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A Howe curve is a curve of genus 4 obtained as the fiber product of two genus-1 double covers of P1.
We present a simple algorithm for testing isomorphism of Howe curves, and we propose two main
algorithms for finding and enumerating superspecial Howe curves: One involves solving multivariate
systems coming from Cartier–Manin matrices, while the other uses Richelot isogenies of curves of
genus 2. Comparing the two algorithms by implementation and by complexity analyses, we conclude
that the latter enumerates superspecial Howe curves more efficiently. Using these algorithms, we show
that there exist superspecial curves of genus 4 in characteristic p for every prime p with 7< p < 20000.

1. Introduction

1A. Background and motivation. Let K be an algebraically closed field of characteristic p > 0. A
nonsingular curve over K is called superspecial (resp. supersingular) if its Jacobian variety is isomor-
phic (resp. isogenous) to a product of supersingular elliptic curves. Superspecial curves are not only
theoretically interesting in algebraic geometry and number theory but also have many applications in
coding theory, cryptology, and so on, because they tend to have many rational points and their Jacobian
varieties have large endomorphism rings. However, it is not always easy to find such curves, and there are
only finitely many superspecial curves for a given genus and characteristic. One method of constructing
superspecial curves is to consider fiber products of superspecial curves of lower genera. In this paper, we
demonstrate that this method can be efficient by considering the simplest example in which the genus is
at least 4: the case of Howe curves. A Howe curve (so named by Kudo, Harashita and Senda in [23]) is
a curve of genus 4 obtained as the fiber product of two genus-1 double covers E1→ P1 and E2→ P1.
In [11], Howe studied these curves in order to quickly construct genus-4 curves with many rational points.

1B. Related works. The reason that we consider the case of genus g ≥ 4 is that the enumeration of the
isomorphism classes of superspecial curves with g ≤ 3 has already been done, by Deuring [4] for g = 1,
by Ibukiyama, Katsura, and Oort [14] for g = 2, and by Brock [3] for g = 3; see also Ibukiyama [13]
and Oort [25] for the existence of such curves for g = 3. In contrast to the case g ≤ 3, the existence or
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nonexistence of a superspecial curve of genus 4 in general characteristic is an open problem, although
some results for specific small p are known; see [5, Theorem 1.1] for the nonexistence for p ≤ 3 and
[22, Theorem B] for the nonexistence for p = 7. As for enumeration, computational approaches have
been proposed recently in [21], [22], and [20] in the case of genus 4. The main strategy common to
these papers is to parametrize a family of curves (canonical curves in the first two papers, hyperelliptic
curves in the third), and then to find the superspecial curves X in these families by computing the zeros
of a multivariate system derived from the condition that the Cartier–Manin matrix of X is zero. With
computer algebra techniques such as Gröbner bases, the authors of these papers enumerated superspecial
canonical curves for p ≤ 11 in [21] and [22] and superspecial hyperelliptic curves for p ≤ 23 in [20].
However, results for larger p have not been obtained yet due to the cost of solving multivariate systems,
and no complexity analysis is given in [21], [22], or [20].

Now we turn our attention to Howe curves. Recently, it was proven in [23] that there exists a supersin-
gular Howe curve in every positive characteristic. In particular, the authors of [23] reduce the existence
of such a curve to the existence of a zero of a certain multivariate system, as follows: They study a
family of Howe curves realized as E1 : z2

= f1(x) and E2 : w
2
= f2(x) for cubic polynomials f1 and f2

parametrized by elements (λ : µ : ν) of P2. Let C be the genus-2 curve y2
= f1 f2. The supersingularity

of H is equivalent to that of E1, E2 and C , because there exists an isogeny of 2-power degree from the
Jacobian J (H) to E1×E2× J (C) [11, Theorem 2.1]. Thus, once supersingular isomorphism classes of E1

and E2 are given, finding supersingular curves H is reduced to finding values of the parameter (λ : µ : ν)
that satisfy a multivariate system derived from the supersingularity of C . The authors of [23] deduced
the existence of such a zero (λ : µ : ν) from various algebraic properties of the defining polynomials of
the system.

The above reduction is applicable also for the superspecial case, but the method used in [23] to prove
the existence of solutions does not carry over well. For this reason, the superspecial case is still open,
and we are left to ask: For which primes p > 7 are there superspecial Howe curves in characteristic p?

1C. Our contribution. We study the existence of superspecial Howe curves by creating efficient algo-
rithms to produce and enumerate them. The following theorems summarize some of what we have
found.

Theorem 1.1. For every prime p with 7< p < 20000 or with p ≡ 5 mod 6, there exists a superspecial
Howe curve in characteristic p.

Theorem 1.2. For every prime p with 7< p ≤ 199, the number of isomorphism classes of superspecial
Howe curves in characteristic p is given in Table 1.

The upper bounds on p in these two theorems can easily be increased. For example, on a 2.8 GHz quad-
core Intel Core i7 with 16GB RAM, computing the 8351 superspecial Howe curves in characteristic 199
using method (B) below took 124 seconds in Magma. Finding examples of superspecial Howe curves
for every p between 7 and 20000 took 680 minutes on the same machine.
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p n(p) ratio p n(p) ratio p n(p) ratio

11 4 3.462 67 260 0.996 137 2430 1.089
13 3 1.573 71 742 2.388 139 2447 1.050
17 10 2.345 73 316 0.936 149 3082 1.073
19 4 0.672 79 595 1.390 151 3553 1.189
23 33 3.125 83 655 1.320 157 3427 1.020
29 45 2.126 89 863 1.410 163 3518 0.936
31 59 2.281 97 802 1.012 167 6268 1.550
37 41 0.932 101 1207 1.350 173 4780 1.064
41 105 1.755 103 1151 1.213 179 5771 1.159
43 79 1.145 107 1237 1.163 181 5419 1.053
47 235 2.608 109 1193 1.061 191 9610 1.589
53 167 1.292 113 1323 1.056 193 6298 1.009
59 259 1.453 127 2013 1.132 197 6839 1.030
61 243 1.233 131 2606 1.335 199 8351 1.221

Table 1. For each prime p from 11 to 199, we give the number n(p) of superspecial Howe curves
over Fp and the ratio of n(p) to the heuristic prediction p3/1152 (see Section 5).

In this paper we discuss two strategies, (A) and (B) below, to find superspecial Howe curves. We also
show how isomorphisms between Howe curves can be easily detected from the data that defines them,
in (C).

(A) (E1, E2)-first, using Cartier–Manin matrices. In this strategy, we use the same realization of Howe
curves as in [23], that is, the fiber product of

E1 : z2 y = x3
+ A1µ

2xy2
+ B1µ

3 y3 and E2 : w
2 y = (x − λ)3+ A2µ

2(x − λ)y2
+ B2µ

3 y3

over P1
= Proj K [x, y]. We enumerate pairs (E1, E2) of supersingular elliptic curves so that C is

superspecial. We first discuss the field of definition of superspecial Howe curves (see Proposition 4.1),
which enables us to reduce the size of our search space drastically. Specifically, the coordinates A1, B1,
A2, B2, λ, µ, ν belong to Fp2 , whereas in the supersingular case [23] these coordinates can generate
larger subfields of Fp. For the test of superspeciality, we use the criterion that the Cartier–Manin matrix
of C must be zero [14, Lemma 1.1(i)]. This reduces the enumeration problem to solving a system of
algebraic equations. See Section 4 for the details of this strategy, including a complexity analysis.

(B) C-first, using Richelot isogenies. The second strategy first enumerates superspecial curves C :
y2
= f (x) of genus 2 with f (x) of degree 6 and then enumerates decompositions f (x) = f1(x) f2(x)

with fi (x) of degree 3 so that there is a b that makes both curves Ei : y2
= (x−b) fi (x) supersingular. The

moduli space of curves of genus 2 is of dimension 3. As this dimension is bigger than the space of (λ :
µ : ν) ∈ P2 considered in (A), this strategy, a priori, looks inefficient. But, surprisingly, we conclude that
strategy (B) enumerates superspecial Howe curves much more efficiently than does (A). The advantage
of (B) comes from making use of Richelot isogenies. Specifically, we construct some superspecial
curves of genus 2 by gluing supersingular elliptic curves together along their 2-torsion [12, §3], and then
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produce more such curves by applying Richelot isogenies to the curves already produced. This procedure
terminates because there are only finitely many superspecial curves of genus 2, and a recent result of
Jordan and Zaytman [16, Corollary 18] shows that we obtain all isomorphism classes of superspecial
curves of genus 2 in this way.1

(C) A new isomorphism test for Howe curves. Strategy (A) above produces many not-necessarily-
distinct Howe curves, so to prevent overcounting we are left with the task of producing a unique represen-
tative for each isomorphism class. As every Howe curve is canonical (see Lemma 2.1), one may check
whether two Howe curves are isomorphic by using the isomorphism test for canonical curves given in
[22, §6.1], whose implementation is found in [21, §4.3]. This turns out to be very costly, because it uses
many Gröbner basis computations. Our Corollary 3.3 gives a much simpler isomorphism test, based on
the observation that a Howe curve is completely determined (up to isomorphism) by the degree-2 map
to a genus-2 curve it is provided with by virtue of its definition as a fiber product. This isomorphism test
is added on as a separate step in strategy (A), but is baked into the algorithm we use for strategy (B).

2. Howe curves and their superspeciality

In this section, we recall the definition of Howe curves, show that they are canonical, and give a compu-
tational criterion for their superspeciality.

Let K be an algebraically closed field of characteristic p 6= 2. A Howe curve over K is a curve which
is isomorphic to the desingularization of the fiber product E1 ×P1 E2 of two genus-1 double covers
Ei → P1 ramified over Si , where each Si consists of four points and where |S1 ∩ S2| = 1.

Given a Howe curve, there is an automorphism of P1 that takes the common ramification point of
the two genus-1 double covers to infinity. Then the curves Ei can be written w2

= f1 and z2
= f2 for

separable monic cubic polynomials fi ∈ K [x] that are coprime to one another, where x generates the
function field of P1.

Lemma 2.1. Every Howe curve is a canonical curve of genus 4.

Proof. Let H be a Howe curve, normalized as above so that it is given as the fiber product of w2
= f1 and

z2
= f2 for coprime separable monic cubic polynomials f1 and f2. For each i , let f (h)i =y3 fi (x/y)∈K [x, y]

be the homogenous cubic obtained from fi and let H ′ be the curve defined in P3
= Proj K [x, y, z, w] by

z2
−w2

= q(x, y), z2 y= f (h)1 (x, y),

where q(x, y) is the quadratic form

q(x, y)= ( f (h)1 (x, y)− f (h)2 (x, y))/y.

Note that H ′ and E1×P1 E2 are isomorphic if the locus y = 0 is excluded. It is straightforward to see
that H ′ is nonsingular, since f1 and f2 are separable and are coprime. Hence H and H ′ are isomorphic
to one another (see [26, Proposition II.2.1]).

1 As this paper was in press, Jordan and Zaytman updated their preprint to indicate that an equivalent result was proven
earlier by Ekedahl and Oort.
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It is well known that any nonsingular curve defined by a quadratic form and a cubic form in P3 is a
canonical curve of genus 4 [7, Example IV.5.2.2]. �

To study the superspeciality of Howe curves, we first look at the decomposition of their Jacobians.
Let f1 and f2 be coprime separable monic cubic polynomials, as above. Let f = f1 f2 and consider the
hyperelliptic curve C of genus 2 defined by u2

= f . By [11, Theorem 2.1], there exist two isogenies

ϕ : J (H)→ E1× E2× J (C),

ψ : E1× E2× J (C)→ J (H),

such that ϕ ◦ψ and ψ ◦ϕ are both multiplication by 2.
Suppose now that the characteristic p of K is an odd prime. Then ψ ◦ ϕ is an automorphism of

the p-kernel of J (H) and ϕ ◦ψ is an automorphism of the p-kernel of E1× E2× J (C), so J (H)[p]
and E1[p] × E2[p] × J (C)[p] are isomorphic. Hence H is superspecial if and only if E1 and E2 are
supersingular and C is superspecial.

Now we recall a criterion for the superspeciality of C . Let γi be the coefficient of x i in f (p−1)/2, and set

a = γp−1, b = γ2p−1, c = γp−2 and d = γ2p−2.

Let M be the matrix

M =
(

a p cp

bp d p

)
. (2-1)

Then M is a Cartier–Manin matrix for C , that is, there is a basis for H 0(C, �1
C) so that left multiplication

by M represents the (semilinear) action of the Cartier operator; here �1
C is the sheaf of differential 1-

forms on C . (For information about Cartier–Manin matrices, see [1], which addresses issues with earlier
literature, including the standard reference [27, §2].)

Lemma 2.2. Let H be a Howe curve as above. Then H is superspecial if and only if E1 and E2 are
supersingular and a = b = c = d = 0.

Proof. We already noted that H is superspecial if and only if E1 and E2 are supersingular and C is
superspecial. But C is superspecial if and only if the Cartier operator acts trivially on H 0(C, �1

C) [24,
Theorem 4.1]. �

3. Detecting isomorphisms of Howe curves

In this section, we give an efficient criterion for determining whether two Howe curves are isomorphic
or not. This criterion will be used in both the first and the second approach to enumerating superspecial
Howe curves over a finite field.

We continue to work over an algebraically closed field of characteristic p 6= 2. Recall from Section 2
that a Howe curve is the desingularization of the fiber product of two genus-1 double covers of P1, where
the ramification loci of the two covers overlap in exactly one point. This means that a Howe curve is
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precisely a genus-4 curve H that fits into a V4-diagram of the following form, where C is a curve of
genus 2 and E1 and E2 are curves of genus 1:

H

ww ''��
E1

&&

C

��

E2

xx
P1

If E1→ P1 ramifies at points P, Q1, Q2, and Q3, and if E2→ P1 ramifies at P, R1, R2, and R3, then
the Weierstrass points of C are the points lying over Q1, Q2, Q3, R1, R2, and R3. On the other hand,
the point P splits in the cover C→ P1, and we let P1 and P2 be the points of C lying over P.

Thus, to specify a Howe curve, it is enough to provide three pieces of information:

(1) A genus-2 curve C .

(2) An unordered pair of disjoint sets {W1,W2}, each consisting of three Weierstrass points of C .

(3) An unordered pair of distinct points {P1, P2} on C that are mapped to one another by the hyperelliptic
involution.

This data determines the V4-diagram above, and hence also determines the double cover η : H → C ,
which we call the structure map for the given data. Of course, if α is an automorphism of C then
{α(W1), α(W2)} and {α(P1), α(P2)}will give us a double cover H→C that is isomorphic to η, namely, αη.

Lemma 3.1. The data specifying a Howe curve is recoverable (up to automorphisms of C) just from the
structure map η : H → C.

Proof. The map C→ P1 is unique (up to automorphism of P1), so we recover the entire map H→C→ P1

from η. This map is a Galois extension with group V4, so we recover the genus-1 curves in the extension,
and hence the division of the Weierstrass points of C . The pair of points {P1, P2} is simply the set of
ramification points of η. �

Theorem 3.2. Two structure maps η1 : H → C1 and η2 : H → C2 starting from the same Howe curve H
are isomorphic to one another. That is, there is an isomorphism γ : C1 → C2 and an automorphism
δ : H → H such that the following diagram commutes:

H δ //

η1

��

H
η2

��
C1

γ // C2

Proof. Let U1 and U2 be the V4-subgroups of Aut H specified by η1 and η2, and let S be the 2-Sylow
subgroup of Aut H that contains U1. By conjugating U2 by an automorphism δ (and thereby replacing
η2 with η2δ) we may assume that U2 is also contained in S. Let α1 and α2 be the involutions of H corre-
sponding to the double covers η1 and η2, and for each i , let βi and γi be the other nonzero elements of Ui .
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If α1 and α2 are conjugate to one another in S (or even in Aut H ), we are done. So assume, to get a
contradiction, that α1 and α2 lie in different conjugacy classes of S.

We know that the quotient of H by the subgroup 〈αi 〉 has genus 2, while the quotients of H by 〈βi 〉

and by 〈γi 〉 have genus 1. The same is true for all of the conjugates of αi , βi , and γi in S. More generally,
if we have two commuting involutions in S that generate a V4-subgroup, we obtain a diagram

H

xx &&��
Y1

&&

Y2

��

Y3

xx
X

(3-1)

We know that none of the curves Yi can have genus 0 (by Lemma 2.1), so the only possibilities are that
either all of the Yi have genus 2 and X has genus 1, or one of the Yi has genus 2, the other two have
genus 1, and X has genus 0. (This follows from the fact that in any diagram such as (3-1), the genus of H
is the sum of the genera of the Yi minus twice the genus of X ; see [17, Theorem B].) Thus, given two
commuting involutions in S, if we know the genera of the quotients of H they produce, we can deduce
the genus of the quotient of H by their product.

Our strategy, then, will be to enumerate all possible 2-groups S that occur as the 2-Sylow subgroup of
the automorphism group of a nonhyperelliptic curve H of genus 4, along with all possible pairs U1 and U2

of V4-subgroups of S that contain elements α1 and α2 that are not conjugate in S. We will assume that α1

and α2 generate genus-2 curves, while the other involutions in U1 and U2 generate genus-1 curves. Given
these assumptions, we deduce, for as many involutions as we can, the genera of the curves associated to
these involutions.

Suppose δ is an involution in S for which we know that the quotient Y = H/〈δ〉 has genus 2. Let T be
the centralizer of δ in S. Then the quotient T/〈δ〉 is contained in the automorphism group of the genus-2
curve Y. Using Igusa’s classification of the automorphism groups of genus-2 curves [15, §8], we can
show that there are only eight 2-groups that appear as subgroups of the automorphism groups of genus-2
curves. If T/〈δ〉 is not one of these groups, then we have shown that the values of U1, U2, α1, and α2

cannot correspond to two different realizations of H as a Howe curve.
In order to use this strategy, we need a good bound on the sizes of automorphism groups of nonhy-

perelliptic curves of genus 4 in characteristic not 2. A result of Henn [10, Satz 1] (see also [6]) shows
that in characteristic p > 2, the order of the automorphism group of a curve of genus g is strictly less
than 8g3, except possibly when the curve is of one of the following types:

(1) xn
+ ym

= 1, where n = 1+ pa for some a > 0 and m | n.

(2) y p
− y = xn, where n = 1+ pa for some a > 0.

The first type of curve has genus (n− 2)(m− 1)/2, and if this is equal to 4 then either we have n = 10
and m = 2 (and p= 3) or we have n= 6 and m = 3 (and p= 5). In the first case the curve is hyperelliptic;
in the second case, as Henn notes, the automorphism group has order 360, which is less than 8g3. The
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second type of curve has genus pa(p− 1)/2, which is never equal to 4, because p is odd. Thus, it will
suffice for us to look at every 2-group S of order less than 8 · 43

= 512.
We implemented this computation in Magma; the code is available in the online supplement. We ran

our code on all 2-groups of order less than 512, and the only group not eliminated was S ∼= (Z/2Z)3.
For this S, our computation shows that of the seven involutions in S, three give genus-2 quotients

and four give genus-1 quotients, and the three elements that give genus-2 quotients sum to zero. Now
consider the seven V4-subgroups T of S. Each such T gives us a diagram like (3-1) above. For the T that
contains the three genus-2 involutions, the genus of H/T is 1, while for the other six V4-subgroups T,
the genus of H/T is 0.

Let us consider the diagram of subextensions between H and its quotient H/S ∼= P1. We label the
elements of S by vectors in F3

2, and we label the V4-subgroups in the same way, with the convention that
a V4-subgroup labeled by v contains the elements with labels g such that the dot product of v and g is 0.
Then the diagram of subextensions, with their genera, is as follows:

H
genus 4

001
genus 2

010
genus 2

011
genus 2

100
genus 1

101
genus 1

110
genus 1

111
genus 1

001
genus 0

010
genus 0

011
genus 0

100
genus 1

101
genus 0

110
genus 0

111
genus 0

P1

genus 0

(For visual clarity, we have left off the heads of the arrows, and omitted the 21 arrows between the middle
layers.) But this configuration of genera is not possible; consider for example the following subdiagram:

100
genus 1

001
genus 0

010
genus 0

011
genus 0

P1

genus 0

This diagram violates the genus property we mentioned below diagram (3-1).
This contradiction shows that the involutions α1 and α2 corresponding to the structure maps η1 and η2

lie in the same conjugacy class of Aut H, so that η1 = η2δ for an automorphism δ of H. �

Corollary 3.3. Two triples (C, {W1,W2}, {P1, P2}) and (C ′, {W ′1,W ′2}, {P
′

1, P ′2}) give isomorphic Howe
curves if and only if there is an isomorphism C→ C ′ that takes {W1,W2} to {W ′1,W ′2} and {P1, P2} to
{P ′1, P ′2}.

http://msp.org/obs/2020/4-1/obs-v4-n1-x01-EnumeratingSuperspecialHoweCurves.zip
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This isomorphism test is very fast; it simply requires determining whether there are any automorphisms
of P1 that respect the sets of Weierstrass points and their divisions, and that take the x-coordinate of P1

and P2 to that of P ′1 and P ′2.

4. First approach: reduction to solving multivariate systems

In this section and the next, we present two approaches to solving the problem of enumerating superspe-
cial Howe curves. As we mentioned in Section 1, the first approach, described in this section, enumerates
pairs of supersingular elliptic curves E1 :w

2
= f1 and E2 : z2

= f2 such that C : y2
= f1 f2 is superspecial.

For this, we shall apply a construction of Howe curves given in [23]. While this construction is different
from the original one of [11], it can easily reduce our problem to finding roots of polynomial systems.

4A. Reduction to solving multivariate systems over finite fields. Let K be an algebraically closed field
in characteristic p > 3. In [23], the authors parametrize the space of all Howe curves by the projective
plane P2. We here briefly recall the parametrization; see [23, §2] for more details. Let y2

= x3
+ Ai x+Bi

(i = 1, 2) be two (nonsingular) elliptic curves, where A1, B1, A2, B2 ∈ K. Let λ,µ, ν be elements of K
such that µ 6= 0 and ν 6= 0, and such that f1 and f2 are coprime, where

f1(x)= x3
+ A1µ

2x + B1µ
3, (4-1)

f2(x)= (x − λ)3+ A2ν
2(x − λ)+ B2ν

3. (4-2)

A point (λ : µ : ν) ∈ P2(K ) satisfying these conditions is said to be of Howe type in [23]. Note that the
isomorphism classes of E1 and E2 are independent of the choice of (λ, µ, ν) provided µ 6= 0 and ν 6= 0.
Then the desingularization H of the fiber product E1×P1 E2 is a Howe curve, and vice versa.

This parametrization, together with the criterion of superspeciality in Section 2, enables us to reduce
the search for superspecial Howe curves into solving multivariate systems over K ; it suffices to compute
the solutions (λ : µ : ν) ∈ P2(K ) (of Howe type) to a = b = c = d = 0, where a, b, c and d are
the entries of the Cartier–Manin matrix of the hyperelliptic curve C : y2

= f1 f2. Note that a, b, c
and d are homogeneous as polynomials in λ, µ and ν, and that ord∗(−)= O(p) for ∗ = λ,µ, ν and for
−= a, b, c, d.

Note that the multivariate systems above are zero-dimensional, since there are only finitely many
points (λ : µ : ν) parametrizing supersingular Howe curves (see [23]), whence the same thing holds for
superspecial cases. In fact, we may assume that the coordinates A1, B1, A2, B2, λ, µ and ν belong to Fp2 :

Proposition 4.1. Any superspecial Howe curve is K -isomorphic to H obtained as above for A1, B1, A2,
B2, µ, ν and λ belonging to Fp2 .

Proof. It suffices to consider the case of K = Fp2 , since every supersingular elliptic curve can be defined
over Fp2 and (λ, µ, ν) is a solution of a = b = c = d = 0. Let H ′ be a superspecial Howe curve over
K = Fp2 . Choose E ′1 and E ′2 over K so that H ′ is the normalization of E ′1 ×P1 E ′2. It is well known
that H ′ descends to a curve H over Fp2 such that the Frobenius map F (the p2-power map) on Jac(H)
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is p or −p and all automorphisms of H are defined over Fp2 (see the proof of [5, Theorem 1.1]). Let
E1 and E2 be the quotients of H corresponding to E ′1 and E ′2. The quotient Ei of H is obtained by an
involution ιi ∈ Aut(H), and therefore is defined over Fp2 . The quotient of H by the group generated by
ι1 and ι2 is isomorphic to P1 over Fp2 . Let Si be the set of the ramified points of Ei → P1. Since S1∩ S2

consists of a single point, this point is invariant under the action of the absolute Galois group of Fp2 and
therefore is an Fp2-rational point. An element of PGL2(Fp2) sends this point to the infinite point of P1.
Since the Frobenius map F on Ei is also ±p, the other elements P of Si (which are 2-torsion points
on Ei ) are also Fp2-rational by F(P)=±pP = P. This implies the desired result. �

4B. Concrete algorithm. Based on the reduction described in the previous subsection, we present a
concrete algorithm:

Algorithm 4.2. Calculating superspecial Howe curves by reduction to solving multivariate systems.

Input: A rational prime p > 3.

Output: A list H(p) of superspecial Howe curves, each of which is represented by a pair ( f1, f2) of
polynomials f1, f2 ∈ Fp2[x].

(1) Compute the set S(p) of representatives of the Fp-isomorphism classes of supersingular ellip-
tic curves in characteristic p such that each representative is given in Weierstrass form E A,B :

y2
= f A,B(x) = x3

+ Ax + B by a pair (A, B) of elements in Fp2 .

(2) Set H0(p)←∅. For each pair of E A1,B1 and E A2,B2 in S(p), possibly choosing (A1, B1)= (A2, B2),
conduct Steps (a)–(c) below to compute all (λ, µ, ν) ∈ (Fp2)3 of Howe type such that the desingu-
larization H of E1 ×P1 E2 is superspecial, where E1 : w

2
= f1 (resp. E2 : z2

= f2) is an elliptic
curve Fp2-isomorphic to E A1,B1 (resp. E A2,B2).

(a) Compute the Cartier–Manin matrix M given in (2-1).
(b) Compute the set V(A1, B1, A2, B2) of elements (λ, µ, ν) ∈ (Fp2)3 (with ν = 1) such that M = 0.
(c) For each (λ, µ, ν) ∈ V(A1, B1, A2, B2), if µ 6= 0 and ν 6= 0, set H0(p)← H0(p)∪ {( f1, f2)},

where f1 and f2 are as in (4-1) and (4-2).

Note: By Lemma 4.4 and Proposition 4.6 of [23], for each root (λ, µ, ν) computed in Step (b), the
cubics f1 and f2 are coprime if µ 6= 0 and ν 6= 0. Moreover, it suffices to compute elements (λ, µ, ν)
with ν = 1; see Remark 4.2 of [19] for more details.

(3) Set H(p)← ∅. For each ( f1, f2) ∈ H0(p), if the Howe curve H represented by ( f1, f2) is not
isomorphic to any Howe curve of H(p), set H(p)← H(p)∪ {H}.

The complexity of this algorithm is estimated as Õ(p6), as long as #H0(p)= O(p3); see Section 4C
for more details.

Remark 4.3. If one would like to search for a single example of a superspecial Howe curve (or determine
the nonexistence of such a curve), it suffices to decide the (non-)existence of a root in Step (b). In this
case, it will be estimated in the next subsection that the complexity is Õ(p5).
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4C. Complexity of the first approach. We here briefly discuss the complexity of Algorithm 4.2 together
with several variants of computing the roots of a multivariate system in Step (b). For reasons of space, we
give only a summary of the estimation of the complexity, and refer to [19, §5.1] for most of the details.
In the following, all time complexity bounds refer to arithmetic complexity, which is the number of oper-
ations in Fp2 . We denote by M(n) the time to multiply two univariate polynomials over Fp2 of degree n.

For Step (1), one can check that its complexity is dominated by the cost of computing all supersingular
j-invariants in characteristic p. This cost is bounded by O(log2(p)M(p))= Õ(p); see [19, §5.1.1] for
details.

For Step (2), clearly the complexities of Steps (a) and (b) are larger than that of Step (c). In Step (a),
we compute the Cartier–Manin matrix M from f = f1 f2 with indeterminates λ and µ. The cost of
computing M is bounded by Õ(p3); see Remark 4.4 below. In Step (b), there are three variants (i)–(iii)
to compute all (λ, µ, ν) ∈ (Fp2)3 with ν = 1 such that M = 0, where M is the Cartier–Manin matrix as
in (2-1) with entries a, b, c and d:

(i) Use brute force to enumerate all (λ, µ) ∈ (Fp2)2 to check whether M is equal to 0 or not.

(ii) Regard one of λ and µ, say λ, as a variable. For each µ ∈ Fp2 , compute the roots in Fp2 of
G = gcd(a, b, c, d) ∈ Fp2[λ].

(iii) Regarding both λ and µ as variables, use an approach based on resultants.

It is estimated that the complexity of (i) is O(p5), and that those of (ii) and (iii) are bounded by the
same bound Õ(p4); more precisely, the upper-bound of the complexity of (ii) is less than that of (iii) if
we consider logarithmic factors; see [19, §5.1.2].

From this, we adopt the fastest variant (ii) with complexity Õ(p4) in our implementation. The number
of (λ, µ, ν) with ν = 1 computed in Step (b) is ≤ p2

× deg(G)= O(p3). Since the number of possible
choices of (E A1,B1, E A2,B2) is #S(p)= O(p2), computing (λ, µ, ν) with ν = 1 for all (E A1,B1, E A2,B2)

is done in #S(p)× Õ(p4)= Õ(p6) operations in Fp2 .
The complexity of Step (3) depends heavily on the number of superspecial Howe curves obtained in

Step (2), that is, #H0(p). Since each isomorphism test is done in O(1), the complexity of Step (3) is
O((#H0(p))2). As of this writing, we have not succeeded in finding any sharp bound on #H0(p). We
can naively estimate #H0(p) = O(p5) from the complexity analysis of Step (2), whereas we expect
#H0(p) = O(p3) from the practical behavior [19, §4.2, Table 1]. Thus, the complexity of Step (3) is
naively O(p10), but in practice O(p6) which does not exceed the complexity of Steps (1)–(2).

Note that to determine the (non-)existence of a superspecial Howe curve, it is not necessary to compute
a root in Step (b), but it suffices to compute the gcd G only. Since each gcd can be computed in time
Õ(p) by fast gcd algorithms, one can verify that the total complexity of this variant of Algorithm 4.2
is Õ(p5).

Remark 4.4. In Step (a), we compute a Cartier–Manin matrix over Fp2[λ,µ]. Bostan, Gaudry, and
Schost showed that in general, computing the Cartier–Manin matrix M of a hyperelliptic curve y2

= f (x)
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defined over a field K can be accomplished by multiplying matrices obtained from recurrences for the
coefficients of f (x)n; see [2, §8] or [9, §2] for details. The algorithm of Harvey and Sutherland [9], which
is an improvement of their earlier algorithm [8] presented at ANTS XI, is also based on this reduction,
and it is the fastest algorithm to compute M for the case of K = Fp. From this, we suspect that one of the
best ways to compute M in Step (a) would be to extend the Harvey–Sutherland algorithm [9] to the case
of Fp2(λ, µ). However, since we have not yet succeeded in making this extension, we compute M using
the reduction mentioned above, or by using formulæ given in [23, §4] for M specific to Howe curves. It
is estimated (to appear in a revised version of [19]) that the complexity of the latter method is bounded
by Õ(p3), which is less than or equal to that of Step (b).

5. Second approach: use of Richelot isogenies of genus-2 curves

In this section we propose another approach to enumerating superspecial Howe curves. As opposed to
the approach in Section 4, this second approach starts with a superspecial genus-2 curve C , and then
looks to see whether it will fit into a V4-diagram with supersingular elliptic curves. While this is precisely
the structure of Algorithm 5.7 of [11], the problem remains: How can we quickly produce a list of all of
the superspecial genus-2 curves? We begin by addressing this question.

5A. Computing superspecial curves of genus 2. To produce a list L of all superspecial genus-2 curves,
we use a variant of [11, Algorithm 5.7]. Each superspecial genus-2 curve has a unique model defined
over Fp2 that is maximal over Fp2 . Given one such curve, all of the curves that are Richelot isogenous
to it are also maximal superspecial curves. Thus, given a not-necessarily-complete list of maximal
superspecial curves, we can add curves to the list as follows: We go through the list one curve at a time.
For each C we compute the curves that are Richelot isogenous to it, and we add each such curve to
the list if it is not already on it. To seed our list, we can use the curves that are (2, 2)-isogenous to a
product of maximal elliptic curves. Then a result of Jordan and Zaytman [16, Corollary 18] shows that
this procedure will generate a complete list L of all superspecial genus-2 curves.

The exact number of curves on the list L is given by a result of Ibukiyama, Katsura, and Oort [14,
Theorem 3.3]. The exact answer depends on the congruence class of p modulo 120, but it follows from
their result that for p > 3 we have

#L=
(p− 1)(p2

+ 25p+ 166)
2800

+ c, where −1
16
≤ c ≤ 209

180
.

5B. Testing whether a genus-2 curve fits into a V4-diagram. For each C ∈ L, given by an equation

y2
= (x − a1)(x − a2)(x − a3)(x − a4)(x − a5)(x − a6),

we would like to try to fit C into a Howe curve diagram. For each of the ten ways of splitting the
Weierstrass points into two groups of three (for example, into {{a1, a2, a3}, {a4, a5, a6}}), we could then
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ask for the values of b such that the two genus-1 curves

y2
= (x − b)(x − a1)(x − a2)(x − a3) (5-1)

and
y2
= (x − b)(x − a4)(x − a5)(x − a6) (5-2)

are both supersingular. (We also consider “b=∞”, corresponding to the curves y2
=(x−a1)(x−a2)(x−a3)

and y2
= (x − a4)(x − a5)(x − a6).) Since there are about p/12 supersingular j-invariants and hence

about p/2 supersingular λ-invariants, there are about p/2 values of b that will make the first curve (5-1)
supersingular, and we can compute these values in time Õ(p). For each b, we then check whether the
second curve (5-2) is supersingular. If we were to model this as choosing a random λ-invariant in Fp2

and asking whether it is supersingular, we would expect success with probability around 1/(2p).
It is easy to incorporate isomorphism testing into this algorithm so that it produces each superspecial

Howe curve exactly once: All we have to do is keep track of how the automorphism group of C acts on
the divisions of its Weierstrass points and on the good values of b.

Thus, in time Õ(p4), we can produce unique representatives for each superspecial Howe curve. Heuris-
tically, the number of superspecial Howe curves we find should be the number of superspecial genus-2
curves (≈ p3/2880), times the number of Weierstrass point divisions (10), times the number of values
of b that make the first elliptic curve supersingular (≈ p/2), times the probability that the second curve
is supersingular (≈ 1/(2p)). Heuristically, then, we expect to find about p3/1152 superspecial Howe
curves.

5C. Concrete algorithm.

Algorithm 5.1. Calculating superspecial Howe curves using Richelot isogenies of genus-2 curves.

Input: A rational prime p > 3.

Output: A list H(p) of superspecial Howe curves, each of which is represented by a pair ( f1, f2) of
polynomials f1, f2 ∈ Fp2[x], corresponding to the curve y2

= f1, z2
= f 2.

(1) Compute the set MaxEll(p2) of Fp2-isomorphism classes of Fp2-maximal elliptic curves over Fp2 .
Since every supersingular curve has a unique maximal twist, this can be done as in Step (1) of
Algorithm 4.2.

(2) Set L← ∅. For each pair (E, E ′) of elements in MaxEll(p2), compute the (at most 6) curves C
whose Jacobians are (2, 2)-isogenous to E × E ′ (see [12, §3]). Adjoin each of these to L if it is not
isomorphic to an element of L.

(3) Write L= {C1, . . . ,Cn}. Set i = 1.

(a) For each nonsingular curve C ′ which is Richelot isogenous to Ci , if C ′ is not isomorphic to any
element of L, set N ← |L| and put CN+1 = C ′ and L← L∪ {CN+1}.

(b) If i < |L|, set i← i + 1 and go to (a).
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(4) Set H(p)←∅.

(5) For each C ∈ L, check whether C fits into a Howe curve diagram with supersingular double covers
Ei → P1.

(a) For each splitting of the Weierstrass point of C into two disjoint three-element sets, compute
the j-invariants of the genus-1 curves (5-1) and (5-2), as functions of the indeterminate b. Find
the values of b that make the first curve supersingular, and for each such value, check to see
whether the second curve is supersingular. Record each value of b for which both curves are
supersingular.

(b) Using Corollary 3.3, find unique representatives y2
= f1, z2

= f2 for the curves produced in the
previous step, and adjoin ( f1, f2) to H(p).

We noted in the previous subsection that Step (5) takes Õ(p4) arithmetic operations over Fp2 , and the
other steps clearly take fewer operations than this.

6. Implementations and proofs

In this section, we describe our implementations of the algorithms in the previous sections and our proofs
of the main results stated in the Introduction. As we have seen, there are two approaches to enumerating
superspecial Howe curves: (A) (E1, E2)-first and (B) C-first. The arguments in the previous sections
show that (B) has an advantage in the complexity analysis. Here we see that (B) is far superior to (A)
also when we execute their implementations. Indeed, Theorems 1.1 and 1.2 in the Introduction were
obtained by Magma implementations based on (B) that were run on a PC with Ubuntu 16.04 LTS OS at
3.40GHz CPU (Intel Core i7-6700) and 15.6 GB memory. The same result for p ≤ 53 was obtained by
implementing the method (A) over Magma with an execution by the same PC. Although it took 11871
seconds to obtain Theorem 1.2 for p ≤ 53 by (A), the second strategy (B) finishes the enumeration for
p ≤ 199 in only 924 seconds; see Table 2 for benchmark timing data for small p.

The code for our implementations is available in the online supplement. In case (A), it is very costly
to find Cartier–Manin matrices, and in addition to that there are many pairs (E1, E2) of supersingular
elliptic curves. This fact is consistent with the complexity analysis in Section 4C. On the other hand, the
method (B) contains few intensive computations and it enables us to find and enumerate superspecial
Howe curves very efficiently.

The preceding remarks prove the computational results in Theorems 1.1 and 1.2, and we are left to
prove the statement in Theorem 1.1 concerning primes p ≡ 5 mod 6. This fact is shown by using the
Howe curve defined by E1 : z2 y = x3

+ y3 and E2 : w
2 y = x3

+ ay3 with a ∈ {−1, 1/4}. Indeed,
if p ≡ 5 mod 6, then these two elliptic curves are supersingular and moreover y2

= (x3
+ 1)(x3

+ a)
is superspecial. This can be checked by observing that the curve has two nonhyperelliptic involutions,
given by (x, y) 7→ (a1/3/x,±a1/2 y/x3), so that its Jacobian is (2, 2)-isogenous to a product of elliptic
curves. For a =−1 we find that these two curves are both isomorphic to the j = 0 curve with CM by −3,

http://msp.org/obs/2020/4-1/obs-v4-n1-x01-EnumeratingSuperspecialHoweCurves.zip
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p (A) (B) p (A) (B) p (A) (B)

5 0.02 0.08 19 6.14 0.12 41 1118.63 0.71
7 0.01 0.01 23 27.59 0.21 43 1423.26 0.80

11 0.17 0.04 29 114.70 0.31 47 2686.17 1.03
13 0.76 0.05 31 193.82 0.34 53 5678.32 1.46
17 3.92 0.09 37 617.23 0.54

Table 2. Benchmark timing data for (A) Algorithm 4.2 and (B) Algorithm 5.1. All times shown
are in seconds.

and for a = 1/4 we find that they are both isomorphic to the j =−12288000 curve with CM by −27. In
both cases, these elliptic curves are supersingular for primes p ≡ 5 mod 6.

We remark that this curve for a = 1/4 is isomorphic to the curve X3
+ Y 3

+W 3
= 2Y W + Z2

= 0
in P3 studied by the Kudo in [18], by the correspondence x = X, y = Y + W, z =

√
−3/2Z and

w =
√
−3/4(Y −W ).
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