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We develop an algorithm to compute paramodular forms of weight 3 as orthogonal modular forms at-
tached to positive definite quinary quadratic forms. For square-free levels we expect that every paramod-
ular form of weight 3 arises in this way.

Introduction

There are many efficient algorithms to compute classical (elliptic) modular forms (the Eichler–Selberg
trace formula [Wad71], the method of modular symbols [Cre97], quaternion algebras and Brandt matrices
[Piz80; Koh01], ternary quadratic forms [Bir91; Tor05; Ram14; HTV20], etc.) These have been used to
compute extensive tables of modular forms [BK75; Cre97; Ste12; Cre19; LMF20].

Paramodular forms are Siegel modular forms for the paramodular group K (N ) (see [PY15]). They
have gained attention in recent years due to the paramodular conjecture of Brumer and Kramer [BK14;
BK19] which relates them to abelian surfaces (see [BPP+19; BK17; BCGP18; CCG19] for recent
progress on this conjecture). Poor and Yuen computed in [PY15] paramodular forms of weight 2 for K (p)
for primes p < 600, and for square-free levels in [PSY17]. These methods compute Fourier coefficients
of paramodular forms; from those one can recover the Hecke eigenvalues, although a large number of
Fourier coefficients are needed. It is possible to compute Hecke eigenvalues without computing Fourier
coefficients by the method of specialization as done in [BPP+19] but this is still expensive.

In this paper we develop an alternative algorithm to compute (Hecke eigenvalues of) paramodular
forms of weight 3 using positive definite quinary quadratic forms. This is a generalization of a method
of Birch to compute classical modular forms using ternary quadratic forms [Bir91; Hei16; HTV20].
Our method is based on a conjecture of Ibukiyama [Ibu07] which generalizes Eichler correspondence to
paramodular forms. In principle it should be possible to extend this method for arbitrary weights ≥ 3.

For prime levels, Ladd shows in his thesis [Lad18] that Ibukiyama conjecture implies that every orthog-
onal modular form corresponds to a paramodular form, in the sense that computing orthogonal modular
forms of level O(3) for a well chosen lattice 3 recovers the Hecke eigenvalues of paramodular forms.
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However, not every paramodular form of prime level comes from an orthogonal modular form with
trivial representation, as we show in Example 13. In fact only the forms with sign +1 in the functional
equation seem to arise in this way. We overcome this limitation in Section 3 by using orthogonal modular
forms with a nontrivial character for the spinor norm (this idea has been proposed for ternary quadratic
forms in [Tor05; Ram14], and completed in [HTV20]). Based on the dimension formulas of Ibukiyama
[Ibu07] and on our computations of spaces of orthogonal modular forms we are led to conjecture that
every paramodular form of prime level corresponds to some orthogonal modular form (see Theorem 14
and Conjecture 15). We expect the same holds for composite square-free levels although we do not have
as much evidence for composite levels as we do for prime levels.

An interesting feature of the space M(O(3̂)) of orthogonal modular forms with trivial character is
the existence of a map 2 from M(O(3̂)) to the space of elliptic modular forms of weight 5

2 . Because of
properties of this map with respect to Hecke operators, when f is an eigenform in the cuspidal subspace
S(O(3̂)) with 2( f ) 6= 0, the Shimura lift of 2( f ) is a modular form of weight 4 whose Gritsenko lift
corresponds to f , as in the following diagram:

S(O(3̂))
OO

Ibukiyama
��

2
// S5/2(4N )

Shimura
��

S3(K (N )) S4(N )Gritsenko
oo

For prime level Hein, Ladd and Tornaría conjectured that, conversely, if 2( f )= 0 then f corresponds
to a paramodular form which is not a Gritsenko lift (see [Hei16, Conjecture 3.5.6]). The analogue of
this conjecture for composite levels fails as shown in Example 10, due to the occurrence of eigenforms
of Yoshida type. We propose Conjecture 12 as an alternative.

With respect to computations, Hein [Hei16] computed, in the case of trivial representation, the orthog-
onal modular forms with rational eigenvalues for quinary lattices of prime discriminant with p < 200,
which (conjecturally) correspond to paramodular forms with +1 in the functional equation. This was
extended by Ladd [Lad18] for p < 400. Using our proposed algorithm we computed the orthogonal
modular forms, with the different characters of the spinor norm, for quinary lattices of square-free
discriminant D < 1000. We expect to have a complete list of all paramodular forms for those levels.
This computations can be found in [RT20].

This article is organized as follows. In Section 1 we recall the basic notions of neighbor lattices and
orthogonal modular forms over Q. In Section 2 we consider quinary orthogonal modular forms over
Q and define the L-functions associated to a Hecke-eigenform in M(O(3̂)). We also generalize the
conjecture of Hein, Ladd and Tornaría to square-free levels.

In Section 3 we introduce a family of nontrivial representations for O(5) using characters of the spinor
norm. We conjecture that with this representation we can obtain all paramodular form of prime level. In
Section 4 we study the orthogonal modular forms of discriminant 5 ·61, classify all the irreducible Hecke-
submodules and conjecture that S3(K (5 · 61)) is spanned by orthogonal modular forms. In Section 5 we
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consider the standard representation and compare the dimensions of spaces of orthogonal modular forms
with this representation and the dimension of spaces of paramodular forms of weight 4.

In Section 6 we match some hypergeometric motives with spaces of orthogonal modular forms with
not square-free discriminant. In Section 7 we mention the algorithms used to carry out our computations.
Finally, in Section 8 we include tables of orthogonal modular forms for prime levels p, with p < 500.

1. Neighbor lattices and orthogonal modular forms

In this section we follow the article of Greenberg and Voight [GV14] and the Ph.D. thesis of Hein [Hei16].

1.1. Neighbor lattices. We fix (V, Q), a positive definite Q-quadratic space.

Definition. Let 3⊂ V be a Z-lattice, and k ≥ 1 an integer. We say that the Z-lattice 5 is a pk-neighbor
of 3 if 3q =5q for all primes q 6= p and there exist Z-module isomorphisms

3/(3∩5)∼=5/(3∩5)∼= (Z/pZ)k .

Remark 1. For k = 1 the previous definition agrees with the classical definition of p-neighbors; see for
example [Bir91].

Lemma 2. Let 3,5 ⊂ V be two Z-lattices both locally unimodular at a prime p. Then, 3 and 5 are
pk-neighbors if and only if 3q =5q for all primes q 6= p and there exists a basis of Vp

e1, . . . , ek, g1, . . . , gn−2k, f1, . . . , fk,

such that

(1) 〈ei , e j 〉 = 〈 fi , f j 〉 = 0,

(2) 〈ei , f j 〉 = δi j ,

(3) 〈ei , g j 〉 = 〈 fi , g j 〉 = 0,

(4) e1, . . . , ek, g1, . . . , gn−2k, f1, . . . , fk is a Zp-basis of 3p, and

(5) pe1, . . . , pek, g1, . . . , gn−2k, p−1 f1, . . . , p−1 fk is a Zp-basis of 5p.

If 3 is unimodular at p, we say that a basis that satisfies conditions (1)–(4) of the previous lemma is
a pk-standard basis for 3p. Consider a hyperbolic lattice Hp = Zpe⊕Zp f with 〈e, e〉 = 〈 f, f 〉 = 0, and
〈e, f 〉 = 1. With respect to this basis, we consider ω =

( p
0

0
p−1

)
∈ O(Hp⊗Qp). We extend ω to

ω⊕k
= ω⊕ · · ·⊕ω︸ ︷︷ ︸

k

∈ O(Vp),

where the i-th entry in the direct sum acts upon the hyperbolic component {ei , fi } given by a pk-standard
basis of 3p. We have that 5 is a pk-neighbor of 3 if and only if there exists σ̂ in O(3̂) such that
5̂= σ̂ ω̂⊕k3̂. Also we have the following double coset decomposition

O(3̂)ω̂⊕k O(3̂)=
⊔
m

p̂m O(3̂), (3)

where each p̂m corresponds to a pk-neighbor of 3.
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Lemma 4. Lattices (locally unimodular at p) in the same genus have the same number of pk-neighbors.

The lemma allows us to define the integers N (3; p, k) = #Neighbors(3; p, k), which are genus
invariants. By [Hei16, Equation 5.3.8] we have N (3; p, k) = O(pk(n−k−1)). When n = 5 we have a
more precise formula, N (3; p, k)= pk−1(p3

+ p2
+ p+ 1) for k = 1, 2 and 3 unimodular at p. When

3 is not unimodular at p, and p ‖ disc(3), then N (3; p, 1)= (p3
+ p2
+ p)± p2.

1.2. Orthogonal modular forms. Let3⊂ V be a Z-lattice with disc(3)= D, let W a finite-dimensional
Q-vector space, and let ρ : O(V )→ GL(W ) a finite-dimensional representation. We define the space of
orthogonal modular forms with level O(3̂) and weight W to be the finite dimensional Q-vector space

M(O(3̂),W )= { f : O(V̂ )→W | f (σ ĝk̂)= ρ(σ) f (ĝ) for all σ ∈ O(V ), ĝ ∈ O(V̂ ), k̂ ∈ O(3̂) }.

The class set of 3 is in bijection with O(V )\O(V̂ )/O(3̂) and we have the double coset decomposition

O(V̂ )=
h⊔

i=1

O(V )x̂i O(3̂),

where h is the class number of 3, so the values of a modular form f ∈M(O(3̂),W ) are determined by
the values f (x̂i ), for i = 1, . . . , h, and the representation ρ. We also have the following isomorphism

M(O(3̂),W ) ∼−→

h⊕
i=1

W O(3i )

f 7−→ ( f (x̂1), f (x̂2), . . . , f (x̂h))

where 3i = x̂i3̂∩ V , for i = 1, 2, . . . , h, are representatives of the class set of 3.
If p is a prime such that 3 is unimodular at p, and k ≥ 1, we define the pk-Hecke operator on

M(O(3̂),W ) given by

(Tp,k f )(ĝ)=
∑

m

f (ĝ p̂m),

where the p̂m are given by the coset decomposition in (3). The Hecke operators Tp,k and Tq,k′ commute
for all p 6= q primes.

We can define an inner product in M(O(3̂),W ) by

〈〈 f, g〉〉 =
h∑

i=1

f (x̂i )g(x̂i )

# O(3i )
,

note that # O(3i ) is finite because V is positive definite. The Hecke operators Tp,k on M(O(3̂),W ) are
self-adjoint with respect to 〈〈− ,−〉〉.

We define the Eisenstein subspace, denoted by E(O(3̂),W )⊂M(O(3̂),W ), to be the subspace of
constant functions of M(O(3̂),W ). The cuspidal subspace, denoted by S(O(3̂),W )⊂M(O(3̂),W ),
is the subspace orthogonal to E(O(3̂),W ). The following lemma is clear.
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Lemma 5. If ρ : O(V ) → GL(W ) is a nontrivial irreducible representation, then M(O(3̂),W ) =

S(O(3̂),W ).

We denote by M(O(3̂)) the space of orthogonal modular forms when W = Q and ρ the trivial
representation, and the cuspidal subspace by S(O(3̂)). Let f1, . . . , fh be the indicator basis of M(O(3̂)),
so that f j (x̂i )= δi j . We have

(Tp,k f j )(x̂i )=
∑

m

f j (x̂i p̂m)=
∑

m

f j (x̂m∗)=
∑

m

δ jm∗,

where x̂i p̂m3̂= σ x̂m∗3̂ for some σ ∈ O(V ) and some m∗. Let Ni j (3; p, k)= (Tp,k f j )(x̂i ), the number
of pk-neighbors of 3i which are isomorphic to 3 j . Then, we can compute Tp,k in the basis f1, . . . , fh

by the formula

Tp,k f j =

h∑
i=1

Ni j (3; p, k) fi .

By Lemma 4 we have

N (3; p, k)=
h∑

j=1

Ni j (3; p, k),

for all i = 1, . . . , h, and f1+ · · ·+ fh is an eigenvector of M(O(3̂)) with eigenvalue N (3; p, k). Also,
f1+ · · ·+ fh is a generator of E(O(3̂)), and we conclude that dimM(O(3̂))= dimS(O(3̂))+ 1.

We want to define Tp,1 for M(O(3̂)) when p ‖ D. Since 3 is not unimodular at p, we cannot use
Lemma 2, so we define it in the indicator basis

Tp,1 f j = f j +

h∑
i=1

Ni j (3; p, 1) fi .

This operator is well defined because Ni j (3; p, 1) is well defined in all cases; see [Tor05, Theorem 3.5].
Sometimes it will be convenient to use the dual basis of M(O(3̂)), such that e j = (1/# O(3i )) f j . We

define the theta series map as the linear map

2 :M(O(3̂))→ M5/2(4D),

given in the dual basis by
2(ei )=2(3i )=

∑
v∈3i

q Q(v).

2. Orthogonal modular forms for O(5)

We consider now positive definite Q-quadratic spaces (V, Q) with dim V = 5. In 2014 Hein, Ladd,
and Tornaría conjectured that, if f ∈M(O(3̂)) is a Hecke-eigenform, with disc(3)= p a prime, and
2( f )= 0, then the L-function associated to f is attached to a paramodular form of weight 3 which is
not a Gritsenko lift. This can be found in [Hei16, Conjecture 3.5.6]. Also, Hein [Hei16] computed the
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good Euler factors for primes less than 100 for all the forms with rational eigenvalues for prime levels
up to 200, and Ladd [Lad18] computed the good Euler factors for odd primes up to 31 for all the forms
with rational eigenvalues for prime levels up to 400.

As dim V = 5 we only have pk-neighbors for k = 1, 2. Given f ∈M(O(3̂)) a Hecke-eigenform and
p prime, let λp,1 and λp,2 be the eigenvalues of Tp,1 and Tp,2 for f . We define its (spin) L-function by
the Euler product

L( f, s) :=
∏

p prime

L p( f, p−s)−1,

where the local Euler factors are given by

L p( f, X) := 1− λp,1 X + (λp,2+ 1+ p2)pX2
− λp,1 p3 X3

+ p6 X4, if p -D. (6)

This is obtained by considering the Satake polynomial on SO(5), found in Murphy [Mur13, page 76],
with a suitable change of variable. And

L p( f, X) := (1+ εp pX)(1− (λp,1+ εp p)X + p3 X2), if p ‖ D, (7)

where the local root number εp = c(Vp). Here c(Vp) is the Witt invariant of V at p as defined by Lam
in [Lam05, page 117]. Note that for dim V = 5 it coincides for all odd p with the Hasse invariant as
defined in Cassels [Cas78, Chapter 4], but is the opposite for p = 2 (see [Lam05, Proposition 3.20]).
The last polynomial is similar to the one found in [Ibu07, Theorem 4.1]. We define it this way, along
Tp,1 for p ‖ D so that the analogue formula for L p in the next section, in which we use a nontrivial one
dimensional representation, is symmetrical to this one.

When D is square-free it is conjectured that the L-functions satisfy the functional equation

L̃( f, s)= L̃( f, 4− s),

where

L̃( f, s)=
(

D
π2

)s/2

0

(
s− 1

2

)
0

(
s
2

)2

0

(
s+ 1

2

)
L( f, s). (8)

Example 9 (D=61). Let the quadratic space V =Q5, and Q= x2
+xy−xt+y2

−yt+z2
+2w2

−wt+3t2

a quadratic form of discriminant 61, and let 3= Z5. This is the first example of prime discriminant in
O(5) for which the theta series map on the genus has a nontrivial kernel, of dimension 1. As noted in
[Hei16], there exists a Hecke-eigenform f ∈M(O(3̂)) such that 2( f ) = 0. Also the L factors of f
for 2, 3, 5 match those of the nonlift paramodular form of level 61 as computed by Ash, Gunnels and
McConnell in [AGM08, Section 4] (see also Poor and Yuen [PY15, Section 8]).

By the formulas of Ibukiyama [Ibu07] we have

dim S3(K (61))= dimS(O(3̂))= dim S−4 (61)+ dim ker2.

Therefore we expect the correspondence from S(O(3̂)) to S3(K (61)) is a bijection.
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Example 10 (D = 55). We consider the quadratic space V =Q5, Q = x2
+ xy+ y2

+ z2
+ 2t2

+ yw+
zw+ tw+ 3w2, and 3=31 = Z5. The Hasse invariant of the genus at 5 is +1, and at 11 is −1. There
are 3 other Z-lattices in the genus of 3, namely 32,33,34. The quadratic forms associated to the bases
of 3i , for i = 2, 3, 4, are

Q2 = x2
+ xy+ y2

+ xz+ z2
+ 3t2

+ zw+ 2tw+ 3w2,

Q3 = x2
+ xy+ y2

+ xz+ z2
+ yt + 3t2

+ zw+ 3w2,

Q4 = x2
+ y2
+ 2z2

+ yt + 2zt + 2t2
+ xw+ yw+ zw+ tw+ 2w2.

Let f = 2e1− 2e2+ e3− e4 ∈M(O(3̂)), which is a Hecke-eigenform, where {e1, e2, e3, e4} is the
dual basis of M(O(3̂)). It is easy to see that 2( f )= 22(31)− 22(32)+2(33)−2(34)= 0. This
is because the Sturm bound for the space M5/2(4 · 55) is 90 (note that the Sturm bound of half-integral
weight is the same as the integral case; see for example [GK13, Lemma 3.1]), and the first 90 coefficients
of 2( f ) are 0.

By [IK17] we know that dim S3(K (55)) = 3. On the other hand the space of classical cusp forms
of weight 4, level 55 and sign −1 has dimension 3, this can be found in [LMF20]. There are two such
forms, one of dimension 1, and one of dimension 2. We conclude that the space S3(K (55)) is spanned by
Gritsenko lifts. We verified that f is not a Gritsenko lift by looking at its eigenvalues, and we conclude
that the conjecture mentioned is no longer valid when D is not prime.

We computed the eigenvalues of Tp,1 of f for p < 300, also the eigenvalues of Tp,2 for p < 50, and
we conclude.

Theorem 11. For p < 50, p 6= 5, 11

L p( f, X)= (1− pap X + p3 X2)(1− bp X + p3 X2),

where ap is the p-th Fourier coefficient of the Hecke-eigenform of weight 2 and level 11, g11, and bp is
the p-th Fourier coefficient of the Hecke-eigenform of weight 4 and level 5, g5.

Also, for p < 300

L p( f, X)= 1− (pap + bp)X + O(X2).

The above theorem leads us to conjecture that L( f, s) = L(g11, s − 1)L(g5, s), so that f should
correspond to some Siegel modular form of Yoshida type. By the previous reasoning f cannot correspond
to a form in S3(K (55)).

Conjecture 12. Let f ∈M(O(3̂)) be a Hecke-eigenform, with D square-free and 2( f ) = 0. Then f
corresponds either to a paramodular form of weight 3 which is not a Gritsenko lift or to a modular form
of Yoshida type as in the example above.

Example 13. (D = 167) Let V =Q5 and

Q167 = x2
+ xy+ y2

+ z2
+ xt + zt + t2

+ tw+ 34w2,
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a quinary quadratic form with discriminant 167. The genus of 3= Z5 has 19 isometry classes, so we
have that dimS(O(3̂)) = 18. On the other hand we have dim S3(K (167)) = 19, and we see that the
correspondence from S(O(3̂)) into S3(K (167)) is not surjective. According to [GPY19, Table 1] this is
the first known case of a paramodular newform of weight 3 with sign −1 in the functional equation. See
also [AGM10, Table 4].

3. The missing forms

As seen in the previous example, for a prime p, not all forms in S3(K (p)) correspond to forms in
S(O(3̂)), with disc(3) = p. Moreover, the forms in S(O(3̂)) have sign +1 in their associated L-
function. To find the remaining paramodular forms we introduce a representation using the spinor norm.
With this representation, we can obtain orthogonal modular forms with sign −1 in their associated L-
function. See [HTV20] for a more detailed presentation of this idea in the case of ternary quadratic
forms.

If d | D, we define the character νd :Q
×

>0/Q
×2
>0→ {±1}, defined in primes by

νd(p)=
{
−1 if p | d,

1 otherwise.

We define the representation ρd : O(V )→ {±1} ⊂Q× ∼= GL(Q) by

ρd(σ )= νd(θ(±σ)) if σ ∈ O±(V ),

where θ : O+(V )→Q×/(Q×)2 is the spinor norm. We denote the space of orthogonal modular forms
for this representation Md(O(3̂)), and the cuspidal subspace by Sd(O(3̂)). In this case

Md(O(3̂))∼=
h⊕

i=1

QO(3i ),

where QO(3i ) =Q if and only if νd(σ )= 1 for all σ ∈ O+(3i ).
Let {t1 < · · ·< thd } = {t :Q

O(3t ) =Q}, and ft j ∈Md(O(3̂)) such that ft j (x̂i )= δt j i , so { ft1, . . . , fthd
}

is a basis of Md(O(3̂)).
If p is a prime such that 3 is unimodular at p, and k ≥ 1, by definition of the Hecke operator we have

(Tp,k ft j )(x̂i )=
∑

m

ft j (x̂i p̂m)=
∑

m

ρd(σ ) ft j (x̂m∗)=
∑

m

ρd(σ )δt j m∗,

where x̂i p̂m3̂= σ x̂m∗3̂. Henceforth, to compute (Tp,k ft j )(x̂i ), we sum ρd(σ ) over σ ∈ O(V ) such that
σ5m =3t j , where the 5m are the pk-neighbors of 3i , and we define that sum as N d

i t j
(3; p, k). We get

the formula

Tp,k ft j =

hd∑
i=1

N d
ti t j
(3; p, k) fti .
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We define Tp,1 for Md(O(3̂)) when p ‖ D by

Tp,1 ft j = νd(p)
(

ft j +

hd∑
s=1

N d
ti t j
(3; p, 1) fti

)
.

Given a Hecke-eigenform f ∈ Sd(O(3̂)) we want to define its (spin) L-function. As before, we define
it by the Euler product

L( f, s)=
∏

p

L p( f, p−s)−1

where L p is defined with the same equation as (6), if p -D. When p ‖ D we use (7), where the local
root number is εp = νd(p) c(Vp). When D is square-free we conjecture that the L-function satisfy the
functional equation

L̃( f, s)= νd(D) L̃( f, 4− s),

where L̃ is defined as (8).

Example 13 (D = 167, continued). For d = p we have dimS167(O(3̂))= 1, and

dim S3(K (167))= dimS(O(3̂))+ dimS167(O(3̂)).

Let f ∈ S167(O(3̂)), f 6= 0. It is a Hecke-eigenform because the dimension of the space is 1. In Table 1
we show the Hecke-eigenvalues of Tp,1 for f with p < 500. And in Table 2 the Hecke-eigenvalues of
Tp,2 for f with p < 50. With the previous data we constructed an L-function in PARI/GP [PAR18] using
the routine lfuncreate providing the first 502 Dirichlet coefficients, and verified by the lfuncheckfeq
routine, returning a verification accuracy of 90 bits of precision.

3.1. A conjecture for prime level. Let p prime, and 3p be a lattice in the unique genus of quinary
quadratic forms of discriminant p. We verified computationally the following theorem.

Theorem 14. For p < 7000

dim S3(K (p))= dimS(O(3̂p))+ dimSp(O(3̂p)).

Which leads us to the following conjecture.

Conjecture 15. For prime p there is a Hecke-equivariant isomorphism

S3(K (p))∼= S(O(3̂p))⊕Sp(O(3̂p)).

Also, S(O(3̂p)) correspond to the forms of S3(K (p)) such that their associated L-function has sign +1
in its functional equation, and Sp(O(3̂p)) correspond to the forms such that their associated L-function
has sign −1 in its functional equation.
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p λp,1 p λp,1 p λp,1 p λp,1 p λp,1

2 −8 71 −481 167 −2707 271 2954 389 5316
3 −10 73 −744 173 −182 277 −8334 397 4324
5 −4 79 927 179 2568 281 −2942 401 −4679
7 −14 83 −632 181 −2804 283 6360 409 −3476

11 −22 89 −297 191 −3035 293 −856 419 −910
13 −4 97 2 193 583 307 3548 421 3552
17 −47 101 −992 197 2276 311 −6322 431 −4878
19 −12 103 −1222 199 6754 313 −9443 433 15213
23 41 107 1436 211 360 317 108 439 −6909
29 50 109 −954 223 3569 331 1596 443 −7130
31 −504 113 19 227 −3346 337 −2129 449 12908
37 −102 127 516 229 2220 347 1856 457 −4005
41 174 131 −258 233 −2780 349 480 461 −7334
43 30 137 1080 239 −3878 353 1704 463 −77
47 42 139 1030 241 −819 359 4601 467 12248
53 156 149 −974 251 6112 367 6298 479 6447
59 −252 151 −1119 257 −5343 373 −4998 487 −14197
61 472 157 1152 263 −808 379 7706 491 1960
67 106 163 108 269 3592 383 −18293 499 3288

Table 1. Hecke-eigenvalues of Tp,1 for f ∈ S167(O(3̂)), p < 500.

4. Composite levels

When D is composite, as already seen in Example 10, the space of orthogonal modular forms includes
Yoshida lifts, which do not correspond to paramodular forms.

In this section we investigate orthogonal modular forms for D = 305= 5 · 61. We have two genera
of quintic positive definite quadratic forms, namely, let 31 and 32 be lattices of dimension 5 such that
disc(3i )= 5 · 61 and

ε5(31)=−1

ε61(31)=+1
,

ε5(32)=+1

ε61(32)=−1
.

We computed Sd(O(3̂i )), for d ∈ {1, 5, 61, 5 · 61}, i = 1, 2, as well as Tp,1 and Tp,2 for p prime
p < 20, with the convention that

S1(O(3̂i )) := S(O(3̂i )).

p λp,2 p λp,2 p λp,2 p λp,2 p λp,2

2 10 7 −9 17 260 29 −187 41 800
3 11 11 −67 19 41 31 2744 43 442
5 −44 13 −158 23 −198 37 −730 47 −5052

Table 2. Hecke-eigenvalues of Tp,2 for f ∈ S167(O(3̂)), p < 50.
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A-L Traces

ε5 ε61 Dim ⊂ ker2 λ2,1 λ3,1 λ5,1 λ7,1 λ11,1

A1 − + 8 Yes 1 −21 12 −28 −10
S1(O(3̂1)) A2 − + 9 No 57 119 69 505 1338

A3 − + 13 No 73 129 455 647 1660

S61(O(3̂1)) B1 − − 1 −4 −12 −4 9 −13

C1 + − 1 −2 2 −2 −19 21

S5·61(O(3̂1))
C2 + − 1 2 −6 10 −3 29
C3 + − 8 3 −27 −6 −58 −54
C4 + − 13 81 157 325 669 1652

D1 + − 1 No 2 14 25 62 164
D2 + − 1 Yes −7 −3 28 −9 −4
D3 + − 1 Yes −2 2 −2 −19 21

S1(O(3̂2))
D4 + − 1 Yes 2 −6 10 −3 29
D5 + − 3 Yes −10 12 −20 −3 239
D6 + − 6 No 29 59 314 309 612
D7 + − 8 Yes 3 −27 −6 −58 −54
D8 + − 13 No 81 157 325 669 1652

S5(O(3̂2))
E1 − − 1 −7 −3 −22 −9 −4
E2 − − 1 −4 −12 −4 9 −13

S61(O(3̂2)) F1 + + 1 −6 −4 −20 13 −23

S5·61(O(3̂2))
G1 − + 8 1 −21 12 −28 −10
G2 − + 13 73 129 455 647 1660

Table 3. Decomposition of Sd (O(3̂i )), with disc(3i )= 5 · 61.

The decomposition of these spaces is shown in Table 3. We show the dimensions of the subspaces, the
local root numbers, for d = 1 whether they are in the kernel of the theta map, and the traces of the
eigenvalues λp,1 for p ≤ 11.

The subspaces A2 and D1 correspond to the classical modular forms of weight 4 and sign + of levels
61 and 5 respectively ( 61.4.a.b and 5.4.a.a in [LMF20]). By this we mean that λp,1 = ap+ p+ p2

where ap is the eigenvalue of the classical modular form, just as for Gritsenko lifts, but since the sign is
+ they do not lift to S3(K (D)).

The subspaces D5 and F1 are of Yoshida type as in Example 10 (D5 corresponds to the pair 61.2.a.b
and 5.4.a.a , and F1 corresponds to the pair 61.2.a.a and 5.4.a.a ). By [Sch18] they also do not
lift to S3(K (D)).

The subspaces A3, C4, D6, D8 and G2 correspond to classical modular forms of weight 4 and sign −
of level 61 (for D6) and 305 (for the other four), so they appear as Gritsenko lifts in S3(K (D)). Also A3

and G2, C4 and D8 lift from the same space.

http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/61.4.a.b
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/5.4.a.a
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/61.2.a.b
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/5.4.a.a
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/61.2.a.a
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/5.4.a.a
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The subspaces D2 and E1 come from the nonlift orthogonal modular form in S(O(3̂61)) (see Example 9).
The subspace D2 has sign −, and E1 has sign +, and the eigenvalues λ5,1 are different, and they have
the same eigenvalues otherwise. The subspaces A1, B1, C1, C2, C3, D3, D4, D7, E2 and G1 are nonlifts.
Also, we conjecture that A1 and G1, B1 and E2, C1 and D3, C2 and D4, and C3 and D7 are isomorphic
as Hecke-modules.

By the formulas found in [IK17] dim S3(5 · 61) = 53. By counting dimensions and the previous
descriptions, we conjecture

S3(K (5 · 61))∼= A1⊕ B1⊕C1⊕C2⊕C3⊕ D2⊕ E1⊕ A3⊕C4⊕ D6

We expect that, for square-free D, the space S3(K (D)) is always spanned, as Hecke module, by
orthogonal modular forms corresponding to quinary lattices of discriminant D as in this example, which
would give a nice algorithm to compute (the eigenvalues of) all paramodular forms of square-free level.

5. Paramodular forms of higher dimension

Prompted by a question of Eran Assaf we consider the proper standard representation of O(5)

std+ : O(V )→ GL(V )

σ 7→ det(σ )σ

If disc(V )= p, for a prime p, we also consider the representation std+p := std+⊗ρp. We computed the
dimensions of S(O(3̂p), std+p ) and S(O(3̂p), std+), for primes p < 100, as seen in Table 4. We can see
that

dim S4(K (p))= S(O(3̂p), std+p )+S(O(3̂p), std+).

As before we have the Gritenko lift from S−6 (p) to S4(K (p)). We note that the first prime such that
the difference of the dimensions of the mentioned spaces is 1 is p = 31. We conjecture that there is an
eigenform in S(O(3̂31), std+31) corresponding to a nonlift paramodular form in S4(K (31)), with sign +
in the functional equation of its spin L-function.

We also note that the first p where dimS(O(3̂p), std+) > 0 is 83. We conjecture that the eigenform in
S(O(3̂83), std+) correspond to a nonlift paramodular form in S4(K (83)), with sign − in the functional
equation of its spin L-function.

In future work we plan to compute the decomposition of these spaces for weights higher than 4.

6. Hypergeometric motives

Hypergeometric motives with Hodge vector (1, 1, 1, 1) are geometric objects which are (conjecturally)
expected to correspond to Siegel modular forms of weight 3. For an introduction to hypergeometric
motives see [Rob15]. David Roberts (personal communication, 2018) has computed a list of some such
hypergeometric motives with conductors at most 400. David Yuen and Chris Poor have found matching
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p 2 3 5 7 11 13 17 19 23 29 31 37

dim(S(3̂p), std+p ) 0 0 0 1 1 2 2 3 3 3 6 8
dim(S(3̂p), std+) 0 0 0 0 0 0 0 0 0 0 0 0

dim S4(K (p)) 0 0 0 1 1 2 2 3 3 3 6 8
dim S−6 (p) 0 0 0 1 1 2 2 3 3 3 5 7

p 43 47 53 59 61 67 71 73 79 83 89 97

dim(S(3̂p), std+p ) 9 8 10 11 16 17 15 21 22 18 23 32
dim(S(3̂p), std+) 0 0 0 0 0 0 0 0 0 1 0 0

dim S4(K (p)) 9 8 10 11 16 17 15 21 22 19 23 32
dim S−6 (p) 8 7 9 9 11 13 11 14 14 14 15 19

Table 4. Dimensions of spaces of orthogonal modular forms for std+p and std+, paramodular forms
S4(K (p)) and modular forms S−6 (p) for p < 100

Siegel modular forms for four cases with square-free conductor: 182, 205, 255, and 257. Also, Ladd
[Lad18, page 24] found an orthogonal modular form such that the odd Euler factors of its L-function
coincides with the Euler factors of the L-series of the hypergeometric motive of conductor 257.

The remaining four cases provided by Roberts have not square-free conductors 128, 378, 384 and 256.
For the first three we have found Hecke-eigenvectors f in S(O(3̂)), such that the first 50 coefficients
of the L-function of f coincide with the coefficients of the L-function of H . The coefficients of the
L-function of H were computed using MAGMA [BCP97] as in [Rob15]. For the local Euler factors
with p2

| disc(Q) we used the one given by the L-function of the hypergeometric motive.

(1) For the hypergeometric motive H of conductor 128, with data A = [2, 2, 8], B = [1, 1, 4, 4], t = 1,
and L2(x)= 1+ 2x + 8x2. The quadratic space is Q5 with

Q = x2
+ xy+ y2

+ z2
+ xt + zt + t2

+ zw+ 26w2, disc(Q)= 128= 27, and 3= Z5.

(2) For the hypergeometric motive H of conductor 378, with data A = [3, 2, 2], B = [1, 1, 6], t = 64,
and L3 = 1+ 3x . The quadratic space is Q5 with

Q = x2
+ xy+ y2

+ z2
+ xt + zt + t2

+ zw+ 76w2, disc(Q)= 378= 2 · 33
· 7, and 3= Z5.

(3) For the hypergeometric motive H of conductor 384, with data A = [2, 2, 2, 2] B = [1, 1, 1, 1],
t = 1/4, and L2 = 1. The quadratic space is Q5 with

Q = x2
+ xy+ y2

+ xz+ 2z2
+ xt + 2t2

+ 12w2, disc(Q)= 384= 27
· 3, and 3= Z5.

We have not been able to find matching Hecke-eigenvectors in S(O(3̂)) for the hypergeometric motive
of conductor 256, with data

A = [2, 2, 2, 2, 4], B = [1, 1, 8], t = 1, and L2 = 1− 2x .
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The Euler factors for this motive can be computed from the given data using MAGMA:

> R<x> := PolynomialRing(Integers());
> L:=LSeries(HypergeometricData([2, 2, 2, 2, 4], [1, 1, 8]), 1:
> BadPrimes:=[<2, 8,1-2*x>]);
> EulerFactor(L, 3);
729*x^4 - 54*x^3 - 2*x^2 - 2*x + 1

As a reference, the first Euler factors are

L2 = 1− 2x,

L3 = 1− 2x − 2x2
− 54x3

+ 729x4,

L5 = 1+ 12x + 142x2
+ 1500x3

+ 15625x4.

7. Algorithms

To carry out the computations mentioned throughout the article we relied on [Hei16], and Greenberg and
Voight [GV14]. Hein gives a very detailed description to compute spaces of orthogonal modular forms
over totally real number fields, as well as their Hecke-operators for good primes.

We implemented the algorithms to compute M(O(3̂)) and Md(O(3̂)), as well as Tp,k for k = 1, 2,
in Sage [Sag19]. One of the most important parts of the algorithm to compute Tp,k relies on isomor-
phism testing of quadratic forms, for which Sage uses PARI [PAR18], which implements an algorithm
of Plesken and Souvignier [PS97]. To compute the representation given in Section 3, we implemented a
function to compute the spinor norm based in Example 8 in [Cas78, page 30]. Cassels give an algorithm
to decompose an autometry A of a positive definite quadratic space V of dimension n as a product of at
most n transpositions τvi , vi ∈ V . The spinor norm is computed as the product of the norm of vi modulo
squares. In our case, any proper autometry is a product of at most 4 transpositions. The implemented
code can be found in [Ram20].

To do the computations of Theorem 14, we did a random search of quinary positive definite quadratic
forms of prime discriminant. For each prime p < 7000 we found a representative of the unique genus of
discriminant p. To find the matches of hypergeometric motives of Section 6, we used tables of Nipp of
reduced regular primitive positive-definite quinary quadratic forms over Z [Nip].

8. Tables

In Tables 5 and 6 we show the orthogonal modular forms from S(O(3̂p)), Sp(O(3̂p)) for p < 300 that
are not Gritsenko lifts. These tables can be found in [RT20], as well as for squarefree D < 1000. We
include the dimension and the traces of λp,1 for p ≤ 13 and λp,2 for p ≤ 5. The rational ones for d = 1
and p < 200 were first computed by Hein [Hei16], and for p < 400 by Ladd [Lad18].
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p d label dim λ2,1 λ3,1 λ5,1 λ7,1 λ11,1 λ13,1 λ2,2 λ3,2 λ5,2

61 1 61a 1 −7 −3 3 −9 −4 −3 7 −9 −9

73 1 73a 1 −6 −2 0 7 −66 16 6 −9 0

79 1 79a 1 −5 −5 3 15 26 −15 2 4 −10

89 1 89a 1 −4 −6 16 −17 −2 −46 2 −6 27

97 1 97a 2 −9 −4 −4 16 −64 24 6 −14 4

101 1 101a 2 −7 −11 22 −32 46 −54 2 0 −21

103 1 103a 2 −9 −2 −15 26 −9 29 5 −10 −30

109 1 109a 3 −10 −15 −7 37 27 20 −3 7 −20

113 1 113a 1 −3 −4 8 4 −4 −40 2 −4 −4

127 1 127a 3 −9 −9 −12 45 18 69 0 6 −12

131 1 131a 2 −6 −4 8 −10 64 −84 4 −8 −4

137 1 137a 2 −4 −10 12 0 16 −8 0 8 12

139 1 139a 4 −14 −4 −22 14 −6 76 4 −10 −26

149 1 149a 4 −6 −23 16 −17 77 −9 −6 12 −15

151 1 151a 5 −12 −17 −33 57 81 75 −9 12 −28

157 1 157a 2 6 2 −14 8 −36 46 2 −22 −12
1 157b 5 −15 −12 0 −11 9 217 3 16 −78

163 1 163a 4 −10 −4 −16 38 4 84 2 −8 −12

167 167a 1 −8 −10 −4 −14 −22 −4 10 11 −44
167 1 167b 1 −2 0 −2 2 −14 −34 2 −17 16

1 167c 2 −3 −9 2 3 92 −41 −3 12 −28

173 173a 1 −8 −9 −10 −4 −4 −72 10 7 −3
173 1 173b 1 −2 −1 0 −16 −24 2 0 −23 −9

1 173c 4 −7 −15 14 −27 92 43 −2 22 −90

179 1 179a 4 −6 −10 −6 2 134 −134 −2 −8 −32

181 1 181a 10 −27 −16 −14 −38 59 249 0 −24 −91

191 1 191a 2 −3 −6 −7 −23 93 −19 −5 12 −10
1 191b 4 −6 −10 8 10 126 −136 2 −12 −52

193 1 193a 10 −15 −26 −38 56 −78 200 −11 −2 26

197 197a 1 −7 −10 −8 5 2 −66 7 14 −2

197 1 197b 1 1 −8 9 23 −12 −38 1 6 −24
1 197c 2 −4 −4 0 −20 78 −10 −4 −6 −42
1 197d 3 −2 −13 0 −19 25 101 −5 14 −6

199 1 199a 10 −27 −8 −43 41 33 170 1 −22 −120

Table 5. Forms in Sd (O(3̂p)) for d = 1, p and p < 200.
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p d label dim λ2,1 λ3,1 λ5,1 λ7,1 λ11,1 λ13,1 λ2,2 λ3,2 λ5,2

211 1 211a 10 −18 −16 −48 38 24 118 −12 −8 16

223 223a 1 −6 −11 6 −28 8 −42 6 13 −33
223 1 223b 1 −2 1 −8 −6 −30 36 −2 −17 5

1 223c 10 −22 −4 −47 72 40 175 2 −6 −74

227 227 227a 2 −13 −18 −14 −22 −56 −15 13 12 16
1 227b 6 −7 −8 −6 −14 92 −85 −3 −12 −46

1 229a 1 −2 −1 −9 −2 −13 24 −5 −12 −18
229 1 229b 1 0 −5 17 −40 57 10 −1 −4 30

1 229c 14 −33 −18 −17 7 −64 316 2 −20 −136

233 233a 1 −6 −10 −7 4 −22 −40 5 10 22

233 1 233b 1 0 −2 8 −6 −38 32 2 −14 −6
1 233c 4 −4 −12 −4 −28 24 −96 0 0 −8
1 233d 5 −2 −16 −9 −10 72 76 −6 14 −18

239 239 239a 1 −6 −9 −8 10 −49 7 6 13 −13
1 239b 10 −5 −30 −14 −9 266 −164 −14 1 −75

241 1 241a 18 −31 −32 −38 −14 −146 302 −14 −54 −88

251 251a 1 −6 −8 −11 6 −63 2 6 3 −15
251 1 251b 1 −2 −2 9 −20 39 18 −4 3 17

1 251c 10 −14 −4 −4 −36 222 −202 6 −28 −62
1 257a 1 −1 0 −4 −8 24 12 −2 −8 −52

257 257 257b 2 −13 −13 −26 −16 −9 −51 14 0 18
1 257c 12 −13 −23 24 −82 1 −23 −5 −28 −6

263 263 263a 2 −11 −20 −15 −3 −10 −23 7 26 −2
1 263b 11 −7 −25 −8 −10 206 −78 −10 6 −14

269 269a 1 −7 −4 −20 −4 4 49 8 0 23

269 269 269b 1 −5 −10 −8 20 −60 −75 4 12 −25
1 269c 1 −1 2 −1 8 21 30 1 6 −10
1 269d 15 −20 −28 67 −145 114 14 −3 −52 −77

271 271 271a 1 −5 −10 2 −10 −27 −25 5 13 −25
1 271b 19 −35 −19 −70 81 −20 245 −13 −25 −83

277 277 277a 1 −5 −10 −1 −10 38 −94 4 13 0
1 277b 22 −25 −35 −44 48 −104 438 −19 −7 −56

281 281 281a 1 −6 −6 −16 6 −26 14 6 2 29
1 281b 18 −4 −50 8 −116 142 −96 −23 −20 −42

283 283a 1 −6 −6 −6 −29 15 −47 7 −4 −24

283 283 283b 1 −4 −14 8 −17 −15 −33 1 22 8
1 283c 1 −2 −2 6 −7 −11 33 −5 0 −24
1 283d 17 −26 2 −74 85 −95 213 1 −36 −82

293 293 293a 4 −24 −27 −57 −14 −7 −94 21 13 36
1 293b 17 −13 −36 49 −117 37 99 −14 −11 −80

Table 6. Forms in Sd (O(3̂p)) for d = 1, p and 200< p < 300.
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