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Computing endomorphism rings of supersingular elliptic curves is an important problem in computa-
tional number theory, and it is also closely connected to the security of some of the recently proposed
isogeny-based cryptosystems. We give a new algorithm for computing the endomorphism ring of a super-
singular elliptic curve E defined over Fp2 that runs, under certain heuristics, in time O((log p)2 p1/2). The
algorithm works by first finding two cycles of a certain form in the supersingular `-isogeny graph G(p, `),
generating an order 3⊆ End(E). Then all maximal orders containing 3 are computed, extending work
of Voight (2013). The final step is to determine which of these maximal orders is the endomorphism
ring. As part of the cycle-finding algorithm, we give a lower bound on the set of all j-invariants j that
are adjacent to j p in G(p, `), answering a question of Arpin et al. (2019).

We also give a polynomial-time reduction from computing End(E) to path-finding in the `-isogeny
graph which is simpler in several ways than previous ones. We show that this reduction leads to another
algorithm for computing endomorphism rings which runs in time Õ(p1/2). This allows us to break the
second preimage resistance of a hash function in the family constructed by Charles, Goren and Lauter.

1. Introduction

Computing the endomorphism ring of an elliptic curve defined over a finite field is a fundamental problem
in computational arithmetic geometry. For ordinary elliptic curves the fastest algorithm is due to Bisson
and Sutherland [5] who gave a subexponential time algorithm to solve this problem. No subexponential
time algorithm is known for general supersingular elliptic curves.

Computing endomorphism rings of supersingular elliptic curves has emerged as a central problem
for isogeny-based cryptography. The first cryptographic application of isogenies between supersingular
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elliptic curves was the hash function in [9]. An efficient algorithm for computing the endomorphism ring
of a supersingular elliptic curve would, under certain assumptions, completely break this hash function
and also SIKE [18; 2]. It would also have a major impact on the security of CSIDH [7].

Computing the endomorphism ring of a supersingular elliptic curve E was first studied by Kohel [20,
Theorem 75], who gave an approach for generating a subring of finite index of the endomorphism ring
End(E). The algorithm was based on finding cycles in the `-isogeny graph of supersingular elliptic
curves in characteristic p, and the running time of the probabilistic algorithm was O(p1+ε). In this
paper we complete Kohel’s approach by showing how to compute End(E) from a suborder when the
order is Bass. In a different direction, in [14] it is argued that heuristically one expects O(log p)
calls to a cycle-finding algorithm until the cycles generate End(E). An algorithm for computing pow-
ersmooth endomorphisms with complexity Õ(p1/2) and polynomial storage is given by Delfs and Gal-
braith [11].

One can also compute End(E) using an isogeny φ : Ẽ→ E , where Ẽ is an elliptic curve with known
endomorphism ring. McMurdy was the first to compute End(E) via such an approach [24], but did not
determine its complexity. In [14] a polynomial-time reduction from computing End(E) to finding an
isogeny φ of powersmooth degree was given assuming some heuristics, while [10] used an isogeny φ of
`-power degree.

In this paper we give a new algorithm for computing the endomorphism ring of a supersingular elliptic
curve E : first we compute two cycles through E in the supersingular `-isogeny graph that generate an
order 3 in End(E). We show that this order will be a Bass order with constant probability, assuming
that the discriminants of the two cycles are random in a certain way. Then we compute all maximal
orders that contain the Bass order 3 by first solving the problem locally, showing how to efficiently
compute all maximal superorders of 3 when 3 is local and Bass. This extends work of Voight [29,
Theorem 7.14]. The main property of local Bass orders used here is that there are at most e+ 1 maximal
orders containing a local Bass order 3⊗Zq , where e = vq(discrd(3)) is the valuation of the reduced
discriminant of 3 (see [6]). To solve the global case, we use the local data and a local-global principle for
quaternionic orders. To bound the running time in this step, we prove that the number of maximal global
orders containing 3 is O(pε) for any ε > 0 when the size of 3 is polynomial in log p and discrd(3)
is square-free. We conjecture that this bound also holds when discrd(3) is not square-free. Finally, as
we compute each global maximal order, we check if it is isomorphic to End(E). As part of the analysis
of the cycle-finding algorithm, we give a lower bound on the size of the set of all j-invariants j that are
adjacent to j p in G(p, `), answering the lower-bound part of Question 3 in [1].

Our overall algorithm is still exponential: the two cycles are found in time O((log p)2 p1/2), and the
overall algorithm has the same running time, assuming several heuristics. This saves at least a factor of
log p versus the previous approach in [14] that finds cycles in G(p, `) until they generate all of End(E).
This is because with that approach one expects to compute O(log p) cycles, while our algorithm for the
endomorphism ring computes just one pair of cycles and succeeds with constant probability, assuming
that the above heuristic about the discriminants of cycles holds. Also, our cycle-finding algorithm requires
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only polynomial storage, while a generic collision-finding algorithm that relies on the birthday paradox
has the same running time as our algorithm but requires exponential storage.

In the last section of the paper we give a new polynomial-time reduction from computing End(E) to
path-finding in the `-isogeny graph which is simpler in several ways than previous ones. For this we
need to assume GRH and the heuristics of [14]. We use this to break the second preimage resistance of
a hash function in the family constructed in [9].

The paper is organized as follows. Section 2 gives some necessary background. In Section 3 we give an
algorithm for computing cycles in the `-isogeny graph G(p, `) so that the corresponding endomorphisms
generate an order in the endomorphism ring of the associated elliptic curve. In Section 4 we show how to
compute all maximal local orders containing a given Zq -order 3. In Section 5 we construct global orders
from these local orders and compute End(E). In Section 6 we give a reduction from the endomorphism
ring problem to the problem of computing `-power isogenies in G(p, `) that is then used to attack the
second preimage resistance of the hash function in [9].

2. Background on elliptic curves and quaternion algebras

For the definition of an elliptic curve, its j-invariant, isogenies of elliptic curves, their degrees, and the
dual isogeny see [26].

2A. Endomorphism rings, supersingular curves, `-power isogenies. Let E be an elliptic curve defined
over a finite field Fq . An isogeny of E to itself is called an endomorphism of E . The set of endomorphisms
of E defined over Fq together with the zero map is called the endomorphism ring of E , and is denoted
by End(E).

If the endomorphism ring of E is noncommutative, E is called a supersingular elliptic curve. Other-
wise we call E ordinary. Every supersingular elliptic curve over a field of characteristic p has a model
that is defined over Fp2 .

Let E, E ′ be two supersingular elliptic curves defined over Fp2 . For each prime ` 6= p, E and E ′ are
connected by a chain of isogenies of degree `. By [20, Theorem 79], E and E ′ can be connected by m
isogenies of degree `, where m = O(log p). For ` a prime different from p, the supersingular `-isogeny
graph in characteristic p is the multigraph G(p, `) whose vertex set is

V = V (G(p, `))= { j ∈ Fp2 : j = j (E) for E supersingular},

and the number of directed edges from j to j ′ is equal to the multiplicity of j ′ as a root of 8`( j, Y ).
Here, given a prime `, 8`(X, Y ) ∈ Z[X, Y ] is the modular polynomial. This polynomial has the property
that 8`( j, j ′)= 0 for j, j ′ ∈ Fq and q = pr if and only if there exist elliptic curves E( j), E( j ′) defined
over Fq with j-invariants j, j ′ such that there is a separable `-isogeny from E( j) to E( j ′).

2B. Quaternion algebras, orders and sizes of orders. For a, b ∈Q×, let H(a, b) denote the quaternion
algebra over Q with basis 1, i, j, i j such that i2

= a, j2
= b and i j = − j i . That is, H(a, b) =

Q+Qi +Q j +Qi j. Any quaternion algebra over Q can be written in this form. There is a canonical
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involution on H(a, b) which sends an element α = a1+ a2i + a3 j + a4i j to α := a1− a2i − a3 j − a4i j.
Define the reduced trace of an element α as above to be Trd(α)= α+α = 2a1, and the reduced norm to
be Nrd(α)= αα = a2

1 − aa2
2 − ba2

3 + aba2
4 .

A subset I ⊆ H(a, b) is a lattice if I is finitely generated as a Z-module and I ⊗Q ' H(a, b). If
I ⊆ H(a, b) is a lattice, the reduced norm of I , denoted Nrd(I ), is the positive generator of the fractional
Z-ideal generated by {Nrd(α) : α ∈ I }. An order O of H(a, b) is a subring of H(a, b) which is also a
lattice, and if O is not properly contained in any other order, we call it a maximal order. We call an order
O ⊆ H(a, b) q-maximal if O⊗Zq is a maximal order in H(a, b)⊗Zq .

We define OR(I ) := {x ∈ H(a, b) : I x ⊆ I } to be the right order of the lattice I , and we similarly
define its left order OL(I ). If O is a maximal order in H(a, b) and I ⊆ O is a left ideal of O, then
OR(I ) is also a maximal order. Here a left ideal of O is an additive subgroup of O that is closed under
scalar multiplication on the left. In our setting, a lattice or an order is always specified by a basis. The
size of a lattice or an order 3 specified by a basis B in a quaternion algebra B is the number of bits
needed to write down the coefficients of the basis B plus the size of B, which is specified by a basis and
a multiplication table. In the following we write size(3) for simplicity even though the size depends on
the basis chosen to represent 3. If {a1, a2, a3, a4} is a basis of 3, the Gram matrix of this basis is the
4× 4 matrix whose i j-th entry is Trd(ai a j ). We denote by Bp,∞ the unique quaternion algebra over Q

that is ramified exactly at p and ∞, and this algebra has a standard basis [25, Proposition 5.1]. The
endomorphism ring of a supersingular elliptic curve is isomorphic to a maximal order in Bp,∞.

2C. Bass, Eichler, and Gorenstein orders in quaternion algebras; discriminants and reduced discrim-
inants. Let B be a quaternion algebra over Q. We define the discriminant of B, denoted disc B, to be the
product of primes that ramify in B; then disc B is a squarefree positive integer. If O ⊂ B is an order, we
define the discriminant of O to be disc(O) := |det(Trd(αiα j ))i, j | ∈ Z> 0, where α1, . . . , α4 is a Z-basis
for O [28, §15.2].

The discriminant of an order is always a square, and the reduced discriminant discrd(O) is the positive
integer square root so that discrd(O)2 = disc(O) [28, §15.4]. The discriminant of an order measures how
far the order is from being a maximal order. The order O is maximal if and only if discrd(O)= disc B [28,
Theorem 23.2.9]. Associated to a quaternion algebra B over Q there is a discriminant form 1 : B→Q,
defined by 1(α)= Trd(α)2−4 Nrd(α), and we refer to 1(α) as the discriminant of α. Now let O⊂ B be
a Z-order. We say that O is an Eichler order if O ⊆ B is the intersection of two (not necessarily distinct)
maximal orders. The codifferent of an order is defined as codiff(O)= {α ∈ B : Trd(αO)⊆ Z}. Following
[28, Definition 24.2.1], we say that O is Gorenstein if the lattice codiff(O) is invertible as a lattice as in
[28, Definition 16.5.1]. An order O is Bass if every superorder O′ ⊇O is Gorenstein. An order is basic
if it contains a commutative, quadratic subalgebra R such that R is integrally closed in QR [28, §24.5].
Given an order 3, its radical idealizer 3\ is defined as 3\ = OR(rad3), where rad3 is the Jacobson
radical of the ring 3. When B is a quaternion algebra over Qp and O is a Zp-order in B, we similarly
define lattices, ideals, and orders in B.
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3. Computing an order in the endomorphism ring of a supersingular elliptic curve

3A. Computing cycles in G( p,`). Fix a supersingular elliptic curve E0 defined over Fp2 with j -invariant j0.
In this section we describe and analyze an algorithm for computing two cycles through j0 in G(p, `)
that generate an order in End(E0).

We will first show how to construct two distinct paths from j0 to j p
0 . Given two such paths P and P ′,

then first traversing through P and then traversing through P ′ in reverse gives a cycle through j0. This
uses the fact that if j is adjacent to j ′, then j p is adjacent to ( j ′)p.

Let P1 be a path of length k from j0 to jk in G(p, `). Denote the not necessarily distinct vertices on
the path by j0, j1, . . . , jk and assume that jk is adjacent to j p

k in G(p, `). Let

P p
1 = [ jk, j p

k , j p
k−1, . . . , j p

1 , j p
0 ].

The concatenation P := P1 P p
1 is a path from j0 to j p

0 . Such paths were also considered in [9, Section 7].
If j0= j p

0 , then P is already a cycle. Otherwise, we repeat this process to find another path P ′ := P2 P p
2

that passes through at least one vertex not in P. Concatenating P and P ′ (in reverse order) gives a cycle
starting and ending at j0; this corresponds to an endomorphism of E . We will need the notion of a
path/cycle with no backtracking and trimming a path/cycle to remove backtracking.

Definition 3.1. Suppose e j , e j ′ are edges in G(p, `) that correspond to `-isogenies

φ j : E( j)→ E( j ′) and φ j ′ : E( j ′)→ E( j)

between curves E( j) and E( j ′) with j -invariants j, j ′. We say that e j is dual to e j ′ if up to isomorphism
φ j ′ equals the dual isogeny φ̂ j of φ j . That is φ j ′ = αφ̂ j , where α ∈Aut(E( j)). We say that a path or cycle
with a specified start vertex j0, following edges (e1, . . . , ek) and ending at vertex jk has no backtracking
if ei+1 is not dual to ei for i = 1, . . . , k− 1.

In our definition, a cycle has a specified start vertex j0. According to our definition, if the first edge e1

and the last edge ek in such a cycle are dual to each other, it is not considered backtracking.

Definition 3.2. Given a path (e1, . . . , ek) from j0 to jk (with j0 6= jk) or a cycle with specified start
vertex j0 = jk , define trimming as the process of iteratively removing pairs of adjacent dual edges until
none are left.

One can show that given a path P from j0 to jk with j0 6= jk , or a cycle C with start vertex j0 = jk ,
the trimmed versions P̃ or C̃ may result in a smaller set of vertices. The vertices j0 and jk will still be
there in P̃, and the only way that j0 and jk may disappear from C̃ is if the whole cycle gets removed.

Definition 3.3. Given a path P in Gp,` from j0 to jk , we define P R to be the path P traversed in reverse
order, from jk to j0, using the dual isogenies.

Let
S p
:= { j ∈ Fp2 : j is supersingular and j is adjacent to j p in G(p, `)}.

We can now give the algorithm to find cycle pairs:
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Algorithm 3.4. Find cycle pairs for prime `.

Input: A prime p 6= ` and a supersingular j-invariant j0 ∈ Fp2 .

Output: Two cycles in G(p, `) through j0.

(1) Perform N =2(
√

p log p log log p) random walks of length k=2(log(p3/4(log log p)1/2)) starting
at j0 and select a walk that hits a vertex jk ∈ S p, i.e., such that jk is `-isogenous to j p

k ; let P1 denote
the path from j0 to jk .

(2) Let P p
1 be the path given by jk, j p

k , j p
k−1, . . . , j p

0 .

(3) Let P denote the path from j0 to j p
0 given as the concatenation of P1 and P p

1 . Remove any self-dual
self-loops and trim P1 P p

1 .

(4) If j0 ∈ Fp then P1 P p
1 is a cycle through j0.

(5) If j0 ∈ Fp2 − Fp repeat Steps (1)–(3) again to find another path P ′ = P2 P p
2 from j0 to j p

0 ; then
P(P ′)R is a cycle. Remove any self-dual self-loops and trim the cycle.

(6) Repeat Steps (1)–(5) a second time to get a second cycle.

Remark 3.5. Instead of searching for a vertex j in Step (1) such that j is adjacent to j p, one could also
search for a vertex j ∈ Fp, i.e., j with j = j p, or a vertex j whose distance from j p in the graph is
bounded by some fixed integer B. Our algorithm that searches for a vertex j such that j is adjacent to j p

was easier to analyze because there were fewer cases to consider.

To analyze the running time of Algorithm 3.4, we will use the mixing properties in the Ramanujan
graph G(p, `). This is captured in the following proposition, which is an extension of [19, Lemma 2.1]
in the case that G(p, `) is not regular or undirected (that is, when p 6≡ 1 (mod 12)).

Proposition 3.6. Let p > 3 be prime, and let ` 6= p also be a prime. Let S be any subset of the vertices
of G(p, `) not containing 0 or 1728. Then a random walk of length at least

t =
log
(

p
6|S|1/2

)
log
(
`+1
2
√
`

)
will land in S with probability at least 6|S|/p.

One can prove this since the eigenvalues for the adjacency matrix of G(p, `) satisfy the Ramanujan
bound. This allows us to prove the following theorem.

Theorem 3.7. Let `, p be primes such that ` < p/4. Under GRH, Algorithm 3.4 computes two cycles in
G(p, `) through j0 that generate an order in the endomorphism ring of E0 in time O(

√
p (log p)2), as

long as the two cycles do not pass through the vertices 0 or 1728, with probability 1− O(log p/p). The
algorithm requires poly(log p) space.
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Remark 3.8. In Section 5 we use this proposition to compute endomorphism rings, and from this point
there is no problem with excluding paths through 0 or 1728. This is because the endomorphism rings
of the curves with j-invariants 0 and 1728 are known, and a path of length log P, starting at j0 going
through 0 or 1728 lets us compute End(E0) via the reduction in Section 6.

Proof. We implement Step (1) by letting ji+1 be a random root of 8`( ji , Y ). To test if j ∈ S p we check
if 8`( j, j p) = 0. Assuming GRH, Theorem 3.9 implies that |S p

| = �(
√

p/ log log p) (treating ` as a
constant). Proposition 3.6 implies that the endpoint jk of a random path found in Step (1) is in S p with
probability �(1/(

√
p log log p)). The probability that none of the N + 1 paths land in S p is at most

(1−C/(
√

p log log p))N+1
≤ (1+C/(

√
p log log p))−(N+1)

≤ e−c log p/C
= O(1/p) if c = C , where C

is from Theorem 3.9 and c is the constant used in the choice of N.
Now we show that with high probability the two cycles C0,C1 returned by the algorithm are linearly

independent. We will use Corollary 4.12 of [3]. This corollary states that two cycles C0 and C1 with no
self-loops generate an order inside End(E0) if they

(1) do not go through 0 or 1728,

(2) have no backtracking, and

(3) have the property that one cycle contains a vertex that the other does not contain.

By construction, the cycles C0 and C1 returned by our algorithm do not have any self-loops or backtrack-
ing. To prove that condition (3) holds, we first claim that with high probability, the end vertex jk ∈ S p in
the path P1 from j0 to jk will not get removed when the path P1 P p

1 is trimmed in Step (3). Then we show
it’s also still there in the trimmed cycle after Step (5). Observe that if the path P1 were to be trimmed to
obtain a path P̃1 with no backtracking, then P̃1 is still a nontrivial path that starts at j0 and ends at jk as
long as j0 and jk are different which occurs with probability 1− O(1/p). After concatenating P̃1 with
its corresponding path P̃ p

1 , the path P̃1 P̃ p
1 has backtracking only if the last edge of P̃1 is dual to the first

edge in P̃ p
1 , i.e., if jk−1 = j p

k . If that is the case, remove the last edge from P̃1 and the first edge from P̃ p
1 ,

and call the remaining path P̂1. The new path P̂1 still has the property that it ends in a vertex j = j p
k that

is `-isogenous to its conjugate ( j p
k )

p
= jk . After concatenating P̂1 with its corresponding P̂ p

1 , this still
gives a path from j0 to j p

0 . Again, the concatenation of these two paths has no backtracking unless the
last edge in P̂1 is the first edge in P̂ p

1 , i.e., if the last edge in P̂1 is an edge from jk to j p
k . But this cannot

happen, because otherwise the trimmed path P̃1 would have backtracking because it would go from jk
to j p

k and back to jk , contradicting the definition of a trimmed cycle. (With negligible probability, the
vertex jk has multiple edges, so we exclude this case here.) Hence the trimmed version of P1 P p

1 is P̂1 P̂ p
1 ,

and this path still contains the vertex jk , since P̂ p
1 contains the vertex jk . Now we can finish the argument

by considering two cases:

Case 1: j0 ∈ Fp. The above argument about trimming shows that if the vertex jk appearing in the second
cycle C1 is different from all the vertices appearing in C0 and their conjugates, which happens with
probability 1− O(log p/p), then that vertex jk will appear in the trimmed cycle C̃1, but not in C̃0. (This
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is because in this case the trimmed path P1 P p
1 is already a cycle.) Hence by [3, Corollary 4.12], C̃0 and

C̃1 are linearly independent.

Case 2: j0 ∈ Fp2 − Fp. Here, with probability 1− O(log(p)/p), the endpoint jk of P2 is a vertex such
that neither it nor its conjugate appear as a vertex in P1. The concatenation of the two paths P = P1 P p

1

and P ′ = P2 P p
2 in reverse is a cycle C0 through j0. When we trim it, it is still a cycle through j0 in

which the endpoint jk from P2 appears because neither that jk nor its conjugate appeared in P1. Similarly,
Algorithm 3.4 finds a second cycle C1 with probability 1− log(p)/p that contains a random vertex that
was not on the first cycle C0. This means that by Corollary 4.12 of [3], C̃0 and C̃1 and hence C0 and C1

are linearly independent.
The running time is O(

√
p (log p)2) because we are considering O(

√
p) paths of length O(log p),

going from one vertex to the next takes time polynomial in ` log p, and we are assuming that ` is fixed.
The storage is polynomial in log p because we only have to store the paths P1, P2 that land in S p. �

3B. Determining the size of S p. We will now determine a lower bound for the size of the set

S p
:= { j ∈ Fp2 : j is supersingular and j is adjacent to j p in G(p, `)}.

In [9, Section 7], an upper bound is given for S p, but in order to estimate the chance that a path lands in
S p we need a lower bound for this set.

Let `, p be primes such that ` < p/4. Let OK be the ring of integers of K :=Q(
√
−`p). We use the

terminology and notation in [13; 4]. Let EmbOK (Fp2) be the collection of pairs (E, f ) such that E is an
elliptic curve over Fp2 and f :OK ↪→ End(E) is a normalized embedding, taken up to isomorphism. We
say f :OK ↪→ End(E) is normalized if each α ∈OK induces multiplication by its image in Fp2 on the
tangent space of E , and (E, f ) is isomorphic to (E ′, f ′) if there exists an isomorphism g : E→ E ′ such
that f (α)′ = g f (α)g−1 for all α ∈OK .

Theorem 3.9. Let ` be a prime and assume that ` < p/4. Let

S p
= { j ∈ Fp2 : j is supersingular and 8`( j, j p)= 0}.

Under GRH there is a constant C > 0 (depending on `) such that |S p
|> C

√
p/log log(p).

Proof. First, if E is a supersingular elliptic curve defined over Fp2 with j-invariant j and E (p) is a curve
with j-invariant j p and ` < p/4 is also a prime, then E is `-isogenous to E (p) if and only if Z[

√
−`p]

embeds into End(E) [9, Lemma 6].
For any element (E, f ) ∈ EmbOK (Fp2), E is supersingular, since p ramifies in Q(

√
−`p). Moreover

j (E) ∈ S p by the above fact. Thus the map ρ : EmbOK (Fp2)→ S p that sends (E, f ) to ρ(E, f )= j (E)
is well-defined.

To get a lower bound for S p we will show that for j ∈ S p, the size of ρ−1( j) is bounded by (`+ 1) · 6
and that |EmbOK (Fp2)| �

√
`p/log log(`p). These two facts imply

|S p
| ≥ |EmbOK (Fp2)|/((`+ 1) · 6) >

1
(`+ 1) · 6

·

√
`p

log log(`p)
.
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To get a lower bound for |EmbOK (Fp2)| we can use [15, Proposition 2.7] to show that EmbOK (Fp2) is in
bijection with EllOK (L̂P), where L̂P is the algebraic closure of the completion of the ring class field HOK

at a prime P above p, and EllOK (L̂P) is the set of isomorphism classes of elliptic curves over L̂P with
endomorphism ring OK . Hence |EmbOK (Fp2)| = |EllOK (L̂P)|, whose order equals |Cl(OK )|. Class group
estimates from [23] give

|Cl(OK )| = h(−`p)�
√
`p/log log(`p).

It remains to bound the size of ρ−1( j). We claim that an equivalence class of pairs (E, f ) determines
an edge in G(p, `). Let [(E, f )] ∈ EmbOK (Fp2) be given by some representative curve E . First assume
that j (E) 6= 0, 1728. Then (E, f ) ' (E, g) implies that f = g, since Aut(E) = ±1. Thus we may
identify [(E, f )] with the edge in G(p, `) corresponding to the kernel of f (

√
−`p). When j (E) = 0

or 1728, we may assume that E is defined over Fp. Then let [(E, f )] ∈ EmbOK (Fp2) and suppose (E, f )
is equivalent to (E, g). We can factor f (

√
−`p)= π ◦φ and g(

√
−`p)= π ◦φ′, where φ, φ′ are degree `

endomorphisms of E and π is the Frobenius endomorphism of E . Additionally, πφ = uπφ′u−1. We
claim that u and φ commute. If not, then they generate an order 3 such that the following formula holds
(see [22]):

discrd(3)= 1
4(1(u)1(φ)− (Trd(u)Trd(φ)− 2 Trd(uφ̂))2)≤ 1

41(u)1(φ). (3-1)

One can show that this contradicts our assumption that p/4> `. Thus u and φ commute, and we see
that f (

√
−`p) and g(

√
−`p) have the same kernel and thus determine the same edge in G(p, `).

We now count how many elements of EmbOK (Fp2) determine the same edge in G(p, `). Suppose that
[(E, f )], [(E, g)] ∈ EmbOK (Fp2) and that ker( f (

√
−`p))= ker(g(

√
−`p)). Writing f (

√
−`p)= φ ◦π

and g(
√
−`p)=φ′◦π we see that φ and φ′ must have the same kernel. Thus φ′=uφ for some u ∈Aut(E).

Because p > 4` > 3, Aut(E)≤ 6 and we conclude that there are at most 6 classes [(E, f )] determining
the same edge emanating from j (E) in G(p, `). Thus

|ρ−1( j)| ≤ (`+ 1) · 6. �

Assuming GRH, this result settles the lower-bound portion of Question 3 in [1]. See Lemma 6 of [9]
for the upper-bound.

4. Enumerating maximal superorders: the local case

Let q be a prime. In this section, we give an algorithm for the following problem:

Problem. Given a Zq -order 3⊆ M2(Qq), find all maximal orders containing 3.

For general 3 there might be an exponential number of maximal orders containing it, so the algorithm
for enumerating them would also be exponential time. However, we will show that the above problem
can be solved efficiently when 3 is Bass. The main property of local Bass orders 3 we use is that there
are at most e+ 1 maximal orders containing 3, where e = vq(discrd(3)) [6, Corollaries 2.5, 3.2, 4.3 and
Proposition 3.1].
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We use the Bruhat–Tits tree T [28, §23.5] to compute the maximal superorders of 3. The vertices
of T are in bijection with maximal orders in M2(Qq).

A homothety class of lattices [L] ⊆Q2
q corresponds to a maximal order via

L 7→ EndZq (L)= {x ∈ M2(Qq) : x L ⊆ L} ⊆ M2(Qq) (4-1)

for every choice of L ∈ [L]. Two maximal orders O and O′ are adjacent in T if there exist lattices
L and L ′ for O and O′ such that q L ( L ′ ( L . Hence the neighbors of O in T correspond to the
one-dimensional subspaces of L/q L ∼= Fq × Fq .

A division quaternion algebra B over Qq has only one maximal order, which can be found using the
algorithm in [29]. The split case is solved by Algorithm 4.1, and also relies on the algorithm in [29].

Algorithm 4.1. Enumerate all maximal orders containing a local order.

Input: A Zq -order 3⊆ M2(Qq), represented by a Zq -basis.

Output: The maximal orders in M2(Qq) containing 3, each specified by a Zq -basis.

(1) Compute a maximal order Õ ⊇3 with [29, Algorithm 7.10] and a lattice L̃ in Qq ×Qq such that
Õ = EndZq (L̃).

(2) Let A = {Õ} and B = {L̃}.

(3) While B 6=∅:

(a) Remove L from B, and label it as discovered. Set O = EndZq (L).
(b) Compute the set of neighbors NO of O that contain 3.
(c) For each O′ ∈NO not labeled as discovered, add O′ to A and its corresponding lattice to B.

(4) Return A.

Now we show that Algorithm 4.1 is efficient when the input lattice 3 is Bass.

Proposition 4.2. Let 3⊆ M2(Qq) be a Bass Zq -order, and e := vq(discrd(3)). Algorithm 4.1 computes
A := {O ⊇3 :O is maximal}, and |A| ≤ e+ 1. The runtime is polynomial in log q · size(3).

Proof. To prove correctness we first show that the maximal orders containing an arbitrary order 3′ in
M2(Qq) form a subtree of T . If O,O′ are two maximal orders containing 3′, then the maximal orders
containing O ∩O′ are precisely the vertices in the path between O and O′ in T [28, §23.5.15]. Each
order on this path also contains 3′, so the maximal orders containing 3′ form a connected subset of T .
The above algorithm explores this subtree.

If 3 is Bass and Eichler, i.e., 3 = O ∩O′ for maximal orders O,O′, then there are e+ 1 maximal
orders containing 3 [6, Corollary 2.5], and they are exactly the vertices on the path from O to O′. If 3 is
Bass but not Eichler, then there are either 1 or 2 maximal orders containing 3 by [6, Proposition 3.1 and
Corollaries 3.2 and 4.3]. Since they form a tree, they must also form a path. In either case, |A| ≤ e+ 1,
and the vertices in A form a path.
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As for the running time, in Step (1) we run [29, Algorithm 7.10], which is polynomial in log q ·size(3).
Let L be a lattice such that O = EndZq (L) contains 3. The neighbors of O containing 3 are in bijection
with the lines in L/q L fixed by the action of the image of 3 in O/qO ' M2(Fq). For each such line,
let v ∈ L/q L be a nonzero vector, and let v be a lift to L . Let w ∈ L be such that {v,w} is a Zq-basis
of L . Then L ′ := span{v, qw} is a Zq -lattice such that O′ := EndZq (L

′) contains 3. So we can efficiently
compute the lattices L ′ corresponding to the neighbors of O which contain 3. Given such an L ′, let
x ∈ M2(Qq) be the base change matrix from L to L ′. If B is a basis for O, then B′ := xBx−1 is a basis
for O′. The size of B′ is c(log q)+ size(O) for some constant c, so each neighbor of O containing 3 can
be computed in time polynomial in log q · size(O).

Since the length of the path explored in the algorithm is at most e, where e = vq(discrd(3)) is poly-
nomial in size(3), and the size of the starting order Õ is polynomial in log q · size(3) we obtain that the
size of any maximal order containing 3 is polynomial in size(3) · log q . Each step takes time polynomial
in log q · size(3), so the whole algorithm is polynomial in log q · size(3). �

Later we will need to enumerate the q-maximal Z-orders containing a Bass Z-order 3. The algorithm
below uses Algorithm 4.1 to accomplish this.

Algorithm 4.3. Enumerate the q-maximal Z-orders O containing 3.

Input: A Z-order 3, specified by a Z-basis, and prime q such that 3⊗Zq is Bass.

Output: All Z-orders O ⊇3 such that O is q-maximal and O⊗Zq ′ =3⊗Zq ′ for all primes q 6= q ′.

(1) Compute an embedding f :3⊗Q ↪→ M2(Qq) such that f (3)⊆ M2(Zq).

(2) Let A be the output of Algorithm 4.1 on input f (3).

(3) Return { f −1(O)+3 :O ∈ A}.

Lemma 4.4. Algorithm 4.3 is correct. The run time is polynomial in log q · size(3).

Proof. Step (1) can be accomplished with Algorithms 3.12, 7.9, and 7.10 in [29], which run in time
polynomial in log q · size3. For each maximal Zq-order O ⊇ f (3), we then compute a corresponding
Z-lattice O′ ⊇3, whose generators are Z[q−1

]-linear combinations of generators of 3. The denominator
of these coefficients is at most qe where e := vq(discrd(3)). By Proposition 4.2, there are at most e+ 1
maximal orders containing f (3) if 3⊗Zq is Bass. It is straightforward to check that the lattice 3+O′

is actually a Z-order and has the desired completions. Moreover, these are all such orders by the local-
global principle for orders, [28, Theorem 9.5.1]. �

Remark 4.5 (global case). Algorithm 4.3 can be used to enumerate all maximal orders O of a quaternion
algebra B over Q that contain a Z-order 3 which is Bass, given 3 and the factorization of discrd(3) as
discrd(3)=

∏m
i=1 qei

i :
We run Algorithm 4.3 m times, namely on (3, q1), . . . , (3, qm). Let {X1, . . . , Xm} be the output,

where X i ={Oi1, . . . ,Oini }. The global orders containing3 are in bijection with
∏

i X i , by associating to
(O1 j1, . . . ,Omjm )∈

∏
X i the order

∑
i Oi ji . In particular, the number of such orders is at most

∏
i (ei+1).
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The correctness of this follows from the local-global principle for maximal orders [28, Lemma 10.4.2].
The above results show that each order in the enumeration can be computed in time polynomial in the size
of 3. However, for an arbitrary order 3, there might be an exponential number of orders containing it.

5. Computing End(E)

Now we describe our algorithm to compute the endomorphism ring of E . By computing End(E) we
mean computing a basis for an order O in Bp,∞ that is isomorphic to End(E), and that we can evaluate
the basis at all points of E via an isomorphism Bp,∞ → End(E) ⊗ Q. First we give an algorithm
that uses Algorithm 3.4 to generate a Bass suborder of End(E). A heuristic about the distribution of
discriminants of cycles is used to show that just one call to Algorithm 3.4 generates a Bass order with
constant probability. Then we give an algorithm which recovers End(E) from a Bass suborder. The
key property used here is that Bass orders 3 (whose basis is of size polynomial in log p and whose
discriminant is O(pk)) only have O(pε) maximal orders containing them for any ε > 0. This is proved
in Proposition 5.5 when the reduced discriminant is square-free. Based on our numerical evidence, we
conjecture that this holds for general Bass orders as well.

5A. Computing a Bass order.

Algorithm 5.1. Compute a Bass suborder 3⊆ End(E).

Input: A supersingular elliptic curve E .

Output: A Bass order 3⊆ End(E) and the factorization of discrd(3), or “false”.

(1) Compute two cycles in G(p, `) through j (E) using Algorithm 3.4.

(2) Let α, β be the endomorphisms corresponding to the cycles from Step (1). Compute the Gram
matrix for {1, α, β, αβ} and from it an abstract representation for 3= 〈1, α, β, αβ〉.

(3) Factor discrd(3)=
∏n

i=1 qei
i .

(4) If 3 is Bass return 3 and the factorization of discrd(3), else return “false”.

To analyze the algorithm we introduce a new heuristic:

Heuristic 5.2. The probability that the discriminants of the two endomorphisms corresponding to the
cycles produced by Algorithm 3.4 are coprime is at least µ for some constant µ > 0 not depending on p.

This heuristic is based on our numerical experiments. Intuitively, we are assuming that the endomor-
phisms we compute with Algorithm 3.4 have discriminants which are distributed like random integers
that satisfy the congruency conditions to be the discriminant of an order in a quadratic imaginary field in
which p is inert and ` splits. Two random integers are coprime with probability 6/π2. We are assuming
that the discriminants of our cycles are coprime with constant probability.

Theorem 5.3. Assume GRH and Heuristic 5.2. Then with probability at least µ, Algorithm 5.1 computes
a Bass order 3⊆ End(E), and the runtime is O(

√
p(log p)2).
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Proof. In Step (2), the Gram matrix for 3, whose entries are the reduced traces of pairwise products
of the basis elements, is computed. This uses a generalization of Schoof’s algorithm (see Theorem A.6
of [3]), which runs in time polynomial in log p and log of the norm of α, β. Since α and β arise from
cycles of length at most cdlog pe, for some constant c which is independent of p, the norms of α and β
are at most pc. From the Gram matrix we can efficiently compute discrd(3).

To check that 3 is Bass, it is enough to check that 3 is Bass at each q dividing discrd(3) [8, Theo-
rem 1.2]. To check that 3 is Bass at q it is enough to check that 3⊗Zq and (3⊗Zq)

\ are Gorenstein
[8, Corollary 1.3]. An order is Gorenstein if and only if its ternary quadratic form is primitive [28,
Corollary 24.2.10], and this can be checked efficiently. Thus, given a factorization of discrd(3), we can
efficiently decide if 3 is Bass.

Finally, we compute the probability that the order returned by Algorithm 3.4 is Bass. By [8, Theo-
rem 1.2], an order is Bass if and only if it is basic, and being basic is a local property. It follows that
the order 3 is Bass whenever the conductors of Z[α] and Z[β] are coprime. A sufficient condition for
this is that the discriminants of α and β are coprime which will happen with probability at least µ by the
above heuristic. This sufficient condition also covers the case when the cycle for α or β goes through 0
or 1728 even though Theorem 3.7 does not apply here. �

5B. Computing End(E) from a Bass order. In this section we compute End(E) from a given Bass sub-
order 3. For this we enumerate the maximal orders containing 3 by taking sums of the q-maximal orders
returned by Algorithm 4.3. As we enumerate the orders, we check each one to see if it is isomorphic to
End(E).

Algorithm 5.4. Compute End(E) from a Bass order.

Input: A Bass order 3⊆ End(E) with factored reduced discriminant
∏n

i=1 qei
i .

Output: A compact representation of End(E), as defined in [12, Section 8.2].

(1) For each i = 1 to n:

(a) Compute all orders {Oi,1, . . . ,Oi,mi } which are maximal at qi and equal to 3 at primes q ′ 6= qi

by running Algorithm 4.3 with input 3 and prime qi .

(2) Compute f :3⊗Q→ Bp,∞.

(3) For each choice of indices (i1, . . . , in) ∈ [m1]× · · · × [mn]:

(a) Set O :=O1,i1 + · · ·+On,in .
(b) Compute E ′/Fp2 such that End(E ′)' f (O) along with a compact representation of End(E ′).
(c) If j (E ′)= j (E) or j (E ′)= j (E)p, return f (O) and the compact representation of End(E ′).

Proposition 5.5. Fix a positive integer k, and let 3 be a Bass order whose size is polynomial in log p
and whose reduced discriminant is square-free and of size O(pk). Assume that the factorization of
the reduced discriminant is given. There are O(pε) maximal orders containing 3 and Algorithm 5.4
terminates in time Õ(pε) for any ε > 0, assuming that the heuristics in [14; 12] hold.
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p orders Bass orders average N (3)

70,001 92 76 122.21
90,001 80 67 322.04

100,003 81 75 337.59

Table 1. Results from computing 100 pairs of cycles in G(p, 2) at random j ∈ Fp2 − Fp .

Proof. Computing the isomorphism f : 3⊗Q ' Bp,∞ requires one call to an algorithm for factoring
integers (and poly(log p) calls to algorithms for factoring polynomials over Fp, see [17]). Let

discrd(3)= p ·
m∏

i=1

qi

with q1, . . . , qm distinct and different from p. By the local-global principle for maximal orders there
is one maximal order corresponding to each collection of qi -maximal orders {Oi } with Oi ⊇ 3⊗Zqi .
We loop through these orders in Step (3). The size of the index set in that loop and hence the number
of distinct maximal orders containing 3 is at most 2ω(discrd(3))−1, where ω(n) denotes the number of
distinct prime factors of an integer n. Fix ε > 0. Since ω(n)= O(log n/log log n) [16, Chapter 22, §10],
for p large enough, the number of maximal orders O ⊇3 is at most

2
c′ log c·pk

log log c·pk
= (c · pk)

c′
log log c·pk

for some c, c′ > 0, which is O(pε).
As we loop through the maximal orders O containing 3, we check each one to see if it is isomorphic

to End(E): after constructing such an order in Step (3)(a), we compute in Step (3)(b) a curve E ′ whose
endomorphism ring is isomorphic to O. This can be solved efficiently with the algorithms in [14]: one
computes a connecting ideal I between O and a special order O′ and then applies Algorithm 2 of [14]
(see also Algorithm 12 of [12]). Then, in Step (3)(c), we compare j-invariants. Checking each order
takes time polynomial in log p (assuming the heuristics in [14; 12]), so the total running time of the
algorithm is Õ(pε) for any ε > 0. �

Our computational data from Section 5C suggests that we will get the same running time when the
reduced discriminant of 3 is not square-free. This motivates the following conjecture:

Conjecture 5.6. Fix an integer k ≥ 0 and assume that 3 ⊆ End(E) is a Bass order of size polynomial
in log p and with discrd(3)= O(pk). Then for any ε > 0, the number of maximal orders containing 3
is O(pε).

Theorem 5.7. Assume GRH, Conjecture 5.6, Heuristic 5.2, and the heuristics in [14]. Let E be a super-
singular elliptic curve. Then the algorithm which combines Algorithm 5.1 and Algorithm 5.4 computes
End(E) with probability at least µ, in time O((log p)2

√
p).

Proof. By the proof of Theorem 5.3, the norms of the endomorphisms α1, α2 computed by Algorithm 3.4
are bounded by pc for some constant c independent of p, so their discriminants satisfy |1(αi )|< 4pc.
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Hence by (3-1), they generate an order 3 whose reduced discriminant satisfies discrd(3)= O(p2c). This
means we can apply Conjecture 5.6, so the theorem follows from Theorem 5.3. �

5C. Computational data. We implemented a cycle-finding algorithm in Sage along with an algorithm
for computing traces of cycles in G(p, `), which is based on the implementation of Schoof’s algorithm
available in [27]. For each p in Table 1, and for 100 iterations, we computed a pair of cycles in G(p, 2).
We then tested whether they generated a Bass order by testing whether the two quadratic orders had
coprime conductors and computed the discriminant of the order that they generated. We also computed
an upper bound on the number of maximal orders containing 3 when 3 was Bass: suppose discrd(3)=
p
∏

i qei
i , then there are at most N (3) :=

∏
i (ei + 1) maximal orders containing 3. We report how often

the two cycles generated an order, how many of those orders were Bass, and the average value of N (3).
The cycle-finding algorithm we implemented is the variant discussed in Remark 3.5: it searches for
j ∈ Fp to construct the cycles using walks of length dlog pe. We also did not avoid a second cycle which
may commute with the first since even without that more than 80% of cases were orders. We also only
computed cycles at j ∈ Fp2 − Fp because this is the case of interest as there are no obvious noninteger
endomorphisms.

6. Computing End(E) via path-finding in the `-isogeny graph

In this section, we give a reduction from the endomorphism ring problem to the problem of computing
`-power isogenies in G(p, `), using ideas from [21], [14], and [12]. This reduction is simpler than the
one in [12], and uses only one call to a path-finding oracle (rather than poly(log p) calls to an oracle
for finding cycles in G(p, `), as in [12]). We apply this reduction in two ways, noting that it gives an
algorithm for computing the endomorphism ring, and that it breaks second preimage resistance of the
variable-length version of the hash function in [9].

6A. Reduction from computing End(E) to path-finding in the `-isogeny graph. We first define the
path-finding problem in G(p, `):

Problem (`-PowerIsogeny). Given a prime p and supersingular elliptic curves E and E ′ over Fp2 , output
a chain of `-isogenies of length O(log p) from E to E ′.

Computing the endomorphism ring of a supersingular elliptic curve via an oracle for `-PowerIsogeny
proceeds as follows. On input p, Algorithm 3 of [12] returns a supersingular elliptic curve Ẽ defined
over Fp2 and a maximal order Õ⊆ Bp,∞ with an explicit Z-basis {x1, . . . , x4}. Proposition 3 of [12] gives
an isomorphism g : Õ→ End(Ẽ) such that we can efficiently evaluate g(xi ) at points of E0. From this,
the endomorphism ring of any supersingular elliptic curve E defined over Fp2 can be computed, given a
path in G(p, `) from Ẽ to E , with ` 6= p a small fixed prime, for example `= 2 or 3.

The following algorithm gives a polynomial time reduction from computing endomorphism rings to
the path-finding problem, which uses only one call to the path-finding oracle. It assumes the heuristics
of [14] and GRH (to compute Ẽ). A similar algorithm appeared in [10].
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Algorithm 6.1. Reduction from computing End(E) to `-PowerIsogeny.

Input: A prime p, and E/Fp2 supersingular.

Output: A maximal order O ' End(E), whose elements can be evaluated at any point of E , and a
powersmooth isogeny ψe : Ẽ→ E , with Ẽ as above.

(1) Compute Ẽ, Õ with Algorithm 3 in [12].

(2) Run the oracle for path-finding on Ẽ, E to obtain an `-power isogeny φ = φe ◦ · · · ◦φ1 : Ẽ→ E of
degree `e.

(3) Let J0 := Õ, P0 := Õ, O0 := Õ.

(4) For k := 1, . . . , e:

(a) Compute Ik ⊆Ok−1, the kernel ideal of φk .
(b) Compute Jk := Jk−1 Ik .
(c) Compute Pk , an ideal equivalent to Jk of powersmooth norm.
(d) Compute an isogeny ψk : Ẽ→ Ek corresponding to Pk .
(e) Set Ok :=OR(Pk).

(5) Return OR(Pe), ψe.

Orders and ideals appearing in the above algorithm are represented by a Z-basis, and we can compute
right orders of ideals using linear algebra over Z, as in [12]. The ideal Ik , which is the ideal of Ok−1

of norm ` corresponding to φk , can be computed efficiently because we can evaluate endomorphisms
efficiently using Proposition 3 of [12]. The algorithm is correct because OR(Pe)=OR(Je)= End(Ee)=

End(E).

6B. Using Algorithm 6.1 to compute endomorphism rings and break the second preimage of the CGL
hash. Algorithm 6.1 can be used to give an algorithm for computing the endomorphism ring of a super-
singular elliptic curve E by combining it with algorithms from [11; 14; 12]. This yields a O((log p)2 p1/2)

time algorithm with polynomial storage, assuming the relevant heuristics in [14; 12].
We now consider the hash function in [9] constructed from Pizer’s graphs G(p, 2). For each super-

singular elliptic curve Ẽ , there is an associated hash function. An input s ∈ {0, 1}∗ to the hash function
determines a walk in G(p, 2) from Ẽ to another curve E , and the output of the hash function is j (E).
The following is an improvement over [12], which gave a collision attack for this specific hash function.

Proposition 6.2. Let Ẽ be the elliptic curve computed in Step (1) of Algorithm 6.1. For the hash function
associated to Ẽ , Algorithm 6.1 gives a second preimage attack (and hence, also a collision attack) that
runs in time polynomial in log p.

Proof. The attack works as follows: Given a path from Ẽ to E , use Algorithm 6.1 to compute End(E).
Then use Algorithm 7 of [12] to compute new paths from Ẽ to E . �
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Woerden

197Computing Igusa’s local zeta function of univariates in deterministic polynomial-time — Ashish Dwivedi and Nitin Saxena

215Computing endomorphism rings of supersingular elliptic curves and connections to path-finding in isogeny graphs —
Kirsten Eisenträger, Sean Hallgren, Chris Leonardi, Travis Morrison and Jennifer Park

233New rank records for elliptic curves having rational torsion — Noam D. Elkies and Zev Klagsbrun

251The nearest-colattice algorithm: Time-approximation tradeoff for approx-CVP — Thomas Espitau and Paul Kirchner

267Cryptanalysis of the generalised Legendre pseudorandom function — Novak Kalud̄erović, Thorsten Kleinjung and Dušan
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371An algorithm and estimates for the Erdős–Selfridge function — Brianna Sorenson, Jonathan Sorenson and Jonathan
Webster

387Totally p-adic numbers of degree 3 — Emerald Stacy

403Counting points on superelliptic curves in average polynomial time — Andrew V. Sutherland

A
N

T
S

X
IV

:
Fourteenth

A
lgorithm

ic
N

um
ber

Theory
Sym

posium
G

albraith
O

B
S

4

http://dx.doi.org/10.2140/obs.2020.4.1
http://dx.doi.org/10.2140/obs.2020.4.7
http://dx.doi.org/10.2140/obs.2020.4.23
http://dx.doi.org/10.2140/obs.2020.4.39
http://dx.doi.org/10.2140/obs.2020.4.57
http://dx.doi.org/10.2140/obs.2020.4.73
http://dx.doi.org/10.2140/obs.2020.4.91
http://dx.doi.org/10.2140/obs.2020.4.109
http://dx.doi.org/10.2140/obs.2020.4.127
http://dx.doi.org/10.2140/obs.2020.4.143
http://dx.doi.org/10.2140/obs.2020.4.161
http://dx.doi.org/10.2140/obs.2020.4.179
http://dx.doi.org/10.2140/obs.2020.4.197
http://dx.doi.org/10.2140/obs.2020.4.215
http://dx.doi.org/10.2140/obs.2020.4.233
http://dx.doi.org/10.2140/obs.2020.4.251
http://dx.doi.org/10.2140/obs.2020.4.267
http://dx.doi.org/10.2140/obs.2020.4.283
http://dx.doi.org/10.2140/obs.2020.4.301
http://dx.doi.org/10.2140/obs.2020.4.317
http://dx.doi.org/10.2140/obs.2020.4.335
http://dx.doi.org/10.2140/obs.2020.4.353
http://dx.doi.org/10.2140/obs.2020.4.371
http://dx.doi.org/10.2140/obs.2020.4.387
http://dx.doi.org/10.2140/obs.2020.4.403

	1. Introduction
	2. Background on elliptic curves and quaternion algebras
	2A. Endomorphism rings, supersingular curves, -power isogenies
	2B. Quaternion algebras, orders and sizes of orders
	2C. Bass, Eichler, and Gorenstein orders in quaternion algebras; discriminants and reduced discriminants

	3. Computing an order in the endomorphism ring of a supersingular elliptic curve
	3A. Computing cycles in G(p,l)
	3B. Determining the size of S^p

	4. Enumerating maximal superorders: the local case
	5. Computing End(E)
	5A. Computing a Bass order
	5B. Computing End(E) from a Bass order
	5C. Computational data

	6. Computing End(E) via path-finding in the l-isogeny graph 
	6A. Reduction from computing End(E) to path-finding in the l-isogeny graph.
	6B. Using Algorithm 6.1 to compute endomorphism rings and break the second preimage of the CGL hash

	Acknowledgements
	References
	
	

