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In 1982, Lagarias showed that solving the approximate shortest vector problem also solves the problem of
finding good simultaneous Diophantine approximations (SIAM J. Comput., 14(1):196–209, 1985)). Here
we provide a deterministic, dimension-preserving reduction in the reverse direction. It has polynomial
time and space complexity, and it is gap-preserving under the appropriate norms. We also give an
alternative to the Lagarias algorithm by first reducing his version of simultaneous approximation to
one with no explicit range in which a solution is sought.

1. Introduction

Our primary result is to show that a short vector problem reduces deterministically and with polynomial
complexity to a single simultaneous approximation problem as presented in the definitions below. We
use min× to denote the nonzero minimum, {x} ∈

(
−

1
2 ,

1
2

]n to denote the fractional part of x ∈ Rn, and
[x] to denote the set {1, . . . , bxc} for x ∈ R.

Definition 1.1. A short vector problem takes input α ∈ [1,∞) and nonsingular M ∈ Mn(Z). A valid
output is q0 ∈ Zn with 0< ‖Mq0‖ ≤ αmin×q∈Zn‖Mq‖. Let SVP denote an oracle for such a problem.

Definition 1.2. A good Diophantine approximation problem takes input α, N ∈ [1,∞) and x ∈Qn. A
valid output is q0 ∈ [αN ] with ‖{q0x}‖ ≤ αminq∈[N ]‖{qx}‖. Let GDA denote an oracle for such a
problem.

Our reduction asserts that if we can find short vectors in a very restricted family of lattices then we can
find them in general, since behind a good Diophantine approximation problem is the lattice generated
by Zn and one additional vector, x.

Literature more commonly refers to a short vector problem as a shortest vector problem when α = 1
and an approximate shortest vector problem otherwise (often unrestricted to sublattices of Zn, though
we have lost no generality). A brief exposition can be found in [26]. See [14] or [24] for a more
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comprehensive overview, [27] for a focus on cryptographic applications, [19] for a summary of hardness
results, and [6] for relevance and potential applications to post-quantum cryptography.

Regarding simultaneous approximation, Brentjes highlights several algorithms in [7]. For a sample
of applications to attacking clique and knapsack-type problems see [13], [20], and [31]. Examples of
cryptosystems built on the hardness of simultaneous approximation are [2], [4], and [16]. This version
is taken from [9] and [29].

The reduction, given in Algorithm 3, preserves the gap α when the `∞-norm is used for both problems.
This means the short vector problem defined by α and M is solved by calling GDA(α, x, N ) for some
x ∈Qn and N ∈R. It reverses a 1982 result of Lagarias, which reduces a good Diophantine approximation
problem to SVP. (See Theorem B in [21], which refers to the problem as good simultaneous approxima-
tion. We borrow its name from [9] and [29].) Though there is an important contextual distinction: [21]
relates simultaneous approximation under the `∞-norm to lattice reduction under the `2-norm, whereas
all reductions in this paper assume a consistent norm.

Under Lagarias’ (and the most common) setup — the `∞-norm for GDA and the `2-norm for SVP —
we are not the first to go in this other direction. In a seminar posted online from July 1, 2019, Agrawal
presented an algorithm achieving this reduction which was complete apart from some minor details [1].
Tersely stated, he takes an upper triangular basis for a sublattice of Zn and transforms it inductively, using
integer combinations and rigid rotations with two basis vectors at time, into a lattice (a rotated copy of the
original) whose short vectors can be found via simultaneous approximation. The short vector problem
defined by α and M gets reduced to GDA(α/

√
2n, x, N ), called multiple times in order to account for

the unknown minimal vector length which is used to determine x.
In contrast, the reduction here takes a completely different approach. It finds a sublattice which is

nearly scaled orthonormal, so that only one additional vector is needed to generate the original lattice.
This extra vector is the input for GDA. We note that when switching between norms, our reduction is
also not gap-preserving. To use Algorithm 3 to solve a short vector problem with respect to the `2-norm
via GDA with respect to the `∞-norm, the latter must be executed with the parameter α/

√
n to account

for the maximum ratio of nonzero norms ‖q‖2/‖q‖∞.
The relationship between the two problems in Definitions 1.1 and 1.2 will be studied through the

following intermediary.

Definition 1.3. A simultaneous approximation problem takes input α ∈ [1,∞) and x ∈ Qn. A valid
output is q0 ∈ Z with 0< ‖{q0x}‖ ≤ αmin×q∈Z‖{qx}‖. Let SAP denote an oracle for such a problem.

This problem prohibits only the trivial solution, the least common denominator of x’s entries, while
“N” in a good Diophantine approximation problem is generally more restrictive.

Section 2 explores the relationship between the two versions of simultaneous approximation given in
Definitions 1.2 and 1.3. Among the results, only Proposition 2.1 in Section 2A is required to verify the
final reduction of a short vector problem to either version of simultaneous approximation. Section 2B
contains Algorithm 1. It reduces a good Diophantine approximation problem to polynomially many
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Figure 1. Algorithm and subsection numbers for reductions.

SAP calls, each executed with the parameter α/3.06. So while this reduction is not gap-preserving, the
inflation is independent of the input.

Section 3 reduces both versions of simultaneous approximation to SVP. It begins with Algorithm 2,
which solves Definition 1.3’s version. We remark at the end of Section 3A how this reduction adapts
to the inhomogeneous forms of these problems, meaning the search for q0 ∈ Z or q0 ∈ Zn that makes
q0x− y or Mq0− y small for some y ∈Qn. (In this case the latter is known as the approximate closest
vector problem, exposited in Chapter 18 of [14], for example.) Then Section 3B combines Algorithms 1
and 2 to solve Definition 1.2’s version of simultaneous approximation using SVP. This is our alternative
to the Lagarias reduction.

Finally, Algorithm 3 in Section 4 reduces a short vector problem to GDA or SAP. It also adapts
to the inhomogeneous versions of SVP and SAP (not GDA, as mentioned at the end of Section 4C).
In Corollary 4.9 we observe that Algorithm 3 facilitates a simpler proof that GDA is NP-hard under an
appropriate bound on α, a result first obtained in [9]. Then we combine Algorithms 2 and 3 in Section 4B
to solve a simultaneous approximation problem with GDA. In particular, we give all six reductions among
the defined problems, as shown in Figure 1.

The two reductions in Figure 1 without algorithm numbers are achieved by following the two arrows
that combine to give the same source and target. Dashed arrows indicate a norm restriction. Each must be
executed under either the `1, `2, or `∞-norm. However, we show in Section 4C how the restriction can be
alleviated to any `p-norm provided we accept additional gap inflation by a constant arbitrarily close to 1.

The results are summarized in Table 1. It uses m and d to denote the maximal magnitude among
input integers and the least common denominator of the input vector, respectively. The matrix or vector
dimension is n, and p defines the norm. Trivial cases that cause logarithms to equal 0 are ignored. The
column descriptions are as follows:

operations: Big-O bound on the number of arithmetic operations per oracle call.

integers: Big-O bound on the length of integers used throughout the reduction.

inflation: Maximum gap inflation. For example, to solve a good Diophantine approximation problem
with some α using Algorithm 1, SAP is called with α/3.06.

calls: Upper bound on the number of required calls to the oracle.
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reduction operations integers inflation calls

GDA→ SAP n log m n log m 3.06 dlog2 d/αNe
SAP→ SVP (n+ log m)2 n log m 1 1
GDA→ SVP (n+ log m)2 n log m 3.06 dlog2 d/αNe
SVP→ GDA n4 log mn n4 log mn n1/p 1
SVP→ SAP n4 log mn n4 log mn 1 1
SAP→ GDA n5 log m n5 log m n1/p 1

Table 1. Summary of reduction complexities and gap inflations.

2. Versions of simultaneous approximation

2A. SAP to GDA. Rather than give a complete reduction from a simultaneous approximation problem
to GDA, which is postponed until the end of Section 4B, the purpose of this subsection is to observe a
condition on the input that makes these two versions of simultaneous approximation nearly equivalent.

Proposition 2.1. Suppose the i-th coordinate of x is of the form xi = 1/d, where d ∈ N makes dx ∈ Zn.
Under an `p-norm, GDA(α, x, N ) solves the simultaneous approximation problem defined by αn1/p and
x with N = d/2α.

Proof. Let qmin ∈ [d/2] be such that ‖{qminx}‖ is the nonzero minimum. A vector’s fractional part is in(
−

1
2 ,

1
2

]n, making its length at most n1/p/2. So we may assume that ‖{qminx}‖ < 1
2α, since otherwise

every integer in [N ] = [d/2α] solves the simultaneous approximation problem defined by αn1/p and x.
Under an `p-norm, ‖{qminx}‖ is an upper bound for its i-th coordinate, qmin/d. Combined with

the assumption ‖{qminx}‖ < 1
2α, this gives qmin ∈ [d/2α] = [N ], which implies minq∈[N ]‖{qx}‖ ≤

min×q∈Z‖{qx}‖. And because αN < d , it is guaranteed that GDA(α, x, N ) is not a multiple of d . �

Note that without an assumption on x like the one used in this proposition, there is no natural choice
for N that makes GDA solve a simultaneous approximation problem. If we set it too small, say with
N < d/2, then minq∈[N ]‖{qx}‖ may be unacceptably larger than min×q∈Z‖{qx}‖, potentially making
GDA’s approximation poor. If we set it too large, say with N ≥ d/α, then GDA may return d, which is
not a valid output for the initial simultaneous approximation problem.

To get around this, our strategy is to first reduce a simultaneous approximation problem to SVP with
Algorithm 2. Then in Algorithm 3, which reduces a short vector problem to SAP, we are careful to produce
an input vector for the oracle that satisfies the hypothesis of Proposition 2.1 in order to admit GDA.

2B. GDA to SAP. Let d continue to denote the least common denominator of x. The problem faced in
this reduction is that outputs for a good Diophantine approximation problem are bounded by αN, which
may be smaller than d/2. This leaves no guarantee that SAP(α, x), call this integer d1 ∈ [d/2], is a
solution. But knowing that x is very near a rational vector x1 with least common denominator d1 allows
us to call SAP again, now on x1 to get d2 ∈ [d1/2]. This is the least common denominator of some x2

near x1, and we continue in this fashion until the output is at most αN. To get di ∈ [di−1/2], we adopt
the convention that modular reduction returns an integer with magnitude at most half the modulus.
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Algorithm 1: A reduction from a good Diophantine approximation problem to multiple calls to SAP

under a consistent norm.

input: α, N ∈ [1,∞), x = (x1, . . . , xn) ∈Qn

output: q0 ∈ [αN ] with ‖{q0x}‖ ≤ αminq∈[N ]‖{qx}‖
1 d← lcd(x1, . . . , xn) > 0
2 while d > αN do
3 d← |SAP(α/3.06, x) mod d| F good, but large denominator
4 x← x−{dx}/d F now lcd(x)= d , at most half of the previous iteration’s lcd
5 return d

Proposition 2.2. The output of Algorithm 1 solves the initial good Diophantine approximation problem.

Proof. Let di and xi denote the values of d and x after i while loop iterations have been completed. In
particular, d0 and x0 are defined by the input. Also let I + 1 be the total number of iterations executed,
so the output is dI+1.

The triangle inequality gives

‖{dI+1x}‖ ≤ ‖{dI+1xI }‖+ dI+1

I∑
i=1

‖xi − xi−1‖. (2-1)

With λi =minq∈[N ]‖{qxi }‖, the choice of dI+1 bounds the first summand by αλI /c, where c = 3.06 in
the algorithm but is left undetermined for now. Similarly, the choice of di = SAP(α/c, xi−1) and the fact
that di−1 > αN ≥ N give

‖xi − xi−1‖ =
‖{di xi−1}‖

di
≤
αmin×q∈Z‖{qxi−1}‖

cdi
≤
αλi−1

cdi
. (2-2)

So to bound (2-1) it must be checked that the λi ’s are not too large. To this end, fix some i ≤ I and
let qmin ∈ [N ] satisfy ‖{qminxi−1}‖ = λi−1. Then we have the following upper bound on λi , where the
three inequalities are due to the triangle inequality, inequality (2-2), and qmin ≤ N < dI /α ≤ di/2I−iα,
respectively:

‖{qminxi }‖ ≤ λi−1+ qmin‖xi − xi−1‖ ≤ λi−1

(
1+

αqmin

cdi

)
< λi−1

(
1+

1
2I−i c

)
.

Inductively, this gives

λi < λ0

i∏
j=1

(
1+

1
2I− j c

)
. (2-3)

Now (2-1), (2-2), and (2-3) can be combined to get

‖{dI+1x}‖ ≤
αdI+1

c

I∑
i=0

λi

di+1
≤
α

c

I∑
i=0

λi

2I−i ≤
αλ0

c

I∑
i=0

1
2I−i

i∏
j=1

(
1+

1
2I− j c

)
.
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Thus the output approximation quality, ‖{dI+1x}‖, is at most αminq∈[N ]‖{qx}‖ = αλ0 provided c satis-
fies

1≥
1
c

∞∑
i=0

1
2i

∞∏
j=i

(
1+

1
2 j c

)
.

This justifies our choice of c = 3.06 in line 3. �

Proposition 2.3. Let m > 1 be the maximum magnitude among integers defining x, and let d > 1 be its
least common denominator. The reduction in Algorithm 1 requires an initial O(n log m) operations plus
O(n) operations for each call to SAP, of which there are at most dlog2(d/αN )e, on integers of length
O(n log m).

Proof. Repeatedly applying the Euclidean algorithm computes d with O(n log m) operations on integers
of length O(n log m). Modular reduction in line 3 decreases each successive least common denominator
by at least a factor of 1

2 . This bounds the number of while loop iterations by dlog2(d/αN )e. �

3. Reducing to SVP

First we restrict attention to Definition 1.3’s version of simultaneous approximation (SAP) in Algo-
rithm 2. Then we will compare the combination with Algorithm 1 to Lagarias’ reduction in [21] from
Definition 1.2’s version (GDA).

3A. SAP to SVP. Here we replace the n+1 vectors associated to simultaneous approximation, namely x
and a basis for Zn, with n vectors generating the same lattice. There are algorithms for which this
is a byproduct, like Pohst’s modified (to account for linearly dependent vector inputs) LLL algorithm
[23] or Kannan and Bachem’s Hermite normal form algorithm [18]. But as a consequence of achiev-
ing additional basis properties, they are more complicated and require more operations than neces-
sary. We briefly present an alternative because the improved time complexity is relevant to the next
subsection.

Algorithm 2: A gap-preserving reduction from a simultaneous approximation problem to one call to SVP

under a consistent norm.

input: α ∈ [1,∞), x = (x1, . . . , xn) ∈Qn

output: q0 ∈ Z with 0< ‖{q0x}‖ ≤ αmin×q∈Z‖{qx}‖
1 d← lcd(x1, . . . , xn)

2 xn← xn + a with a an integer that makes
gcd(dx1, . . . , dxn−1, d(xn + a))= 1 F make sure dx extends to a basis for Zn

3 M← matrix in SLn(Z) with first column dx
4 M← M with last n− 1 columns scaled by d F generates scaled original lattice
5 return SVP(α,M)1 F first coordinate is a solution
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Proposition 3.1. The output of Algorithm 2 solves the initial simultaneous approximation problem.

Proof. First note that a in line 2 exists. As d is the least common denominator, gcd(dx1, . . . , dxn) and d
are coprime. So take a to be divisible by those primes which divide gcd(dx1, . . . , dxn−1) but not dxn .
Also, since a is an integer, the new value of x defines the same simultaneous approximation problem as
the input.

Coprime entries means dx extends to some M ∈ SLn(Z). (One method is mentioned in the next proof.)
The columns of d M generate dZn, so the same is true if we only scale the last n− 1 columns by d. In
particular, the columns of the new M in line 4 generate dx and dZn, which in turn generate each column.
Thus M defines a basis for the original simultaneous approximation lattice scaled by d .

Finally, the last n−1 columns of M are vectors in dZn, so that M SVP(α,M)≡SVP(α,M)1dx mod dZn.
This verifies that SVP(α,M)1 is the integer we seek. �

Proposition 3.2. Let m > 1 be the maximum magnitude among integers defining x. The reduction in
Algorithm 2 requires O((n+ log m)2) operations on integers of length O(n log m).

Proof. As with Algorithm 1, line 1 requires O(n log m) operations on integers of length O(n log m). The
integer outputs of these operations also have length O(n log m).

Skipping line 2 for now, the i-th column (for i ≥ 2) of M in line 3 can be set to(
b1dx1

gcd(dx1, . . . , dxi−1)
, . . . ,

b1dxi−1

gcd(dx1, . . . , dxi−1)
, b2, 0, . . . , 0

)
(transposed), where b2gcd(dx1, . . . , dxi−1)− b1dxi = gcd(dx1, . . . , dxi ). The determinant of the top-
left i × i minor is then gcd(dx1, . . . , dxi ) by induction. To find b1 and b2 we execute the Euclidean
algorithm on gcd(di x1, . . . , di xi−1) and di xi , where di = lcd(x1, . . . , xi ). But gcd(di x1, . . . , di xi−1) is
at most m times gcd(di−1x1, . . . , di−1xi−1), which divides the greatest common divisor of the numerators
of x1, . . . , xi−1. So for each i the Euclidean algorithm needs O(log m) operations.

Before computing the last column of M, we find a in line 2 to ensure a determinant of 1. As discussed
in the last proof, we can start with a = gcd(dx1, . . . , dxn−1) and replace it with a/gcd(a, dxn) until
nothing changes. This requires O(log a)= O(log m) executions of the Euclidean algorithm, each taking
O(log m) operations.

Scaling all but the first column by d in line 4 takes O(n2) operations. �

We remark that this algorithm adapts to inhomogeneous forms of these problems. To find q0 ∈ Z

with ‖{q0x− y}‖ ≤ αmin×q∈Z‖{qx− y}‖ when qx− y ∈ Zn has no solution, we can perform the same
reduction and finish by calling an oracle which solves the approximate closest vector problem defined
by α, M, and d y.

3B. GDA to SVP. Combining Algorithms 1 and 2 gives an alternative to the Lagarias reduction from
good Diophantine approximation to SVP in [21]. We execute Algorithm 1, but use Algorithm 2 to com-
pute SAP(α/3.06, x) in line 3. By Proposition 2.3, this requires at most dlog2(d/αN )e calls to SVP. And
Proposition 3.2 states that each call requires O((n+ log m)2) operations on integers of length O(n log m).
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Recall that switching from `2 to `∞ decreases a nonzero norm by at most a factor of 1/
√

n. In
particular, by executing this combination of Algorithms 1 and 2 with respect to the `2-norm, we get an
`∞ solution to the initial good Diophantine approximation problem provided we use α/3.06

√
n for SVP.

Lagarias achieves this reduction with the now well-known trick from [22] of reducing the lattice
generated by Zn and x, bumped up a dimension by putting 0 in every (n+1)-th coordinate but x’s.
The ideal value for the last coordinate of x, which is guessed at using bn+ log2 d Nc calls of the form
SVP(α/

√
5n,M) for varying M, is minq∈[N ]‖{qx}‖/N. (The gap inflation approaches

√
n as our guesses

get better.) The Lagarias reduction requires an initial O(n log m) arithmetic operations to compute the
least common denominator, then only one additional operation per call. The integers involved have input
length O(log mn N ).

Whether the benefit of fewer calls to SVP outweighs the increased operations per call depends on the
complexity of the oracle. Ours is an asymptotic improvement when the number of operations performed
by SVP exceeds O((n+ log m)2).

4. Reducing to GDA or SAP

We focus first on the reduction to SAP.

4A. Intuition. Consider an input matrix M ∈Mn(Z) for a short vector problem. Let d = det M, and let
e1, . . . , en denote the standard basis vectors for Zn. If there were one vector, call it b ∈ Zn, for which the
set {Mb, de1, . . . , den} generated the columns of M, our reduction would just amount to finding it. This
is exactly the setup for simultaneous approximation: n+ 1 vectors, n of which are scaled orthonormal.
A solution could be obtained by doing simultaneous approximation on Mb/d , scaling the resulting short
vector by d , and applying M−1 (to comply with Definition 1.1). Unfortunately, unless n ≤ 2 or d =±1,
such a b does not exist. Indeed, the adjugate matrix, adj M = d M−1, has at most rank 1 over Z/pZ

for a prime p dividing d. So at least n− 1 additional vectors are required to have full rank modulo p,
a prerequisite to having full rank over Q. But asking that Mb generate the columns of M alongside
de1, . . . , den is equivalent to asking that b generate Zn alongside the columns of adj M.

What matters is the matrix with columns de1, . . . , den being scaled orthonormal. As such, multiplying
by it or its inverse has no effect on a vector’s relative length. So we plan to find a different set of n
column vectors—a set for which just one additional Mb is needed to generate the original lattice —
which is nearly scaled orthonormal, making the effect of its corresponding matrix multiplication on α
negligible. The initial short vector problem becomes a search for an integer combination of Mb and
these columns, say c1, . . . , cn . We can then solve the simultaneous approximation problem defined by
α and [c1 · · · cn]

−1 Mb. This works as long as multiplying by [c1 · · · cn] changes the ratio between the
lengths of the shortest vector and our output by less than whatever is afforded by the fact that lattice
norms form a discrete set.

An arbitrary lattice may have all of its scaled orthonormal sublattices contained in dZn. So as candi-
dates for the matrix [c1 · · · cn], we look for something of the form cd Id+M A = M(c adj M + A) for
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some c ∈ Z and A ∈Mn(Z). If the entries of A are sufficiently small, then multiplication by cd Id+M A
has a similar effect on relative vector norms as multiplying by cd Id, which has no effect.

We will tailor our choice of c and A so that a coordinate of the simultaneous approximation vector,
(c adj M + A)−1b, is 1/ det(c adj M + A). This admits Proposition 2.1 and hence GDA.

4B. SVP to GDA or SAP. Algorithm 3 uses the following.

Notation 4.1. For polynomials f1=
∑

i f1,i x i and f2=
∑

i f2,i x i with maximum degree d , let C( f1, f2)

denote the matrix of their coefficients,

f1,d 0 f2,d 0
...

. . .
...

. . .

f1,1 · · · f1,d f2,1 · · · f2,d

f1,0 · · · f1,d−1 f2,0 · · · f2,d−1
. . .

...
. . .

...

0 f1,0 0 f2,0


.

The matrix above can determine when f1 and f2 are coprime over Q(x) in lieu of polynomial long divi-
sion, where coefficient growth is exponential without complicated mitigations as in [8]. We demonstrate
this now to give some clarity to the meaning behind lines 5 and 6 of Algorithm 3.

Lemma 4.2. Let f1, f2 ∈ Z[x], not both constant. As an ideal in Z[x], ( f1, f2) contains det C( f1, f2),
which is nonzero if and only if f1 and f2 have no common root in the algebraic closure of Q.

Proof. Let d =max(deg f1, deg f2). Consider the vector in Z2d whose only (perhaps) nonzero entry is
det C( f1, f2) in the last coordinate. This is the image under C( f1, f2) of some nonzero integer vector.
We can split the entries of this vector down the middle to get coefficients for g1, g2 ∈ Z[x] that have
degree at most d − 1 and satisfy det C( f1, f2)= f1g1+ f2g2 ∈ ( f1, f2).

Plugging a common root of f1 and f2 into this last equation, should one exist, shows det C( f1, f2)= 0.
Conversely, suppose f1g1+ f2g2 = 0 and that deg f1 = d ≥ 1. Then g2 must be nonzero to avoid the
same being true of g1, contradicting our choice of nonzero coefficient vector. But g2 has degree at most
d − 1. So f1g1 =− f2g2 implies that at least one of f1’s d roots must be shared by f2. �

Notation 4.3. For a matrix M, let Mi, j denote the entry in its i-th row and j-th column, and let M̌ i

denote its top-left i × i minor.

Line 1 of Algorithm 3 requires knowing the position of a nonzero entry in the input matrix, and line 8
requires knowing the maximum magnitude among entries. For notational convenience, we assume that
Mn,1 is the nonzero maximum.

Let us turn to the for loop, which builds the matrix Section 4A called A.

Lemma 4.4. For i = 2, . . . , n, there is some j ≤ 2i − 2 satisfying the criterion of line 5 in the for loop
iteration corresponding to i .
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Algorithm 3: A reduction from a short vector problem with n ≥ 2 to one call to SAP (gap-preserving) or
GDA under a consistent `p-norm with p ∈ {1, 2,∞}.

input: a ≥ b ∈ N (α = a/b), M ∈Mn(Z) with 0 6= det M and Mn,1 =maxi, j |Mi, j |

output: q0 ∈ Zn with 0< ‖Mq0‖ ≤ αmin×q∈Zn‖Mq‖
1 p← least prime not dividing Mn,1 det M
2 M← x adj M + p Id FM = M(x) has linear polynomial entries
3 for i← 2 to n do
4 Mi,1← Mi,1+ p
5 Mi,i−1← Mi,i−1+ p j with j > 0 minimal F need not compute determinant

so det C((adj M̌ i )i,1, (adj M̌ i )i,2) 6= 0 to test each j ; see Theorem 4.8
6 c← det C((adj M)n,1, (adj M)n,2)
7 c← c/p j with j maximal or p+ 1 if |c| = p j

F make c coprime to p
8 M← M(c j ) with j =

⌈
log|c| a

2(2Mn,1n)3n
⌉

F substitute for x so M ∈Mn(Z)

9 b1, b2← integers with |b1| minimal F that these exist guarantees
so 1= b1(adj M)n,1+ b2(adj M)n,2 M x (line 10) and M generate Zn

10 x← M−1(b1, b2, 0, . . . , 0)
11 q0← SAP(α, x) or GDA(α/n1/p, x, N ) F GDA works since xn = 1/ det M ;

with N = n1/p det M/2α recall Proposition 2.1
12 return M{q0x}

Proof. When i = 2 we are asked to find j for which the linear polynomials M1,1 and M2,1+ p j do not
share a root (by Lemma 4.2). The constant term of M1,1 is p by line 2, meaning it has at most one root.
So asking that j ≤ 2i − 2 = 2 gives enough space to avoid the at-most-one value of j that fails. Now
suppose i ≥ 3 and that the claim holds for i − 1. Let M be its value after line 4 in the for loop iteration
corresponding to i , and let

f1 = (adj M̌ i−1)i−1,1 and f2 = (adj M̌ i−1)i−1,2.

By assumption there are g1, g2 ∈ Z[x] with g1 f1+ g2 f2 = det C( f1, f2) 6= 0. Fix an integer j, and let
h1 = (adj M̌ i )i,1− p j f1 and h2 = (adj M̌ i )i,2− p j f2, the polynomials we hope to make coprime with
the appropriate choice of j. We have[

f2 − f1

g1 g2

] [
h1

h2

]
=

[
f2(adj M̌ i )i,1− f1(adj M̌ i )i,2

g1(adj M̌ i )i,1+ g2(adj M̌ i )i,2− p j det C( f1, f2)

]
.

In the column on the right, where we now focus our attention, p j has been isolated.
For each root of the top polynomial, there is at most one value of j that makes it a root of the bottom.

Thus it suffices to show that f2(adj M̌ i )i,1− f1(adj M̌ i )i,2 is not the zero polynomial. Then its degree,
which is at most 2i − 3, bounds how many values of j can make the right-side polynomials share a root.
As this occurs whenever h1 and h2 share a root, Lemma 4.2 would complete the proof.
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To show that f2(adj M̌ i )i,1− f1(adj M̌ i )i,2 is nonzero, we compute its constant term from the matrix

p 0 · · · 0 0 0
p+ p j2 p 0 0

p p j3 0
...

. . .
...

p 0 p ji−1 p 0
p 0 · · · 0 p j p


. (4-1)

These are the constants in M̌ i after adding p j in the i, i − 1 position — the main diagonal comes from
line 2, the first column comes from line 4, and the second diagonal comes from line 5. To compute h1

or h2, we use cofactor expansion along the bottom row after deleting the last column and the first or
second row. The (i − 2)× (i − 2) minor determinants that are multiplied by the bottom row constant p j

are exactly f1 and f2 up to a sign. What remains sums to (adj M̌ i )i,1 or (adj M̌ i )i,2. So the constant
terms of (adj M̌ i )i,1, (adj M̌ i )i,2, and f2 are pi−1, 0, and p to the power 1+ j3+ · · · ji−1, respectively.
This makes p to the power i + j3+ · · ·+ ji−1 the constant term of f2(adj M̌ i )i,1− f1(adj M̌ i )i,2. �

We remark that by using a large integer instead of x in line 2, the for loop could successively make
pairs of integers coprime rather than polynomials. Then the Euclidean algorithm could test j in line 5;
determinants involving polynomial entries need not be computed. We might expect such an algorithm
to require O(n3 log Mn,1n) operations (this uses that the average ratio with Euler’s phi function, ϕ(n)/n,
is a positive constant), but the provable worst case is bad. The best current asymptotic upper bound on
the size of the interval that must be sieved or otherwise searched to find j is due to Iwaniec [17]. It only
limits the algorithm to O(n7 log Mn,1n) operations. We favored the polynomial approach because of an
easier bound on j (Lemma 4.4) and a better provable worst case (Theorem 4.8).

The next lemma allows the vector in line 10 to pass as b from Section 4A.

Lemma 4.5. With M denoting its value in line 9, gcd((adj M)n,1, (adj M)n,2)= 1.

Proof. By Lemma 4.2, it suffices to prove gcd((adj M)n,1, (adj M)n,2, c)= 1 with c as in line 6. Now let
c′ be c/p j or p+ 1 as in line 7. Recall the constant terms displayed in (4-1), which show that (adj M)n,2
is a power of p modulo c′. This implies gcd((adj M)n,1, (adj M)n,2, c) is a power of p since p - c′. But
the constants added throughout the for loop are multiples of p. So before substituting for x , only the
leading coefficient of (adj M)n,1 might have been nonzero modulo p. With M now the original input
matrix, the leading term is Mn,1 det Mn−2xn−1. By line 1 this is coprime to p whenever the same is true
of the integer substituted for x . �

Lemma 4.6. Let M be the input matrix, let c j be as in line 8, and let A be such that c j adj M + A is
Algorithm 3’s value of M in line 9. Then ‖M A‖op < (2nMn,1)

3n/5n under any `p-norm.

Proof. The operator norm is max‖u‖=1‖M Au‖. Using ‖u‖∞ ≤ 1 gives

‖M Au‖ ≤ n‖M Au‖∞ ≤ n2 max
i, j∈[n]

|(M A)i, j |. (4-2)
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We refer back to (4-1), which displays the entries of A when i = n. Lemma 4.4 says ji ≤ 2i − 2, so
the entries of M A are bounded in magnitude by

max
i, j∈[n]

|Mi, j |max(np+ p2, p+ p2n−2)≤ 2Mn,1 p2n−2
≤ 2M3

n,1 p2n−2. (4-3)

(Recall that n ≥ 2 for this inequality.) Here np+ p2 comes from the first column of A, and p+ p2n−2

comes from the (n−1)-th column.
Now we turn to the size of p. If x ∈ R is such that x#, the product of primes not exceeding x , is larger

than Mn,1|det M |, then it must be that p < x . Rosser and Schoenfeld’s lower bound on Chebyshev’s
theta function, ϑ(x)=

∑
p≤x log p, gives ϑ(x) > 0.231x when x ≥ 2 [28]. For the determinant we use

Hadamard’s bound: |det M | ≤ (Mn,1
√

n)n [15]. So take x = (log M3n
n,1nn)/0.462 (note that x ≥ 2 even

when n = 2 and Mn,1 = 1, allowing for the Rosser–Schoenfeld bound) to get

log x#= ϑ(x) > 0.231x = 1
2 log M3n

n,1nn
≥ log Mn+1

n,1 nn/2
≥ log Mn,1|det M |.

Combining p < x with (4-2) and (4-3) gives ‖M A‖op < 2M3
n,1n2x2n−2. We must show that this is

less than the stated bound of (2nMn,1)
3n/5n. To do this, raise both expressions to the power 1/(n− 1)

and use
( 5

4

)1/(n−1)
≤

5
4 . This simplifies the desired inequality to (log M3

n,1n)2 < 1.366M3
n,1n, which is

true. �

Theorem 4.7. Under the `1, `2, or `∞-norm, the output of Algorithm 3 solves the initial short vector
problem.

Proof. There are two parts to the proof: (1) showing that the algorithm replaces the columns of M with
n+1 vectors that define the same lattice, n of them being nearly scaled orthonormal, and (2) showing that
nearly scaled orthonormal is as good as being scaled orthonormal. Throughout the proof, let M be the
input matrix, let c j be as in line 8, let M ′ be Algorithm 3’s value of M in line 9, and let A=M ′−c j adj M
be the matrix of constants added throughout the for loop (as used in Lemma 4.6 and as shown in (4-1)
when i = n).

For part (1), with b= (b1, b2, 0, . . . , 0) from line 10, Lemma 4.5 gives

x = M ′−1b=
(x1, x2, . . . , 1)

det M ′
. (4-4)

By Cramer’s rule [10], the 1 in the last coordinate is the determinant after replacing the last column
of M ′ by b, so that these n columns generate Zn. This in turn shows that the columns of M M ′ and Mb
generate the input lattice. Also note by Proposition 2.1, that a coordinate of det M ′x being 1 allows for
GDA in place of SAP with N set to n1/p det M ′/2α and α scaled by 1/n1/p.

Instead of finding a short integer combination of Mb and the columns of

M M ′ = c j det M Id+M A, (4-5)

Algorithm 3 uses (M M ′)−1(Mb) = x and the columns of (M M ′)−1(M M ′) = Id. Then M M ′{q0x}
is proposed as a short vector. It is indeed an element of the original lattice since the coordinates
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of M ′{q0x} ≡ q0b mod Zn are all integers. But it must be checked is that M M ′{q0x} is short whenever
{q0x} is. Part (2) of the proof is to make precise the insignificance of the second matrix summand, M A,
in (4-5). We begin by computing how much multiplication by the full matrix in (4-5) is allowed to inflate
the gap without invalidating the output of GDA or SAP.

By Minkowski’s theorem [25], the magnitude of the shortest vector in the original lattice with respect
to the `∞-norm is not more than |det M |1/n. So under an `p-norm with p ∈ N, the shortest vector has
some magnitude, say λ, with (n1/p

|det M |1/n)p
≥ λp

∈ Z. In particular, n|det M |2/n
≥ λ2

∈ Z when
p ∈ {1, 2,∞}. Now, if q ∈ Zn is such that ‖Mq‖2 < (a2λ2

+ 1)/b2, then it must be that ‖Mq‖ ≤ aλ/b
since there are no integers strictly between (aλ/b)2 and (a2λ2

+ 1)/b2. Thus multiplication by M M ′

may harmlessly inflate the gap between the norms of our output vector and shortest vector by anything
less than

√
a2λ2+ 1

bαλ
=

√
a2λ2+ 1

aλ
≥

√
a2n|det M |2/n + 1
a
√

n|det M |1/n
. (4-6)

Scaling does not affect the ratio of vector norms, so to determine the effect of multiplication by (4-5)
it suffices to consider the matrix

Id+M A/c j det M (4-7)

instead. If qmin is a shortest nonzero vector in the simultaneous approximation lattice generated by Zn

and x, a shortest vector after applying (4-7) to this lattice has norm at least (1−‖M A‖op/|c j det M |)‖qmin‖.
Similarly, the vector {q0x} obtained using q0 from line 11 increases in norm by at most a factor of
(1+‖M A‖op/|c j det M |). Combining this with our conclusion regarding (4-6) shows that it suffices to
verify the following inequality holds:

1+‖M A‖op/|c j det M |
1−‖M A‖op/|c j det M |

≤

√
a2n|det M |2/n + 1
a
√

n|det M |1/n
. (4-8)

Now solve for |c j
| to get a lower bound of√

a2n|det M |2/n + 1+ a
√

n|det M |1/n√
a2n|det M |2/n + 1− a

√
n|det M |1/n

·
‖M A‖op

|det M |
<
(5a2n|det M |2/n)‖M A‖op

|det M |
.

Ignoring the powers of |det M | on the right-hand side since 2/n ≤ 1, we see that j in line 8 is chosen
to make the bound above agree exactly with Lemma 4.6. �

Theorem 4.8. Let m = max(a1/n3
,Mn,1). The reduction in Algorithm 3 requires O(n4 log mn) opera-

tions on integers of length O(n4 log mn).

Proof. We will use that finding determinants, adjugates, inverses, or characteristic polynomials of
n × n matrices with entry magnitudes bounded by m requires O(n3) operations on integers of length
O(n log mn). For example, see Danilevsky’s method for the characteristic polynomial [11] and the
Bareiss algorithm for the others [5]. Note that we may then compute determinants of matrices with linear
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polynomial entries in O(n3) operations provided the matrix of linear terms or the matrix of constant terms
is invertible.

In the proof of Lemma 4.6 we showed that the prime p from line 1 is less than (log M3n
n,1nn)/0.462.

So finding it does not contribute to asymptotic complexity.
Now consider the for loop, where we must avoid recomputing the determinant in line 5 for each value

of j in order to meet the prescribed bound on operations.
Let i≥3 and fix some notation: M is its value after line 4, f1=(adj M̌ i−1)i−1,1 and f2=(adj M̌ i−1)i−1,2,

g1 and g2 have degree at most i − 3 and f1g1 + f2g2 = det C( f1, f2) 6= 0, and for some j, h1 =

(adj M̌ i )i,1− p j f1 and h2 = (adj M̌ i )i,2− p j f2. Note for computing (adj M̌ i )i,2 that the constant term
matrix is not invertible (see (4-1)), which may also be true of the linear term matrix. Because this
complicates combining the Bareiss and Danilevsky algorithms, we could find (adj M̌ i )i,2 indirectly by
computing h2 for two values of j that produce an invertible constant term matrix (recall from (4-1) that
f2 has nonzero constant term), and then solving for it.

Call the polynomials in the resulting column vector below h′1 and h′2:[
f2+ p j g1x2i−3

− f1+ p j g2x2i−3

g1 g2

] [
h1

h2

]
=

[
f2(adj M̌ i )i,1− f1(adj M̌ i )i,2− p j det C( f1, f2)x2i−3

g1(adj M̌ i )i,1+ g2(adj M̌ i )i,2− p j det C( f1, f2)

]
. (4-9)

Remark that if j makes h′1 and h′2 avoid a common root, it does so for h1 and h2.
View C(h′1, h′2) as a matrix with linear polynomial entries where p j is the variable. This variable only

appears in the leading term of h′1 and the constant term of h′2. So p j only occurs on the main diagonal
of C(h′1, h′2), where its coefficient is nonzero. In particular, the polynomial det C(h′1, h′2) can be found
in O(n3) operations. Substituting different values of p j into this polynomial until one is nonzero avoids
repeatedly finding determinants. And note that we still need only test up to j = 2i − 2 as stated in
Lemma 4.4 because the determinant of the matrix in (4-9) is a constant (a unit in Q(x)). Thus each for
loop iteration requires O(n3) operations.

The integers composing the linear polynomial matrix entries that begin each for loop iteration are
small powers of p = O(n log Mn,1n) and entries in the adjugate of the input matrix, M. By Hadamard’s
bound they are thus O(n log Mn,1n) in length. Hadamard’s bound also applies to the coefficients of
(adj M̌ i )i,1 and (adj M̌ i )i,2, making their lengths O(n2 log Mn,1n). And it then applies again to make
det C((adj M̌ i )i,1, (adj M̌ i )i,2)) have length O(n3 log Mn,1n). This is our bound on the length of c in line 6
and hence the length of c in line 7. The length of c j in line 8 is then O(max(log a2(2Mn,1n)3n, log|c|))=
O(n3 log mn), with the maximum accommodating the ceiling function. Then a final application of
Hadamard’s bound for lines 9 and 10 makes integer lengths O(n4 log mn). This is therefore a bound
on the number of operations required by the Euclidean algorithm in line 9. �

In [12], Dinur proves the NP-hardness of short vector problems under the `∞-norm when α =
nc/ log log n for some c > 0 by giving a direct reduction from the Boolean satisfiability problem (SAT).
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As a consequence, Theorems 4.7 and 4.8 prove the same for both good Diophantine approximation and
simultaneous approximation problems. (There is no gap inflation for GDA in line 11 under the `∞-norm.)

Corollary 4.9. Good Diophantine approximation and simultaneous approximation problems are NP-
hard under the `∞-norm with α = nc/ log log n for some c > 0. �

This result is known for good Diophantine approximation [9], though the reduction SAT→ SVP→ GDA

completed here is simpler. Chen and Meng adapt the work of Dinur as well as Rössner and Seifert [30] to
reduce SAT to finding short integer vectors that solve a homogeneous system of linear equations (HLS) via
an algorithm from [3], which changes the problem to finding pseudo-labels for a regular bipartite graph
(PSL). The number of equations in the HLS system is then decreased to one (now called SIR), wherefrom
a reduction to GDA is known [29]. Each link, SAT→ PSL→ HLS→ SIR→ GDA, is gap-preserving
under the `∞-norm.

Short vector problems are only known to be NP-hard under the `∞-norm. But there are other hardness
results under a general `p-norm for which Theorems 4.7 and 4.8 can be considered complementary. See
[19] for an exposition.

Another corollary is the reduction from a simultaneous approximation problem to GDA, giving the
final row of Table 1. By Proposition 3.2, Algorithm 2 results in one call to SVP with integers of length
O(n log m), where we can take m to be the maximum magnitude among a1/n4

(still α = a/b) and
the integers defining x. Then Theorem 4.8 implies the reduction to GDA requires O(n4 log mnn) =
O(n5 log m) (absorbing the operations required by Algorithm 2) on integers of length O(n5 log m).

4C. Further discussion. The last algorithm was restricted to an `p-norm for p ∈ {1, 2,∞}. So we will
discuss what happens with a more general approach.

Multiplication by M M ′, shown in (4-7), may change the gap between the length of the shortest vector in
the simultaneous approximation lattice and that of the vector output by GDA or SAP. That this potential
inflation does not invalidate our output relies on the set of vector norms being discrete and α being
rational — facts that were exploited to produce the expression in (4-6). The idea behind the paragraph
preceding (4-6) is to find a nonempty interval (αλ, α′λ), where λ = min×q∈Zn‖Mq‖, that contains no
norms from the lattice defined by M (or even Zn for the interval tacitly given in the proof). This creates
admissible inflation, α′/α, which equals (4-6).

The purpose of restricting to `1, `2, or `∞ is to facilitate finding this interval. Knowing that (bαλ)2 ∈Z

for some b ∈ Z simplifies the search for α′. The same is true for any `p-norm with p ∈ N. But the
immediate analogs of (4-6), (4-7), and (4-8) lead to a replacement for the very last bound used in the
proof of the form

(5pa pn|det M |p/n)‖M A‖op

2|det M |
.

This makes the number of operations needed to execute line 9 depend exponentially on the input length
log p (though it is still polynomial for any fixed p). We have not taken into account, however, the
possibility of a nontrivial lower bound for the difference between large consecutive integers which are
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sums of n perfect p-th powers. Such a bound would allow for a longer interval, (αλ, α′λ), that provably
contains no lattice norms.

These arguments are all in effort to perfectly preserve the gap when reducing to SAP or, when p =∞,
GDA. The situation clarifies if a small amount of inflation is allowed. To solve a short vector problem
with gap α using SAP with gap α′ < α, inequality (4-8) becomes

1+‖M A‖op/|c j det M |
1−‖M A‖op/|c j det M |

≤
α

α′
.

We still need to substitute a power of c for x in line 8 for the purpose of Lemma 4.5. Given these two
constraints, it is sufficient to take M← M(c j ) for

j =
⌈

log|c|
(α+α′)‖M A‖op

(α−α′)|det M |

⌉
,

which can be made more explicit with Lemma 4.6. There is no need to insist that α is rational or impose
a restriction on p ∈ [1,∞] defining the norm.

As a final note, the reduction to SAP again adapts to inhomogeneous forms of these problems while the
reduction to GDA does not. If y ∈Qn, then the algorithm (which now reduces the closest vector problem)
can end by solving the simultaneous approximation problem of finding q0∈Z with ‖{q0x−(M M ′)−1 y}‖≤
αmin×q∈Z‖{qx − (M M ′)−1 y}‖, using the matrix from (4-7). But unless we know that the last coor-
dinate (where the 1 is located in (4-4)) of (M M ′)−1 y is an integer, there is no clear modification to
Proposition 2.1 that permits the use of GDA.
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