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Castryck, Decru, and Smith used superspecial genus-2 curves and their Richelot isogeny graph for basing
genus-2 isogeny cryptography, and recently, Costello and Smith devised an improved isogeny path-finding
algorithm in the genus-2 setting. In order to establish a firm ground for the cryptographic construction
and analysis, we give a new characterization of decomposed Richelot isogenies in terms of involutive
reduced automorphisms of genus-2 curves over a finite field, and explicitly count such decomposed (and
nondecomposed) Richelot isogenies between superspecial principally polarized abelian surfaces. As a
corollary, we give another algebraic geometric proof of Theorem 2 in the paper of Castryck et al.

1. Introduction

Isogenies of supersingular elliptic curves are widely studied as one candidate for postquantum cryptog-
raphy, e.g., [3; 5; 10; 2]. Recently, several authors have extended the cryptosystems to higher genus
isogenies, especially the genus-2 case [17; 6; 1; 4].

Castryck, Decru, and Smith [1] showed that superspecial genus-2 curves and their isogeny graphs give
a correct foundation for constructing genus-2 isogeny cryptography. The recent cryptanalysis by Costello
and Smith [4] employed the subgraph whose vertices consist of decomposed principally polarized abelian
varieties, hence it is important to study the subgraph in cryptography.

Castryck et al. also presented concrete algebraic formulas for computing (2, 2)-isogenies by using the
Richelot construction. In the genus-2 case, the isogenies may have decomposed principally polarized
abelian surfaces as codomain, and we call them decomposed isogenies. In [1], the authors gave explicit
formulas for the decomposed isogenies and a theorem stating that the number of decomposed Richelot
isogenies outgoing from the Jacobian J (C) of a superspecial curve C of genus 2 is at most six [1,
Theorem 2], but they do not precisely determine this number. Moreover, their proof is computer-aided,
that is, using the Gröbner basis computation.

Therefore, we revisit the isogeny counting based on an intrinsic algebraic geometric characteriza-
tion. In 1960, Igusa [9] classified the curves of genus 2 with given reduced groups of automorphisms,
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and in 1986, Ibukiyama, Katsura, and Oort [7] explicitly counted such superspecial curves according
to the classification. Based on the classical results, we first count the number of Richelot isogenies
from a superspecial Jacobian to decomposed surfaces (Cases (0)–(6) in Section 5) in terms of invo-
lutive (i.e., of order 2) reduced automorphisms which are called long elements. As a corollary, we
give an algebraic geometric proof of Theorem 2 in [1] together with a precise count of decomposed
Richelot isogenies (Remark 5.1). Moreover, by extending the method, we also count the total number
of (decomposed) Richelot isogenies up to isomorphism outgoing from irreducible superspecial curves
of genus 2 (resp. decomposed principally polarized superspecial abelian surfaces) in Theorem 6.2 (resp.
Theorem 6.4).

Our paper is organized as follows: Section 2 gives mathematical preliminaries including the Igusa
classification and the Ibukiyama–Katsura–Oort curve counting. Section 3 presents an abstract description
of Richelot isogenies and Section 4 gives the main characterization of decomposed Richelot isogenies
in terms of reduced groups of automorphisms. Section 5 counts the number of long elements of order 2
in reduced groups of automorphisms based on the results in Section 4. Section 6 gives the total numbers
of (decomposed) Richelot isogenies outgoing from the irreducible superspecial curves of genus 2 and
products of two elliptic curves, respectively. Section 7 gives some examples in small characteristic.
Finally, Section 8 gives a concluding remark.

We use the following notation: For an abelian surface A, A[n] denotes the group of n-torsion points
of A, At the dual of A, NS(A) the Néron–Severi group of A, and Tv the translation by an element v
of A. For a nonsingular projective variety X , D ∼ D′ (resp. D ≈ D′) denotes linear equivalence (resp.
numerical equivalence) for divisors D and D′ on X , and idX the identity morphism of X .

2. Preliminaries

Let k be an algebraically closed field of characteristic p > 5. An abelian surface A defined over k is said
to be superspecial if A is isomorphic to E1× E2 with Ei supersingular elliptic curves (i = 1, 2). Since
for any supersingular elliptic curves Ei (i = 1, 2, 3, 4) we have an isomorphism E1 × E2 ∼= E3 × E4

(see Shioda [15, Theorem 3.5], for instance), this notion does not depend on the choice of supersingular
elliptic curves. For a nonsingular projective curve C of genus 2, we denote by (J (C),C) the canonically
polarized Jacobian variety of C . The curve C is said to be superspecial if J (C) is superspecial as an
abelian surface. We denote by Aut(C) the group of automorphisms of C . Since C is hyperelliptic, C has
the hyperelliptic involution ι such that the quotient curve C/〈ι〉 is isomorphic to the projective line P1:

ψ : C→ P1.

There exist 6 ramification points on C . We denote them by Pi (1≤ i ≤ 6). Then, the Qi = ψ(Pi ) are the
branch points of ψ on P1. The group 〈ι〉 is a normal subgroup of Aut(C). We put RA(C)∼= Aut(C)/〈ι〉
and we call it the reduced group of automorphisms of C . We call an element of RA(C) a reduced
automorphism of C . For σ ∈ RA(C), σ̃ is an element of Aut(C) such that σ̃ mod 〈ι〉 = σ .
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Definition 2.1. An element σ ∈ RA(C) of order 2 is said to be long if σ̃ is of order 2. Otherwise, an
element σ ∈ RA(C) of order 2 is said to be short (see [12, Definition 7.15]).

This definition does not depend on the choice of σ̃ .

Lemma 2.2. If an element σ ∈ RA(C) of order 2 acts freely on 6 branch points, then σ is long.

Proof. By a suitable choice of coordinate x of A1
⊂ P1, taking 0 as a fixed point of σ , we may assume

σ(x)=−x , and Q1= 1, Q2=−1, Q3= a, Q4=−a, Q5= b, Q6=−b (a 6= 0,±1; b 6= 0,±1; a 6=±b).
Then, the curve is defined by

y2
= (x2

− 1)(x2
− a2)(x2

− b2),

and σ̃ is given by x 7→ −x, y 7→ ±y. Therefore, σ̃ is of order 2. �

Lemma 2.3. If RA(C) has an element σ of order 2, then there exists a long element τ ∈ RA(C) of
order 2.

Proof. If σ acts freely on 6 branch points, then by Lemma 2.2, σ itself is a long element of order 2. We
assume that the branch point Q1 = ψ(P1) is a fixed point of σ . Since σ is of order 2, it must have one
more fixed point among the branch points, say Q2 = ψ(P2). By a suitable choice of coordinate x of
A1
⊂ P1, we may assume Q1 = 0 and Q2 = ∞. We may also assume Q3 = 1. Then, σ is given by

x 7→ −x and the six branch points are 0, 1, −1, a, −a,∞ (a 6= ±1). The curve C is given by

y2
= x(x2

− 1)(x2
− a2) (a 6= 0,±1).

We consider an element τ ∈ Aut(P1) defined by x 7→ a/x . Then, we have an automorphisms τ̃ of C
defined by x 7→ a/x, y 7→ a

√
ay/x3. Therefore, we see τ ∈ RA(C). Since τ̃ is of order 2, τ is long. �

RA(C) acts on the projective line P1 as a subgroup of PGL2(k). The structure of RA(C) is classified
as follows (see [9, page 644] and [7, page 130]):

(0) 0, (1)Z/2Z, (2) S3, (3)Z/2Z×Z/2Z, (4) D12, (5) S4, (6)Z/5Z.

We denote by ni the number of superspecial curves of genus 2 whose reduced group of automorphisms
is isomorphic to the group (i). Then, the ni are given as follows (see [7, Theorem 3.3]):

(0) n0=
(p− 1)(p2

− 35p+ 346)
2880

−

{
1−

(
−1
p

)}
32

−

{
1−

(
−2
p

)}
8

−

{
1−

(
−3
p

)}
9

+

{
0 if p ≡ 1, 2 or 3 (mod 5),
−

1
5 if p ≡ 4 (mod 5).

(1) n1 =
(p− 1)(p− 17)

48
+

{
1−

(
−1
p

)}
8

+

{
1−

(
−2
p

)}
2

+

{
1−

(
−3
p

)}
2

.

(2) n2 =
(p− 1)

6
−

{
1−

(
−2
p

)}
2

−

{
1−

(
−3
p

)}
3

.

(3) n3 =
(p− 1)

8
−

{
1−

(
−1
p

)}
8

−

{
1−

(
−2
p

)}
4

−

{
1−

(
−3
p

)}
2

.

(4) n4 =

{
1−

(
−3
p

)}
2

.
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(5) n5 =

{
1−

(
−2
p

)}
2

.

(6) n6 =

{
0 if p ≡ 1, 2 or 3 (mod 5),
1 if p ≡ 4 (mod 5).

Here, for a prime number q and an integer a,
( a

q

)
is the Legendre symbol. The total number n of

superspecial curves of genus 2 is given by

n = n0+n1+n2+n3+n4+n5+n6

=
(p−1)(p2

+25p+166)
2880

−

{
1−

(
−1
p

)}
32

+

{
1−

(
−2
p

)}
8

+

{
1−

(
−3
p

)}
18

+

{
0 if p ≡ 1, 2 or 3 (mod 5),
4
5 if p ≡ 4 (mod 5).

For an abelian surface A, we have At
= Pic0(A) (Picard variety of A), and for a divisor D on A, there

exists a homomorphism
ϕD : A→ At

v 7→ T ∗v D− D.

If D is ample, then ϕD is surjective, i.e., an isogeny. We know (D · D)2 = 4 degϕD. We set K (D) =
KerϕD . If D is ample, then K (D) is finite and there is a nondegenerate alternating bilinear form eD(v,w)

on K (D) (see Mumford [14, Section 23]). Let G be an isotropic subgroup scheme of K (D) with respect
to eD(v,w). In case D is ample, G is finite and we have an isogeny

π : A→ A/G.

The following theorem is due to Mumford [14, Section 23, Theorem 2, Corollary]:

Theorem 2.4. Let G be an isotropic subgroup scheme of K (D). Then, there exists a divisor D′ on A/G
such that π∗D′ ∼ D.

Let n be a positive integer which is prime to p. Then, we have the Weil pairing en : A[n]× At
[n]→µn .

Here, µn is the multiplicative group of order n. By Mumford [14, Section 23 “Functorial properties of
eL (5)”], we have the following.

Lemma 2.5. For v ∈ A[n] and w ∈ ϕ−1
D (At

[n]), we have

en(v, ϕD(w))= enD(v,w).

If D is a principal polarization, the homomorphism ϕD : A→ At is an isomorphism. Therefore, by
this identification we can identify the pairing enD with the Weil pairing en .

3. Richelot isogenies

We recall the abstract description of Richelot isogenies. (For the concrete construction of Richelot iso-
genies, see Smith [16] or Castryck, Decru and Smith [1, Section 3], for instance.)
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Let A be an abelian surface with a principal polarization C . Then, we may assume that C is effective,
and we have the self-intersection number C2

= 2. It is easy to show (or as was shown by A. Weil) that
there are two cases for effective divisors with self-intersection 2 on an abelian surface A:

(1) There exists a nonsingular curve C of genus 2 such that A is isomorphic to the Jacobian variety
J (C) of C and that C is the divisor with self-intersection 2. In this case, (J (C),C) is said to be
nondecomposed.

(2) There exist two elliptic curves E1, E2 with (E1 ·E2)= 1 such that E1×{0}+{0}×E2 is a divisor with
self-intersection 2 and that A∼= E1× E2. In this case, (A, E1×{0}+ {0}× E2) is said to be decomposed.

Since ϕC is an isomorphism by the fact that C is a principal polarization, we have K (2C)=Kerϕ2C =

Ker 2ϕC = A[2]. Let G be a maximal isotropic subgroup of K (2C)= A[2] with respect to the pairing e2C .
Since we have |G|2 = |A[2]| = 24 (see Mumford [14, Section 23, Theorem 4]), we have |G| = 4 and
G ∼= Z/2Z×Z/2Z. We have a quotient homomorphism

π : A→ A/G.

By Theorem 2.4, there exists a divisor C ′ on A/G such that 2C ∼ π∗C ′. Since π is a finite morphism
and 2C is ample, we see that C ′ is also ample. We have the self-intersection number (2C · 2C)= 8, and
we have

8= (2C · 2C)= (π∗C ′ ·π∗C ′)= degπ(C ′ ·C ′)= 4(C ′ ·C ′).

Therefore, we have (C ′ ·C ′)= 2, that is, C ′ is a principal polarization on A/G. By the Riemann–Roch
theorem of an abelian surface for ample divisors, we have

dim H0(A/G,OA/G(C ′))= (C ′ ·C ′)/2= 1.

Therefore, we may assume C ′ is an effective divisor.
Using these facts, we see that C ′ is either a nonsingular curve of genus 2 or E1 ∪ E2 with elliptic

curves Ei (i = 1, 2) which intersect each other transversely. In this situation, the correspondence from
(A,C) to (A/G,C ′) is called a Richelot isogeny. We consider a triple (A,C,G) with maximal isotropic
subgroup G ⊂ A[2] with respect to the pairing e2C , and the corresponding Richelot isogeny π from
(A,C,G) to (A/G,C ′,G ′) with maximal isotropic subgroup G ′ = π(A[2]). Then, it is easy to see that
for the Richelot isogeny π ′ : (A/G,C ′)→ ((A/G)/G ′,C ′′), the principally polarized abelian surface
((A/G)/G ′,C ′′,G ′′) with maximal isotropic subgroup G ′′ = π ′((A/G)[2]) is isomorphic to the original
(A,C,G).

Now, we consider the case where A is a superspecial abelian surface. Then, since π is separable, A/G
is also a superspecial abelian surface. We will use this fact freely.

From here on, for abelian surface E1× E2 with elliptic curves Ei (i = 1, 2) we denote by E1+ E2 the
divisor E1×{0}+ {0}× E2, if no confusion occurs. We sometimes call E1× E2 a principally polarized
abelian surface. In this case, the principal polarization on E1× E2 is given by E1+ E2.
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Definition 3.1. Let (A,C), (A′,C ′) and (A′′,C ′′) be principally polarized abelian surfaces with principal
polarizations C , C ′, C ′′, respectively. The Richelot isogeny π : A→ A′ is said to be isomorphic to the
Richelot isogeny $ : A→ A′′ if there exist an automorphism σ ∈ A with σ ∗C ≈ C and an isomorphism
g : A′→ A′′ with g∗C ′′ ≈ C ′ such that the following diagram commutes:

A

π
��

σ
// A

$
��

A
′ g

// A
′′

4. Decomposed Richelot isogenies

In this section, we use the same notation as in Section 3.

Definition 4.1. Let A and A′ be abelian surfaces with principal polarizations C , C ′, respectively. A
Richelot isogeny A→ A′ is said to be decomposed if C ′ consists of two elliptic curves. Otherwise, the
Richelot isogeny is said to be nondecomposed.

Example 4.2. Let Ca,b be a nonsingular projective model of the curve of genus 2 defined by the equation

y2
= (x2

− 1)(x2
− a)(x2

− b) (a 6= 0, 1; b 6= 0, 1; a 6= b).

Let ι be the hyperelliptic involution defined by x 7→ x, y 7→ −y. RA(Ca,b) has an element of order 2
defined by

σ : x 7→ −x, y 7→ y.

We put τ = ι ◦ σ . We have two elliptic curves Eσ = Ca,b/〈σ 〉 and Eτ = Ca,b/〈τ 〉. The elliptic curve Eσ
is isomorphic to an elliptic curve Eλ : y2

= x(x − 1)(x − λ) with

λ= (b− a)/(1− a) (4-1)

and the elliptic curve Eτ is isomorphic to an elliptic curve Eµ : y2
= x(x − 1)(x −µ) with

µ= (b− a)/b(1− a). (4-2)

The map given by (4-1) and (4-2) yields a bijection

{(a, b) | a, b ∈ k; a 6= 0, 1; b 6= 0, 1; a 6= b, and J (Ca,b) is superspecial}

→ {(λ, µ) | λ,µ ∈ k; λ 6= µ; Eλ, Eµ are supersingular}

(for the details, see Katsura and Oort [13, page 259]). We have a natural morphism Ca,b→ Eσ × Eτ and
this morphism induces an isogeny

π : J (Ca,b)→ Eσ × Eτ .
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By [9, page 648], we know Kerπ ∼= Z/2Z × Z/2Z and Kerπ consists of P1 − σ(P1), P3 − σ(P3),
P5− σ(P5) and the zero point. Here, P1 = (1, 0), P3 = (a, 0), P5 = (b, 0). Since Pi − σ(Pi ) is a divisor
of order 2, we have Pi − σ(Pi )∼ σ(Pi )− Pi .

Comparing the calculation in [1, Proposition 1(2)] with the one in [13, Lemma 2.4], we see that
π : J (Ca,b)→ Eσ × Eτ is a decomposed Richelot isogeny with C ′a,b = Eσ + Eτ (also see [12, Proof of
Proposition 7.18 (iii)]). We will use the bijection above to calculate decomposed Richelot isogenies.

Proposition 4.3. Let C be a nonsingular projective curve of genus 2. Then, the following three conditions
are equivalent:

(i) C has a decomposed Richelot isogeny outgoing from J (C).

(ii) RA(C) has an element of order 2.

(iii) RA(C) has a long element of order 2.

Proof. (i)⇒ (ii). By assumption, we have a Richelot isogeny

π : J (C)→ J (C)/G (4-3)

such that G is an isotropic subgroup of J (C)[2] with respect to 2C , and that C ′ is a principal polarization
consisting of two elliptic curves Ei (i = 1, 2) on J (C)/G with 2C ∼ π∗(E1+ E2). Since C is a principal
polarization, we have an isomorphism ϕC : J (C) ∼= J (C)t . In a similar way, we have J (C)/G ∼=
(J (C)/G)t . Dualizing (4-3), we have

η = π t
: J (C)/G→ J (C)

with J (C)/G ∼= E1 × E2, C ′ = E1 + E2 and η∗(C) ∼ 2(E1 + E2). The kernel Ker η is an isotropic
subgroup of (E1× E2)[2] with respect to the divisor 2(E1+ E2).

Denoting by ιE1 the inversion of E1, we set

τ = ιE1 × idE2 .

Then, τ is an automorphism of order 2 which is not the inversion of E1× E2. By the definition, we have

τ ∗(E1+ E2)= E1+ E2.

Moreover, since Ker η consists of elements of order 2 and τ fixes the elements of order 2, τ preserves
Ker η. Therefore, τ induces an automorphism τ of J (C)∼= (J (C)/G)/Ker η∼= (E1× E2)/Ker η. There-
fore, we have the following diagram:

E1× E2

η

��

τ
// E1× E2

η

��

J (C) τ
// J (C)
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We have
η∗τ ∗C = τ ∗η∗C ∼ τ ∗(2(E1+ E2))= 2(E1+ E2).

On the other hand, we have
η∗C ∼ 2(E1+ E2).

Since η∗ is an injective homomorphism from NS(J (C)) to NS(E1× E2), we have C ≈ τ ∗C . Therefore,
τ ∗C −C is an element of Pic0(J (C))= J (C)t . Since C is ample, the homomorphism

ϕC : J (C)→ J (C)t

v 7→ T ∗v C −C

is surjective. Therefore, there exists an element v ∈ J (C) such that

T ∗v C −C ∼ τ ∗C −C,

that is, T ∗v C ∼ τ ∗C . Since T ∗v C is a principal polarization, we see

dim H0(J (C),OJ (C)(T ∗v C))= 1.

Therefore, we have T ∗v C = τ ∗C , that is, T ∗
−vτ
∗C =C . Since τ is of order 2, we have (τ ◦T−v)2= T−v−τ(v),

a translation. Therefore, we have T ∗
−v−τ(v)C = C . However, since C is a principal polarization, we have

KerϕC = {0}. Therefore, we have T−v−τ(v) = id. This means τ ◦ T−v is an automorphism of order 2 of C .
By definition, this is not the inversion ι. Hence, this gives an element of order 2 in RA(C).

(ii)⇒ (iii) This follows from Lemma 2.3.

(iii)⇒ (i) This follows from Lemma 2.2 and Example 4.2. �

Remark 4.4. In the proof of the proposition, the automorphism τ ◦ T−v really gives a long element of
order 2 in RA(C).

By [1, Section 3.3], if the curve C of genus 2 is obtained from a decomposed principally polarized
abelian surface by a Richelot isogeny, then the curve C has a long reduced automorphism of order 2.
As is well-known, for a curve C of genus 2, the Jacobian variety J (C) has 15 Richelot isogenies (see
[1, Section 3.2], for instance). If we have a Richelot isogeny (A,C)→ (A′,C ′), then we also have a
Richelot isogeny (A′,C ′)→ (A,C). Therefore, we have the following proposition.

Proposition 4.5. Let C be a nonsingular projective curve of genus 2. Among the 15 Richelot isoge-
nies outgoing from J (C), the number of decomposed Richelot isogenies is equal to the number of long
elements of order 2 in RA(C).

In this proposition, we consider that a different isotropic subgroup gives a different Richelot isogeny.
However, two different Richelot isogenies may be isomorphic to each other by a suitable automorphism
(see Definition 3.1). From the next section, we will compute the number of Richelot isogenies up to
isomorphism.
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5. The number of long elements of order 2

In this section, we count the number of long elements of order 2 in RA(C). For an element f ∈ RA(C),
we express the reduced automorphism by

f : x 7→ f (x)

with a suitable coordinate x of A1
⊂ P1. We will give the list of f (x) corresponding to elements of

order 2. Here, we denote by ω a primitive cube root of unity, by i a primitive fourth root of unity, and
by ζ a primitive sixth root of unity:

Case 0: RA(C)∼= {0}.

• There exist no long elements of order 2.

Case 1: RA(C)∼= Z/2Z.

• The curve C is given by y2
= (x2

− 1)(x2
− a2)(x2

− b2).

• There exists only one long element of order 2 given by f (x)=−x .

Case 2: RA(C)∼= S3.

• The curve C is given by y2
= (x3

− 1)(x3
− a3).

• There exist three long elements of order 2 given by f (x)= a/x , ωa/x , ω2a/x .

Case 3: RA(C)∼= Z/2Z×Z/2Z.

• The curve C is given by y2
= x(x2

− 1)(x2
− a2).

• There exist two long elements of order 2 given by f (x)= a/x , −a/x .

• There exists one short element of order 2 given by f (x)=−x .

Case 4: RA(C)∼= D12.

• The curve is given by y2
= x6
− 1.

• There exist four long elements of order 2 given by f (x)=−x , ζ/x , ζ 3/x , ζ 5/x .

• There exist three short elements of order 2 given by f (x)= 1/x , ζ 2/x , ζ 4/x .

Case 5: RA(C)∼= S4.

• The curve C is given by y2
= x(x4

− 1).

• There exist six long elements of order 2 given by f (x)=(x + 1)/(x − 1), −(x − 1)/(x + 1),
i(x + i)/(x − i), i/x , −i/x , −i(x − i)/(x + i).

• There exist three short elements of order 2 given by f (x)=−x , 1/x , −1/x .

Case 6: RA(C)∼= Z/5Z.

• The curve is given by y2
= x5
− 1.

• There exist no long elements of order 2.
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Remark 5.1. By Proposition 4.5 and the calculation above, we see that for a curve C of genus 2, the
number of outgoing decomposed Richelot isogenies from J (C) is at most six. This result coincides with
the one given in [1, Theorem 2].

6. Counting Richelot isogenies

6A. Richelot isogenies from Jacobians of irreducible genus-2 curves. Let C be a nonsingular pro-
jective curve of genus 2, and let J (C) be the Jacobian variety of C . For a fixed C , we consider the set
{(J (C),G)} of pairs of J (C) and an isotropic subgroup G for the polarization 2C . The group Aut(C) acts
on the ramification points of C→P1. Using this action, Aut(C) induces the action on the set {(J (C),G)}.
Since the inversion ι of C acts on J (C)[2] trivially, the reduced group RA(C) of automorphisms acts on
the set {(J (C),G)} which consists of 15 elements.

Let Pi (i = 1, 2, . . . , 6) be the ramification points of ψ : C→ P1. A division into the sets of 3 pairs
of these 6 points gives an isotropic subgroup G, that is,

{Pi1 − Pi2, Pi3 − Pi4, Pi5 − Pi6, the identity}

gives an isotropic subgroup of J (C)[2]. The action of RA(C) on the set {(J (C),G)} is given by the
action of RA(C) on the set

{〈(Pi1, Pi2), (Pi3, Pi4), (Pi5, Pi6)〉},

which contains 15 sets. Here, the pair (Pi , Pj ) is unordered. In this section, we count the number of
orbits of this action for each case.

Let C be a curve of genus 2 with RA(C)∼= Z/2Z. Such a curve is given by the equation

y2
= (x2

− 1)(x2
− a)(x2

− b)

with suitable conditions for a and b. The branch points Qi = ψ(Pi ) are given by

Q1 = 1, Q2 =−1, Q3 =
√

a, Q4 =−
√

a, Q5 =
√

b, Q6 =−
√

b.

The generator of the reduced group RA(C) of automorphisms is given by

σ : x 7→ −x .

Since the inversion ι acts trivially on the ramification points, RA(C) acts on the set of the ramification
points {P1, P2, P3, P4, P5, P6}, and the action of σ on the ramification points is given by

P2i−1 7→ P2i , P2i 7→ P2i−1 (i = 1, 2, 3).

The isotropic subgroup which corresponds to 〈(P1, P2), (P3, P4), (P5, P6)〉 gives a decomposed Richelot
isogeny and the other isotropic subgroups give nondecomposed isogenies. Moreover, 〈(σ (Pi1), σ (Pi2)),

(σ (Pi3), σ (Pi4)), (σ (Pi5), σ (Pi6))〉 gives the Richelot isogeny isomorphic to the one given by 〈(Pi1, Pi2),

(Pi3, Pi4), (Pi5, Pi6)〉. We denote Pi by i for the sake of simplicity. Then, the action σ is given by the
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permutation (1, 2)(3, 4)(5, 6), and by the action of RA(C), the set {〈(Pi1, Pi2), (Pi3, Pi4), (Pi5, Pi6)〉} of
15 elements is divided into the following 11 loci:

{[(1, 2), (3, 4), (5, 6)]}, {[(1, 2), (3, 5), (4, 6)]}, {[(1, 2), (3, 6), (4, 5)]},

{[(1, 3), (2, 4), (5, 6)]}, {[(1, 3), (2, 5), (4, 6)], [(1, 6), (2, 4), (3, 5)]},

{[(1, 3), (2, 6), (4, 5)], [(1, 5), (2, 4), (3, 6)]}, {[(1, 4), (2, 3), (5, 6)]},

{[(1, 4), (2, 5), (3, 6)], [(1, 6), (2, 3), (4, 5)]}, {[(1, 4), (2, 6), (3, 5)], [(1, 5), (2, 3), (4, 6)]},

{[(1, 5), (2, 6), (3, 4)]}, {[(1, 6), (2, 5), (3, 4)]}.

The reduced automorphism σ is a long one of order 2 and the element [(1, 2), (3, 4), (5, 6)] is fixed
by σ . Therefore, the element [(1, 2), (3, 4), (5, 6)] gives a decomposed isogeny. The other 10 loci give
nondecomposed isogenies. In the same way, we have the following proposition.

Proposition 6.1. Under the notation above, the number of Richelot isogenies up to isomorphism in each
case and the number of elements in each orbit are listed as follows. Here, in the list, for example,
(1× 6, 2× 4)(1× 1) means that there exist 6 orbits which contain 1 element and 4 orbits which contain
2 elements for nondecomposed Richelot isogenies, and there exists 1 orbit which contains 1 element for
decomposed Richelot isogenies:

(0) RA(C)∼= {0} 15 Richelot isogenies, no decomposed ones: (1× 15)(0).

(1) RA(C)∼= Z/2Z 11 Richelot isogenies, 1 decomposed one: (1× 6, 2× 4)(1× 1).

(2) RA(C)∼= S3 7 Richelot isogenies, 1 decomposed one: (1× 3, 3× 3)(3× 1).

(3) RA(C)∼= Z/2Z×Z/2Z 8 Richelot isogenies, 2 decomposed ones: (1× 1, 2× 4, 4× 1)(1× 2).

(4) RA(C)∼= D12 5 Richelot isogenies, 2 decomposed ones: (2× 1, 3× 1, 6× 1)(1× 1, 3× 1).

(5) RA(C)∼= S4 4 Richelot isogenies, 1 decomposed one: (1× 1, 4× 2)(6× 1).

(6) RA(C)∼= Z/5Z 3 Richelot isogenies, no decomposed ones: (5× 3)(0).

Theorem 6.2. The total number of Richelot isogenies up to isomorphism outgoing from the irreducible
superspecial curves of genus 2 is equal to

(p− 1)(p+ 2)(p+ 7)
192

−

3
{
1−

(
−1
p

)}
32

+

{
1−

(
−2
p

)}
8

.

The total number of decomposed Richelot isogenies up to isomorphism outgoing from the irreducible
superspecial curves of genus 2 is equal to

(p− 1)(p+ 3)
48

−

{
1−

(
−1
p

)}
8

+

{
1−

(
−3
p

)}
6

. (6-1)

Proof. The total number of Richelot isogenies up to isomorphism outgoing from the irreducible super-
special curves of genus 2 is equal to

15n0+ 11n1+ 7n2+ 8n3+ 5n4+ 4n5+ 3n6
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and the total number of decomposed Richelot isogenies up to isomorphism outgoing from the irreducible
superspecial curves of genus 2 is equal to

n1+ n2+ 2n3+ 2n4+ n5.

The results follow from these facts. �

6B. Richelot isogenies from elliptic curve products. Let E , E ′ be supersingular elliptic curves, and
we consider a decomposed principal polarization E + E ′ and a Richelot isogeny (E × E ′, E + E ′)→
(J (C),C). For a principally polarized abelian surface (E × E ′, E + E ′), we denote by Aut(E × E ′)
the group of automorphisms of E × E ′ which preserve the polarization E + E ′. Let {P1, P2, P3} (resp.
{P4, P5, P6}) be the 2-torsion points of E ′ (resp. E). Then, the six points Pi (1 ≤ i ≤ 6) on E ×
E ′ play the role of ramification points of irreducible curves of genus 2, and Aut(E × E ′) acts on the
set {P1, P2, P3, P4, P5, P6}. The subgroup 〈ιE × idE ′, idE ×ιE ′〉 acts on the set {P1, P2, P3, P4, P5, P6}

trivially. In this section, let E2 be the elliptic curve defined by y2
= x3
−x and E3 the elliptic curve defined

by y2
= x3
− 1. We know Aut E2 ∼= Z/4Z and Aut E3 ∼= Z/6Z. The elliptic curve E2 is supersingular

if and only if p ≡ 3 (mod 4) and E3 is supersingular if and only if p ≡ 2 (mod 3). In this section, the
abelian surface E × E ′ means an abelian surface E × E ′ with principal polarization E + E ′.

Now, let E , E ′ be supersingular elliptic curves which are neither isomorphic to E2 nor to E3. We
also assume E is not isomorphic to E ′. Using these notations, we have the following list of orders of the
groups of automorphisms:

|Aut(E × E ′)| = 4, |Aut(E × E)= 8, |Aut(E × E2)| = 8, |Aut(E × E3)| = 12,

|Aut(E2× E2)| = 32, |Aut(E3× E3)| = 72, |Aut(E2× E3)| = 24.

The isotropic subgroups for the polarization 2(E + E ′) are determined in [1, Section 3.3]. Using their
results and the same method as in Section 6A, we have the following proposition.

Proposition 6.3. Let E , E ′ be supersingular elliptic curves which are neither isomorphic to E2 nor to
E3 with E2 and E3 defined as above. We also assume that E is not isomorphic to E ′. The number of
Richelot isogenies up to isomorphism outgoing from a decomposed principally polarized superspecial
abelian surface in each case and the number of elements in each orbit are listed as follows. Here, in the
list, for example, (1× 3, 2× 1)(1× 4, 2× 3) means that there exist 3 orbits which contain 1 element and
1 orbit which contains 2 elements for nondecomposed Richelot isogenies, and there exist 4 orbits which
contain 1 element and 3 orbits which contain 2 elements for decomposed Richelot isogenies:

(i) E × E ′ 15 Richelot isogenies, 6 nondecomposed ones: (1× 6)(1× 9).

(ii) E × E 11 Richelot isogenies, 4 nondecomposed ones: (1× 3, 2× 1)(1× 4, 2× 3).

(iii) E × E2 9 Richelot isogenies, 3 nondecomposed ones (p ≡ 3 (mod 4)): (2× 3)(1× 3, 2× 3).

(iv) E × E3 5 Richelot isogenies, 2 nondecomposed ones (p ≡ 2 (mod 3)): (3× 2)(3× 3).

(v) E2× E2 5 Richelot isogenies, 1 nondecomposed one (p≡ 3 (mod 4)): (4×1)(1×1, 2×1, 4×2).
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(vi) E3× E3 3 Richelot isogenies, 1 nondecomposed one (p ≡ 2 (mod 3)): (3× 1)(3× 1, 9× 1).

(vii) E2× E3 3 Richelot isogenies, 1 nondecomposed one (p ≡ 11 (mod 12)): (6× 1)(3× 1, 6× 1).

Proof. We give a proof for the case (iv). For the other cases, the arguments are quite similar. Since the
elliptic curve E3 is defined by y2

= x3
− 1, the 2-torsion points (x, y) of E3 are given by P1 = (1, 0),

P2 = (ω, 0) and P3 = (ω
2, 0). Here, ω is a primitive cube root of unity. We denote by P4, P5 and P6

the 2-torsion points of E . We have an automorphism σ of order 3 of E3 defined by σ : x 7→ ωx, y 7→ y.
As in the case of Section 6A, we describe the isotropic subgroups G. We know that a division into
the sets of 3 pairs of these 6 points Pi (1 ≤ i ≤ 6) on E × E3 gives an isotropic subgroup G, that is,
{Pi1−Pi2, Pi3−Pi4, Pi5−Pi6, the identity} gives an isotropic subgroup of (E×E3)[2]. Here, we consider
Pi (1 ≤ i ≤ 3) as the point (0, Pi ) on E × E3, and Pi (4 ≤ i ≤ 6) as the point (Pi , 0) on E × E3. This
set contains 15 elements. In the case (iv), we have E 6∼= E3. Therefore, by [1, Section 3.3], among the
15 isotropic subgroups the 9 cases such that Pi1, Pi2, Pi3 ∈ E and Pi4, Pi5, Pi6 ∈ E3 give the decomposed
Richelot isogenies and the rest gives the nondecomposed Richelot isogenies. For the abbreviation, we
denote by Pi by i . Then, on the set {1, 2, 3, 4, 5, 6}, idE ×σ acts as the cyclic permutation (1, 2, 3). The
isotropic subgroup G is determined by the set of 3 pairs of 2-torsion points:

{(i1, i2), (i3, i4), (i5, i6)},

and the group Aut(E × E3) induces the action on the set of the 15 isotropic subgroups. Since the action
of the subgroup 〈ιE × idE3, idE ×ιE3〉 is trivial on the set of the 15 isotropic subgroups, we see that the
action is given by the group Aut(E × E3)/〈ιE × idE3, idE ×ιE3〉

∼= 〈idE ×σ 〉. By this action, the set of
the 15 isotropic subgroups is divided into the following 5 orbits:

{[(1, 2), (3, 4), (5, 6)], [(2, 3), (1, 4), (5, 6)], [(1, 3), (2, 4), (5, 6)]},

{[(1, 2), (3, 5), (4, 6)], [(2, 3), (1, 5), (4, 6)], [(1, 3), (2, 5), (4, 6)]},

{[(1, 2), (3, 6), (4, 5)], [(2, 3), (1, 6), (4, 5)], [(1, 3), (2, 6), (4, 5)]},

{[(1, 4), (2, 5), (3, 6)], [(1, 6), (2, 4), (3, 5)], [(1, 5), (2, 6), (3, 5)]},

{[(1, 4), (2, 6), (3, 5)], [(1, 5), (2, 4), (3, 6)], [(1, 6), (2, 5), (3, 4)]}.

By the criterion above, the first 3 sets correspond with the decomposed Richelot isogenies, and the last
2 sets correspond with the nondecomposed Richelot isogenies. �

We denote by h the number of supersingular elliptic curves defined over k. Then, we know

h =
p− 1

12
+

{
1−

(
−3
p

)}
3

+

{
1−

(
−1
p

)}
4

(see Igusa [8], for instance). We denote by h1 the number of supersingular elliptic curves E with
Aut(E)∼= Z/2Z, h2 the number of supersingular elliptic curves E2 with Aut(E2)∼= Z/4Z, h3 the number
of supersingular elliptic curves E3 with Aut(E3)∼=Z/6Z. We have h=h1+h2+h3 and h2=

{
1−
(
−1
p

)}
/2

and h3 =
{
1−

(
−3
p

)}
/2.
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Theorem 6.4. The total number of nondecomposed Richelot isogenies up to isomorphism outgoing from
decomposed principally polarized superspecial abelian surfaces is equal to

(p− 1)(p+ 3)
48

−

{
1−

(
−1
p

)}
8

+

{
1−

(
−3
p

)}
6

. (6-2)

The total number of decomposed Richelot isogenies up to isomorphism outgoing from decomposed prin-
cipally polarized superspecial abelian surfaces is equal to

(p− 1)(3p+ 17)
96

+

(p+ 6)
{
1−

(
−1
p

)}
16

+

{
1−

(
−3
p

)}
3

.

Proof. The total number of nondecomposed Richelot isogenies up to isomorphism outgoing from decom-
posed principally polarized superspecial abelian surfaces is equal to

6
{

h1(h1− 1)
2

}
+ 4h1+ 3h2h1+ 2h3h1+ h2+ h3+ h2h3.

The total number of decomposed Richelot isogenies up to isomorphism outgoing from decomposed
principally polarized superspecial abelian surfaces is equal to

9
{

h1(h1− 1)
2

}
+ 7h1+ 6h2h1+ 3h3h1+ 4h2+ 2h3+ 2h2h3.

Since
{
1−

(
−1
p

)}2
= 2

{
1−

(
−1
p

)}
and

{
1−

(
−3
p

)}2
= 2

{
1−

(
−3
p

)}
, the result follows from these facts. �

Remark 6.5. Since the total number of decomposed Richelot isogenies up to isomorphism outgoing
from the irreducible superspecial curves of genus 2 is equal to the total number of nondecomposed
Richelot isogenies up to isomorphism outgoing from decomposed principally polarized superspecial
abelian surfaces, (6-1) and (6-2) give the same number.

7. Examples

By [7, Section 1.3], we have the following normal forms of curves C of genus 2 with given reduced
group RA(C) of automorphisms:

(1) For S3 ⊂ RA(C), the normal form is y2
= (x3

− 1)(x3
−α). This curve is superspecial if and only

if α is a zero of the polynomial

g(z)=
[p/3]∑
l=0

(
(p−1)/2

((p+1)/6)+l

)(
(p−1)/2

l

)
zl .

(2) For Z/2Z×Z/2Z⊂ RA(C), the normal form is y2
= x(x2

− 1)(x2
−β). This curve is superspecial

if and only if β is a zero of the polynomial

h(z)=
[p/4]∑
l=0

(
(p−1)/2

((p+1)/4)+l

)(
(p−1)/2

l

)
zl .
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(3) For RA(C) ∼= D12, the normal form is y2
= x6

− 1. This curve is superspecial if and only if
p ≡ 5 (mod 6) (see [7, Proposition 1.11]).

(4) For RA(C) ∼= S4, the normal form is y2
= x(x4

− 1). This is superspecial if and only if p ≡
5 or 7 (mod 8) (see [7, Proposition 1.12]).

Finally, the elliptic curve E defined by y2
= x(x − 1)(x − λ) is supersingular if and only if λ is a zero

of the Legendre polynomial

8(z)=
(p−1)/2∑

l=0

(
(p−1)/2

l

)2
zl .

Using these results, we construct some examples.

7A. Examples in characteristic 13. Assume the characteristic is p = 13. Over k we have only one
supersingular elliptic curve E , and three superspecial curves C1, C2 and C3 of genus 2 with RA(C1)∼= S3,
RA(C2) ∼= Z/2Z× Z/2Z and RA(C3) = S4, respectively (see [7, Remark 3.4]). In characteristic 13,
we know h(z) = 7z3

+ 12z2
+ 12z + 7, and the zeros are −1 and −5±

√
6. We also know g(z) =

2z4
+ 3z3

+ 4z2
+ 3z + 2, and one of the zeros is −4+

√
2. The Legendre polynomial is given by

8(z)= z6
+ 10z5

+ 4z4
+ 10z3

+ 4z2
+ 10z+ 1, and one of the zeros is 3− 2

√
2. Using these facts, we

know that the curves above are given by the following equations:

(1) E : y2
= x(x − 1)(x − 3+ 2

√
2) (RA(E)= Aut(E)/〈ιE 〉 ∼= {0}).

(2) C1: y2
= (x3

− 1)(x3
+ 4−

√
2) (RA(C1)∼= S3).

(3) C2: y2
= x(x2

− 1)(x2
+ 5+ 2

√
6) (RA(C2)∼= Z/2Z×Z/2Z).

(4) C3: y2
= x(x4

− 1) (RA(C3)∼= S4).

C3

C1

C2

E×E

4
1

3

2

3

2

3

2

6

1

1
11

1

2

2
2

11
1

1

1

4

1

1 3
4

1 2

2

Therefore, outgoing from superspecial curves of genus 2,
we have, in total, 1+ 2+ 1 = 4 decomposed Richelot
isogenies up to isomorphism by Proposition 6.1. On
the other hand, outgoing from the unique decomposed
principally polarized abelian surface (E × E, E + E), we
have 5 nondecomposed Richelot isogenies (not up to iso-
morphism) (see [8] and [1, Figure 1]). Using the method in
[1, Section 3.3], as the images of 5 nondecomposed Richelot
isogenies, we have the following superspecial curves of genus 2:

(a) Ca: y2
= (x2

− 1)(x2
− 4+ 7

√
2)(x2

− 6+ 6
√

2) (RA (Ca)∼= Z/2Z×Z/2Z).

(b) Cb: y2
= (x2

− 1)(x2
+ 3− 2

√
2)(x2

− 4−
√

2) (RA (Cb)∼= S4).

(c) Cc: y2
= (x2

− 1)(x2
+ 3− 4

√
2)(x2

+ 1+ 3
√

2) (RA (Cc)∼= S3).

(d) Cd : y2
= (x2

− 1)(x2
− 3)(x2

+ 3− 4
√

2) (RA (Cd)∼= S3).

(e) Ce: y2
= (x2

− 1)(x2
− 6− 6

√
2)(x2

− 2+ 2
√

2) (RA (Ce)∼= Z/2Z×Z/2Z).
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We see that Ca ∼= Ce ∼= C2, Cc ∼= Cd ∼= C1 and Cb ∼= C3. As Richelot isogenies, (E × E, E + E)→
(J (Cc),Cc) is isomorphic to (E× E, E+ E)→ (J (Cd),Cd), but (E× E, E+ E)→ (J (Ca),Ca) is not
isomorphic to (E × E, E + E)→ (J (Ce),Ce). Compare our graph with Figure 1 of [1]. In the graph
the numbers along the edges are the multiplicities of Richelot isogenies outgoing from the nodes.

7B. Examples in characteristic 11. Assume the characteristic is p= 11. Over k we have two supersingu-
lar elliptic curves E2,E3 and two superspecial curves C1, C2 of genus 2 with RA(C1)∼= S3, RA(C2)∼= D12,
respectively (see [7, Remark 3.4]). In characteristic 11, we know

g(z)= 10(z3
+ 5z2

+ 5z+ 1),

and the roots are −1, 3 and 4. Using this fact, we
know that the curves above are given by the follow-
ing equations:

(1) E2: y2
= x3
− x (RA(E2)∼= Z/2Z).

(2) E3: y2
= x3
− 1 (RA(E3)∼= Z/3Z).

(3) C1: y2
= (x3

− 1)(x3
− 3) (RA(C1)∼= S3).

(4) C2: y2
= x6
− 1 (RA(C2)∼= D12).

C1 C2

E2×E2 E3×E3 E2×E3

1 2
3 6

3

4

3

3

13

6

4
9

4 3

3
3

1

1
1

2

3

6

We have three decomposed principally polarized abelian surfaces: E2× E2, E3× E3, E2× E3. There-
fore, from the superspecial curves of genus 2 we have, in total, 1+ 2= 3 decomposed Richelot isogenies
up to isomorphism by Proposition 6.1. On the other hand, from the decomposed principally polarized
abelian surfaces, we have 1 + 1 + 1 = 3 nondecomposed Richelot isogenies up to isomorphism by
Proposition 6.3. For the decomposed principally polarized abelian surface E2× E2 the image of the only
one nondecomposed Richelot isogeny is given by C2. For the decomposed principally polarized abelian
surface E3× E3 the image of the only one nondecomposed Richelot isogeny is also given by C2. For the
decomposed principally polarized abelian surface E2× E3 the image of the only one nondecomposed
Richelot isogeny is given by C1. See also Jordan and Zaytman [11, Section 5.1].

C

E2×E2

6

4

4

1 4

1
24

4

7C. Examples in characteristic 7. Assume the characteristic is p = 7. Over k we
have only one supersingular elliptic curve E2 and only one superspecial curves C
of genus 2, which has RA(C) ∼= S4 (see [7, Remark 3.4]). They are given by the
following equations:

(1) E2: y2
= x3
− x (RA(E2)∼= Z/2Z).

(2) C : y2
= x(x4

− 1) (RA(C)∼= S4).

We have only one decomposed principally polarized abelian surface E2 × E2.

Therefore, outgoing from the superspecial curves of genus 2 we have only one de-
composed Richelot isogeny up to isomorphism. From the decomposed principally
polarized abelian surface, we also have only one nondecomposed Richelot isogeny up to isomorphism
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(see [1, Sections 3.2 and 3.3]). For the decomposed principally polarized abelian surface E2× E2 the
image of the only one nondecomposed Richelot isogeny is given by C .

8. Concluding remark

Our results answered a question about the number of decomposed Richelot isogenies and improved our
understanding of the isogeny graph for genus-2 isogeny cryptography. Further applications (or implica-
tions) of our results to cryptography are left as an open problem.

For example, a very recent cryptanalytic algorithm by Costello and Smith [4] is considered as an
interesting target. They reduced the isogeny path-finding algorithm in the superspecial Richelot isogeny
graph to the elliptic curve path-finding problem, thus improving the complexity. A key ingredient of
the reduction is a subalgorithm for finding a path connecting a given irreducible genus-2 curve and the
(connected) subgraph consisting of elliptic curve products.

Proposition 4.3 showed the equivalence of existence of a decomposed Richelot isogeny outgoing from
J (C) and that of a (long) element of order 2 in the reduced group of automorphisms of C . It implies
that the subgraph of elliptic curve products are adjacent to genus-2 curves having involutive reduced
automorphisms in the superspecial graph. We hope that this new characterization can be applied to
analyzing and/or improving the Costello–Smith attack.
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