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Given a genus two curve X : y2
= x5
+ ax3

+ bx2
+ cx + d, we give an explicit parametrization of all

other such curves Y with a specified symplectic isomorphism on three-torsion of Jacobians Jac(X)[3] ∼=
Jac(Y )[3]. It is known that under certain conditions modularity of X implies modularity of infinitely
many of the Y , and we explain how our formulas render this transfer of modularity explicit. Our method
centers on the invariant theory of the complex reflection group C3×Sp4(F3). We discuss other examples
where complex reflection groups are related to moduli spaces of curves, and in particular motivate our
main computation with an exposition of the simpler case of the group Sp2(F3)= SL2(F3) and 3-torsion
on elliptic curves.

1. Introduction

1.1. Overview. Consider a genus two curve X over Q given by an affine equation

y2
= x5
+ ax3

+ bx2
+ cx + d. (1-1)

The representation ρ : Gal(Q/Q)→ GSp4(F3) on the three-torsion Jac(X)[3] of its Jacobian is given by
an explicit degree 80 polynomial with coefficients in Q[a, b, c, d]. The polynomial can be extracted from
[Shi91], or by following the recipe given in Section 3.1. The main theorem of this paper parametrizes
all pairs (Y, i) consisting of a curve

Y : y2
= x5
+ Ax3

+ Bx2
+Cx + D (1-2)

and a Gal(Q/Q)-equivariant symplectic isomorphism, i : Jac(X)[3] → Jac(Y )[3]. The curves in (1-2) all
have a rational Weierstrass point at∞. The reader may wonder why we did not instead try to parametrize
pairs (Y, i) for all genus two curves Y . The answer is that the corresponding moduli space, while rational
over C, will not typically be rational over Q (see the discussion towards the end of Section 1.2).
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Analogous problems for genus one curves and their mod p representations for p ≤ 5 were solved by
Rubin and Silverberg [RS95]. In Section 2, we explain how the mod 3 formulas of [LR96] can be recon-
structed by using that Sp2(F3) has a two-dimensional complex reflection representation, summarizing
the result in Theorem 1.

Section 3 contains our main result, Theorem 2. It follows Section 2 closely, using now that Sp4(F3) is
the main factor in the complex reflection group C3×Sp4(F3). We write the new curves as Y = X (s, t, u, v)
with X (1, 0, 0, 0)= X . The new coefficients A, B, C and D are polynomials in a, b, c, d , s, t , u, and v.
While the genus one and two cases are remarkably similar theoretically, the computations in the genus
two case are orders of magnitude more complicated. For example, A, B, C , and D have 14604, 112763,
515354, and 1727097 terms respectively, while the corresponding two coefficients in the genus one case
have only 6 and 9 terms. We give all these coefficients and other information the reader may find helpful
in Mathematica files in the online supplement.

Section 4 provides four independent complements. Section 4.1 sketches an alternative method for
computing the above (A, B,C, D). Section 4.2 presents a family of examples involving Richelot iso-
genies. Section 4.3 gives an application to modularity which was one of the motivations for this paper.
Section 4.4 illustrates that much of what we do works for arbitrary complex reflection groups; in par-
ticular, it sketches direct analogs of our main result in the computationally yet more difficult settings of
2-torsion in the Jacobians of certain curves of genus 3 and 4.

1.2. Moduli spaces. Theorems 1 and 2 and the analogs sketched in Section 4.4 are all formulated in
terms of certain a priori complicated moduli spaces being actually open subvarieties of projective space.
To underscore this perspective, we consider a whole hierarchy of standard moduli spaces as follows.

Let A be an abelian variety over Q of dimension g with a principal polarization λ. If VA = A[p] is
the set of p-torsion points with coefficients in Q, then VA is a 2g-dimensional vector space over Fp with
a symplectic form ∧2

A induced by the Weil pairing A[p] × A[p] → µp. This structure is preserved by
Gal(Q/Q), and so gives rise to a Galois representation

ρA : Gal(Q/Q)→ GSp2g(Fp);

here the similitude character Gal(Q/Q)→ F×p is the mod-p cyclotomic character.
Conversely, if ρ is any such representation on a symplectic space (V,∧2), coming from an abelian

variety or not, there exists a moduli space Ag(ρ) over Q parametrizing triples (A, λ, ι) consisting of a
principally polarized abelian variety A together with an isomorphism ι : (V,∧2)' (VA,∧

2
A) of symplectic

representations.
Via (A, λ, ι) 7→ (A, λ), one has a covering map Ag(ρ)→ Ag to the moduli space of principally

polarized g-dimensional abelian varieties. For the split Galois representation ρ0, corresponding to the
torsion structure (Z/pZ)g ⊕ (µp)

g with its natural symplectic form, the cover Ag(ρ0) is the standard
“full level p” cover Ag(p) of Ag. In general, Ag(ρ) is a twisted version of Ag(p), meaning that the two
varieties become isomorphic after base change from Q to Q.

http://msp.org/obs/2020/4-1/obs-v4-n1-x01-MathematicaMatrixCode.zip
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The varieties Ag(ρ) become rapidly more complicated as either g or p increases. In particular, they are
geometrically rational exactly for the cases (g, p)= (1, 2), (1, 3), (1, 5) (2, 2), (2, 3), and (3, 2) [HS02,
Theorem II.2.1]. In the three cases when g = 1, the curves A1(ρ) are always rational. In the main
case of interest (2, 3) for this paper, the three-dimensional variety A2(3)= A2(ρ0) is rational [BN18].
However, for many ρ, including all surjective representations, it is proven in [CC20] that the variety
A2(ρ) is never rational. It is true, however, that there exists a degree 6 cover Aw2 (ρ) which is rational
[BCGP18, Lemma 10.2.4]. Thus while Theorem 1 corresponds to a parametrization of A1(ρ) for p = 3,
Theorem 2 corresponds to a parametrization of Aw2 (ρ). More precisely, the Torelli map M2→ A2 is
an open immersion, and the pullback of Aw2 (ρ) is the moduli space Mw

2 (ρ) of genus two curves of the
form (1-1) whose Jacobians give rise to ρ, and it is Mw

2 (ρ) which we explicitly parametrize. The retreat
to this cover is optimal in the sense that six is generically the minimal degree of any dominant rational
map from P3

Q
to A2(ρ) [CC20]. We mention in passing that our arguments give an alternative proof of

[BCGP18, Lemma 10.2.4].
There is a natural generalization of the varieties Ag(ρ). Namely, for any m ∈ F×p , one can require

instead an isomorphism i : (V,∧2) ' (VA,m∧2
A). For m/m′ a square, the corresponding varieties are

canonically isomorphic, so that one gets a new moduli space only in the case of p odd. We denote this
new moduli space involving “antisymplectic” isomorphisms by A∗g(ρ). Our policy throughout this paper
is to focus on Ag(ρ) and be much briefer about parallel results for A∗g(ρ).

2. Elliptic curves with fixed 3-torsion

In this section, as a warm up to Section 3, we rederive the formulas in [LR96] describing elliptic curves
with fixed 3-torsion from the invariant theory of the group Sp2(F3) as in [Fis12]. Many of the steps in
the derivation transfer with no theoretical change to our main case of abelian surfaces. We present these
steps in greater detail here, because space allows us to give explicit formulas right in the text. Throughout
this section and the next, we present the derivations in elementary language which stays very close to
the computations involved. Only towards the end of the sections do we recast the results in the moduli
language of the introduction.

2.1. Elliptic curves and their 3-torsion. Let a and b be rational numbers such that the polynomial dis-
criminant 1poly =−4a3

− 27b2 of x3
+ ax + b is nonzero and consider the elliptic curve X over Q with

affine equation
y2
= x3
+ ax + b. (2-1)

We emphasize the discriminant 1(a, b) = 1 = 241poly in the sequel, because it makes Section 2.7
cleaner.

By a classical division polynomial formula, the eight primitive 3-torsion points (x, y) ∈ C2 are exactly
the points satisfying both (2-1) and

3x4
+ 6ax2

+ 12bx − a2
= 0. (2-2)
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Equations (2-1) and (2-2) together define an octic algebra over Q. Rather than work with the two gener-
ators x and y and the two relations (2-1) and (2-2), we will work with z, the slope of a tangent line to
the elliptic curve at the 3-torsion point (x, y). Then z2

= 3x and assuming a 6= 0 to avoid inseparability
issues, the algebra in question is the quotient K := Ka,b of Q[z] coming from the equation

F(a, b, z) := z8
+ 18az4

+ 108bz2
− 27a2

= 0. (2-3)

2.2. Sp2(F3) and related groups. For generic (a, b), the Galois group of the polynomial F(a, b, z) is
GSp2(F3) = GL2(F3). The discriminant of F(a, b, z) is −28321a214. Thus the splitting field K ′a,b of
F(a, b, z) contains E = Q(

√
−3) for all a, b. The relative Galois group Gal(K ′a,b/E) is Sp2(F3) =

SL2(F3). We will generally use symplectic rather than linear language in the sequel, to harmonize our
notation with our main case of genus two. Also we will systematically use ω = exp(2π i/3) = (−1+
√
−3)/2 as our preferred generator for E .
To describe elliptic curves with fixed 3-torsion, we use that (2-3) arises as a generic polynomial in

the invariant theory of Sp2(F3). The invariant theory is simple because Sp2(F3) =
〈(1

1
0
1

)
,
( 1

0
1
1

)〉
can be

realized as a complex reflection group by sending the generators in order to

g1 =

(
ω ω− 1
0 1

)
, g2 =

(
1 0

(ω− 1)/3 ω

)
. (2-4)

The matrices g1 and g2 are indeed complex reflections because all but one eigenvalue is 1. In our study
of the image ST 4= G = 〈g1, g2〉, the subgroup H = 〈g1〉 will play an important role. Here our notation
ST 4 refers to the placement of G in the Shephard–Todd classification of the thirty-seven exceptional
irreducible complex reflection groups sorted roughly by increasing size [ST54, Table VII].

For both the current case of n = 2 and the main case of n = 4, we are focused principally on three
irreducible characters of Spn(F3), the unital character χ1 and a complex conjugate pair χna and χnb.
Here χna corresponds to the representations (2-4) and (3-2) on V = En . Just as invariant is used for
polynomials associated to χ1, we will use the terms covariant and contravariant for polynomials similarly
associated to χna and χnb respectively.

The left half of Table 1 shows how the three characters 1, χ2a , and χ2b fit into the entire character
theory of Sp2(F3). For example, via ω+1=−ω and its conjugate, g1 and g2 lie in the classes 3A and 3B
respectively. While this information is clarifying, it is not strictly speaking needed for our arguments.

The right half of Table 1 gives numerical information that will guide our calculation with explicit
polynomials in the next subsections. The characters are orthonormal with respect to the Hermitian inner
product 〈 f, g〉 = |G|−1∑

C |C | f (C)g(C). Let φk =
∑

i 〈χi , φk〉χi be the character of the k-th symmetric
power Symk V . The multiplicities 〈χi , φk〉 for k ≤ 8 are given in the right half of Table 1. These numbers
are given for arbitrary k by

∑
∞

k=0〈χi , φk〉xk
= Ni (x)/((1−x4)(1−x6)). The character of the permutation

representation of G on the coset space G/H is φG/H = χ1+χ3+χ2a +χ2b. If W has character χi then
the dimension of the subspace W H of H -invariants is 〈χi , φG/H 〉. So dim(W H )= 1 if i ∈ {1, 2a, 2b, 3}
and dim(W H )= 0 if i ∈ {1a, 1b, 2}.
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|C | 1 1 4 4 6 4 4 〈χi , φk〉

C 1A 2A 3A 3B 4A 6A 6B 0 1 2 3 4 5 6 7 8 Ni (x)

χ1 1 1 1 1 1 1 1 1 1 1 1 1
χ1a 1 1 ω ω 1 ω ω 1 1 x4

χ1b 1 1 ω ω 1 ω ω 1 x8

χ2 2 −2 −1 −1 0 1 1 1 1 x5
+ x7

χ2a 2 −2 −ω −ω 0 ω ω 1 1 1 2 x + x3

χ2b 2 −2 −ω −ω 0 ω ω 1 1 1 x3
+ x5

χ3 3 3 0 0 −1 0 0 1 1 2 2 x2
+ x4
+ x6

Table 1. Character table of Sp2(F3) and invariant-theoretic information

2.3. Rings of invariants. The group G acts on the polynomial ring E[u, z] by the formulas induced
from the matrices in (2-4),

g1u = ωu+ (ω− 1)z, g2u = u,

g1z = z, g2z = (ω− 1)u/3+ωz.

Despite the appearance of the irrationality ω in these formulas, there is an important rationality present.
Namely we have arranged in (2-4) that g2

1 = g1 and g2
2 = g2. Accordingly G is stable under complex

conjugation, a stability not present in either the original Shephard and Todd paper [ST54, Section 4] or
in Magma’s implementation ShephardTodd(4).

We can use stability under complex conjugation to interpret G and H as the E-points of group schemes
G and H over Q. Then actually G acts on Q[u, z]. All seven irreducible representations of G are defined
over Q, just like all three representations of the familiar group scheme H ∼= µ3, are defined over Q. In
practice, we continue thinking almost exclusively in terms of ordinary groups; these group schemes just
provide a conceptually clean way of saying that in our various choices below we can and do always take
all coefficients rational.

Define

w =
u3

3
+ u2z+ uz2, a =

wz
9
, b =

w2
− 6wz3

− 3z6

324
(2-5)

in Q[u, z]. Then the subrings of H - and G-invariants are respectively

Q[u, z]H =Q[w, z], Q[u, z]G =Q[a, b]. (2-6)

Giving u and z weight one, the elements w, a, and b clearly have weights 3, 4, and 6 respectively. If one
eliminates w from the last two equations of (2-5), then one gets the polynomial relation F(a, b, z)= 0 of
(2-3), explaining our choice of overall scale factors in (2-5). The fact that the rings on the right in (2-6)
are polynomial rings, rather than more complicated rings requiring relations to describe, comes exactly
from the fact that H and G are complex reflection groups, by the Chevalley–Shephard–Todd theorem
[Che55].
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2.4. Covariants and contravariants. The graded ring Q[w, z] is free of rank eight over the graded ring
Q[a, b]. Moreover there is a homogeneous basis 1, z2, z4, z6, α1, α3, β3, β5 with the following properties.
The exponent or index d gives the weight, and the elements αd and βd are in the isotypical piece of
Q[u, z]d corresponding to χ2a and χ2b respectively.

The covariants αd and the contravariants βd are each well-defined up to multiplication by a nonzero
rational scalar. Explicit formulas for particular choices can be found by simultaneously imposing the
G-equivariance condition and the H -invariance condition. We take

α1 = z, α3 =
w+ z3

6
, β3 =

w− z3

2
, β5 =

5wz2
+ 3z5

18
. (2-7)

Ideas from classical invariant theory are useful in finding these quantities. For example, the polynomials
in Q[u, z]3 which have the required G-equivariance property for contravariance are exactly the linear
combinations of the partial derivatives ∂ua and ∂za. The subspace fixed by H is the line spanned by
(∂u − ∂z)a. Thus β3 ∝ (∂u − ∂z)a and, in the same way, β5 ∝ (∂u − ∂z)b. Further the covariant α3 ∝ ∂u D,
where D3

=1(a, b).

2.5. New coefficients. While we call the unique (up to scalar) homogeneous H -invariant elements α1, α3

generating the χ2a isotypical pieces as covariants, Fisher defines in [Fis12] a covariant to be a tuple
defining an equivariant map Q[u, z]1→ Q[u, z]d . For d = 1, a covariant tuple is given by l1 = (u, z)
corresponding to the identity map. For d = 3, a covariant tuple is given as l3 = (α3,1, α3,2), where α3,2 :=

α3 and the first entry α3,1 is uniquely determined because of the required G-equivariance. Following
[Fis12], one can obtain new coefficients by evaluating the invariants a and b at the general covariant
tuple (u, z) = s · l1+ t · l3 = (su + tα3,1, sz+ tα3,2). This approach yields our answer immediately in
the case of g = 1, but becomes computationally difficult for g = 2. So we continue to treat covariants as
polynomials as in Section 2.4 and describe two approaches to obtain new coefficients.

The octic Q[a, b]-algebra Q[w, z] acts on itself by multiplication and so every element e in Q[w, z]
has an octic characteristic polynomial φ(e, u) ∈Q[a, b, u]. One has φ(z, u)= F(a, b, u) from (2-3). To
obtain the characteristic polynomial for a general e, one can express e as an element of Q(a, b, z) via
(2-7) and w= 9a/z. Then one removes z by a resultant to get the desired octic relation on e. Alternatively,
we could have calculated these characteristic polynomials by using 8-by-8 matrices; in Section 3.5 we
use the matrix approach.

Carrying out this procedure for the general covariant and contravariant gives

φ(sα1+tα3, u)=F(A(a, b, s, t),B(a, b, s, t), u), φ(sβ3+tβ5, u)=F(A∗(a, b, s, t),B∗(a, b, s, t), u),

with

3A(a, b, s, t)= 3as4
+18bs3t−6a2s2t2

−6abst3
−(a3

+9b2)t4,

9B(a, b, s, t)= 9bs6
−12a2s5t−45abs4t2

−90b2s3t3
+15a2bs2t4

−2a(2a3
+9b2)st5

−3b(a3
+6b2)t6,
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and A∗ and B∗ in the online supplement. As stated in the introduction, A and B when fully expanded
have 6 and 9 terms respectively and agree exactly with expressions in [LR96, Section 2].

The polynomials A and B and their starred versions are respectively of degrees four and six in s and t .
Also in the main case assign weights (4, 6,−1,−3) to (a, b, s, t) and in the starred case make these
weights (4, 6,−3,−5) instead. Then all four polynomials are homogeneous of weight zero.

2.6. Geometric summary. The following theorem summarizes our calculations in terms of moduli spaces.
The ρ of the introduction is the mod 3 representation of the initial elliptic curve, so to be more explicit
we write Aa,b rather than A1(ρ).

Theorem 1. Fix an equation y2
= x3
+ax+b defining an elliptic curve X over Q. Let Aa,b be the moduli

space of pairs (Y, i) with Y an elliptic curve and i : X [3] → Y [3] a symplectic isomorphism. Then Aa,b

can be realized as the complement of a discriminant locus Za,b in the projective line Proj Q[s, t]. The
natural map to the j-line A1 ⊂ Proj Q[A, B] has degree twelve and is given by

(A, B)= (A(a, b, s, t), B(a, b, s, t)). (2-8)

The formula y2
= x3
+ A(a, b, s, t)x + B(a, b, s, t) gives the universal elliptic curve X (s, t) over Aa,b.

The discriminant locus Za,b is given by the vanishing of the discriminant

1(A, B)=1(a, b)δ(a, b, s, t)3/27, δ(a, b, s, t)= 3s4
+ 6as2t2

+ 12bst3
− a2t4. (2-9)

It thus consists of four geometric points. Comparing with (2-2), one sees that these points are permuted
by Gal(Q/Q) according to the projective mod 3 representation into PGL2(F3) ∼= S4. Theorem 1 has a
direct analog for the covers A∗a,b→A1.

2.7. Finding (s, t). Let X : y2
= x3

+ ax + b and Y : y2
= x3

+ Ax + B be elliptic curves over
Q with isomorphic 3-torsion. Then, in contrast with the analogous situation for the genus two case
described in Section 3.7, it is very easy to find associated (s, t) ∈ Q2. Namely, (2-8) and its analog
(A, B) = (A∗(a, b, s, t), B∗(a, b, s, t)) each have twenty-four solutions in C2. One just extracts the
rational ones, say by eliminating s and factoring the resulting degree twenty-four polynomials f (t) and
f ∗(t). If the image of Gal(Q/Q) is all of GSp2(F3)= GL2(F3), then one of these polynomials factors
as 1+ 1+ 6+ 8+ 8 and the other as 12+ 12. The two 1’s correspond to the desired solutions ±(s, t).

Discriminants are useful in distinguishing the two moduli spaces as follows. If Y has the form X (s, t)
then 1X/1Y is a perfect cube by (2-9). If it has the form X∗(s, t) then 1X1Y is a perfect cube by
the starred analog of (2-9). These implications determine a unique space on which Y represents a point
unless 1X and 1Y are both perfect cubes. Since x3

−1 is a resolvent cubic of the octic (2-3), this
ambiguous case arises if and only if the image 0 of ρX has order dividing 16.

As an example, let (a, b) = (−1, 0) so that X has conductor 25 and discriminant 26. Let (A, B) =
(−27,−162) so that Y has conductor 2533 and discriminant −2939. The octic polynomials F(a, b, z)
and F(A, B, z) define the same field because under Pari’s polredabs they each become z8

+ 6z4
− 3.

http://msp.org/obs/2020/4-1/obs-v4-n1-x01-MathematicaMatrixCode.zip
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This polynomial has Galois group of order 16. The procedure in the first paragraph yields solutions only
in the starred case, these being (s, t)=±

(
−

1
2 ,

3
2

)
.

An elliptic curve Y can give rise to a point on both moduli spaces constructed from X if and only if
the two moduli spaces coincide. The spaces coincide exactly when there is an equivariant isomorphism
(X [3],∧)' (X [3],−∧) where ∧ is the Weil pairing. Such an isomorphism exists if and only if X [3] is
either a twist of ρ0 = Z/3Z⊕µ3 or when X [3] is irreducible but not absolutely irreducible. (The latter
occurs precisely when the image factors through the nonsplit Cartan subgroup F×9 and has order > 2;
this case does not arise over Q.) An instance over Q is X = Y coming from (a, b)= (5805,−285714)
which is the modular curve X0(14) of genus one and discriminant −21831273; here (s, t)=±(1, 0) in
the main case and 263472(s, t)=±(435, 11) in the starred case.

3. Abelian surfaces with fixed 3-torsion

In this section, we present our main theorem on abelian surfaces with fixed 3-torsion. We are brief on
parts of the derivation which closely follow steps described in the previous section, and concentrate on
steps which have a new feature.

3.1. Weierstrass curves and their 3-torsion. By a Weierstrass curve in this paper we will mean a genus
two curve together with a distinguished Weierstrass point. Placing this marked point at infinity and
shifting the variable x , one can always present a Weierstrass curve via the affine equation (1-1), which
we call a Weierstrass equation. Replacing (a, b, c, d) by (u4a, u6b, u8c, u10d) yields an isomorphic
Weierstrass curve via the compensating change (x, y) 7→ (u2x, u5 y). The standard discriminant of the
genus two curve (1-1) is 1(a, b, c, d) = 1 = 281poly, where 1poly is the discriminant of the quintic
polynomial on the right of (1-1). It is best for our purposes to give the parameters a, b, c, and d weights
12, 18, 24, and 30. In this system, 1 is homogeneous of weight 120. The (coarse) moduli space of
Weierstrass curves Mw

2 is then the complement of the hypersurface 1 = 0 in the weighted projective
space P3(12, 18, 24, 30)= P3(2, 3, 4, 5). As explained at the end of Section 1.2, rather than describing
moduli spaces mapping to A2, we will be describing their base changes to Mw

2 .
The group law in terms of effective divisors on the Jacobian of a general genus two curve X : y2

=

f (x) yields a classical Gal(Q/Q)-equivariant bijection [CF96] from the nonzero 3-torsion points to
decompositions of the form

f (x)= (b4x3
+ b3x2

+ b2x + b1)
2
− b7(x2

+ b6x + b5)
3.

In the quintic case of (1-1), one has b2
4 = b7. The minimal polynomial of b−2

4 is a degree 40 polynomial
p40 such that p40(x2) describes the 3-torsion representation of X .

In our reflection group approach, it is actually p40(z6) which appears naturally. It has 1673 terms and
begins as

F(a, b, c, d, z)= z240
+ 15120az228

+ 2620800bz222
− 504(70227a2

− 831820c)z216

− 1965600(2529ab− 33550d)z210
+ · · · . (3-1)
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The splitting field of F(a, b, c, d, z) is the compositum of the splitting fields of p40(x2) and x3
−1.

In particular, having chosen a Weierstrass equation, the field E(11/3) remains constant throughout our
family of Weierstrass equations, even though E(11/3) is not determined by the 3-torsion representation.
On the other hand, the change of coordinates (x, y) 7→ (u2x, u5 y) maps 1 to u401, and so this auxil-
iary choice places no restrictions on the Weierstrass curves which can occur in the family. In contrast,
when g = 1, the field E(11/3) also remains constant, but in this case it is determined by the 3-torsion
representation as it is the fixed field of the 2-Sylow of the image of Gal(Q/E) in Sp2(F3).

3.2. Sp4(F3) and related groups. Define g1, g2, g3, and g4 to be
1 0 0 0
0 1 0 0
0 0 ω 0
0 0 0 1

 ,

α −α −α 0
−α α −α 0
−α −α α 0
0 0 0 1

 ,


1 0 0 0
0 ω 0 0
0 0 1 0
0 0 0 1

 ,

α α 0 α

α α 0 −α
0 0 1 0
α −α 0 α

 , (3-2)

where α = ω/
√
−3. Define

H = 〈g1, g2, g3〉 and G = 〈g1, g2, g3, g4〉.

The matrices gi are all complex reflections of order 3, and they are exactly the matrices given in [ST54,
10.5]. As with H = C3 and G = ST 4 = Sp2(F3) of the last section, the new groups H = ST 25 and
G = ST 32 are also complex reflection groups. The group G has the structure C3× Sp4(F3) and it is the
extra C3 that is the reason that 1 behaves differently in the two cases.

Again numeric identities guide polynomial calculations as we discussed around Table 1. For example,
orders are products of degrees of fundamental invariants. Analogous to the old cases |C3| = 3 and
|Sp2(F3)| = 4 · 6, the new cases are |H | = 6 · 9 · 12 and |G| = 12 · 18 · 24 · 30. Thus again the index
|G|/|H | = 240 matches the degree of the main polynomial (3-1). The character table of G has size
102× 102, so we certainly will not present the analog of Table 1. The most important information is that
the degrees in which co- and contravariants live, previously 1, 3 and 3, 5, are now 1, 7, 13, 19 and 11,
17, 23, 29 for G.

3.3. Rings of invariants. One has the rationality condition g2
i = gi for all four i , allowing us again to

interpret H and G as E-points of group schemes H and G over Q. The matrices gi together give an
action of G on Q[z1, z2, z3, z4]. The variable z = z4 plays a role which is different from the other zi .

Define, following [Hun96, 4.72],

p = z6
1+ z6

2+ z6
3− 10(z3

2z3
3+ z3

2z3
1+ z3

3z3
1),

q = (z3
1− z3

2)(z
3
2− z3

3)(z
3
3− z3

1),

r = (z3
1+ z3

2+ z3
3)[(z

3
1+ z3

2+ z3
3)

3
+ 216z3

1z3
2z3

3].

Also define a, b, c, and d by taking (24375a, 263952b, 2831253c, 21031655d) to be
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−p2
−5r+1320qz3

−132pz6
−6z12,

p3
−400q2

−5pr−680pqz3
+323p2z6

−255r z6
−7480qz9

+68pz12
−4z18,

2p4
−800pq2

−5p2r+320p2qz3
−3000qrz3

−722p3z6
+175200q2z6

+990prz6
+33040pqz9

−953p2z12
+3495r z12

+15720qz15
+268pz18

−3z24,

13p5
−6000p2q2

−25p3r+21600p3qz3
−9600000q3z3

−45000pqrz3
+11790p4z6

−4572000pq2z6

−37575p2r z6
+28125r2z6

−247200p2qz9
−945000qrz9

+37155p3z12
+234000q2z12

−150075prz12
−214200pqz15

+30855p2z18
−143775r z18

+354600qz21
+2340pz24

−12z30).
Because H and G are complex reflection groups, the rings of invariants are freely generated, explicit
formulas being

Q[z1, z2, z3, z]H =Q[p, q, r, z], Q[z1, z2, z3, z]G =Q[a, b, c, d].

When one removes p, q, r from the equations defining a, b, c, d, one gets exactly the degree 240
equation (3-1) for z.

3.4. Covariants and contravariants. As mentioned before, group-theoretic calculations like those in
Table 1 say that covariants lie in degrees 1, 7, 13, and 19. Formulas for H -invariant covariants in these
degrees are

α1 = z, 22335α7 = 7pz− 3z7, 2436α13 = (11r − 3p2)z+ 216qz4
+ 72pz7,

24310α19 = (p3
− pr − 468q2)z− 24pqz4

+ (66r − 6p2)z7
− 288qz10

− 12pz13.

Here, unlike in the genus one case, there is an ambiguity beyond multiplying by a nonzero scalar. Namely
rather than working with α13 we could work with any linear combination of aα1 and α13 that involves α13

nontrivially. Similarly we could replace α19 by c1bα1+ c7aα7+ c19α19 for any nonzero c19. The choices
involved in picking particular contravariants βk mirror the choices involved in picking αk−10. Our choice
of (β11, β17, β23, β29) is given in the online supplement. Just as in Section 2.4, the contravariants βk can
be described in terms of partial derivatives of the invariants. To be precise, we take (β11, β17, β23, β29)=

(∂za, ∂zb, ∂zc, ∂zd).

3.5. New coefficients. Each covariant element αd is the last entry of a uniquely determined covariant
tuple ld of length 4 defining an equivariant map Q[z1, z2, z3, z]1→Q[z1, z2, z3, z]d . By evaluating the
invariants a, b, c, d at the general covariant tuple i.e., by setting (z1, z2, z3, z)= s ·l1+ t ·l7+u ·l13+v ·l19,
one can theoretically obtain the new coefficients. For computational reasons, we instead follow the matrix
approach as stated in Section 2.5.

Our key computation takes place in the algebra Q[p, q, r, z] of H -invariants viewed as a graded
module over the algebra Q[a, b, c, d] of G-invariants. As a graded basis we use pi q jr kzl with 0 ≤
i, j, k < 2 and 0≤ l < 30. Repeatedly using the vector equation in Section 3.3, we expand the products

αe pi q jr kzl
=

∑
I,J,K ,L

M(e)i, j,k,l
I,J,K ,L p I q J r K zL

http://msp.org/obs/2020/4-1/obs-v4-n1-x01-MathematicaMatrixCode.zip
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to represent the covariants αe as 240-by-240 matrices M(e) with entries in Q[a, b, c, d]. The general
covariant

Z = sα1+ tα7+ uα13+ vα19 (3-3)

satisfies the characteristic polynomial of M = s M(1)+ t M(7)+ uM(13)+ vM(19). In other words, Z
satisfies a degree 240 polynomial equation

F(A, B,C, D, Z)= Z240
+ c2 Z228

+ c3 Z222
+ c4 Z216

+ c5 Z210
+ · · · = 0

with F from (3-1). We need to calculate A, B, C , D in terms of the free parameters a, b, c, d, s, t , u,
and v. Define normalized traces τn by

6τn = Tr(M6n)=
∑

i+ j+k+l=6n

( 6n
i, j, k, l

)
si t j ukvl Tr(M(1)i M(7) j M(13)k M(19)l).

Because the first trace τ1 is 0, standard symmetric polynomial formulas simplify, giving (c2, c3, c4, c5)=

(−τ2/2, τ3/3, τ 2
2 /8− τ4/4, τ2τ3/6− τ5/5). Then (3-1) yields

(A, B,C, D)=
(
−τ2

30240
,
−τ3

7862400
,

3667τ 2
2 − 5600τ4

9390915072000
,

2521τ2τ3− 2688τ5

886312627200000

)
. (3-4)

The matrices Mk have entries in Q[a, b, c, d, s, t, u, v] and for k = 1, . . . , 6 they take approximately
2, 10, 40, 125, 300, and 675 megabytes to store. The matrix M6 suffices to determine A because the
evaluation of Tr(M12)=Tr(M6

·M6) does not require the full matrix multiplication on the right. However
we would not be able to continue in this way to the needed M15. In contrast, the M(e) have entries only
in Q[a, b, c, d] and take less space to store. The worst of the M(e) j that we actually use in the above
expansion is M(19)15, which requires about 210 megabytes to store. By getting the terms in smaller
batches and discarding matrix products when no longer needed, we can completely compute all of A, B,
C , and D without memory overflow. In principle, one could repeat everything in the contravariant case,
although here the initial matrix M∗ takes twice as much space to store as M .

The polynomials A, B, C , and D have respectively degrees 12, 18, 24, and 30 in s, t , u, and v. Also,
assign weights (12, 18, 24, 30,−1,−7,−13,−19) to (a, b, c, d, s, t, u, v). Then all four polynomials
are homogeneous of weight zero. The bigradation allows A, B, C , and D to have 14671, 112933, 515454,
and 1727921 terms respectively. With our choice of α13 and α19, respectively 67, 170, 100, and 824 of
these terms vanish, so A, B, C , and D have the number of terms reported in the introduction. Not only
do the polynomials have many terms, but the coefficients can have moderately large numerators. The
largest absolute value of all the numerators is achieved by the term

230
· 33
· 523
· 1381131815224116413 · a3bc5d10u16v14

in D. On the another hand, denominators of the coefficients in A, B, C , and D always divide 5, 52, 53,
and 55 respectively.
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3.6. Geometric summary. We now summarize our results in the following theorem. The ρ of Section 1.2
is the mod 3 representation of the initial genus two curve (1-1). So, to be more explicit, we write
Ma,b,c,d =Mw

2 (ρ) below.

Theorem 2. Fix an equation y2
= x5
+ ax3

+ bx2
+ cx + d defining a curve X over Q. Let Ma,b,c,d be

the moduli space of pairs (Y, i) with Y a Weierstrass curve and i : Jac(X)[3] → Jac(Y )[3] a symplectic
isomorphism on the 3-torsion points of their Jacobians. Then Ma,b,c,d can be realized as the complement
of a discriminant locus Za,b,c,d in the projective three-space Proj Q[s, t, u, v]. The covering maps to the
moduli space Mw

2 ⊂ Proj Q[A, B,C, D] have degree 25920 and are given by

(A, B,C, D)= (A(a, . . . , v), B(a, . . . , v),C(a, . . . , v), D(a, . . . , v)). (3-5)

The formula

y2
= x5
+ A(a, . . . , v)x3

+ B(a, . . . , v)x2
+C(a, . . . , v)x + D(a, . . . , v) (3-6)

gives the universal Weierstrass curve X (s, t, u, v) over Ma,b,c,d .

The discriminant locus Za,b,c,d is given by the vanishing of the discriminant

1(A(a, . . . , v), . . . , D(a, . . . , v))=1(a, b, c, d)δ(a, b, c, d, s, t, u, v)3. (3-7)

where δ is homogeneous of degree 40 in s, t , u, v. Geometrically, Za,b,c,d is the union of forty planes
and these planes are permuted by Gal(Q/Q) according to the roots of p40 from the end of Section 3.1.
While the fibers of Ma,b,c,d over Mw

2 are projective spaces, the entire space defines a nontrivial projective
bundle which can be determined explicitly from our equations in terms of Pic(Mw

2 ) (for more details, see
the blog post [Cal20], in particular the comments of Najmuddin Fakhruddin). In principle, Theorem 2 has
a direct analog for M∗

a,b,c,d →Mw
2 . The online supplement only gives the starred coefficients evaluated

at (a, b, c, d, 1, 0, 0, 0), as this is sufficient for moving from one moduli space to the other.

3.7. Finding (s, t, u, v). Let X and Y be Weierstrass curves over Q having isomorphic 3-torsion and
given by coefficient sequences (a, b, c, d) and (A, B,C, D) respectively. Then finding associated ratio-
nal (s, t, u, v) is both theoretically and computationally more complicated than in the genus one case of
Section 2.7.

As in the genus one case, for (3-5) to have a solution, the ratio 1X/1Y must be a perfect cube by (3-7).
Similarly, for the starred version of (3-5) to have a solution the product 1X1Y must be a perfect cube.
The theoretical complication was introduced at the end of Section 3.1: the class modulo cubes of the
discriminant now depends on the model via 1(u4 A, u6 B, u8C, u10 D) = u401(A, B,C, D). So as a
preparatory step one needs to adjust the model of Y to some new (A, B,C, D) before seeking solutions
to (3-5), and also to some typically different (A∗, B∗,C∗, D∗) before seeking solutions to the starred
analog of (3-5).

Having presented Y properly, one then encounters the computational problem. Namely both (3-5) and
its starred version have 155520 solutions (s, t, u, v) ∈ C4, and so one cannot expect to find the rational

http://msp.org/obs/2020/4-1/obs-v4-n1-x01-MathematicaMatrixCode.zip
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ones by algebraic manipulations. Working numerically instead, one gets 240 solutions (p, q, r, z) ∈
C4 to the large vector equation in Section 3.3. Eight of these solutions are in R4. These vectors
yield eight vectors (α1, α7, α13, α19) ∈ R4 from the covariants in Section 3.4, and also eight vectors
(β11, β17, β23, β29) ∈ R4. Let Z and Z∗ respectively run over the eight real roots of F(A, B,C, D,U )
and F(A∗, B∗,C∗, D∗,U ). Then one can apply the LLL algorithm to find low height relations of the
form (3-3) and its starred variant

Z∗ = sβ11+ tβ17+ uβ23+ vβ29.

When the image of Gal(Q/Q) on 3-torsion is sufficiently large then there will just be a single pair of
solutions ±(s, t, u, v) from the eight equations of one type and none from the other eight equations. The
online supplement provides a Mathematica program findisos to do all steps at once. Examples are
given in Sections 4.2 and 4.3.

4. Complements

The four subsections of this section can be read independently.

4.1. A matricial identity. The polynomials A, B, C , and D in Theorem 2 satisfy the matricial identity

E(A(a, . . . , v), B(a, . . . , v),C(a, . . . , v), D(a, . . . , v), S, T,U, V )= E(a, b, c, d,M(S, T,U, V )t ),

where E can be any one of A, B, C , D, and M is a 4× 4 matrix with entries in Q[a, b, c, d, s, t, u, v]
whose first column is (s, t, u, v)t . The columns of M are homogeneous of degrees 1, 7, 13, 19 in s, t, u, v,
and the rows are homogeneous of degrees −1,−7,−13,−19 with respect to the weights assigned in
Section 3.5.

The situation in the g = 1 case is analogous but enormously simpler:

A(A(a, b, s, t), B(a, b, s, t), S, T )= A(a, b,M(S, T )t),

B(A(a, b, s, t), B(a, b, s, t), S, T )= B(a, b,M(S, T )t),
M =

(
s −as2t − 3bst2

+ a2t3/3
t s3

+ ast2
+ bt3

)
Here, as is visible, columns of M have degrees 1 and 3 in s, t , while rows have weights −1 and −3 with
respect to the weights assigned in Section 2.5. The second column is in fact proportional to [−∂tδ, ∂sδ]

t ,
where δ is as in (2-9). Hence M is the matrix found in Lemma 8.4 of [Fis12], up to rescaling of the
columns.

The identities say that changing the initial Weierstrass curve to a different one in Ma,b,c,d has the
effect of changing the parametrization of the family through a linear transformation M of the covariants.
In fact, our first method of calculating the quantities E(a, . . . , v) exploited this ansatz. Starting from
a few curves with a = b = 0, computing covariants numerically, and changing bases so as to meet
the bigradation conditions of Section 3.5, we obtained the polynomials E(0, 0, c, d, s, t, u, v). We then
examined the matricial identity with a = b= 0. Comparing certain monomial coefficients, we determined
the second column of M precisely, the third column up to one free parameter, and the fourth column
up to two free parameters. This corresponds to the ambiguity in the covariants in degrees 13 and 19

http://msp.org/obs/2020/4-1/obs-v4-n1-x01-MathematicaMatrixCode.zip


104 FRANK CALEGARI, SHIVA CHIDAMBARAM, AND DAVID P. ROBERTS

described in Section 3.4. Once a choice of M was made, comparing coefficients again and solving the
resulting linear equations determined the polynomials E(a, . . . , v) completely.

4.2. Examples involving Richelot isogenies. Let X and Y be Weierstrass curves and let I : Jac(X)→
Jac(Y ) be an isogeny with isotropic kernel of type (m,m) with m prime to 3. Then I induces an isomor-
phism ι : Jac(X)[3] → Jac(Y )[3] which is symplectic if m ≡ 1(3) and antisymplectic if m ≡ 2(3). In the
following examples, m = 2.

Let Xe, f,g be defined by (1-1) with

(a, b, c, d)= (−5(7e2
− 2 f ),−10e(3e2

− 2 f ), 5(32e4
− 39e2 f + g),−4e(24e4

+ 115e2 f − 5g)).

The discriminant of Xe, f,g is

1X =−21255(125e4
+ 20 f 2

− 4g)2(25e2 f − g)(25e2 f + g)2.

Define Ye, f,g to be the quadratic twist by 2 of Xe,− f,g. The form of (a, b, c, d) has been chosen so that
there is a Richelot isogeny from Jac(Xe, f,g) to Jac(Ye, f,g).

Let · be the involution of Q[e, f, g] given by (e, f , g)= (e,− f, g). To make 1X1Y a cube and avoid
denominators in (s, t, u, v), present Ye, f,g via

(A, B,C, D)= (az2, bz3, cz4, dz5)

with

z = 2354(125e4
+ 20 f 2

− 4g)4(25e2 f + g)6.

Applying the numeric method of Section 3.7 and interpolating strongly suggests

(s, t, u, v)=±(−4e(80e4
+ 7e2 f − g), 2(40e4

− 9e2 f − g),−4e(5e2
+ 2 f ), 5e2

+ 2 f ).

Specializing the contravariant matrix M(a, b, c, d, s, t, u, v)∗ of Section 3.5 to M(e, f, g)∗ allows di-
rect computation of its powers up through the needed fifteenth power. Applying (3-4) indeed recovers
(A, B,C, D) so that the interpolation was correct.

The examples of this subsection are already much simpler than the general case with its millions of
terms. For a smaller family of even simpler examples, now with all mod 3 representations nonsurjective,
one can set e = 0. Then b, d, B, D, s, and u are all 0, while a, c, A, C , t , and v are given by tiny
formulas.

4.3. Explicit families of modular abelian surfaces. Our main theorem gives a process by which modu-
larity of a genus two curve can be transferred to modularity of infinitely many other genus two curves.

Corollary 3. Suppose the genus two curve X : y2
= x5
+ ax3

+ bx2
+ cx + d has good reduction at 3,

and assume that A = Jac(X) satisfies all the conditions of [BCGP18, Propositions 10.1.1 and 10.1.3], so
that X is modular. Then all the curves X (s, t, u, v) or X∗(s, t, u, v) having good reduction at 3 are also
modular.
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The conclusion follows simply because the hypotheses imply that the new Jacobians also satisfy the
conditions of [BCGP18, Propositions 10.1.1, and 10.1.3] and are thus modular. In particular, for any
(s, t, u, v) ∈ P3(Q) reducing to (1, 0, 0, 0) ∈ P3(F3), the curves X and X (s, t, u, v) are identical modulo
3 and therefore X (s, t, u, v) is modular.

The hypotheses of [BCGP18, Propositions 10.1.1 and 10.1.3] include that the mod 3 representation ρ
is not surjective. The easiest way to satisfy the hypotheses is to look among X for which the geometric
endomorphism ring of Jac(X) is larger than Z. One such X , appearing in [CCG20, Example 3.3], is
given by

(a, b, c, d)=
(

12
5
,

12
52 ,

292
53 ,−

3672
55

)
,

having arisen from the simple equation y2
= (x2

+ 2x + 2)(x2
+ 2)x . This curve has conductor 215

and discriminant 1X = 223. Applying the corollary, one gets infinitely many modular genus two curves
X (s, t, u, v). For generic parameters, the geometric endomorphism ring of Jac(X (s, t, u, v)) is just Z.

It is much harder to directly find curves Y satisfying the hypotheses of [BCGP18, Propositions 10.1.1
and 10.1.3] and also satisfying EndQ(Jac(Y ))= Z. A short list was found in [CCG20]. The curve Y in
Example 3.3 there has

(A, B,C, D)=
(

27

5
,

211
· 57

52 ,−
212
· 503
53 ,

217
· 17943
55

)
and comes from the simple equation y2

= (2x4
+2x2

+1)(2x+3). It has conductor 2155 and Example 3.3
also observes that its 3-torsion is isomorphic to that of X .

While Y was found in [CCG20] via an ad hoc search, it now appears as just one point in an infi-
nite family. To see this explicitly, note that 1Y = 28356 so that 1Y /1X is a perfect cube. Numerical
computation as in Section 3.7 followed by algebraic verification yields

Y = X
(

129
125

,
11
25
,

3
100

,
1

20

)
.

If this procedure had failed, we would have found the proper X∗(s, t, u, v) by dividing (A, B,C, D) by
(24, 26, 28, 210) to make 1X1Y a cube.

4.4. Analogs for p = 2. Complex reflection groups also let one respond to the problem of the introduc-
tion for residual prime p = 2 and dimensions g = 2, 3, and 4 via descriptions of moduli spaces related
to Ag(ρ). A conceptual simplification is that since p = 2 one does not have the second collection of
spaces A∗g(ρ). Correspondingly, the relevant groups are actually reflection groups defined over Q, so
that covariants and contravariants coincide. The cases of dimension g = 3, 4 make fundamental use of
work of Shioda [Shi91].

We begin with the easiest case g = 2, because it shows clearly that our approach has classical roots in
Tschirnhausen transformations. Greater generality would be possible by using the symmetric group S6,
but we describe things instead using S5 to stay in the uniform context of Weierstrass curves. Let α1 be a
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companion matrix of x5
+ ax3

+ bx2
+ cx + d . For j = 2, 3, 4, let α j = α

j
1 − k j I where k j is chosen to

make α j traceless. Then the curve

y2
= det(x I − sα1− tα2− uα3− vα4)

has the same 2-torsion as the original curve. From this fact follows a very direct analog of Theorem 2,
with the new Ma,b,c,d ⊂ Proj Q[s, t, u, v] now mapping to the same Mw

2 ⊂ Proj Q[A, B,C, D] with
degree 120. Carrying out this easy computation, the elements A, B, C , and D of Q[a, b, c, d, s, t, u, v]
respectively have 24, 86, 235, and 535 terms. Of course there is nothing special about degree 5, and the
analogous computations in degrees 2g+ 1 and 2g+ 2 give statements about genus g hyperelliptic curves
with fixed 2-torsion.

For g = 3, we work with the moduli space Mq
3 of smooth plane quartics which maps isomorphically

to an open subvariety of A3. From the analog addressed in [CC20], we suspect that the varieties A3(ρ)

are in general not rational. To place ourselves in a clearly rational setting, we work with the moduli
space M f

3 of smooth plane quartics with a rational flex. This change is analogous to imposing a rational
Weierstrass point on a genus two curve, although now the resulting cover M f

3 →Mq
3 has degree twenty

four. A quartic curve with a rational flex can always be given in affine coordinates by

y3
+ (x3

+ a8x + a12)y+ (a2x4
+ a6x3

+ a10x2
+ a14x + a18)= 0. (4-1)

Here the flex in homogeneous coordinates is at (x, y, z) = (0, 1, 0) and its tangent line is the line at
infinity z = 0. Changing ad to udad gives an isomorphic curve via (x, y) 7→ (u4x, u6 y). The variety
M f

3 is the complement of a discriminant locus in the weighted projective space Proj Q[a2, . . . , a18] =

P6(2, . . . , 18). The invariant theory of the reflection group ST 36 = W (E7) = C2 × Sp6(F2) gives
polynomials Ai (a2, . . . , a18, s−1, . . . , s−17) of degree i in the s− j and total weight 0. Following the
template of the previous cases, for fixed (a2, . . . , a18) one has a six-dimensional variety Ma2,...,a18 ⊂

Proj Q[s−1, . . . , s−17] parametrizing genus three curves with a rational flex and 2-torsion identified with
that of (4-1). The covering maps Ma2,...,a18 →M f

3 now have degree |Sp6(F2)| = 1451520. The number
of terms allowed in Ai (a2, . . . , a18, s−1, . . . , s−17) by the bigradation is the coefficient of x i t19i in∏

d∈{2,6,8,10,12,14,18}

1
(1− td)(1− xtd)

. (4-2)

For i = 18, this number is 11, 617, 543, 745, so complete computations in the style of this paper seem
infeasible.

For g = 4, one needs to go quite far away from the 10-dimensional variety A4 to obtain a statement
parallel to the previous ones. Even the nine-dimensional variety M4 is too large because for a generic
genus four curve X corresponding to a point in M4, the image of Gal(Q/Q) in its action on Jac(X)[2]
is Sp8(F2), and this group is not a complex reflection group. However, one can work with the smooth
curves

y3
+ (a2x3

+ a8x2
+ a14x + a20)y+ (x5

+ a12x3
+ a18x2

+ a24x + a30)= 0 (4-3)
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and a corresponding seven-dimensional moduli space Ms
4 ⊂ P7(2, . . . , 30). For a generic curve in

(4-3), the image of Gal(Q/Q) is the index 136 subgroup O+8 (F2) : 2 of Sp8(F2). Now from the in-
variant theory of the largest Shephard–Todd group ST 37 = W (E8) = 2.O+8 (F2) : 2, one gets polyno-
mials Ai (a2, . . . , a30, s−1, . . . , s−29) and covering maps Ma2,...,a30 → Ms

4 of degree |O+8 (F2) : 2| =
348, 364, 800. Aspects of this situation are within computational reach; for example Shioda computed
the degree 240 polynomial F(a2, . . . , a30, z) analogous to (2-3) and (3-1). However the number of
allowed terms in Ai (a2, . . . , a30, s−1, . . . , s−29) is even larger than in the previous g = 3 case, being the
coefficient of x i t31i in the analog of (4-2) where d runs over {2, 8, 12, 14, 18, 20, 24, 30}. For i = 30,
this number is 100, 315, 853, 630, 512. We close the paper with this W (E8) case because it is here that
the paper actually began: the polynomial (3-1) for our main case C3× Sp4(F3) is also the specialization
F(0, 0, a12, 0, a18, 0, a24, a30, z) of Shioda’s polynomial.
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