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The height of an algebraic number α is a measure of how arithmetically complicated α is. We say α
is totally p-adic if the minimal polynomial of α splits completely over the field Qp of p-adic numbers.
We investigate what can be said about the smallest nonzero height of a degree 3 totally p-adic number.

1. Introduction

Recall that an algebraic number α is totally p-adic (respectively, totally real) if the minimal polynomial
of α, fα ∈Q[x], splits completely over Qp (respectively, R). We will denote by h(α) the logarithmic
Weil height of α [BG06].

In 1975, Schinzel used the arithmetic-geometric mean inequality to prove that if α is a totally real
algebraic integer, with α 6= 0,±1, then

h(α)≥ 1
2 log

(
1+
√

5
2

)
with equality if α = 1

2(1+
√

5) [Sch75]. In 1993, Höhn & Skoruppa used an auxiliary function to provide
an alternate proof of Schinzel’s bound [HS93]. Bombieri & Zannier [BZ01] proved that an analogue to
Schinzel’s theorem holds in Qp for each prime p, although the analogous best possible lower bound is
unknown.

Additionally, there have been some results constructing totally p-adic (or totally real) algebraic num-
bers of small height. In particular, these results provide an upper bound on the smallest height attained
by α under certain splitting conditions. The degree of a totally p-adic number is the degree of its minimal
polynomial with coefficients in Z. Petsche [Pet] proved that for odd primes p, there exists some totally
p-adic α ∈Q of degree d ≤ p− 1, and

0< h(α)≤ 1
p−1 log

(
p+

√
p2+ 4

2

)
.

MSC2010: 11G50, 11S20, 11Y40, 12Y05.
Keywords: height, algorithm, p-adic.

387

https://doi.org/10.2140/obs.2020.4-1
https://doi.org/10.2140/obs.2020.4-1
http://msp.org


388 EMERALD STACY

Recently, Pottmeyer [Pot18] has improved upon Petsche’s upper bound, and obtained the existence of
totally p-adic α such that

0< h(α)≤
log p

p
.

In 1980, Smyth created a set of totally real numbers of small height by taking all preimages of 1 under
the map φ(x) = x − 1

x . The heights of the points in this set have a limit point ` ≈ 0.27328 [Smy80].
In [PS19], Petsche and Stacy use an argument inspired by this result of Smyth to provide an upper bound
on the smallest limit point of heights of totally p-adic numbers of degree d .

In this paper, we fix the degree d to be 3 and let the prime p vary. In particular, we define τd,p to be
the smallest height attained by a totally p-adic, nonzero, nonroot of unity, algebraic number of degree d .
For any pair d and p, we know τd,p <∞ since we can construct a Newton polygon for an irreducible
polynomial of degree d that splits completely over Qp [Cas86].

In this paper, we develop tools to determine τ3,p for all p ≥ 5. In Section 2, we develop and prove
an algorithm to determine τ3,p for a given prime p, which we implement in Section 2.5. All code was
written for SageMath, version 8.2, and is included within Section 2.5. A table of results can be found in
Section 3, and Section 4 describes future areas of interest.

2. The algorithm

In Section 2.1, we prove that τ3,p ≤ 0.70376 for all p ≥ 5. To do so, we establish that for every prime p,
there is a cubic polynomial with an abelian Galois group that splits completely over Qp. By the height-
length bound [BG06, Proposition 1.6.7], a list of all cubic polynomials with length less than 68 will
contain all irreducible, noncyclotomic, cubic polynomials with roots of height less than 0.70376. By the
Northcott property there are only finitely many such polynomials, and thus we have a finite list to check
for τ3,p and our algorithm will terminate.

In Section 2.2, we use the method of Cardano to determine the roots of a cubic polynomial. In
Sections 2.3 and 2.4, we establish criteria to determine if those roots are in Qp. The criteria are different
depending if p ≡ 1 (mod 3) or p ≡ 2 (mod 3), since Qp contains a primitive cube root of unity if and
only if p ≡ 1 (mod 3). In Section 2.5, we implement the algorithm, the results of which can be found in
Section 3.

2.1. Establishing termination. To establish that our algorithm will terminate, we create a finite list
of polynomials, and verify that for each prime, there must be a polynomial in our list that will split
completely over Qp.

Let fα denote the minimal polynomial of α. Then h(α)= 1
3 log M( fα), where M( fα) is the Mahler

measure of fα. Thus, if M( fα) ≤ 8.5, then h(α) ≤ 0.71335. The function mahler_measure_cubic
calculates the Mahler measure of the cubic polynomial

f (x)= ax3
+ bx2

+ cx + d :
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def mahler_measure_cubic(a,b,c,d):
M = a
Poly = a*x^3 + b*x^2 + c*x + d
Roots = Poly.roots(CC)
for i in [0..len(Roots)-1]:

M = M * max(1,abs(Roots[i][0]))
return M.n(digits=10)

For f (x)=
∑d

i=0 ai x i, the length of f is L( f )=
∑d

i=0|ai |. The length will be useful to us since for
any polynomial f ,

L( f )≤ 2d M( f ),

where d = deg f [BG06, Proposition 1.6.7]. Thus, the following program generates a list of all cubic
polynomials with

L( f )≤ 23(8.5)= 68

and removes any polynomial that is either reducible or has Mahler measure greater than 8.5. We use the
built-in Sage function is_irreducible() to determine if a polynomial is irreducible over Q.

In addition to the polynomial and Mahler measure, the list also stores the coefficients of the cubic in
its so-called depressed form (x3

+ Ax + B), the discriminant of the polynomial, and the height of the
roots. For more information on depressing a cubic, please see Section 2.2.

The command sorted() will reorganize the array in ascending order of the first value — in this case
it will sort by Mahler measure, which is equivalent to sorting by height. The output of this program is
26796 polynomials that are saved as the file irred_polynomials_L68. Runtime was 124 minutes.

R.<x> = QQ[]
Polynomials=[]
L=68
for a in [1..L]:

for b in [-L+abs(a)..L-abs(a)]:
for c in [-L+abs(a)+abs(b)..L-abs(a)-abs(b)]:

for d in [-L+abs(a)+abs(b)+abs(c)..L-abs(a)-abs(b)-abs(c)]:
Poly = a*x^3 + b*x^2 + c*x + d
if Poly.is_irreducible()==True:

MM = mahler_measure_cubic(a,b,c,d)
A = (3*a*c - b^2 ) / (3*a^2 )
B = (27*a^2*d - 9*a*b*c + 2*b^3 ) / (27*a^3 )
Delta = B^2 + 4 * A^3 / 27
h = 1/3 * log(MM);
if MM <= L/8:

Polynomials.append([MM,a,b,c,d,A,B,Delta,h])
Polynomials=sorted(Polynomials)

Next, we remove from this list all polynomials with nonabelian Galois group. In general, the Galois
group of a polynomial f (x) ∈ Z[x] of degree d is isomorphic to a subgroup of Ad if and only if the
discriminant of f is a square in Q [Con18, Theorem 1.3]. In the case of f cubic, the Galois group of f
is A3, and thus abelian, if and only if the discriminant of f is a square in Q.

Let K be the number field created by adjoining the roots of f to Q and let 1 be the discriminant of K.
By the Kronecker–Weber theorem, K must be contained within a cyclotomic extension of Q. Let m be the
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conductor of K, meaning the smallest m such that K is a subfield of Q(ζm), where ζm is a primitive m-th
root of unity. To calculate the conductor, we turn to a special case of the Hasse conductor-discriminant
formula, as follows.

Theorem 1 [Has30, Theorem 6]. Let K be an abelian extension of Q, with [K : Q] = 3 and discrim-
inant 1. Let p1, p2, . . . , pn be all the primes (aside from 3) that divide 1. If 3 divides 1, then the
conductor of K is 9p1 p2 · · · pn . If 3 not does divide 1, then the conductor of K is p1 p2 · · · pn .

The following program begins by identifying if each cubic polynomial has an abelian Galois group. If
so, then the program calculates the discriminant of K (the number field obtained by adjoining the roots
of f to Q) by applying the built-in function absolute_discriminant(). It then applies Theorem 1
and uses the built-in Sage command factor() to determine the conductor of K. All of this output is
stored in the array AbelianCubics, which contains the information for 156 polynomials.

Polynomials=load(’irred_polynomials_L68’)
L=len(Polynomials)
AbelianCubics=[]
for i in [0..L-1]:

Poly = Polynomials[i];
a = Poly[1];
b = Poly[2];
c = Poly[3];
d = Poly[4];
D = b^2*c^2 - 4*a*c^3 - 4*b^3*d - 27*a^2*d^2 + 18*a*b*c*d;
if D.is_square()==True:

K.<j> = NumberField(a*x^3 + b*x^2 + c*x + d)
DD = K.absolute_discriminant()
MM = Poly[0];
h = Poly[8];
Factors = DD.factor()
list_of_factors = list(Factors)
L = len(list_of_factors)
Cond = 1
for i in [0..L-1]:

Cond = Cond*list_of_factors[i][0]
if list_of_factors[i][0]==3:

Cond = Cond*3
C = Cond
AbelianCubics.append([h, a*x^3 + b*x^2 + c*x + d ,DD,C]);

The following lemma is well known, but for lack of a convenient reference, we provide a proof.

Lemma 2. Let α ∈Q(ζn) have minimal polynomial fα ∈ Z[x], and let

Gα = {[i] ∈ (Z/nZ)× | σi (α)= α},

where σi (ζn) = ζ
i
n . Thus Gα is the subgroup of (Z/nZ)× corresponding to Gal(Q(ζn)/Q(α)) via the

isomorphism (Z/nZ)× ∼= Gal(Q(ζn)/Q). Let p - n be a prime. Then fα splits completely in Qp if and
only if [p] ∈ Gα.

Proof. The automorphism σp ∈ Gal(Q(ζn)/Q) satisfies σp(x) ≡ x (mod p) for all x ∈ Z[ζn] [Bak06,
Lemma 4.51]. Since Q(ζn)/Q is an abelian extension, Q(α)/Q is a Galois extension and therefore σp
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restricts to an automorphism σp ∈ Gal(Q(α)/Q); the above congruence implies that σp is the Frobenius
element of Gal(Q(α)/Q) associated to the prime p.

If [p] ∈ Gα, then σp is the identity element of Gal(Q(α)/Q), which implies that p splits completely
in Q(α) [Bak06, Proposition 4.36]; that is pOQ(α) = p1 · · · pd , where d = [Q(α) : Q]. It follows that
each local degree e(pi/p) f (pi/p)= [Q(α)pi :Qp] is equal to 1 [Bak06, Theorem 5.25], which means
that Q(α)pi =Qp for i = 1, 2, . . . , d . In particular, Q(α)⊆Qp, and therefore as Q(α)/Q is Galois, all d
of the Galois conjugates of α are in Qp as well. Hence fα(x) splits completely in Qp. The converse
follows from a straightforward reversal of this argument. �

For each polynomial fα in AbelianCubics, we want to determine the congruence classes modulo m
of a prime p for fα to split completely in Qp, where m is the conductor of the splitting field of fα . The
following code goes through each line in the array AbelianCubics, and for each polynomial fα in the
list, computes the set Bα ⊆ (Z/m Z)× so that fα splits completely in Qp if and only if [p] ∈ Bα, where
[p] denotes the residue of p (mod m).

Note that if (Z/mZ)× has a unique index 3 subgroup, then this group must be Gα. In the case that
(Z/mZ)× does not have a unique index 3 subgroup, we check the first 50 primes to determine if there
is a root in Qp via Hensel’s lemma. When a root of fα is determined to be in Qp, we know that for all
primes q with q ≡ p (mod m), fα must split completely in Qp, by Lemma 2. Further, we know there
are |(Z/mZ)×|/3 congruence classes for which fα splits completely in Qp. Thus, after testing the first
50 primes, the code checks the cardinality of the set of congruences to ensure all were found. For this
particular list of polynomials, 50 is sufficient to identify the index 3 subgroup.

AbelianCubics=load(’AbelianCubics’)
L=len(AbelianCubics);
P = Primes();
for i in [0..L-1]:

Poly = AbelianCubics[i][1]
PolyList = Poly.list()
a = PolyList[3]
b = PolyList[2]
c = PolyList[1]
d = PolyList[0]
Cond = AbelianCubics[i][3]
v = [1];
for j in [0..50]:

for k in [1..P[j]-1]:
M = Integer( a*k^3 + b*k^2 + c*k + d )
M = M%P[j]
N = Integer( 3*a*k^2 + 2*b*k + c )
N = N%P[j]
if M==0 and N>0:

v.append(P[j]%Cond)
V = sorted(v)
V = set(V)

The results of this code are included as an online supplement to this paper. A sampling of the data is
included in Table 1 for reference.

http://msp.org/obs/2020/4-1/obs-v4-n1-x01-Degree3Table.pdf
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h(α) fα α is totally p-adic if and only if

0.26986 x3
− x2
− 2x + 1 p ≡ 1, 6 (mod 7)

0.35252 x3
− 3x2

+ 1 p ≡ 1, 8 (mod 9)

0.60981 3x3
− 4x2

− 5x + 3 p ≡ 1, 3, 8, 9, 11, 20, 23, 24, 27, 28, 33, 34, 37, 38,
41, 50, 52, 53, 58, 60 (mod 61)

0.69106 3x3
− x2
− 8x + 3 p ≡ 1, 3, 7, 8, 9, 10, 17, 21, 22, 24, 27, 30, 43,

46, 49, 51, 52, 56, 63, 64, 65, 66, 70, 72 (mod 73)

0.69903 2x3
− 9x2

+ 3x + 2 p ≡ 1, 2, 4, 8, 16, 31, 32, 47, 55, 59, 61, 62 (mod 63)

0.70376 x3
− 9x2

+ 6x + 1 p ≡ 1, 5, 8, 11, 23, 25, 38, 40, 52, 55, 58, 62 (mod 63)

Table 1. A sample of the data included in the online supplement.

Theorem 3. Let p be a prime. Then τ3,p ≤ 0.70376.

Proof. For a prime p, denote by τ ab
3,p the smallest nontrivial height of an abelian, cubic, totally p-adic

number. Note that τ3,p ≤ τ
ab
3,p. Thus, if we show that τ ab

3,p ≤ 0.70376, we have proven the theorem.
Based on the results from Table 1, we know

τ ab
3,3 ≤ 0.609817669 and τ ab

3,7 ≤ 0.501878627.

All primes p 6= 3, 7, when reduced modulo 63, are contained in (Z/63Z)×. Observe that

(Z/63Z)× = {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20, 22, 23, 25, 26, 29,
31, 32, 34, 37, 38, 40, 41, 43, 44, 46, 47, 50, 52, 53, 55, 58, 59, 61, 62}.

Further, we observe that

τ ab
3,p ≤

{
0.269862305 if p ≡ 1, 6 (mod 7),
0.352525605 if p ≡ 1, 8 (mod 9).

Thus
τ ab

3,p ≤ 0.269862305 for p ≡ 1, 8, 13, 20, 22, 29, 34, 41, 43, 50, 55, 62 (mod 63),

τ ab
3,p ≤ 0.352525605 for p ≡ 10, 17, 19, 26, 37, 44, 46, 53 (mod 63).

It remains to determine an upper bound on τ ab
3,p for

p ≡ 2, 4, 5, 11, 16, 23, 25, 31, 32, 38, 40, 47, 52, 58, 59, 61 (mod 63).

Note that each of the above numbers falls into one of the following two sets:

p ≡ 1, 2, 4, 8, 16, 31, 32, 47, 55, 59, 61, 62 (mod 63),

p ≡ 1, 5, 8, 11, 23, 25, 38, 40, 52, 55, 58, 62 (mod 63).

Further, we observe that by the last two lines of Table 1, given any prime p, one of the polynomials in
the table must split completely over Qp. �
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2.2. Determining roots of cubic polynomials. In Ars Magna, Cardano describes a method to find the
roots of a cubic polynomial f as elements of C [CS68]. This method is analogous to completing the
square for a quadratic polynomial. We use Cardano’s method to determine if a cubic polynomial in K [y]
splits completely over K, where K is an arbitrary field of characteristic not equal to 2 or 3. Beginning
with an arbitrary cubic polynomial in K [y],

g(y)= ay3
+ by2

+ cy+ d,

we divide through by the leading coefficient and perform a change of variables y = x − b/3 to eliminate
the quadratic term, yielding a monic depressed cubic polynomial with coefficients in K,

f (x)= x3
+ Ax + B.

Note that since the transformations to depress the cubic simply shift the roots by b/(3a), so g splits
over K if and only if f splits over K.

Lemma 4 (Cardano [CS68]). Let L be an algebraically closed field of characteristic not equal to 2 or 3,
and let ζ be a primitive cube root of unity in L. Let f (x)= x3

+ Ax+B ∈ L[x], and let1= B2
+4A3/27.

If A = 0, let C = −B, and if A 6= 0, let C be either square root of 1 in L. Let u be a cube root of
(−B+C)/2 and let v =−A/(3u). Then the roots of f are u+ v, ζu+ ζ 2v, and ζ 2u+ ζv.

To determine when a cubic polynomial f (x) ∈ Qp[x] splits completely over Qp, the method will
depend on whether Qp contains a primitive cube root of unity, which happens exactly when p≡ 1 (mod 3).
Thus, we consider two cases: p ≡ 1 (mod 3) and p ≡ 2 (mod 3).

2.3. Case 1. Suppose p ≡ 1 (mod 3).

Theorem 5. Let K be a field of characteristic not equal to 2 or 3, let L be an algebraic closure of K,
and assume that K contains a primitive cube root of unity, ζ . Let f (x) = x3

+ Ax + B ∈ K [x], and
1 = B2

+ 4A3/27. If A = 0, let C = −B, and if A 6= 0, let C be either square root of 1 in L. Then f
splits completely over K if and only if

(a) 1 is a square in K, and

(b) (−B+C)/2 is a cube in K.

Proof. Suppose A = 0. Then 1 = B2 is a square in K, so (a) is true. Additionally, C = −B and
f (x)= x3

+ B, which splits completely over K if and only if −B is a cube in K, which happens exactly
when (b) holds.

Now suppose A 6= 0. Let u be a cube root of (−B+C)/2 and let v =−A/(3u). Let F be a Galois
extension of K containing C and u.

Suppose the conditions (a) and (b) are met. By Lemma 4, the roots of f are u + v, ζu + ζ 2v, and
ζ 2u+ ζv and thus f splits completely over K.
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Conversely, suppose that f splits completely over K. Let σ ∈ Gal(L/K ). Since σ fixes u + v and
ζu+ ζ 2v,

u+ v = σ(u)+ σ(v) and ζu+ ζ 2v = ζσ (u)+ ζ 2σ(v). (1)

Note that
( 1
ζ

1
ζ 2

)
has a nonzero determinant and thus(

1 1
ζ ζ 2

)(
x
y

)
=

(
σ(u)+ σ(v)

ζσ (u)+ ζ 2σ(v)

)
(2)

has a unique solution. By (1), x = u, y = v is a solution to (2) and x = σ(u), y = σ(v) is a solution
to (2) as well. Therefore u = σ(u). By the Galois correspondence, u ∈ K, and thus (b) holds. Thus
u3
= (−B+C)/2 ∈ K. Since C = 2u3

+ B, C ∈ K and therefore

1= B2
+ 4A3/27= C2

is a square in K, and (a) is true. �

Lemma 6. Let p be a prime, p 6= 3, and let a ∈ Zp with |a|p = 1. Then a is a cube in Qp if and only if
a (mod p) is a cube in Zp/pZp.

Proof. Suppose that a is a cube in Zp. Then a is a cube in Zp/pZp by the nature of quotient rings.
Conversely, suppose a0 is a cube in Z/pZ where a0 ≡ a (mod p), and let b0 ∈ Z/pZ satisfy b3

0 ≡

a0 (mod p). Let f (x)= x3
− a. Note that p does not divide 3 or b0. By the strong triangle inequality,

| f (b0)|p = |b3
0− a|p ≤max{|b3

0− a0|p, |a0− a|p} ≤ 1
p .

Further,

| f ′(b0)|p = |3b2
0|p = 1.

By Hensel’s lemma, a is a cube in Qp. �

Theorem 7. Let p be a prime, with p ≡ 1 (mod 3). Then the following algorithm yields τ3,p.

(1) Create a list, in ascending order of Mahler measure, of all irreducible, noncyclotomic cubic poly-
nomials in Z[x] with Mahler measure bounded above by 8.5. Let f (x) be the first polynomial on
the list.

(2) Convert f (x) into depressed form g(x)= x3
+ Ax + B and let 1= B2

+ 4A3/27.

(3) If 1 is not a square in Qp, return to step (2) with the next polynomial on the list.

(4) If A = 0, let C = −B, and otherwise let C be a square root of 1 in Qp. If (−B + C)/2 is
not a cube in Qp, return to step (2) with the next polynomial on the list. Otherwise, terminate,
giving τ3,p =

1
3 log M( f ).

Proof. Since τ3,p ≤ τ
ab
3,p, by Theorem 3 we know that τ3,p ≤ 0.70376. By [BG06, Proposition 1.6.7], a list

of all polynomials with length less than 68 will contain all irreducible, noncyclotomic, cubic polynomials
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with Mahler measure bounded above by 8.5. Any degree 3 algebraic number of height less than or equal to
0.70376 will be a root of a polynomial in the list. Thus, this algorithm will always terminate successfully.

Let f be the polynomial being considered. By Theorem 5, steps (3) and (4) will detect exactly when
f splits completely over Qp. �

2.4. Case 2. Suppose p ≡ 2 (mod 3).

Theorem 8. Let K be a field of characteristic not equal to 2 or 3, K ′ be an algebraic closure of K, ζ be
a primitive cube root of unity in K ′, and assume that ζ /∈ K. Let f (x)= x3

+ Ax + B ∈ K [x] with B 6= 0
and let 1 = B2

+ 4A3/27. If A = 0, let C = −B, and if A 6= 0, let C be either square root of 1 in K ′.
Then f splits completely over K if and only if

(a) 1 is a square in K (ζ ) and not a square in K, and

(b) (−B+C)/2 is a cube in K (ζ ) and not a cube in K.

Proof. Let u be a cube root of (−B+C)/2 and let v =−A/(3u). By Lemma 4, the roots of f are u+ v,
ζu+ ζ 2v, and ζ 2u+ ζv.

We first suppose f splits completely in K. Let L be a Galois extension of K that contains u and ζ . Let
σ ∈ Gal(L/K (ζ )). We want to show that σ must fix u. Since we are assuming that f splits completely
over K, σ must fix u+ v, ζu+ ζ 2v, and ζ 2u+ ζv,

u+ v = σ(u)+ σ(v), (3)

ζ 2u+ ζv = ζ 2σ(u)+ ζσ (v). (4)

By multiplying (3) by ζ and subtracting (4), we obtain

(ζ − ζ 2)u = (ζ − ζ 2)σ (u), (5)

so σ(u)= u because ζ 6= ζ 2. Thus, since all elements in Gal(L/K (ζ )) fix u, u must be in K (ζ ).
It remains to show u /∈ K. Let τ ∈ Gal(L/K ) be such that τ interchanges ζ and ζ 2. We now show that

τ does not fix u. Since the roots of f must all be fixed by τ ,

ζu+ ζ 2v = ζ 2τ(u)+ ζ τ(v), (6)

ζ 2u+ ζv = ζ τ(u)+ ζ 2τ(v). (7)

By multiplying (7) by ζ , and subtracting (6), we obtain

(1− ζ )u = (1− ζ )τ (v) (8)

and note that τ(v)= u, so τ does not fix u. Thus u /∈ K and (b) holds.
Further, u ∈ K (ζ ), so u3

= (−B+C)/2∈ K (ζ ), and thus1 is a square in K (ζ ) since C ∈ K (ζ ). Since
K (u) is contained within K (ζ ), a quadratic extension of K, and u /∈ K, it follows that [K (u) : K ] = 2.
For sake of contradiction, suppose 1 is a square in K. Then u3

∈ K, so [K (u) : K ] = 3 which is not true.
Thus 1 is not a square in K, and (a) holds.
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Conversely, suppose that (a) and (b) are true. Note that if A = 0, then 1 is a square in K, contradict-
ing (a). Thus, A 6= 0. Let σ denote the nontrivial element of Gal(K (ζ )/K ). Since ζ and ζ 2 share a
degree 2 minimal polynomial, σ must permute ζ and ζ 2.

By (a) and (b), u, u3 /∈ K and u, u3
∈ K (ζ ). Since u3 and v3 are the roots of r(z)= z2

+ Bz− A3/27,
we have σ(u)3 = σ(u3)= v3. Therefore, either σ(u)= v, σ(u)= ζv, or σ(u)= ζ 2v.

We will now show that σ(u)= v by eliminating the other two options by way of contradiction. We
rely on the fact that elements of the Galois group send roots of f to roots of f , and that σ 2(u)= u. If
σ(u)= ζv, then u = ζ 2σ(v), and σ(u+ v)= σ(u)+ σ(v)= ζv+ ζu. Since ζv+ ζu is not a root of f ,
σ(u) 6= ζv. If σ(u) = ζ 2v, then u = ζσ (v), and σ(u + v) = ζ 2u + ζ 2v. Since ζ 2u + ζ 2v is not a root
of f , σ(u) 6= ζ 2v.

Therefore, σ(u)= v and σ(v)= u. Thus

σ(u+ v)= σ(u)+ σ(v)= v+ u,

σ (ζu+ ζ 2v)= σ(ζu)+ σ(ζ 2v)= ζ 2v+ ζu,

σ (ζ 2u+ ζv)= σ(ζ 2u)+ σ(ζv)= ζv+ ζ 2v.

Since σ fixes the roots of f , f splits completely in K. �

Let p ≡ 2 (mod 3). The third cyclotomic polynomial, 83(x)= x2
+ x + 1, has discriminant −3 and is

the minimal polynomial for ζ . Since −3 is not a square in Qp, 83(x) is irreducible over Qp, and thus
Qp does not contain a primitive cube root of unity. There are exactly three quadratic extensions of Qp:
Qp(
√

p),Qp(
√
−3), and Qp(

√
−3p). Let K = Qp(

√
−3) = Qp(ζ ), the unique unramified quadratic

extension of Qp. The p-adic absolute value on Qp extends uniquely to Qp(
√
−3) by

|a+ b
√
−3|p = |NK/Qp(a+ b

√
−3)|1/2p = |a

2
+ 3b2

|
1/2
p .

The following three lemmas summarize some basic facts about this field.

Lemma 9. Let p ≡ 2 (mod 3), and K =Qp(
√
−3). For x ∈ K×, |x |p ∈ pZ.

Proof. Let x = a+ b
√
−3, with a, b ∈Qp and x 6= 0. Suppose |a|p 6= |b|p. Then

|x |p = |a2
+ 3b2

|
1/2
p =max{|a|p, |b|p} ∈ pZ.

Suppose instead that |a|p = |b|p = p`. Set a0 = p`a and b0 = p`b. Note that since |a0|p = |b0|p = 1,
we have |a0|p, |b0|p ∈ pZ. Thus,

|a2
0 + 3b2

0|p ≤max{1, |3|p} ≤ 1.

Suppose, for the sake of contradiction, that |a2
0 + 3b2

0|p < 1. Then we have that a2
0 + 3b2

0 ≡ 0 (mod p),
which is a contradiction since −3 is not a quadratic residue modulo p. Thus

|x |p = |a2
+ 3b2

|
1/2
p = |p

−2`(a2
0 + 3b2

0)|
1/2
p = p`|a2

0 + 3b2
0|

1/2
p = p` ∈ pZ. �
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Lemma 10. Let p be a prime with p ≡ 2 (mod 3), K =Qp(
√
−3), and C ∈ K. Let k ∈ N, p - k. Then

f (x)= xk
−C has a root in K if and only if

(a) |C |p = pk` for some l ∈ Z, and

(b) pk`C (mod p) is a k-th power in Zp[
√
−3]/(p).

Proof. First we assume the existence of r ∈ K so that f (r) = 0, and verify that (a) and (b) hold. By
Lemma 9, |r |p = p` for some ` ∈ Z. Since

|C |p = |r k
|p = pk`,

(a) is true. Further,
pklC = pklr k

= (plr)k

and thus pklC is the k-th power of plr (mod p) in Z[
√
−3], and therefore also holds after reduction

modulo (p).
Conversely, we suppose C ∈Qp(

√
−3) satisfies conditions (a) and (b), and show that C is a k-th power

in K. Replacing C with pklC , without loss of generality we may assume |C |p = 1. By condition (b),
there exists a+b

√
−3∈Zp[

√
−3]/(p), where a, b ∈ {0, 1, 2, . . . , p−1} and C ≡ (a+b

√
−3)k (mod p).

Then
| f (a+ b

√
−3)|p = |(a+ b

√
−3)k −C |p ≤ 1

p ,

| f ′(a+ b
√
−3)|p = |k(a+ b

√
−3)k−1

|p = 1.

Thus, by Hensel’s lemma f has a root in K. �

Lemma 11. Let p be a prime with p ≡ 2 (mod 3), and K =Qp(
√
−3). Let x ∈Qp be nonzero and the

square of an element in K. Then exactly one of the following two cases is true:

(a) x = a2 for some a ∈Qp.

(b) x =−3b2 for some b ∈Qp.

Proof. Suppose x = (a+ b
√
−3)2 for a, b ∈Qp. Then

x = a2
− 3b2

+ 2ab
√
−3.

Since
√
−3 /∈Qp, we have ab = 0. If a = 0, then x =−3b2 and (b) holds. If b = 0, then x = a2 and (a)

holds. �

The previous lemma gives us the machinery to detect and solve for a square root in K, since x is a
square in K and not in Qp if and only if x/(−3)= b2 for some b ∈Qp.

Theorem 12. Let p be an odd prime, with p ≡ 2 (mod 3). Then the following algorithm yields τ3,p.

(1) Create a list, in ascending order of Mahler measure, of all irreducible, noncyclotomic cubic polyno-
mials in Z[x] with Mahler measure less than 8.5. Let f (x) be the first polynomial on the list.

(2) Convert f (x) into depressed form g(x)= x3
+ Ax + B and let 1= B2

+ 4A3/27.
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(3) If 1 is a square in Qp or is not a square in Qp(
√
−3), return to step (2) with the next polynomial

on the list.

(4) If A = 0, let C =−B, and otherwise let C be a square root of 1 in Qp(
√
−3). If (−B+C)/2 is not

a cube in Qp(
√
−3), return to step (2) with the next polynomial on the list.

(5) If (−B +C)/2 is a cube in Qp, return to step (2) with the next polynomial on the list. Otherwise,
terminate, giving τ3,p =

1
3 log M( f ).

Proof. Since τ3,p ≤ τ
ab
3,p, by Theorem 3 we know that τ3,p ≤ 0.70376. By [BG06, Proposition 1.6.7], a list

of all polynomials with length less than 68 will contain all irreducible, noncyclotomic, cubic polynomials
with Mahler measure bounded above by 8.5. Any degree 3 algebraic number of height less than or equal to
0.70376 will be a root of a polynomial in the list. Thus, this algorithm will always terminate successfully.

Let f be the polynomial being considered. By Theorem 8, steps (3), (4), and (5) will detect exactly
when f splits completely over Qp. �

2.5. Implementation. The function is_cube_in_k checks to see whether A+ B
√
−3 is a cube in K =

Qp(
√
−3) by applying Lemma 10.

def is_cube_in_k(A,B,p):
A = K(A);
B = K(B);
AA = A.list();
BB = B.list();
A0 = AA[0];
B0 = BB[0];
if A.abs()<1:

A0 = 0
if B.abs()<1:

B0 = 0
for c in [0..p-1]:

for d in [0..p-1]:
if (c*c*c - 9*c*d*d)%p==A0:

if (3*c*c*d - 3*d*d*d)%p==B0:
return True

return False

The function is_cube_in_Qp checks to see if A is a cube in Qp by applying Lemma 6.

def is_cube_in_Qp(A,p):
val = A.ordp();
if 3.divides(val)==True:

L = A.expansion();
a = L[0];
if IsCubeInFp(a,p)==True:

return True;
return False

The function tau_dp_1mod3 determines τ3,p for the prime p where p ≡ 1 (mod 3), by implementing
the algorithm described in Theorem 7. Recall the array Polynomials contains the contents of the file
irred_polynomials_L68, which has L entries. These were calculated in Section 2.1.
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def tau_dp_1mod3(p):
i = 0;
while i < L-1:

A = Polynomials[i][5];
B = Polynomials[i][6];
D = Polynomials[i][7];
A = K(A);
B = K(B);
D = K(D);
if QQ(D).is_padic_square(p)==True:

if A==0:
C = -B;

if A!=0:
C = D.square_root();

Check = (C - B) / 2;
if is_cube_in_Qp(Check,p)==True:

return Polynomials[i]
i = i + 1;

return False

The function tau_dp_2mod3 determines τ3,p for the prime p where p ≡ 2 (mod 3), by implementing
the algorithm described in Theorem 12.

def tau_dp_2mod3(p):
i = 0;
while i < L-1:

D = Polynomials[i][7];
if D.is_padic_square(p)==False:

b = D / (-3);
if b.is_padic_square(p)==True:

a = - Polynomials[i][6] / 2;
b = K(b);
b = sqrt(b) / 2;
if is_cube_in_k(a,b,p)==True:

return Polynomials[i]
i=i+1;

return False

The following code determines τ3,p for all primes p greater than 5, up to and including the N -th prime.
Polynomials=load(’irred_polynomials_L68’)
L=len(Polynomials)
P=Primes(); # P is now a list of all primes
N=25
rows = [[’P’, ’$\tau_{3,p}$’, ’Polynomial’]]
for i in[2..N]:

p = P.unrank(i);
K = Qp(p, prec = 6, type = ’capped-rel’, print_mode = ’series’);
if p%3==1:

tdp = tau_dp_1mod3(p)
Poly = tdp[1]*x^3 + tdp[2]*x^2 + tdp[3]*x + tdp[4];
h = tdp[8].n(digits=5);
rows.append([p,h,Poly])

if p%3==2:
tdp = tau_dp_2mod3(p)
Poly = tdp[1]*x^3 + tdp[2]*x^2 + tdp[3]*x +tdp[4];
h = tdp[8].n(digits=5);
rows.append([p,h,Poly])
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3. Results

Table 2 contains some values for τ3,p.

p τ3,p fα p τ3,p fα p τ3,p fα

5 0.36620 x3
− 2x2

− x − 3 127 0.23105 x3
− x2
− 2 277 0.23105 x3

− x2
− 2

7 0.30387 2x3
− 2x2

+ x − 2 131 0.12741 x3
− x2
− 1 281 0.26986 x3

− 2x2
− x + 1

11 0.36620 x3
− x2
− 2x − 3 137 0.30697 x3

− x2
− 3x − 2 283 0.12741 x3

− x2
− 1

13 0.26986 x3
− 2x2

− x + 1 139 0.23105 x3
− x2
− x + 2 293 0.12741 x3

− x2
− 1

17 0.23105 x3
− x2
− x + 2 149 0.12741 x3

− x2
− 1 307 0.093733 x3

− x2
+ 1

19 0.23105 x3
− x2
− 2 151 0.28206 2x3

− x2
+ 2 311 0.20313 x3

− x2
− x − 1

23 0.23105 x3
− x2
+ x − 2 157 0.23105 x3

− 2x − 2 313 0.23105 x3
− 2x − 2

29 0.26986 x3
− 2x2

− x + 1 163 0.20313 x3
− x2
− x − 1 317 0.093733 x3

− x2
+ 1

31 0.23105 x3
− x − 2 167 0.093733 x3

− x2
+ 1 331 0.28206 2x3

− x2
+ 2

37 0.27319 x3
− x2
− 2x − 2 173 0.093733 x3

− x2
+ 1 337 0.26986 x3

− 2x2
− x + 1

41 0.23105 x3
− x2
+ x − 2 179 0.27319 x3

− x2
− 2x − 2 347 0.093733 x3

− x2
+ 1

43 0.23105 x3
− 2 181 0.26986 x3

− 2x2
− x + 1 349 0.12741 x3

− x2
− 1

47 0.12741 x3
− x2
− 1 191 0.23105 x3

− x2
− 2 353 0.23105 x3

− x2
− 2

53 0.20313 x3
− x2
− x − 1 193 0.23105 x3

− x2
+ x − 2 359 0.23105 x3

− x − 2
59 0.093733 x3

− x2
+ 1 197 0.23105 x3

− x2
− x + 2 367 0.23105 x3

− x2
− 2

61 0.28206 2x3
− x2
+ 2 199 0.20313 x3

− x2
− x − 1 373 0.23105 x3

− x2
− x + 2

67 0.12741 x3
− x2
− 1 211 0.093733 x3

− x2
+ 1 379 0.12741 x3

− x2
− 1

71 0.23105 x3
− x2
− x + 2 223 0.093733 x3

− x2
+ 1 383 0.23105 x3

− x2
− x + 2

73 0.29111 2x3
− x2
− 2 227 0.12741 x3

− x2
− 1 389 0.23105 x3

− x2
− x + 2

79 0.28612 x3
− 2x2

− 2 229 0.23105 x3
− x2
+ x − 2 397 0.20313 x3

− x2
− x − 1

83 0.23105 x3
− 2x − 2 233 0.27319 x3

− x2
− 2x − 2 401 0.20313 x3

− x2
− x − 1

89 0.27535 2x3
− 2x2

− x + 2 239 0.26986 x3
− 2x2

− x + 1 409 0.30387 2x3
− 2x2

+ x − 2
97 0.26986 x3

− 2x2
− x + 1 241 0.30697 x3

− x2
− 3x − 2 419 0.20313 x3

− x2
− x − 1

101 0.093733 x3
− x2
+ 1 251 0.23105 x3

− x − 2 421 0.20313 x3
− x2
− x − 1

103 0.20313 x3
− x2
− x − 1 257 0.20313 x3

− x2
− x − 1 431 0.12741 x3

− x2
− 1

107 0.23105 x3
− x − 2 263 0.27319 x3

− x2
− 2x − 2 433 0.23105 x3

− 2
109 0.23105 x3

− 2 269 0.20313 x3
− x2
− x − 1 439 0.23105 x3

− x2
− x + 2

113 0.23105 x3
− x − 2 271 0.093733 x3

− x2
+ 1 443 0.23105 x3

− x2
− 2

Table 2. Some values for τ3,p.

4. Conclusion and future work

In this paper we relied on the fact that we can determine that a finite list of polynomials is guaranteed to
contain one that splits over Qp for any prime p. We restricted our search to cubic numbers that exist in
abelian extensions of Q to prove this. Moving forward, we will determine that we can guarantee that for
any degree d, there is some Nd ∈ Z such that τ ab

d,p depends only on p (mod Nd). For example, N2 = 5
and N3 = 228979643050431.

When we look at the small nonzero values attained by the height function on cubic numbers, we see
that the smallest value is 0.093733. It would be interesting to classify all primes such that τ3,p = 0.093733.
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