-
larly, if β1(G; F2) > 2 then the pro-2 completion is infinite. �

There are parallel results for coefficients Q. If the rational lower central series terminates, then β =
β1(G) 6 3; if, moreover, β = 3 then there is a nonzero triple cup-product, while if β = 2 there is a
nonzero Massey product. (See [43; 140].)

11.4. PD3-groups with infinite profinite completion

In a much-cited but unpublished preprint, Mess showed that if M is a closed P2-irreducible 3-manifold
and π = π1(M) is such that π̂ is infinite, then either π is polycyclic, or there is a prime p such that
vβ(π; p)=∞, and in the latter case π has a subgroup that is a nonabelian free group [109, Proposition 3].
Here we shall give some related results on PD3-groups, from [14], as steps towards the Tits Alternative,
considered in the next section. This work implies most of [109, Proposition 3] for almost coherent
residually finite PD3-groups. (We discuss this briefly at the end of the chapter. The other results of [109]
are similar to Corollary 11.6.1 above and Theorem 11.11 below.)

The rank rk(G) is the minimal number of elements needed to generate the group G. The Prüfer rank
u(G) is the maximum of the ranks of all finitely generated subgroups of G. The sectional p-rank u p(G)
is the minimal r ∈ Z∪ {∞} such that the p-Sylow subgroups of finite quotients of G all have Prüfer rank
6 r .

Lemma 11.7 [14, Lemma 2.3]. Let G be a finitely generated group. If vβ(G; p) is finite for some prime
p then u p(H)6 vβ(G; p), for every subgroup H of finite index in G.

Proof. Let H < G have finite index in G and let f : H → F be an epimorphism onto a finite group
F . Let Sp(F) be the p-Sylow subgroup of F , and let d = u(Sp(F)). Then Sp(F) maps onto (Z/pZ)d .
Let K = f −1(Sp(F)). Then K has finite index in G, and K maps onto (Z/pZ)d . Hence vβ(G; p) >
β1(K ; Fp)> d . In other words, u p(H)6 vβ(G; p). �

If G is a group and p is a prime, let X p(G) = 〈g p
| g ∈ G〉 denote the subgroup generated by all

p-th powers in G. Let G[0],p = G and G[n+1],p = [G,G[n],p] X p(G[n],p), for all n > 0. The p-lower
central series {G[n],p : n > 0} is the most rapidly descending central series such that all subquotients are
elementary abelian p-groups. If N is a normal subgroup of G, then the LHSSS for G as an extension of
G/N with coefficients Fp gives a 5-term “exact sequence of low degree”

H2(G)→ H2(G/N )→ N/[G, N ] → H1(G)→ H1(G/N )→ 0,

where Hi (−) now denotes homology with coefficients Fp [132].

Lemma 11.8. Let G be a group and E a subgroup generated by k elements. Then β1(EG[1],p; Fp) >
rk(G[1],p/G[2],p)−

(k
2

)
.

Proof. Let F = EG[1],p/G[1],p. Then F ∼= (Z/pZ)r , for some r 6 k. Hence β1(F; Fp) = r and
β2(F; Fp) =

(r+1
2

)
, by the Künneth Theorem. The result then follows from the exact sequence of low

degree for EG[1],p as an extension of F by G[1],p. �

Lemma 11.9. Let G be an orientable PD3-group and p a prime. Then rk(G[1],p/G[2],p) >
(
β
2

)
, where

β = β1(G; Fp). If β > 3 then vβ(G; p)=∞.
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Proof. Since G/G[1],p ∼= (Z/pZ)β , we see that β1(G/G[1],p; Fp) = β and β2(G/G[1],p; Fp) =
(
β+1

2

)
.

Since β2(G; Fp)= β, by Poincaré duality, it follows from the exact sequence of low degree for G as an
extension of G/G[1],p by G[1],p that rk(G[1],p/G[2],p)>

(
β+1

2

)
−β =

(
β
2

)
.

Clearly G ′
[1],p 6 [G,G[1],p]. Therefore if β > 3 then

β1(G[1],p; Fp)> rk(G[1],p/G[2],p)>
(
β
2

)
> β = β1(G; Fp).

Iterating this argument, we get vβ(G; p)=∞. �

Lemma 11.10 [14, Proposition 2.5]. Let G be an orientable PD3-group such that vβ(G; p) is finite for
every prime p. Then G has a subgroup H of finite index such that each finite quotient of H is solvable
with Prüfer rank 6 4.

Proof. The group G has finite sectional 2-rank, by Lemma 11.7, and so has a finite index subgroup H
all of whose finite quotients are solvable [104]. On the other hand, if S is a finite solvable group all
of whose Sylow subgroups have Prüfer rank 6 r , then S has Prüfer rank 6 r + 1 [92]. The result now
follows from Lemma 11.9. �

Theorem 11.11 [14, Proposition 2.2]. Let G be an orientable PD3-group such that Ĝ is infinite. Then
either

(1) vβ(G) > 0, or

(2) vβ(G; p)=∞ for some prime p.

Proof. Suppose that vβ(G; p) is finite for every prime p. Then G has a subgroup H of finite index as
in Lemma 11.10. Let K =

⋂
N, where N is the directed system of normal subgroups of finite index in

H . Then H/K is finitely generated, residually finite, and each finite quotient of H/K is solvable with
Prüfer rank 6 4. Hence H/K is nilpotent-by-abelian [129]. Since H/K is infinite, it has a subgroup of
finite index which maps onto Z, and so vβ(G) > 0. �

In [109, Proposition 2] it is shown that if M is a closed P2-irreducible 3-manifold, p is a prime and
π = π1(M) is such that π̂p is infinite, then either π has an infinite solvable quotient of derived length
6 2, in which case vβ(G) > 0, or vβ(G; p) =∞. (The argument involves embedding π̂p in a p-adic
analytic group.)

Lemma 11.12 [130, Proposition 1.1]. Let G be an orientable PD3-group and p a prime, and suppose
that β1(G; Fp) = k + 2 for some k > 2. If E is a subgroup of G which can be generated by k elements
then [G : E] =∞, and E is contained in infinitely many distinct subgroups of finite index.

Proof. Let 1< G be a subgroup of finite index such that E 61 and β1(1; Fp)= n > k+ 2. Then 1 is
an orientable PD3-group. Let D = E1[1],p. Then D is a proper subgroup of 1, which has finite index
and contains E . Moreover,

β1(D; Fp)>

(
n
2

)
−

(
k
2

)
>

(
n
2

)
−

(
n− 2

2

)
= 2n− 3> β1(1; Fp),

by Lemmas 11.8 and 11.9. It follows that E is contained in infinitely many such subgroups, and so
[G : E] =∞. �
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A group is k-free if every subgroup generated by at most k elements is a free group, and is properly
locally cyclic if every finitely generated proper subgroup is cyclic.

Lemma 11.13 [14, Lemma 4.1]. Let G be a PD3-group which is properly locally cyclic. Then G is
simple, and is generated by any two non-commuting elements.

Proof. If N is a proper normal subgroup then it is abelian of rank 1, and so
√

G 6= 1. Hence G is either
of Seifert type or is a Sol3-group, by Theorem 8.10. In each case, such groups are not properly locally
cyclic. Since G is simple and not cyclic, it has two non-commuting elements x, y, say. Since 〈x, y〉 6∼= Z,
we must have G = 〈x, y〉 6∼= Z, by definition of “properly locally cyclic”. �

Must a properly locally cyclic group be finitely presentable?

Theorem 11.14 [14, Theorem 2.1]. Let G be an almost coherent PD3-group. If Ĝ is infinite then either

(1) G contains a PD2-group, or

(2) G is virtually k-free, for all k > 0.

In particular, G is not virtually properly locally cyclic.

Proof. We may assume without loss of generality that G is orientable. If vβ(G) > 0 then there is a
subgroup H < G of finite index which maps onto Z. This subgroup is an HNN extension with finitely
generated base B, by the Bieri–Strebel Theorem. Since H is a PD3-group, 3= cd H 6 cd B+ 1, while
since [H : B] =∞, cd B 6 2, by the Strebel Theorem. Hence B has an indecomposable factor D which
is finitely generated and has one end. Since G is almost coherent, finitely generated subgroups are FP2,
the subgroup D is the ambient group of a PD3-pair of groups, and so D (and hence G) has a subgroup
which is a PD2-group.

Suppose that G does not contain a PD2-group. Then vβ(G)= 0, and so there is a prime p such that
vβ(G; p)=∞, by Theorem 11.11. Let Gk be a subgroup of finite index and such that β(Gk; Fp)> k+ 2,
and let H be a subgroup of Gk of rank 6 k. Then H has infinite index in Gk , by Lemma 11.12. Since
H is FP2 and G does not have any subgroups which are PD2-groups, it follows from the Algebraic Core
Theorem that H must be free. Hence Gk is k-free.

Since G has normal subgroups of arbitrarily large finite index, it is not virtually properly locally cyclic,
by Lemma 11.13. �

If M is an irreducible orientable 3-manifold such that π = π1(M) has no subgroup isomorphic to
π1(Tg) for any g < k, then π is k-free, and finitely generated freely indecomposable subgroups of
infinite index in π have deficiency > k [5]. There is an analogue of this for almost coherent PD+3 -groups,
but we must modify the notion of deficiency.

If G is an FP2 group, its augmentation ideal has presentations

P→ Z[G]r → I (G)→ 0,

where r is finite and P is a finitely generated projective module. Let

defZ[G](G)=max{r − rank(Z⊗Z[G] P)},

where the maximum is taken over all such presentations of I (G). Then defZ[G](G) 6 β1(G)− β2(G),
while if G is finitely presentable then def(G)6 defZ[G](G).
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Theorem 11.15. Let G be an almost coherent PD3-group, with no subgroup which is a PD+2 -group of
genus < k, and let H be a finitely generated freely indecomposable subgroup of G such that cd H = 2.
Then defZ[H ](H)> k, and G is k-free.

Proof. Since G is almost coherent, H is FP2. If H has one end then cd H = 2, and H is the ambient group
of a PD3-pair of groups (H, T ), by the Algebraic Core Theorem. Since [G : H ] =∞, T is nonempty, and∑

H ·τ χ(Hτ )= 2χ(H) (where the sum is over representatives of the boundary components), by Lemma
3.1. Hence χ(H)6 1− k, by the hypothesis on G. Since H is FP2 and cd H = 2, there is a resolution

0→ P→ Z[H ]r → Z[H ] → Z→ 0,

and so χ(H)= 1− r + rank(Z⊗Z[G] P). Hence

defZ[H ](H)> r − rank(Z⊗Z[G] P)= 1−χ(H)> k.

If H can be generated by at most k elements then we may assume that r = k, and so Z⊗Z[G] P = 0.
Since cd H = 2 it follows that P = 0 [30]. But then cd H = 1, contrary to assumption. It follows easily
that G must be k-free. �

In the 3-manifold case we have the advantage of knowing that K (H, 1) is homotopy equivalent to a
finite 2-complex, by Scott’s Core Theorem. Moreover, since π is coherent the fact that π is k-free is
an easy consequence of [Ro, 14.1.7]. Orientability simplifies the formulation of the result, but is not
otherwise necessary.

11.5. The Tits Alternative

A group is a Tarski monster if every proper subgroup is cyclic. Olshanskii has shown that there are
finitely generated groups of cohomological dimension 2 which are Tarski monsters [Ol, §§28–29], but it
is not clear whether there are aspherical finite 2-complexes with such groups, nor whether these groups
are finitely presentable. It is not known whether there are any PD3-groups which are Tarski monsters, or
which are properly locally cyclic.

It follows from Lemma 11.13 that if a PD3-group G is virtually properly locally cyclic then it does
not satisfy the Tits Alternative. The main result of [14] is the following converse to this lemma, which
encompasses earlier results of Parry [115] and Kochloukova and Zaleskii [89].

Theorem 11.16 [14]. Let G be a PD3-group which is not virtually properly locally cyclic. If H is an
almost coherent restrained subgroup of G, then H is solvable.

Proof. If [G : H ] = ∞ then H is virtually abelian, by Theorem 11.2. Thus we may assume that
[G : H ]<∞. Then H is an almost coherent PD3-group which is not virtually properly locally cyclic.
If Ĥ is finite then H has a normal subgroup K of maximal finite index. Since K is again not virtually
properly locally cyclic, it has a finitely generated proper subgroup L which is not cyclic. This subgroup
must have infinite index, for otherwise the intersection of its conjugates in H would be a normal subgroup
of index strictly greater than [H : K ]. Hence L ∼= Z2 or L ∼= Kb, by Theorem 11.2.

Thus H has a subgroup L+ ∼= Z2. By the JSJ decomposition Theorem, either H is of Seifert type —
in which case it is virtually polycyclic, since it is restrained — or H splits over a subgroup A ∼= Z2. But
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it is easy to see that in the latter case H must be either an extension of D∞ by A or a semidirect product
AoZ, and so H is again solvable.

If Ĥ is infinite then the result follows from Theorem 11.11. �

Corollary 11.16.1 [14, Corollary 1.4]. If G is almost coherent and either β1(G; Fp) > 1, for an odd
prime p, or β1(G; F2) > 2, then G satisfies the Tits Alternative.

Proof. Since Ĝ is infinite, by Corollary 11.6.1, G is not virtually properly locally cyclic, by Theorem
11.11 and Lemma 11.13. �

We may use the doubling construction to settle the case for the ambient groups of PD3-pairs of groups.

Corollary 11.16.2. Let (G, �) be a PD3-pair of groups with � nonempty. Assume that G is almost
coherent. If H is a finitely generated restrained subgroup of G, then H is virtually abelian.

Proof. We may assume that cd H = 2, for otherwise H ∼= Z or H = 1. Since H is restrained it has one
end, and since G is almost coherent, H is FP2. Since H embeds in the PD3-group D(G, �) (the double
of G along its boundary), it is the ambient group of a PD3-pair of groups (H, T ), by the Algebraic Core
Theorem. The double D(H, T ) is clearly not properly locally cyclic, since it has a finitely generated
subgroup H 6∼= Z. The result now follows from Theorem 11.16. �

There are two further main results in [14]. (We have reformulated the statements of the next lemma
and theorem.)

Lemma 11.17 [14, Lemma 4.2]. Let G be a PD3-group. If G is virtually properly locally cyclic then
u(G)6 3.

Proof. Let G0 be a properly locally cyclic subgroup of finite index in G. Since G is simple, by Lemma
11.13, it is normal in G. Let p : G→ F = G/G0 be the quotient epimorphism. Then F is a finite group
with cohomological period dividing 4. Inspection of the possibilities listed in §3 of Chapter 5 shows that
u(F)6 3.

Let H be a finitely generated subgroup of G. If H ∩G0 is 1 or Z then H is finite or has two ends.
Since G is torsion-free, H must be cyclic, and so rk(H)6 1. If G0 6 H then H is a PD3-group. Choose
elements {a1, . . . , ar } in H representing a minimal generating set for H/G06 F , and let K =〈a1, . . . , ar 〉.
If K ∩G0 = 1 then K = 1, so H = G0 and rk(H)= 2, by Lemma 11.13. If K ∩G0 is a proper subgroup
of G0, then K ∼= 〈t〉 for some t in G, and tn

∈ G0 for n = [G : G0]. Choose x ∈ G0 \ K . Then 〈tn, x〉 is
not cyclic, and so G0 = 〈tn, x〉, by Lemma 11.3. Hence H = 〈t, x〉 and so rk(H)= 2. Finally, if G0 6 K
then H = K and rk(H)6 u(F). In all cases, rk(H)6 3 and so u(G)6 3. �

Theorem 11.18 [14, Theorem 1.6]. Let G be a PD3-group. Then G is restrained if and only if u(G)6 3.

Proof. If G is virtually properly locally cyclic then u(G) 6 3, by Lemma 11.17, and G is clearly
restrained. Therefore we may assume that G satisfies the Tits Alternative, by Theorem 11.16. Since G
is restrained, it must be solvable. Hence every subgroup H is torsion-free polycyclic, with h(H) 6 3.
But it is easily checked that (in this case) any such subgroup can be generated by at most h(H) elements.
Hence u(G)6 3. �

The final result involves other ideas, and we shall not prove it.
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Theorem [14, Theorem 1.8]. If a PD3-group G has at least 3 distinct strictly irreducible PSL(2,C)

characters, then Ĝ is infinite. Moreover, if G is almost coherent then it has a subgroup which is a
nonabelian free group. �

11.6. Largeness

A group G is SQ-universal if every countable group is a subgroup of a quotient of G, and is large if it
has a subgroup of finite index which maps onto a nonabelian free group. If G is SQ-universal then it has
a nonabelian free subgroup, while if it is large then it is SQ-universal, vβ(G)=∞ and vβ(G; p)=∞
for all primes p.

If M is a compact orientable irreducible 3-manifold having at least one aspherical boundary component
and π = π1(M) is not virtually abelian, then every finitely generated subgroup of π is either solvable or
SQ-universal; if also π2(M)= 0 then “SQ-universal” can be improved to “large” [17]. This strengthens
the Tits conjecture for such groups. Can either statement be extended to PD3-groups or PD3-pairs of
groups?

The final result of this chapter is a small step in this direction, and a partial strengthening of Theorem
11.11. It was originally proven for 3-manifolds with an embedded essential torus [105], and then extended
to 3-manifolds with an embedded essential annulus [91]. Our strategy is based on the latter paper, but
differs in detail.

Theorem 11.19. Let G be a residually finite PD3-group with a subgroup C ∼= Z2. Then G is either
polycyclic or large.

Proof. After passing to a subgroup of finite index in G, if necessary, we may assume that G is orientable,
and that G splits over C [98, Theorem C]. Since G is residually finite, there is a descending sequence
{1i }i>0 of normal subgroups of finite index in G such that

⋂
1i = 1.

Suppose first that G is a free product with amalgamation A ∗C B, and let Ai = A/(A ∩1i ), Bi =

B/(B ∩1i ) and Ci = C/(C ∩1i ), for i > 0. These quotients are finite, and Ci embeds in each of Ai

and Bi . The canonical epimorphisms of A, B and C onto these quotients induce an epimorphism from
G to Ai ∗Ci Bi . This group is finite if Ai or Bi is equal to Ci , has two ends if [Ai : Ci ] = [Bi : Ci ] = 2,
and is virtually a nonabelian free group otherwise. It is easy to see that [Ai : Ci ] 6 [Ai+1 : Ci+1] and
[Bi : Ci ]6 [Bi+1 : Ci+1], for all i .

If Ai = Ci for all i then A is residually finite abelian, and hence must be abelian. (For otherwise
a nontrivial commutator would have nontrivial image in some finite quotient.) Since cd A = 2 and A
is finitely generated, A ∼= Z2, and so [A : C] is finite. But (A,C) is an orientable PD3-pair of groups,
and this contradicts Lemma 8.6. (Note the remark on w1 at the start of the proof of Lemma 8.6.) After
discarding finitely many of the subgroups 1i , we may assume that [Ai : Ci ] and [Bi : Ci ] are at least 2
for all i .

If [Ai : Ci ] = 2 for all i then the intersection of all the subgroups of index 2 in A is abelian, by a
similar argument, and so A is virtually abelian. As A is finitely generated and cd A = 2, and as (A,C)
is a PD3-pair, we must have A ∼= Kb, and C is normal in A. Hence if [Ai : Ci ] = [Bi : Ci ] = 2 for all i
then C is normal in G, which is then polycyclic.

If [Ai : Ci ]> 2 or [Bi : Ci ]> 2 for some i then G is large.
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If G is an HNN extension A ∗C ϕ with stable letter t , then t (C ∩1n)t−1
= tCt−1

∩1n for all n, and
so similar arguments show that either C = A, and so G is polycyclic, or G is large. �

If M is an aspherical closed 3-manifold, then π = π1(M) is residually finite and is polycyclic or large
[AFW, Flowcharts 1 and 4]. Large groups are easily seen to have uniformly exponential growth. (These
assertions include all of [108].)

An argument related to that for Theorem 11.19 shows that if a residually finite PD+3 -group splits over
a PD2-group C then either G maps onto Z or D∞, or G is large. Hence vβ(G) > 0 [70].



CHAPTER 12

Homomorphisms of nonzero degree

Aspherical closed 3-manifolds may be partitioned into eight classes, according to the nature of the geo-
metric pieces of the JSJ decomposition. Wang defined a directed graph 0 whose vertices correspond to
these classes and which has an edge whenever every manifold in the target class is the image of a map of
nonzero degree from some manifold in the source class [153]. We shall give purely algebraic proofs of
Wang’s results for the cases when the atoroidal parts in a JSJ decomposition of the domain are of Seifert
type, and our arguments apply to Poincaré duality groups in all dimensions. (In higher dimensions we
partition PDn-groups into ten classes, in terms of properties of the JSJ decomposition [94].) In many
cases we may find degree-1 homomorphisms between such groups.

We begin by showing that Nil3- and S̃L -manifolds are orientable, and automorphisms of their funda-
mental groups are orientation-preserving. In §2 we give Wang’s partition and our extension to higher
dimensions. In §3 we consider homomorphisms φ : G→ H with G having a JSJ decomposition with
all vertex groups of Seifert type and H atoroidal, and in §4 we assume that G is of Seifert type or is
solvable. In the final section we comment briefly on some related issues considered by Wang and others:
cohopficity [51; 154; 155], the volume condition [157] and commensurability [111; 113]. However, our
observations here are confined to PDn-groups which are either virtually polycyclic or of Seifert type.

12.1. Automorphisms of Nil3- and S̃L -groups

Nil3- and S̃L-manifolds are orientable, and so their groups are PD+3 -groups. This can be seen alge-
braically, as every such group has a characteristic subgroup H which is a non-split central extension
of a PD+2 -group β by Z. We shall show that an automorphism of such a group H must be orientation-
preserving. (See also [41].)

If φ : G→ H is a homomorphism of PDn-groups such that wG =wHφ, the degree of φ is the induced
homomorphism

degφ : Hn(G;ZwG )→ Hn(H ;ZwH ).

(If wG 6= wHφ then we set degφ = 0.) The absolute value |degφ| is independent of the choice of
generators for these groups.

Lemma 12.1. Let π be a PD3-group with a central subgroup A ∼= Z such that β = π/A is a PD2-group,
and let φ be an automorphism of π such that φ(A)= A. Then either π is orientable and φ is orientation-
preserving, or π+ ∼= Z×β+.

Proof. Let e(ξ) ∈ H 2(β; A) be the characteristic class of the central extension

ξ : 0→ A→ π→ β→ 1.

119
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If β is nonorientable then H 2(β; A)∼=Z/2Z, and so ξ has image 0 in H 2(β+; A)∼=Z. Hence the induced
extension of β+ splits. Since A is central in π it follows that π is nonorientable and π+ ∼= Z×β+.

If β is orientable then so is π . The automorphism φ induces automorphisms η and φ of A and β,
respectively, and ξ = η#φ

∗ξ . Therefore

e(ξ)= (deg η) · e(φ∗ξ)= (deg η) · (degφ) · e(ξ)= (degφ) · e(ξ),

and so either degφ = 1 or e(ξ)= 0. �

Theorem 12.2. Let M be a Nil3-manifold or an S̃L-manifold. Then M is orientable, and every self-
homotopy equivalence of M is orientation-preserving.

Proof. Let G = π1(M). Then G is a PD3-group with a normal subgroup π of finite index such that
ζπ ∼= Z and such that β = π/ζπ is a PD+2 -group, and no such subgroup is a direct product. After
replacing π by the intersection of its images under automorphisms of G, if necessary, we may assume
that π is a characteristic subgroup.

Since π is characteristic, every automorphism θ of G restricts to an automorphism of π . Since π
is not virtually a product, θ |π is orientation-preserving, by Lemma 12.1. Hence it acts trivially on
H 3(π;Z[π ])∼= H 3(G;Z[G]). In particular, G is orientable, and every automorphism of G is orientation-
preserving. �

Necessary and sufficient conditions for an orientable Seifert fibred 3-manifold with infinite π1 to have
an orientation-reversing self-homeomorphism are given in [112].

All S3-manifolds are orientable. Lens spaces of the form L(p, q)with q2
≡−1 mod p have orientation-

reversing self homotopy equivalences. However, no such map also preserves the (Hopf) fibration over
S2. Self homotopy equivalences of the other S3-manifolds are orientation-preserving.

12.2. Wang’s partition

If G is any group, the subgroup E(G) generated by all virtually solvable normal subgroups is elementary
amenable. Hence if G has finite cohomological dimension then E(G) is itself virtually solvable [Hi,
Theorem 1.11].

Lemma 12.3. Let G be a PDn-group. If h(E(G))> n− 1 then E(G)= G.

Proof. Since h(E(G)) 6 cd E(G) 6 n, either cd E(G) = n − 1 or cd E(G) = n. In the first case,
cd E(G)= h(E(G)), so E(G) is a duality group and has a finite K (E(G), 1) complex [93]. A spectral
sequence argument then shows that G/E(G) has two ends. Otherwise [G : E(G)] is finite, by the Strebel
Theorem. In either case G/E(G) is virtually solvable, and so G = E(G). �

If a PDn-group G is virtually of Seifert type and is not virtually polycyclic, it has a normal subgroup H
of finite index such that E(H) is virtually polycyclic and H/E(H) is a PD2-group with χ(H/E(H)) < 0.
Since E(H) is characteristic in H it is normal in G, and so G is itself of Seifert type. There are three
PD4-groups which are virtually Z4, but are not of Seifert type [Hi, Chapter 7.7]. Thus “virtually of Seifert
type” does not imply “of Seifert type” in general.

If G is virtually of Seifert type and virtually polycyclic, it is of Seifert type and virtually nilpotent if n6
3, and is either virtually nilpotent or of Seifert type if n = 4. However, if A ∈ SL(2,Z) has trace > 2 then
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the semidirect product Z2 oA Z is torsion-free and polycyclic of Hirsch length > 3, but is neither virtually
nilpotent nor virtually of Seifert type. With more work it can be shown that there are polycyclic groups
of Hirsch length > 6 which are virtually of Seifert type but are not virtually nilpotent or of Seifert type.

Define ten classes of PDn-groups as follows:

(1) G is atoroidal;

(2) G has a proper JSJ decomposition with at least one atoroidal vertex group;

(3) G has a proper JSJ decomposition with all vertex groups of Seifert type;

(4) (a) G is virtually polycyclic, but not virtually of Seifert type;
(b) G is virtually a product E ×Z2, where E is polycyclic but not virtually nilpotent;
(c) G is virtually polycyclic and virtually of Seifert type but is neither virtually nilpotent nor of

type (4b);

(5) G is virtually a product S× π of a polycyclic group S with h(S) = n− 2 and a surface group π
with χ(π) < 0;

(6) G is of Seifert type, but is neither virtually such a product nor virtually polycyclic;

(7) G is virtually nilpotent, but not virtually abelian;

(8) G is virtually abelian.

These classes are disjoint, and their union contains all PDn-groups G such that G has max-c [94].
The classification is also stable under passage to subgroups of finite index. Classes (4a), (4b), (4c), (7)
and (8) consist of the virtually solvable PDn-groups, and class (4b) is empty if n 6 4, while class (4c)
is empty if n 6 3. (It is occasionally convenient to treat (4)= (4a)∪ (4b)∪ (4c) as a single class. The
classification could be refined further by considering higher-dimensional geometries.)

Every PD3-group has max-c, and we can be more explicit.

(1) G is atoroidal;

(2) G has a proper JSJ decomposition with at least one atoroidal vertex group;

(3)
√

G = 1 and G has a JSJ decomposition with all vertex groups of Seifert type;

(4)
√

G ∼= Z2;

(5)
√

G ∼= Z and G is virtually a product;

(6)
√

G ∼= Z but G is not virtually a product;

(7) G is virtually nilpotent, but not virtually abelian;

(8)
√

G ∼= Z3 (that is, G is virtually abelian).

Class (1) contains the fundamental groups of closed hyperbolic 3-manifolds and class (2) contains
the groups of aspherical closed 3-manifolds with a nontrivial characteristic variety such that at least
one component of the complement is hyperbolic. Class (3) consists of the groups of aspherical graph
manifolds (closed 3-manifolds with a proper JSJ decomposition into Seifert fibred pieces), excepting
Sol-manifolds. Classes (4), (5), (6), (7) and (8) consist of the groups of Sol3-, H2

× E1-, S̃L -, Nil3- and
flat 3-manifolds, respectively, by Theorem 8.10. It is not known whether classes (1) and (2) have any
members which are not 3-manifold groups. These classes correspond to the eight classes of [153].
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Let 0n be the directed graph with vertices the set

V (0n)= {1, 2, 3, 4a, 4b, 4c, 5, 6, 7, 8}

and with an edge (i, j) if and only if i 6= j and for every group H in class ( j) there is a PDn-group G
in class (i) and a homomorphism of nonzero degree from G to H . Wang showed that the corresponding
graph 0 for the fundamental groups of aspherical 3-manifolds has edges (1, n) and (2, n) for all n, (3,m)
for all m > 3, (5, 8) and (6, 7). Moreover, any homomorphism between 3-manifold groups in classes not
connected by an edge in 0 has degree 0. (We have taken into account the Geometrization Theorem of
Perelman and Thurston in stating the results of [153; 154].)

We shall give algebraic arguments for these results, excepting the existence of edges (1, 2), (2, 1) and
(1, 3) and the nonexistence of an edge (3, 2). In verifying these assertions we may pass to subgroups
of finite index whenever convenient. In particular, we may assume that all Poincaré duality groups
considered are orientable, and hence that the edge groups in graph-of-groups splittings (as in cases (2)
and (3)) are also orientable. We may also assume without loss of generality that the graph of groups is
reduced. Then the vertex groups are nonabelian, for if Gv is abelian then {Ge | v ∈ ∂e} has two members,
and the inclusions are isomorphisms. (However, PD3-groups of class (4) are virtually HNN extensions
with base Z2.)

We shall see that when n = 4 the only nontrivial edges emanating from any of the last five vertices
of 04 are (5, 4c), (5, 8) and (6, 7). If n > 4 then (4a), (4b), (4c), (7) and (8) are terminal vertices of 0n ,
but there are also edges (5, 4b), (5, 8), (6, 4c) and (6, 7). (Also, many groups in class (7) are degree-1
quotients of groups in class (5).)

That 0 has edges (1, n) with n > 3 follows, as in [153], from the fact that every closed orientable
manifold has a 2-fold branched cover which is the mapping torus of a pseudo-Anasov diffeomorphism.
The same argument would give an edge (1, 2) if all groups of class (2) were 3-manifold groups. We refer
to [153] for the existence of an edge (2, 1) in the 3-manifold case.

12.3. Homomorphisms with domain a graph of groups

Let (G, T ) be a PD+3 -pair with ζG ∼= Z and T 6=∅. Then G ∼= F(r)oZ, by Theorem 8.8. Hence G has
a presentation 〈x1, . . . xr , t | t xi t−1

= α(xi )〉, for some α ∈Aut(F(r)). Let G̃ = 〈x1, . . . xr , y, t | t xi t−1
=

α(xi ), t y = yt〉 and Ĝ = G̃ ∗Z2 π41, where t and y ∈ G̃ are identified with a meridian and longitude in
the figure-eight knot group π41, respectively. Then (Ĝ, T ) is a PD3-pair, and the natural epimorphism
from Ĝ to G ∼= Ĝ/〈〈(π41)

′
〉〉 induces a degree-1 map of pairs. It follows easily that 0 has an edge (2, 3).

If G is a PD3-group in class (4) we may assume that G̃∼=Z2
×θ Z, where θ ∈SL(2,Z) has infinite order.

The automorphism θ lifts to an automorphism 2 of the free group F(x, y), such that 2([x, y])= [x, y],
by a theorem of Nielsen [MKS, Section 3.5]. Let

(G1,Z2)= (F(a, b)×Z, 〈[a, b]〉×Z)

and
(G2,Z2)= (F(x, y)×2 Z, 〈[x, y]〉×Z).

Then G1 ∗Z2 G2 is a group in class (2) which maps onto G̃ via a degree-1 homomorphism. Hence 0 has
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an edge (2, 4). (We shall see below that 0 has an edge (3, 4), so composition gives an edge (2, 4), but
this construction is simpler).

The argument excluding (3, 1) as an edge applies in all dimensions.

Theorem 12.4. Let G and H be PDn-groups such that G has a proper JSJ decomposition with all vertex
groups of Seifert type and such that H is atoroidal. If φ : G→ H is a homomorphism, then degφ = 0.

Proof. We may assume that G is orientable. Let (G, 0) be the graph of groups corresponding to the JSJ
decomposition of G. Let se : Ge→ Go(e) and te : Ge→ G t (e) be the canonical inclusions of the edge
group Ge into the adjacent vertex groups. Let G be the graph of groups with underlying graph 0 and
with Gv = φ(Gv) and Ge = φ(Ge), for all v ∈ V (0) and e ∈ E(0). Then φ factors as φ = φρ, where
ρ : G→ G = π(G) and φ : G→ H .

Let Ev = E(Gv) and Kv = Ker(φ|Ev ), for all v ∈ V (0). Then cd Ev = cd Gv − 1, and so Gv/Ev
is virtually free [Bi, Theorem 8.4]. Suppose that Kv = 1. Then cdφ(Gv) > n− 2. If cdφ(Gv) = n
then φ(Gv) is a PDn-group, and so H 2(φ(Gv)/φ(Ev);Z)∼= Z, by an LHSSS corner argument. Hence
φ(Gv)/φ(Ev) is virtually a PD2-group, by the Bowditch Theorem. Similarly, if cdφ(Gv)= n− 1 then
φ(Gv)/φ(Ev) is virtually free. In either case, φ(Gv)/φ(Ev) would contain an element of infinite order.
This would contradict H being atoroidal. Hence cdφ(Gv)= n−2. Therefore, if Kv = 1 for all v ∈ V (0)
then cd G 6 n− 1, and so degφ = 0.

Suppose that Kv 6= 1. Let G∗v be a normal subgroup of finite index in Gv which contains Ev and is
such that G∗v/Ev is a free group. Conjugation by coset representatives for Gv/G∗v determines lifts of
the embeddings se and te to embeddings of se(Ge)∩G∗v and te(Ge)∩G∗v in G∗v. Let T ∗v be the set of
G∗v-conjugacy classes of such lifts. Then (G∗v, T ∗v ) is a PD+n -pair, and the inclusion of G∗v into Gv has
degree [Gv : G∗v] 6= 0 (by the relative version of Lemma 8.5).

Let Ĝv = G∗v/Kv and let T̂v be the corresponding set of embeddings of quotients of members of T ∗v .
Since Ev/Kv is isomorphic to φ(Ev), it is torsion-free, and so is a PDm-group for some m< h(Ev)= n−2.
Then (Ĝv, T̂v) is a PDm+2-pair. Let T v = {Ge | s(e)= v}

∐
{Ge | t (e)= v}, for each v ∈ V (0).

Now ρ|G∗v factors through (Ĝv, T̂v), and so the homomorphism from Hn(G∗v, T ∗v ;Z) to Hn(Gv, T v;Z)
induced by ρ|G∗v is 0. This homomorphism is the top row of a commuting square whose bottom row is
Hn(ρ;Z). Since the inclusion of G∗v into G induces an isomorphism Hn(G∗v, T ∗v ;Z)→ Hn(G;Z) [8], it
follows that Hn(ρ;Z)= 0. Hence we again have degφ = 0. �

Corollary 12.4.1. There is no edge (3, 1) in 0n . �

In the 3-manifold case it follows that there is no edge (3,2). Can the above argument be adapted to
show this is true in general?

Let G be a torsion-free virtually polycyclic group of Hirsch length n > 3. Then G has a subgroup
G̃ of finite index which is an extension of a free abelian group Zr by a nilpotent normal subgroup N
[Ro, 15.1.6]. If r = 1 then G̃ ∼= N oα Z, for some α ∈ Aut(N ). Since N is nilpotent and h(N ) > 2,
there is a subgroup P < N containing N ′ and such that N/P ∼= Z2. Let F = 〈w, x, y, z | w = xyz〉
and F̂ = 〈F, t | twt−1

= z〉 be the fundamental groups of the quadruply punctured sphere and the twice
punctured torus. Let θ be the automorphism of F̂ defined by θ( f )= f for all f ∈ F and θ(t)= zt , and
let H = F̂ oθ Z. (Thus H is the fundamental group of the mapping torus of the Dehn twist corresponding
to θ .) Let J ∼= F ×Z be the subgroup of H generated by F and s, and let J f ∼= Z2 be the subgroup of J
generated by { f, s}, for all f ∈ F . Then H is also the HNN extension with base H , associated subgroups
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Jw and Jz , and stable letter t , since tst−1
= z−1s and twt−1

= z. Moreover, (J, {Jw, Jx , Jy, Jz}) is a PD3-
pair of Seifert type, while (H, {Jx , Jy}) is a PD3-pair with

√
H = 1. Let γ : H → H/〈〈t, z〉〉 ∼= Z2 be the

canonical epimorphism. Then γ induces a degree-1 homomorphism from (H, {Jx , Jy}) to (Z2, {Z2,Z2
}).

In particular, γ induces isomorphisms Jx ∼= N and Jy ∼= N . Let M be the extension of H by P obtained by
pullback over γ , and let Mx and My be the preimages in M of Jx and Jy , respectively. Let µx : Mx ∼= N
and µy : My ∼= N be the isomorphisms determined by θ . The HNN extension G∗ with base M , associated
subgroups Mx and My and stable letter u acting via umu−1

=µ−1
y αµx(m) for all m ∈ Mx is a PDn-group

in class (3), and the projection onto G∗/〈〈x, y〉〉 ∼= G̃ has degree 1. Thus 0n has an edge (3,4a). If r > 2
then G̃ is of Seifert type, and we shall treat this case in the next paragraph.

Let H be an extension of a PD+2 -group π of genus g by a torsion-free virtually polycyclic group E of
Hirsch length n− 2. Let F be the free group with basis {ai , bi | 16 i 6 g}. Then π ∼= F

/〈〈∏
[ai , bi ]

〉〉
and

H ∼= Eoα F
/〈〈∏

w−1∏
[ai , bi ]

〉〉
, for some homomorphism α : F→Aut(E) and element w ∈ E such that

α
(∏
[ai , bi ]

)
(e)=wew−1. Let H1 = E oα F and let ∂H1 be the subgroup generated by E and

∏
[ai , bi ].

Then ∂H1 ∼= E×Z, where the second factor is generated by w−1∏
[ai , bi ]. Let H2 = E× F(r, s) and let

∂H2 = E ×Z, where the infinite cyclic factor is generated by [r, s]. Then (H1, ∂H1) and (H2, ∂H2) are
PDn-pairs, with isomorphic boundary terms. Define an isomorphism ψ : ∂H1→ ∂H2 by ψ(e)= e[r, s]
for e ∈ E and ψ

(∏
[ai , bi ]

)
= [r, s]w. If we identify the boundaries via e 7→ e for all e ∈ E and

w−1∏
[ai , bi ] maps to [r, s], we obtain a PDn-group G with a nontrivial JSJ decomposition of Seifert

type, but which is not itself of Seifert type. The canonical epimorphism from G to G/〈〈r, s〉〉 ∼= H has
degree 1. Since every PDn-group of Seifert type has such a subgroup H of finite index, it follows that
0n has edges (3,4b), (3,4c), (3,5) and (3,6). When n = 3 this construction can be adapted to show that
every group in class (5) or (6) is the degree-1 quotient of a group in class (3).

12.4. Homomorphisms with solvable or Seifert domain

If E(G) 6= G then h(E(G)) 6 n − 2, by Lemma 12.3. If n = 3 and E(G) 6= G then E(G) =
√

G,
so that E(G) ∼= Z or E(G) ∼= 1, by Theorem 8.10. If n = 4 and h(E(G)) = 2 then E(G) ∼= Z2 or
E(G)∼= Kb, and G/E(G) is virtually a PD2-group [Hi, Theorems 9.1 and 9.2]. To what extent can this
be generalized? If E(G) is of type FP and h(E(G))= n− 2 then the LHS spectral sequence collapses
to give H n−2(E(G);Z[E(G)])∼= H 2(G/E(G);Z[G/E(G)])∼= Z, so E(G) is virtually polycyclic and
G/E(G) is virtually a PD2-group, by the Bowditch Theorem. If G/E(G) is virtually a PD2-group then
h(E(G))= hd E(G)= n− 2; must E(G) be virtually polycyclic?

Lemma 12.5. Let G and H be PDn-groups and φ : G→ H a homomorphism such that degφ 6= 0. If K
is a virtually polycyclic normal subgroup of G and vcd(G/K ) is finite, then φ|K is a monomorphism and
φ(K )6 E(H). Hence if G is virtually polycyclic then so is H, and G is virtually abelian (respectively,
nilpotent) if and only if H is.

Proof. The image φ(K ) is torsion-free and virtually polycyclic, since H is torsion-free and K is virtually
polycyclic. If Ker(φ|K ) 6= 1 then φ factors through G = G/Ker(φ|K ), and

cd G = h(φ(K ))+ vcd(G/K ) < n = cd G = h(K )+ vcd(G/K ),

since K and φ(K ) are FP and vcd(G/K ) is finite [Bi, Theorem 5.6]. Thus φ is a monomorphism if
degφ 6= 0. Since φ(E(G)) is a characteristic subgroup of G and φ(G) has finite index in H , it follows
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easily that φ(E(G))6 E(H). In particular, φ(K )6 E(H). The final assertion is clear. �

Corollary 12.5.1. There are no edges emanating from the vertices (4a), (4b), (4c), (7) or (8) in 0n . �

Lemma 12.6. Let G and H be PDn-groups and φ : G→ H a homomorphism such that degφ 6= 0, and
suppose that G/E(G) is virtually a PD2-group.

(1) If G is virtually a product of a solvable group with a PD2-group, then so is H.

(2) G is virtually such a product if φ|E(G) is a monomorphism and H is either virtually abelian or
virtually a product of a solvable group with a nonsolvable PD2-group.

Proof. Let G̃ 6 G be a subgroup of finite index in G such that φ(G̃) is normal in H and π = G̃/E(G̃)
is a PD2-group. Note that E(G/E(G))= 1, so π , G̃ and G are not solvable.

If G̃ ∼= E(G̃)× π , where π is a PD2-group, then E(G) is a PDn−2-group, and hence is virtually
polycyclic [Bi, Theorems 9.11 and 9.23]. Hence φ|E(G) is a monomorphism, by Lemma 12.5. As
φ(G̃) ∼= E(G)× φ(π) has finite index in H , the latter group is also virtually a product, and φ(π) is a
PD2-group.

If H is virtually abelian, then on passing to subgroups of finite index we may assume that H̃ is abelian,
hence free of finite rank, and that φ(E(G̃)) is a direct factor of H̃ . If H has a subgroup H̃ ∼= S× σ of
finite index, with S solvable and σ a nonsolvable PD2-group, then S = E(H̃), S is virtually polycyclic
and h(S)= n−2. Moreover φ(E(G̃))6 S. In either case, composition of φ with projection onto a factor
splits the inclusion of E(G̃)∩φ−1(H̃) into φ−1(H̃), and so G is virtually such a product. �

If a PDn-group is a nontrivial direct product, its factors are PDm-groups for suitable m < n.

Corollary 12.6.1. If n = 3 or 4 then (5, 4c), (5, 8) and (6, 7) are the only edges emanating from the
vertices (5) and (6) in 0n .

Proof. Let G and H be PDn-groups such that G/E(G) is virtually a PD2-group, and let φ : G→ H be
homomorphism such that degφ 6= 0. Then E(H) 6= 1, by Lemma 12.5, so H is not in classes (1)–(3).

If n = 3 then E(G)∼= Z and so φ(G) is virtually nilpotent. Hence H is virtually nilpotent. If n = 4
then |h(E(G))| = 2, so h(E(G))∼= Z2 or Kb. Therefore, if H is not virtually nilpotent, it is of Seifert
type and not virtually a product with Z2. The other exclusions follow easily from Lemma 12.6. �

Groups in classes (7) and (8) are extensions of flat 2-orbifold groups by an infinite cyclic normal
subgroup. Given such a group G we may construct a group of type (6) or (5), respectively, and a degree-
1 homomorphism to G by pulling back the extension over an epimorphism corresponding to a degree-1
map from a hyperbolic 2-orbifold. (This construction could be paraphrased in purely algebraic terms,
but at somewhat greater length.)

If n > 4 then (4a), (4b), (4c), (7) and (8) are terminal vertices of 0n , but there are also edges (5,4b),
(5,8), (6,4c) and (6,7), and many groups in class (7) are degree-1 quotients of groups in class (5).

12.5. Endomorphisms and subgroups of finite index

A group G is hopfian if surjective endomorphisms of G are automorphisms, and is cohopfian if injective
endomorphisms are automorphisms. The volume condition holds for G if whenever H1 and H2 are
isomorphic subgroups of finite index, then [G : H1] = [G : H2]. If G is a PDn-group and satisfies the
volume condition, then G is cohopfian, since injective endomorphisms must have image of finite index,
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by the Strebel Theorem. On the other hand, finitely generated nonabelian free groups satisfy the volume
condition but are not cohopfian.

If π = Z2 or π =Kb then π is hopfian, by Lemma 12.5. The hopficity of the other PD2-groups follows
from the next lemma, which is based on a variation of the argument given for [29, Theorem A].

Lemma 12.7. Let π, σ be PD2-groups with χ(σ) 6 χ(π) < 0, and let θ : π → σ be a homomorphism.
The following conditions are equivalent:

(1) H1(θ; F2) is an epimorphism.

(2) θ∗wσ = wπ and deg θ 6= 0.

(3) θ is an isomorphism.

Proof. If H1(θ; F2) is an epimorphism it is an isomorphism, since χ(π)= χ(σ), and so θ∗wσ = wπ , by
the nondegeneracy of Poincaré duality and the Wu relation x2

= x ∪wG , for x ∈ H 1(G; F2) and G = π
or G = σ . In particular, σ ∼= π . Hence θ(π) is not a free group, so [σ : θ(π)] < ∞ and θ(π) is a
PD2-group. Since β1(θ(π); F2)6 β1(π; F2)= β1(σ ; F2) and χ(θ(π))= [σ : θ(π)]χ(σ) < 0, it follows
that [σ : θ(π)] = 1, so θ is onto.

If θ∗wσ = wπ and deg θ 6= 0, then σ ∼= π , [σ : θ(π)]<∞ and θ is onto, as before.
We shall henceforth fix an isomorphism σ ∼= π and view θ as an endomorphism of π . If θ is onto then

H1(θ;Z) is an isomorphism, since H1(π;Z)= π/π
′ is finitely generated. The induced homomorphism

θ ′ : π ′ → π ′ is also onto, and induces an onto endomorphism of π ′/π ′′. The latter group is finitely
generated as a module over the noetherian ring Z[π/π ′]. Since the kernel Kn of the endomorphism
induced by θn is a normal subgroup of π/π ′′, it is a Z[π/π ′]-submodule. The increasing sequence of
submodules Kn must stabilize, since π ′/π ′′ is noetherian. Hence Kn = 0 for all n and so H1(θ

′
;Z) is also

an isomorphism. Now cdπ ′ 6 1 and so π ′ is free. Hence the endomorphisms induced on the nilpotent
quotients π ′/π ′

[n] by θ are isomorphisms for all n > 1 [132]. Hence Ker(θ)6
⋂

n>1 π
′

[n]. Since π ′ is free
it is residually a finite p-group [Ro, 6.1.9]. Therefore Ker(θ)= Ker(θ ′)= 1, so θ is an automorphism.
Thus (1) and (2) each imply (3); the converse is clear. �

The fundamental groups of 3-manifolds are residually finite, and thus hopfian [AFW]. Hence degree-1
self maps of such groups are automorphisms.

The cohopficity of surface groups other than Z2 or Kb is an easy consequence of the multiplicativity
of the Euler characteristic in finite extensions. This extends to all hyperbolic 2-orbifold groups.

Lemma 12.8. Let B,C be closed 2-orbifolds, with orbifold fundamental groups ρ = πorb(B) and σ =
πorb(C). If χ(σ)6 χ(ρ) < 0 and θ : ρ→ σ is a homomorphism such that [σ : θ(ρ)]<∞, then θ is an
isomorphism. In particular, ρ is both cohopfian and hopfian.

Proof. We may assume that σ is a PD2-group, after passing to finite covers, if necessary. Let κ be the
normal subgroup of ρ generated by its elements of finite order. The group ρ̄ = ρ/κ is the fundamental
group of the surface obtained by replacing neighbourhoods of the singular points with discs. (We do this
also for annular regions bounded by reflector curves.) Hence χ(ρ)6 χ(ρ̄), with equality only if κ = 1.
Since σ is torsion-free, θ factors through ρ̄, and χ(ρ̄) < 0 since χ(σ) < 0 and [σ : θ(ρ)]<∞. Clearly
χ(θ(ρ))6 χ(σ)6 χ(ρ)6 χ(ρ̄), and so ρ̄ ∼= θ(ρ), by Lemma 12.7. Hence χ(θ(ρ))= χ(σ)= χ(ρ)=
χ(ρ̄), so ρ is a PD2-group and θ is an isomorphism. The final assertion is clear. �
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Lemmas 12.5 and 12.7 together imply that virtually polycyclic groups and PDn-groups of Seifert type
are hopfian. On the other hand, it is easy to see that many groups in classes (4), (5), (7) and (8) are not
cohopfian.

Theorem 12.9. Let G be a PDn-group which is either of Seifert type, with hyperbolic base 2-orbifold, or
is virtually polycyclic. Then an endomorphism θ : G→ G such that deg θ 6= 0 is a monomorphism.

Proof. We may assume that G is of Seifert type with hyperbolic base 2-orbifold and that θ |E(G) is
a monomorphism, by Lemma 12.5. The quotient G = G/E(G) is virtually a PD2-group and has no
nontrivial finite normal subgroup, and the induced homomorphism θ̄ : G→ G has image of finite index.
Therefore θ̄ is an automorphism, by Lemma 12.8, and so θ is a monomorphism. �

Corollary 12.9.1. An endomorphism θ is an automorphism if and only if |deg θ | = 1.

Proof. If |deg θ | = 1 then θ is onto, by Lemma 8.5, and so is an automorphism, by the theorem. The
other implication is clear. �

Every sequence of degree-1 maps between geometric 3-manifolds eventually becomes a sequence of
homotopy equivalences [120]. This remains true for sequences of homomorphisms between PDn-groups
which contain a term from one of the classes (4)–(8), by Lemmas 12.5 and 12.6 and Corollary 12.9.1,
and the fact that Euler characteristics of H2-orbifolds are bounded above (by − 1

42 ). Rong handles the
other cases in dimension 3 using a measure of complexity based on the Gromov norm and the number
of Seifert parts.

Wang showed that every endomorphism of nonzero degree of the group of an aspherical 3-manifold
is a monomorphism, and established the cohopficity of such groups in classes (1), (2), (3) and (6). He
uses the Gromov norm to handle classes (1) and (2); class (3) is the most demanding [154]. We shall
verify only that PD3-groups in class (6) are cohopfian.

Theorem 12.10. Let G be a PD3-group such that
√

G ∼= Z and which is not virtually a product. Then G
is cohopfian.

Proof. Let φ : G → G be a monomorphism and let G = G/
√

G. Then the induced endomorphism
φ : G→ G is an automorphism, by Lemma 12.8. The quotient G has a normal subgroup H of finite
index which is a PD+2 -group such that χ(H) < 0, and such that

√
G is a central subgroup of the preimage

H 6 G. Since the automorphism φ permutes the finitely many (torsion-free) subgroups of G of index
[G : H ], there is an n > 1 such that φn(H) = H . Hence φn(H) 6 H . Such extensions are classified
by elements e ∈ H 2(H ;Z) ∼= Z, and it is not hard to see that e = [

√
G : φn(

√
G)] e. Hence either

√
G = φ(

√
G), so φ is an automorphism, or e= 0, in which case H is a product and G is in class (5). �

The Euler class e is used in a similar way in [51; 154; 155]. It is easy to see that no PD3-group in
class (4) is cohopfian, and a similar result is proven in [51] for classes (5), (7) and (8). (See also [GW]
and [50] for cohopficity of groups of 3-manifolds, with and without boundary). In higher dimensions,
it is not clear whether there are any cohopfian PDn groups in classes (4)–(8). (Central extensions of
PD2-groups by free abelian groups of rank > 1 are never cohopfian, and it is probable that no virtually
polycyclic group is cohopfian.)

Groups of aspherical geometric 3-manifolds in classes (1), (2), (3) and (6) satisfy the volume condition
[157]. Again, this may be verified using the Gromov norm for classes (1) and (2), and class (3) presents
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the most difficulty. (Class (6) can be handled as in Theorem 12.10.) Since PD3-groups in the other
classes are not cohopfian they do not satisfy the volume condition.

All PD3-groups in any one of the classes (5), (6), (7) or (8) are commensurable, while the com-
mensurability classes of groups of type (4) correspond to the real quadratic extensions of Q. The
commensurability classification of hyperbolic 3-manifolds and 3-manifolds with nontrivial geometric
decompositions (corresponding to classes (1), (2) and (3)) is considerably more delicate. See [111; 113].



Appendix: Some open questions

In the following sections we shall present a number of questions on subgroups of PD3-groups, motivated
by results conjectured or already established geometrically for 3-manifold groups. The underlying ques-
tion is whether every PD3-group G is the fundamental group of some aspherical closed 3-manifold. The
following questions represent possibly simpler consequences. (If we assume G is coherent and has a
finite K (G, 1)-complex, as is the case for all 3-manifold groups, a number of these questions have clear
answers.)

The corresponding questions for subgroups of open PD3-groups should be considered with these. Any
group with an Eilenberg–Mac Lane complex which is a finite 2-complex is the fundamental group of
a compact aspherical 4-manifold with boundary, obtained by attaching 1- and 2-handles to D4. (Con-
jecturally such groups are exactly the finitely presentable groups of cohomological dimension 2). On
applying the reflection group trick of Davis to the boundary, we see that each such group embeds in a
PD4-group [24]. Thus the case considered here is critical.

We assume throughout that G is an orientable PD3-group.

A.1. The group

If M is a closed 3-manifold then π = π1(M) has a finite presentation of deficiency 0. Moreover, M has
a Heegaard decomposition as the union of two cubes with handles along a closed surface, and so π has
dual presentations, in the sense of [146]. If π is torsion-free then it is FF, i.e., the augmentation module
Z has a finite free Z[π ]-resolution, while K̃0(Z[π ])=Wh(π)= 0 and M̃ ∼=R3, so π is 1-connected at∞.
If M is aspherical then β(2)1 (π)= 0, and so all the L2 Betti numbers of π1(M) are 0 [Lu, Theorem 4.1].

If G is a PD3-group then def(G)6 0, since β1(G; F2)= β2(G; F2). The augmentation module Z has
a finite projective Z[G]-resolution, so G is almost finitely presentable (FP2), and has a 3-dimensional
K (G, 1) complex. The K (G, 1)-complex is finitely dominated, and hence a Poincaré complex, if and
only if G is finitely presentable. It is homotopy equivalent to a finite complex if and only if G is also of
type FF.

For each g ∈ G with infinite conjugacy class, we have [G : CG(〈g〉)] =∞, so cd CG(〈g〉)6 2, by the
Strebel Theorem. Hence CG(〈g〉)/〈g〉 is locally virtually free, by [Bi, Theorem 8.4]. Therefore G must
satisfy the Strong Bass Conjecture [30].

An FP2 group S with H 2(S;Z[S])∼= Z is virtually a PD2-group [15].

(1) Is G finitely presentable?

(2) If G is finitely presentable, does it have deficiency 0?

(3) Is G of type FF?

129
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(4) Is K̃0(Z[G])= 0? Is Wh(G)= 0?

(5) Is G 1-connected at∞?

(6) Is K (G, 1) homotopy equivalent to a finite complex?

(7) Is β(2)1 (G)= 0?

(8) If a group S is FP3 and H 3(S;Z[S])∼= Z, is S virtually a PD3-group?

If (8) is true, then centres of 2-knot groups are finitely generated.

A.2. Subgroups in general

Since G has cohomological dimension 3, it has no nontrivial finite subgroups. Any nontrivial element g
generates an infinite cyclic subgroup 〈g〉; it is not known whether there need be any other proper sub-
groups. If a subgroup H of G has finite index then it is also a PD3-group. The cases when [G : H ] is
infinite are of more interest, and then either cd H = 2 or H is free, by the Strebel Theorem. If there is a
finitely generated (respectively, FP2) subgroup of cohomological dimension 2, there is one such which
has one end (i.e., which is indecomposable with respect to free product). A solvable subgroup S of Hirsch
length h(S) > 2 must be polycyclic, since either [G : S] is finite or cd S = 2 = h(S), so S ∼= BS(1,m)
for some m 6= 0 [48], and no nontrivial Baumslag–Solitar relation holds in G. (In particular, abelian
subgroups of rank > 1 are finitely generated.)

Three-manifold groups are coherent: finitely generated subgroups are finitely presentable. In fact,
something stronger is true: if H is a finitely generated subgroup, it is the fundamental group of a compact
3-manifold (possibly with boundary), by Scott’s Core Theorem [123]. If π is the fundamental group of
a graph manifold then the group ring Z[π ] is coherent as a ring. (The corresponding result for lattices
in PSL(2,C) is apparently not known.)

If G is a PD3-group with a one-ended FP2 subgroup H , then H is the ambient group of a PD3-pair of
groups, by the Algebraic Core Theorem. Hence χ(H)6 0, and so H cannot be a product F × F with
F a noncyclic free group [101]. As such groups F × F have finitely generated subgroups which are not
finitely related, this may be regarded as weak evidence for coherence. (On the other hand, every surface
group σ with χ(σ) < 0 has such a subgroup F , and so F × F is a subgroup of σ × σ . Thus PDn-groups
with n > 4 need not be coherent.)

Let M be an aspherical closed orientable 3-manifold. Then M is Haken, Seifert fibred or hyperbolic,
by the Geometrization Theorem. With [79] it follows that if π1(M) is infinite then it has a PD2-subgroup.
A transversality argument implies that every element of H2(M;Z)∼= H 1(M;Z)∼= [M; S1

] is represented
by an embedded submanifold. If M is aspherical, it follows that H2(π1(M);Z) is generated by elements
represented by surface subgroups of π1(M).

If M is a closed aspherical 3-manifold which is not a graph manifold then M has a finite covering
space which fibres over the circle [1; 117]. Indecomposable finitely generated subgroups of infinite index
in such groups are (finitely presentable) virtually semidirect products F oZ, with F a free group. Every
such group H is an HNN extension with finitely generated free base, and one of the associated subgroups
a free factor of the base [38]. In particular, H is finitely presentable and has a finite 2-dimensional
K (H, 1)-complex.
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If G/G ′ is infinite then G is an HNN extension with finitely generated base and associated subgroups,
by the Bieri–Strebel Theorem, and so has a finitely generated subgroup of cohomological dimension 2.
If, moreover, G is almost coherent then it has a PD2-subgroup, by the Algebraic Core Theorem.

(9) Is there a noncyclic proper subgroup? If so, is there one of cohomological dimension 2? and finitely
generated?

(10) Is there a subgroup which is a surface group?

(11) Is every element of H2(G;Z) represented by a PD2-subgroup?

(12) Is G (almost) coherent?

(13) Is Z[G] coherent as a ring?

(14) Does every (finitely presentable) subgroup of cohomological dimension 2 have a (finite) 2-dimensional
Eilenberg–Mac Lane complex?

(15) Let H be a finitely generated subgroup with one end and of infinite index in G. Does H have infinite
abelianization? Does H contain a surface group?

(16) Is every indecomposable finitely generated subgroup of infinite index in G virtually a semidirect
product F oZ, with F free?

A.3. Normal subgroups

If N is an FP2 ascendant subgroup of G and cd N = 2, then N is a PD2-group and G is the fundamental
group of a 3-manifold finitely covered by a surface bundle. If cd N = 1 then N ∼= Z, and either G is
polycyclic, or N is normal in G and G is the fundamental group of a Seifert fibred 3-manifold. (See
Chapters 8 and 9.) It is easy to find examples among normal subgroups of 3-manifold groups to show
that finite generation of N is necessary for these results.

If N is finitely generated and normal and if [G : N ] = ∞, then E(G/N ) = H 1(G/N ;Z[G/N ]) is
isomorphic to H 1(G;Z[G/N ]), and hence also to H2(G;Z[G/N ])∼= H2(N ;Z), by Poincaré duality. If
G/N has two ends, then after passing to a subgroup of finite index, we may assume that G/N ∼= Z. It
then follows from the PD Extension Theorem that N is again a PD2-group [Hi, Theorem 1.19].

(17) Is there a simple PD3-group?

(18) Is vβ(G) > 0?

(19) Must a finitely generated normal subgroup N be finitely presentable?

(20) Let U be an FP2 subgroup such that CoreG(U )=
⋂

g∈G gUg−1 is not finitely generated. Is U com-
mensurable with a subgroup V such that [G : NG(V )]<∞? Is this at least so if U is indecomposable
and G is U -residually finite?

(21) If G ′ is free, is G a semidirect product K oZ with K a PD2-group?

A.4. Centralizers, normalizers and commensurators

Every strictly increasing sequence of centralizers C0 < C1 < · · ·< Cn = G in a PD3-group G has length
n at most 4. If G has an abelian subgroup A which is not finitely generated, then CG(A) is abelian, and
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1 < CG(A) < G is a maximal sequence of centralizers. (On the other hand, the chain of centralizers
CB(x2k

) with k > 0 in B = BS(2, 3)= 〈t, x | t x2t−1
= x3
〉 is infinite, and hence the PD4-group obtained

from B by the Davis construction does not have max-c [97].)
If h ∈ G, then CG(h) is finitely generated if and only if h is not infinitely divisible. An element g

is a root of h if h = gn for some n. All roots of h are in CG(h). If every abelian subgroup of G is
finitely generated then CG(h) is finitely generated, for all h ∈ G. It then follows that every centralizer is
either Z, finitely presentable and of cohomological dimension 2 or of finite index in G. (Applying the
Davis construction to BS(1, 2)= Z∗2 gives a PD4-group with an abelian subgroup which is not finitely
generated [108].)

If x is a nontrivial element of G then [NG(〈x〉) : CG(x)]6 2 (since 〈x〉 ∼= Z). If H is an FP2 subgroup
which is a nontrivial free product but is not free, then [NG(H) : H ]<∞ and CG(H)= 1, by Theorem
9.7. If F is a finitely generated nonabelian free subgroup of G, then NG(F) is finitely generated and
NG(F)/F is finite or virtually Z, by Theorem 9.8.

If G has a subgroup H which is F P2 and has one end with χ(H)= 0 (respectively, χ(H) < 0), then
either H is commensurable with its own normalizer in G or G is virtually the group of a surface bundle,
by Corollary 9.12.1. Either [CommG(H) : H ] <∞ or H is commensurable with a subgroup K such
that [G : NG(K )]<∞. In the later case H is a PD2-group and [G : CommG(H)]<∞.

If x 6= 1 then CommG(〈x〉) =
⋃

n≥1 NG(〈xn!
〉), since no nontrivial Baumslag–Solitar relation holds

in G. Since the chain of centralizers CG(〈xn!
〉) is increasing and [NG(〈xk

〉) : CG(〈xk
〉)]6 2 for any k, it

follows that CommG(〈x〉)= NG(〈xn!
〉) for some n > 1.

(22) Is every abelian subgroup finitely generated?

(23) If G is not virtually abelian and H is an FP2 subgroup such that NG(H)= H , is [CommG(H) : H ]
finite?

(24) Is there a PD3-group G with a finitely generated subgroup U such that [G :U ] =∞, NG(U )=U
and CoreG(U )=

⋂
g∈G gUg−1

6= 1?

A.5. The derived series and perfect subgroups

Let G(ω)
=
⋂

G(n) be the intersection of the terms of the derived series for G. If G(ω)
= G(n) for some

finite n then n 6 3, and either G/G(ω) is a finite solvable group with cohomological period dividing 4
(and G(ω) is a perfect PD3-group), or it has two ends and is Z, Z⊕Z/2Z or D∞, or it has one end and
is a solvable PD3-group. There is a similar result for the lower central series. If G is orientable and
G[ω] = G[n] for some finite n, then n 6 3, and G/G[ω] is finite, Z or a nilpotent PD3-group. (See Chapter
11.) If G/G(ω) is infinite and vβ(G)= 0, then G/G(ω) is a finitely generated residually finite-solvable
group with one or infinitely many ends, and vβ(G; p)=∞ for some prime p.

Let M be the (aspherical) 3-manifold obtained by 0-framed surgery on a nontrivial knot K with
Alexander polynomial 1K =̇1, and let G = π1(M). Then G ′ is a perfect normal subgroup which is not
finitely generated. (In this case G[ω] = G(ω)

= G ′, and G/G(ω) ∼= Z.) Replacing a suitable solid torus in
R P3 ] R P3 by the exterior of such a knot K gives an example with G/G(ω) ∼= D∞.

Let κ be a perfect normal subgroup of the fundamental group π of a PD3-complex X . Then ρ = π/κ
is FP2, since π is FP2 and H1(κ;Z) = 0. The arguments of [22] give ρ ∼= (∗r

i=1 Gi ) ∗ V , where each
factor Gi has one end and V is virtually free. Moreover, if ρ is infinite and has a nontrivial finite normal
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subgroup then ρ has two ends. (However, the further analysis of [68] does not apply, since there is no
analogue of the Splitting Theorem of Turaev.) We also have H2(κ;Z)∼= H 1(ρ;Z[ρ]) as an abelian group.
In particular, if κ is acyclic then ρ has one end.

The intersection P =
⋂

G(α) of the terms of the transfinite derived series for G is the maximal perfect
subgroup of G, and is normal in G. The quotient G/P is FP2. If P 6= 1 and [G : P] is infinite then
cd P = 2, but P cannot be FP2, for otherwise it would be a surface group, by Theorem 8.9. Note that
P ⊆ G(ω), and if cd P = 2 then cd G(ω)

= 2 also. If [G : P] is infinite and ζG 6= 1 then P = 1.
If G is a PD3-group and H is a nontrivial FP2 subgroup such that H 1(H ;Z)= 0, then [G : H ] is finite.

(For if [G : H ] =∞ and J is an indecomposable factor of H , then J would be the ambient group of a
PD3-pair of groups, by the Algebraic Core Theorem. But then χ(J ) 6 0 and so H 1(H ;Z) 6= 0.) See
[74] for 3-manifold groups.

(25) Can a nontrivial finitely generated normal subgroup of infinite index be perfect? acyclic?

(26) If H is a finitely generated residually solvable group with infinitely many ends, is vβ(H) > 0?

(27) If P = 1, is G residually solvable (i.e., is G(ω)
= 1 also)?

A.6. The Tits alternative

Let N be the maximal normal restrained subgroup of G. Then N contains the maximal elementary
amenable normal subgroup of G. If N is nontrivial then either N ∼= Z, cd N = 2 or N = G. If N is
abelian then N 6

√
G. If cd N = 2 then N cannot be FP2, for otherwise it would be a PD2-group and G

would be virtually the group of a surface bundle, by Theorem 8.9. Since N is restrained this would imply
that G is polycyclic, and so N = G. Similarly, if N = G and β1(G)> 2 then there is an epimorphism
φ : G→ Z with finitely generated kernel [11]. Hence Ker(φ) is a surface group, and so G is polycyclic.
If G is almost coherent and N is neither G nor 1, then N ∼= Z.

If G is an almost coherent PD3-group which is not virtually properly locally cyclic, then every finitely
generated subgroup of G satisfies the Tits alternative. (See Chapter 11.) Solvable subgroups are abelian
or polycyclic.

(28) Is N the maximal elementary amenable normal subgroup?

(29) If H is a finitely generated subgroup which has no nonabelian free subgroup, must it be polycyclic?

(30) If G has subexponential growth, is it virtually nilpotent?

(31) Is G either solvable or large?

A.7. Atoroidal groups

Two-generator subgroups of atoroidal almost coherent PD3-groups are either free or of finite index, by
[5] together with the Algebraic Core Theorem of [81]. 3-Manifolds with atoroidal fundamental group are
hyperbolic, by the Geometrization Theorem. Every closed hyperbolic 3-manifold has a finite covering
space which fibres over the circle [1; 117].

If G is atoroidal and acts geometrically on a locally compact CAT(0) space, then it is Gromov hyper-
bolic [82]. It then has boundary S2 [7].

(32) Is every atoroidal PD3-group Gromov hyperbolic?
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(33) Does every atoroidal PD3-group have a boundary as in [6]?

(34) The Cannon Conjecture: Is every Gromov hyperbolic PD3-group isomorphic to a lattice in PSL(2,C)?

(35) Does every atoroidal PD3-group have a nontrivial finitely generated subnormal subgroup of infinite
index?

A.8. Splitting

The central role played by incompressible surfaces in the geometric study of Haken 3-manifolds suggests
strongly the importance of splitting theorems for PD3-groups. This issue was raised in [142], the first
paper on PD3-groups, and considered in detail by Kropholler and Roller. Every PD3-group has max-c,
and so has a JSJ decomposition. (See Chapter 10, and also [26].)

If G is restrained and G/G ′ is infinite, then G is an ascending HNN extension with finitely generated
base. If G is an ascending HNN extension with FP2 base H , then H is a PD2-group and is normal in G,
and so G is the group of a surface bundle, by Theorems 11.1 and 8.9, respectively.

If G is residually finite and has a subgroup H ∼= Z2, then it is virtually split over a subgroup commen-
surate with H [98]. Moreover, either G is polycyclic or it has a subgroup of finite index which maps
onto a nonabelian free group, by Theorem 11.19.

(36) If G is a nontrivial free product with amalgamation or HNN extension, does it split over a PD2-
group?

(37) If G is a nontrivial free product with amalgamation, is vβ(G) > 0?

(38) Can G be a properly ascending HNN extension (with base finitely generated, but not FP2)?

(39) If a subgroup H is a PD2-group and CommG(H) = H , does G have a subgroup of finite index
which splits over H? In particular, is this so if H ∼= Z2?

(40) Is there a bound for splittings of PDn-pairs of groups along PDn−1-pairs which extends [26]?

(41) Suppose that G is an HNN extension with stable letter t , base H and associated subgroup F ⊂ H . Is
µ(G)=

⋂
tk Ft−k finitely generated? (See [80] for a related result on knot groups, and also [131].)

A.9. Residual finiteness, hopficity, cohopficity

The groups of 3-manifolds are residually finite, and so are hopfian [AFW]. Since BS(2, 3) is non-hopfian
[MKS, page 260], and embeds in a PD4-group by the Davis construction, there are PD4-groups which
are not residually finite [108]. (No nontrivial Baumslag–Solitar relation holds in any PD3-group G. See
Theorem 10.12.)

Many 3-manifold groups satisfy the stronger RFRS (residually finite and rationally solvable) condition:
there is a descending series of finite-index normal subgroups Rn such that

⋂
Rn = 1 and such that the

natural epimorphism from Rn to Rn/Rn+1 factors through the quotient of Rn/R′n by its torsion subgroup.
Every 3-manifold with virtually RFRS fundamental group is virtually fibred [1]. This has a purely
algebraic analogue. A finitely generated virtually RFRS group S is virtually a semidirect product H oZ

with H finitely generated if and only if β(2)1 (S)= 0 [84]. The L2 Betti numbers of 3-manifold groups
are all 0. If G is a PD3-group then it follows from the L2-Approximation Theorem that β(2)1 (G)= 0 if
and only if the condition of (46) below holds for G and all of its subgroups of finite index.
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A 3-manifold group satisfies the volume condition if and only if it is not solvable and is not virtually
a product [155; 157]. In particular, such 3-manifold groups are cohopfian, i.e., injective endomorphisms
are automorphisms. The volume condition is a property of commensurability classes; this is not so for
cohopficity.

If G is a finitely presentable, residually finite group then β(2)1 (G)= lim β1(H)
[G:H ] , where the limit is taken

over the directed system of subgroups H of finite index, by the L2 Aproximation Theorem. Hence
β
(2)
1 (G)= 0 if and only if (46) holds for G and all of its subgroups of finite index.

(42) Does G have a proper subgroup of finite index?

(43) Is G residually finite?

(44) Are atoroidal PD3-groups virtually RFRS?

(45) Suppose that Ĝ is a pro-p PD3-group. Is vβ(G) > 0?

(46) If β1(G) > 0 is there a subgroup H of finite index such that β1(H)6 1
2 [G : H ]β1(G)?

(47) Do all PD3-groups other than those which are solvable or are virtually products satisfy the volume
condition?

A.10. Other questions

We conclude with some related questions. (In the first six of these questions P is an indecomposable
PD3-space.)

(48) Is P homotopy equivalent to a standard PD3-complex?

(49) Is P homotopy equivalent to a 3-manifold if its orientable double cover P+ is homotopy equivalent
to a 3-manifold?

(50) Is P × S1 or P × S1
× S1 homotopy equivalent to a closed manifold?

(51) Clarify the connection between k1(P) and cP∗[P] when π1(P) is infinite.

(52) If π1(P)∼= πG, where (G, 0) is a graph of groups with vertex groups one-ended and edge groups
of order 2, must each vertex of 0 have even valence?

(53) Does P have a 3-manifold 1-skeleton, i.e., is P ' H ∪∂ Y , where H is a cube with handles and
(Y, ∂H) is a 1-connected PD3-pair?

(54) Is (D2m ×Z/3Z) ∗Z/6Z T ∗1 the group of a PD3-complex, for some m > 5?

(55) Find an explicit example of a free action of a generalized quaternionic group Q(8a, b, 1) (with
a, b > 1 and (a, b)= 1) on an homology 3-sphere.

(56) Can the Classification and Realization Theorems be extended to PD3-pairs with spherical boundary
components?

(57) Let (G, �) be a PD3-pair of groups. Suppose that θ ∈ H 1(G;Z) has nontrivial restriction to each
boundary component. If Ker(θ) is locally free, must it be free? (See [42].)

(58) Does every finite group with cohomological period 4 have a balanced presentation?

(59) Let G be a group with infinite subgroups N <U of infinite index, such that N is normal in G and
U is finitely generated. Is β(2)1 (G)= 0?
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(60) Is there an algebraic analogue of the reflection group trick which may be used to embed FP groups
of cohomological dimension k in PD2k-groups?

(61) Are there any indecomposable PD3-complexes other than R P2
× S1 whose groups have an element

of order 2 with infinite centralizer?

(62) Suppose that G is FP2, has one end and cd G = 2. Is G the ambient group of at most finitely many
PD3-pairs of groups?

(63) Suppose that G is an atoroidal PD3-group. Is the outer automorphism group Out(G) finite?

(64) Is there a useful notion of open PD3-complex which includes all infinite covering spaces of PD3-
complexes?

Every PD3-complex is homotopy equivalent to one of the form Y ∪ e3, where Y is cohomologically
2-dimensional. Thus (48) is related to Wall’s D(2)-problem. (See [Jo].) If it holds, then π has deficiency
> 0, as we may assume that X has one 0-cell, and χ(X)= 0. Hence (48) implies (2).

One way to prove (52) might be to extend the Realization Theorem to show that (Gv, {Ge : o(e) =
v or t (e)= v, o(e) 6= t (e)}) is the fundamental group system of a PD3-pair (with all boundary components
R P2), for each vertex v ∈ V (0).

Since there are PD3-complexes which are not homotopy equivalent to 3-manifolds, and thus which do
not have homotopy Heegaard decompositions, we cannot expect that (Y, ∂H) is also homotopy equivalent
to a cube with handles in (53).

Reeves, Scott and Swarup have given an algebraic analogue of Johannson’s Deformation Theorem
[119]. In the 3-manifold case this theorem implies that aspherical 3-manifolds with incompressible
boundary are determined up to finite ambiguity by their fundamental groups, and we may expect the
analogous result to hold for PD3-pairs of groups. This suggested question (63) above. It is true in
the atoroidal, aspherical case: if (G, �) is an atoroidal PD3-pair of groups and (Q, ∂Q) is a PD3-pair
with π1(Q) ∼= G and aspherical boundary components then Q is aspherical and the peripheral system
of (Q, ∂Q) is isomorphic to (G, �) [71, Theorem 28]. Note, however, that the PD3-pairs of groups
corresponding to the exteriors of the reef and granny knots shows that the ambient group need not
determine the pair.
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accessible (group), 4
adapted to �, 100
admissible (graph of groups), 3
Algebraic Core Theorem, 79
Algebraic Loop Theorem, 36
algebraically P2-irreducible, 71
almost coherent, 2
almost finitely presentable (F P2), 2
ambient group (of PDn-pair), 9
anti-involution ḡ of Z[G], 2
ascendant, 91
atoroidal (PDn-pair of groups), 9
augmentation (ε : Z[G] → Z), 2
augmentation ideal (I (G)), 2

BS(p, q) (Baumslag–Solitar group), 1
Baumslag–Solitar relation, 105
Bieri theorems, 77, 78
Bieri–Eckmann Splitting Theorem, 79
Bieri–Strebel Theorem, 78
boundary compatibility, 31
boundary components, 9
Bowditch Theorem, 8

cg (conjugation by g), 1
CG(h)= CG(〈h〉), 1
CG(H) (centralizer), 1
cM : M→ K (π1(M), 1) (classifying map for π1(M)), 5
C∗(X; R[G/H ])= C∗(X H ; R), 5
Cannon Conjecture, 74
Castel’s Centralizer Theorem, 104
centre (ζG), 1
centralizer (CG(H)), 1
Centralizer Condition, 43
Classification Theorem, 15, 28
cohomological period 6 4, 47
cohopfian, 125
commensurable, 1
commensurator (CommG(H)), 1
commutator subgroup (G′), 1
conjugate module (M), 2
connected sum, 7, 20, 33
cube with handles, 37

D(I (G);M)= Coker(M†), 2
DI (G)= D(I (G);M), 2
D2m (dihedral group), 46

D(G, �) (double of PD3-pair), 79
D∞ = Z/2Z ∗Z/2Z∼= Zo−1 Z/2Z (infinite dihedral

group), 1
decomposes as a free product, 33
Decomposition Theorems, 33, 34
degree ±1 map, 7
degree of homomorphism, 79
dihedral group (D2m ), 46
dualizing module (Hn(G;Z[G])), 8

e(G), number of ends, 4
E(0) (set of edges), 3
end module (E(G)= H1(G;Z[G])), 4
End Module Theorem, 4
end of a tree, 39
equivariant diagonal approximation for C∗, 2
equivariant (co)homology, 5
evM : M→ M††, 2

F(r) (free group of rank r ), 1
FP, FPn , 2
Fr (C∗)= Cr/∂Cr−1, 18
FH G, 97
finite (PDn-space), 6
finiteness obstruction (σ(P)), 23
H -finite subset, 97
Fox–Lyndon matrix, 2
Fox–Lyndon complex, 5
k-free, 114
freely stably isomorphic, 3
fundamental class, 6
fundamental triple, 14

Gr (C∗)= Cr/∂Cr+1, 18
G-tree, 39
G-tree module presented by X , 40
G-tree with∞-vertices, 39
geodesic ray/line, 39
Gildenhuys–Strebel Theorem, 78
graph of groups ((G, 0)), 3
Group Realization Theorem, 17

h(G) (Hirsch length), 1
H◦ = CG(CG(H)), 85
H j (X; A)= H j (A⊗R[G/H ] C∗(X; R[G/H ]))

(equivariant homology), 5
Hn− j (X; B) (equivariant cohomology), 5
H+ = H ∩π+, 7
Hk(G, �;M), 9
Hirsch length (h(G)), 1
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Hirsch–Plotkin radical
√

G, 1
hopfian, 125

I (G) (augmentation ideal), 2
I -bundle type, 80
indecomposable (graph of groups), 3
indecomposable (PD3-complex), 20
indicable, 108
induced PDn-pair ((H, �H )), 9

JSJ Decomposition Theorem, 100

Kb= Zo−1 Z (Klein bottle group), 1
Kropholler–Roller theorems, 98

large, 117
loop isomorphism, 3
Lyndon–Hochschild–Serre spectral sequence (LHSSS), 2

malnormal subgroup, 98
max-c (maximum condition on centralizers), 1
metacyclic group, 46

nontrivial Baumslag–Solitar relation, 105
normalizer (NG(H)), 1
Normalizer Condition, 1

open PDn-group, 9
order of a group (|G|), 1
orientable (subgroup), 7
orientable (PDn-group), 8
orientation character (w : G→ Z×), 6, 8
origin function (o : E(0)→ V (0)), 3

p2 condition, 46
pq-condition, 46
P+ = Pπ+ (orientable covering), 7
PDn-complex, 6
PDn-group, 8
PD+n -group, 8
PDn-pair, 8
PDn-pair of groups, 9
PDn-space, 6
PD Extension Theorem, 78
periodic cohomology, 46
peripheral system, 27
Poincaré duality of dimension n with orientation character

w, 6
Poincaré–Lefschetz duality, 8
polycyclic, 1
pro-p completion, 109
profinite completion, 109
projectively homotopic, 3

projective homotopy equivalence, 3
projectively stably isomorphic, 3
proper (connected sum), 20
proper (JSJ decomposition), 101
properly locally cyclic, 114
Prüfer rank (u(G)), 112

rank (rk(G)), 112
Realization Theorem, 19, 31
reduced (graph of groups), 3
reduced (PD3-pair), 27
residually finite, 109
restrained, 108

satisfy a nontrivial Baumslag–Solitar relation, 105
sectional p-rank (u p(G)), 112
Seifert type, 9
Seifert 3-manifold group, 80
simple (PDn-complex), 7
sing(H), 97
splits over a subgroup, 4
Splitting Theorem, 20
SQ-universal, 117
stably isomorphic, 3
standard (PDn-complex), 7
Star(v), 100
Strebel Theorem, 78
subnormal, 92
Swan subgroup, 51

TL(2, p), 47
target function (t : E(0)→ V (0)), 3
Tarski monster, 75, 115
terminal G-tree, 39
Tits alternative, 107
2-Torsion Central Theorem, 48
Turaev condition, 30
Turaev’s Realization Theorem, 19

u(G) (Prüfer rank), 112
u p(G) (sectional p-rank), 112
Unique Factorization Theorem, 22
universal coefficient spectral sequence, 5

vβ(G), 5
vβ(G; p), 5
V (0) (set of vertices), 3
virtually has some property, 1
volume condition, 125

X (class of groups), 4
X [k] (k-skeleton), 5
X H (associated covering space), 5
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Z∗q = BS(1, q), 1
Zw , 2
Z/2Z− (subgroup of order two on which w 6= 1), 7

Greek characters

βi (X; F)= dimF Hi (X; F), 5
βi (X)= βi (X;Q), 5
1(G, �)= Ker(εW ), 9
ε : Z[G] → Z (augmentation), 2
ζG (centre of group), 1
νC∗,r

, 19
νG (norm element in Z[G]), 46
π+ = Ker(w), 7
πG, 3
πK = π1(S3

\ K ) (knot group), 1
π1-injective, 27
σ(P) (finiteness obstruction), 23
χvirt(G)= χ(K )/[G : K ] (rational Euler

characteristic), 2
ξ(G), 40

Other symbols

〈S〉 (subgroup generated by S) , 1
〈〈S〉〉 (normal closure of S), 1
ḡ = w(g)g−1 (anti-involution), 2
M (conjugate module), 2
M†
= HomR(M, R), 2

[M], (free stable isomomorphism class), 3
[M]pr (projective stable isomomorphism class), 3
[M, N ] (homotopy classes of module homomorphisms), 3
G′ (commutator subgroup), 1
√

G (Hirsch–Plotkin radical), 1
|G| (order of G), 1
Ĝ (profinite completion), 109
Ĝ p (pro-p completion), 109
X̃ (universal covering space), 5
[{κi }, w,µ], 28
[π,w,µ], 14
∂P (boundary of PDn-pair), 8
∂ P̃ (preimage of ∂P in P̃), 8
∞-vertex (of G-tree), 39







THE OPEN BOOK SERIES 3

Poincaré Duality in Dimension 3

Poincaré duality is central to the understanding of manifold topology. Dimension 3 is critical in various respects,
being between the known territory of surfaces and the wilderness manifest in dimensions ≥ 4. The main thrust of
3-manifold topology for the past half century has been to show that aspherical closed 3-manifolds are determined
by their fundamental groups. Relatively little attention has been given to the question of which groups arise. This
book is the first comprehensive account of what is known about PD3-complexes, which model the homotopy
types of closed 3-manifolds, and PD3-groups, which correspond to aspherical 3-manifolds. In the first half we
show that every P2-irreducible PD3-complex is a connected sum of indecomposables, which are either aspherical
or have virtually free fundamental group, and largely determine the latter class. The picture is much less complete
in the aspherical case. We sketch several possible approaches for tackling the central question, whether every
PD3-group is a 3-manifold group, and then explore properties of subgroups of PD3-groups, unifying many results
of 3-manifold topology. We conclude with an appendix listing over 60 questions. Our general approach is to
prove most assertions which are specifically about Poincaré duality in dimension 3, but otherwise to cite standard
references for the major supporting results.

Target readership: Graduate students and mathematicians with an interest in low-dimensional topology.
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