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Novak Kalud̄erović, Thorsten Kleinjung, and Dušan Kostić
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Linear Legendre pseudorandom functions were introduced in 1988 by Damgård, and higher degree gen-
eralisations were introduced by Russell and Shparlinski in 2004. We present new key recovery methods
that improve the state of the art for both cases. For degree r ≥ 3 we give an attack that runs in time
O(pr−3) after O(p3) precomputation for the most relevant high degree case; it is based on the action
of the group of Möbius transformations on degree r polynomials. For r < 3 we give an O(pr/2) attack
with O(pr/4) oracle queries. In the linear case we recovered the keys for the 64, 74 and 84-bit prime
Ethereum challenges, being the first to solve the 84-bit case.

1. Introduction

The usage of Legendre symbols in a pseudorandom function (PRF) is an idea originally proposed by
Damgård [3]. Further generalisations with higher degree polynomials were proposed by Russell and
Shparlinski [9]. In both cases a prime p is given and the Legendre PRF is modelled as an oracle O that on
input x outputs the Legendre symbol

( f (x)
p

)
, where f (x)∈ Fp[x] is a secret key. Damgård conjectured that

when f is linear, given a sequence of Legendre symbols of consecutive elements it is hard to predict the
next one. Similar problems conjectured to be hard were also proposed [7], such as finding the secret poly-
nomial while being given access to O and distinguishing O from a random function. So far no polynomial
time algorithms have been found for either of these problems and it is believed that they are hard. Until
recently, practical applications have been limited, primarily due to availability of much faster alternatives.

A recent result by Grassi et al. [7] sparked an interest in the linear Legendre PRF because it was found
suitable as a multiparty computation (MPC) friendly pseudorandom generator. This is mainly due to
the homomorphic property of the Legendre symbol and the possibility of evaluating it with only three
modular multiplications in arithmetic circuit multiparty computations, which makes it a very efficient
MPC friendly PRF candidate.

There are plans to use this construction as a PRF for a proof of custody scheme in the Ethereum
blockchain [6]. The proof of custody scheme requires a mix function, i.e., a pseudorandom function
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that produces one bit of output. The Legendre PRF was shown to be a great candidate for this purpose
because of its efficiency. In comparison, SHA256 requires tens of thousands of multiplications while
AES needs 290 in the MPC setting [6].

In order to raise interest in this construction, a number of Ethereum research challenges have been
posted [6]. The goal is to recover the secret key given 220 consecutive Legendre symbols, for primes of
size varying from 64 to 148 bits.

1A. Contribution. In this paper we analyse the action of the group of Möbius transformations on monic
polynomials of degree r , and we use it to give an improved attack on the Legendre pseudorandom
function. For polynomials of degree r ≥ 3 modulo a prime p we distinguish three types of polynomials
and for the most relevant case we give an O(pr−3) attack after an O(p3) precomputation with p oracle
queries. For degree r < 3 an O(pr/2) attack is given with pr/4 queries. If the number of queries M
is limited, we give an O(pr log p/M2) attack. These are improvements with respect to the previous
algorithms [2; 8] of factor from p up to p3 in the general case, and even higher for a new family of
bad keys. In the linear and limited query case a factor of log p fewer trials in the search phase are
needed.

We also give the solutions to challenges 0, 1 and 2 of the Ethereum research linear Legendre PRF for
64, 74 and 84-bit primes. In all cases we were given access to 220 Legendre symbols.

2. Background

Let p be an odd prime. Throughout the paper we suppose that the prime is public.1 We denote with Fp

the field of cardinality p.

2A. Notation.

Definition 2.1 (pseudorandom functions). A pseudorandom function family {Ok}k is a set of functions
with the same domain and codomain indexed by a set of keys k such that a function Ok chosen randomly
over the set of k-values cannot be distinguished from a random function.

Definition 2.2 (Legendre symbol). We define the Legendre symbol by setting(
x
p

)
= x

p−1
2 =

{
1 if x ∈ Fp is a square mod p,

−1 if x ∈ Fp is not a square mod p.

In general the Legendre symbol is defined by setting
(0

p

)
= 0, which makes the symbol multiplicative.

However this comes at a cost of increasing the size of the codomain. In practice
(0

p

)
= 1 is used.

We will assume that the multiplicative property of the Legendre symbol stands. This is a nonproblem
and the reader should be easily convinced that the algorithms we give terminate in the same expected
time and with the same probability.

1Originally, as proposed by Damgård, the prime was considered secret. We chose only to pursue the case of a public prime,
as in the MPC use case.
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Definition 2.3 (Legendre sequence). We define a Legendre sequence with starting point a and length L
to be the sequence of Legendre symbols evaluated at L consecutive elements starting from a. We denote
it with {a}L :

{a}L :=
(

a
p

)
,

(
a+ 1

p

)
,

(
a+ 2

p

)
, . . . ,

(
a+ L − 1

p

)
.

Every a fully determines its sequence of length L , but not vice versa — that property depends on L . In
general, these sequences are as well distributed as one can hope them to be. We know already that when
L = 1 half of the a-values give 1, and the other half give −1. Similar properties are true for larger L ,
and in general, following a theorem of Davenport, around one in 2L elements of Fp is a starting point of
a given sequence of length L .

Theorem 2.4 (Davenport, 1933 [4]). Let S be a finite sequence of ±1’s of length L. Then the number of
elements of Fp whose sequence is equal to S satisfies

#
{

a ∈ Fp

∣∣∣ {a}L = S
}
=

p
2L + O(pε)

where 0< ε < 1 is a constant depending only on L.

Throughout the paper we assume that L is such that {a}L uniquely defines a, i.e., that

{a}L = {b}L if and only if a = b. (2-1)

It is easy to see that if we want this property to hold, we need L =�(log2 p). The only provable upper
bound we have comes from the Weil bound [10] and is L = O(

√
p log p) which is exponential.

Our computational results, together with other statistical data on the distribution of Legendre se-
quences [3], indicate that on average over all sequences S of length L , there are p/2L

+ O(1) elements
whose Legendre sequences are equal to S. In other words, for a random S and a random j we have
{ j}L = S with probability 1/2L . A good estimate of L in terms of p is L = [2 log2 p].

2B. The Legendre pseudorandom function. In this section we define the Legendre pseudorandom func-
tion and its higher degree generalisation.

Definition 2.5 (Legendre PRF). The Legendre pseudorandom functions are functions Ok from Fp to
{−1, 1} indexed by k ∈ Fp and defined as

Ok(x)=
(

x + k
p

)
.

Definition 2.6 (higher degree Legendre PRF). The Legendre pseudorandom functions of degree r are a
family of functions O f from Fp to {−1, 1} indexed by f = kr xr

+ · · ·+ k1x + k0 ∈ Fp[x] and defined as

O f (x)=
(

f (x)
p

)
.

The degree r is assumed to be polylogarithmic in p.



270 NOVAK KALUÐEROVIĆ, THORSTEN KLEINJUNG, AND DUŠAN KOSTIĆ

Two oracles O f (x) and O f/kr (x) are the same up to multiplication by
(kr

p

)
and therefore we can assume

the polynomial f to be monic. The case of linear f (x) reduces to the standard Legendre PRF which we
thus from now on refer to as the linear Legendre PRF.

The polynomial f (x) is considered up to multiplication by a square since the Legendre symbol is
invariant under square factors of f (x). This is not entirely true as a square linear factor introduces a zero
and may change the output of the oracle at one point, but the reader should be convinced that this can be
safely ignored.

The secret key space, i.e., the space from which we choose f (x) is the space of monic polynomials
modulo squares. The number of such polynomials equals pr

− pr−1 for r > 1 (see [1], problem 3.3) and
p for r = 1.

Definition 2.7 (generalised Legendre sequence). The length L Legendre sequence of a polynomial f (x)
is denoted by { f }L and defined as

{ f }L :=
(

f (0)
p

)
,

(
f (1)

p

)
,

(
f (2)

p

)
, . . . ,

(
f (L − 1)

p

)
.

As a generalisation to Theorem 2.4 and property (2-1) we assume that L is such that { f }L uniquely
defines f , i.e., that

{ f }L = {g}L if and only if f = g. (2-2)

With r the degree of f we have L =�(r log p). We assume that property (2-2) holds for L =2(r log p).
A reasonable estimate is L = [2r log p]. Throughout the paper we include the dependence on L in the
complexity of our algorithms.

2C. Hard problems. There are three main problems conjectured to be hard, and on which the security
of the Legendre PRF is based.

Definition 2.8 (generalised Legendre symbol problem – GLSP). Let f be a uniformly random monic
square-free polynomial. Given access to an oracle O that on input x ∈ Fp computes O(x)=

( f (x)
p

)
, find f .

Definition 2.9 (decisional generalised Legendre symbol problem – DGLSP). Let f be a uniformly ran-
dom monic square-free polynomial. Let O0 be an oracle that on input x ∈ Fp computes O0(x)=

( f (x)
p

)
,

and let O1 be an oracle that on input x outputs a random value in {−1,+1}. Given access to Ob where
b is an unknown random bit, find b.

Definition 2.10 (next symbol problem – NSP). Given a Legendre sequence { f }M of M = polylog(p)
symbols, find

( f (M)
p

)
, or equivalently find { f }M+1.

It is easy to see that the GLSP and NSP are at least as hard as DGLSP. In the other direction, following
a theorem of Yao [11] on general pseudorandom functions, predicting the next bit of a pseudorandom
function is as hard as distinguishing it from a truly random one. Therefore NSP = DGLSP ≤ GLSP,
under polynomial time reductions.
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3. Group action on polynomials

Möbius transformations act naturally on rational functions of P1, changing the argument and preserving
their degrees. We show how this action can be exploited in order to connect oracles of monic polynomials
that are in the same orbit.

3A. Möbius transformations. Let M be the group of Fp-rational automorphisms of P1. It is known that
M is isomorphic to PGL2(Fp) and that this group has order p3

− p. The elements of M are Möbius
transformations. Given a matrix m =

(a
c

b
d

)
∈ PGL2(Fp) there is a unique Möbius transformation ϕm

given by

ϕm : P
1
→ P1, [x : y] 7→ [ax + by : cx + dy],

and function composition satisfies ϕm1 ◦ϕm2 = ϕm1m2 . We drop the notation of ϕm and only use m from
now on.

3B. Action of M on monic polynomials. The action of a Möbius transformation m =
(a

c
b
d

)
∈M on a

polynomial f is denoted by m · f = fm and defined as

m · f = fm(x) := f
(

ax + b
cx + d

)
(cx + d)r

f
(a

c

)
cr
. (3-1)

The corrective factors (cx + d)r and f
(a

c

)
cr are introduced in order to make fm a polynomial and to

make it monic correspondingly.
There is another way to look at this action — if α is a root of f then m−1(α) is a root of fm , where

m−1
=
( d
−c
−b
a

)
is the inverse of the Möbius transformation m. Thus, if f (x)=

∏r
i=1(x −αi ) then

fm(x)=
r∏

i=1

(x −m−1αi )=

r∏
i=1

(
x −

dαi − b
−cαi + a

)
. (3-2)

Therefore the group M of Möbius transformations has left (covariant) action on the roots of polynomials
in Fp[x] and right (contravariant) action on polynomials.

3C. Obtaining oracles of polynomials in the orbit. Suppose we are given access to O, the oracle of f .
Following (3-1) we can mimic the oracle of fm with(

fm(x)
p

)
=O

(
ax + b
cx + d

)(
cx + d

p

)r

O
(

a
c

)(
c
p

)r

.

Therefore we can obtain { fm}L by computing L + 1 Legendre symbols and querying the oracle L + 1
times. If c = 0 then O

(a
c

)( c
p

)r is substituted with
( a

p

)r. If cx + d = 0 for some x ∈ [0, L), then we
substitute O

(ax+b
cx+d

)( cx+d
p

)r
by
(ax+b

p

)r
.

3D. Polynomial types. We divide the key space into three sets based on reducibility of the polynomials
and the size of their orbit given by the action of M. The following lemma helps characterise these sets.
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Lemma 3.1. Let M= PGL2(Fp) and f ∈ Fp[x] be an irreducible polynomial of degree r with 3≤ r < p.
Then, the stabiliser of f is a cyclic group of order r ′ for some r ′ | r . Furthermore r ′ | p2

− 1.

Proof. Let Stab( f )= {m ∈M | f = fm} be the stabiliser of f , and let m ∈ Stab( f ). By property (3-2) the
roots of fm are m−1αi implying that m permutes the roots of f . Let Gal( f )= {Fi := x 7→ x pi

| i ∈ Z/r}
be the Galois group of f , and let α be any root of f . Then mα = Fi (α) for some i ∈ Z/r . Furthermore
m(F j (α))= F j (mα)= F j (Fi (α))= Fi (F j (α)) since m is rational and it commutes with the Frobenius.
Therefore each element of the stabiliser acts on the roots as an element of Gal( f ). This gives rise to a
homomorphism from Stab( f ) to Gal( f ) which is injective since two Möbius transformations with the
same action on a set of r ≥ 3 points have to be equal. Therefore Stab( f ) is a subgroup of Gal( f )∼= Z/r ,
so it is isomorphic to Z/r ′ for some r ′ | r . The stabiliser is naturally a subgroup of M, so its order divides
#M= p(p2

− 1). Since r ′ < p we have r ′ | p2
− 1. �

Definition 3.2. We call irreducible polynomials with a trivial stabiliser good, irreducible polynomials
with a stabiliser of size r ′ > 1 are called bad, and reducible polynomials are called ugly.

4. Algorithm

We give an algorithm for solving the generalised Legendre symbol problem. We start by querying the
oracle O(x) at all x ∈ Fp, and computing

(x
p

)
for all x ∈ Fp. These results are then saved in a table

and whenever we need an oracle query or a Legendre symbol we read them instead of computing an
expensive symbol or querying the oracle multiple times.

The general idea is to do a table-based collision search. We make a table containing { fm}L for some
m ∈M, and we try random g until {g}L = { fm}L for some m. This gives us f = gm−1 . The tables and
the trials differ for different polynomial types, so we give three separate algorithms for good, bad and
ugly polynomials. The comparisons with previous algorithms are given in Table 1.

4A. Good polynomials algorithm. We recall that f is good if it is an irreducible polynomial of degree
r ≥ 3 and the stabiliser of f is trivial.

4A1. Precomputation. In the precomputation stage we generate a table T containing { fm}L and a de-
scription of m for all Möbius transformations m as described in Section 3C. Since f is good, the table T
contains p3

− p different sequences.

4A2. Search. The search is done by trying random g(x) of degree r and computing {g}L until we find
a hit, which we expect to find after O(pr−3) trials. For each trial, g is evaluated at L points, and L
Legendre symbols are extracted, so the run time can be measured in the number of Legendre symbols
extracted, which is O(pr−3L).

4B. Bad polynomials algorithm. We recall that f is bad if it is an irreducible polynomial of degree
r ≥ 3 and the stabiliser of f is nontrivial. It follows from Lemma 3.1 that Stab( f ) is isomorphic to Z/r ′.
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4B1. Precomputation. We start by finding Stab( f ), the stabiliser of f . A straightforward way to find it
in O(p3) is by enumerating M and isolating the matrices that fix f . The Appendix describes a nontrivial
way to find it in O(p2 log r) steps.

Call m any generator of Stab( f ). The matrix m is rational so it has a Jordan canonical form of one of
the following three types: (

a 0
0 b

) (
λ 0
0 µ

) (
a 1
0 a

)
Type 1 Type 2 Type 3

where a, b ∈ Fp \ {0} and λ,µ ∈ Fp2 \ Fp are conjugates of each other. We can exclude Type 3 matrices
since they have order p, while m has order r ′ < p.

Let D be a diagonal matrix of order r ′ and P a change of basis matrix (these can be chosen uniquely
from a set of representatives given in the Appendix) such that

m = P D P−1.

Following from D · fP = (P D) · f = (m P) · f = P · fm = P · f = fP , the polynomial fP is stabilised
by D. Therefore fP satisfies fP

( r
s x
)( s

r

)r
= fP

( r
s x
)
= fP(x) where (r, s)= (a, b) or (λ, µ). This sets

the following constraints on the coefficients of fP :

fP(x)= xr
+ kr−1xr−1

+ · · ·+ k2x2
+ k1x + k0 = xr

+

r−1∑
i=0

ki x i ,

(D · fP)(x)= xr
+ kr−1

(
r
s

)r−1
xr−1
+ · · ·+ k1

(
r
s

)
x + k0 = xr

+

r−1∑
i=0

ki

(
r
s

)i
x i

from which it follows that

ki = ki

(
r
s

)i
for i = 0, 1, . . . , r − 1. (4-1)

Since r
s has order r ′ we have ki = 0 for all i that are not multiples of r ′.

We create a table T of size O(p) containing polynomials t in the orbit of f with tP satisfying (4-1).
The process differs for the two types of matrices so we treat them separately.

Type 1. When D is rational, P is rational too, so the polynomial fP is in the orbit of f . If C is a rational
diagonal matrix, C · fP is another polynomial in the orbit of f satisfying (4-1). The total number of such
polynomials is (p− 1)/r ′ since matrices C can be chosen up to stabiliser of fP which is 〈D〉. A set of
representatives is

C1 =

{(
gi 0
0 1

) ∣∣∣∣ g a generator of F∗p, 0≤ i <
p− 1

r ′

}
.

The table T contains {PC P−1
· f }L together with a description of C for all C in C1. It has (p− 1)/r ′

elements, and for all polynomials t in the table, tP satisfies (4-1).
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Type 2. When D is irrational, P is too, so fP is not in the orbit of f . There are additional constraints
on fP following from the rationality of m:

m = P
(
λ 0
0 µ

)
P−1
= m = P

(
λ 0
0 µ

)
P−1
= P

(
µ 0
0 λ

)
P−1.

Let AP := P−1 P. From the definition of AP and the above formulas it follows that

A−1
P = AP ,(

λ 0
0 µ

)
AP = AP

(
µ 0
0 λ

)
.

These constraints imply that AP =
( 0

1/α
α
0

)
for some α ∈ Fp2 . The action of AP is the same as the action

of
( 0

1
s
0

)
where s = αα ∈ Fp. Note that s can be computed and, up to choosing a different representative

for P, can be set to be equal to 1. We further have

AP · fP(x)= fP AP (x)= fP(x)= P · f (x)= P · f (x)= P · f (x)= fP(x),

which gives new constraints on the coefficients of fP(x):

fP(x)= xr
+ kr−1xr−1

+ · · ·+ k2x2
+ k1x + k0 = xr

+

r−1∑
i=0

ki x i ,

(AP · fP)(x)= xr
+

k1s
k0

xr−1
+ · · ·+

kr−1sr−1

k0
x +

sr

k0
= xr
+

r−1∑
i=0

kr−i sr−i

k0
x i .

This translates to

k p+1
0 = sr , kr−i=

k0ki

sr−i , k p−1
r/2 =

sr/2

k0
if r is even. (4-2)

The polynomial fP is not the only polynomial satisfying (4-1) and (4-2). Certainly (4-1) is satisfied
for every C · fP where C is a diagonal matrix. In order for C · fP to satisfy (4-2) we need AP · fPC = fPC ,
which implies

(C APC
−1
) · fP(x)= fP(x).

This condition, together with C being diagonal implies that C is contained in{(
c 0
0 c

) ∣∣∣∣ c ∈ F∗p2

}
.

Multiplying C on the right by a rational scalar matrix or by an element of Stab( fP) = 〈D〉 does not
change the polynomial C · fP . Therefore C can be chosen from a reduced set of representatives, for
example,

C2 =

{(
gi 0
0 g i

) ∣∣∣∣ g a generator of F∗p2 , 0≤ i <
p+ 1

r ′′

}
,

where (p+ 1)/r ′′ = gcd(p+ 1, (p2
− 1)/r ′), in other words r ′′ = r ′/(gcd(r ′, p− 1)). The choice of r ′′
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follows from the exponents of g being chosen modulo p + 1 (action of F∗p) and modulo (p2
− 1)/r ′

(action of r ′-th roots of unity).
The table T contains {PC P−1

· f }L together with a description of C for all C in C2 (note that PC P−1

is rational). It has (p+ 1)/r ′′ elements, and for all polynomials t in the table, tP satisfies (4-1) and (4-2).

4B2. Search. In the search phase we go over g(x)= xr
+
∑r/r ′−1

i=0 gi x i that satisfy (4-1) and compute
{gP−1}L until we find a hit in T. In that case, f = g(PC)−1 .

For Type 1, the coefficients gi are in Fp. The total number of polynomials g is pr/r ′ and we expect to
find a hit after O(pr/r ′−1r ′) trials.

For Type 2, the coefficients gi are in Fp2 and they satisfy (4-2). Therefore there are p+ 1 choices
for g0, the gi with 1≤ i < r/2 can be chosen freely, giving p2 choices each, and the g j for r/2< j are
constrained to one value for each choice of the previous coefficients. If r is even, gr/2 has p− 1 choices.
The total number of polynomials g is O(pr/r ′) and we expect to find a hit after O(pr/r ′−1r ′′) trials.

4C. Ugly polynomials algorithm. We recall that f is ugly if it is a reducible polynomial of degree r ≥ 3.
Write f (x)= l(x)h(x) where rh = deg(h(x))≥ r/2.

The Legendre symbol is multiplicative, and Möbius transformations are homomorphic with respect
to polynomial multiplication, so we have { fm}L = {lm}L{hm}L , where the multiplication is element-wise.
It follows that { fm}L{lm}L = {hm}L .

4C1. Precomputation. We create two tables, T1 containing { fm}L for all m ∈M, and T2 containing
sequences of all polynomials g(x) of degree r − rh (the candidates for lm(x)). The main table T is a
product of T1 and T2, i.e., a table of size O(pr−rh+3) containing { fm}L{g}L for all m ∈M and all g.

4C2. Search. The search phase consists of trying random polynomials t (x) of degree rh until we find
a hit in T. This gives {t}L = { fm}L{g}L , and implies that t (x) = hm(x), g(x) = lm(x), and finally
f (x)= gm−1(x)tm−1(x). We expect to find a solution in O(prh−3) trials.

The above description glosses over a number of minor details that one needs to be careful about. The
run time is actually prh divided by the size of the orbit of h(x).

If h is good, then its orbit is maximal and we are done.
If h is bad, we can test all bad h in time O(prh/r ′h L) for each r ′h | rh , so in total O(prh/2L). For

both Type 1 and Type 2 we can enumerate all polynomials h in time O(prh/r ′h−1r ′′h L) with r ′′h defined as
in Section 4B.

If h is ugly, we analyse two cases:

(1) h has an irreducible factor of degree at least 3: Suppose h = h1h2 of degrees r1 and r2. We select a
set of O(pr1−3) representatives for h1, multiply them with polynomials of degree r2 and search for
{h}L = {h1}L{h2}L in T, achieving an O(prh−3) run time.

(2) h has all factors of degree ≤ 2: There are three subcases to consider:

• h is divisible by a product of three linear polynomials. Then at least one hm is divisible by
x(x − 1)(x − 2), so we test for h = x(x − 1)(x − 2)h2 where h2 are of degree rh − 3.
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• h is divisible by a linear and quadratic polynomial. Then one of hm is divisible by x(x2
− u)

where u is a chosen nonsquare, so we test for h = x(x2
− u)h2 where h2 are of degree rh − 3.

• h is divisible by two quadratic polynomials. Then one of them can be considered to be x2
− u

where u is a nonsquare, and the other one has only 1 degree of freedom. We test for h =
(x2
− u)h1h2 where h1 is selected from O(p) quadratic polynomials and h2 is of degree rh − 4.

Therefore if f is ugly we can find it in O(prh−3) trials irrespective of the type of h.

good polynomials search precomputation memory

Khovratovich [8] pr−1r log p r log p r log p
Beullens et al. [2] pr−2r2 log2 p p2 p2

Our algorithm pr−3r log p p3r log p p3r log p

bad polynomials search precomputation memory

Khovratovich [8] pr−1r log p r log p r log p
Beullens et al. [2] pr−2r2 log2 p p2 pr−rh r log p
Our algorithm pr/r ′−1r ′′r log p p2r log p (p/r ′′)r log p

ugly polynomials search precomputation memory

Khovratovich [8] pr−1r log p r log p r log p
Beullens et al. [2] prh r log p pr−rh r log p pr−rh r log p
Our algorithm prh−3r log p pr−rh+3r log p pr−rh+3r log p

Table 1. Comparison of the best known algorithms for solving the degree r ≥ 3 Legendre PRF,
in big-O’s. The size of the stabiliser of f is denoted with r ′, and r ′′ = r ′ if r ′ | p − 1 and
r ′′ = r ′/ gcd(r ′, p− 1) otherwise. We denote with rh the degree of a factor of f which is at
least r/2. Complexity is given in the number of Legendre symbols computed/extracted. In all
cases we need p queries.

4D. Time-memory tradeoff for low degrees. The run time of the algorithm depends mainly on the search
stage. However for some low degree polynomials, the precomputation may take longer than the search
stage. In some cases a time-memory tradeoff allows us to reduce the complexity further.

4D1. Good polynomials. For r ≥ 6, the table-based collision search with an O(p3) table and O(pr−3)

trials is optimal. For 3≤ r ≤ 5, a tradeoff with an O(pr/2) table and O(pr/2) trials is better.

4D2. Bad polynomials. If r/r ′ − 1 < 2 then the bottleneck is the precomputation phase that takes
O(p2 log r) steps. This can happen when r ′ = r/c for c = 1, 2. Not much can be done to reduce
the precomputation cost since testing badness costs O(p2 log r). For r = 3 we can lower the attack
complexity to O(p1.5) with a table-based collision search for good polynomials.

4D3. Ugly polynomials. We test if f is ugly by trying to find it using the ugly polynomials algorithm
for each rh = dr/2e, . . . , r − 1. The precomputation cost is O(pr−rh+3) and the search cost is O(prh−3).

If r−rh+3> rh−3, i.e., rh < r/2+3, then we can do a tradeoff. Call ε := rh−r/2< 3. We compute
only the action of pε matrices on f , and after multiplying with the table T2 of pr−rh sequences, obtain



CRYPTANALYSIS OF THE GENERALISED LEGENDRE PSEUDORANDOM FUNCTION 277

a table of size pr/2. We expect to finish the search phase in O(prh−ε) = O(pr/2) if a collision exists.
Otherwise we assume that f does not have a factor of degree rh and move to rh + 1.

4E. Security recommendations. Following our argumentation, the most secure PRFs are the ones com-
ing from good polynomials. While we can test for irreducibility in polynomial time, the only way to
distinguish good and bad polynomials is by means of the O(p2 log r) algorithm from the Appendix. The
number of bad polynomials is small, and can be shown to be bounded from above by∑

r ′|gcd(r,p2
−1)

r ′>1

−µ(r ′)pr/r ′+1r ′ = O(pr/2+1r).

The easiest way to assure our secret polynomial is not bad is to choose p and r such that gcd(r, p2
−1)= 1.

4F. Degree r = 2. If r = 2 all polynomials are bad or ugly. There is a deterministic O(p) algorithm for
finding f in this case — we first precompute the action of

{( 1
0

a
1

) ∣∣ a ∈ Fp
}

on the polynomial f , which
ensures that the precomputed table contains the Legendre sequence of a polynomial of the form x2

− c:(
1 a
0 1

)
· (x2
− t x + n)= x2

− (t − 2a)x + (n+ a2
− ta).

Then we test all p such polynomials until we find f .

5. Limited query case and the linear Legendre PRF

In Section 4 we query the oracle at all elements of Fp and then extract up to p3
− p sequences. The

reader should be convinced that the same argumentation works with p− o(p/L) queries, as we still have
access to �(p3) sequences. When the secret polynomial is linear doing more than O(p1/2L) queries is
wasteful. Indeed creating a table with O(p1/2) sequences by doing L queries per sequence allows us to
find the secret polynomial after O(p1/2) trials. This is essentially the algorithm in [8], where the author
further provides a memoryless approach.

The main difference in the linear case with respect to the higher degree case is that we are allowed
M ≤
√

pL queries to the oracle. How many different group actions can we obtain from only M queries?
The same question can be asked in the higher degree case, and the algorithm we provide can be directly
applied in that scenario. One would expect a cubic increase, as with full access to the oracle, but this
seems to be out of reach.

5A. Linear shifts subgroup. Let G be the subgroup of M consisting only of linear Möbius transforma-
tions,

G =
{(

d i
0 1

) ∣∣∣∣ d ∈ F∗p, i ∈ Fp

}
6 PGL2(Fp).

An element (i, d) :=
( d

0
i
1

)
sends f (x) to fi,d(x). In order to extract { fi,d(x)}L from the oracle O of f ,
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we compute (
fi,d(x)

p

)
=O

(
dx + i
0x + 1

)(
0x + 1

p

)r(d
p

)r

=O(dx + i)
(

d
p

)r

for all x ∈ [0, L). If O is queried in [0,M), then we can extract all fi,d such that dx + i ∈ [0,M) for
all x ∈ [0, L). This creates the following constraints on i, d:{

d = 1, 2, . . . ,
⌊M−1

L−1

⌋
,

i = 0, 1, . . . ,M − 1− (L − 1)d,
or

{
d =−1,−2, . . . ,−

⌊M−1
L−1

⌋
,

i = (L − 1)(−d), . . . ,M − 1.

The total number of eligible (i, d) ∈ G is⌊M−1
L−1

⌋∑
d=1

2(M − (L − 1)d)=
M2

L − 1
−M + O(L)

with the constant in O(L) being at most 2.
The limited query algorithm works as follows:

5A1. Precomputation. Query O at [0,M). Extract O
(M2

L

)
Legendre sequences { fi,d}L and save them

in a table T together with descriptions of (i, d).

5A2. Search. The search is done by trying random polynomials until we find a hit in the table, which
is expected after O

( pr L
M2

)
trials, in particular O

( pL
M2

)
for the linear PRF.

5A3. Further improvements. The cost of the precomputation is M queries and O
(M2

L

)
sequence extrac-

tions. The cost of the search is O
( pL

M2

)
trials. A straightforward way to do a sequence extraction is to

read the presaved queries L times. Due to the nature of the sequences, this cost can be amortised to O(1)
per sequence. Doing a trial consists of evaluating the polynomial in L places and computing L Legendre
symbols. Again, this cost can be amortised to O(log L) per trial. These implementational improvements
are not within the scope of this paper, and they are explained in detail in [5].

5B. Algorithm comparison. The first algorithm by Khovratovich [8] computes sequences with on-the-
go queries, and directly computes Legendre symbols. The main benefit of this approach is that it is
memoryless. This was improved on in [2] by extracting sequences rather than querying/computing sym-
bols, and increasing the sequence yield to M2/L2. In our terminology, the authors of [2] use the same
group G but only elements (i, d) such that i < d, leading them to a table which is a factor of L smaller
with respect to ours. Using the full group G as in Section 5A comes with cheaper sequence extraction
in the precomputation stage, but more expensive sequence extraction in the search stage and thus the
log log p factor in Table 2. A more detailed analysis is given in [5].

5C. Experiments. A number of Ethereum research challenges [6] were posted for breaking the linear
Legendre PRF. In each challenge we are given a prime p of size varying from 64 to 148 bits, and M = 220

bits of the sequence {k}M as defined in Definition 2.3. The challenge is to recover the key k. Our results



CRYPTANALYSIS OF THE GENERALISED LEGENDRE PSEUDORANDOM FUNCTION 279

algorithm search precomputation memory optimal run time

Khovratovich [8] pt log2 p
M M log p

√
pt log p

Beullens et al. [2] p log2 p
M2 M2 M2

log p
√

p log p

our algorithm p log p log log p
M2

M2

log p M2
√

p log log p

Table 2. Comparison of the best known algorithms for the linear Legendre PRF challenge,
in big-O’s and 2(log p)-bit word operations. We denote with t the time to compute a
Legendre symbol.

are shown in Table 3. For each challenge, we were able to precompute a table with ∼ 234 sequences. The
most interesting is of course challenge #2 since it had not been solved before. The actual number of trials
performed in challenge #2 is 246.97

= 1.38e14 which is far less than expected. This can be explained by
large variance and by sheer luck. The two most difficult challenges (#3 and #4) are out of reach with the
proposed attack and its implementation. An in-depth explanation of the experiments is given in [5]. The
code and the keys of the first three challenges can be found at https://github.com/nKolja/LegendrePRF.

challenge prime expected observed expected observed
bit size # trials # trials core-hours core-hours

0 64 230 230.78 290 sec 490 sec
1 74 240 239.53 82 59
2 84 250 246.97 1.4e5 1.72e4
3 100 266 - 9.1e9 -
4 148 2114 - 2.5e24 -

Table 3. Results and estimates for solving the Legendre PRF challenges [6].

Appendix: Computing the stabiliser Stab( f ) of f

Let m ∈ Stab( f ) be a matrix of order r ′. Following the same argumentation from Section 4B there
exists a change of coordinate matrix P such that D = P−1m P is a diagonal matrix. We give a set of
representatives for matrices D and P such that for each m there is a single pair D, P in that set satisfying

m = P D P−1.

This property can be used to argue that we need only to find one mr of order pr for any prime divisor pr | r ′.
Given mr , an element mi of order pi

r is simply P D1/pi−1
r P−1, and an element mq of order qr for some

other divisor qr | r ′ is P Dq P−1 for the corresponding matrix Dq of order qr . Furthermore, an element
of order pr qr can be found by computing mu

r mv
q with upr + vqr = 1. Therefore in order to find the full

stabiliser group we need only to find one element of prime order. This is done by searching for elements
of order q in the stabiliser, for each prime q | r , so we assume that we know r ′.

The search for m is done by going through the conjugacy class of a matrix D of order r ′, until we find
a matrix that stabilises f . The conjugacy class has size 2(p2) so we expect to find m in p2 steps, but
we have to be careful and go through the whole class without repetitions.

https://github.com/nKolja/LegendrePRF
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The process is explained separately for Type 1 and Type 2 matrices.

Matrices of Type 1. If m is of Type 1 then for some P ∈ GL2(Fp),

m = P
(

a 0
0 b

)
P−1

with a, b ∈ Fp nonzero such that ξ := a/b has order r ′. Since m is defined up to scalar multiplication in F∗p,
we may suppose that a = ξ and b = 1, so D =

(
ξ
0

0
1

)
for some ξ primitive r ′-th root of unity in Fp. There

are in total ϕ(r ′) different ξ values to consider, however each one will give rise to a different generator
of the stabiliser of f , so the choice of ξ does not matter.

The search for m is done by enumerating P D P−1, where matrices P are chosen from GL2(Fp) up to
right multiplication by an element of Z(D)=

{(a
0

0
b

) ∣∣ ab 6= 0
}
, the centraliser of D. In total there are

p2
+ p elements in GL2(Fp)/Z(D). One set of representatives can be chosen to be{(

0 1
1 d

)
,

(
1 0
c 1

)
,

(
1 1
c d

) ∣∣∣∣ c, d ∈ Fp such that the determinants are nonzero
}
.

When r ′ = 2, so D =
(
−1
0

0
1

)
, the set of representatives is halved because

( 0
1

1
0

)
∈ Z(D) after projecting

on PGL2(Fp). In that case we give the following (p2
+ p)/2 representatives for the matrices P:{(

0 1
1 d

)
,

(
1 1
c d

) ∣∣∣∣ c < d ∈ Fp

}
where the ordering of elements of Fp is induced from the lift to {0, 1, . . . , p− 1}.

Matrices of Type 2. If m is of Type 2 then for some P ∈ GL2(Fp2),

m = P
(
λ 0
0 µ

)
P−1

where λ,µ ∈ Fp2 are conjugate roots of an irreducible second degree polynomial such that ξ := λ/µ is
a primitive r ′-th root of unity.

Lemma A.1. The diagonal matrix D defined above is unique in GL2(Fp2)/F∗p.

Proof. Since ξ = µ/µ= µp−1 we have ξ p+1
= 1. Due to the primitivity of ξ it follows that r ′ | p+ 1.

If ξ ∈ Fp then ξ 2
= 1 so ξ =−1 and r ′ = 2. In that case λ=−µ, so the minimal polynomial of λ is

x2
− c for some nonsquare c. Up to multiplying D by a constant in F∗p, we may suppose λ=

√
u for a

fixed nonsquare u, and therefore there is only one such matrix.
If ξ is not rational, then ξ = ξ p

= 1/ξ , so ξξ = 1. From λ= ξµ we have D =
(
ξµ
0

0
µ

)
. The determinant

and the trace of D are the same as those of m, so in particular they are rational. This means that

µ(ξ + 1) ∈ Fp, ξµ2
∈ Fp

from which it follows that µ= a/(ξ + 1) and λ= ξa/(ξ + 1) for some a ∈ Fp. For any choice of a, the
second condition follows from ξξ = 1. Multiplying λ and µ by any nonzero rational constant does not
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change the property of D being conjugate to m ∈ PGL2(Fp), to them being irrational conjugates of each
other or to their quotient being equal to ξ . Therefore we may suppose λ= ξ/(ξ+1) and µ= 1/(ξ+1). �

We start by computing a primitive root of unity ξ of order r ′, and set D as above. As before, the choice
of ξ does not matter.

The search for m follows by going through P D P−1 where the matrices P are chosen such that P D P−1

is rational and up to right multiplication by Z(D), the centraliser of D.

Rational P D P−1. If P D P−1 is rational we have P D P−1
= P D P

−1
, so

(P−1 P)
(
µ 0
0 λ

)
=

(
λ 0
0 µ

)
(P−1 P).

Define AP := P−1 P. The matrix AP satisfies A−1
P = AP , so it has to satisfy

AP =

(
0 α

1/α 0

)
for some nonzero α in Fp2 . From P = P AP we have some constraints on P:

P ∈
{(

q qα
r rα

) ∣∣∣∣ q, r ∈ Fp2, qr 6= 0, q p−1
6= r p−1

}
.

The centraliser Z(D). The matrix D is diagonal with different eigenvalues, so

Z(D)=
{(

x 0
0 y

) ∣∣∣∣ x, y ∈ Fp2, xy 6= 0
}
.

Multiplying a P on the right by an element of the centraliser gives(
q q α
r r α

)(
x 0
0 y

)
=

(
qx q α y
r x r α y

)
=

(
qx qx

(
αy
x

)
r x r x

(
αy
x

)
)
,

which sends (q, r) to (qx, r x) and α to α y/x , so we may assume that q = α = 1. A set of p2
− p

representatives for matrices P is {(
1 1
r r

) ∣∣∣∣ r ∈ Fp2 \ Fp

}
.

When r ′ = 2, so D =
(√u

0
0
−
√

u

)
for some rational nonsquare u, the set of representatives is halved

because
( 0

1
1
0

)
∈ Z(D) after projecting on GL2(F

2
p)/F

∗
p. In that case we give the following (p2

− p)/2
representatives for matrices P:{(

1 1
r r

) ∣∣∣∣ r = a
√

u+ b , 1≤ a ≤
p− 1

2
, 0≤ b < p

}
.
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