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Brianna Sorenson, Jonathan Sorenson, and Jonathan Webster

Let p(n) denote the smallest prime divisor of the integer n. Define the function g(k) to be the smallest
integer > k+ 1 such that p

((g(k)
k

))
> k. We present a new algorithm to compute the value of g(k), and

use it to both verify previous work and compute new values of g(k), with our current limit being

g(375)= 12 86399 96537 88432 18438 16804 13559.

We prove that our algorithm runs in time sublinear in g(k), and under the assumption of a reasonable
heuristic, its running time is

g(k) exp[−c(k log log k)/(log k)2(1+ o(1))] for c > 0.

1. Introduction

Let p(n) denote the smallest prime divisor of the integer n, and define the function g(k) to be the smallest
integer > k+ 1 such that p

((g(k)
k

))
> k. So we have g(2)= 6 and g(3)= g(4)= 7.

We begin with a discussion of previous work on g(k), then state our new results, and finally outline
the rest of this paper.

1.1. Previous work. Paul Erdős introduced the problem of estimating the function g(k) in 1969 [4].
He, along with Ecklund and Selfridge [2] showed that g(k) > k1+c for a small constant c, showed that
g(k) < ek(1+o(1)), and tabulated g(k) up to k = 40, plus g(42), g(46), and g(52).

Scheidler and Williams [15] described how to use Kummer’s theorem to construct a sieving problem
to compute g(k), and they proceeded to find g(k) for all k ≤ 140. Five years later, Lukes, Scheidler, and
Williams [11] improved their sieve, used special-purpose hardware, and computed g(k) for all k ≤ 200.

Successive analytic improvements on lower bounds of g(k) have been proved by [3; 6; 10], where the
strongest result known, due to Konyagin, is

g(k) > kc log k for c > 0.

We are aware of no further results on g(k) that postdate 1999.
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1.2. Definitions and new results. In computing g(k) for k ≤ 200, the authors of [15; 11] used Kummer’s
theorem to construct a sieving problem.

Theorem 1.1 (Kummer). Let k < n be positive integers, and let p be a prime ≤ k. Let t be a positive
integer with t ≥ blogp nc. Write

k =
t∑

i=0

ai pi and n =
t∑

i=0

bi pi

as the base-p representations of k and n, respectively. Then p does not divide
(n

k

)
if and only if bi ≥ ai

for i = 0, . . . , t .

For each prime p ≤ k, this theorem gives congruences g(k) must satisfy. Our approach is similar
to [15; 11], but we selectively choose enough prime power moduli so that we expect g(k) to be among
the residues. This approach is a search for a least residue and avoids explicit sieving. We accomplish
this by using the space-saving wheel which was described in [16]. This wheel data structure has been
successfully used in other sieving problems [17; 18; 19] but we omit the “sieving” part that occurs after
the residue is constructed. Our resulting algorithm has, so far, verified all previous computations for g(k),
and extended them for all k ≤ 375. A complete table of all currently computed g(k) values can be found
in the Online Encyclopedia of Integer Sequences entry A003458.

Let Mk :=
∏

p≤k pblogp kc+1 and let Rk denote the number of acceptable residues, under Kummer’s
theorem, modulo Mk . Then g(k) is the least residue (greater than k + 1) among the Rk residues. Our
uniform distribution heuristic (UDH) states that the Rk residues are, in a sense, uniformly distributed.
Under this assumption, we expect g(k) to be roughly Mk/Rk . In fact, we define ĝ(k) := Mk/Rk . The
authors of [11] studied this approximating function; it plays a central role in the analysis of our algorithm,
but not in its correctness.

Assuming the UDH implies that with high probability, we have

log g(k)= log ĝ(k)+ O(log k).

Let G(x, k) count the number of n≤ x such that p
(( n

k

))
> k. We show unconditionally that, for x > x0(k),

G(x, k)= (x/ĝ(k))(1+ o(1)).

These results imply that ĝ(k) should approximate g(k) reasonably well. We then show that

0.530684+ o(1)≤
log ĝ(k)
k/ log k

≤ 1+ o(1).

We prove a running time for our algorithm of

g(k) exp
[
−c

k log log k
(log k)2

]
for a constant c > 0. We also sketch a more general argument showing our algorithm’s running time is
sublinear in g(k), unconditionally.
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1.3. Outline. Our paper is organized as follows. In Section 2 we present our algorithm, including a
description of the space-saving wheel data structure. In Section 3 we discuss the knapsack subproblem
and techniques for splitting prime rings when deciding the sieving modulus for the algorithm. In Section 4
we demonstrate each of the above steps to compute g(10)= 46. In Section 5 we provide some statistical
evidence for the credibility of the UDH, show that g(k) is roughly ĝ(k) with high probability, and we
give an easy proof of our estimate for G(x, k). In Section 6, we show log ĝ(k) is proportional to k/ log k
and bound the running time of our algorithm. In Section 7, we conclude with some computational notes.

2. The algorithm

The naive approach is to search through all the Rk admissible residues modulo Mk to find the smallest
residue greater than k+ 1. However, Rk is typically too large for this, making this algorithm practical
only for very small k.

Instead, we enumerate residues that satisfy the requirements of Kummer’s theorem modulo N, where N
is a divisor of Mk that is larger than, but near to ĝ(k), as follows:

(1) Compute Mk , Rk , and kĝ(k)= k Mk/Rk .

(2) Choose a divisor N of Mk just above our estimate kĝ(k) with the property that there is a minimal
number of residues to check. Details of how to do this are discussed in Section 3.

(3) Build a ring data structure for each prime power dividing N, which is a list of admissible residues
as defined by Kummer’s theorem.

(4) Construct a wheel data structure1 with jump tables to generate the residues modulo N ; see [16]. A
jump entry is the minimum amount to add that preserves the residue class modulo earlier rings, and
jumps to an admissible residue for the current ring.2

(5) Rings for the remaining prime powers are also created, but not a wheel (the jumps are not needed).
We refer to these rings as filters.2 A residue passes the filter if, when reduced modulo the ring size,
the corresponding admissible bit is set to one. The smallest residue generated from the wheel that
also passes all the filters is g(k).

Any prime power ring that is part of the wheel, where that prime power also fully divides Mk , is
not needed as a filter. Or in other words, if a prime divides N but not Mk/N, its prime power is not
needed as a filter.

(6) Now that our data structures are initialized, we generate each residue modulo N from the wheel to
see if it passes the filters. As we go, we maintain the value of the minimum residue, so far, that
passed all the filters. Once every residue from the wheel is generated, this minimum is g(k).

1Any data structure that can access residues in constant time will suffice. An anonymous referee kindly pointed out that
doubly-focused enumeration [1] will work here as well. It will require more space and the early abort strategy described in
Section 4 is a little harder to implement.

2 The ordering of the rings does not matter for correctness. For speed, it is best to put the ring with the most jump entries
last, and to put the best filters first.
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If we run the whole algorithm and fail to find a residue that passes the filters, this means g(k) > N. In
this case, we simply multiply our previous estimate for g(k) by k, choose a new, larger N, and try again.

Note that the problem of finding a solution below a given bound to a system of pairwise coprime
modular congruences is known to be NP-complete; see [5; 12].

3. Prime splitting and knapsack

The purpose of this section is to look at how to choose N, a divisor of Mk that is just larger than kĝ(k).
The analysis in Section 6 shows that it is sufficient, for asymptotic purposes, to choose N to be a product
of consecutive primes greater than k/2 until the product exceeds kĝ(k). In practice we can do much
better than what the asymptotic argument shows. We discuss a few ways we do this in the context of a
knapsack problem.

3.1. Knapsack problem setup. We want to choose N so that the prime powers dividing N give a very
low filter rate, thereby giving fewer residues to enumerate, which makes the algorithm faster. Note that
selecting prime power moduli based on filter rate alone is not optimal. The size of the modulus matters
as well; a smaller modulus with a higher but still good filter rate can be preferable to a large modulus
with a better filter rate.

Let tp := blogp kc+ 1 be the number of digits required to write k in base p, with the ai p representing
these digits, so that k =

∑tp−1
i=0 ai p pi. We have tp ≥ 2, and for most primes tp = 2. Define Tp to be the

maximum exponent of p so that pTp | N. This implies 0≤ Tp ≤ tp, and N =
∏

p≤k pTp.
Let ri p := p − ai p, and let Rxp :=

∏
i<x ri p. Then the number of acceptable residues modulo pTp

is RTp p. The running time of the algorithm is proportional to the number of residues modulo N, which,
by the Chinese remainder theorem, is∏

p≤k

RTp p =
∏
p≤k

pTp
RTp p

pTp
= N ·

∏
p≤k

RTp p

pTp
.

We want to minimize the product of the filtering rates for primes included in N, which is equivalent to
maximizing the reciprocal, which we write as∏

p≤k

pTp

RTp p
= exp

∑
p≤k

log
pTp

RTp p
.

This allows us to set up a knapsack problem [9] for choosing prime powers to include in N by setting
the overall capacity of the knapsack to log N, and the size and value of prime powers are set as follows:

size(pT ) := log pT
= T log p,

value(pT ) := log(modulus/# residues)= log(pT /RT )= T log p− log RT .

The question, then, is how to set T for each prime p to give a good selection of items to include in the
knapsack. Also, we must ensure that the same prime p is not chosen more than once, with different T
values, for inclusion in the knapsack.
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3.2. Prime splitting. In practice, we can often get better results by including prime powers. So our
approach is, for each prime p ≤ k, to compute an optimal value for T based on filter rate, and then use a
greedy algorithm to fill our knapsack. We call computing this value for T splitting the prime power, and
label this split point sp. We then allow for up to three possible choices in the knapsack for each prime p:
set T = 0 (that is, omit p from N entirely), use T = sp (use the optimal split point), or use T = tp, the
maximum (note that sp = tp is possible).

Maximizing the value-to-size ratio, we get

value
size
=

T log p− log RT p

T log p
= 1−

log RT p

T log p
.

So, in time linear in tp, we can try all possible T values and quickly find the optimum, sp. Since 1 and
log p do not change, it suffices to compute (1/T ) log RT p for each T to find the optimum.

3.3. The greedy knapsack algorithm. After splitting, we have a list of candidate prime powers to include
in N. We sort the list based on value-to-size ratio, and choose enough to include in N based on the value
of ĝ(k). In practice, this simple and fast algorithm to construct N worked very well.

3.4. A dynamic programming approach. An anonymous referee pointed out an elegant way to find N.
Start with (N = 1, R= 1), where N is the modulus, and R the number of admissible residues. For each

prime power pt appearing in Mk , and for each (N , R) value found so far, form new values (N · pi , R ·Ri p)

for 0≤ i ≤ t , where Ri p is the number of admissible residues modulo pi. Sort the new (N , R) values by
increasing value of R. For each (N , R), (N ′, R′) with R < R′, discard (N ′, R′) if N ′ < N, since (N , R)
is always better. Also discard values (N ′, R′) if N ′ ≥ N ≥ kĝ(k).

This clever algorithm will produce an optimal solution for N. Although we have not implemented
it (yet), it seems likely to be fast enough that in practice it is a better choice that our own approach.
Indeed, informal timing results from the aforementioned referee bear this out.

4. Example for g(10)

As an example computation, we present each of the steps described above to compute g(10)= 46.
We write 10= 10102 = 1013 = 205 = 137. Kummer’s theorem then says that

g(10)≡ 10102, 10112, 11102, 11112 mod 16.

Similarly, there are 12 residues modulo 33, 15 residues modulo 52, and 24 residues modulo 72. In total,
there are R10 = 4 · 12 · 15 · 24= 17280 admissible residues modulo M10 = 16 · 27 · 25 · 49= 529200. We
compute 10 · ĝ(10)= 306.25 for use in our knapsack problem.

Considering the powers of 2 first, we compute r02 = 2, r12 = 1, r22 = 2, and r32 = 1. This gives
R12 = 2, R22 = 2, R32 = 4, and R42 = 4. We get value-to-size ratios of 0, 1/2, 1/3, and 1/2. This implies
s2 = 2 or 4. In practice, we normally use the largest value for sp when several values give the same ratio,
since it implies a better filter rate.
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p T value size ratio

2 4 log(24/4) log(24) 0.5
3 1 log(3/2) log 3 0.4009. . .
7 1 log(7/4) log 7 0.287. . .
3 3 log(33/12) log(33) 0.246. . .
7 2 log(72/24) log(72) 0.183. . .
5 2 log(52/20) log(52) 0.069. . .

Table 1. Knapsack items for g(10).

For p= 3, we have k = 1013. We have r03= 2, r13= 3, and r23= 2. This gives R13= 2, R23= 6, and
R33 = 12. The successive (1/T ) log R values are log 2, (1/2) log 6, and (1/3) log 12. Of these, log 2 is
the smallest, giving s3 = 1. In a similar fashion, we obtain s5 = 2 and s7 = 1.

Table 1 shows the resulting knapsack items (using the natural log), ordered by value-to-size ratio.
We greedily choose items to include in our knapsack of size log 306. We first choose 24

= 16, leaving
306/16 ≈ 20 “room” in our knapsack; then 3 is chosen next. This leaves about 20/3 ≈ 7 room. The
choice of 7 fills all remaining room, and gives N = 24

· 3 · 7.
Using N, we set up the space-saving wheel with rings that encode g(10)≡ 10, 11, 14, 15 (mod 16),

g(10)≡ 1, 2 (mod 3), and g(10)≡ 3, 4, 5, 6 (mod 7). If N is large enough, we expect g(10) to be among
these 32 residues.

The jump tables are:

Ring 16:
residue 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
admissible 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
jump +10 +9 +8 +7 +6 +5 +4 +3 +2 +1 +1 +3 +2 +1 +1 +11

Ring 3:
residue 0 1 2
admissible 0 1 1
jump +16 +16 +32

Ring 7:
residue 0 1 2 3 4 5 6
admissible 0 0 0 1 1 1 1
jump +48 +96 +144 +192 +48 +48 +48

We also build filters for the prime power congruences not used in the jump tables (9, 25, 49), but omit
their explicit construction for the sake of brevity.

The smallest possible starting point is k+2, or 12 in our example. Since 12 is not admissible modulo 16,
we apply the jump (+2) to get 14. We pass up to the next ring. We find 14 mod 3≡ 2 is admissible. We
pass to the next ring. Since 14 mod 7≡ 0 is not admissible, we jump (+48) to get 62. There are 4 total
residues in the 7 ring, so we also generate 62+ 48 = 110, 110+ 48 = 158, and 158+ 48 = 206. All
residues produced by the 7 ring are filtered:

62 mod 27≡ 8= 223 : fail, 110 mod 27≡ 23 : fail,

158 mod 25≡ 8= 135 : fail, 206 mod 25≡ 6= 115 : fail.

We then backtrack to ring 3 at 14, and generate 14+ 32 = 46. We pass to ring 7. The initial value
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in this ring, 46 mod 7≡ 4, is already admissible and is generated first. These get filtered and 46 passes
all filters. We record this value as a candidate for g(10) and continue the computation to see if a smaller
value exists. Since, g(10) = 46, no such value will be found. From this point on, the wheel will not
generate a residue for filtering if it exceeds 46. And nothing larger than N can ever be generated.

After 4 residues in the 7 ring, we drop down to the 3 ring, where we have already done 2 residues, so
we drop back to the 16 ring. At the 16 ring, we generate the next residue 14+ 1= 15, which is passed
up to the 3 ring.

This implies that, at each ring, we need to keep track of the next residue to generate, and how many
have been generated so far so that we know when to back up to a previous ring.

And so it goes. The amortized cost is a constant number of arithmetic operations per residue generated
by the outermost ring where they are filtered. If we apply the filters in decreasing order of filter rate, on
average, a residue is only tested against a constant number of filters, and so again, the cost is a constant
number of arithmetic operations per residue modulo N.

By keeping track of the minimum residue that passes the filters, we do not have to generate any residues
larger than this minimum. In our example, once 46 passes the filters, we don’t even generate the rest of
ring 7 — an “early abort” strategy, if you will. This optimization can make a big difference in practice.

5. Uniform distribution heuristic

The uniform distribution heuristic (UDH) states that the admissible residues modulo Mk behave as if they
are chosen at random from a uniform distribution over the interval [1,Mk−1]. It is not entirely dissimilar
to Cramér’s random model; the heuristic that integers near x are prime with probability 1/ log x , and our
intention is that these two models be treated similarly, in that we know they are not, strictly speaking,
true, yet seem to have good predictive behavior under the right circumstances.

With the help of Rasitha Jayasekare, a statistician at Butler University, we ran statistical tests on the
residues for 5≤ k ≤ 15. For each k, we generated all Rk admissible residues and applied the Anderson–
Darling and Kolmogorov–Smirnov tests to measure uniformity. Both tests confirm with a high probability
that the data comes from a uniform distribution.

Theorem 5.1. The UDH implies that, with probability 1− o(1), we have

ĝ(k)/k ≤ g(k)≤ kĝ(k).

Proof. Without loss of generality, we ignore residues ≤ k + 1 because k is asymptotically negligible
compared to Mk and Rk . We have

Pr(g(k)≤ x)= 1−Pr(all residues are greater than x)= 1−
(

Mk − x
Mk

)Rk

= 1−
(

1−
x

Mk

)Rk

.

For an upper bound, set x = (k Mk)/Rk , to obtain

Pr(g(k)≤ (k Mk)/Rk)= 1−
(

1−
k
Rk

)Rk

∼ 1− e−k
= 1− o(1)
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Figure 1. Comparing g(k) to M/R with error k.

for large Rk (and Rk does get quite large). For a lower bound, set x = Mk/(k Rk) to obtain

Pr(g(k)≤ Mk/(k Rk))= 1−
(

1−
1

k Rk

)Rk

∼ 1− e−1/k
= o(1).

This completes the proof. �

So we have that, with high probability,

log g(k)= log ĝ(k)+ O(log k)

if we assume the uniform distribution heuristic. This has worked well in practice; the inequality in
Theorem 5.1 is satisfied by all computed g(k) (excepting k = 99).

In Figure 1, we have empirical data comparing actual values of g(k) (the black dots) to ĝ(k) plotted
as intervals from ĝ(k)/k up to kĝ(k) as red error bars. The plot uses a logarithmic scale.

Recall that G(x, k) counts the integers n ≤ x such that p
(( n

k

))
> k. We conclude this section with the

following.

Theorem 5.2. If x is sufficiently large, then G(x, k)= (x/ĝ(k))(1+ o(1)).

Proof. Write x = q ·Mk+r using the division algorithm, with integers q, r > 0 and r < Mk . A contiguous
interval of length Mk will have exactly Rk admissible residues, so G(q Mk, k) = q Rk . The remaining
interval of length r has at most Rk residues, so G(x, k) = G(q Mk, k)+ O(Rk) = q Rk + O(Rk) but
q = bx/Mkc, so

G(x, k)= bx/MkcRk + O(Rk)= (x/ĝ(k))(1+ o(1)). �
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6. Analysis

The running time of our algorithm is linear in the number of residues modulo N. Since we choose N
based on ĝ(k), we need to estimate ĝ(k).

Theorem 6.1. 0.530684+ o(1)≤
log ĝ(k)
k/ log k

≤ 1+ o(1).

Applying the definitions for Mk and Rk above, we have

ĝ(k)=
Mk

Rk
=

∏
p≤k pblogp kc+1∏

p≤k
∏blogp kc

i=0 (p− ai p)
=

∏
p≤k

blogp kc∏
i=0

p
p− ai p

=

∏
p≤
√

k

blogp kc∏
i=0

p
p− ai p

·

∏
√

k<p≤k

blogp kc∏
i=0

p
p− ai p

=

∏
p≤
√

k

blogp kc∏
i=0

p
p− ai p

·

∏
√

k<p≤k

p
p− a1p

p
p− a0p

.

Here we observed that blogp kc+ 1= 2 when p >
√

k.
We will show that the product on the factor involving a0p is exponential in k/ log k, and is therefore

significant; and the other two factors, the product on primes up to
√

k, and the factor with a1p, are both
only exponential in

√
k.

We bound the first product, on p ≤
√

k, with the following lemma.

Lemma 6.2.
∏

p≤
√

k

blogp kc∏
i=0

p
p− ai p

� e3
√

k(1+o(1)).

Proof. We note that ai p ≤ p− 1, giving

∏
p≤
√

k

blogp kc∏
i=0

p
p− ai p

≤

∏
p≤
√

k

pblogp kc+1
≤

∏
p≤
√

k

p3blogp
√

kc.

From [7, Chapter 22] we have the bound
∑

p≤xblogp xc log p = x(1+ o(1)). Exponentiating and substi-
tuting

√
k for x gives the desired result. �

Next, we show that the product involving a1p is small.

Lemma 6.3.
∏

√
k<p≤k

p
p− a1p

≤ eO(
√

k).

Proof. We split the product at 2
√

k. For the lower portion, we have∏
√

k<p≤2
√

k

p
p− a1p

≤ (2
√

k)π(2
√

k)
≤ eO(

√
k).
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For the upper portion, since a1p ≤ k/p ≤
√

k, we have∏
2
√

k<p≤k

p
p− a1p

≤

∏
2
√

k<p≤k

p

p−
√

k
≤

∏
2
√

k<p≤k

(
1+

2
√

k
p

)
≤

∏
2
√

k<p≤k

(
1+

1
p

)2
√

k+1

using the fact that (1+ x/p)≤ (1+ 1/p)x if x > 1, p > 0. Mertens’s theorem then gives the bound(
eγ (log k)

eγ (log(2
√

k))
(1+ o(1))

)2
√

k+1

≤ eO(
√

k). �

We now have
log ĝ(k)= log

( ∏
√

k<p<k

p
p− a0p

)
+ O(
√

k).

The following lemma wraps up the proof of our theorem.

Lemma 6.4. 0.530684 ·
k

log k
(1+ o(1))≤ log

( ∏
√

k<p≤k

p
p− a0p

)
≤

k
log k

(1+ o(1)).

Proof. Fix a1p= a. Then k/(a+1)< p≤ k/a, and a0p= k mod p= k−ap and p−a0p= p−(k−ap)=
(a+ 1)p− k. We have

log
( ∏
√

k<p≤k

p
p− a0p

)
= log

(√k∏
a=1

∏
k/(a+1)<p≤k/a

p
(a+ 1)p− k

)

=

√
k∑

a=1

∑
k/(a+1)<p≤k/a

(log p− log((a+ 1)p− k)).

The reader should be aware that transforming between simple and double products/sums can introduce
error, but this is bounded by at most one term, and we absorb this in our error term.

We split this sum into three pieces to start with:

(1) The outer sum for (log k)2 ≤ a <
√

k, which we show to be o(k/ log k).

(2) The log p term only, for a < (log k)2, which we show to be k+ o(k/ log k).

(3) The − log((a+ 1)p− k) term, again for a < (log k)2, which we show to be −k+ O(k/ log k).

For (1), we have
√

k∑
a=(log k)2

∑
k/(a+1)<p≤k/a

(log p− log((a+ 1)p− k))≤

√
k∑

a=(log k)2

∑
k/(a+1)<p≤k/a

log p ≤
∑

√
k<p≤k/(log k)2

log p

which is O(k/(log k)2) using
∑

p<x log p = x + o(x/ log x). For (2), we have

(log k)2∑
a=1

∑
k/(a+1)<p≤k/a

log p =
∑

k/(log k)2<p≤k

log p
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which is k+ o(k/ log k). For (3), we have

−

(log k)2∑
a=1

∑
k/(a+1)<p≤k/a

log((a+ 1)p− k). (6-1)

Rewriting the inner sum as an integral, using a strong version of the prime number theorem, we get

−

∑
k/(a+1)<p≤k/a

log((a+ 1)p− k)=−
∫ k/a

k/(a+1)

log((a+ 1)t − k)
log t

dt + o(k/(log k)3)

=−
1

log(k/(a+α))

∫ k/a

k/(a+1)
log((a+ 1)t − k) dt + o(k/(log k)3).

Here α is between 0 and 1, determined implicitly by the mean value theorem. The precise value of α
may depend on both k and a. We will use either α = 0 or α = 1, depending on whether we want an upper
or lower bound, respectively.

Using substitution, we can readily show that∫ k/a

k/(a+1)
log((a+ 1)t − k) dt =

k(log(k/a)− 1)
a(a+ 1)

.

We have for (3), then, a term which equals

(log k)2∑
a=1

(
−

k(log(k/a)− 1)
a(a+ 1) log(k/(a+α))

)
=−k+

k
log k

·

(log k)2∑
a=1

1− log
(

1+ α
a

)
a(a+ 1)

·

(
1+ O

(
log log k

log k

))
.

The last step requires a bit of algebra, and the observation that 1/(u− v)= 1/u+ v/(u(u− v)).
To obtain the upper bound, set α= 0, and note that

∑
1/(a(a+1)) converges to 1. To obtain the lower

bound, set α = 1, and note that
∑
(1− log(1+ 1/a))/(a(a+ 1)) converges to a constant ≥ 0.530684. �

Algorithm running time.

Theorem 6.5. If the UDH is true, then with probability 1− o(1), our algorithm has a running time
bounded by

g(k) · exp
[
−ck log log k
(log k)2

(1+ o(1))
]
,

where c > 2 is constant.

Proof. Without loss of generality, we assume that g(k)≤ N < k · g(k), as we can guess a smaller N, run
the algorithm, and if it fails to find g(k), include another prime p with k/2 < p < k in N, and repeat.
Since N at least doubles each time we do this, the cost of running the algorithm on all N < g(k), and
failing, is bounded by a factor of log g(k) times the cost of the final run with a value of N > g(k) that
succeeds. We absorb this multiplicative factor of log g(k) in the o(1) error term in the exponent of the
running time bound above as log g(k) = 2(k/ log k) with high probability. In particular, this gives us
log N = (1+ o(1)) log g(k) with high probability.
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For the purposes of this proof, we choose N to be a product of some primes between k/2 and k. This
is conservative, as the choice of primes or prime powers for inclusion in N, using the methods discussed
earlier, will result in a faster algorithm in practice. So we have∏

p|N

p = N ≈ g(k)

and thus ∑
p|N

log p = log N ∼ log g(k)� k/ log k.

Since
∑

k/2<p≤k log p = (k/2)(1+ o(1)), we have more primes in this range than we need for N by a
factor of roughly (1/2) log k. Thus, we can choose the best k/(log k)2 primes (roughly) below k of the
k/ log k that are available. As a result, we expect to get a filtering factor of 1/ log k for the primes we
choose. Indeed, if we choose all primes p with k/2< p < k/2+ c1k/ log k, with c1 > 0 an appropriate
constant we fix later, this is the case.

Let’s check that this gives us a good value for N. We have

log N =
∑

k/2<p<k/2+c1k/ log k

log p

=
c1k

(log k)2
log(k/2)(1+ o(1))=

c1k
log k

(1+ o(1)),

which is larger than log g(k) with high probability if we choose c1 near 1. (See also [13, (2.29)].) Ideally,
we want g(k)≤ N ≤ kg(k) here.

Now we address the filter rate, and hence the running time. For each prime p, k+2c1k/log k> 2p> k,
which implies k− p > p− 2c1k/log k so that

a0p = k mod p = k− p

> p−
2c1k
log k

> p−
4c1 p
log k

= p
(

1−
4c1

log k

)
.

Our running time, then, is proportional to the number of acceptable residues modulo N, which is∏
k/2<p<k/2+c1k/ log k

(p− a0p)=
∏

p

(
p− p

(
1−

4c1

log k

))
=

∏
p

p ·
4c1

log k
= N

∏
p

4c1

log k

≤ kg(k)
(

4c1

log k

)c1k/(log k)2(1+o(1))

= g(k) exp
[
−c1

k log log k
(log k)2

(1+ o(1))
]
. �

The UDH is stronger than what we need to prove a running time sublinear in g(k). The central issue
is finding enough primes p with k/2< p≤ k/2+1 such that the product of these primes is roughly g(k).
If the number of primes in this interval is 1/ log k, then we can set 1≈ log g(k). Pushing this through
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our argument above, we obtain a running time of the form

g(k) · exp
[
−c1
log k

log
(

k
41

)
(1+ o(1))

]
where c > 0 is constant (and likely we can take c near 1). Observe that plugging in log g(k)≈ k/ log k
gives our theorem, but this form is valid so long as we can find enough primes. In fact, if log g(k)� kθ,
with 7/12< θ ≤ 1, we can use a result due to Heath–Brown [8] on primes in short intervals to guarantee
this is true.

If g(k) is smaller than this, we would choose 1= (log g(k)/ log k)E(k), where E(k) is the error term
for the prime number theorem for π(k), to give us the needed log g(k)/ log k primes above k/2. (If we
assumed the Riemann hypothesis, this would let us use a smaller E(k) term.) Pushing this through, we
obtain a weaker, but still sublinear, running time.

We were also able to show that

lim sup
k→∞

ĝ(k+ 1)
ĝ(k)

=∞.

We omit the proof due to a lack of space, but the interesting case is when k+ 1 is prime. It is conjectured
that the same holds true for g(k) itself, but that remains an open problem [2].

7. Computations

We conclude with a brief discussion of the timing results. Our source code and timing results are available
as an online supplement.

7.1. Timing results. We implemented our algorithm from Section 2 in C++. We started with a sequential
program, which we used to compute g(k) for all k ≤ 272, thereby verifying all previous computations
along the way [2; 14; 11]. None of these smaller k values took more than a couple of hours on a standard
desktop computer.

We then parallelized our algorithm, using MPI, by having each core generate a share of the residues.
However, if a particular core found a new, smaller residue that passed all filters, that new upper bound
would not be communicated to all the other cores for some time. This resulted in a fair amount of wasted
work. On the other hand, too-frequent inter-core communication would also slow down the computation,
since finding new upper bounds is a rare event. We found that our computation distributed over 192 cores
only performed about 40-50 times faster than the single-core version.

Our parallel code took anywhere from under an hour to over 1300 hours to compute each g(k) value.
The timing results, in hours of wall time, are shown in Figure 2. Here the y-axis on the left is in hours,
and the y-axis on the right is used for g(k) values, which are plotted on the same graph for comparison.
In total, the cluster was exclusively computing g(k) values for about 9 months. The cluster is composed
of Intel Xeon E5-2630 v2 processors, with 15MB cache, running at 2.3 GHz. Our algorithm uses very
little memory, and so RAM is not an issue.

http://msp.org/obs/2020/4-1/obs-v4-n1-x01-ErdosSelfridgeAlgorithm.zip
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Figure 2. Running time (wall time) in Hours

7.2. Verification is faster. It is easy to verify that our claimed g(k) values all satisfy Kummer’s theorem
and are near ĝ(k). However, we know of no way to independently verify our computations except by
repeating the search. Knowing a small admissible candidate gives two significant practical advantages
in our algorithm. First, you can work with a modulus N just larger than the candidate g(k) value,
which is usually smaller than the suggested kĝ(k) value. Second, you can input the claimed g(k) value
as the starting upper bound for residues. Take the computation of g(225) as an example. The initial
search worked modulo N = 1012 44299 87665 22178 24000 and went through at most 64 66521 60000
residues. The candidate for g(225) was updated three times and the computation took about 26 minutes.
A verification computation was done working modulo N = 2 95172 88593 77615 68000, and had at
most 1 19750 40000 residues to check, with g(225) as an input for the initial upper bound. This second
computation completed in just 24 seconds. We note that a parallel version of a verification computation
can also avoid some of the communication overhead.
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