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We exhibit an explicit, deterministic algorithm for finding a canonical form for a positive definite matrix
under unimodular integral transformations. We use characteristic sets of short vectors and partition-
backtracking graph software. The algorithm runs in a number of arithmetic operations that is exponential
in the dimension n, but it is practical and more efficient than canonical forms based on Minkowski
reduction.

1. Introduction

1.1. Motivation. For n a positive integer, let Sn denote the R-vector space of symmetric real n × n-
matrices and Sn

>0 ⊂ Sn denote the cone of positive definite symmetric n× n-matrices. For A ∈ Sn
>0, the

map x 7→ xTAx (where T denotes transpose) defines a positive definite quadratic form, with A its Gram
matrix in the standard basis; for brevity, we refer to A ∈ Sn

>0 as a form. The group GLn(Z) of unimodular
matrices acts on Sn

>0 by the action (U, A) 7→UTAU ; the stabilizer of a form A under this action is the
finite group

Stab(A) := {U ∈ GLn(Z) :UTAU = A}. (1.1.1)

Two forms A, B ∈ Sn
>0 are said to be (arithmetically) equivalent if there exists a unimodular matrix

U ∈ GLn(Z) such that
A =UTBU. (1.1.2)

In the geometry of numbers [39], forms arise naturally as Gram matrices of Euclidean lattices under a
choice of basis; in this context, two forms are arithmetically equivalent if and only if they correspond to
isometric lattices.

Plesken and Souvignier [35] exhibited algorithms to compute stabilizers and test for arithmetic equiv-
alence among forms, and these have been used widely in practice [2; 8; 10; 21; 37]. In a more theoretical
direction, Haviv and Regev [13] proposed algorithms based on the shortest vector problem and an isola-
tion lemma for these purposes as well, with a time complexity of nO(n).
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While these algorithms have been sufficient for many tasks, they suffer from an unfortunate deficiency.
Suppose we have many forms A1, . . . , Am ∈ Sn

>0 and we wish to identify them up to equivalence. A
naive application of an equivalence algorithm requires O(m2) equivalence tests (in the worst case). The
number of tests can be somewhat mitigated if useful invariants are available, which may or may not be
the case.

Our approach in this article is to compute a canonical form CanGLn(Z)(A) for A ∈ Sn
>0. This canonical

form should satisfy the following two basic requirements:

(i) For every A ∈ Sn
>0, CanGLn(Z)(A) is equivalent to A.

(ii) For every A ∈ Sn
>0 and U ∈ GLn(Z), CanGLn(Z)(U

TAU )= CanGLn(Z)(A).

(The equivalence in (i) is unique up to Stab(A).) Combining a canonical form with a hash table, the
identification of equivalence classes in a list of m forms takes only m canonical form computations (and
m hash table lookups) and so has the potential to be much faster.

1.2. Minkowski reduction and characteristic sets. The theory of Minkowski reduction provides one
possible approach to obtain a canonical form. The Minkowski reduction domain [31] is a polyhedral
domain Pn ⊂ Sn

>0 with the property that there exists an algorithm for Minkowski reduction, taking as
input a form A and returning as output an equivalent form in Pn . For example, for n = 2 we recover the
familiar Gaussian reduction of binary quadratic forms. An implementation of Minkowski reduction is
available [34]; however, this reduction is quite slow in practice, and it is unsuitable for forms of large
dimension n (say, n ≥ 12).

For those forms whose Minkowski reduction lies in the interior of the domain Pn , the Minkowski
reduction is unique [7, page 203], thereby providing a canonical form. Otherwise, when the reduction
lies on the boundary of Pn , there are finitely many possible Minkowski reduced forms; one can then
order the facets of the polyhedral domain Pn to choose a canonical form among them. This approach was
carried out explicitly by Seeber (in 1831) for n = 3; and, citing an unpublished manuscript, Donaldson
claimed “Recently, Hans J. Zassenhaus has suggested that Minkowski reduction can be applied to the
problem of row reduction of matrices of integers” [7, page 201]. An extension to n = 5, 6, 7 is possible
at least in principle, since Pn is known in these cases [39]. However, the problem of determining the
facets of the Minkowski reduction domain is hard in itself and so this strategy seems unrealistic in higher
dimensions. Other reduction theories [11; 24] suffer from the same problem of combinatorial explosion
on the boundary.

In contrast, the approach taken by Plesken and Souvignier [35] for computing the stabilizer and check-
ing for equivalence of a form A uses the following notion.

Definition 1.2.1. A characteristic vector set function is a map that assigns to every n ≥ 1 and form
A ∈ Sn

>0 a finite subset of vectors V(A)⊆ Zn such that

(i) V(A) generates Zn (as a Z-module); and

(ii) for all U ∈ GLn(Z), we have U−1V(A)= V(UTAU ).
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The basic idea is then given a form A to define an edge-weighted graph from a characteristic vector set
V(A); using this graph, equivalence and automorphisms of forms becomes a problem about isomorphism
and automorphisms of graphs (see Lemma 3.1.1). The graph isomorphism problem has recently been
proved to be solvable in quasipolynomial time by Babai (see the exposition by Helfgott [15]); however,
the current approaches to computing characteristic vector sets (including ours) use algorithms to solve
the shortest vector problem which is known to be NP-hard [29], so it is difficult to take advantage of this
complexity result in the general case. Nevertheless, we may hope to leverage some practical advantage
from this approach.

1.3. Our approach. In this article, we adopt the approach of characteristic vector sets, using very effi-
cient programs [17; 28] that compute a canonical form of a graph using partition backtrack. A subfield
F of R is computable if it comes equipped with a way of encoding elements in bits along with determin-
istic, polynomial-time algorithms to test equality, to perform field operations, and to compute (binary)
expansions to arbitrary precision (for generalities, see e.g., Stoltenberg-Hansen and Tucker [40]). For
example, a number field with a designated real embedding is computable using standard algorithms.

Theorem 1.3.1. There exists an explicit, deterministic algorithm that, on input a (positive definite) form
A ∈ Sn

>0 with entries in a computable subfield F ⊂ R, computes a canonical form for A. For fixed n ≥ 1,
this algorithm runs in a bounded number of arithmetic operations in F and in a polynomial number of
bit operations when F =Q.

This theorem is proven by combining Proposition 3.4.2 for the first statement and Corollary 4.1.2
for the running time analysis. The running time in Theorem 1.3.1 is exponential in n, as we rely on
short vector computations; we are not aware of general complexity results, such as NP-hardness, for this
problem. In light of the comments about Minkowski reduction in the previous section, the real content
of Theorem 1.3.1 is in the word explicit. We also find this algorithm performs fairly well in practice (see
Section 4.2) — an implementation is available online [1].

1.4. Contents. In Section 2 we present the construction of some characteristic vector set functions. In
Section 3 we present how to construct a canonical form from a given characteristic set function. In
Section 4 we consider the time complexity of our algorithm; we conclude in Section 5 with extensions
and applications.

2. Construction of characteristic vector sets

In this section we build two characteristic vector set functions that can be used for the computation of
the stabilizer, canonical form, and equivalence of forms.

2.1. Vector sets. The sets of vectors that we use throughout this work are based on short or shortest
vectors. Given a set of vectors V ⊆ Zn , let span(V) be the (not necessarily full) lattice spanned over Z
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by V . For A ∈ Sn and x ∈ Rn , we write

A[x] := xTAx ∈ R. (2.1.1)

For a form A ∈ Sn
>0 we define the minimum

min(A) := min
x∈Znr{0}

A[x], (2.1.2)

the set of shortest (or minimal) vectors and its span

Min(A) := {v ∈ Zn
: A[v] =min(A)},

Lmin(A) := span(Min(A)).
(2.1.3)

The set of shortest vectors satisfies the desirable transformation property

Min(UTAU )=U−1 Min(A) (2.1.4)

for all U ∈ GLn(Z). If Min(A) is full-dimensional, then A is called well-rounded.
Two obstacles remain for using Min(A) as a characteristic vector set:

PB1. If n ≥ 2, then span(Min(A)) may not have rank n.

PB2. If n ≥ 5, then span(Min(A)) may have rank n but may not equal Zn .

Thus we have to consider other vector sets. For λ > 0, let

MinA(λ) := {v ∈ Zn r {0} : A[v] ≤ λ}. (2.1.5)

The vector set used for computing the stabilizer and automorphisms in the AUTO/ISOM programs of
Plesken and Souvignier [35] is:

VPS(A) :=MinA(maxdiag(A)), (2.1.6)

where maxdiag(A) := max{Ai i : 1 ≤ i ≤ n} is the maximum of the diagonal elements of A. The
vector set VPS(A) contains the standard basis as a subset and as a result is adequate for computing the
stabilizer. Typically LLL-reduction [25] is used, leading to a decrease in maxdiag(A), to prevent large
sets. However, when computing equivalence we have a potential problem since two forms A and B can
be equivalent but satisfy maxdiag(A) 6=maxdiag(B). This is a limitation of ISOM, which for equivalence
can be resolved by taking the bound max{maxdiag(A),maxdiag(B)} (something we cannot do for our
canonical form).

To prevent this problem we can use a more reliable vector set that consists of those vectors whose
length is at most the minimal spanning length:

Vms(A) :=MinA(λmin), where

λmin :=min{λ > 0 : span(MinA(λ))= Zn
}.

(2.1.7)

This vector set Vms(A) is a characteristic vector set. However, Vms(A) can still be very large, making it
impractical to use.
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Example 2.1.8. For example, the matrix Aλ =
( 1

0
0
λ

)
for λ≥ 1 gives

Vms(Aλ)= {±e2} ∪ {±e1,±2e1, . . . ,±b
√
λce1}.

while {±e1,±e2} would be adequate. This problem is related to PB1.

2.2. An inductive characteristic vector set, using closest vectors. Building on the observations made in
the previous section, we now present a construction that deals with PB1 and allows us to build a suitable
characteristic vector set.

For a set of vectors V ⊆ Zn , the saturated sublattice (of Zn) spanned by V is

satspan(V) :=QV ∩Zn. (2.2.1)

Beyond shortest vectors, we use the closest vector distance: for v ∈Qn , we define

cvd(A, v) := min
x∈Zn

A[x − v] (2.2.2)

as the minimum distance from Zn to the vector v and

CV(A, v) := {x ∈ Zn
: A[x − v] = cvd(A, v)} (2.2.3)

the set of closest vectors achieving this minimum.
Characteristic and closest vector sets behave well under restriction to a sublattice. The following

lemma describes this explicitly, in terms of bases.

Lemma 2.2.4. Let V be a characteristic vector set function, A ∈ Sn
>0 a form, and L ⊂ Rn a lattice of

rank r. Let B ∈Mn,r (R) be such that the columns are a Z-basis of L; let c be in the real span of L and
let cB := B−1c ∈ Rr be the unique vector such that BcB = c. Then the sets

BV(BTAB) and B CV(BTAB, cB)

are independent of B (depending only on L , c).

Proof. The form A|B := BTAB ∈ Sr
>0 is the restriction of A to L in the basis B, so BV(A|B) is the

characteristic vector set of this restricted form, as elements of L ⊂ Rn . Similarly, B CV(A|B, cB) is the
set of vectors in L ⊂ Rn , which are closest to c. Both sets only depend on L and are independent of the
chosen basis. �

Suppose that A is well-rounded. Let v1, . . . , vn be a Z-basis of the full rank lattice Lmin(A) spanned
by Min(A) and let B ∈Mn×n(Z) be the matrix with columns v1, . . . , vn . We then define

Vwr− cv(A) :=Min(A)∪
⋃

c∈Zn/Lmin(A)

(c− B CV(BTAB, B−1c)). (2.2.5)

(It is possible to reduce the size of this set, e.g., by removing 0 or filtering by length.) The set Vwr− cv(A)
consists of the union of the shortest vectors together with the set of points in each coset closest to
the origin. By Lemma 2.2.4, the set Vwr− cv(A) is well-defined, independent of the choice of basis.
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Furthermore it satisfies the necessary transformation property and spans Zn (as a Z-module) because it
contains at least one point from each coset in Zn/Lmin(A).

For a general form A, in geometrical terms we follow the filtration defined from the minimum [4]. We
define a set of vectors Vcv(A) inductively (described in an algorithmic fashion), as follows:

(1) Compute the set Min(A) of vectors of minimal length and compute the saturated sublattice L1 :=

satspan(Min(A)) spanned by these vectors.

(2) Compute a Z-basis v1, . . . , vr of L1, where r is its rank. Let B1 ∈ Mn,r (R) be the matrix with
columns v1, . . . , vr , and let A1 := BT

1 AB1 ∈ Sr
>0. Note that A1 is well-rounded by construction.

(3) Let proj : Zn
→ Rn be the orthogonal projection on L⊥1 with respect to the scalar product defined

by A.

(4) Compute a basis w1, . . . , wn−r of L2 := proj(Zn) and let B2 ∈Mn,(n−r)(R) the matrix with columns
w1, . . . , wn−r . Let A2 := BT

2 AB2.

(5) If r = n, let Vcv(A2) :=∅; otherwise, compute Vcv(A2) recursively and let

Vcv(A) := B1Vwr− cv(A1)∪
⋃

v∈B2Vcv(A2)

CV(A, v). (2.2.6)

Theorem 2.2.7. The following statements hold:

(a) The set Vcv(A) is well-defined (independent of the choices of bases).

(b) The association A 7→ Vcv(A) is a characteristic vector set function.

(c) We have #Vcv(A)= nO(n).

(d) There is an explicit, deterministic algorithm that on input A computes the set Vcv(A) in nO(n) arith-
metic operations over F. For F =Q it has bit complexity nO(n)sO(1) with s the input size of A.

Proof. We prove (a) by induction in the dimension n that Vcv is a characteristic vector set. The base
case n = 0 is trivial. For n > 0, note that A1 is well rounded and A2 has dimension at most n− 1 and
thus B1Vwr− cv(A1) and B2Vcv(A2) are independent of the choice of basis by induction and Lemma 2.2.4.
The lattice L2 is uniquely defined by the projection.

For (b), by part (a), we may choose convenient bases. Running the algorithm for A and A′ =UTAU
we can assume that v′i = U−1vi and w′i = U−1wi by using the transformation property of Min(A).
Then A′i = Ai and B ′i = U−1 Bi for i = 1, 2. We conclude by noting that CV also has the compatible
transformation property

CV(UTAU,U−1v)=U−1 CV(A, v). (2.2.8)

For (c), by Keller, Martinet and Schürmann [20, Proposition 2.1] for a well-rounded lattice the index of
the sublattice determined by the shortest vectors is at most bγ n/2

n c with γn the Hermite constant satisfying
γ

n/2
n ≤ (2/π)n/2 ·0(2+ n/2) = nO(n). The bound on Vcv follows by combining this with exponential

upper bounds on the kissing number [18] and the upper bound 2n on # CV(A, v) [6, Proposition 13.2.8].
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The running time estimate (d) for arithmetic operations follows by combining single exponential
upper estimates for algorithms to solve the CVP and SVP (see e.g., Micciancio and Voulgaris [30]). We
conclude with the bit complexity analysis for F =Q. The bit complexity of SVP and CVP algorithms
is indeed polynomial time in the input size [16; 36]. (We lack a reference for more general fields, and
although we do not see major obstacles doing such an analysis, it would be out of the scope of this
work). For the computed projection, the Gram–Schmidt orthogonalization process also has a polynomial
bit complexity in the input size (in bounded dimension, by induction). The remaining steps in computing
Vcv(A), including computing a basis out of a spanning set, computing a basis for the saturated sublattice,
and computing representatives of the cosets Zn/Lmin(A), are standard applications of the computation
of a Hermite normal form (HNF) — see also Section 3.4. A careful HNF computation can be achieved in
polynomial time in the input size [19]. In particular, the obtained basis vectors and coset representatives
also have a bit size that is polynomially bounded in the input size. Thus for F = Q all arithmetic
operations while computing Vcv(A) have a bit complexity polynomial in s. We note for completeness
that efficient versions of SVP, CVP, and HNF algorithms depend heavily on the famous LLL-algorithm.

�

Although the cost of computing many closest vector problems may make it quite expensive to compute
Vcv(A) in the worst case, we find in many cases that it gives a substantial improvement in comparison to
other characteristic vector sets.

Example 2.2.9. Returning to Example 2.1.8, we find that Vcv(Aλ)= {±e1,±e2}.

The construction of Vcv addresses PB1, but PB2 remains — even for well-rounded lattices #(Zn/Lmin(A))
can possibly be very large.

Example 2.2.10. The self-dual Niemeier lattice N23 [5, Chapter 18], whose root diagram is 24A1 is
well-rounded: it has minimum 2 with 48 shortest vectors, and #Vms(N23)= 194352. Since the index of
the lattice spanned by the shortest vectors in N23 is 224, the size of Vcv(N23) is at least 48+ 224.

Remark 2.2.11. It may be possible to deal with some cases (but still not Example 2.2.10) by working
with characteristic vector sets on forms attached in a canonical way to A: for example, one could work
with the dual form attached to A, for sometimes the dual has few minimal vectors (even if A has many).

2.3. A characteristic vector set, using Voronoi-relevant vectors. A well-known geometric shape asso-
ciated to lattices is the Voronoi cell. The Voronoi cell is the set of all points closer to 0 with respect to A
than to any other integer point. For a form A, the (open) Voronoi cell is the intersection of half-spaces

Vor(A) :=
⋂

x∈Zn\{0}

HA,x , (2.3.1)

with HA,x := {y ∈Rn
: A[y]< A[y− x]}. However, almost all vectors in this intersection are superfluous,

and we only consider the set of Voronoi-relevant vectors Vvor(A), i.e., the (unique) minimal set of vectors
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such that
Vor(A)=

⋂
x∈Vvor(A)

HA,x . (2.3.2)

Lemma 2.3.3. The following statements hold:

(a) The association A 7→ Vvor(A) is a characteristic vector set function.

(b) We have #Vvor(A)≤ 2 · (2n
− 1).

(c) There is an explicit, deterministic algorithm that on input A computes the set Vvor(A) in 22n+o(n)

arithmetic operations over F. For F = Q it has bit complexity 22n+o(n)sO(1) with s the input size
of A.

Proof. Property (ii) of a characteristic vector set for Vvor follows from the geometric definition, fully
independent of the basis. For property (i), note that for any nonzero x ∈ Zn , we have x 6∈ Vor(A), and
thus there is a vector v ∈ Vvor(A) such that x − v lies strictly closer to 0 with respect to A. Repeating
this (a finite amount of time by a packing argument) we eventually end up at 0 and thus x is the sum of
Voronoi-relevant vectors. The remaining statements follow from Micciancio and Voulgaris [30]. �

Although this characteristic vector set has great theoretical bounds, we refrain from using it in practice:
most lattices actually attain the 2 · (2n

− 1) Voronoi bound, whereas constructions based on short and
close vectors often beat the theoretical worst-case bounds and give much smaller vector sets in practice.

3. Construction of a canonical form

Suppose now that we have chosen a characteristic vector set function V , as in Section 2.2 or 2.3. From
this, we will construct a canonical form, depending on V .

3.1. Graph construction. Given a form A, let V(A) = {v1, . . . , vp}. We define G A to be the edge-
and vertex-weighted complete (undirected) graph on p vertices 1, . . . , p such that vertex i has weight
wi,i = A[vi ] and the edge between i and j has weight wi, j = v

T
i Av j = w j,i . In other words, G A is the

weighted complete graph whose adjacency matrix is BTAB, where B ∈Mn,p(R) is the matrix whose
columns are vi . (The graph G A depends on V , but we do not include it in the notation as we consider V
fixed in this section.)

Lemma 3.1.1. For a form A ∈ Sn
>0 and the graph G A constructed from a characteristic vector set V(A)

we have a group isomorphism

Stab(A)' Stab(G A) := {σ ∈ Sp : wi, j = wσ(i),σ ( j) for all 1≤ i, j ≤ p}. (3.1.2)

Proof. We first define the map Stab(A)→ Stab(G A). Let U ∈ Stab(A). Then by property (ii) of a
characteristic vector set, we have UV(A)= V(U−TAU−1)= V(A); therefore, U permutes the set V(A),
giving a permutation σU ∈ Sp characterized by σU (i)= j if and only if Uvi = v j . Accordingly, we have

wi, j = v
T
i Av j = v

T
i UTAUv j = vσU (i)AvσU ( j) (3.1.3)
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so moreover σU ∈Stab(G A). It is then straightforward to see that this map defines a group homomorphism.
To show this map is an isomorphism, we use property (i) that V(A) spans Zn . Indeed, the map is
injective because if σU is the identity, then Uvi = vi for all i so U is the identity. Similarly, it is
surjective: any σ ∈ Stab(G A) fixes pairwise inner products with respect to A, so we obtain a unique
Q-stabilizer U ∈ GLn(Q) such that UTAU = A; however, because V(A) spans Zn , we obtain UZn

= Zn

so U ∈ Stab(A). �

3.2. Graph transformations. The software nauty [28] and bliss [17] allow to test equivalence and
find the automorphism group and a canonical vertex ordering of vertex weighted graphs. Thus, we need
graph transformations that allow to translate our vertex and edge weighted complete graphs into vertex
weighted graphs (see also the nauty manual [28]).

Let G be a complete (undirected) graph on p vertices with vertex weights wi,i and edge weights wi, j .
We construct a complete (undirected) graph T1(G) on p+ 2 vertices which is only edge weighted, as
follows. Let a := 1+maxi, j wi, j and b := a+ 1 be two distinct weights that do not occur as wi, j . We
define the new edge weight w′i, j for i < j to be

w′i, j :=


wi, j if i < j ≤ p,
wi,i if i ≤ p and j = p+ 1,
a if i ≤ p and j = p+ 2,
b if i = p+ 1 and j = p+ 2.

(3.2.1)

We have a natural bijection Isom(G,G ′) ∼
−→ Isom(T1(G), T1(G ′)) of morphisms in the categories

of edge-and-vertex-weighted and edge-weighted graphs, hence taking G ′ = G, we have Aut(G) '
Aut(T1(G)).

The next transformation takes a complete graph G with edge weights wi, j and returns a vertex weighted
graph T2(G). Let S be the list of possible edge weights, ordered from the smallest to the largest, and let
w be the smallest integer such that #S ≤ 2w. For an edge weight s ∈ S, denote lk(s) the k-th value in the
binary expansion of the position of s in S. If G has p vertices then T2(G) will have pw vertices of the
form (i, k) with 1 ≤ i ≤ p and 0 ≤ k ≤ w− 1. The weight of the vertex (i, k) is k. Two vertices (i, k)
and (i ′, k ′) are adjacent in the following cases:

(1) i = i ′.

(2) k = k ′ and lk(wi,i ′)= 1.

Condition (i) implies that vertices of G correspond to cliques in T2(G). Condition (ii) means that each
digit k corresponds to a subgraph of T2(G). We have again have a natural bijection Isom(G,G ′) ∼−→
Isom(T2(G), T2(G ′)).

Combining this we can lift an isomorphism between T2(T1(G A)) and T2(T1(G B)) to an isomorphism
between G A and G B and thus to an isomorphism between A and B by solving an overdetermined linear
system. Similarly, we can compute the group Aut(A) from Aut(T2(T1(G A))).
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3.3. Canonical orderings of characteristic vector sets. The canonical vertex ordering functionality of
nauty and bliss gives an ordering of the vertices of vertex weighted graphs. It is canonical in the
sense that two isomorphic graphs will after this reordering be identical. We do not know a priori what
this ordering is as it depends on the software, its version and the chosen running options. We still call it
canonical, following standard terminology.

We need to lift the ordering of the vertex set of T2(T1(G A)) into an ordering of the vertex set of G A

and so the characteristic vector set. Every vertex i of G corresponds to a set Si of w vertices in T2(G)
with Si ∩ S j = ∅ for i 6= j . For two vertices i, j of G we set i < j if and only if min Si < min S j in
the canonical vertex ordering of T2(G). Similarly every vertex i of G maps to one vertex φ(i) of T1(G)
with φ(i) 6= φ( j) if i 6= j . Thus we set i < j if and only if φ(i) < φ( j) in the canonical ordering.

Combining the above we obtain a canonical ordering of the vertex set of G A and thus of the charac-
teristic vector set of the matrix A.

3.4. Canonical form. We have a canonical ordering of the characteristic vector set V(A), which we
write as v1, . . . , vp. This ordering is only canonical up to Stab(A): for another canonical ordering, there
is an element S ∈ Stab(A) such that wi = Svi for i = 1, . . . , p, and conversely. We will now derive a
canonical form from the vectors vi .

The Hermite normal form (HNF) of a matrix Q ∈Mm,n(Z) is the unique matrix H = (hi j )i, j ∈Mm,n(Z)

for which there exists U ∈ GLm(Z) such that Q =U H and moreover:

(i) The first r rows of H are nonzero and the remaining rows are zero.

(ii) For 1≤ i ≤ r , if hi, ji is the first nonzero entry in row i , then j1 < · · ·< jr .

(iii) hi, ji > 0 for 1≤ i ≤ r .

(iv) If 1≤ k < i ≤ r , then 0≤ hk, ji < hi, ji .

In the cases that interest us, the matrix Q A with columns v1, . . . , vp defined by the characteristic
vector set V(A) is of full rank and so the matrix U , obtained from the Hermite normal form Q A =U H ,
is uniquely defined as well. Note that any other ordering Sv1, . . . , Svp would lead to the matrix SU
for some S ∈ Stab(A). We denote the matrix U by UV(A) and note that its coset representative in
Stab(A)\GLn(Z) is well-defined (determined by V(A)).

We now define

CanGLn(Z)(A) :=UT
V(A)AUV(A) ∈ Sn

>0. (3.4.1)

Then CanGLn(Z)(A) depends only on V(A) and A. Proposition 3.4.2 proves the first statement of our
main result, Theorem 1.3.1 (for any characteristic vector set function V).

Proposition 3.4.2. The matrix CanGLn(Z)(A) is a canonical form for A.

Proof. Property (i) is clear by definition. For (ii), given P ∈ GLn(Z), we have

UV(PTAP) ≡UP−1V(A) ≡ P−1UV(A) ∈ Stab(PTAP)\GLn(Z). (3.4.3)
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Thus CanGLn(Z)(P
TAP)= CanGLn(Z)(A), as desired. �

Remark 3.4.4. An alternative to computing the canonical form would be to keep the canonicalized
version of the graph G A. However, this graph can be quite large, and the positive definite form allows
a more compact representation even taking into account coefficient explosion that might occur with the
Hermite normal form.

4. Analysis

4.1. Theoretical time complexity. We now analyze the algorithmic complexity of computing a canonical
form using the characteristic vector set in Section 2.3.

Theorem 4.1.1. Given as input a positive definite symmetric matrix A ∈ Sn
>0 with entries in a computable

subfield F ⊂ R, and a characteristic vector set V(A), we can compute a canonical form for A in time
exp (O(log(N )c)+ sO(1) where N := #V(A), s is the input size of (A,V(A)), and c > 1 is a constant.

Proof. Given the characteristic vector set V(A) the corresponding graph can be computed in time poly-
nomial in the input size of A and V(A) as this part is mostly dominated by the computation of vTAw for
v,w ∈ V(A). Computing a Hermite normal form can be done in time polynomial in the matrix input size
which is the same as V(A) [19]. Because the initial graph has at most O(N 2) distinct weights the final
constructed vertex-weighted graph T2(T1(G A)) is of polynomial size in N . We can conclude if we have
a quasipolynomial algorithm to find a canonical form of a graph. For this we refer to a recent report by
Babai [14]. �

Corollary 4.1.2. For all n ≥ 1 and A ∈ Sn
>0 with entries in a computable subfield F ⊂R, we can compute

a canonical form in at most 2O(nc) arithmetic operations in F for some constant c > 1. If F =Q, the bit
complexity is at most 2O(nc)

+ sO(1)2O(n) with s the input size of A.

Proof. By Lemma 2.3.3 we have an characteristic vector set function Vvor such that Vvor(A) has cardinality
at most 2(2n

− 1) and can be computed in at most 2O(n) arithmetic operations. For the rational case, the
bit complexity (and output size) is at most sO(1)2O(n), with s the input size of A. We conclude by
Theorem 4.1.1. �

4.2. Practical time complexity. We give a short experimental review of the practial time complexity
of our implementation [1]. We selected a diverse set of test cases to benchmark our implementation:
random forms, more than 500 000 perfect forms [8] and more than 100 special forms from the catalog of
lattices [32]. For the random n-dimensional forms a basis matrix B is constructed with entries uniform
from {−n, . . . , n}, which, if full rank, is turned into a form A = BT B. The set of perfect forms contains
all 10 963 perfect forms of dimension 2 up to 8 and in addition 524 288 perfect forms of dimension 9.
The set of special forms consists of a diverse subset from the catalog up to dimension 16, including all
laminated lattices. Up to dimension 20 we used 32-bit integers and above that (much slower) arbitrary
precision integers to prevent overflow. The implementation currently supports the characteristic vector
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Time (s) #Vms

Type Samples n min avg max min avg max

Perfect 10 963 2–8 0.00041 0.0032 0.086 6 73.74 240
524 288 9 0.0039 0.00594 0.11 90 94.04 272

100 10 0.0015 0.08 2.03 20 100.36 988

Random 100 20 0.016 0.17 4.18 40 114.34 812
100 30 2.43 23.41 511.42 60 93.46 310
100 40 5.18 24.91 251.51 82 107.7 240

Catalog 107 2–16 0.00018 2.12 36.71 4 630.47 4320

Table 1. Timings of our implementation [1].

set function Vms and has not been highly optimized. The main bottleneck seemed to be constructing the
characteristic vector sets and the computation of all pairwise inner products (in arbitrary precision) for
the graph. Perhaps surprisingly, determining the canonical graph itself took negligible time in most cases.
In low dimensions where we can still use basic integer types, computing a canonical form takes a few
milliseconds up to a few seconds. For random lattices we can expect relatively small characteristic sets
even in large dimensions, therefore enumerating the minimal vectors quickly becomes the bottleneck in
high dimensions. For special forms in higher dimensions such as the Leech lattice with 196 560 minimal
vectors one can expect that the main bottleneck is related to the huge graph. Both storing the graph and
computing a canonical representative might barely be in the feasible regime.

5. Extensions and applications

We conclude with an extension and a description of some applications.

5.1. Extension to symplectic groups. Let Jn :=
( 0
−In

In
0

)
represent the standard alternating pairing and

Sp2n(Z) := {Q ∈ GL2n(Z) : QTJn Q = Jn}. (5.1.1)

The group Sp2n(Z) acts on S2n
>0 and we seek a canonical form for this action [27].

Theorem 5.1.2. Given a ordered set of vectors V = (v1, . . . , vm) that generates Z2n as a lattice, there
exists an effectively computable symplectic basis SympBas(V) of Z2n such that for every P ∈ Sp2n(Z) we
have SympBas(VP)= SympBas(V)P.

Proof. Let w1 be the first nonzero vector in V divided by the gcd of its coefficients. Since the family of
vectors spans Zn , the gcd of the symplectic products ω(w1, v j ) is 1. Thus we can find in a deterministic
manner integers αi such thatw2n=

∑m
i=1 αivi satisfies ω(w1, w2n)= 1. We can then replace the vectors vi

of the vector family by v′i = vi−ω(vi , w2n)w1+ω(vi , w1)w2n . They satisfy ω(v′i , w1)=ω(v
′

i , w2n)= 0.
Thus we apply the same construction inductively on them and get our basis. The invariance property
follows from the fact that we never use specific coordinate systems. �
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A canonical representative for a form A ∈ S2n
>0 under the action of Sp2n(Z) can also be computed using

our canonical form, as follows:

(1) Compute a characteristic vector family using e.g., Vcv.

(2) Compute a graph on this characteristic set of vector by assigning to two vectors v, v′ the weight
(vAv′, v Jnv

′).

(3) Apply the canonicalization procedure and get a canonical ordering of Vcv.

(4) Use Theorem 5.1.2 in order to get a symplectic basis which then gives a reduction matrix.

5.2. Lattice databases. Several efforts have sought to enumerate lattice genera of either bounded dis-
criminant or satisfying some arithmetic conditions such as small (spinor) class number. For example, the
Brandt–Intrau tables [9] of reduced ternary forms with discriminant up to 1000, Nipp’s tables [33] of
positive definite primitive quaternary quadratic forms with discriminant up to 1732, and more recently
the complete table of lattices with class number one due to Kirschmer and Lorch [22], to name a few.
A current project of interest in number theory is an extension of the L-functions and modular forms
database (LMFDB) [26] to include lattices.

The general strategy for generating these tables can take several forms. For example, a list of isometry
class candidates can be generated by extending lattices of lower rank in some systematic way [9; 33].
Classes can also be generated by Kneser’s method of neighboring lattices [38] (see Section 5.4 below).
Although the completeness of the list of genus representatives can be verified using the Minkowski–
Siegel mass formula, one critical bottleneck in most of these schemes is eliminating redundancy in the
lists generated, especially for lattices with high rank and class number — it is here where we profit
significantly from a canonical form.

Another current shortcoming of the database has been the lack of a deterministic naming scheme for
lattices. Although lattices up to equivalence can be classified by dimension, determinant, level, and class
number, beyond that point many genera of such lattices can exist, and each genus can potentially contain
multiple classes. Finding a canonical form for lattices provides a way to establish a deterministic labeling.
This has long been known to be a challenge: for example, it is exactly the problem of the boundary of
a fundamental domain in Minkowski reduction (mentioned in the introduction) that is at issue. Ad
hoc enumeration and labeling suffers from the deficiency that a computer failure or other issues in the
database could result in new and different enumeration. A canonical form provides a mechanism for a
canonical label for lattices. Such a scheme would still depend on the graph canonical form being called
in the algorithm; but in the event of a switch a bijective dictionary could easily be stored between the
new naming and the old, giving still a nearly permanent deterministic naming of lattices.

5.3. Application to enumeration of perfect forms. A canonical form really shows its strength compared
to pairwise equivalence checks when the number of forms to be classified becomes very large. This is
certainly the case during the enumeration of perfect forms using Voronoi’s algorithm in dimension 9 or
higher. In dimension 9 already more than 20 million (inequivalent) perfect forms are found and the total
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number could be on the order of half a billion [42]. Even though there are some useful invariants such
as the number of miminal vectors, the determinant and the size of the automorphism group, the number
of remaining candidates for equivalence for each found perfect form can become quite large. Removing
equivalent forms is a large part of the computational cost during the enumeration.

Therefore, efficiently finding a canonical form seems to be a necessity in completing the full enumer-
ation in dimensions 9 or higher. Luckily by the definition of a perfect form we always have that Min(A)
is full dimensional. Furthermore for all perfect forms found so far Min(A) also spans Zn and therefore
the function Vms seems to be an efficient way to obtain a small characteristic vector set. In Section 4.2
we saw that computing a canonical perfect form in dimension 9 takes just a few milliseconds.

5.4. Application to algebraic modular forms. Finally, we present an application to speed up computa-
tions of orthogonal modular forms, a special case of the theory of algebraic modular forms as defined
by Gross [12]. We shift our perspective slightly, varying lattices in a (fixed) quadratic space.

Let L ⊂ V be a (full) lattice, the Z-span of a Q-basis for V . We say L is integral if xTAy ∈ Z for all
x, y ∈ L , and suppose that L is integral. We represent L in bits by a basis {v1, . . . , vn}; letting UL be the
change of basis matrix, we obtain a form

AL := (v
T
i Av j )1≤i, j≤n =UT

L AUL . (5.4.1)

(It is not necessarily the case that AL is arithmetically equivalent to A — the change of basis need only
belong to GLn(Q).)

In order to organize these lattices, we define the orthogonal group

O(V ) := {P ∈ GLn(Q) : PTAP = A}. (5.4.2)

Integral lattices L , L ′ ⊂ V are isometric, written L ' L ′, if there exists P ∈ O(V ) such that P(L)= L ′.
Choosing bases for L , L ′, we see that L ' L ′ if and only if AL and AL ′ are arithmetically equivalent.

We repeat these definitions replacing Q (and Z) by Qp (and Zp) for a prime p, abbreviating L p :=

L ⊗Z Zp. Then the genus of L is

Gen(L) := {L ′ ⊂ V : L p ' L ′p for all primes p}. (5.4.3)

Finally, we define the class set Cls(L) as the set of isometry classes in Gen(L). By the geometry of
numbers, we have # Cls(L) <∞.

The theory of p-neighbors, due originally to Kneser [23], gives an effective method to compute rep-
resentatives of the class set Cls(L), as follows. Let p be prime (allowing p = 2) not dividing det(AL).
We say that a lattice L ′ < V is a p-neighbor of L , and write L ′ ∼p L , if L ′ is integral and

[L : L ∩ L ′] = [L ′ : L ∩ L ′] = p (5.4.4)

(index as abelian groups). If L ∼p L ′, then disc(L) = disc(L ′) and L ′ ∈ Gen(L) [10, Lemma 5.7].
The set of p-neighbors can be computed in time O(pm+εHn(s)), where s is the input size and Hn
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is a polynomial depending on n. Moreover, by strong approximation [10, Theorem 5.8], there is an
effectively computable finite set S of primes such that every [L ′] ∈ Cls(L) is an iterated S-neighbor
L ∼p1 · · · ∼pr Lr ' L ′ with pi ∈ S. Typically, we may take S = {p} for any p - disc(L). In this way, we
may compute a set of representatives for Cls(L) from iterated S-neighbors.

The space of orthogonal modular forms for L (with trivial weight) is

M(O(L)) :=Map(Cls(L),C). (5.4.5)

In the basis of characteristic functions δ[L ′] for [L ′] ∈Cls(L) we have M(O(L))'Ch where h := # Cls(L).
For p - disc(L), define the Hecke operator

Tp : M(O(L))→ M(O(L))

Tp( f )([L ′])=
∑

M ′∼p L ′
f ([M ′]). (5.4.6)

The operators Tp commute and are self-adjoint (with respect to a natural inner product); accordingly,
there exists a basis of simultaneous eigenvectors for the Hecke operators, called eigenforms.

In this way, to compute the matrix representing the Hecke operator Tp, for each [L ′] ∈Cls(L), we need
to identify the isometry classes of the p-neighbors of L ′. Here is where our canonical form algorithm
applies, returning to our original motivation: after computing canonical forms for Cls(L), for each p-
neighbor, we compute their canonical forms and then a hash table look up on Cls(L). This reduces our
computation from O(h2) isometry tests to O(h) hash table lookups. For medium-sized values of n, we
hope that the use of canonical forms will allow us to peer more deeply into the world of automorphic
forms on orthogonal groups.
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283Counting Richelot isogenies between superspecial abelian surfaces — Toshiyuki Katsura and Katsuyuki Takashima

301Algorithms to enumerate superspecial Howe curves of genus 4 — Momonari Kudo, Shushi Harashita and Everett W. Howe

317Divisor class group arithmetic on C3,4 curves — Evan MacNeil, Michael J. Jacobson Jr. and Renate Scheidler

335Reductions between short vector problems and simultaneous approximation — Daniel E. Martin

353Computation of paramodular forms — Gustavo Rama and Gonzalo Tornaría
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