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Genus 3 hyperelliptic curves with CM via Shimura reciprocity

Bogdan Adrian Dina and Sorina Ionica

Up to isomorphism, every three-dimensional simple principally polarized abelian variety over C is the
Jacobian of a smooth projective curve of genus 3. Furthermore, this curve is either a hyperelliptic curve
or a plane quartic. To define hyperelliptic class polynomials, we note that given a hyperelliptic Jacobian
with CM, all principally polarized abelian varieties that are Galois conjugated to it are hyperelliptic.
Using Shimura’s reciprocity law, we then compute approximations of the invariants of the initial curve,
as well as their Galois conjugates. We show examples of class polynomials computed using this method
for the Shioda and Rosenhain invariants.

1. Introduction

Shimura and Taniyama’s complex multiplication theory shows that it is possible to construct certain
abelian extensions of CM fields by computing the values of Siegel modular functions evaluated at points
with CM in the Siegel upper half-space. In addition, the effective computation of these modular forms
makes it possible to compute models for CM curves, and also to effectively construct the related class
fields.

For example, in genus one, the field of modular functions of level 1 is generated by the j-invariant.
It is well known that the j-invariant of an elliptic curve with endomorphism ring isomorphic to the ring
of integers of the CM field K generates the Hilbert class field of K . In the genus 2 case, the field of
Siegel modular functions of level 1 is generated by the absolute Igusa invariants [11]. Similarly, when
evaluated at CM points, their values give invariants of a hyperelliptic curve whose Jacobian has CM, and
the class field equations, known as class polynomials, are recovered by computing these invariants for
all curves with CM by the field [22; 8]. In genus 3, every simple principally polarized abelian variety
(p.p.a.v.) over C of dimension 3 is isomorphic to the Jacobian of a complete smooth projective curve,
which is either a hyperelliptic curve or a plane quartic. Since two different sets of invariants for both
genus 3 hyperelliptic curves and plane quartics are known in the literature, it is more difficult to tackle
the problem of computing class polynomials for genus 3.
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In [27, Lemma 4.5], Weng shows that a simple principally polarized abelian threefold with CM by a
sextic CM field containing Q(i) is a hyperelliptic Jacobian. In the same paper, Weng gives an algorithm
to compute hyperelliptic curves whose Jacobians have CM by a sextic field containing Q(i). In later
work, Balakrishnan, Ionica, Lauter, and Vincent [1] give an algorithm which removes this restriction on
the CM field, by performing a heuristic check. This heuristic relies on Mumford’s Vanishing Criterion
[16; 18], which states that a genus 3 curve is hyperelliptic if and only if one of the 36 even theta constants
is 0. Given a period matrix with CM by a sextic CM field, the algorithm in [1] first computes the theta
constants with enough precision to see if there is one which approximates zero, and then computes the
Rosenhain invariants. These invariants generate a certain subfield of the ray class field of modulus 2
over the reflex field K r of K and by approximating them with high precision, we can recognize them
as algebraic numbers. This method has its limitations, since as soon as the degree of the class field
over which the Rosenhains are defined is large (≥ 500), the complexity of the algebraic dependance
computation becomes a bottleneck. From a concrete point of view, only examples of CM fields with
class number 1 were considered in [1].

In this paper, we extend the work in [1; 2] by considering the action on a hyperelliptic CM point of
the Galois group Gal(C Mm(K r )/K r ), where C Mm(K r ) is a subfield of the ray class field of a given
modulus m.

Once we identify a hyperelliptic curve X by verifying computationally and heuristically the vanishing
criterion condition, we compute the Galois conjugates of its invariants via Shimura’s reciprocity law.
With these in hand, we compute the Shioda and Rosenhain class polynomials given by

H R
K r ,i (t)=

∏
σ

(t − λσi ) and H S
K r , j (t)=

∏
σ

(t −Shiσj ), (1-1)

where λi (1 ≤ i ≤ 5) and Shi j (1 ≤ j ≤ 9) denote the Rosenhain and Shioda invariants (introduced in
Section 2) and σ ∈ Gal(C Mm(K r )/K r ), with m = (2) for the product in H R

K r ,i and m = (1) for the
product in H S

K r , j .
Aiming to implement our results in SageMath [25] and compute examples for the class polynomials

of the Rosenhain and Shioda invariants, we also propose some methods to construct the reflex field
associated to a given CM type, the typenorm, as well as the image of the typenorm as a subgroup in the
Shimura class group.

2. Background

This section briefly recalls the necessary background and notation on complex abelian varieties, theta
functions and the Vanishing Criterion which fully characterizes hyperelliptic principally polarized abelian
varieties. We also define the invariants of hyperelliptic curves that we will be computing in the next
sections.

2A. Principally polarized abelian varieties over C and period matrices. A principally polarized abelian
variety defined over C is isomorphic to a complex torus admitting a Riemann form [3, Chapter 4]. Let
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g ≥ 1 and let A = Cg/3, with 3 a full lattice in Cg and E a Riemann form for (Cg,3). We will write
(A, E) to denote the g-dimensional p.p.a.v. over C. We consider a symplectic basis for the lattice 3, by
which we mean the action of E on 3 with respect to this basis is given by the matrix

Jg =

(
0 Ig

−Ig 0

)
, (2-1)

where Ig is the g× g identity matrix.
Let �= [�1 |�2] be the g× 2g matrix whose columns are the elements of this symplectic basis. By

taking Z =�−1
2 �1 we obtain a g× g matrix Z called a period matrix, i.e., an element of the Siegel upper

half-space

Hg = {Z ∈Mg(C) : Z T
= Z , Im(Z) > 0}.

We note that the lattice 3 can be written as ZZg
+Zg.

There is an action on Hg by the symplectic group

Sp2g(Z)= {M ∈ GL2g(Z) : MT Jg M = Jg},

where Jg is as in equation (2-1), given by

M =
(

a b
c d

)
: Z 7→ M.Z = (aZ + b)(cZ + d)−1, (2-2)

where on the right-hand side the multiplication of g× g matrices is the usual matrix multiplication.
The association of Z to (Cg/(ZZg

+Zg), E) gives a bijection between Sp2g(Z)\Hg and the moduli
space of p.p.a.v. of dimension g over C. In the remainder of this paper, we will denote this moduli space
by Ag.

2B. Theta functions. For ω =
(
ω1
ω2

)
∈ R2g and Z ∈Hg, we define the following important theta series:

ϑ(ω, Z)=
∑
n∈Zg

exp(π i(ω1+ n)t Z(ω1+ n)+ 2π i(ω1+ n)tω2)). (2-3)

Given a period matrix Z ∈Hg, we obtain a set of coordinates on the torus A = Cg/(ZZg
+Zg) in the

following way: a vector
(
ω1
ω2

)
∈ R2g corresponds to the point Zω1+ω2 ∈ Cg/(ZZg

+Zg). Under this
identification, points of the form ξ = Zξ1+ ξ2 for ξ =

(
ξ1
ξ2

)
∈

1
2 Z2g yield 2-torsion points on A. Using

this notation we define

ϑ[ξ ](Z)= exp(π iξ t
1 Zξ1+ 2π iξ t

1ξ2)ϑ(ξ, Z). (2-4)

In this context, ξ is called a theta characteristic, and the value ϑ[ξ ](Z) is called a theta constant. We call
ξ a even (odd) theta characteristic if e∗(ξ)= 1 (e∗(ξ)=−1 respectively), where e∗(ξ)= exp(4π iξ T

1 ξ2).
If ξ is an even (odd) theta characteristic we call ϑ[ξ ](Z) an even (odd) theta constant.

It can be easily shown that all odd theta constants are 0. We note that in the case where g = 3 there are
exactly 36 even classes of theta characteristics in 1

2 Z6/Z6. We recall there is an action of the symplectic
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group Sp2g(Z) on theta characteristics ξ ∈ 1
2 Z2g defined by

M.ξ = M∗ξ + 1
2δ0, (2-5)

with M =
(a

c
b
d

)
∈ Sp2g(Z), M∗ = (M−1)t , and δ0 =

(
(ct d)0
(at b)0

)
a column vector where (ct d)0 and (at b)0

are the diagonal vectors of ct d and at b, respectively. In this context, given a period matrix Z ∈Hg, we
briefly recall the transformation formula on the theta constants [3, Formula 8.6.1]

ϑ[M.ξ ](M.Z)= ζ(M) exp(k(M, ξ))
√

det(cZ + d)ϑ[ξ ](Z), (2-6)

where:

(1) ζ(M) is an eighth root of unity depending on M , having the same sign ambiguity as
√

det(cZ + d).

(2) k(M, ξ)= π i(dξ1− cξ2)
t(−bξ1+ aξ2− (at b)0)− ξ t

1ξ2.

For more details on ζ(M), we refer the reader to [3, Exercice 8.11(9)].

2C. The Rosenhain invariants. Let Mg be the moduli space of smooth projective curves of genus g.
By a theorem of Torelli [15, Theorem 12.1], there is an injective map Mg ↪→Ag. Inside Mg we further
restrict our attention to the subspace of hyperelliptic curves Mhyp

g . We will be interested in the effective
reconstruction of a moduli point in Mhyp

g from a point in Ag, whenever this point is in the image of
Mhyp

g ↪→Ag.
Let X be a hyperelliptic curve of genus g over C defined by an equation y2

= f (x), where f is a
polynomial with deg( f ) ∈ {2g+1, 2g+2}. Let (λi )1≤i≤2g+2 be the distinct complex roots of f , with the
convention that λ2g is∞ if deg( f ) is odd. We identify these roots with the branch points for the covering
map π : X→ P1(C), that we denote by P1, . . . , P2g+1, P∞. This motivates the following definition.

Definition 2.1. By a marked hyperelliptic curve X of genus g we understand a certain ordering of the
branch points of the map π .

We will denote by Mhyp
g [2] the moduli space of marked hyperelliptic curves. Let us introduce more

terminology. We note that the action on Hg by the symplectic group of level 2

02g(2)= {M ∈ Sp2g(Z) : M ≡ I2g (mod 2)},

fixes 2-torsion points on the p.p.a.v. This leads to the following definition.

Definition 2.2. We define by Ag[2] = 02g(2)\Hg the moduli space of principally polarized abelian
varieties of dimension g over C with a level 2-structure.

We will identify the Jacobian of a marked hyperelliptic curve to a point in Ag[2] via the analytic
construction. Let H1(X,Z) be the first homology group of X and let H 0(ωX ) be the group of 1-
holomorphic forms on X . As explained in the literature, we view H1(X,Z) as a lattice in H 0(ωX )

∗,
the dual of H 0(ωX ) (see for example [3, Section 11.1]). As a consequence, we obtain the g-dimensional
complex torus J (X)= H 0(ωX )

∗/H1(X,Z). We choose a symplectic basis γ1, . . . γ2g for H1(X,Z) and
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a basis ω1, . . . , ωg for H 0(ωX ). With the notation in Section 2A, the corresponding g× 2g matrix is
�=

(∫
γ j
ωi
)

1≤i≤g,1≤ j≤2g and Z =�−1
2 �1.

Let Pic0(X)=Div0(X)/Princ(X) be the group of degree zero divisors on X modulo principal divisors.
The Abel–Jacobi map yields a canonical isomorphism [3, Theorem 11.1.3]

AJ : Pic0(X)→ J (X). (2-7)

Given a marked hyperelliptic curve X , we obtain a fixed set of 2-torsion points on J (X). We take P∞
as a base point and identify X with its image via the embedding X ↪→ Pic0(X). Then the branch points
Pi , i = 1, . . . , 2g+ 2, correspond to points of the form ei = [(Pi )− (P∞)] on Pic0(X). This allows us
to choose an indexed set of characteristics η = (ηi )1≤i≤2g+2 in (1/2)Z2g such that

AJ (ei )= Z(ηi )1+ (ηi )2 (mod ZZg
+Zg). (2-8)

This leads to the following definition.

Definition 2.3. Let V = 1
2 Z2g/Z2g the vector space over F2. By an azygetic system we understand an

indexed set η = (η1, . . . , η2g+2) of 2g+ 2 vectors in 1
2 Z2g such that the images of ηi in V , denoted by

ηi , satisfy

V = span(ηi ),

2g+1∑
i=1

ηi = 0, η2g+2 = 0, and ηt
iη j ≡ 1 (mod 2), (2-9)

for i, j different from 2g+ 2 and i 6= j .

Two azygetic sets η
′

and η
′′

are said to be in the same equivalence class if η
′

i = η
′′

i , i = 1, . . . , 2g+ 2.
Following Poor [18], the indexed set (η1, . . . , η2g+2) obtained in equation (2-8) is an azygetic system
and we call it an azygetic system associated to the period matrix Z .

If we change the homology basis by taking (γ ′1, . . . , γ
′

2g)= (γ1, . . . , γ2g)M t , with M ∈ Sp2g(Z), the
new period matrix obtained using the construction above is Z ′ = M.Z . The azygetic system associated
to Z ′ is η′ = (M∗η1, . . . ,M∗η2g+2). Since the map Sp2g(Z)→ Sp2g(F2)∼= Sp2g(Z)/02g(2) is surjective,
we further derive an action of Sp2g(F2) on equivalence classes of azygetic systems, which was shown to
be free an transitive [18, Lemma 1.4.13].

Let us introduce some further notations. Let T = {1, . . . , 2g+ 1,∞}. For a given azygetic system,
Poor defines the set Uη to be the set of indexes i ∈ T such that ηi is even. For any S1, S2 ⊆ T we
denote the symmetric difference S1 ◦ S2 = (S1 ∪ S2)\(S1 ∩ S2). For an azygetic system η and S ⊆ T ,
we define ηS =

∑
s∈S ηs . The following theorem, which we refer to as the Vanishing Criterion, gives a

characterization of hyperelliptic period matrices in terms of their associated azygetic system and theta
constants. For simplicity, we recall this theorem for genus 3 as stated in [1, Proposition 5] and refer the
reader to [16, Chapter III.9] and [18, Theorem 2.6.1] for the general result in genus g ≥ 1.



166 BOGDAN ADRIAN DINA AND SORINA IONICA

Theorem 2.4 (The Vanishing Criterion). Let Z ∈H3 and let η be an azygetic system. The following two
statements are equivalent:

(1) Z is the period matrix of a symplectically irreducible abelian variety and there is exactly one of
even theta characteristic δ such that ϑ[δ](Z)= 0 and that δ = ηUη .

1

(2) There is a marked hyperelliptic curve of genus 3 whose Jacobian has period matrix Z and η is the
azygetic system associated to Z.

In other words, Theorem 2.4 shows that given a hyperelliptic period matrix Z ∈H3, choosing one of
its azygetic systems η such that ϑ[ηUη ] = 0 fixes a labeling of the branch points. We recover the point in
Mhyp

g [2] using Takase’s formulae [1; 24], which we recall in the following theorem.

Theorem 2.5 [1, Theorem 3]. Let Z ∈ 06(2)\H3 a period matrix and η be the azygetic system such
that the Vanishing Criterion is satisfied. Then with notation as above, for any disjoint decomposition
T −{∞} = V tW t {k, l,m} with #V = #W = 2, we have

λm − λl

λm − λk
= exp(4π i(ηk + ηl)1(ηm)2)

(
ϑ[ηUη◦(V∪{m,l})] ·ϑ[ηUη◦(W∪{m,l})]

ϑ[ηUη◦(V∪{k,m})] ·ϑ[ηUη◦(W∪{k,m})]
(Z)

)2

. (2-10)

Note that in [1] the sign before the quotient of theta constants in equation (2-10) is incorrect. We give
here the correct formula, as stated in several sources [2; 13].

Finally, note that by considering an affine map of C, we may assume without restricting the generality
that λ6 = 0 and λ7 = 1, i.e., X is given by

X : y2
= x(x − 1)

5∏
i=1

(x − λi ). (2-11)

In this case, we say that X is in normalized Rosenhain form. The moduli space Mhyp
3 [2] writes as

Mhyp
3 [2] ∼= {λ= (λ1, . . . , λ5), λi ∈ C−{0, 1}, λi 6= λ j }.

The coefficients λi ∈ C−{0, 1}, are called the Rosenhain invariants of the curve and will be the focus
of our work.

2D. Shioda invariants. Shioda [20] gave a set of generators for the algebra of invariants of binary oc-
tavics over the complex numbers, which are now called Shioda invariants. Following Shioda’s notation
(see [20, page 1025]), these are 9 weighted projective invariants (J2, J3, J4, J5, J6, J7, J8, J9, J10), where

1Poor defines symplectically irreducible on page 831 of [18]. His condition is equivalent to requiring that the abelian variety
is not isomorphic as a polarized abelian variety to a product of lower-dimensional polarized abelian varieties. In this work, our
period matrices are constructed to be simple, i.e., not isogenous to a product of lower-dimensional polarized abelian varieties.
Since isomorphism is stronger than isogeny, all of the period matrices we construct are symplectically irreducible, and we may
apply the theorem.
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Ji has degree i . The invariants J2, . . . , J7 are algebraically independent, while J8, J9, J10 depend alge-
braically on them. Note that over the complex numbers Shioda invariants completely determine points
in Mhyp

3 .
Using Igusa’s map between the graded ring of Siegel modular forms of degree 3, and the graded ring

of invariants of binary octavics, Lorenzo García [9] proposes a set of invariants which can be written
as quotients of modular forms. These invariants involve large powers of the modular form χ28 in the
denominators and we do not use them for experiments since they would need too much precision to
compute.

Starting from the projective invariants Ji , we consider the following absolute Shioda invariants:2

Shi=
(

J 7
2

1
,

J 4
2 J 2

3

1
,

J 5
2 J4

1
,

J5 J9

1
,

J 4
2 J6

1
,

J 2
7

1
,

J 3
2 J8

1
,

J 5
2 J 2

9

12 ,
J 2

2 J10

1

)
, (2-12)

with 1 the discriminant of the binary octavic, which is an invariant of degree 14. They are optimal for
computations in the sense that they involve invariants of small weight and the values of their denominators
for a given curve are products of powers of the primes of bad reduction of the curve; see [12]. Note that
a subset of this set was already used by Weng [27] for computing models of hyperelliptic curves with
CM by a field which contains i .

Proposition 2.1. The invariants in equation (2-12) are modular, i.e., they can be written as quotients of
Siegel modular forms of level 1.

Idea of the proof. In [26], Tsuyumine proposed a set of invariants for the algebra of binary octavics
and also computed them in terms of Siegel modular forms (see for instance [9, Theorem 3.4]). Using
relations between Tsuyumine’s invariants and the Shioda projective invariants (given in [9, Theorem 4.1]),
we were able to write each invariant in equation (2-12) as a quotient of Siegel modular forms. The full
computation is given in the arxiv version of this paper [7].

3. Computing abelian varieties with CM

In this section, we review results from the theory of complex multiplication, with the goal of describing
our implementation of algorithms for computing several notions, such as the reflex field and the typenorm.
Finally, we state the effective version of Shimura’s second main theorem of CM.

3A. Reflex field computation. Let K/Q be a CM field and let L be the Galois closure of K with Galois
group Gal(L/Q). A CM type of K is a set 8= {φ1, . . . , φg} of g embeddings K ↪→ C such that no two
embeddings appearing in 8 are complex conjugates. We say that 8 is induced from a CM subfield K ′

of K if the set {φ|K ′ | φ ∈8} is a CM type of K ′. A CM type of K is called primitive if it is not induced
by a proper CM subfield K ′ ⊂ K . In this paper, we fix the tuple (K ,8) and call it a CM-pair. Since L

2An absolute invariant is a ratio of homogeneous invariants of the same degree.
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is a CM field [14, Corollary 1.5], 8 extends to a CM type 8L of L , namely by

8L = {φ : L→ C | φ|K ∈8}. (3-1)

We fix once and for all an embedding ιK : K → L and an embedding π : L→ C. With these in hand,
we associate to every element in φ ∈ 8L an element σ ∈ Gal(L/Q) such that the following diagram
commutes:

L L

K C

σ

πιK

φ|K

(3-2)

Note that this identification is certainly dependent on the embeddings ιK and π . Let 8−1
L = {π ◦ σ

−1
∈

Hom(L ,C) | φ = π ◦σ for φ ∈8L}. One can easily check that 8−1
L is a CM type on L if and only if 8L

is a CM type on L . We denote by H r the subgroup of Gal(L/Q) of the form

H r
= {σ ∈ Gal(L/Q) | σ8L =8L}. (3-3)

Definition 3.1. The subfield of L fixed by the group H r in equation (3-3) is called the reflex field of
(K ,8). We denote it by K r .

Note that, from a computational point of view, choosing K r as the field fixed by H r also means fixing
the embedding ιK r : K r

→ L . As shown for instance in [14, Proposition 1.18], K r is also a CM field
and the associated CM type to K r is given by the following construction:

8r
=8−1

L |K r = {φ|K r | φ ∈8−1
L }. (3-4)

We call the tuple (K r ,8r ) the reflex CM-pair of (K ,8). We implemented a procedure for computing
the CM-pair (K r ,8r ) based on Definition 3.1 (see Algorithm 1 in [7] for full details). Our approach is
similar to the implementation of the reflex field in the code of [23].

3B. The reflex typenorm. Let (K ,8) be a primitive CM-pair with Galois closure L of K and reflex
CM-pair (K r ,8r ). The reflex typenorm is the map

N8r : K r
→ K ⊂ L , x 7→

∏
φ∈8r

φ(x). (3-5)

We denote by I (K ) and I (K r ) the set of nonzero fractional ideals of OK and OK r , respectively.

Lemma 3.1 [19, Chapter 2, Proposition 29]. The reflex typenorm in equation (3-5) induces a map be-
tween ideals

N8r : I (K r )→ I (K ), a 7→
∏
φ∈8r

φ(a),

which extends to a homomorphism between class groups N8r : Cl(K r )→ Cl(K ).
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When computing the typenorm of an ideal a ∈ I (K r ), the product
∏
φ∈8r φ(a) gives a priori an ideal

in L . To identify the ideal in K lying below this ideal, we first compute the factorization of this ideal
and rely on an algorithm in [5, Algorithm 2.5.3] to get the prime ideal lying below each of the ideals
appearing in this factorization. Algorithm 2 in [7] gives the pseudocode of our method. We remark that
an alternative implementation for computing the typenorm, based on the proof of Lemma 3.1, is given
in the code of [23].

3C. Class field theory. For a number field K and a finite modulus m (i.e., a product of prime ideals in
K ), let Im(K ) be the group of all fractional OK ideals coprime to m, and consider the subgroup

Pm(K )= {a ∈ Im(K ) : a= αOF , α ≡ 1 (mod ∗m)},

where the congruence α ≡ 1 (mod ∗m) means that for all primes p appearing in the factorization of m
we have νp(α− 1)≥ νp(m). The ray class group of K for the modulus m is defined as the quotient group
Clm(K )= Im(K )/Pm(K ).

For a modulus m in K we denote by Hm the unique (up to isomorphism) abelian extension of K whose
ramified primes divide m and such that the kernel of the Artin map

8m : Im(K )→ Gal(Hm/K )

is equal to Pm(K ). The field Hm is called the ray class field of K of modulus m; see for instance [6,
Theorem 8.6].

Let (K ,8) be a primitive CM-pair with reflex pair (K r ,8r ). Let m ∈ Z such that mZ=m∩Z and
denote by Im(K r ) the group of fractional ideals in K r coprime to m. Following Shimura [19, Chapter 16],
we consider

Hm(K r )= {a ∈ Im(K r ) : ∃α ∈ K ∗ with N8r (a)= αOK , NK r/Q(a)= αα, α ≡ 1 (mod ∗m)}. (3-6)

Note that Pm(K r )⊂ Hm(K r ). Then, after [6, Theorem 8.6], up to isomorphism there is a unique Abelian
extension of K r , denoted by C Mm(K r ), such that

Gal(C Mm(K r )/K r )∼= Im(K r )/Hm(K r ). (3-7)

The effective construction of C Mm(K ) relies on Shimura’s Main Theorem 2, that we state in Section 3D.
In order to compute Galois conjugates of elements in this number field in Section 4, we will need to
compute the group Im(K r )/Hm(K r ). In order to do this, we will need the following group introduced
by Shimura:

Cm(K )= {(a, α) : a ∈ Im(K ) such that aa= (α), α ∈ K0 totally positive, α ≡ 1 (mod ∗m)}/', (3-8)

where (a, α) ' (a′, α′) if and only if there exists µ ∈ K ∗ such that a = µa′ and α = α′µµ and µ ≡
1 (mod ∗m). Given a pair (a, α) satisfying the conditions in equation (3-8), we denote by (a, α)m the
corresponding equivalence class.
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Lemma 3.2. We denote by T : Clm(K r )→ Cm(K ) the map given by a→ (N8r (a), NK r/Q(a))m. Then:

(a) The kernel of this map is ker T = Hm(K r )/Pm(K r ).

(b) The image of the map T is isomorphic to Im(K r )/Hm(K r ).

Proof. (a) Let a ∈ ker T , i.e., (N8r (a), NK r/Q(a))m = (OK , 1)m. Then there exists an element µ ∈ K ∗

such that N8r (a) = µOK and NK r/Q(a) = µµ and µ ≡ 1 (mod ∗m). Conversely, by the definition of
Hm(K r ), any element in Hm(K r )/Pm(K r ) is in ker T .

(b) It follows immediately from point (a) that

T (Clm(K r ))∼= Clm(K r )/ ker T ∼= (Im(K r )/Pm(K r ))/(Hm(K r )/Pm(K r ))∼= Im(K r )/Hm(K r ). �

In our implementation we computed a set of generators for Clm(K r ) using Magma, and then imple-
mented an algorithm for enumerating the elements in the set T (Clm(K r )). Due to Lemma 3.2, this
allowed us to compute the group Im(K r )/Hm(K r ) and enumerate Galois conjugates of a CM point (see
Definition 4.1).

3D. CM abelian varieties. Before stating Shimura’s second main theorem, we briefly set the notation
and recall the terminology. Let A an abelian variety of dimension g defined over a field k. We say that A
has complex multiplication (CM) by a number field K if there exists an embedding ι : K → End(A)⊗Q.
If OK is the maximal order of K , then we say that A has CM by OK if ι−1(End(A))=OK . Let DK/Q be
the different of K , and let a be a fractional ideal of OK . Suppose that the ideal (DK/Qaa)

−1 is principal
and generated by ξ ∈ K× such that Im(φ(ξ)) > 0 for all φ ∈8. Then by tensoring the map

8(a)×8(a)→Q, (8(x),8(y)) 7→ TrK/Q(ξ x y)

with R we obtain a Riemann form E8,ξ : Cg
×Cg

→ R. Hence for any triple (8, a, ξ) as above, the pair
(Cg/8(a), E8,ξ ) is a p.p.a.v. of dimension g with CM by OK and of CM type 8. Conversely, every
p.p.a.v. of dimension g with CM by OK is isomorphic to a complex torus for some triple (8, a, ξ) as
above. Note that to go from the triple (8, a, ξ) to a period matrix as described in Section 2A, it suffices
to write a basis for the ideal a that is symplectic with respect to the Riemann form E8,ξ . This basis gives
the matrix �, and then the period matrix is simply Z =�−1

2 �1.
Let (A, E) be a p.p.a.v. with CM by OK , G the automorphism group of A and let k0 be its field of

moduli. To state Shimura’s second main theorem of CM, we consider the normalized Kummer variety
[19, Theorem 3, Section 4.4] of A. This is given by a tuple (W, h), where W is the quotient of A by
G, which is defined over k0, and h : A→ W is the corresponding surjective map. Moreover, given a
modulus m, we denote by A[m] the m-torsion points of A, i.e., A[m] = {x ∈ A|ι(α)x = 0,∀α ∈m}. A
point t ∈ A[m] is called proper if for all a ∈OK , we have that ι(a)t = 0 if and only if a ∈m.

Theorem 3.2 [19, Main Theorem 2]. Let (A, E) be a principally polarized abelian variety with CM by
OK and CM type 8 and let be (W, h) its normalized Kummer variety. Let m be an ideal of OK and t be
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a proper m-torsion point. Let k0 be the field of moduli of A, K r the reflex field of K and k∗0 = k0K r . Then
k∗0(h(t)) is the class field of K r corresponding to the ideal group Hm(K r ).

4. Computing class polynomials

We turn our attention now to the computation of the Shioda and Rosenhain invariants of a hyperelliptic
curve of genus 3 with CM by OK , and more precisely to obtaining their minimal polynomials over the
reflex field.

Given a primitive CM-pair (K ,8), we denote by Princ(K ,8,m) the set of isomorphism classes of
simple p.p.a.v. with CM by OK together with a proper m-torsion point. We denote by A(8, a, ξ, t)
the abelian variety given by the triple (8, a, ξ) and the proper m-torsion point t . When m = (1), we
simply denote it by A(8, a, ξ) and we take Princ(K ,8) to be the set of all such abelian varieties. In
our computations of Galois conjugates, we will extensively use the following action of the class group
Im(K r )/Hm(K r ) on Princ(K ,8,m) given by Shimura [19, Section 16.3].

Definition 4.1. Let A = A(8, a, ξ, t) ∈ Princ(K ,8,m). Then for any [c] ∈ Im(K r )/Hm(K r ) the action
of [c] on A is given by the abelian variety

A(8, N8r (c)−1a, NK r/Q(c)ξ, t (mod N8r (c)−1a)).

We will denote by Ac the p.p.a.v. obtained in this way.

Note that the action in Definition 4.1 yields in fact an isogeny between principally polarized abelian
varieties Ic : A→ Ac. Since the ideal c is coprime to m, we have that ker Ic ∩ A[m] = 0. In particular,
when m= (m) and we fix a level m structure on A, this isogeny fixes the level m structure on Ac.

Notation 4.2. In the remainder of this paper, we will restrict to m = (m), where m = 1 or m = 2.
For a given c ∈ Im(K r )/Hm(K r ), we will denote by σc ∈ Gal(C Mm(K r )/K r ) the image of c via the
isomorphism in equation (3-7). Let A = A(8, a, ξ, t) be a p.p.a.v. in Princ(K ,8,m). Let B = (B1|B2)

be a (3× 6) complex-valued matrix containing a symplectic basis for 8(a) with respect to E8,ξ , and
let Z = B−1

2 B1 ∈ H3 be the corresponding period matrix. The action of c on A yields a new p.p.a.v.
A(8, N8r (c)−1a, NK r/Q(c)ξ, t (mod N8r (c)−1a)). In a similar manner, let C = (C1|C2) be the matrix
containing a symplectic basis for 8(N8r (c)−1a) with respect to E8,NKr /Q(c)ξ and let Z ′ = C−1

2 C1 ∈H3.
We express C in terms of B by taking a matrix M , such that C = B MT . The matrix M is in GSp2g(Q) and
is m-integral and invertible (mod m) with inverse U ∈ GSp2g(Z/mZ). We also denote by Ũ ∈ Sp2g(Z)

a lift of U . Such a lift can be computed for instance thanks to [17, Theorem VII.21].

This notation will be used all throughout this section. We detail the computation of these matrices on
an example.

Example 4.3. Let K be the CM field defined by the polynomial x6
+ 43x4

+ 451x2
+ 729 and denote

by a a generator for this field. We choose the first CM type given by the implementation [2] and we get
that the tuple (a, ξ)=

(
OK ,

16
114939a5

+
1313

229878a3
+

5857
114939a

)
yields a CM point. We compute the action
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on this CM point by the ideal c=
(
9, 1

48a5
+

11
24a3
+

1
2a2
−

155
48 a+ 15

2

)
and get a second CM point given

by

(b, ξ ′)=
((

9, 1
48a5
+

11
24a3
+

1
2a2
−

155
48 a+ 15

2

)
, 16

114939a5
+

1313
229878a3

+
5857

114939a
)
.

The code in [2] gives symplectic bases for (a, ξ) and (b, ξ ′) and we compute

M =



−1 1 −1 0 1 3
2 −1 0 −2 1 4
2 0 1 2 4 −1
0 −1 −1 −1 3 −1
1 0 −1 1 −1 1
−1 −1 0 1 1 1


, U =



1 1 1 0 0 0
1 1 1 1 1 0
1 1 1 1 0 1
0 1 1 1 0 0
1 0 1 1 1 0
1 1 0 1 0 1


.

The following result gives an explicit version of Shimura’s reciprocity law.

Theorem 4.4 [23, Theorem 2.4]. Let c ∈ Im(K r )/Hm(K r ), σc ∈ Gal(C Mm(K r )/K r ), Z , Z ′ ∈ H3 and
the matrix M as in Notation 4.2. For every Siegel modular function f of level m with Fourier expansion
coefficients in Q(ξm), we have

f (Z)σc = f U (Z ′), (4-1)

where we denote by f U (Z ′)= f (Ũ .Z ′), for any Ũ ∈ Sp2g(Z) a lift of U.

We will use Theorem 4.4 to compute the Galois conjugates of the Shioda invariants of a hyperelliptic
curve whose period matrix is obtained via the complex multiplication construction.

Proposition 4.1. Let A ∈ Princ(K ,8) and Z ∈H3 a period matrix for it. Let [c] ∈Cl(K r ) corresponding
to σc ∈ Gal(C M1(K r )/K r ) and Z ′ obtained as in Notation 4.2. Then Ac is isomorphic to a hyperelliptic
Jacobian if and only if A is. Moreover, we have the following relation:

S j (Z)σc = S j (Z ′), (4-2)

where S j denotes the Siegel modular function giving the j-th Shioda absolute invariant, for all j =
1, . . . , 9.

Proof. Suppose that A ∼= Jac(X), with X a hyperelliptic curve. Since Jac(X)σc ∼= Jac(Xσc), it follows
that Ac is isomorphic to the Jacobian of the hyperelliptic curve Xσc . To prove equation (4-2), we apply
Theorem 4.4 on the Siegel modular functions Si . �

We now restrict to the case of the modulus m= (2). The following result allows us to compute the
Galois conjugates of the Rosenhain invariants.

Theorem 4.5. Let A ∈ Princ(K ,8) which is isomorphic to the Jacobian of a marked genus 3 hy-
perelliptic curve and Z ∈ 06(2)\H3 a period matrix for it. Let [c] ∈ I2(K r )/P2(K r ) corresponding
to σc ∈ Gal(C M2(K r )/K r ) and Z ′ obtained as in Notation 4.2. We consider η the azygetic system
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associated to Z and let (λl)1≤l≤5 be the Rosenhain invariants in equation (2-11). Then for any lift
Ũ =

( Ã
C̃

B̃
D̃

)
∈ Sp6(Z) of the matrix U with δ0 =

( (C̃T D̃)0
( ÃT B̃)0

)
, we have that

λ
σc
l = exp(4π i(ηl + η7)1(η6)2) · ζ4(Ũ , η) · λ′l, (4-3)

where

ζ4(Ũ , η)= exp
(

2
(

k
(
Ũ , Ũ T (ηUη◦(V∪{6,l})− 1

2δ0
))
+ k

(
Ũ , Ũ T (ηUη◦(W∪{6,l})− 1

2δ0
))

− k
(
Ũ , Ũ T (ηUη◦(V∪{6,7})− 1

2δ0
))
− k

(
Ũ , Ũ T (ηUη◦(W∪{6,7})− 1

2δ0
))))

,

and

λ′l =

(
ϑ
[
Ũ t
(
ηUη◦(V∪{6,l})−

1
2δ0
)]
·ϑ
[
Ũ t
(
ηUη◦(W∪{6,l})−

1
2δ0
)]

ϑ
[
Ũ t
(
ηUη◦(V∪{6,7})−

1
2δ0
)]
·ϑ
[
Ũ t
(
ηUη◦(W∪{6,7})−

1
2δ0
)])2

(Z ′).

Proof. Using Theorem 2.5 when λ6 = 0 and λ7 = 1, the coefficients λl with l = 1, . . . 5 can be computed
as

λl = exp(4π i(ηl + η7)1(η6)2)

(
ϑ[Uη ◦ (V ∪ {6, l})] ·ϑ[Uη ◦ (W ∪ {6, l})]
ϑ[Uη ◦ (V ∪ {6, 7})] ·ϑ[Uη ◦ (W ∪ {6, 7})]

)2

(Z).

For the sake of simplicity let

c1 = ηUη◦(V∪{6,l}), c2 = ηUη◦(W∪{6,l}), c3 = ηUη◦(V∪{6,7}) and c4 = ηUη◦(W∪{6,7}).

By using Theorem 4.4, we have that

λ
σc
l =

(
exp(4π i(ηl + η7)1(η6)2)

(
ϑ[c1] ·ϑ[c2]

ϑ[c3] ·ϑ[c4]

)2

(Z)
)σc

= exp(4π i(ηl + η7)1(η6)2)

((
ϑ[c1] ·ϑ[c2]

ϑ[c3] ·ϑ[c4]

)2)U

(Z ′). (4-4)

We denote by c′j = Ũ T
(
c j −

1
2δ0
)
. By applying the theta transformation formula, we get that

ϑ[c j ]
U (Z ′)= ϑ[Ũ .c′j ](Ũ .Z

′)= ζ(Ũ ) exp (k(Ũ , c′j ))
√

det(C̃ Z ′+ D̃)ϑ[c′j ](Z
′).

Hence equation (4-4) becomes

λ
σc
l = exp(4π i(ηl + η7)1(η6)2) exp(2(k(Ũ , c′1)+ k(Ũ , c′2)− k(Ũ , c′3)− k(Ũ , c′4)))

(
ϑ[c′1] ·ϑ[c

′

2]

ϑ[c′3] ·ϑ[c
′

4]

)2

(Z ′)

where one can easily see that ζ4(Ũ , η)= exp(2(k(Ũ , c′1)+ k(Ũ , c′2)− k(Ũ , c′3)− k(Ũ , c′4)))
2 is a fourth

root of unity. �

We will now give a geometric interpretation to our results. Recall that the Rosenhain coefficients are
invariants for the space Mhyp

3 [2]. The Galois conjugates of the Rosenhain invariants are the Rosenhain
invariants of another point in this moduli space and the following result gives a method to compute the
corresponding Z ′ ∈ 06(2)\H3 and the associated azygetic system.
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Corollary 4.1. Assume that A(8, a, ξ) is isomorphic to the Jacobian of a marked hyperelliptic curve X
and let Z ∈ 06(2)\H3 be the corresponding period matrix for A and η be an azygetic system associated
to Z. Given [c] ∈ I2(K r )/H2(K r ), there exist Z ′, M and Ũ as in Notation 4.2 such that η′ = Ũ Tη is
an azygetic system associated to the period matrix Z ′ of the marked hyperelliptic curve with Rosenhain
invariants (λσcl )l=1,...,5.

Proof. We first note that we can choose C and the period matrix Z ′ in Notation 4.2 such that Ũ ∈ 06(2).
Indeed, if this is not the case, we define C ′ = B MT Ũ T

= B M ′T with M ′ = Ũ M ∈ GSp6(Q). Then
C ′ is still a symplectic basis for of 8(N8r (c)−1a) with respect to E8,NKr /Q(c)ξ . Let M ∈ Sp6(Z/2Z)

the reduction of M (mod 2). We get that M ′ = Ũ M = U M = I6. Then (M ′)−1
= I6 in Sp6(Z/2Z).

Therefore, by letting C = C ′ and Z ′ the period matrix obtained from this new symplectic basis, we
ensure that Ũ ∈ 06(2).

Recall that the action described in Definition 4.1 yields an isogeny between A and Ac which is given
by

Ic : C3/8(a)→ C3/8(N8r (c)−1a), x 7→ x .

For simplicity, we will work with Ic as an isogeny between the nonnormalized tori, i.e., Ic:C3/(B1Z3
+B2Z3)

→C3/(C1Z3
+C2Z3). We consider the image of the fixed points B1(ηi )1+B2(ηi )2 (mod (B1Z3

+B2Z3))

via Ic. We compute η′i such that

B1(ηi )1+ B2(ηi )2 = C1(η
′

i )1+C2(η
′

i )2 (mod (C1Z3
+C2Z3)). (4-5)

By writing M =
(a

c
b
d

)
and using that C = B MT , the 2-torsion point in equation (4-5) writes as

(B1at
+ B2bt)(η′i )1+ (B1ct

+ B2d t)(η′i )2 (mod (C1Z3
+C2Z3))=

B1(at(η′i )1+ ct(η′i )2)+ B2(bt(η′i )1+ d t(η′i )2) (mod (C1Z3
+C2Z3)).

Hence ηi = MTη′i . Then it is easy to check that η′i = Ũ Tηi is in fact an azygetic system associated to Z ′.
The first three facts in Definition 2.3 are trivial to check, the fourth equality follows by applying [15,
Proposition 13.2(b)] for the isogeny Ic, which has degree prime to 2.

To show that η′ is associated to Z ′, we will use the Vanishing Criterion. We choose an even theta
characteristic u ∈ 1

2 Z6 such that ϑ[u](Z) 6= 0 and ϑ[u](Z ′) 6= 0 and apply once more Shimura’s reciprocity
law [23] on the quotients of the type

(
ϑ[v](Z)
ϑ[u](Z)

)2, with v ∈ 1
2 Z6 even. We deduce that the unique even theta

constant vanishing Z ′ is ϑ[ηUη′ ] (since ηUη′ = ηUη ).
Finally, by applying Theorem 4.5 we get that

λ
σc
l = exp(4π i(ηl + η7)1(η6)2)

(
ϑ[c1] ·ϑ[c2]

ϑ[c3] ·ϑ[c4]

)2

(M ′.Z), (4-6)

for l = 1, . . . , 5. Hence the right-hand side expressions in equation (4-6) are the Rosenhain invariants of
a marked genus 3 hyperelliptic curve. �
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Computing the Shioda and Rosenhain class polynomials. From a computational point view, if we sim-
ply aim at computing the Galois conjugates of the Rosenhain invariants and deriving class field equations,
one can choose between the approach in Theorem 4.5 or the one in Corollary 4.1. One can pick any period
matrix for Ac and use the formula in Theorem 4.5, or construct the period matrix Z ′ and its associated
azygetic system as explained in the proof of the Corollary 4.1 and compute the resulting Rosenhain
invariants via Takase’s formula.

Algorithm 1 in the Appendix gives all the steps of our computation of a list of approximations for
the Galois conjugates of the Rosenhain invariants, that we use to get the polynomials H R

K r ,i in equa-
tion (1-1). The algorithm for computing H S

K r , j is similar and relies on the computation of the Siegel
modular functions S j in Equation (4-2). Note that in applications, for i, j ≥ 2, it is easier to use the
Hecke representation as introduced by Gaudry et al [10]:

Ĥ R
K r ,i (t)=

∑
σ

λσi

∏
σ ′ 6=σ

(t − λσ
′

1 ), Ĥ S
K r , j (t)=

∑
σ

Shiσj
∏
σ ′ 6=σ

(t −Shiσ
′

1 ),

where σ, σ ′ ∈ Gal(C Mm(K r )/K r ) with m = (2) for the product in H R
K r ,i and m = (1) for the product

and sum in H S
K r , j .

5. Benchmarks and results

We implemented the algorithms described here using SageMath [25] and Magma [4] by building on an
existing implementation [2]. The computation of primitive CM types for genus 3 in [2] is dependent on
the group structure of Gal(L/Q). Our CM type computation is independent of this group isomorphism,
and works for all genera. In this general setting, we also implemented the construction of the reflex field
of K and of the typenorm, as explained in Section 3. Since SageMath [25] does not implement ray class
groups, we used an interface to Magma [4] to compute the group Clm(K r ) and enumerate elements in
T (Clm(K r )).

5A. Practical experiments. For space reasons, we reproduce here partially an example and give the full
computation in [7]. Let K be the CM field defined by the polynomial x6

+ 43x4
+ 451x2

+ 729. Since
the field contains i , all p.p.a.v. with CM by K are hyperelliptic. For one of its primitive CM types, our
implementation yields the reflex field as the field of equation x6

+ 1012x4
+ 262048x2

+ 3968064. The
subgroup T (Clm(K r )), for m = (1), (2), has three elements, which means that the polynomials H R

K r ,i

and H S
K r , j have degree 3.

For most computations on the Rosenhains 500 bits of precision were enough, whereas for the Shiodas
we used 5000 bits of precision. Indeed, the Siegel modular forms appearing in the expressions of the
Shiodas have much larger weight, which results into much more precision needed when computing
with the Shiodas. To compute the Shiodas, we first computed the Rosenhain coefficients and got an
approximation of the equation of the curve, and afterwards computed the Shiodas from this equation.
All computations were performed on a single core of a Intel Core i7-4790 CPU 3.60GHz and took
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polynomial t3 t2 t 1

HK r ,1 1 1
16α

2
−

19
8 α+

181
16

1
48α

2
−

49
24α+

875
16

1
6α

2
−

16
3 α+

19
2

ĤK r ,2 1 −
7

144α
2
+

149
72 α−

3331
144

3
16α

2
−

65
8 α+

1295
16 −

11
4 8α2

+
239
24 α−

1521
16

ĤK r ,3 1 −
1
16α

2
+

19
8 α−

277
16

13
48α

2
−

277
24 α+

1791
16 −

11
24α

2
+

227
12 α−

1377
8

ĤK r ,4 1 7
144α

2
−

149
72 α+

2467
144 −

1
144α

2
+

11
72α+

59
144

7
144α

2
−

143
72 α+

2551
144

ĤK r ,5 1 −6 12 −8

Table 1. Coefficients of polynomials H R
K r ,i for the field of equation x6

+ 43x4
+ 451x2

+ 729.

approximately 5 minutes at 500 bits of precision and less than 2 hours for 5000 bits. Most time is
spent on the theta constants computation, which is performed using the naive implementation in [2].
To compute the coefficients of the class polynomials H R

K r ,i and H S
K r ,i as algebraic integers, we use

the algebraic dependence testing algorithm [5], implemented in PARI/GP by the function algdep. This
algorithm gives us a conjectured minimal polynomial for each coefficient of the class polynomials.

Since Princ(K ,8) is stable under complex conjugation, it can be shown by using similar arguments
as in [21, Section III.2] that the coefficients of the Shioda class polynomials are in fact in the field K r

0 ,
the real multiplication subfield of K r . We conjecture that a similar result holds for the Rosenhain class
polynomials. For the chosen example, K and K r are equal, so we take K r

0 to be the field given by the
equation

x3
− 43x2

+ 451x2
− 729

and we denote by α a generator for this field. Tables 1 and 2 give the coefficients of Rosenhain and
Shioda class polynomials, respectively. Table 2 gives the Shioda class polynomials for the first Shioda
invariant, and the full example is given in [7]. As expected, the polynomials for the Shiodas have larger
coefficients, which is due again to the shape of the modular forms in their expression.

In order to heuristically check the correctness of these computations, we use a well known approach
in the literature which consists in choosing a prime number p such that the abelian varieties with CM by
OK have good reduction, compute the roots of class polynomials (mod p) and check that the Jacobians
of the curves obtained in this way have the right number of points; see for instance [1] for details.

coefficients

t3 1

t2 −1504998103898184428692895719062876991414375
1106030051237012236054152188167439553303783103 α

2
+

57602191791353412833575829180223091649340630
1106030051237012236054152188167439553303783103 α−

182610135152410817952949427128063513960980968701
247750731477090740876130090149506459940047415072

t 271537582048409045934259507591982005281201875
867127560169817593066455315523272609790165952752 α

2
−

17155947238202790094437950965078959001849495535
1300691340254726389599682973284908914685248929128 α+

189221715181445169536136728129202262948355511744769
1165419440868234845081315944063278387557983040498688

1 −497018334394924228446745226194781840141344176875
24473808258232931746707634825328846138717643850472448 α

2
+

11444255640191890315301399097052785606070607022115
12236904129116465873353817412664423069358821925236224 α−

191953650625925394207069308222518633622840220848155861
16446399149532530133787530602620984605218256667517485056

Table 2. Coefficients of the polynomial H S
K r ,1 for the field of equation x6

+ 43x4
+ 451x2

+ 729.
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Appendix

Algorithm 1: Computing the Galois action using Shimura’s reciprocity law

Input: A CM-pair (K ,8), where K is a sextic CM field and 8 is a CM type, and precision prec.
Output: Lists containing the Galois conjugates of the Rosenhain invariants of hyperelliptic

curves with CM by (K ,8), if such curves exist.
1 Let Rl , 1≤ l ≤ 5 be an empty list.
2 Compute the Galois closure L of K/Q.
3 Compute the reflex CM-pair (K r ,8r ) and the fixed embedding ιK r : K r

→ L .
4 Determine the ray class group Clm(K r ) for the modulus m= (2).
5 Compute and store elements of T (Clm(K r )) in a list H(K r ,8r ).
6 Choose a p.p.a.v. A with CM by OK given by the triple (8, a, ξ) and construct period matrix Z

with [1, Algorithm 2].
7 if exactly one of the theta constants ϑ[c](Z), with c even, is zero then
8 Compute the Rosenhain invariants λl with precision prec using Takase’s formula (2-10).
9 for all (N8r (c), NK r/Q(c)) ∈ H(K r ,8r ) do

10 Compute the p.p.a.v. A(8, N8r (c)−1a, NK r/Q(c)ξ) and the corresponding Z ′.
11 Compute λσcl using the formula in Theorem 4.5 and add it to the list Rl .
12 return Rl, 1≤ l ≤ 5.
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371An algorithm and estimates for the Erdős–Selfridge function — Brianna Sorenson, Jonathan Sorenson and Jonathan
Webster

387Totally p-adic numbers of degree 3 — Emerald Stacy

403Counting points on superelliptic curves in average polynomial time — Andrew V. Sutherland

A
N

T
S

X
IV

:
Fourteenth

A
lgorithm

ic
N

um
ber

Theory
Sym

posium
G

albraith
O

B
S

4


	1. Introduction
	2. Background
	2A. Principally polarized abelian varieties over C and period matrices
	2B. Theta functions
	2C. The Rosenhain invariants
	2D. Shioda invariants

	3. Computing abelian varieties with CM
	3A. Reflex field computation
	3B. The reflex typenorm
	3C. Class field theory
	3D. CM abelian varieties

	4. Computing class polynomials
	5. Benchmarks and results
	5A. Practical experiments

	Appendix
	Acknowledgements
	References
	
	

