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Hypergeometric L-functions in average polynomial time

Edgar Costa, Kiran S. Kedlaya, and David Roe

We describe an algorithm for computing, for all primes p ≤ X , the mod-p reduction of the trace of
Frobenius at p of a fixed hypergeometric motive in time quasilinear in X . This combines the Beukers–
Cohen–Mellit trace formula with average polynomial time techniques of Harvey et al.

1. Introduction

In the past, computation of arithmetic L-functions has largely been limited to familiar classes of low-
dimensional geometric objects, such as hyperelliptic curves or K3 surfaces [CHK19]. Recently, it has
emerged that families of motives whose associated (Picard–Fuchs) differential equation is a hypergeomet-
ric equation also have L-functions which can be computed at large scale. Such motives provide accessible
examples of arithmetic L-functions with diverse configurations of Hodge numbers, some of which arise
in heretofore unanticipated applications. For example, certain hypergeometric motives appear among
families of Calabi–Yau threefolds, where they give rise to arithmetic manifestations of mirror symmetry
(as in [DKS+18]).

Using finite hypergeometric sums in the manner of Greene [Gre87], Katz [Kat90], and especially
McCarthy [McC13], an explicit formula for the L-function of a hypergeometric motive was given by
Beukers, Cohen and Mellit [BCM15]. It was then modified by Cohen and Rodriguez Villegas, using the
Gross–Koblitz formula [GK79] to replace classical Gauss sums with the Morita p-adic gamma function.
That work is unpublished, but is documented in the manuscript [Wat15]; the resulting formula appears
in [Coh15, §8] and [FKS16, §7.1]; it is implemented in PARI/GP [PAR19], Magma [Magma], and
SageMath [SageMath]; and it is being used to tabulate hypergeometric L-functions in the L-functions
and modular forms database [LMFDB]. (For an alternative approach using the p-adic Frobenius structure
on a hypergeometric equation, see [Ked19].)

The purpose of this paper is to describe a preliminary adaptation of average polynomial time techniques
for computation of L-functions to the setting of hypergeometric motives. Such techniques, based on
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accumulating remainder trees, were introduced by Costa, Gerbicz and Harvey [CGH14] for the problem
of finding Wilson primes; adapted to computing L-functions by Harvey [Har14; Har15]; and further
elaborated (and made practical in particular cases) by Harvey and Sutherland [HS14; HS16] and Harvey,
Massierer and Sutherland [HMS16].

To simplify matters, we consider here only a limited form of the problem: given a hypergeometric
motive over Q and a bound X, for each prime p ≤ X, we compute the reduction modulo p of the trace
of Frobenius at p in time quasilinear in X. This eliminates some technical issues that would arise when
computing the mod-pe reduction for e > 1, such as the computation of multiplicative lifts and evaluation
of the Morita p-adic gamma function in average polynomial time. Modulo p, the trace formula at p
for a parameter value t is a polynomial in t of degree O(p) whose coefficients are essentially ratios of
Pochhammer symbols. Computing the Pochhammer symbols themselves in average polynomial time
is a straightforward adaptation of the corresponding computation for factorials done in [CGH14]; this
approach can then be modified to include the polynomial evaluation.

At the end of the paper, we discuss the prospects of lifting our present restrictions of working mod-
ulo p (rather than a higher power) and of computing only the trace of the p-power Frobenius (rather
than a higher power). Eliminating both restrictions would yield an average polynomial time algorithm
for computing arbitrary hypergeometric L-series. However, the restricted computation described here
is already of significant value for hypergeometric motives of weight 1, for which the trace of the p-
power Frobenius is determined uniquely by its reduction modulo p (except when p is very small).
Since the formula for the trace of the q-power Frobenius involves a summation over q − 1 terms, our
method reduces the complexity of computing the first X terms of the L-series from X2 to X3/2 (see
Theorem 2.29).

We end this introduction by asking (as in [Ked19]) whether a similar trace formula exists for A-
hypergeometric systems in the sense of Gelfand, Kapranov and Zelevinsky [GKZ08]. Such a formula
might unlock even more classes of previously inaccessible L-functions.

2. Background

2A. The p-adic 0 function. For a detailed development of the following material, we recommend [Rob00,
§7.1] and [RV07, §6.2].

Definition 2.1. The (Morita) p-adic gamma function is the unique continuous function 0p : Zp→ Z×p

which satisfies

0p(n+ 1)= (−1)n+1
n∏

i=1
(i,p)=1

i = (−1)n+1 0(n+ 1)
pbn/pc0(bn/pc+ 1)

(2.2)

for all n ∈ Z≥0. For p ≥ 3, it is Lipschitz continuous with C = 1; i.e.,

|0p(x)−0p(y)|p ≤ |x − y|p. (2.3)
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There is also a functional equation analogous to the one for the complex 0 function:

0p(x + 1)= ω(x)0p(x), ω(x) :=
{
−x if x ∈ Z×p

−1 if x ∈ pZp.
(2.4)

Remark 2.5. It was originally observed by Dwork (writing pseudonymously in [Boy80], as corroborated
in [KT99]; see [RV07, §6.2] for the formulation given here) that 0p admits an easily computable Mahler
expansion on any mod-p residue disc:

0p(−a+ px)=
∑
k≥0

pkca+kp(x)k, (2.6)

where (x)k := x(x+1) · · · (x+k−1) is the usual Pochhammer symbol, and cn is defined by the recursion

ncn = cn−1+ cn−p, c0 = 1, cn = 0 for n < 0. (2.7)

Thus, one may compute 0p(x) modulo p f using O(p f ) ring operations.

2B. Hypergeometric motives and their L-functions. While the following discussion is needed to put
our work in context, the reader is encouraged to skip ahead to (2.22), as the essential content of the paper
is the computation of that formula.

Definition 2.8. A hypergeometric datum is a pair of disjoint tuples α= (α1, . . . , αr ) and β= (β1, . . . , βr )

valued in Q∩ [0, 1) which are Galois-stable (or balanced): any two reduced fractions with the same
denominator occur with the same multiplicity.

Remark 2.9. There are several equivalent ways to specify a hypergeometric datum. One is to specify
two tuples A and B for which the identity

r∏
j=1

x − e2π iα j

x − e2π iβ j
=

∏
a∈A 8a(x)∏
b∈B 8b(x)

holds in C(x), where 8n(x) denotes the n-th cyclotomic polynomial.

Definition 2.10. The zigzag function Zα,β : [0, 1] → Z associated to a hypergeometric datum (α, β) is
defined by

Zα,β(x) := #{ j : α j ≤ x}− #{ j : β j ≤ x}.

Notation 2.11. We denote by Mα,β the putative (see Remark 2.17) hypergeometric family over P1 asso-
ciated to the hypergeometric datum (α, β). Its expected properties are as follows:

• It is a pure motive of degree r with base field Q(t) and coefficient field Q.

• Its Hodge realization is the one constructed by Fedorov in [Fed18]. This means that as per [Fed18,
Theorem 2], its minimal motivic weight is

w =max{Zα,β(x) : x ∈ [0, 1]}−min{Zα,β(x) : x ∈ [0, 1]}− 1

=max{Zα,β(x) : x ∈ α}−min{Zα,β(x) : x ∈ β}− 1 (2.12)
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and a similar recipe (see [CG11, Conjecture 1.4] or [Fed18, Theorem 1]) computes the Hodge
numbers. Note that rw is even [Wat15, §1.2].

• Its `-adic étale realization is Katz’s perverse sheaf [Kat90, Chapter 8].

• For z ∈Q \ {0, 1,∞}, let Mα,β
z denote the specialization of Mα,β at t = z. Then the primes of bad

reduction for Mα,β
z are those primes p at which z and z− 1 are not both p-adic units (called tame

primes) and those primes p at which the αi and βi are not all integral (called wild primes). By the
compatibility with Katz, the L-function associated to Mα,β

z is given by the Beukers–Cohen–Mellit
trace formula [BCM15].

Remark 2.13. In order to avoid some case subdivisions in what follows, we assume hereafter that 0 /∈ α.
This is relatively harmless because of the isomorphism

Mα,β
z
∼= Mβ,α

1/z . (2.14)

Example 2.15. As per [Ono98], M (1/2,1/2),(0,0) is the motive H 1(E,Q), where

E : y2
=−x(x − 1)(x − t). (2.16)

For other (putative) examples, see [BK12] and [Nas17].

Remark 2.17. We use the qualifier “putative” in Notation 2.11 for two reasons. One is to avoid any
precision about motives; while [BCM15] describes a specific variety whose `-adic cohomology includes
Katz’s perverse sheaf, lifting this containment to the motivic level would require a deeper dive into
motivic categories (including a choice of which such category to consider).

The other, more serious issue is that there is no existing reference that provides this missing precision
on hypergeometric motives. The reader seeking to remedy this should start with [And04] for a user’s
guide to motives.

2B1. Trace formulas. We are particularly interested in computing

det(1− T Frob |Mα,β
z ), (2.18)

where Frob is the Frobenius automorphism at a prime p of good reduction for Mα,β
z . (For concrete-

ness, we may replace Mα,β
z with an étale realization.) We ignore primes of bad reduction both because

they are small enough to be handled individually and because a somewhat different recipe is required
(see [Wat15, § 11] for a partial description, noting that our z is Watkins’s 1/t).

Definition 2.19. Let {x} := x −bxc be the fractional part of x . For q = p f , define

0∗q(x) :=
f−1∏
v=0

0p({pvx}), (2.20)
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and then define a p-adic analogue of the Pochhammer symbol by setting

(x)∗m :=
0∗q

(
x + m

1−q

)
0∗q(x)

. (2.21)

Let [z] be the multiplicative representative in Zp of the residue class of z (the unique (p−1)-st root of
1 congruent to z modulo p). As in [Wat15, § 2], write

Hq

(
α

β

∣∣∣∣ z) := 1
1− q

q−2∑
m=0

(−p)ηm(α)−ηm(β)q D+ξm(β)

( r∏
j=1

(α j )
∗
m

(β j )∗m

)
[z]m, (2.22)

using the notation

ηm(x1, . . . , xr ) :=

r∑
j=1

f−1∑
v=0

{
pv
(

x j +
m

1−q

)}
−{pvx j }, (2.23)

ξm(β) := #{ j : β j = 0}− #
{

j : β j +
m

1−q
= 0

}
, (2.24)

D :=
w+ 1− #{ j : β j = 0}

2
. (2.25)

By adapting [BCM15, Theorem 1.3] using the Gross–Koblitz formula as in [Wat15, §2] (and twisting
by q D to minimize the weight), we deduce the following.

Theorem 2.26. We have

Hp f

(
α

β

∣∣∣∣ z)= Tr(Frob f
|Mα,β

z ) ∈ Z.

From [Wat15, §11], we also have a precise formula for the functional equation which is associated to
det(1− T Frob |Mα,β

z ).

Theorem 2.27. We have

det(1− q−wT−1 Frob |Mα,β
z )=±q−rw/2T−r det(1− T Frob |Mα,β

z ), (2.28)

where ± denotes +1 if w is even, and otherwise is given by{
(1|p), 1= z(z− 1)

∏
a∈A Disc(8a(x)) for r ≡ 0 (mod 2),

−(1|p), 1= (1− z)
∏

b∈B Disc(8b(x)) for r ≡ 1 (mod 2).

Here A, B,8a,8b are as in Remark 2.9 and (1|p) is the Kronecker symbol.

Using these two results, we recover det(1−T Frob |Mα,β
z ) from the values Hp f

(
α
β

∣∣ z) for f =1, . . . ,
⌊ r

2

⌋
.

2B2. Complexity considerations. Computing Hp f
(
α
β

∣∣ z) via (2.22) requires O( f p f ) arithmetic opera-
tions,1 due to the number of terms in the sum and product [Wat15, §2.1.4]. As these operations are in Zp,

1The factor of f comes from computing 0p . We do not incur a factor of f from computing 0∗q because the latter is invariant
under x 7→ {px}, so we only need O(q/ f ) evaluations of 0∗q .
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we must also pay attention to p-adic working precision; since Hp f
(
α
β

∣∣ z) is the sum of r algebraic integers
of complex norm pw f/2, it is uniquely determined by its reduction modulo pe for e > 1

2w f + logp(2r).
For the use case of computing L-series, a different analysis applies.

Theorem 2.29. Fix a hypergeometric datum (α, β). Given Hp
(
α
β

∣∣ z) for all primes p ≤ X, one can com-
pute the first X coefficients of the Dirichlet L-series associated to Mα,β

z in at most O(X3/2) arithmetic
operations.

Proof. The first X coefficients of the Dirichlet series are determined by the coefficients indexed by prime
powers up to X, and hence by the values Hq

(
α
β

∣∣ z) for all prime powers q ≤ X. The number of such q
which are not prime is

O(X1/2/ log X),

for q = p f ; evaluating (2.22) takes O( f p f )= O(X log X) arithmetic operations. �

3. Accumulating remainder trees

The use of a remainder tree to expedite modular reduction has its origins in the fast Fourier transform
(FFT). An early description was given by Borodin and Moenck [BM74]; for a modern treatment with
more historical references, see [Ber08].

Accumulating remainder trees were introduced in [CGH14] in order to compute (p− 1)! (mod p2)

for many primes p. We use the variant described in [HS14, §4].

Definition 3.1. Suppose P is a sequence p1, . . . , pb−1 of pairwise coprime integers with pi ≤ X, and
A0, . . . , Ab−2 is a sequence of 2× 2 integer matrices. We may use an accumulating remainder tree to
compute

Cn := A0 · · · An−1 mod pn (3.2)

for 1≤ n < b as follows. For notational convenience we assume b = 2`, set Ab−1 = 0 and p0 = 1. Then
as in [HS14, §4], write

mi, j := p j2`−i p j2`−i+1 · · · p( j+1)2`−i−1,

Ai, j := A j2`−i A j2`−i+1 · · · A( j+1)2`−i−1,

Ci, j := Ai,0 · · · Ai, j−1 mod mi, j .

(3.3)

This leads us to Algorithm 1.

Theorem 3.4 [HS14, Theorem 4.1]. Let B be an upper bound on the bit size of
∏b−1

j=0 p j and H an
upper bound on the bit size of any pi or Ai . The running time of Algorithm 1 is

O((B+ bH) log(B+ bH) log(b))

(using [HVDH19] for the runtime of integer multiplication) and its space complexity is

O((B+ bH) log(b)).
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Algorithm 1: Accumulating Remainder Tree

Input: A0, . . . , Ab−1, p0, . . . , pb−1 as in Definition 3.1
Output: {Ci }

1 def RemTree({Ai }, {pi }):
2 for j := 0 to b− 1 do
3 m`, j := p j and A`, j := A j

4 for i := `− 1 to 0 do
5 for j := 0 to 2i

− 1 do
6 mi, j := mi+1,2 j mi+1,2 j+1 and Ai, j := Ai+1,2 j Ai+1,2 j+1

7 C0,0 := id
8 for i := 1 to ` do
9 for j := 0 to 2i

− 1 do
10 if j even then
11 Ci, j := Ci−1,b j/2c mod mi, j

12 else
13 Ci, j := Ci−1,b j/2cAi, j−1 mod mi, j

14 return {C`, j } j=1,...,b−1

3A. Accumulating remainder tree with spacing. In most applications (including this one), there is not
a one-to-one correspondence between the moduli pi and the multiplicands Ai . Rather, we will be given
• a list of matrices A0, . . . , Ab−1,

• a list of primes p1, . . . , pc, and

• a list of distinct cut points b1, . . . , bc,

with the aim of computing Cn := A0 · · · Abn−1 mod pn for 1 ≤ n < c. This reduces to Algorithm 1 by
suitably grouping terms; see Algorithm 2. (One may also handle repeated cut points, as long as the cut
points up to X occur at most O(X) times.)

Remark 3.5. In practice, we split our products to work around discontinuities of (2.22) (see Section 5B).
One gains some savings (particularly in space complexity) by splitting a bit further, replacing remainder
trees with remainder forests [HS14, Theorem 4.2]; we omit the details here.

4. Nuts and bolts

We record two technical lemmas used in the description of our algorithm. For the rest of the paper, we
make the simplifying assumption q = p in Theorem 2.26.

Lemma 4.1. Set Ib := [0, 1] ∩ 1
b Z. Suppose γ ∈ Ib and p is a prime not dividing b. Let m = bγ (p− 1)c.

Then there exist δ ∈ Ib and ε ∈ {1, 2} so that

m+ ε ≡ δ (mod p).

Moreover, δ and ε only depend on b, γ , and p (mod b).
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Algorithm 2: Accumulating Remainder Tree with Spacing

Input: A0, . . . , Ab−1, p1, . . . , pc, b1, . . . , bc as in Section 3A
Output: C1, . . . ,Cc−1

1 def RemTreeWithSpacing({Ai }, {pi }, {bi }):
2 ` := dlog2(b)e
3 for j := b to 2`− 1 do
4 A j := 0
5 for j := 0 to 2`− 1 do
6 p′j := 1
7 for i := 1 to c do
8 p′bi

:= pi

9 C ′i := RemTree({Ai }, {p′i })
10 return {C ′bi

}i=0,...,c−1

Proof. Write γ = a
b and define an integer r ∈ {0, . . . , b− 1} by the condition that

a(p− 1)= mb+ r.

We then set {
ε := 1, δ := 1

b (b− a− r) if a+ r < b,

ε := 2, δ := 1
b (2b− a− r) otherwise.

Note that
b(δ− ε)=−(a+ r)= mb− ap

so m+ ε ≡ δ (mod p). The fact that δ ∈ Ib follows from the bounds 0≤ a, r ≤ b. �

Lemma 4.2. Suppose 0≤m< p−1 and either ηm(α)−ηm(β) 6=ηm+1(α)−ηm+1(β) or ξm(β) 6= ξm+1(β).
Then bγ (p− 1)c ∈ {m,m+ 1} for some γ ∈ α ∪β.

Proof. Since q = p, we have

ηm(α)− ηm(β)=

r∑
j=1

({
α j −

m
p−1

}
−{α j }

)
−

r∑
j=1

({
β j −

m
p−1

}
−{β j }

)
. (4.3)

For x, y ∈ [0, 1) we have

{x − y} =
{

x − y, (x ≥ y),
x − y+ 1, (x < y).

(4.4)

Consequently, the only way for ηm(α)− ηm(β) to change values when m goes to m+ 1 is for there to
exist γ ∈ α ∪β such that

γ −
m

p−1
≥ 0, γ −

m+1
p−1

< 0.

This occurs precisely when m = bγ (p − 1)c. Meanwhile, by (2.24), ξm(β) = ξm+1(β) unless β j =

m/(p− 1) or β j = (m+ 1)/(p− 1)= 0 for some j. �
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5. Computing trace functions of hypergeometric motives

Throughout this section, fix α, β and z. We now describe how to compute the trace Hp
(
α
β

∣∣ z) modulo p
in average polynomial time using (2.22), which we duplicate here modulo p for ease of reference:

Hp

(
α

β

∣∣∣∣ z)≡ p−2∑
m=0

(−p)ηm(α)−ηm(β) pD+ξm(β)

( r∏
j=1

(α j )
∗
m

(β j )∗m

)
zm (mod p). (5.1)

5A. Overview of the algorithm. In order to apply Algorithm 2, we would like to identify 2× 2 integer
matrices B(m), such that we may extract Hp

(
α
β

∣∣ z) (mod p) from B(0)B(1) · · · B(p− 2). In practice,
we will consider shorter subproducts and choose B(m) based on the residue of p modulo a fixed integer
(independent of m and p); we will then apply Algorithm 2 once for each subproduct and residue class.

As a first approximation, let us instead model the sum
∑p−2

m=0 Pm where

Pm := zm
r∏

j=1

(α j )
∗
m

(β j )∗m
∈ Z×p . (5.2)

If we can find f (m), g(m) ∈ Z[m] so that

Pm+1 ≡
f (m)
g(m)

Pm (mod p), (5.3)

we can then set

B(m) :=
(

g(m) 0
g(m) f (m)

)
= g(m)

(
1 0
1 f (m)/g(m)

)
(5.4)

and B̃ = B(0) · · · B(p− 2) (mod p), so that

B̃ ≡ g(0) · · · g(p− 2)

(
1 0∑p−2

m=0 Pm Pp−1

)
(mod p)

and so
∑p−2

m=0 Pm ≡ B̃21/B̃11 (mod p). That is, B̃11 tracks a common denominator, B̃22 tracks the prod-
uct Pm , and B̃12 computes the sum of the Pm .

There are two problems with the approach described above. First, to correctly simulate (5.1) we must
sum not Pm but

P ′m := (−p)ηm(α)−ηm(β) pD+ξm(β)Pm, (5.5)

which we cannot directly handle by modifying B(m)21 because the extra factor depends on both p and m.
Second, while we can find polynomials f and g satisfying (5.3) for most values of m using (2.21) and
the functional equation (2.4), there will be a few values of m where f (m) or g(m) is a multiple of p. We
cannot filter these values out during the remainder tree because p is not fixed.

The solution to both of these issues is to break up the range [0, p− 2] into intervals on which (5.3)
holds and the values ηm(α)− ηm(β) and ξm(β) are constant. The breaks between these intervals occur
when m = bγ (p− 1)c, where γ ∈ α ∪β. We thus use a separate accumulating remainder tree for each
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interval, yielding for each p a fixed number of subproducts with isolated missing terms in between; we
then compute separately for each p to bridge the gaps.

A third issue is that while we can vary the endpoint in an accumulating remainder tree as a function
of p (as described in Section 3), it is more difficult to change the start point. Our solution is to use
Lemma 4.1 to find a rational number δ so that adding δ to each α j and β j has the effect of shifting the
start point to 0.

5B. Construction of the matrix product. We now construct the matrix product described above. We
begin with the division of the interval [0, p − 1] and the division of primes into residue classes. We
assume that q = p is good and not 2.

Definition 5.6. Given a hypergeometric motive Mα,β
z , let 0= γ0 < · · ·< γs = 1 be the distinct elements

in α∪β ∪{0, 1}. Let b be the least common denominator of α∪β and fix c ∈ (Z/bZ)×. Let p be a prime
congruent to c modulo b and not dividing the denominator of z. Write mi for bγi (p− 1)c.

We next exhibit polynomials that we use to compute Pochhammer symbols and their partial sums on
the interval (γi , γi+1).

Definition 5.7. Fix an interval (γi , γi+1), choose δi and εi associated to γi as in Lemma 4.1, and let

ι(x, y) :=
{

1, x ≤ y,
0, x > y.

(5.8)

Define polynomials fi,c(k), gi,c(k) ∈ Z[k] as follows: set

Fi,c(k) := z
r∏

j=1

(α j + δi + ι(α j , γi )+ k− εi ),

Gi,c(k) :=
r∏

j=1

(β j + δi + ι(β j , γi )+ k− εi ),

(5.9)

let di,c be the least common multiple of the denominators of Fi,c and Gi,c, and set fi,c(k) := di,c Fi,c(k)
and gi,c(k) := di,cGi,c(k).

Lemma 5.10. Define Pm as in (5.2), and suppose mi < m < mi+1. Then

Pm+1 ≡
fi,c(k)
gi,c(k)

Pm (mod p),

where 1≤ k < mi+1−mi and m = mi + k.

Proof. We first focus on a single Pochhammer symbol (α j )
∗
m . First note that, for mi <m ≤mi+1, by (4.4)

we have {
α j +

m
1− p

}
= α j +

m
1− p

+

{
0 m ≤ bα j (p− 1)c

1 m > bα j (p− 1)c
= α j +

m
1− p

+ ι(α j , γi ). (5.11)
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Combining (5.11) with Lipschitz continuity (2.3) and the functional equation for 0p (2.4) and Lemma 4.1,
for mi < m < mi+1 we obtain

0p

({
α j +

m+1
1− p

})
≡ 0p(α j +m+ 1+ ι(α j , γi ))

=−(α j +m+ ι(α j , γi ))0p(α j +m+ ι(α j , γi ))

≡−(α j + δi + ι(α j , γi )+ k− εi )0p

({
α j +

m
1− p

})
(mod p).

(5.12)

Taking the product over all the Pochhammer symbols, the minus sign cancels out, and we obtain (5.9),
as desired. �

We next account for the power of p in the product, and assemble a matrix product that computes the
sum between two breaks.

Definition 5.13. Let ξ(β)= #{ j : β j = 0} and

σi :=


1, Zα,β(γi )+ ξ(β)+ D = 0 and Zα,β(γi )≡ 0 (mod 2),
−1, Zα,β(γi )+ ξ(β)+ D = 0 and Zα,β(γi )≡ 1 (mod 2),
0, otherwise.

(5.14)

By Lemma 4.2, σi gives the value of (−p)ηm(α)−ηm(β) pξm(β)+D mod p for all m with mi < m < mi+1.
Now set

Ai,c(k) :=
(

gi,c(k) 0
σi gi,c(k) fi,c(k)

)
. (5.15)

Since Ai,c(k) depends only on c and not p, we can use an accumulating remainder tree for each c to
compute

Si (p) := Ai,c(1)Ai,c(2) · · · Ai,c(mi+1−mi − 1) (mod p). (5.16)

Lemma 5.17. For P ′m as defined in (5.5),

Si (p)−1
11 Si (p)≡

(
1 0∑mi+1−1

m=mi+1 P ′m/Pmi+1 Pmi+1/Pmi+1

)
(mod p). (5.18)

Proof. By Lemma 5.10, for k = 1, . . . ,mi+1−mi − 1,

(Ai,c(1) · · · Ai,c(k))22

(Ai,c(1) · · · Ai,c(k))11
≡

Pmi+k+1

Pmi+1
(mod p)

and hence
(Ai,c(1) · · · Ai,c(k))21

(Ai,c(1) · · · Ai,c(k))11
≡ σi

k∑
l=1

Pmi+l

Pmi+1
(mod p).

Taking k = mi+1−mi − 1, and then applying Lemma 4.2 to replace σi with P ′m/Pm , yields the desired
result. �
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It remains to deal with the breaks. Since the number of breaks is independent of p, we have the luxury
of computing matrices Ti (p) separately for each p that move the Pochhammer symbols and partial sums
past the break γi .

Definition 5.19. With ω defined as in (2.4), let

hi (γ, p) :=


ω(γ +mi + 1) if γ (p− 1) < mi ,

ω(γ +mi ) if γ (p− 1)≥ mi + 1,

ω(γ +mi + 1)ω(γ +mi ) otherwise,

(5.20)

τi :=


0 γi = 0,

1 Zα,β(γi−1)+ ξmi (β)+ D = 0 and Zα,β(γi−1)≡ 0 (mod 2),

−1 Zα,β(γi−1)+ ξmi (β)+ D = 0 and Zα,β(γi−1)≡ 1 (mod 2),

0 otherwise,

(5.21)

and then set

Ti (p) :=

(
1 0
τi z

∏r
j=1

hi (α j ,p)
hi (β j ,p)

)
, (5.22)

S(p) :=
s−1∏
i=0

Ti (p)Si (p). (5.23)

Note that modulo p, Ti (p) is congruent to a matrix that depends on p only via c.

Lemma 5.24. For suitable choices of scalars, we have

i−1∏
j=0

T j (p)S j (p)≡ (scalar)
(

1 0∑mi−1
m=0 P ′m Pmi

)
(mod p),

(i−1∏
j=0

T j (p)S j (p)
)

Ti (p)≡ (scalar)
(

1 0∑mi
m=0 P ′m Pmi+1

)
(mod p).

Proof. This follows by induction on i using Lemma 5.17. �

Summing up, we obtain the following:

Proposition 5.25. For p ≡ c (mod b) not dividing the denominator of z,

Hp

(
α

β

∣∣∣∣ z)≡ S(p)21/S(p)11 (mod p).

Proof. This follows from (5.1) and the case i = s of Lemma 5.24. �

5C. Algorithm and runtime. We summarize with Algorithm 3.

Theorem 5.26. For fixed α, β, Algorithm 3 is correct and runs in time

O(X log(X)3).
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Algorithm 3: Trace mod p

Input: α, β ∈
(
Q∩ [0, 1)

)r, z ∈Q and a bound X

Output: Hp
(
α
β

∣∣ z) (mod p) for all good p ≤ X
1 def Traces(α, β, z, X):
2 if 0 ∈ α then
3 α, β, z := β, α, 1/z
4 gamma := Sorted( Set( α ∪β ∪ {0, 1}))
5 for good primes p ≤ X do
6 result[p] := IdentityMatrix(2)
7 for start, end consecutive elements of gamma do
8 b := Denominator(start)
9 for c ∈ (Z/bZ)× do

10 δ, ε := RationalShift(start, c) // Using Lemma 4.1
11 mats := Matrices(z, start, δ, ε) // As in (5.15)
12 cut := (p 7→ bend · (p− 1)c− bstart · (p− 1)c)
13 primes := {good primes p ≡ c (mod b), p ≤ X}
14 {Ci } := RemTreeWithSpacing(mats, primes, cut)
15 for i := 0, . . . , #primes− 1 do
16 p := primes[i]
17 result[p] := result[p] · FixBreak(z, start, p) // As in (5.22)
18 result[p] := result[p] ·Ci

19 for good primes p ≤ X do
20 result[p] := result[p]21/result[p]11 (mod p)
21 return result

Proof. Correctness is immediate from Proposition 5.25. The runtime is dominated by the calls to Algo-
rithm 2; these calls take place inside a loop over consecutive elements of α ∪ β ∪ {0, 1} and a second
loop over residue classes modulo a divisor of b. These two loops together have length O(rb); combining
with the runtime estimate from Theorem 3.4 (taking B = b = O(X), H = O(log X)) yields the desired
result. �

5D. Implementation notes. We have implemented Algorithm 3 in SageMath, using a variant of Al-
gorithm 2 implemented in C by Drew Sutherland (see Remark 3.5). Our implementation is available
at https://github.com/edgarcosta/amortizedHGM, and vastly outperforms SageMath and Magma while
giving matching answers; see Table 1 for sample timings.

5E. An example. Let α =
( 1

4 ,
1
2 ,

1
2 ,

3
4

)
, β =

( 1
3 ,

1
3 ,

2
3 ,

2
3

)
and z = 1

5 . We plot the zigzag function in
Figure 1. Using (2.12), we see that Mα,β has weight 1 and the intervals contributing to the computation

https://github.com/edgarcosta/amortizedHGM
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X Algorithm 3 Sage Magma X Algorithm 3

210 0.07s 0.39s 0.11s 218 1.81s
211 0.05s 0.68s 0.35s 219 4.59s
212 0.06s 2.12s 1.29s 220 10.71s
213 0.08s 7.39s 4.83s 221 24.53s
214 0.12s 26.0s 18.24s 222 58.0s
215 0.18s 92.27s 68.35s 223 135s
216 0.34s 343s 280s 224 322s
217 0.80s 1328s 1190s 225 857s

Table 1. Comparison of Algorithm 3 against SageMath and Magma for α =
( 1

4 ,
1
2 ,

1
2 ,

3
4

)
, β =( 1

3 ,
1
3 ,

2
3 ,

2
3

)
and z = 1

5 . Note the observable difference between linear and quadratic complexity.

of Hp
(
α
β

∣∣ z) are (γ2, γ3)=
( 1

3 ,
1
2

)
and (γ4, γ5)=

( 2
3 ,

3
4

)
. For the remainder of the example we will focus

on the congruence class p ≡ 7 (mod 12). Applying Lemma 4.1 to γ2 =
1
3 (resp. γ4 =

2
3 ), we obtain

δ2 =
2
3 and ε2 = 1 (resp. δ4 =

1
3 and ε4 = 1). By (5.9) and (5.14),

f2,7(k)= 5184k4
+ 8640k3

+ 4428k2
+ 852k+ 55,

g2,7(k)= 25920k4
+ 69120k3

+ 63360k2
+ 23040k+ 2880,

f4,7(k)= 5184k4
+ 12096k3

+ 9612k2
+ 2820k+ 175,

g4,7(k)= 25920k4
+ 86400k3

+ 106560k2
+ 57600k+ 11520,

and σ2 = σ4 = −1. Taking p = 67, we obtain (m2,m3) = (22, 33) and (m4,m5) = (44, 49). Using an
accumulating remainder tree (or simple multiplication), we get

S2(67)=
(

65 0
34 5

)
, S4(67)=

(
54 0
25 41

)
.

However, we can’t ignore the other intervals: they may not contribute to the sum, but they do track the
Pochhammer symbols. Similar computations show

S0(67)=
(

38 0
0 62

)
, S1(67)=

(
50 0
0 47

)
, S3(67)=

(
1 0
0 16

)
, S5(67)=

(
1 0
0 38

)
.

1
3
− 1

2
− 2

3
− 3

4
−

1

−1

1
12
− 1

6
− 1

4
− 5

12
− 7

12
− 5

6
− 11

12
−

Figure 1. Zα,β(x) for α =
( 1

4 ,
1
2 ,

1
2 ,

3
4

)
, β =

( 1
3 ,

1
3 ,

2
3 ,

2
3

)
.
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It remains to handle the break points. Using Definition 5.19 we get

T0(67)=
(

1 0
0 6

)
, T1(67)=

(
1 0
0 31

)
, T2(67)=

(
1 0
−1 12

)
,

T3(67)=
(

1 0
−1 40

)
, T4(67)=

(
1 0
−1 40

)
, T5(67)=

(
1 0
−1 31

)
.

Putting them all together, we get

S(67)= T0(67)S0(67) · · · T5(67)S5(67)=
(

21 0
33 21

)
yielding H67

(
α
β

∣∣ 1
5

)
≡

33
21 ≡ 59 (mod 67).

6. Future goals and challenges

We would like to be able to compute Hp f
(
α
β

∣∣z) (mod pe) in average polynomial time for general e and f ,
but we currently only implement this for e = f = 1. We highlight the key points at which new ideas
would be needed to achieve this goal.

6A. The case e > 1. Allowing e > 1 creates two related issues where our computation exploits extra
structure of the trace formula mod p: the replacement of [z] with z, and the use of the functional equation
in (5.12) to compare two values of 0p at arguments that differ by 1

1−p .
Such issues can usually be resolved using the “generic prime” technique of [Har15, §4.4]: make

the average polynomial time computation carrying suitable nilpotent variables, then make a separate
specialization for each p.

6B. The case f > 1. Allowing f > 1 creates more serious issues because of the change in the definition
of 0∗q(x), which interferes with our division of the summation into a fixed number of ranges. To see this
in more detail, fix v ∈ {0, . . . , f −1}. For each γ ∈α∪β, a break occurs when the value of

{
pv
(
γ − m

q−1

)}
changes when m goes to m+ 1; there are pv such breaks.

It is unclear whether one can rearrange the formula (2.22) to remedy this issue. It may help to imple-
ment the method of Frobenius structures suggested in [Ked19], which scales linearly in p rather than q.
We may then argue as in Theorem 2.29 to compute the first X coefficients of an L-series in average
polynomial time.
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