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We present rank-record breaking elliptic curves having torsion subgroups Z/nZ for n = 2,3,4,5,6, and 7.

1. Introduction

Given an elliptic curve E/Q, the Mordell–Weil theorem states that the group of rational points E(Q)

is isomorphic to Zr
× T, where r is the rank of E and T is a finite group called the torsion subgroup

of E [21]. While the groups that can appear as T were fully characterized by Mazur [16], which ranks
occur is a question that goes back to Poincaré [26] and has been the subject of competing folklore
conjectures.

One side, claiming ranks are bounded, was recently bolstered by several different models [30; 31; 25]
that predict that all but finitely many elliptic curves have rank at most 21, with stronger conjectured
bounds on which ranks occur infinitely often for each possible torsion group T. (For example, if T =
Z/nZ for n = 2, 3, . . . , 8 then the bound 21 is replaced by 13, 9, 7, 5, 5, 3, 3.) The other side, arguing
that ranks are unbounded, has relied on periodically exhibiting curves of larger and larger rank.

Our work continues that tradition, exhibiting rank-record breaking curves for the torsion subgroups
Z/nZ for each n = 2, 3, 4, 5, 6, 7, which constitute two-fifths of the 15 groups that Mazur showed can
appear as the torsion subgroup of an elliptic curve over Q.

At the same time, our work provides, at best, limited evidence that ranks are unbounded. We broke
six different records, and found numerous new curves whose ranks tie the old records (and many more
whose ranks exceed the heuristically conjectured asymptotic upper bounds). But the scale of this search
was vastly larger than any previously attempted, and yet we could not break any of the previous records
by more than 1, and in each case found only a handful of curves (in most cases, a single curve) with the
new record rank. This suggests that the growth of ranks of elliptic curves might indeed peter out at some
point.

Elkies was supported by NSF grants DMS-0501029, DMS-1100511, and DMS-1502161, a Radcliffe Fellowship, and the
Simons Collaboration on Arithmetic Geometry, Number Theory, and Computation.
MSC2020: 11G05.
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1.1. Organization. This paper largely splits into three parts. The first consists of Sections 2–6, which
describe the methods that we used to search for curves of high rank, as well as Section 7, which presents
some open questions about our methods. The second, Sections 8–14, describes our results, including
details of our searches in each of the torsion families considered. Section 9 also includes a previously
unpublished family of elliptic K3 surfaces Eu/Q(t) that have Mordell–Weil group Z/2Z×Z9 for each
u 6= ±1,±2 for which 5− u2 is a square. We exhibit generators for Eu(Q(t)) in Appendix A. The third
and final part of this paper is Appendix B, which presents models for the record-breaking curves we
discovered and points that generate their Mordell–Weil groups.

2. The method of Mestre and Nagao

The core ingredient in our search was a well-known method, originally from Mestre, to find elliptic curves
having large Mordell–Weil rank. We start with an elliptic fibration E/Q(t) having Mordell–Weil rank r ,
and then attempt to find good values of t for which the specialization Et has particularly large rank [20].

A theorem of Silverman [27] states that all but finitely many specializations Et of E have rank at
least r , so this approach effectively gives us r independent rational points on each specialization for free.

The method for finding values of t for which the rank of Et is significantly larger than r has its roots
in the observation of Birch and Swinnerton-Dyer that curves that have unusually many points modulo p
for most p should have many rational points as well [3], and in Mestre’s work on Weil’s explicit formula
for elliptic curves [18]. The idea is to construct a score S(t, B) that incorporates the number of points
Np(Et) on Et(Fp) for all primes p ≤ B where Et has good reduction, and then to search for rational
points on Et for those values of t in a search region for which S(t, B) is above some threshold. While
this basic method was first used by Mestre to find the first curves over Q having rank 12 [17], its first
use in a family E/Q(t) appears to be due to Nagao [23].

Nagao considered the scores

S1(t, B)=
∑
p<B,

Et has good reduction at p

−ap(Et)+ 2
Np(Et)

log p and S2(t, B)=
1
B

∑
p<B,

Et has good reduction at p

−ap(Et) log p,

which, when large, suggest via Weil’s explicit formula for elliptic curves [18] that the order of the
vanishing of the L-function L Et (s) at s = 1 should be large as well.

We choose to evaluate a different sum,

S(t, B)=
∑
p<B,

Et has good reduction at p

log
(

Np(Et)

p

)
, (1)

as in [8], so that exp(−S(t, B)) is the partial product∏
p<B,

Et has good reduction at p

(1− ap(Et)p−s
+ p1−2s)−1 (2)

of the Euler product for L Et (s) evaluated at s = 1 (ignoring the finitely many factors at primes of bad
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reduction). The conjecture of Birch and Swinnerton-Dyer suggests that when Et has large rank such
partial products should rapidly approach zero, and thus that S(t, B) should be large.

3. Computational techniques

Computing any of the sums in Section 2 would be computationally infeasible for a large range of t if one
needed to individually compute ap(Et) for each p < B and each value of t . To scale Mestre’s method
to extremely large search regions, we took advantage of three computational tricks.

First, as observed by Nagao [24], ap(t) depends only on t (mod p). As a result, one can first compute
ap(t) for all p≤ B and for all t ∈ Fp for which 1Et 6= 0, and then use the precomputed values to calculate
S(t, B) for each t in the search region.

The second trick, also due to Nagao [24], lets us concentrate our computation on the most promising
values of t . Rather than compute S(t, B) for all t in the search region, we choose an increasing series of
bounds B0 ≤ B1 ≤ · · · ≤ Bm = B and cutoffs C0 ≤ C1 ≤ · · · ≤ Cm = C , and only compute S(t, Bi ) for
i ≥ 1 for those values of t for which S(t, B j )≥ C j for all 0≤ j < i .

These first two tricks appear to be well known (see [12], for example). The third trick, which is
apparently due to Elkies [8], seems to be less widely known, and we describe it in detail below.

3.1. Sieving. Rather than computing S(t, B) for each value of t by looking up the values of Np(t) (or
more likely, log(Np(t)/p)) for each prime p < B, sieving computes S(t, B) for a large number of values
of t = a/b at once. The algorithm works as follows:

Fix a value of b and an interval [a0, a0+ N ). We allocate a counter array C of length N initialized
to zero. For each prime p - b, we initialize an update array P of length p such that the i-th entry of P
is equal to log(Np(b−1(a0 + i))/p). We then repeatedly add the update array P into C, starting with
position zero in C and shifting the starting position by p with each iteration. Doing this for each prime
p ≤ B tallies the sum S(t, B) into the counter array C for all t = a/b with a0 ≤ a < a0+ N.

By loading P nonsequentially, we can read the values of log(Np(b−1(a0+ i))/p) sequentially from
memory, while requiring only a single inversion modulo p and no additional multiplications, divisions,
or modular reductions.

To avoid the cost of floating point operations, we do not store log(Np(t)/p) as a floating-point number,
but round it to a rational number with fixed denominator D and store the numerator

⌊
D log(Np(t)/p)+ 1

2

⌋
.

The sieve then tallies these numerators for each t using integer addition, which is faster than floating-point
arithmetic. The common denominator D should be large enough that rounding errors do not appreciably
degrade the score, but small enough that we can keep a large counter array in the high-speed cache. We
found that by taking D = 1024, we were able to fit all of our scores into 16-bit integers.

We further took advantage of a feature of modern processors known as vector instructions. These
are processor level instructions that can be used to perform the same operation on multiple consecutive
elements of an array simultaneously. This allowed us to add 16 elements from the update array P into
the counter array C at once, rather than one at a time.
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Compared with computing each S(t, B) individually, sieving is extremely fast. For example, for a
fixed value of b, we are able to compute S(a/b, 216) for 220 values of a in 3.2 seconds on a single thread
of a hyperthreaded 2.3 GHz Intel Skylake Xeon processor. Smaller values of B take even less time; for
example, computing S(a/b, 213) for 220 values of a takes only 0.19 seconds on the same processor.

The large speed-up offered by this sieve-like technique is available only in the first step of Nagao’s
second trick described above: we can use it to quickly compute S(t, B0) for all t in the search region,
but not to compute S(t, Bi ) for i ≥ 1 on a restricted set of t . For i ≥ 1 we must look up individual values
of log(Np(t)/p). However, because the sieve-like technique is so efficient, we can set B0 large enough
that computing S(t, B0) is the dominant portion of the work — see Section 6.

4. Choosing fibrations

Perhaps the most important ingredient in searching for high-rank elliptic curves is choosing a good
fibration to search on. We’ll describe the factors that guided our choices, while leaving the specific
choices of fibrations to Sections 9 — 14.

In the past, the largest rank elliptic curves having torsion subgroups Z/2Z, Z/3Z, and Z/4Z have
come from specializations of K3 surfaces having relatively large rank (9 for Z/2Z, 5 for Z/3Z, and 4
for Z/4Z). Our search was no different, focusing on the same families in which the previous records
were found.

By contrast, high-rank K3 surfaces are not known to exist for the other torsion groups we considered.
The largest known rank of a K3 surface having torsion subgroup Z/5Z or Z/6Z is 1, and the universal
elliptic curve having a point of order 7 is already a K3 surface, of generic rank zero. As a result, previous
searches have focused on high-degree elliptic surfaces of larger rank [15; 6].

We initially attempted to do the same for the group Z/6Z using a degree 4 elliptic surface of Kihara
having rank 3 [14] considered in [6]. We found that while this surface has a relatively large number of
low-height rank 8 specializations, we could not find any such specializations of parameter height larger
than ≈ 213.5. This suggested that as the height of t grew, either the number of high-rank specializations
in this family decayed rapidly or our scores quickly became less meaningful.

While [6] considered other degree 4 elliptic surfaces having Mordell–Weil group Z/6Z× Z3, we
concluded that the low-hanging fruit on these had already been discovered, and that our best hope
of finding a rank 9 curve having torsion subgroup Z/6Z was to search on the universal elliptic curve
with a point of order 6, which is a rational surface. We made a similar decision regarding the groups
Z/nZ for n = 5 and n = 7, for which the universal elliptic curve over X1(N ) is respectively rational
and K3.

Remark. Subsequent to ANTS-XIV but prior to publication, Maksym Voznyy discovered a rank 9 curve
with torsion subgroup Z/6Z as a low-height specialization of an elliptic surface of degree 4 having
Mordell–Weil group Z/6Z×Z2 [29]. This curve is somewhat larger than the one we present in Section 13,
and appears in [5].



NEW RANK RECORDS FOR ELLIPTIC CURVES HAVING RATIONAL TORSION 237

5. Computing ranks

After finding a set of values of t such that S(t, B) is sufficiently large, we are left with the problem of
identifying those that actually have large rank. We approach this problem in two stages. First, we use
descent methods to obtain an upper bound on the rank. For those specializations where the upper bound
is sufficiently large, we then search for points on whichever coverings we can efficiently compute.

5.1. Descent computations. For half of the families we considered, the torsion subgroup contains a
point of order 2, so we could use Fisher’s machinery for computing rank bounds using 2-power isogeny
Selmer groups, available in Magma via the command TwoPowerIsogenyDescentRankBound [13]. For
all of the specializations we considered where this upper bound was at least as large as the previous
record in the family, the upper bound was in fact equal to the rank (though of course we did not know
this until after we searched for points).

For the specializations with torsion subgroup Z/3Z, there is no 2-isogeny over Q, and a full 2-descent
was out of reach. This forced us to consider a different approach.

As a first attempt, we ran all of the high scorers through a slightly modified version of Magma’s
ThreeIsogenySelmerGroups command to obtain a coarse rank bound. While the rank bound coming
from 3-descent via isogeny tends to be reasonably tight for small curves, many of the specializations we
considered had a large number of places of split multiplicative reduction, which boosted this bound for
structural reasons unconnected to rank. To deal with this, we then used our own implementation of the
algorithm for computing the Cassels–Tate pairing developed by Fisher and van Beek [1; 2] to compute
the 3-Selmer rank of each specialization for which the rank bound coming from 3-isogeny descent was
at least 14.

For the curves with Z/5Z torsion, we were able to use a modified version of the pIsogenyDescent
command in Magma to compute a rank bound coming from 5-descent via isogeny, which allowed us to
eliminate close to 99% of the candidate specializations. Since the fibration with Z/5Z torsion that we
searched is a rational surface over Q(t), the remaining specializations were sufficiently small that we
could use Magma’s built-in implementations for computing both the 2-Selmer group and the Cassels–Tate
pairings for each one.

The curves with Z/7Z torsion posed a unique challenge. While we were able to use our modified
version of Magma’s pIsogenyDescent command to compute a rank bound coming from 7-descent via
isogeny, this bound tended to be insufficiently sharp for our candidate specializations.

In addition, because the Z/7Z fibration we considered is a K3 surface over Q(t), we expected that the
size of our specializations would overwhelm Magma’s 2-descent machinery. However, we discovered
that while the discriminant of this surface has degree 24, the discriminant of the cubic subfield of its
2-division field has degree only 6. As a result, although the curves in question were quite large, it was
still possible to perform 2-descent and the Cassels–Tate pairings on them.

5.2. Searching for points. Once we had candidate curves that our Selmer computations suggested had
large rank, we needed to find enough independent points on them to verify that they had the expected rank.
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Our main method for finding these points was by searching for points on 2-coverings of each curve
using Magma’s built-in functionality. For most of the groups — Z/4Z, Z/5Z, Z/6Z, and Z/7Z — we
were able to compute the complete 2-Selmer group for each of the curves in question.

For the group Z/2Z, we did the next best thing, computing the coverings corresponding to the elements
of the Selmer group of a 2-isogeny and its dual, and searching on those.

In principle, we could have done something similar with the 3-isogeny coverings for the curves hav-
ing torsion subgroup Z/3Z using Elkies’s lattice-based method of searching for points on cubic curves
in P2 [7]. However, due to a memory leak we discovered1 in Magma’s implementation of Elkies’s method,
doing so would have required additional effort. Instead, we searched the 2-coverings corresponding to
the known points on each curve coming from the rational points on the surface E , adding new 2-coverings
to the mix whenever we discovered an additional point.

Somewhat surprisingly, this method worked extremely well. We suspect that because each of the
curves in question has a large number of points of low height, we likely would have found them using
nearly any method we attempted.

6. Choosing parameters

There is an art to choosing proper values for Bi and Ci . The goal, of course, is to minimize the total
time spent searching, while not missing any of the top candidates. How to do this is unclear. We chose
our values experimentally, and we suspect that our choices were far from optimal; see Section 7. Some
tradeoffs however are straightforward.

If C0 is too small, then too many values of t pass the initial cutoff, so the cost of computing S(t, Bi )

for i ≥ 1 dominates, because looking up the values of log(Np(t)/p) individually is far more expensive
than sieving. Conversely, if C0 is too large then we risk eliminating promising values of t .

We compromised by choosing C0 rather aggressively, targeting a cutdown on the order of 103, but
using a large enough value of B0 (between 213 and 216) to limit the risk of losing any good candidate t .
(Previous searches have tended to take B < 103, so this seemed sufficiently conservative.)

The values of Bi for i ≥ 1 are less important. We chose the Bi to be successive powers of 2 up to
B = 218. We also chose our Ci less aggressively for i ≥ 1, since these have a smaller effect on the
runtime.

6.1. Skewed search regions. For some of the fibrations we considered, the polynomials defining the
nontrivial coefficients of E were skew in the sense of [22]. Very roughly, this means that the higher
degree coefficients tend to have larger magnitude than the smaller ones or vice versa.

As a result, the average magnitude of the coefficients of an integral model for Et on a skewed search
region (that is, t = a/b with Max(|a|) = sMax(|b|) for some s ∈ Q) will be smaller than the average
magnitude of the coefficients of an integral model for Et on a square search region having the same
size. While we don’t have a firm grasp on how the existence of high-rank specializations is related to the

1While we discovered the presence of this memory leak, we did not attempt to identify its source.
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coefficient size of Et , it seems sensible to search for smaller curves, so we skewed our search regions
accordingly.

7. Open questions

Although our search was largely successful, we are left with some open questions regarding the method
of Mestre and Nagao.

(1) How large a prime bound should we be using relative to the search region/degree of the family?
Our experience indicates that the score S(t, B) tends to be a poorer indicator of rank as the size

of the search region grows, and that the rate at which it becomes less useful depends on the degree
of the surface and on its torsion subgroup.

This is unsurprising, since we expect the convergence rate of the Euler product for L Et (s) to
depend on the conductor, which in turn grows roughly as a power of the height H(t) depending
on the degree and fiber types of the surface. (More precisely, the conductor is bounded above by
a multiple of that power of H(t), and for typical t this is the correct growth order.) We should
therefore expect that we need to allow our prime bound B to grow as a function of E and H(t) in
order for S(t, B) to remain useful. Is it possible to make this relationship precise?

(2) How can we incorporate the Tamagawa factors at the places where Et has bad reduction?
It has been observed that the known curves of high rank tend to have split multiplicative reduction

and large Tamagawa numbers at many small primes. While the L-function includes terms for the
bad primes and these can be incorporated into S(t, B), these terms don’t incorporate the Tamagawa
numbers.

One idea would be to include these primes into the score via the term log(cp(Et)(p − 1)/p).
However, this seems odd, because for surfaces with an isogeny, the Tamagawa numbers of Et and
its isogenous curves will generally not be the same, and any score that hopes to predict the rank
should be isogeny-invariant.

In our searches, we found that including the term log(c(p− 1)/p) with various c between 1 and
2 in S(t, B) at each prime of split multiplicative reduction (effectively giving the specialization a
fixed bonus for each such prime) tended to work reasonably well. At the same time, this is clearly
a hack, and it would be nice to understand what the correct thing to do is.

(3) How closely should the rank be expected to correlate with S(t, B)?
One problem that we struggled with was understanding exactly how the score S(t, B) should

relate to the rank of Et . For now, we are forced to choose our bounds conservatively to avoid missing
any high-rank curves, which results in an increased amount of work, particularly at the descent steps.

Ideally, we would have a Bayesian score Prob(Et has rank at least r | S(t, B) > C) that would
let us set the bounds Bi and Ci optimally, and inform our decision about how many curves to apply
descent methods to. (The use of a Bayesian score was suggested to us by Joel Rosenberg.) Such a
score would also let us estimate the likelihood that we missed a curve of high rank.



240 NOAM D. ELKIES AND ZEV KLAGSBRUN

torsion subgroup previous record current record
Z/2Z 19 20
Z/3Z 14 15
Z/4Z 12 13
Z/5Z 8 9
Z/6Z 8 9
Z/7Z 5 6

Table 1. Rank records for various torsion subgroups.

8. Main results

We obtained new rank records for elliptic curves with torsion subgroups Z/nZ for n = 2,3,4,5,6, and 7.
The current and previous records (as given by [5]) for each of these torsion subgroups are given in

Table 1. We note that for the torsion subgroups Z/nZ with n = 2, 3, 4, 5, 6, the ranks of both our curves
and the previous record-holding curves are known unconditionally. While the ranks of some of the
previous record-holding curves for the torsion subgroup Z/7Z are known unconditionally, the ranks of
our record holding curve as well as some of the previous record-holding curves are known only subject
to the generalized Riemann hypothesis (GRH) for L-functions of number fields.

The next sections describe in greater detail the searches we carried out in pursuit of these records.

9. Curves with torsion subgroup Z/2Z

For torsion groups T =Z/2Z, Z/3Z, Z/4Z we proceeded as in [8], computing an elliptic fibration E(Qt)

of a K3 surface X whose Néron–Severi group NS(X) is defined over Q and has high rank and large
discriminant. For T = Z/3Z and T = Z/4Z we used the surface with NS(X) of rank 20 and discrim-
inant −163. But for T = Z/2Z this discriminant is not large enough; it turns out [10] that the highest
rank attained by an elliptic fibration of X with a 2-torsion point is 8. Instead we use X with NS(X) of
rank 19 but larger discriminant, which can attain Mordell–Weil rank 9.

Such X are parametrized by elliptic or Shimura modular curves, call them C , of level 1
2 |disc NS(X)|.

When |disc NS(X)| is large enough to allow Mordell–Weil rank 9, the curve C usually has genus at
least 2, with few if any rational points (other than cusps and CM points, at which X or the elliptic
fibration degenerates). In [8, pp. 8–9] Elkies reports using the sporadic rational point on the genus-2
curve X0(191)/w to find such an X. A few years later he found a genus-zero Shimura curve of level 230
that could be used instead, giving a family of elliptic surfaces with Mordell–Weil group Z/2Z×Z9. Here
C = X/w230, with X associated to the congruence subgroup 00(23) of the quaternion algebra ramified
at {2, 5}. The family of surfaces with their elliptic fibrations was computed as in [9; 11]. The elliptic
fibration is of the form Eu/Q(t) : y2

= x3
+ 2Ax2

+ Bx , where

A = (u8
− 18u6

+ 163u4
− 1152u2

+ 4096)t4
+ (3u7

− 35u5
− 120u3

+ 1536u)t3

+ (u8
− 13u6

+ 32u4
− 152u2

+ 1536)t2
+ (u7

+ 3u5
− 156u3

+ 672u)t

+ (3u6
− 33u4

+ 112u2
− 80), (3)
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and B =
∏8

i=1 Bi (t, u) where

B1(t, u)= (u2
+ u− 8)t + (−u+ 2), B3(t, u)= (u2

− u− 8)t + (u2
+ u− 10),

B5(t, u)= (u2
− 7u+ 8)t + (−u2

+ u+ 2), B7(t, u)= (u2
+ 5u+ 8)t + (u2

+ 3u+ 2),
(4)

and Bi (t, u)=−Bi−1(−t,−u) for i = 2, 4, 6, 8. Thus Eu ∼= E−u . If 5− u2 is a square, and u 6= ±1,±2
(to exclude CM points), then Eu has Mordell–Weil group Z/2Z×Z9 over Q(t). Generators are exhibited
in Appendix A.

We searched for high-rank specializations of Eu for several values of u.
For u = 2/5, we searched the region t = a/b with 0 < a < 221 and −223 < b < 223, finding 17 curves

of rank 19, including the previous record-holding curve of Elkies that appears in [5], which occurs at
t = 11860/97527.

For u = 11/5, we first applied the linear fractional transformation t 7→ (2− t)/(t − 6) to Eu and then
searched the region t = a/b with 0 < a < 3 · 221 and −221 < b < 221. We found one specialization of
rank 20 at t =−68559/32629 (t =−721141/2026305 on the original model of Eu), as well as another
20 specializations of rank 19, including one at t = 100782/104143 (t =−26876/131019 on the original
model of Eu) with smaller discriminant than the rank 19 curve of Elkies appearing in [5].

Minimal models and x-coordinates of a set of generators for the rank 20 specialization and the smallest
discriminant rank 19 specialization appear in Appendix B.2. We note that this curve of rank 20 is the
elliptic curve of largest rank for which the rank is known unconditionally.

We also searched regions of size roughly 244 on each of the fibrations coming from u = 2/13 and
u = 22/13, but did not find any specializations of rank greater than 18.

10. Curves with torsion subgroup Z/3Z

The singular K3 surface of discriminant −163 has (up to isomorphism) 159 elliptic fibrations with torsion
group Z/3Z; their Mordell–Weil ranks range from 1 to 5. Rank 5 is attained by 13 of those fibrations,
each giving rise to a family of elliptic curves whose Mordell–Weil group contains Z/3Z×Z5; the explicit
formula will appear in [10].

We searched an appropriately skewed region of size 243 on each of the 13 fibrations, finding 34
specializations of rank 14 (at least one on 11 of the 13 fibrations) as well as a single specialization of
rank 15, given by

E : y2
+ 490738465519xy− 432802729180188878035670522423557875y = x3.

Among the specializations having rank 14, the one with smallest conductor and discriminant is given by

E : y2
+ 6244332976xy+ 2204421250641922174556630375y = x3,

which has smaller conductor and discriminant than the previously known curve of rank 14 appearing
in [5]. The x-coordinates of a set of generators for each of these curves is given in Appendix B.3.
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11. Curves with torsion subgroup Z/4Z

We searched a pair of families each having Mordell–Weil group Z4
×Z/4Z, both of which are elliptic

fibrations of the singular K3 surface of discriminant −163. The first fibration is given by the equation

E1 : y2
+ (8t − 1)(32t + 7)xy+ 8(8t − 1)(32t + 7)(t + 1)(15t − 8)(31t − 7)y

= x3
+ 8(t + 1)(15t − 8)(31t − 7)x2 (5)

and appears (with a typo) in [8]. A choice of x-coordinates defining four independent sections is given by

(−15/4)(t + 1)(31t − 7)(32t + 7), (8t − 1)(15t − 8)(31t − 7)(32t + 7),

−(t + 1)(8t − 1)(15t − 8)(32t + 7), −4(t + 1)(2t + 5)(15t − 8)(32t + 7).

The second fibration is given by the equation

E2 : y2
− 8(80t + 9)xy− 16(80t + 9)(t − 2)(2t − 1)(18t − 1)(2t − 81)y

= x3
+ 2(t − 2)(2t − 1)(18t − 1)(2t − 81)x2 (6)

and will appear in [10]. A choice of x-coordinates defining four independent sections is given by

154(t − 2)(2t − 1)(18t − 1), −1456(t − 2)(2t − 1)(2t − 81),

16(t − 2)(2t − 81)(22t + 21), 6(2t − 5)(t − 2)(2t − 81)(18t − 1).

The previous rank record for torsion group Z/4Z was 12, attained by two curves in the family E1,
found by Elkies in 2006 (t = 18745/6321) and Dujella and Peral in 2014 (t = −13083/72895). We
searched up to height 222 on E1 and found three rank 13 specializations at t = −1086829/638219,
t = −2856967/190447, and t = 973215/3135431, as well as 76 rank 12 specializations. Of the rank 12
specializations, the one with smallest conductor occurs at t =−447577/2601952 (NEt ≈ 2153.41) and
the one with smallest discriminant occurs at t = 83497/251378 (|1Et | ≈ 2392.96). Respectively, these
have smaller conductor and discriminant than the previously known rank 12 curves.

We searched up to height 222 on E2 and were unable to find any specializations of rank 13, though we
did find 32 having rank 12. Among these, the specialization with smallest conductor and discriminant
appears at t =−16307/121584 (NEt ≈ 2161.21 and |1Et | ≈ 2433.71).

Minimal models and x-coordinates of a set of generators for each of the rank 13 specializations are
given in Appendix B.4.

12. Curves with torsion subgroup Z/5Z

As noted in Section 4, for the group Z/5Z, we chose to search for good specializations on the universal
elliptic curve having a point of order 5, which is a rational elliptic surface. One particularly nice model
for this surface is given by

y2
+ (t + 1)xy+ t y = x3

+ t x2,

which has the feature that the nontrivial automorphism of X1(5) as a cover of X0(5) is given by t 7→−1/t .
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Changing t to −1/t yields the same curve with a different choice of generator of its torsion group. This
allowed us to limit our search to t > 0. We searched for t up to height 229 on this surface, finding a single
rank 9 curve at t = 266165145/442317512.

We also found 392 rank 8 specializations, three of which were previously known. Of these, the curve
we found with smallest conductor appears at t = 1809535/5292661 (NEt ≈ 285.86) and the curve we
found with smallest discriminant appears at t = 5167107/723695 (|1Et | ≈ 2254.77). Each of these has
both smaller conductor and discriminant than all of the previously known rank 8 curves.

Minimal models and x-coordinates of a set of generators for the rank 9 specialization and the smallest
conductor and discriminant rank 8 specializations appear in Appendix B.5.

13. Curves with torsion subgroup Z/6Z

As was the case for Z/5Z, we chose to search for good specializations on the universal elliptic curve
having a point of order 6, which is a rational elliptic surface. A model for this surface is given by

y2
+ t xy+ (t + 2)y = x3,

with torsion points of order 2, 3, 6 at (x, y)= (−1,−1), (0, 0), (t + 2, t + 2), respectively.
We searched for good specializations of this model in the region t = a/b with 0 < a < 225 and
−226 < b < 226. In this case, the skewed search region was a fortuitous accident, rather than a deliberate
choice. We found a single rank 9 curve at t =−22029701/37178488 as well as 71 rank 8 specializations,
all but one of which appear to be previously unknown. The rank 8 curve with the smallest conductor and
smallest discriminant appears at t = 6308333/1000939 (NEt ≈ 281.96 and |1Et | ≈ 2253.07). Its 2-isogenous
curve that appears at t =−24627934/8310211 shares the same conductor, but has larger discriminant.

Minimal models and x-coordinates of a set of generators for the rank 9 specialization and the smallest
conductor/discriminant rank 8 specialization appear in Appendix B.6.

Remark. In retrospect, we could have taken advantage of the involution w2 : t 7→ −(2t + 12)/(t + 2),
for which Ew2(t) is the curve E ′t which is 2-isogenous with Et , and thus also has torsion subgroup Z/6Z.
This would let us restrict our search area to −4 < t < 2. In partial compensation, we could compare the
scores of t and w2(t) to corroborate that we are computing these scores correctly.

14. Curves with torsion subgroup Z/7Z

As noted in Section 4, for the group Z/7Z, we chose to search for good specializations of the universal
elliptic curve having a point of order 7. Unlike the groups Z/5Z and Z/6Z, the universal elliptic curve
having a point of order 7 is a K3 surface rather than a rational one.

A model for this curve is given by

y2
+ (−t2

+ t + 1)xy+ (−t3
+ t2)y = x3

+ (−t3
+ t2)x2

(see, e.g., [28, p. 195]).
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The modular curve X1(7) has two nontrivial automorphisms as a cover of X0(7). These correspond
to the transformations t 7→ 1− 1/t and t 7→ −1/(t − 1) on this surface which allowed us to restrict
ourselves to considering 0 < t < 1.

We searched up to height 220 on this model and found a single specialization of rank 6 at t =
−748328/820369. A minimal model and the set of x-coordinates of a set of generators of this spe-
cialization are given in Appendix B.7.

Remark. In addition to the group Z/7Z, there are two other groups G, namely, G = Z/8Z and G =
Z/2Z×Z/6Z, for which the universal elliptic curve E with a copy of G in E(Q) is a K3 surface. The
rank record for each of these two G is 6, and [5] lists several curves attaining this record in each case.
We looked for curves of larger rank for each of these torsion subgroups by searching on a model of the
corresponding universal elliptic curve, but failed to find any specialization having rank greater than 6.
We suspect that the reason we found a record-breaking curve for Z/7Z but not for Z/8Z or Z/2Z×Z/6Z

is simply that the previous record was lower for Z/7Z.

Appendix A: Points on Eu/Q(t)

Recall that in (3) and (4) we exhibit A and B1, . . . , B8 in Q[t, u] such that Eu/Q(t) has Weierstrass
equation y2

= x3
+ 2Ax2

+ Bx where B =
∏8

i=1 Bi . The minimal height of a nontorsion section
is 2, attained by 70 pairs (x,±y) with x, y ∈ Q(u,

√
5− u2)[t]. We find that 58 of the 70 pairs have

x, y ∈Q(u)[t]; these generate a Mordell–Weil subgroup of rank 8. One simple choice of generators of
this subgroup consists of points with x-coordinates

− B1 B2 B3 B6, −B1 B2 B4 B5, 4B1 B2 B5 B6, B1 B3 B4 B6,

− B1 B3 B4 B7, B1 B3 B4 B8, B1 B3 B5 B6, −B1 B5 B6 B7.
(7)

Extending Q(u) by
√

5− u2 yields Q(m) where m is a rational coordinate on the parametrizing Shimura
curve, with

u = 2
m2
−m− 1

m2+ 1
, (5− u2)1/2

=±
m2
+ 4m− 1
m2+ 1

; (8)

then adding −(m−1)2 B1 B2 B3 B8 to the list (7) gives x-coordinates of 9 Mordell–Weil generators modulo
torsion. The Gram matrix of canonical height pairings is

1
2



4 0 1 −1 0 2 −1 0 1
0 4 −1 −2 0 2 −2 0 0
1 −1 4 0 −1 1 −1 1 2
−1 −2 0 4 −1 −1 1 0 0

0 0 −1 −1 4 1 0 −2 0
2 2 1 −1 1 4 −2 −1 1
−1 −2 −1 1 0 −2 4 1 0

0 0 1 0 −2 −1 1 4 1
1 0 2 0 0 1 0 1 4


, (9)

with determinant 115/16.
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Appendix B: Models for record breaking curves

B.1. Overview. This section gives minimal integral models for each of the record breaking curves we
discovered, along with the x-coordinates of a set of points that, at a minimum, generates the torsion-free
part of each of them. We expect that this set of points generates the full torsion-free part of each curve
given, but have not tried to prove this rigorously.

By common convention we use a vector (a1, a2, a3, a4, a6) to mean the extended Weierstrass model

y2
+ a1xy+ a3x = x3

+ a2x + a4x + a6

whose coefficients are the vector’s entries. We usually depart from another common convention that
chooses the model with a1, a3 ∈ {0, 1} and a2 ∈ {−1, 0, 1}. Such models have the advantage of being
unique, but for curves with nontrivial torsion there may be one or more other choices that put a torsion
point at (x, y)= (0, 0) and have a coefficient vector with noticeably fewer digits (for starters a6 = 0 if
(0, 0) is on the curve).

When possible we give a generating set of E(Q) mod E(Q)tors consisting of integral points of small
height. For most of our curves there are plenty of such points to choose from, even though there can be
other curves with the same torsion group and somewhat lower rank that have even more integral points.

B.2. Z/2Z. A minimal model for the rank 20 curve having Z/2Z torsion has coefficients

(1,−1, 1,−244537673336319601463803487168961769270757573821859853707,

961710182053183034546222979258806817743270682028964434238957830989898438151121499931).

Here we reluctantly give a model with small a1, a2, a3 and huge a4, a6, because the torsion point has
x =−69288588686111702678625616725/4 and thus cannot be put at the origin on a minimal model.2

One choice of 20 points that generate its Mordell–Weil group modulo torsion has x-coordinates

−5976635286513806621064126789, 595416388787490259443766591,

2434562872293108275107029075, 3513074027344435171140978981,

399682145249051758133327419, −10714754038296881855524018251,

−16034220456847626275437501599, 1185828672355214392425799131,

−11190697582885409770718510409, 2634316446310680332042122261,

64222149978369055569434725591, 23945425437351916471937562579,

13094114400583295432756346651, 2689776334541089917424552236511,

−2627014038979941829331861469, 113605800622499112413124359631,

−7364938748841807757773625709, −14298222927159284914180072349,

785686589410787916270883192839, −2250170491079839258934900709.

Here and later we list generators in increasing order by canonical height.

2The coefficients (2,−207865766058335108035876850179,0,10490122792958386322093670444427223877319227761081795217921,0)

give a model with smaller coefficients that puts the torsion point at (0, 0) but is not minimal at 2.
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A minimal model for the rank 19 curve with Z/2Z torsion having smallest known discriminant has
coefficients

(1, 4040549489437705068551042, 0, 39096673111815206065773237234587256582331296000, 0).

One choice of 19 points that generate its Mordell–Weil group modulo torsion has x-coordinates

−3613294426098135199878600, 284077053735716552925900,

−69786343891815820666800, 6409078899434870587500,

4711243262341394854929360, −200862034480295787990300,

49746704013683926431600, 1283007628272047952000,

601243680664306184613420, 1681679070386109358006014,

−178674347439204200162150, −140058466067600728971180,

4490592251930741573760, −1245418009246864352006250,

239435938047242410050720, −2615926042511102882808000,

−3662820474106418641536000, 308679854892675472378120,

−12130119373140047385600.

B.3. Z/3Z. The rank 15 elliptic curve with coefficient vector

(490738465519, 0,−432802729180188878035670522423557875, 0, 0)

has a 3-torsion point at (x, y) = (0, 0). One choice of 15 points that generate its Mordell–Weil group
modulo torsion has x-coordinates

414082294873186000299147, −461076037958619691375950, 136016697778663191410466,

579811074194569447550775, 4156065765459153070875350, −379256436856490083222605,

−480257266200757201099125, 626879349686994759271350, 319402198167922579675875,

9987762741068630814895872, 1025559076978453798187316, 17710047123788181654048375,

236426830570889446065942, −162860681446721622110565, 1093411474853808475876875.

The rank 14 elliptic curve with coefficient vector

(6244332976, 0,−2204421250641922174556630375, 0, 0)

has a 3-torsion point at (x, y) = (0, 0). One choice of 14 points that generate its Mordell–Weil group
modulo torsion has x-coordinates

2907919170263662, −65199074165293250, 71604990115331040, 77567806466944000,

108999498650081840, 169617569990697350, −171009947870163008, −204167066230390100,

−240427032442334750, 243676691791782250, −256142889038646510, −276580713950955750,

368313341140417750, −449841531945448000.

B.4. Z/4Z. The first rank 13 curve with Z/4Z torsion has a minimal model with coefficient vector

(282887999996745,−1871148179781457712818452480,

−529325366275926422138597740307015937177600, 0, 0)

and a 4-torsion point at (x, y)= (0, 0). One choice of 13 points that generate its Mordell–Weil group
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modulo torsion has x-coordinates

37563104221873287230436120000, 1241851783771179145432296000,

1992140999686088390294877150, 30921042737991542683359263880,

−21195532433936174709304166400, −1464098167733086800531916800,

1670745991840921221771294750, 1252355926117744178967180450,

−1960920553671074388872220170, 1375293185347275499663130572800,

2549902537861429590505036800, 3272919221738028252106303872714,

102225511700163143939329914880.

The second rank 13 curve with Z/4Z torsion has a minimal model with coefficient vector

(230691818102905,−200100346570723590045845120,

−46161512753421616727023025112895852073600, 0, 0)

and a 4-torsion point at (x, y)= (0, 0). One choice of 13 points that generate its Mordell–Weil group
modulo torsion has x-coordinates

190412869629748629206788500, −11655521125151390350616252280,

−10482658909728296079200226100, −205253870232797421109008000,

193230556828647163522857600, 2390337099874364874239977850,

−10561431236301791011714683300, −1195165694989063921020955200,

876665740401972718169616600, −99112055810721390011710344,

−65566000913948267196883584, 166949951644450209072942720,

−26328612670314620364001050.

The third rank 13 curve with Z/4Z torsion has a minimal model with coefficient vector

(246888014319233,−8884285566590219865500325632,

−2193423622180481268696018169961040300480256, 0, 0)

and a 4-torsion point at (x, y)= (0, 0). One choice of 13 points that generate its Mordell–Weil group
modulo torsion has x-coordinates

−968516084234641058709370232, −1333726837303108113451614080,

1792794868671671366043266816, 2362595876319902581142656768,

−2746004168634841009972934984, 3469325866293712913010729024,

3644805279133239447459855232, 4449372053406414078540323280,

−4537829698895530474950049368, 5156996081584183666047796032,

5789474008645490085082165824, 5912795841516183863849831680,

10555676267250916670215460568.

B.5. Z/5Z. The rank 9 curve with Z/5Z torsion has a minimal model with coefficient vector

(708482657, 117729504717519240, 52073821615645373048930880, 0, 0).

The torsion group is generated by (x, y)= (0, 0). One choice of 9 points that generate the Mordell–Weil
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group modulo torsion has x-coordinates

−95393153480017302, 172086875265878580, −12976225316716116,

53638875373006560, −147039491421732240, 46489325594722920,

−148084847397297720, 21510303761449208160, 79310646743033160.

The rank 8 curve with Z/5Z torsion having smallest known conductor has a minimal model with
coefficient vector

(7102196, 9577255322635, 50689165733152681735, 0, 0).

The torsion group is generated by (x, y)= (0, 0). One choice of 8 points that generate the Mordell–Weil
group modulo torsion has x-coordinates

−11217531799903, −10836503720185, −4357099419673, 1401549559410,

256939125827615, −10247328030940, −6060818514894, −6697297034428.

The rank 8 curve with Z/5Z torsion having smallest known discriminant has a minimal model with
coefficient vector

(5890802, 3739409500365, 2706191958366648675, 0, 0).

The torsion group is generated by (x, y)= (0, 0). One choice of 8 points that generate the Mordell–Weil
group modulo torsion has x-coordinates

−21207376737, 37660080920, −89104376475, 100531079550,

117291419735, −120660570135, 148808336985, −214614453600.

B.6. Z/6Z. The rank 9 curve with Z/6Z torsion has a minimal model with coefficient vector

(−22029701, 0, 72328851024410157777600, 0, 0).

The torsion group is generated by (x, y)= (1945448965660200, 72328851024410157777600); multiply-
ing this point by 2 yields the 3-torsion point (0, 0). One choice of 9 points that generate the Mordell–Weil
group modulo torsion has x-coordinates

749629491053742, 6092756193428190, −1380249411088240,

−1067429532233440, 174532909579773030, 949536320242950,

1079473135677300, 24157188371048640, 3112751229126000.

The rank 8 curve with Z/6Z torsion and smallest known conductor and discriminant has a minimal
model with coefficient vector

(6308333, 0, 8325824903545553131, 0, 0).

The torsion group is generated by (x, y)= (8318014288129, 8325824903545553131); multiplying this
point by 2 yields the 3-torsion point (0, 0). One choice of 8 points that generate the Mordell–Weil group
modulo torsion has x-coordinates

−204062889121, 211687889245, −403788801990, −410295468023,

−733395115518, −823562706096, −859172099915, −2828410292799.
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B.7. Z/7Z. The rank 6 curve with Z/7Z torsion has a minimal model with coefficient vector

(−500894592455, 720663120331059917723712, 485010096730715360294683087532269632, 0, 0).

The torsion group is generated by (x, y)= (0, 0). One choice of 6 points that generate the Mordell–Weil
group modulo torsion has x-coordinates

−863240219455759708343872, 147841500613888155442368,

−655405721270483784258504, 227328163133810400709740,

17758591139156733971281176, 4457894404162347392127765558505920/795192.

The large final generator is inevitable: the first five generators have canonical heights between 15.434
and 19.431, but the last generator must have height at least 42.058 (we have made the minimal choice,
and with the smallest possible denominator among its seven torsion translates).
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