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We implement two-cover descent for plane quartics over Q with all 28 bitangents rational and show that
on a significant collection of test cases, it resolves the existence of rational points. We also review a
classical description of the relevant moduli space and use it to generate examples. We observe that local
obstructions are quite rare for such curves and only seem to occur in practice at primes of good reduction.
In particular, having good reduction at 11 implies having no rational points. We also gather numerical
data on two-Selmer ranks of Jacobians of these curves, providing evidence these behave differently from
those of general abelian varieties due to the frequent presence of an everywhere locally trivial torsor.

1. Introduction

A central problem in arithmetic geometry is to determine if a variety C over a number field k, for instance
a nonsingular projective curve, has any k-rational points. The most elementary way of showing that C(k)
is empty is by showing that C(kv)=∅ for some completion kv of k. In that case, we say C has a local
obstruction to having rational points.

We consider a more refined descent obstruction here. Our construction can be read in elementary
terms, but the theoretical motivation is enlightening. Suppose we have an unramified cover π : D→ C
of nonsingular proper varieties over k with geometric automorphism group 0 = Autkalg(D/C) satisfying
#0 = deg(π). The twisting principle [Mil80, III.4.3(a)] gives us that the Galois cohomology set H1(k, 0)
parametrizes twists πγ : Dγ → C , as well as a map γ : C(k)→ H1(k, 0) such that for P ∈ C(k) and
γ = γ (P), we have Q ∈ Dγ (k) such that πγ (Q)= P. This leads us to consider the associated Selmer
set

Sel(π)(C/k)= {γ ∈ H1(k, 0) : Dγ (kv) 6=∅ for all completions kv of k}.

Since the map γ takes values in Sel(π)(C/k), we see that if the latter is empty then C(k) is empty too.
In that case we say that C has a π-cover obstruction to having rational points: C has no rational points
because a collection of covering varieties all have local obstructions.
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The proof of the Chevalley–Weil theorem [CW32] implies that Sel(π)(C/k)⊂ H1(k, 0; S), where the
latter denotes the classes that are unramified outside the set S of bad places for the cover π : D→C . The
set H1(k, 0; S) is finite and explicitly computable. This means that to compute Sel(π)(C/k) one only
needs to check the local solvability of finitely many Dγ . Hence, Sel(π)(C/k) is explicitly computable,
although not necessarily efficiently.

For hyperelliptic curves, there is a well-developed theory of two-covers in [BS09], where 0 = JacC [2].
Their associated Selmer sets are relatively practical to compute and, as is described there, many genus
two curves over Q have no local obstruction, but can be shown to have Sel(2)(C/Q)=∅. In fact it has
since been shown [BGW17] that in a precise way, most hyperelliptic curves have a two-cover obstruction.

Results beyond hyperelliptic curves are sparse. The general descent theory is available in [BPS16],
which also provides some genus three examples, but in its full generality, the need to compute class
group information of degree 28 extensions limits large-scale experiments significantly. There has also
been some progress on creating an appropriate setting for arithmetic statistical techniques [Tho16] to
two-descent on Jacobians of curves of genus three, but it is presently not clear how to generalize the
Bhargava–Gross–Wang approach to this setting.

In this article we endeavour to start a more systematic study by considering plane quartics C with
a restricted 2-level structure; in particular JacC [2](Q) = (Z/2Z)6. This forces the 28 bitangents of C
to be defined over Q and has the computational and expository advantage that all required data can be
expressed over Q; no algebraic number theory is required.

Remark 1.1. For a hyperelliptic curve C of genus g, having JacC [2](k) = (Z/2Z)2g implies that all
2g+ 2 Weierstrass points on C are rational, making two-cover descent rather uninteresting. In this sense,
two-cover descent on plane quartics has simpler nontrivial applications than on hyperelliptic curves.

In Section 3 we review an explicit description of the moduli space of smooth plane quartics with
labelled bitangents as the space of seven labelled points in general position in P2. For small fields we
prove:

Proposition 1.2. For p = 3, 5, 7, there exist no nonsingular plane quartics over Fp with all bitangents
defined over Fp. Over F9, there is only one isomorphism class, represented by the Fermat quartic

C9 : x4
+ y4
+ z4
= 0, with #C9(F9)= 28.

Over F11, there is only one isomorphism class, represented by

C11 : x4
+ y4
+ z4
+ x2 y2

+ x2z2
+ y2z2

= 0, and C11(F11)=∅.

In particular, a plane quartic C over Q with rational bitangents has bad reduction at 3, 5, and 7. If it
has good reduction at 11, then it has a local obstruction there. The curve C9 attains the maximum number
of rational points for a genus three curve over F9. Its rational points are contacts of the 28 hyperflexes.
Both C9 and C11 are reductions of the Klein quartic x4

+ y4
+ z4
−

3
2(1+

√
−7)(x2 y2

+ x2z2
+ y2z2).
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Section 4 describes, given a smooth plane quartic C with rational bitangents, an explicit model for a
two-cover πγ : Dγ → C , with 0 = (Z/2Z)6 as a Galois-module. This directly establishes a description
of two-covers and their twists, without appealing to étale cohomology.

In Section 5 we describe an algorithm to compute, with reasonable efficiency, sets

Sel(2)(C/k, N )⊃ Sel(2)(C/k),

for integers N ≥ 1, with equality holding for N ≥ 66569, and, in practice, for much smaller values of N
already.

In Section 6 we describe a numerical experiment, where we tabulate the behaviour of Sel(2)(C/Q)
for various quartics C . We consider a systematic collection of 81070 moduli points with coordinates
from {−6, . . . , 6}, as well as a collection of 70000 randomly selected points with coordinates from
{−40, . . . , 40}.

Observation 1.3. For all curves C in our collections with Sel(2)(C/Q) 6= ∅, we can find a point
P ∈ C(Q).

This leaves the following question, which we fully expect to have an affirmative answer, but remains
open for now.

Question 1.4. Is it possible to construct a smooth plane quartic C over Q with rational bitangents such
that Sel(2)(C/Q) 6=∅ but C(Q)=∅?

Remark 1.5. For a considerable number of curves in our collections we also get information on the
2-Selmer groups of their Jacobians. The data matches the distribution conjectured in [PR12, Conjec-
ture 1.1] quite closely, but only after taking into account that the JacC -torsor representing Pic1 is very
frequently everywhere locally trivial. Since nonhyperelliptic curves often have points everywhere locally,
this phenomenon should be general: one should expect Jacobians to exhibit special arithmetic behaviour.

This work is based on the master’s thesis [Lew19] of the second author.

2. Plane quartics and their bitangents

In this section we collect the classical combinatorics and geometry of bitangents and theta characteristics
on nonhyperelliptic curves of genus three. See [Dol12, Chapter 6] or [GH04] for a more comprehensive
modern treatment.

Let k be a field of characteristic different from 2 and let C be a curve of genus three over k. Then
Jac(C)[2] is a 0-dimensional separated group scheme of degree 64 and exponent 2, equipped with a
nondegenerate alternating bilinear pairing. Indeed, the automorphism group of Jac(C)[2] is Sp6(F2).

Definition 2.1. A theta characteristic on a curve C of genus g is a divisor class θ ∈ Picg−1(C) such
that 2θ is the canonical class. The parity of θ is determined by the parity of the dimension of the
Riemann–Roch space H0(C, θ).
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It is a classical result [GH04, Proposition 1.11] that a curve of genus g has 2g−1(2g
+ 1) even and

2g−1(2g
− 1) odd theta characteristics. For g = 3 and C nonhyperelliptic it is easily checked that

h0(C, θ)≤ 1, so the odd theta characteristics are exactly the ones that admit a (unique) effective repre-
sentative.

The canonical model of a nonhyperelliptic genus three curve C is a quartic in P2:

C : f (x, y, z)= 0, with f ∈ k[x, y, z] homogeneous of degree four.

Since canonical classes are exactly line sections C · l, we see there are 28 lines l such that C · l = 2θ ,
where θ is a degree two effective divisor representing a theta characteristic: we recover the 28 bitangents
of a smooth plane quartic. Fix for each bitangent line l, a linear form ` describing the line.

Lemma 2.2. Let C be a smooth plane quartic. Then no seven distinct bitangents pass through a single
point.

Proof. Suppose l1, . . . , l7 intersect in P0. If P0 were to lie on C it would be singular, so it does not.
Hence projecting away from P0 gives a degree four map C→ P1. Since li ·C is a fibre of this projection,
the ramification divisor has degree at least 2 · 7. But that exceeds the degree 12 given by the Riemann–
Hurwitz formula. �

Let θ1, θ2 be two odd theta-characteristics. Then 2(θ1−θ2)= div(`1/`2), where we regard the quotient
of linear forms as a rational function on C . We see that

[θ2− θ1] ∈ Pic0(C)[2].

As it turns out, all nonzero 2-torsion classes admit such a representative; in fact,
(28

2

)
/63 = 6 of them.

We see that θ1− θ2 and θ3− θ4 are linearly equivalent precisely when θ1+ · · · + θ4 is twice canonical.
For bitangent forms, this leads to the following concept.

Definition 2.3. We say a quadruple of bitangent forms q= {`1, . . . , `4} is a syzygetic quadruple if their
contact points with C lie on a conic. This means there are constants δq, cq ∈ k∗ and a quadratic form
Qq ∈ k[x, y, z] such that

`1`2`3`4 = δqQ2
q+ cq f. (2-1)

There are 315 syzygetic quadruples. We say a triple of bitangents is syzygetic if it is part of a syzygetic
quadruple. If it is, then it is part of only one.

Definition 2.4. We say that a set of seven bitangent forms {`1, . . . , `7} is an Aronhold set if none of its
triples are syzygetic.

There are 288 Aronhold sets. For an Aronhold set, write {θ1, . . . , θ7} for the corresponding theta
characteristics. Then θ1+ · · ·+ θ7− 3κC is again a theta characteristic: an even one. We see that each
even theta characteristic has 288/36= 8 Aronhold sets associated with it. Additionally, one can check
that {θ1− θ7, . . . , θ6− θ7} forms a basis for Pic(C)[2].
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It follows that specifying a labelled Aronhold set on a smooth plane quartic amounts to marking a
2-level structure on its Jacobian. The converse holds too.

Proposition 2.5 [GH04]. The following two moduli spaces are naturally isomorphic:

• Nonhyperelliptic genus three curves with a labelled Aronhold set

• Nonhyperellipic genus three curves with full 2-level structure.

There is a unique conjugacy class Sym(8) ⊂ Sp6(F2). It is of length 36 and it corresponds to the
stabilizer of an even theta characteristic. The action can be made explicit by labelling the bitangents by

{`i j = `{i, j} : i ∈ {0, . . . , 7}, j ∈ {i + 1, . . . , 7}}, (2-2)

with Sym(8) acting in the obvious way on the subscripts. This labelling can be chosen in such a way
that the syzygetic quadruples come in two Sym(8)-orbits: one of length 210 and one of length 105,
represented by, respectively,

{`01, `12, `23, `03} and {`01, `23, `45, `67}. (2-3)

We see that for i = 0, . . . , 7, we have the Aronhold sets {`i j : j 6= i}. We sometimes suppress i = 0 in
our indices, so `0 j = ` j .

Proposition 2.6. Let `1, . . . , `7 be an Aronhold set of bitangent forms on a smooth plane quartic C :
f (x, y, z)= 0. Then the square class of each of the other bitangents `i j is determined in the sense that
there is a constant δi j ∈ k× and a cubic form gi j ∈ k[x, y, z] such that( ∏

n /∈{i, j}

`n

)
`i j ≡ δi j g2

i j (mod f k[x, y, z]).

Proof. To ease notation, set {i, j} = {6, 7}. By combining the syzygetic quadruples

{`1, `23, `45, `67}, {`2, `7, `23, `37}, {`4, `7, `45, `57}, {`3, `5, `37, `57},

we get that the left-hand side has a divisor with even multiplicities. The existence of gi j follows from
the projective normality of C . �

3. Generating plane quartics with rational bitangents

We use del Pezzo surfaces of degree two (see [Dol12, 6.3.3] or [GH04]) to describe a classical link
between nonhyperelliptic genus three curves with 2-level structure and point configurations in the plane.

Definition 3.1. We say seven points p1, . . . , p7 ∈ P2 lie in general position if no three are collinear and
no six lie on a conic.

Given seven points p1, . . . , p7 ∈ P2 in general position, we obtain a del Pezzo surface X of degree
two by blowing up the seven points. In fact we obtain a labelling of the 56 exceptional curves on X :

• 7 exceptional components E ′i above the blown-up points pi .
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• 7 proper transforms Ei of cubics Ẽi through the seven points with a nodal singularity at pi .

• 21 proper transforms Ei j of lines Ẽi j connecting pi and p j .

• 21 proper transforms E ′i j of conics Ẽ ′i j through {p1, . . . , p7} \ {pi , p j }.

A del Pezzo surface X of degree 2 comes equipped with a 2 : 1 map X→ P2, given by the anticanonical
system |−κX | on X. The branch locus C in P2 is a smooth plane quartic.

If X is obtained as the blow-up of p1, . . . , p7 ∈ P2 then there is an induced rational map φ making
the following diagram commute:

X

P2 P2

2:1bl

φ

Let φ1, φ2, φ3 generate the space of cubics passing through p1, . . . , p7. It is straightforward to check
that the bl∗φi generate |−κX |, so φ = (φ1 : φ2 : φ3). The branch locus of φ is contained in the plane
sextic curve

C ′ : det
(
∂φi

∂x j

)
i j
= 0 (3-1)

and indeed, C = φ(C ′) turns out to be a plane quartic.
Since Ẽi and Ẽi j ∪ Ẽ ′i j are loci described by cubics in the span of φ1, φ2, φ3, they map to lines, whose

defining forms we denote by `i and `i j respectively.

Lemma 3.2. The labelling described above is compatible with (2-2), so {`1, . . . , `7} is an Aronhold set
and Definition 2.3 describes the syzygetic quadruples.

Proof. The deeper reason is that the configuration of seven points in P2 has the same moduli as seven
points in P3 by association of point sets [Cob22]. The sextic model C ′ actually arises as the projection
from a linear system |θeven+ κC | (see [GH04]), so the labelling is indeed directly linked to the choice of
an even theta characteristic on C . However, it is also sufficient to just verify the statement for a particular
case and then argue via connectedness of the moduli space. �

The construction above provides a very explicit description of the moduli space of nonhyperelliptic
genus three curves with full 2-level structure. For explicitly parametrizing it, we lose no generality by
setting p1, p2, p3, p4 to be the standard simplex and choosing p5, p6, p7 = (u1 : v1 : 1), (u2 : v2 : 1),
(u3 : v3 : 1). General position means the 3× 3, respectively 6× 6 minors of

1 0 0 1 u1 u2 u3

0 1 0 1 v1 v2 v3

0 0 1 1 1 1 1

 and



1 0 0 1 u2
1 u2

2 u2
3

0 1 0 1 v2
1 v2

2 v2
3

0 0 1 1 1 1 1
0 0 0 1 u1v1 u2v2 u3v3

0 0 0 1 u1 u2 u3

0 0 0 1 v1 v2 v3


,

do not vanish.
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Proof of Proposition 1.2. With the description given above, it is a finite amount of work to check all
the possibilities for p = 3, 5, 7, 11. For p = 3, 5, 7 there are no 7 points over Fp in general position
(see also [BFL19, Proposition 4.4]). For F9 there are 40 triples {(u1 : v1 : 1), (u2 : v2 : 1), (u3 : v3 : 1)}
that complement the standard simplex to 7 points in general position. The construction (3-1) requires
lifting to characteristic 0, but the rest of the construction remains valid. We find all resulting curves are
isomorphic to C9. For F11 there are 1440 triples, all giving curves isomorphic to C11. �

4. Two-covers of smooth plane quartics with rational bitangents

Let C : f (x, y, z)= 0 be a smooth plane quartic with an Aronhold set `1, . . . , `7. We adopt the notation
of Proposition 2.6. For γ = (γ1, . . . , γ7) ∈ (k×)7 we define the following curve in weighted projective
space P[23, 128

] with coordinates x, y, z of weight 2 and w1, . . . , w7, w12, . . . , w67 of weight 1:

D′γ :


f (x, y, z)= 0,

`i (x, y, z)= γiw
2
i for i = 1, . . . , 7,

`i j (x, y, z)= δi j/
(∏

n 6=i, j γn
)
w2

i j for 1≤ i < j ≤ 7,

gi j (x, y, z)= wi j
∏

n 6=i, j wn for 0≤ i < j ≤ 7.

Thanks to the relations from Proposition 2.6 we have a well-defined projection D′γ → C . In fact, from
the sign changes on w1, . . . , w7 we see that Aut(D′γ /C) = (Z/2Z)7. Furthermore, from the fact that
the representation of the automorphism group on w12, w23, . . . , w67, w17 is faithful and for any fibre of
D′γ → C at most one of wi or wi j is zero, it follows the cover is unramified and that D′γ is not geomet-
rically connected. Indeed the involution on D′γ that swaps the signs of all of w1, . . . , w7 interchanges
geometric components. We consider the projection P[23, 128

] → P27 away from the weight 2 part and
consider the image Dγ of D′γ .

Lemma 2.2 yields three linearly independent linear forms `i , ` j , `n , so that we can express x, y, z as
linear forms in w2

i , w
2
j , w

2
k . Eliminating x, y, z from the equations gives us Dγ as an intersection of an

octic equation, 25 quadratic equations, and 28 sextic equations. Alternatively we derive quartic relations
from the syzygetic quadruples and their described relations (see Definition 2.3).

We introduce notation for a group naturally isomorphic to (k×/k×2)6, but presented in a way more
natural for our purposes.

Definition 4.1. We define L ′(2, k)' (k×/k×2)6 by the exact sequence

1→ (k×/k×2)
diagonal
−−−→ (k×/k×2)7→ L ′(2, k)→ 1

and we usually represent elements in L ′(2, k) by (γ1, . . . , γ7) ∈ (k×)7.

Proposition 4.2. The two-covers of C are exactly

{πγ : Dγ → C, where γ ∈ L ′(2, k)}.
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Proof. The projection of Dγ onto the coordinates (w1 : · · · : w7) gives a birational map to an intersection
D̃γ of four quadrics and an octic hypersurface. Its singular locus is the pull-back along πγ of the contact
locus of the bitangents `1, . . . , `7. We see that π̃ : D̃γ → C is a finite rational cover of degree 26 and that
π̃∗(`i/`7)= (γi/γ7)(wi/w7)

2. This shows that a basis for Pic0(C)[2] pulls back to principal divisors, and
hence that D̃γ is a birational model of a two-cover, and therefore so is Dγ . To see that Dγ is nonsingular,
we use that for P ∈ Dγ (kalg) we can find an Aronhold set of bitangents that do not meet πγ (P).

In order to show that all 2-covers arise as Dγ , we observe that Pic(C/k)[2] = (µ2)
6, where we write

µ2 for the Galois module {−1, 1}. By the Kummer sequence we have

H1(k,Pic(C/k)[2])= (k×/k×2)6 ' L ′(2, k).

For σ ∈ Gal(ksep/k) we define the cocycle

ξγ (σ ) : (w1 : · · · : w7) 7→

(√
γ1
σ

√
γ1
w1 : · · · :

√
γ7
σ

√
γ7
w7

)
.

This gives an isomorphism L ′(2, k) ' H1(k,Aut(D1/C)) ' H1(k,Pic0(C)[2]), and Dγ is the twist of
D1 by the Galois cocycle ξγ . �

We define a partial map

γ : C(k) 99K L ′(2, k); P 7→ (`1(P), . . . , `7(P))

and extend it to a full map by observing that by Definition 2.3, for any syzygetic quadruple q =

{`i , `a, `b, `c} we have that

`i (P)≡ δq`a(P)`b(P)`c(P) (mod squares)

whenever both sides are nonzero, so if `i (P)= 0, we assign the appropriate value by taking the right-hand
side for a suitable quadruple q. We obtain:

Proposition 4.3. The map γ : C(k)→ L ′(2, k) assigns to P ∈ C(k) the cover Dγ (P) for which there is a
point Q ∈ Dγ (P)(k) such that πγ (P)(Q)= P.

5. Selmer sets

We restrict to the case where k is a number field, but our method applies to any global field of characteristic
different from 2. We write O for its ring of integers, � for the set of places of k, and kv for the completion
of k at v ∈�. For nonarchimedean v we write Ov ⊂ kv for its ring of integers, pv for its maximal ideal,
and Ov/pv for its residue field.

The map γ from Proposition 4.3 and its local variant γ v fit in the commutative diagram

C(k) L ′(2, k)

C(kv) L ′(2, kv) .

γ

ρv

γ v



TWO-COVER DESCENT ON PLANE QUARTICS WITH RATIONAL BITANGENTS 81

We define
Sel(2)(C/k)= {γ ∈ L ′(2, k) : ρv(γ ) ∈ γ v(C(kv)) for all v ∈�k}.

Clearly we have γ (C(k))⊂ Sel(2)(C/k) and in particular, if Sel(2)(C/k)=∅ then C(k)=∅.
Let us now fix an integral model C : f (x, y, z)= 0 with f ∈O[x, y, z], as well as 28 bitangent forms

`i j ∈O[x, y, z]. The discriminant D27( f ) of a quartic (see [GKZ08, Chapter 13, Proposition 1.7]) is an
integer form of degree 27 in the coefficients of f that vanishes precisely when f describes a singular
curve. Thus, if we take

S = {v ∈�k : ordv(2D27( f )) > 0, or `i j ∈ pv[x, y, z], or v is archimedean}

then C has good reduction at all v not in S, meaning that the coefficient-wise reductions of f and `i j

describe a nonsingular plane quartic and its bitangents over Ov/pv. We consider the unramified part

L ′(2, kv)unr
= {γ ∈ L ′(2, kv) : ordv(γi )≡ ordv(γ j ) (mod 2) for all i, j}.

Proposition 5.1. If C/kv has good reduction as a plane quartic and the residue characteristic of kv is
odd, then γ v(C(kv))⊂ L ′(2, kv)unr. If furthermore #Ov/pv ≥ 66562 then γ v(C(kv))= L ′(2, kv)unr.

Proof. Let C be the reduction of C . Any point P ∈ C(kv) reduces to a point P ∈ C(Ov/pv). Since the
bitangents do not share contact points, ordv(`i (P)) > 0 for at most one i . Let q = {`i , `a, `b, `c} be a
syzygetic quadruple. The good reduction properties imply ordv(δq)= 0, in the notation of Definition 2.3.
We see `i (P)`a(P)`b(P)`c(P) must have even valuation, but that implies ordv(`i (P)) is even.

For the second part, we observe that for γ ∈ L ′(2, kv)unr, the curve Dγ has good reduction as well.
This curve has genus 129 and, writing q = #Ov/pv, the Hasse–Weil bounds give

#Dγ (Ov/pv)≥ q + 1− 2 · 129
√

q,

so if q ≥ 66562, then there is a (necessarily smooth) point on Dγ , so Hensel lifting gives a point in
Dγ (kv). The image of that point on C maps to γ . �

We define

L ′(2, k; S)= {γ ∈ L ′(2, k) : ρv(γ ) ∈ L ′(2, kv)unr for all v ∈�k \ S}.

Let OS be the ring obtained by inverting the primes of the finite places in S. If OS has odd ideal class
number then L ′(2, k; S) is generated by (O×S /O

×2
S )7, so it is a finite group. Note that by enlarging S, we

can ensure that OS has odd class number.
It follows from Proposition 5.1 that Sel(2)(C/k)⊂ L ′(2, k; S). Furthermore, if we set

T = S ∪ {v ∈�k : #Ov/pv < 66562},

then we obtain

Sel(2)(C/k)= {γ ∈ L ′(2, k; S) : ρv(γ ) ∈ γ v(C(kv)) for v ∈ T }. (5-1)

Hence, if we can compute generators for O×S , which is a standard task in algebraic number theory, and
compute γ v(C(kv)) for finite and real v, then we can compute the Selmer set.
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5.1. Computing the local image for archimedean places. For kv = C we have that C× = C×2 and
C(C) 6=∅, so there is nothing to compute; the local image is the whole (trivial) group L ′(2,C).

For k = R we have that R×/R×2 is represented by {±1}. Furthermore, a smooth plane quartic C/R
with all bitangents defined over R has four components [GH81, Proposition 5.1], and the map γ :

C(R)→ L ′(2,R)' F6
2 is continuous and therefore constant on components. In order to find γ (C(R))

we only need to find points on each component and evaluate γ there. Each pair of components has four
bitangents touching each, so these contact points must be real. The remaining four bitangents might have
complex conjugate contact points. Each pair of components is separated by a bitangent, so γ actually
takes different values on the components; we know that #γ (C(R))= 4.

Since we need to compute the bitangents anyway, we can use the real contact points to evaluate γ .
Once we have found four different images, we know we have determined the entire image.

5.2. Computing the local image for finite places. In this section, we take k to be a local field with ring
of integers O, uniformizer π with p= πO, and a set D of representatives of O/p.

We have k× ' Z⊕O×. The map µ : k×→ k×/k×2
' (Z/2Z)⊕ (O×/O×2) is constant on sets of

the form x0+ pord(4)+1, with x0 ∈ O×, as can easily be checked from the fact that Newton iteration for
finding the roots of y2

− x0 amounts to iterating the map y 7→ 1
2

(
y+ x

y

)
, which converges for y ∈ 1+ 2p

if ord((x0− 1)/4) > 1.
We assume we have f, `i j ∈O[x, y, z] representing a quartic curve C : f (x, y, z)= 0 and its bitangents.

Furthermore, we assume we have the δq from Definition 2.3 for all syzygetic quadruples q, or at least
the 210 that involve `1, . . . , `7.

Note any P ∈C(k) admits a representative of one of the forms (x0 : y0 : 1), (x0 : 1 :πy0), (1 :πx0 :πy0),
with x0, y0 ∈O, so it is sufficient to restrict ourselves to O-valued points on affine plane quartics.

We say a set of the form B= (x0+pe)× (y0+pe) is a Hensel-liftable ball for f (x, y)= 0 if 0 ∈ f (B)
and (0, 0) /∈ ∇xy f (B), with ∇xy denoting the gradient. In that case, applying Newton iteration to any
point in B converges to an O-valued point of f (x, y)= 0. It is a standard result that the O-valued points
on a nonsingular curve can be covered with finitely many Hensel-liftable balls (see Algorithm 2 in the
Appendix).

In addition, we require that γ is constant on B∩C(k). For this we use that the component γ i (P) can be
computed via either µ(`i (P)) or, for a syzygetic quadruple q={`i , `a, `b, `c}, by µ(δq`a(P)`b(P)`c(P)).
Since bitangents do not share contact points, we see that for sufficiently small balls, at least one of the
descriptions will be constant. We can then evaluate the map at a single representative. We start with a
covering of Hensel-liftable balls and refine it as required. With Algorithm 3 (see the Appendix) we find

γ (C(k))= LOCALIMAGE( f (x, y, 1))∪ LOCALIMAGE( f (x, 1, πy))∪ LOCALIMAGE( f (1, πx, πy)).

Remark 5.2. The additional condition that γ be constant on our Hensel-liftable balls B is surprisingly
easily satisfied. In experiments with O = Zp, including for p = 2, we find that refinement is only rarely
required.
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This happens because there are many syzygetic quadruples: each `i is involved in 45. Hence, if P
lies close to a zero of `i , then there is likely a quadruple q such that P lies far away from the contact
points of the other three bitangents.

This is in stark contrast with the hyperelliptic case, where the role of the bitangent contact points is
played by the Weierstrass points. They are fewer in number, but there are also fewer relations between
them, necessitating higher lifting.

5.3. Overcoming combinatorial explosion. If k is a number field, then we can compute L ′(2, k; S) and
the algorithms from Sections 5.1 and 5.2 allow us to compute the local images, so using (5-1) we can
compute Sel(2)(C/k). However, as an F2-vector space, we have dim2 L ′(2, k; S)= 6(#S), and S tends to
have considerable size. For instance, if k =Q and C has points everywhere locally, then Proposition 1.2
yields that {2, 3, 5, 7, 11,∞} ⊂ S, so #L ′(Q, 2; S) ≥ 236. Consequently, the pointwise iteration over
L ′(k, 2; S) that (5-1) suggests, is usually practically infeasible. We use some linear algebra first.

We extend γ linearly to divisors, while also keeping track of the parity of the degree,

γ̃ : Div(C)→ F2× L ′(2, k); γ̃

(∑
n P P

)
=

(∑
n P ,

∏
γ (P)n P

)
(see [BPS16, §6]). One finds that principal divisors lie in the kernel, so γ̃ descends to a map on Pic(C/k).
We write Wv = 〈γ̃ (C(kv))〉 for the F2-span. We write W 0

v for the kernel of the projection Wv→ F2 on
the first coordinate, and W 1

v for its complement.
Given explicit representations for L ′(2, k; S) and L ′(2, kv) as F2-vector spaces, it is easy to find a

description of ρ̃v : F2× L ′(2, k; S)→ F2× L ′(2, kv) as a linear transformation. We immediately obtain

Sel(2)(C/k)⊂W 1
C :=

⋂
v∈S

ρ̃−1
v (W 1

v ), (5-2)

where the intersection on the right-hand side is easily computed as an affine subset using standard linear
algebra tools, even if #S ∼ 100.

On Pic0(C/kv), the kernel of γ̃ v is exactly 2 Pic0(C/kv). Furthermore, with the presence of a point
P0 ∈ C(kv) we have that Pic0(C/kv)= JacC(kv), and since the latter is a compact kv-Lie group we have

#(JacC(kv)/2 JacC(kv))= (# JacC [2](kv))/|2|3v, (5-3)

where we normalize

|2|v =


2 if v is a real place,
4 if v is a complex place,
(#Ov/pv)− ordv(2) if v is a finite place.

Lemma 5.3. Suppose C is defined over a completion Qv of Q. If {P0, . . . , Pr } ⊂ C(Qv) are such that

dim2〈γ v(Pi )− γ v(P0) : i = 1, . . . , r〉 =


3 if Qv = R,

9 if Qv =Q2,

6 otherwise,

then γ̃ v(Pic0(C/Qv))=W 0
v and Wv = 〈γ̃ (P0), . . . , γ̃ (Pr )〉.
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Proof. We have # JacC [2](Qv) = 64, so the dimension bound is just (5-3). Thus the condition is that
the divisor classes [P1− P0], . . . , [Pr − P0] generate Pic0(C/Qv)/2 Pic0(C/Qv). The second statement
follows simply from Wv =W 0

v + γ̃ (P0). �

This lemma provides us in many cases with a way to compute Wv directly and quickly. An alternative
is to determine γ̃ v(C(kv)) using the algorithm sketched in Section 5.2. This has a complexity proportional
to the size of the residue field Ov/pv, which is rather bad.

In many cases the kv-valued contact points of the bitangents are already sufficient to generate Wv . In
fact for real places this is always the case by the argument in Section 5.1.

It may be the case that Pic0(C/kv)/2 Pic0(C/kv) really does need divisors with higher degree places
in their support. In that case, if the residue field is small enough, we can compute Wv via Section 5.2 or
we can search for these higher degree places and use

〈γ̃ v(P0)〉+ γ̃ v(Pic0(C/kv))

as an upper bound for Wv in (5-2).

Remark 5.4. If Lemma 5.3 applies to all v ∈ S then we compute the 2-Selmer group of JacC as well, via

Sel(2)(JacC /Q)=
⋂
v∈S

ρ̃−1
v (W 0

v ),

and in any case the right-hand side gives a subgroup of the Selmer group, so we get a lower bound in all
cases. See Section 6.2.

5.4. Information at good primes. Let kv be a local field of odd residue characteristic, with q = #(Ov/pv).
Then

#L ′(2, kv)unr
= 64.

If C/kv has good reduction C , then γ v(P) is already determined by the reduction of P, so using the
Hasse–Weil bounds, we obtain

#γ v(C(kv))≤ #C(Ov/pv)≤ q + 1+ 6
√

q.

If q ≤ 29 then γ v(C(kv)) ( L ′(2, kv)unr, and even if q is larger, it is quite likely that the local image
is not the entire unramified set. Hence, for small residue class field, many of the two-covers Dγ fail to
have points locally, even at primes of good reduction. We see that in the intersection (5-1), the primes
of small norm actually impose significant conditions.

Because computing local images for primes of larger norm is expensive, we define a more easily
computed set that contains Sel(2)(C/k), by

Sel(2)(C/k; N )=
{
γ ∈ L ′(2, k; S) :

(1, γ ) ∈W 1
C for v ∈ S and ρv(γ ) ∈ γ v(C(kv)) for v such that #(Ov/pv)≤ N

}
.

We compute this set using Algorithm 1. If the resulting set is empty, then C(k) is empty.



TWO-COVER DESCENT ON PLANE QUARTICS WITH RATIONAL BITANGENTS 85

Algorithm 1: TWOCOVERDESCENT

Input: Quartic f ∈O[x, y, z] describing a nonsingular plane quartic C with bitangent forms
{`i j ∈O[x, y, z] : 0≤ i < j ≤ 7} and the δq according to Definition 2.3, and a norm bound N

Output: Sel(2)(C/k; N )

1 S← {v ∈�k : ordv(2D27( f )) > 0, or `i j ∈ pv[x, y, z], or v is archimedean}
2 W ← F2× L ′(2, k; S)
3 for v ∈ S:
4 P← {γ̃ v(P) ∈ C(kv) : `i j (P)= 0 for some i, j}
5 if dim2〈P − Q : P, Q ∈ P〉 equals the bound in Lemma 5.3:
6 Wv← 〈P〉
7 else:
8 Wv← 〈γ̃ v(C(kv))〉 as computed in Sections 5.1 and 5.2
9 W ←W ∩ ρ−1

v (Wv)

10 W 1
← {w ∈W : w1 = 1}, where w1 is the image of w in F2 from line 2

11 for v ∈�k : v is finite and #(Ov/pv)≤ N :
12 W 1

← {w ∈W 1
: ρ̃v(w) ∈ γ̃ v(C(kv))}

13 return W

6. Results

We implemented Algorithm 1 for k =Q in Magma and tested it on two sample sets:

A. Curves parameterized by

{(u1, . . . , v3) ∈ {−6, . . . , 6} : u1 < u2 < u3 and u1 < v1}.

The inequalities normalize some of the permutations possible on the points that lead to isomorphic
curves. We found 81070 configurations in general position. However, because of the small values of the
coefficients, there are many configurations with extra symmetries, so we find many isomorphic curves in
the configurations. We find 33471 distinct values for D27, indicating that the collection contains many
nonisomorphic curves as well.

B. 70000 curves with u1, . . . , v3 chosen uniformly randomly from {−40, . . . , 40}, while discarding
configurations not in general position. We originally found two quartics with matching D27. Their
configurations differed by a permutation, so the curves were isomorphic. We replaced one of them.

In each case, we used Magma’s MinimizeReducePlaneQuartic to find a nicer plane model, with
smaller discriminant. Since isomorphisms change D27 by a 27-th power, it is easy to tell from discrimi-
nants when curves are not isomorphic.

Typical examples take less than 2 seconds to execute, with the quartic reduction step being one of the
more expensive and less predictable steps. Occasional anomalies arise, where computation of a local
image at a large prime is required. The whole experiment represents about 126 CPU hours of work.
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C(Qv)=∅ Sel(2)(C/Q)=∅ rational bitangent contact point other rational point total

A 3654 42477 34025 4568 81070
4.5% 52% 42% 5.6% 100%

B 521 63926 4830 1244 70000
0.7% 91% 6.9% 1.8% 100%

Table 6.1. Two-cover descent results

Example 6.1. As a small, typical, example, take(
u1 u2 u3

v1 v2 v3

)
=

(
17 −7 −9
35 3 9

)
.

We find

C : 9x4
− 60x3 y+ 357x2 y2

+ 246xy3
+ 16y4

− 42x3z+ 259x2 yz− 168xy2z

−141y3z+ 31x2z2
− 492xyz2

+ 207y2z2
+ 42xz3

− 27yz3
+ 9z4

= 0

and D27(C)= 234
· 320
· 510
· 78
· 112
· 136
· 174
· 194
· 292
· 372
· 412. The curve C has points everywhere

locally. We have dim2 L ′(2,Q; S)= 72 and WC =
⋂
v∈S ρ̃

−1
v (Wv) has dim2 WC = 10. We find that W 1

C

is nonempty, so it has 29 elements. Computing

W 1
C,T = {w ∈W 1

C : ρ̃v(w) ∈ γ̃ v(C(kv)) for v ∈ T }

is quite doable, for various sets T. We conclude that C(Q)=∅ from, for example,

Sel(2)(C/Q)⊂W 1
C,T =∅ for T = {2, 3, 5} or {31, 43, 47, 53, 71, 83}.

Furthermore, from the data computed we can conclude that

dim2 Sel(2)(JacC /Q)= dim2 W 0
C = 9,

so either JacC(Q) has free rank 3 or X(JacC /Q)[2] is nontrivial.

6.1. Results of two-cover descent. We executed Algorithm 1 on our samples, with N = 50. This allowed
us to determine the existence of rational points on each of the curves. We summarize our findings in
Table 6.1.

When Sel(2)(C/Q) 6= ∅ and C has no rational bitangent contact points (possibly a hyperflex), we
search for a low-height nonsingular point using PointSearch on either the sextic model (3-1) or the
plane quartic model we construct from it. These are the curves reported in the “other rational point”
column. For two curves we needed to search up to a height bound of 107.

Another interesting fact is that local obstructions are quite rare (having a local obstruction implies
Sel(2)(C/Q)=∅). Furthermore we only found C(Qp)=∅ for p= 2, 11, 23, and only when C has good
reduction at those places. Proposition 1.2 gives a partial explanation of this fact. This is quite contrary
to the case of hyperelliptic curves, where local obstructions do tend to occur at primes of bad reduction.
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6 7 8 9 10 11 12 13

A 0.05% 18.7% 39.4% 29.1% 10.1% 2.28% 0.29% 0.006% (n = 31990)
B 0 20.2% 41.8% 27.9% 8.71% 1.27% 0.10% 0.006% (n = 51685)

Table 6.2. Distribution of dim2 Sel(2)(JacC /Q) where our data allowed its computation

6.2. Information on rank and X. We have

Sel(2)(JacC /Q)= L ′(Q, 2; S)∩
⋂
v∈S

ρ−1
v γ v(Pic0(C/Qv)).

Lemma 5.3 gives a condition for when the sets on the right-hand side are generated by differences of
degree 1 points. For a reasonable proportion of our curves, our data allows us to compute Sel(2)(JacC /Q).
We list the results in Table 6.2. In the rest of this section, we only consider these examples.

With JacC [2](Q)= (Z/2Z)6, we must have that the Selmer rank is at least 6, but as one can see, the
distribution has an average significantly higher than that. Part of that is explained by the fact that C ,
and hence the class J 1

∈ H1(k, JacC) representing Pic1(C/Q), is trivial everywhere locally. Since C has
quadratic points, we can pull the class back under the homomorphism

Sel(2)(JacC /Q)→ H1(k, JacC)[2]

and the preimage is likely independent of the image of JacC [2](Q).
If W 1

C = ∅ in (5-2) then it follows by [Cre20, Theorem 5.3] that J 1 is not divisible by two in
X(JacC /Q), and therefore is nontrivial. This happens in about half the examples.

Once we take into account that we expect that

dim2 Sel(2)(JacC /Q)≥ 7,

we find that the distributions in Table 6.2, particularly for collection B, match [PR12, Conjecture 1.1]
rather well. This does require us to account for the fact that J 1 almost always has points everywhere
locally.

Generally, nonhyperelliptic curves tend to have points everywhere locally. Therefore, one actually
should expect that Selmer groups of Jacobians of curves behave a little differently from those of general
abelian varieties, because they tend to come equipped with an everywhere locally trivial torsor.
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Appendix: Local algorithms

We use the notation from Section 5.2. The algorithms here are in the spirit of [Bru06, §5; BS09, §4].
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Algorithm 2: HENSELBALLS

Input: f ∈O[x, y], describing a smooth curve
Output: A finite set {(xt , yt , et )}t of Hensel-liftable balls covering the O-valued solutions of f (x, y)= 0

1 for (x0, y0) ∈ {(x0, y0) ∈ D2
: f (x0, y0)≡ 0 (mod p)}:

2 R←∅
3 if ∂ f

∂x (x0, y0) 6≡ 0 (mod p) or ∂ f
∂y (x0, y0) 6≡ 0 (mod p):

4 R← R ∪ {(x0, y0, 1)}
5 else:
6 g← f (x0+πx, y0+πy)
7 T ← HENSELBALLS(g/content(g))
8 R← R ∪ {(x0+πx1, y0+πy1, e+ 1) : (x1, y1, e) ∈ T }
9 return R

Algorithm 3: LOCALIMAGE

Input: f ∈O[x, y] describing a smooth plane quartic, together with its bitangent forms
{`i j ∈O[x, y] : 0≤ i < j ≤ 7} and syzygetic data δq as in Definition 2.3

Output: Local image of γ v on the given affine patch

1 Denote the mod-squares map by µ :O \ {0} → k×/k×2

2 T ← HENSELBALLS( f )
3 R←∅
4 while T 6=∅:
5 Take (x0, y0, e) from T
6 L← [`i j (x0, y0) : 0≤ i < j ≤ 7]
7 for i = 1, . . . , 7:
8 if ord(L i ) < e− ord(4):
9 γi ← µ(L i )

10 else if there is a syzygetic quadruple q= {`i , `a, `b, `c} such that
max(ord(`a(x0, y0)), ord(`b(x0, y0)), ord(`c(x0, y0))) < e− ord(4):

11 γi ← µ(δq`a(x0, y0)`b(x0, y0)`c(x0, y0))

12 else: /* we refine the covering */
13 g← f (x0+π

ex, y0+π
e y)

14 h← g/content(g) /* h (mod p) will be linear */
15 for (x1, y1) ∈ {(x1, y1) ∈ D2

: h(x1, y1)≡ 0 (mod p)}:
16 T ← T ∪ (x0+π

ex1, y0+π
e y1, e+ 1)

17 break to while
18 Add (γ1, . . . , γ7) to R
19 return R.
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