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We describe the practical implementation of an average polynomial-time algorithm for counting points
on superelliptic curves defined over Q that is substantially faster than previous approaches. Our algo-
rithm takes as input a superelliptic curve ym

= f (x) with m ≥ 2 and f ∈ Z[x] any squarefree polynomial
of degree d ≥ 3, along with a positive integer N . It can compute #X (Fp) for all p ≤ N not divid-
ing mlc( f )disc( f ) in time O(md3 N log3 N log log N ). It achieves this by computing the trace of the
Cartier–Manin matrix of reductions of X . We can also compute the Cartier–Manin matrix itself, which
determines the p-rank of the Jacobian of X and the numerator of its zeta function modulo p.

1. Introduction

Let X/k by a smooth projective curve of genus g > 0 whose function field is defined by an equation of
the form

ym
= f (x)

with m > 1 prime to the characteristic p of k and f ∈ k[x] a squarefree polynomial of degree d ≥ 3. We
shall call such a curve X a superelliptic curve. We note that not all authors require f to be squarefree
or p - m, while others require d and m to be coprime; our definition follows the convention in [21; 27]
and is equivalent to the class of cyclic covers of P1 considered in [2; 13]. One can compute the genus
of X as

g =
(d − 2)(m− 1)+m− gcd(m, d)

2
(1)

via the Riemann–Hurwitz formula. Well-known examples of superelliptic curves include elliptic curves,
hyperelliptic curves, Picard curves, and Fermat curves.
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We are primarily interested in k =Q where X has an associated L-function L(X, s)=
∑

ann−s that
we would like to “compute”. For us this means computing the integers an for all n up to a bound N that
is large enough for us to approximate special values of L(X, s) to high precision, and to compute upper
bounds on its analytic rank that we can reasonably expect to be sharp. This requires N to be on the order
of the square root of the conductor of the Jacobian of X, and in practice we typically take N to be about
30 times this value.

The fact that L(X, s) is defined by an Euler product implies that it suffices to compute an for prime
powers n ≤ N. Nearly all of the prime powers n ≤ N are in fact primes p, so this task is overwhelmingly
dominated by the time to compute ap for primes p ≤ N. Indeed, even if we spend O(pe log2 p) time
computing each ape ≤ N with e > 1 (which for primes of good reduction can be achieved by naïve
point-counting), we will have spent only O(N log N ) time, which is roughly the time it takes just to
write down all the an for n ≤ N. For primes of good reduction for X, including all p - m lc( f ) disc( f ),1

we may compute ap as

ap = p+ 1− #X (Fp);

in other words, by counting points on the reduction of X modulo p. See [6] for a discussion of how
primes of bad reduction may be treated. Alternatively, if one is willing to assume that the Hasse–Weil
conjecture for L(X, s) holds, one can use the knowledge of an at powers of good primes to determine the
an at powers of bad primes (and in particular, the primes p|m not treated by [6]) by using the functional
equation to rule out all but one possibility; see [3, §5] for a discussion of this approach when g = 2.

Another motivation for computing ap for good primes p≤ N is to compute the sequence of normalized
Frobenius traces ap/

√
p that appear in generalizations of the Sato–Tate conjecture. The moments of this

distribution encode certain arithmetic invariants of X, including, for example, the rank of the endomor-
phism ring of its Jacobian [9, Proposition 1], as well as information about its Sato–Tate group [11; 22].
Indeed, the initial motivation for this work (and its first application) was to compute Sato–Tate distribu-
tions for the genus 3 superelliptic curves with (m, d) ∈ {(3, 4), (4, 3), (4, 4)} that arise as smooth plane
quartics in the database described in [25] and played a role in the recent classification of Sato–Tate groups
of abelian threefolds [12]. The sequence of normalized Frobenius traces can also be used to numerically
investigate the error term in the Sato–Tate conjecture, and in particular, predictions regarding its leading
constant [7]. The ability to efficiently compute many integer values of ap also supports investigations of
generalizations of the Lang–Trotter conjecture, as well as a recent question of Serre regarding the density
of “record” primes, those with −ap > 2g

√
p− 1 (personal communication, 2019).

The algorithm we present here does more than just compute ap. Following the approach of [15; 16; 17],
which treated the case of hyperelliptic curves, for each good prime p we compute a g× g matrix Ap

giving the action of the Cartier–Manin operator on a basis for the space of regular differentials of the
reduction of X modulo p; see Section 2 for details. The matrix Ap is the transpose of the Hasse–Witt

1For m|d some good primes may divide lc( f ), but to simplify the presentation we exclude them here.
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matrix. Like the Hasse–Witt matrix, it satisfies

det(I − T Ap)≡ Lp(T ) mod p,

where Lp(T ) is the integer polynomial that appears in both the Euler product L(X, s)=
∏

p Lp(p−s)−1

and the numerator of the zeta function of the reduction of X modulo p:

Zp(T ) := exp
(∑

n≥1

#X (Fpn )
T n

n

)
=

Lp(T )
(1− T )(1− pT )

.

In particular, we have ap ≡ tr Ap mod p, and for p > 16g2 this uniquely determines ap ∈ Z, since
|ap| ≤ 2g

√
p, by the Weil bounds. The matrix Ap is also of independent interest, since it can be used

to compute the p-rank of the reduction of X modulo p, something that cannot be deduced solely from
Lp(T ).

Our main result is the following theorem, in which ‖ f ‖ = log maxi | fi | denotes the logarithmic height
of a nonzero integer polynomial f (x)=

∑
i fi x i.

Theorem 1. Given a superelliptic curve X : ym
= f (x) with f ∈ Z[x] of degree d and N ∈ Z>0, the

algorithm COMPUTECARTIERMANINMATRICES outputs the Cartier–Manin matrices Ap of the reduc-
tions of X modulo all primes p ≤ N not dividing m lc( f ) disc( f ). If we assume m, d, ‖ f ‖ are bounded
by O(log N ) the algorithm runs in O(m2d3 N log3 N ) time using O(md2 N ) space; it can alternatively
compute Frobenius traces ap ∈ Z for p ≤ N in time O(md3 N log3 N ).

Remark 2. The assumption m, d, ‖ f ‖= O(log N ) ensures that the complexity of multiplying the integer
matrices used in the algorithm is dominated by the cost of computing FFT transforms of the matrix
entries, which eliminates any dependence on the exponent ω of matrix multiplication; one can replace
d3 with dω+1 and then remove this assumption. We note that our complexity bound relies on the recently
improved M(n)= n log n bound on integer multiplication [18]. While the algorithm that achieves this
bound is not practical, many FFT-based implementations effectively achieve this growth rate within the
feasible range of computation, which for our purposes, is certainly limited to integers that fit in random
access memory; see [26, Algorithm 8.25], for example.

We also obtain an algorithm that can be used to compute Ap for a single superelliptic curve X/Fp. The
asymptotic complexity is comparable to that achieved in [2] which describes the algorithm that is now
implemented in version 9 of Sage. We include this result because it contains several components that
are used by the average polynomial-time algorithm we present. We should emphasize that the algorithm
in [2] can compute Lp(T ) mod pn for any n≥ 1, and taking n sufficiently large yields Lp ∈Z[T ], whereas
we focus solely on the case n = 1 (we gain a small but not particularly significant performance advantage
in this case).

Theorem 3. Given a superelliptic curve X : ym
= f (x) with f ∈ Fp[x] of degree d, the algorithm COM-

PUTECARTIERMANINMATRIX is able to compute the Cartier–Manin matrix of X using O(p1/2md2log p)
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space in O(p1/2m(dω+1
+ d3 log p) log p(log log p)) time, and also using O((md + d2) log p) space in

O((p+ d)md2 log p log log p) time.

In the article [2] noted above the authors consider a particular curve

X : y7
= x3
+ 4x2

+ 3x − 1

for which they estimate that it would take approximately six months (on a single core) for their algorithm
to compute the L-polynomials Lp(T ) for all primes p ≤ 224 of good reduction. This is an improvement
over an estimated three years for an earlier algorithm due to Minzlaff [20] that is implemented in Magma.
Computing Lp(T ) mod p is an easier problem that would likely take about a week or so using the
algorithm in [2], based on timings taken using a representative sample of p ≤ 224. The algorithm we
present here can accomplish this task in half an hour, and less than ten minutes if we only compute
Frobenius traces.

See Tables 1 and 2 in Section 7 for detailed performance comparisons for various shapes of superel-
liptic curves.

2. The Cartier operator

For background on differentials of algebraic function fields we refer the reader to [8, §2] and [23, §4].
Let K be a function field of one variable over a perfect field k of characteristic p > 0 that we assume
is the full field of constants of K. Let �K denote its module of differentials, which we identify with its
module of Weil differentials via [23, Definition 4.17] and [23, Remark 4.3.7]. Let x ∈ K be a separating
element, so that K/k(x) is a finite separable extension, and let K p denote the subfield of p-th powers.
Then (1, x, . . . , x p−1) is a basis for K as a K p-vector space, and every z ∈ K has a unique representation
of the form

z = z p
0 + z p

1 x + · · ·+ z p
p−1x p−1,

with z0, . . . , z p−1 ∈ K p, and every rational differential form ω= zdx can be uniquely written in the form

ω = (z p
0 + z p

1 x + · · · z p
p−1x p−1)dx .

The (modified) Cartier operator C :�K →�K is then defined by

C(ω) = z p−1dx .

The Cartier operator is uniquely characterized by the following properties:

(1) C(ω1+ω2)= C(ω1)+ C(ω2) for all ω1, ω2 ∈�K .

(2) C(z pω)= z C(ω) for all z ∈ K and ω ∈�K .

(3) C(dz)= 0 for all z ∈ K .

(4) C(dz/z)= dz/z for all z ∈ K×.
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In particular, it does not depend on our choice of a separating element x . Moreover, it maps regular
differentials to regular differentials and thus restricts to an operator on the space

�K (0) = {ω ∈�K : ω = 0 or div(ω)≥ 0},

which we recall is a k-vector space whose dimension g is equal to (and often used as the definition of)
the genus of K ; see [23, Example 4.12-17] for these and other standard facts about the Cartier operator.

Definition 4. Let ω = (ω1, . . . , ωg) be a basis for �K (0) and define ai j ∈ k via

C(ω j )=

g∑
i=1

ai jωi .

The Cartier–Manin matrix of K (with respect to ω) is the matrix A = [ai j ] ∈ kg×g.

If X/k is a smooth projective curve with function field k(X)= K, we also call A the Cartier–Manin
matrix of X. This matrix is closely related to the Hasse–Witt matrix B of X, which is defined as the
matrix of the p-power Frobenius operator acting on H 1(X,OX ) with respect to some basis. As carefully
explained in [1], the matrices A and B can be related via Serre duality, and for a suitable choice of
basis one finds that B = [a p

i j ]
T. In the case of interest to us k = Fp is a prime field and the Cartier–

Manin and Hasse–Witt matrices are simply transposes of each other, and hence have the same rank and
characteristic polynomials, but we shall follow the warning/request of [1] and call A the Cartier–Manin
matrix, although one can find examples in the literature where A is called the Hasse–Witt matrix (see [1]
for a list).

We shall apply the method of Stöhr–Voloch [24] to compute the Cartier–Manin matrix of a smooth
projective curve X with function field K = k(X). Let us write K as k(x)[y]/(F), where x ∈ X is a
separating element and y is an integral generator for the finite separable extension K/k(x) with minimal
polynomial F ∈ k[x][y]. We now define the differential operator

∇ =
∂2p−2

∂x p−1∂y p−1

which maps x (i+1)p−1 y( j+1)p−1 to x i p y j p and annihilates monomials not of this form; it thus defines a
semilinear map ∇ : K → K p. Writing Fy for ∂

∂y F ∈ k[x, y], for any h ∈ K we have the identity

C
(

h
dx
Fy

)
= (∇(F p−1h))1/p dx

Fy
, (2)

given by [24, Theorem 1.1]. If we choose a basis for �X (0) using regular differentials of the form
hdx/Fy , we can compute the action of the Cartier operator on this basis via (2). To construct such a
basis we shall use differentials of the form

ωk` = xk−1 y`−1 dx
Fy
, (k, `≥ 1, k+ `≤ deg(F)− 1). (3)
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Writing F(x, y)p−1
=
∑

i, j F p−1
i j x i y j (defining F p−1

i, j ∈ k for all i, j ∈ Z), for k, `≥ 1 one finds that

∇

(∑
i, j≥0

F p−1
i j x i+k−1 y j+`−1

)
=

∑
i, j≥1

F p−1
i p−k, j p−`x

(i−1)p y( j−1)p. (4)

Now F p−1
i p−k, j p−` is nonzero only if we have (i+ j)p− (k+`)≤ (p−1) deg(F), and k+`≤ deg(F)−1,

so we can restrict the sum on the RHS to i + j ≤ deg(F)− 1. From (2) and (4) we obtain

C(ωk`)=
∑

i, j≥1

(F p−1
i p−k, j p−`)

1/pωi j . (5)

When X is a smooth plane curve the complete set of ωi j defined in (3) is a basis for �K (0) and we can
read off the entries of the Cartier–Manin matrix for X directly from (5). In general not all of the ωi j

necessarily lie in �K (0), some of them might not be regular, but the subset that do (those corresponding
to adjoint polynomials) form a basis for �K (0); see [14; 24]. In the case of superelliptic curves this
subset is given explicitly by Lemma 6.

Definition 5. For a, b ∈ Z with b> 0, let a rem b = a− bba/bc denote the unique integer in the interval
[0, b− 1] ∩ (a+ bZ).

Lemma 6. Let k be a perfect field of positive characteristic p, let X/k be a superelliptic curve defined
by F(x, y) = ym

− f (x) = 0, let d = deg f , and for i, j ≥ 1 let ωi j = x i−1 y j−1dx/Fy ∈ �K , where
K = k(x)[y]/(F) is the function field of X. Then the set

ω = {ωi j : mi + d j < md}

is a k-basis for �K (0), with 1≤ i < d −bd/mc and 1≤ j < m−bm/dc. Moreover, if we define

d j = d −bd j/mc− 1 and mi = m−bmi/dc− 1, (6)

then the ωi j ∈ ω are precisely those for which 1≤ i ≤ d j and 1≤ j ≤ mi .

Proof. Note that ωi j =
1
m x i−1 y j−mdx , with p - m. It follows from [21, Proposition 3.8] (which treats

X/C but whose proof also works for X/k and can be independently derived using the methods of [14])
that the set

{x i−1 y−kdx : 1≤ i < d, 1≤ k ≤ m− 1, dk−mi ≥ gcd(m, d)}

is a basis for �K (0). Taking k = m− j and rearranging yields the basis

ω = {ωi j : mi + d j ≤ md − gcd(m, d)} = {ωi j : mi + d j < md},

and the bounds on i and j immediately follow. �

For X/k defined by F(x, y)= f (x)− ym
= 0, if we let f n

a denote the coefficient of xa in f (x)n then

F p−1
ab =

{
f p−1−b/m
a if m | b and b ≤ m(p− 1),

0 otherwise,
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(here we have used
(p−1

e

)
(−1)e ≡ 1 mod p), thus for all 1≤ i, k < d and 1≤ j, ` < m we have

F p−1
i p−k, j p−` =

{
f p−1−( j p−`)/m
ip−k if m | ( j p− `),

0 otherwise.

Now 1≤ j, ` < m and p - m, so whenever

F p−1
i p−k, j p−` 6= 0,

we must have `= j p rem m > 0 and

n j = p− 1− ( j p− `)/m =
(m− j)p− (m− `)

m
= p− 1−b j p/mc. (7)

Let us order the basis for �K (0) given by Lemma 6 as ω = (ω11, ω21, . . . , ω12, . . .) with the ωi j

ordered first by j and then by i . The Cartier–Manin matrix of X can then be described in block form
with blocks indexed by j and ` containing entries indexed by i and k:

Ap = [B j`
] j` 1≤ j, `≤ µ = m1 = m−bm/dc− 1,

B j`
= [(b j`

ik )
1/p
]ik 1≤ i ≤ d j and 1≤ k ≤ d`,

b j`
ik =

{
f n j
i p−k if ( j p− `)/m ∈ Z≥0,

0 otherwise.

(8)

The diagonal blocks B j, j are square but the others typically will not be square, since the bound on i
depends on j while the bound on k depends on `. We also note that there is at most one nonzero B j`

in each row j, and in each column ` of [B j`
] j`, since any nonzero B j` must have `≡ j p mod m (there

will be no nonzero B j` for j if no `≤ µ satisfies `≡ j p mod m; this happens, for example, when j = 1
and d = m = 5 with p ≡ 4 mod 5).

Example 7. For m = 5 and d = 3 we have g = 4, and the 4× 4 matrix Ap consists of 3× 3= 9 blocks:
one 2× 2, two 2× 1, two 1× 2, and four 1× 1. For k = Fp, the matrices Ap for p ≡ 1, 2, 3, 4 mod 5 are

f (4p−4)/5
p−1 f (4p−4)/5

p−2 0 0

f (4p−4)/5
2p−1 f (4p−4)/5

2p−2 0 0

0 0 f (3p−3)/5
p−1 0

0 0 0 f (2p−2)/5
p−1

,


0 0 f (4p−3)/5
p−1 0

0 0 f (4p−3)/5
2p−1 0

0 0 0 0

f (2p−4)/5
p−1 f (2p−4)/5

p−2 0 0

,


0 0 0 f (4p−2)/5

p−1

0 0 0 f (4p−2)/5
2p−1

f (3p−4)/5
p−1 f (3p−4)/5

p−2 0 0

0 0 0 0

,


0 0 0 0

0 0 0 0

0 0 0 f (3p−2)/5
p−1

0 0 f (2p−3)/5
p−1 0

.

For m = 3 and d = 5 we also have g = 4 but now the 4× 4 matrix Ap consists of 2× 2 = 4 blocks:
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one 3× 3, one 3× 1, one 1× 3, and one 1× 1. For k = Fp the matrices Ap for p ≡ 1, 2 mod 3 are

f (2p−2)/3
p−1 f (2p−2)/3

p−2 f (2p−2)/3
p−3 0

f (2p−2)/3
2p−1 f (2p−2)/3

2p−2 f (2p−2)/3
2p−3 0

f (2p−2)/3
3p−1 f (2p−2)/3

3p−2 f (2p−2)/3
3p−3 0

0 0 0 f (p−1)/3
p−1


,



0 0 0 f (2p−1)/3
p−1

0 0 0 f (2p−1)/3
2p−1

0 0 0 f (2p−1)/3
3p−1

f (p−2)/3
p−1 f (p−2)/3

p−2 f (p−2)/3
p−3 0


.

In both cases tr Ap = 0 for p 6≡ 1 mod m, but this is not true in general (consider m = 4 and d = 3, for
example).

The block form of the Cartier–Manin matrix Ap given by (8) implies the following theorem, which
plays a key role in our algorithm for computing Ap and may also be of independent interest.

Theorem 8. Let X : ym
= f (x) be a superelliptic curve over a perfect field of characteristic p > 0 with

d = deg( f ). Let ω be the basis of �k(X)(0) given by Lemma 6, and for 1≤ j ≤m1 =m−bm/dc− 1, let
ω j = {ωi j ′ ∈ ω : j ′ = j}. For 1≤ j ≤ m1 the Cartier operator maps the subspace spanned by ω j to the
subspace spanned by ω`, with `≡ j p mod m, and this action is given by the matrix B j` defined in (8).
In particular, when p ≡ 1 mod m the Cartier operator fixes each of the subspaces spanned by ω j .

Proof. This is an immediate consequence of (8). �

Remark 9. In [5, Lemma 5.1] Bouw gives formulas for the coefficients of the Hasse–Witt matrix of a
general cyclic cover Y : ym

= f (x) of P1 in terms of the (possibly repeated) roots of the polynomial
f ∈ k[x], where k is an algebraically close field of characteristic p. When f is squarefree, Bouw’s
formulas agree with (8), after taking into account the transposition needed to get the Cartier–Manin
matrix and a possible change of basis (I’m grateful to Wanlin Li and John Voight for bringing this to my
attention). One can compute analogs of the formulas in (8) to handle f that are not squarefree that take
into account the multiplicities of its root, but we do not consider this case here. Note that the genus of Y
and therefore the dimensions of Ap will be less than that given by (1) when f is not squarefree, so while
the formulas may be more involved, the problem is computationally easier.

3. Linear recurrences

The results of the previous section imply that to compute the Cartier–Manin matrix Ap of a superelliptic
curve X : ym

= f (x) over Fp it suffices to compute certain coefficients of certain powers of f (x). In this
section we derive linear recurrences that allow us to do this efficiently, both when f ∈ Fp[x] and when
f ∈ Z[x] and we wish to compute certain coefficients of certain powers of the reduction of f modulo
many primes p. In this section we generalize [17, §2], which treated the case m = 2, in which case
Ap = B consists of a single block B11 (so j = ` = 1), the powers f n that appear in the matrix entries
are always the same (n = (p− 1)/2), and every prime p - m is congruent to 1 modulo m. Here we allow
all of these parameters to vary.
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Let f ∈ Z[x] be a squarefree polynomial of degree d ≥ 3, which we shall write as f (x) = xch(x)
with c = 0, 1 and h(0) 6= 0 (note that x2 - f ).2 Let h(x) =

∑r
i=0 hi x i, and for n ≥ 1 let hn

i denote the
coefficient of x i in h(x)n. As shown in [17, §2], the identities hn+1

= h · hn and (hn+1)′ = (n + 1)hn

yield the linear relation
r∑

i=0

((n+ 1)i − k)hi hn
k−i = 0, (9)

which is valid for all k ∈ Z and n ∈ Z≥0. Observing that n j = ((m− j)p− (m− `))/m is the exponent
on f in every entry of the nonzero block B j` defined in (8), let us set n = n j and rewrite (9) as

0=
r∑

i=0

((m− j)p+ `)i −mk)hi h
n j
k−i ≡

r∑
i=0

(`i −mk)hi h
n j
k−i mod p, (10)

which is valid for all k ∈ Z. We now define

v
n j
k := [h

n j
k−r+1, . . . , hn j

k ] ∈ Zr ,

and put s = p−1−cn j . The entries of vn
s mod p suffice to compute the first row of block B j` in Ap; note

that n (and potentially s) depend on j and will vary from block to block. We have vn j
0 = [0, . . . , 0, hn j

0 ] =

hn j
0 v

0
0 , where v0

0 = [0, . . . , 0, 1]. Noting that s < p and p - m and p - h0 (since f is squarefree), solving
for hn

k in (10) yields

v
n j
s ≡

v
n j
0

(mh0)ss!

s−1∏
i=0

M`
i ≡ mcn j h(c+1)n j

0 (−1)cn j+1(cn j )!v
0
0

s−1∏
i=0

M`
i mod p, (11)

where

M`
i−1 :=


0 · · · 0 (`r −mi)hr

mih0 · · · 0 (`(r − 1)−mi)hr−1
...

. . .
...

...

0 · · · mih0 (`−mi)h1

 (12)

is an integer matrix that depends on the integers i, `,m and the polynomial h of degree r , but is indepen-
dent of p. This independence is the key to obtaining an average polynomial-time algorithm.

Remark 10. Alternatively, if we define wn
k = [h

n j
k+r−1, hn j

k+r−2, . . . , hn j
k ] and t = d j p− d`− cn j , the

entries of wn
t suffice to compute the last row of block B j` in Ap. Equivalently, if we put h̃(x) =

xr h(1/x) (in other words, reverse the coefficients of h) and define ṽn
k in terms of h̃n as above, it suffices

to compute ṽn
s̃ where

s̃ = rn j − t = dn j − d j p+ d` = p− 1−b(d j rem m)p/mc. (13)

When m - d j we will have s̃ < s if c = 0 (and possibly even if c = 1), in which case we can compute the
last row more efficiently than the first.

2The reader may wish to assume c = 0 and f = h on a first reading.
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We have shown how to compute the first (or last) row of each of the blocks B j` that appear in the
Cartier–Manin matrix of the superelliptic curve X (either for X/Fp or for the reductions of X/Q modulo
varying primes p) by computing reductions of products of integer matrices modulo primes. To compute
the remaining rows in the same fashion would require working modulo powers of primes, which is
something we wish to avoid. In the next section we show how to efficiently reduce the computation of
the remaining rows to the computation of the first row using translated curves, which allows us to always
work modulo primes.

4. Translation tricks

Let X : ym
= f (x) be a superelliptic curve over Fp of genus g, with d = deg( f ). Let Ap be the

Cartier–Manin matrix Ap, and for a ∈ Fp, let Ap(a) be the Cartier–Manin matrix of the translated curve
Xa : ym

= f (x + a), whose blocks we denote B j`(a) with entries b j`
ik (a). We omit the exponent 1/p

that appears in (8) because we are now working over Fp. The curve Xa is isomorphic to X, which forces
Ap and Ap(a) to be conjugate, but these matrices are typically not equal. Our objective in this section
is to show that we can compute B j` by solving a linear system that involves the entries that appear in
just the first rows of B j`(a), where a ranges over d j = d −bd j/mc− 1 distinct values of a ∈ Fp. Note
that B j` has d j rows and d` columns, and we recall from (8) that the g× g matrix Ap is made up of µ2

blocks B j`, where µ = m1 = m−bm/dc− 1, and we have d1+ · · ·+ dµ = g. We shall assume p ≥ d,
so that d j < d distinct values of a exist in Fp; for p < d we can easily compute Ap directly from (8).

The results in this section generalize [17, §5], which treated the case m = 2, where µ= 1 and A= B11.
In our current setting Ap consists of µ×µ rectangular blocks B j` that need not be square.

For a ∈ Fp and 1≤ j ≤ µ we define the upper triangular d j × d j matrix

T j (a) = [t j
ik(a)]ik, t j

ik(a) =
(

k− 1
i − 1

)
ak−i , 1≤ i, k ≤ d j .

We also define T (a) to be the g× g block diagonal matrix with the matrices T j (a) on the diagonal, for
1≤ j ≤ µ. We note that

T j (a)−1
= T j (−a)

and T (a)−1
= T (−a), as the reader may verify (or see the proof below).

Lemma 11. For a∈Fp we have B j`(a)T `(a)=T j (a)B j` for all 1≤ j, `≤µ, and Ap(a)=T(a)ApT(−a).

Proof. From the block structure of Ap given by (8) it is clear that the first statement implies the second.
Let ω(a)= {ωi j (a)} be the basis given by Lemma 6 for Xa and define ω j (a) = {ωi j ′(a) ∈ω : j ′ = j}. By
Theorem 8, the Cartier operator of X maps the subspace spanned by ω j to the subspace spanned by ω`

via the matrix B j`, and the Cartier operator of Xa maps the subspace spanned by ω j (a) to the subspace
spanned by ω`(a) via the matrix B j`(a). We just need to check that the matrices T `(a) and T j (a)
correspond to the change of basis that occurs when we replace x with x + a. Noting that d(x + a)= dx
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and F(x + a)y = F(x)y , we have

ωk j (a)= (x + a)k−1 y j−1dx/Fy =

k∑
i=1

(
k− 1
i − 1

)
ak−i x i−1 y j−1dx/Fy

=

k∑
i=1

t j
ik(a)ωi j =

d j∑
i=1

t j
ik(a)ωi j ,

and it follows that ω j (a)= T j (a)ω j (here we are viewing ω j and ω j (a) as column vectors). This holds
for any j , including `, and the lemma follows. �

Let us now consider the computation of the d j × d` block B j`. Computing the k-th entry in the first
row of both sides of the identity B j`(a)T `(a)= T j (a)B j` given by Lemma 11 yields

d∑̀
s=1

b j`
1s (a)t

`
sk(a)=

d j∑
t=1

t j
1t(a)b

j`
tk ,

which defines a linear equation with d j unknowns b j`
tk in terms of the b j`

1s (a) and matrices T j (a) and T `(a)
we assume are known. Taking d j distinct values of a, say (a1, . . . , ad j ), yields a linear system with d j

equations and d j unknowns that we can solve because the d j × d j matrix [t j
1t(ai )]i t = [at−1

i ]i t is an
invertible Vandermonde matrix V (a1, . . . , ad j ). If we now define the d j × d` matrix

B j`
1 (a1, . . . , ad j ) = [b

j`
1s (ai )]is (14)

and let W j`
1 be the d j × d` matrix whose i-th row is the i-th row of B j`

1 times T `(ai ), we can compute
B j` as

B j`
= V (a1, . . . , ad j )

−1W j`
1 . (15)

Remark 12. If we use Remark 10 to compute the last row of B j` we can compute the first row of
B j`(ai ) for a1, . . . , ad j−1 and use (15) to deduce the last row of W j`

1 from the last row of B j`. One
might suppose that we could instead compute the last rows of the B j`(ai ) instead of their first rows, but
this is not enough to deduce B j`.

Lemma 13. Let X : ym
= f (x) be a superelliptic curve over Fp with d = deg( f ), and let a1, . . . , ad1 be

distinct elements of Fp, where d1 = d−bd/mc− 1. Given the matrices B j`
1 (a1, . . . , ad j ) for 1≤ j ≤ µ=

m1 = m − bm/dc − 1 with ` ≡ j p mod m, we can compute the Cartier–Manin matrix Ap of X using
O(md3) ring operations in Fp and space for O(md + d2) elements of Fp.

Proof. We can compute V (a1, . . . , ad j )
−1 using O(d2

j ) ring operations in Fp [10], and we can compute
T `(ai ) in O(d2

j ) ring operations (using
(k

i

)
=
(k−1

i−1

)
+
(k−1

i

)
). The computation of W j` requires O(d j d2

` )

Fp-operations, and the matrix product in (14) uses O(d2
j dl) ring operations, so it takes O(d2

j d`+d`d2
j )=

O(d3) ring operations to compute each B j`. There are at most µ < m nonzero B j` to compute, so the
total cost of computing Ap given the matrices B j`

1 (a1, . . . , ad j ) is O(md3) ring operations in Fp while
storing O(md + d2) elements of Fp. �
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Remark 14. In terms of the genus g ∼ md/2, the bound O(md3) is equivalent to O(gd2), which is
always bounded by O(g3) but can be as small as O(g) if d = O(1) (this assumes we use a sparse
representation of Ap).

Remark 15. In addition to playing a key role in our strategy for computing Ap, using translated curves
can improve performance, as noted in the case of hyperelliptic curves in [17, §6.1]. In particular, if f (x)
has a rational root a then the translated curve Xa : ym

= f (x + a) = xh(x) will have r = d − 1 and
c = d − r = 1, reducing both the dimension r and number t = p− 1− cn of matrices M`

k that appear in
the product in (11). It thus makes sense to choose our distinct translation points a to be roots of f (x)
whenever possible. Additionally, if d is divisible by m and f (x) has a rational root a, we can replace X
with X ′ : ym

= xd f (1/x + a)= g(x), where g(x) has degree d − 1, and this also applies to all translated
curves X ′a′ . This applies both locally (over Fp) and globally (over Q).

5. Accumulating remainder trees and forests

In this section we briefly recall some background on accumulating remainder trees and related complex-
ity bounds. Given a sequence of r × r matrices M0, . . . ,MN−1 and a sequence of coprime integers
m1, . . . ,m N we wish to compute the sequence of reduced partial products

Ak = M0 · · ·Mk−1 mod mk

for 1≤ k ≤ N. For 0≤ k ≤ N/2 let Bk = M2k M2k+1 and bk =m2km2k+1, where MN = MN+1 = I and
m0 = m N+1 = 1. Then A1 = M0 mod m1, and if we recursively compute Ck = B0 · · · Bk−1 mod bk =

M0 · · ·M2k−1 mod m2km2k+1 for 1≤ k ≤ N/2, we can then compute

A2k = Ck mod m2k and A2k+1 = Ck M2k mod m2k+1,

omitting C2k+1 when k = N/2. This is the REMAINDERTREE algorithm given in [16]. In our setting
we actually want to compute products of the form V

∏
k Mk that involve a row vector V, and for this

problem the REMAINDERFOREST algorithm in [16] achieves an improved time (and especially) space
complexity by splitting the remainder tree into 2κ -subtrees, for a suitable choice of κ . We record the
following result from [17], in which ‖x‖ denotes the logarithm of the largest absolute value appearing
in nonzero integer matrix or integer vector x , including the case where x is a single nonzero integer.

Theorem 16 [17]. Given V ∈ Zr, M1, . . . ,MN ∈ Zr×r, and m1, . . . ,m N ∈ Z, let n = dlog2 Ne, let B
be an upper bound on ‖

∏N
j=1 m j‖ such that B/2κ is an upper bound on ‖

∏st+t−1
j=st m j‖ for 1≤ s ≤ N/t ,

where t := 2n−κ. Let B ′ be an upper bound on ‖V ‖, and let H be an upper bound on ‖mk‖, ‖Ak‖ for
1 ≤ k ≤ N, such that log r ≤ H, and assume that r = O(log N ). The REMAINDERFOREST algorithm
computes the vectors Vk = V M1 · · ·Mk mod mk ∈ (Z/mkZ)r for 1≤ k ≤ N in

O(r2 M(B+ N H)(n− κ)+ 2κr2 M(B)+ r M(B ′))

time using space bounded by

O(2−κr2(B+ N H)(n− κ)+ r(B+ B ′)).
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This theorem implies the following corollary, which is all we shall use.

Corollary 17. Fix an absolute constant c> 0. Let N be a positive integer, let m1, . . . ,m N be a sequence
of positive coprime integers with log mk ≤ c log N, let M0, . . . ,MN−1 ∈ Zr×r be integer matrices with
r, ‖Mk‖ ≤ c log N, and let v0 ∈ Zr be a row vector with ‖v0‖ = cN log N. We can compute the vectors

vk = v0

k−1∏
i=0

Mi mod mk

for 1≤ k ≤ N in O(r2 N log3 N ) time using O(r2 N ) space.

Proof. Applying Theorem 16 with κ = 2 log log N, B = cN log N, B ′ = c log N, and H = c log N,
yields an O(r2 M(N log N ) log N ) time bound using O(r2 N ) space. Now apply M(N ) = O(N log N )
from [18]. �

6. Algorithms

We now give our algorithms for computing the Cartier–Manin matrix Ap of a superelliptic curve X/Fp

and for the reductions of a superelliptic curve X/Q modulo good primes p ≤ N. In the descriptions
below, expressions of the form “a rem m” denote the least nonnegative remainder in Euclidean division
of a by m. As above we assume X is defined by ym

= f (x) with f (x) squarefree of degree d ≥ 3. We
define µ = m−bm/dc− 1, and for 1 ≤ j ≤ µ we put d j = d −bd j/mc− 1, with d1 ≥ d2 ≥ · · · dµ as
in (6). Recall that the genus of X is g = ((d − 2)(m− 1)+m− gcd(m, d))/2, as in (1).

Algorithm (COMPUTECARTIERMANINMATRIX). Given m ≥ 2 and squarefree f ∈ Fp[x] of degree
3≤ d ≤ p with p - m, compute the Cartier–Manin matrix Ap ∈ F

g×g
p of X : ym

= f (x) as follows:

(1) Fix distinct a1, . . . , ad1 ∈ Fp that include as many roots of f (x) as possible.

(2) For j from 1 to µ such that ` = j p rem m ≤ µ:

(a) For i from 1 to d j :

(i) Let f (x + ai )= xch(x) ∈ Fp[x] with c ∈ {0, 1} and put r = deg(h).

(ii) Set n = ((m− j)p− (m− `))/m ∈ Z and s = p− 1− cn.

(iii) Compute ws = v
0
0
∏s−1

i=0 M`
i ∈ Fr

p, with M`
i ∈ Fr×r

p as in (12), and us = s! ∈ Fp.

(iv) Compute α = vn
s = m−shn−s

0 u−1
s ws ∈ Fr

p via (11).

(v) Let b j`
1 (ai ) = [αr , αr−1, . . . αr−d`+1] ∈ F

d`
p .

(b) Let B j`
1 ∈ F

d j×d`
p be the matrix with i-th row b j`

1 (ai ) as in (14) and use B j`
1 to compute

B j`
∈ F

d j×d`
p via (15).

(3) Output Ap = [B j`
] j` ∈ F

g×g
p defined as in (8), with B j`

= 0 for ` 6≡ j p mod m.

There are two ways to compute ws in step (iii). One is to compute s vector-matrix products wi+1 =

wi M`
i starting with w0 = [0, . . . , 0, 1] ∈ Fr

p, which can be accomplished using O(pr) ring operations
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in Fp using O(r log p) space (note that M`
i has only 2r − 1 nonzero entries). Alternatively one can use

the Bostan–Gaudry–Schost algorithm [4], which uses an optimized interpolation/evaluation approach to
compute products of matrices over polynomial rings evaluated along an arithmetic progression; in our
setting we view the M`

i as matrices of linear polynomials in i evaluated along the arithmetic progression
i = 0, 1, 2, . . . , s− 1. This involves O(p1/2(rω+ r2 log p) ring operations in Fp using O(r2 p1/2) space,
via [4, Theorem 8] and [19], and we can similarly compute us = s! (but note that us =−1 in the typical
case where c = 0).

We now prove Theorem 3, which we restate here for convenience.

Theorem 3. Given a superelliptic curve X : ym
= f (x) with f ∈ Fp[x] of degree d, the algorithm COM-

PUTECARTIERMANINMATRIX is able to compute the Cartier–Manin matrix of X using O(p1/2md2log p)
space in O(p1/2m(dω+1

+ d3 log p) log p(log log p)) time, and also using O((md + d2) log p) space in
O((p+ d)md2 log p log log p) time.

Proof. The theorem follows from Lemma 13, provided that we can compute the matrices B j`
1 (a1, . . . , ad j )

within the stated complexity bounds. This computation is dominated by the cost of step (iii), which is
executed O(md) times. The cost of a ring operation in Fp can be bounded by O(M(log p)) via [26,
Theorem 9.9], which is O(log p log log p), by [18]. The Bostan–Gaudry–Schost approach yields a bit-
complexity of

O(p1/2(dω+ d2 log p) log p log log p)

time and O(d2 p1/2 log p) space per iteration, and the vector-matrix multiplication approach yields a
bit-complexity of O(pd log p log log p) and O(d log p) space per iteration; the theorem follows. �

We now present our main result, an average polynomial-time algorithm to compute the Cartier–Manin
matrices of the reductions of a superelliptic curve X/Q at all good primes p ≤ N.

Algorithm (COMPUTECARTIERMANINMATRICES). Given m ≥ 2 and squarefree f ∈ Z[x] of degree
d ≥ 3, compute the Cartier–Manin matrices Ap of the reductions of X : ym

= f (x) modulo primes p ≤ N
with p - m lc( f ) disc( f ) as follows:

(1) For primes p ≤ N with p - m lc( f ) disc( f ) initialize Ap ∈ F
g×g
p to the zero matrix.

(2) Fix distinct a1, . . . , ad1 ∈ Z that include as many roots of f as possible.

(3) For each pair of integers j, ` ∈ [1, µ]:

(a) Compute the set P = {p1, p2, · · · } of primes p ≤ N with j p ≡ ` mod m
such that p - m lc( f ) disc( f ) and a1, . . . , ad1 are distinct modulo p.

(b) If the set P is empty proceed to the next pair j, `.

(c) For i from 1 to d j :

(i) Let f (x + ai )= xch(x) ∈ Z[x] with c ∈ {0, 1} and put r = deg(h).
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(ii) Let N ′ = N if c = 0 and N ′ = b( j N − `)/m)c otherwise.

(iii) Define coprime moduli m1, . . . ,m N ′ as follows:

If c = 0 then mk = k+ 1 for k+ 1 ∈ P.

If c = 1 then mk = (mk+ `)/j for (mk+ `)/j ∈ P.

For any mk not defined above, let mk = 1.

For p ∈ P let k(p) denote the index k of the mk for which mk = p.

(iv) Compute wk = v
0
0
∏k−1

i=0 M`
i mod mk and uk = k! mod mk for 1≤ k ≤ N ′ as in Corollary 17.

(v) For p ∈ P use wk(p), uk(p) to compute b j`
1 (ai )∈ F

d`
p as in COMPUTECARTIERMANINMATRIX.

(d) For p ∈ P, let B j`
1 ∈ F

d j×d`
p have rows b j`

1 (ai ) ∈ F
d`
p as in (14), use B j`

1 to compute B j`
∈ F

d j×d`
p

via (15), and set the j, ` block of Ap to B j` as in (8).

(4) Let S be the set of primes p ≤ N satisfying p - m lc( f ) disc( f ) for which the a1, . . . ad1 are not
distinct modulo p. For p ∈ S compute Ap using algorithm COMPUTECARTIERMANINMATRIX if
p ≥ d and otherwise compute Ap directly from (8) by extracting coefficients of powers of f ∈ Fp[x].

(5) Output Ap ∈ F
g×g
p for all primes p ≤ N such that p - m lc( f ) disc( f ).

Remark 18. To compute Frobenius traces ap ∈ Z, we modify step (3) to loop over integers j = ` ∈ [1, µ]
and output just the traces of the Ap in step (5). This gives the traces of Frobenius ap mod p. For p> 16g2

these determine ap ∈ Z, by the Weil bounds, and for p ≤ 16g2 we can compute

ap = p+ 1− #X (Fp)

by enumerating values of f (x) and looking them up in a precomputed table of m-th powers.

Remark 19. The loop in step (c) is executed (up to) µg times. Each of these computations is completely
independent of the others, which makes it easy to efficiently distribute the work across µg threads. In
principal one can also parallelize the integer matrix multiplications performed by the REMAINDERFOR-
EST algorithm in step (iv), but in practice it is extremely difficult to do this efficiently.

We now prove Theorem 1, which we restate for convenience.

Theorem 1. Given a superelliptic curve X : ym
= f (x) with f ∈ Z[x] of degree d and N ∈ Z>0, the

algorithm COMPUTECARTIERMANINMATRICES outputs the Cartier–Manin matrices Ap of the reduc-
tions of X modulo all primes p ≤ N not dividing m lc( f ) disc( f ). If we assume m, d, ‖ f ‖ are bounded
by O(log N ) the algorithm runs in O(m2d3 N log3 N ) time using O(md2 N ) space; it can alternatively
compute Frobenius traces ap ∈ Z for p ≤ N in time O(md3 N log3 N ).

Proof. The total time to compute all the sets P using a sieve is bounded by O(N log N ) time using O(N )
space, and this also bounds the total time and space for steps (i), (ii), (iii), under our assumption that
m, d, ‖ f ‖ = O(log N ). Corollary 17 yields an O(d2 N log3 N ) bound on each of the O(m2d) iterations
of step (iv). This yields the claimed time bound of O(m2d3 N log3 N ) for step (c), which we claim
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dominates. Lemma 13 implies that the total cost of step (d) is bounded by O(π(N )m2d3 log N ), which
is negligible, as is the cost of the rest of the algorithm. Note that the cardinality of the set S in step (4) is
at worst quadratic in d and log(N ) under our assumption ‖ f ‖ = O(log N ), so we can easily afford the
calls to COMPUTECARTIERMANINMATRIX and use a brute force approach to compute Ap for primes
p < d of good reduction.

The space bound follows from the bound in Corollary 17, which covers step (iv) (it is easy to see that
all of the other steps fit within the claimed bound).

To compute Frobenius traces ap ∈ Z we apply Remark 18 and note that restricting to j = ` in step (3)
reduces the number of iterations of the main loop by a factor of m. The cost of computing #X (Fp) by
looking up values of f (x) in a table of m-th powers is O(pd) ring operations in Fp. The total time to
compute ap = p+ 1− #X (Fp) for good p ≤ 16g2 is then

O(dg2π(g2) log g log log g)= O(d(log N )4 log log N ),

which is negligible. �

7. Supplementary material

Tables 1 and 2 compare the performance of the average polynomial-time algorithm COMPUTECARTIER-
MANINMATRICES with the Õ(p1/2) algorithm for computing zeta functions of cyclic covers imple-
mented in Sage version 9.0. The Sage implementation provides the function CYCLICCOVER which takes
an integer m and a squarefree polynomial f ∈ Fp[x] and returns an object that represents a superelliptic
curve ym

= f (x) over Fp. Invoking the FROBENIUS_MATRIX method of this object with the p-adic
precision set to 1 yields a matrix that encodes essentially the same information as the Cartier–Manin
matrix Ap; in particular it determines the p-rank of X and its zeta function modulo p.

Each table lists the genus g and invariants m and d of a superelliptic curve X : ym
= f (x) defined over Q

with f ∈ Z[x] of degree d. There is a row for every pair m ≥ 2 and d ≥ 3 for which m2d3
≤ 65, which

includes all superelliptic curves of genus g ≤ 5 as well as plane quintics and sextics, and other curves
of genus up to 15. The times listed are average times in milliseconds for primes p ≤ N for increasing
values of N. For each N three times are listed: one to compute Frobenius matrices using Sage, one to
compute Cartier–Manin matrices using the algorithm COMPUTECARTIERMANINMATRICES, and one
to compute Frobenius traces via Remark 18. For the Sage timings we only computed Frobenius matrices
for every n-th good prime p ≤ N with n chosen so that the computation would complete in less than a
day (many of the computations would have taken months otherwise).

In Table 1 we show timings with f ∈ Z[x] having coefficients fd+1−n = pn for 1 ≤ n ≤ d, where
pn is the n-th prime. These polynomials are all irreducible, so our algorithm was unable to choose
any ai to be roots of f ; this is the generic situation, and the worst case for our algorithm. In Table 2
we show timings with f ∈ Z[x] a product of linear factors, which represents the best case for our
algorithm.
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N = 220 N = 224 N = 228

g m d sage matrix trace sage matrix trace sage matrix trace

1 2 3 27 0.05 0.05 67 0.13 0.13 230 0.30 0.30
1 2 4 41 0.17 0.16 120 0.42 0.42 454 0.95 0.93
1 3 3 46 0.08 0.08 141 0.20 0.20 499 0.48 0.49
2 2 5 55 0.38 0.38 163 0.92 0.92 580 2.02 2.01
2 2 6 83 0.73 0.74 280 1.77 1.77 1070 3.89 3.92
3 2 7 112 1.30 1.29 307 3.19 3.12 1217 6.47 6.71
3 2 8 169 2.15 2.07 528 5.02 4.94 2106 10.20 10.57
3 3 4 61 0.53 0.26 178 1.38 0.70 702 3.14 1.63
3 4 3 58 0.14 0.15 165 0.37 0.37 601 0.89 0.89
3 4 4 101 0.44 0.44 343 1.14 1.14 1283 2.55 2.63
4 2 9 194 3.22 3.24 576 7.65 7.70 2214 16.12 15.90
4 2 10 319 4.78 4.65 974 11.10 10.98 3693 22.13 22.79
4 3 5 93 1.29 0.65 287 3.37 1.67 1105 7.64 3.68
4 3 6 152 2.59 1.28 535 6.34 3.20 2121 14.04 7.07
4 5 3 68 0.40 0.13 200 1.19 0.40 778 2.96 0.99
4 6 3 112 0.24 0.24 313 0.64 0.64 1184 1.53 1.53
5 2 11 361 7.04 7.06 1024 16.57 16.30 3695 33.61 33.32
5 2 12 555 9.56 9.54 1537 21.84 22.23 5820 45.98 45.65
6 3 7 200 4.61 2.32 632 11.53 5.52 2360 24.18 12.18
6 4 5 130 1.71 1.08 424 4.37 2.73 1658 9.86 5.88
6 5 4 113 1.29 0.42 344 3.76 1.25 1358 9.08 3.03
6 5 5 201 3.06 1.02 671 8.98 2.92 2749 19.39 6.64
6 7 3 94 0.68 0.17 290 2.24 0.56 1146 5.57 1.39
7 3 8 294 8.17 4.05 835 19.07 9.38 3279 40.32 20.49
7 3 9 437 12.77 6.32 1462 28.54 14.50 5567 61.82 29.67
7 4 6 232 3.42 2.12 806 8.58 5.21 3160 18.99 11.54
7 6 4 153 1.08 0.77 524 2.79 2.00 2112 6.46 4.55
7 8 3 111 0.60 0.29 366 1.72 0.83 1333 4.32 2.00
7 9 3 140 0.82 0.26 479 2.64 0.82 1870 6.77 2.03
9 4 7 302 6.49 3.94 941 15.10 9.42 3566 32.97 20.43
9 7 4 156 2.77 0.56 510 9.14 1.78 2012 20.90 4.21
9 8 4 231 1.85 0.92 720 5.43 2.57 2941 12.58 6.12
9 10 3 137 0.76 0.34 429 2.29 1.01 1694 5.82 2.50

10 5 6 265 8.08 2.02 840 22.89 5.62 3256 51.62 12.42
10 6 5 206 2.51 1.83 701 6.28 4.61 2700 14.07 9.88
10 6 6 379 5.05 3.49 1278 11.95 8.59 5202 26.43 18.72
10 11 3 158 1.77 0.25 501 6.11 0.88 1878 15.32 2.12
10 12 3 187 0.80 0.49 636 2.35 1.39 2558 5.87 3.45
12 7 5 246 6.75 1.33 840 20.80 4.13 3228 48.09 9.23
12 9 4 199 2.88 0.87 657 8.87 2.64 2655 21.75 6.24
12 13 3 175 2.43 0.29 616 8.24 1.03 2244 20.02 2.49
13 10 4 264 2.90 1.09 1008 8.62 3.17 3762 20.08 7.47
13 14 3 193 1.58 0.43 619 5.01 1.36 2430 12.79 3.40
13 15 3 235 1.69 0.46 811 5.54 1.45 3238 13.99 3.72
15 11 4 252 6.29 0.79 839 22.76 2.84 3334 52.85 6.59
15 16 3 223 1.79 0.53 733 5.66 1.63 2805 14.16 4.13

Table 1. Comparison with Õ(p1/2) Sage 9.0 implementation [2] for superelliptic curves ym
=

f (x) where f ∈ Z[x] is irreducible of degree d . Times are millisecond averages per prime p ≤ N
for a single thread running on a 2.8GHz Cascade Lake Intel CPU. The sage column lists the
average time to execute CyclicCover(m,f.change_ring(GF(p)).frobenius_matrix(1)
in Sage 9.0, the matrix column lists the average time to compute the Cartier–Manin matrix
modulo p using algorithm COMPUTECARTIERMANINMATRICES, and the trace column is the
average time to compute the trace of Frobenius via Remark 18.
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N = 220 N = 224 N = 228

g m d sage matrix trace sage matrix trace sage matrix trace

1 2 3 28 0.01 0.01 73 0.04 0.04 230 0.09 0.08
1 2 4 43 0.04 0.05 119 0.12 0.12 456 0.28 0.27
1 3 3 45 0.01 0.01 131 0.02 0.02 500 0.05 0.05
2 2 5 53 0.11 0.12 151 0.31 0.30 583 0.72 0.72
2 2 6 84 0.26 0.28 267 0.66 0.64 1071 1.40 1.40
3 2 7 116 0.55 0.54 311 1.22 1.20 1219 2.58 2.59
3 2 8 164 0.94 0.92 532 2.06 2.04 2094 4.19 4.23
3 3 4 62 0.14 0.07 184 0.41 0.20 701 0.96 0.47
3 4 3 55 0.03 0.03 157 0.08 0.08 605 0.20 0.20
3 4 4 103 0.08 0.09 334 0.23 0.23 1286 0.55 0.54
4 2 9 199 1.50 1.47 586 3.48 3.41 2232 7.10 7.12
4 2 10 295 2.30 2.29 942 5.37 5.24 3816 10.53 10.37
4 3 5 92 0.38 0.19 283 1.06 0.51 1111 2.40 1.21
4 3 6 153 0.79 0.41 529 1.85 0.91 2098 3.96 1.99
4 5 3 68 0.05 0.02 202 0.16 0.05 780 0.39 0.13
4 6 3 95 0.03 0.03 301 0.09 0.09 1186 0.22 0.21
5 2 11 354 3.45 3.46 977 7.85 7.87 3682 15.94 15.85
5 2 12 530 5.11 5.12 1543 11.30 11.17 5857 22.61 22.62
6 3 7 192 1.47 0.72 605 3.57 1.78 2361 7.67 3.79
6 4 5 136 0.32 0.25 416 0.94 0.61 1660 2.17 1.43
6 5 4 108 0.30 0.10 348 1.00 0.32 1369 2.43 0.81
6 5 5 196 0.52 0.15 710 1.48 0.48 2755 3.49 1.16
6 7 3 96 0.06 0.02 296 0.23 0.06 1146 0.63 0.15
7 3 8 276 3.05 1.54 836 7.04 3.49 3234 15.09 7.64
7 3 9 427 4.09 2.16 1409 9.28 4.74 5551 21.20 10.35
7 4 6 227 0.98 0.65 774 2.30 1.48 3143 5.26 3.33
7 6 4 155 0.23 0.17 525 0.66 0.44 2108 1.53 1.04
7 8 3 111 0.06 0.04 343 0.20 0.12 1333 0.51 0.30
7 9 3 141 0.08 0.03 476 0.28 0.09 1876 0.76 0.23
9 4 7 289 1.85 1.23 917 4.56 2.88 3555 10.28 6.23
9 7 4 156 0.61 0.10 509 1.78 0.35 2007 4.47 0.88
9 8 4 211 0.33 0.18 752 1.05 0.50 2946 2.64 1.23
9 10 3 139 0.08 0.04 430 0.26 0.12 1694 0.66 0.31

10 5 6 253 2.08 0.52 825 5.96 1.49 3265 13.97 3.37
10 6 5 213 0.68 0.42 676 1.61 1.06 2693 3.83 2.43
10 6 6 365 1.23 0.86 1276 2.94 2.00 5195 6.46 4.34
10 11 3 154 0.14 0.02 477 0.52 0.08 1878 1.48 0.21
10 12 3 189 0.08 0.07 640 0.26 0.17 2552 0.63 0.42
12 7 5 242 1.22 0.24 879 3.99 0.77 3227 9.89 1.93
12 9 4 204 0.60 0.17 672 1.66 0.52 2663 4.30 1.26
12 13 3 175 0.19 0.02 569 0.71 0.09 2245 2.06 0.25
13 10 4 267 0.64 0.22 942 1.69 0.65 3779 4.32 1.56
13 14 3 191 0.14 0.05 617 0.47 0.15 2429 1.23 0.37
13 15 3 240 0.14 0.04 806 0.50 0.14 3246 1.35 0.36
15 11 4 251 1.15 0.14 836 3.92 0.49 3314 9.89 1.26
15 16 3 218 0.15 0.06 728 0.52 0.19 2797 1.37 0.48

Table 2. Timings for superelliptic curves X : ym
= f (x) when f ∈ Z[x] splits into d distinct

linear factors. Times are millisecond averages per prime p ≤ N for a single thread running
on a 2.8GHz Cascade Lake Intel CPU. The sage column lists the average time to execute
CyclicCover(m,f.change_ring(GF(p)).frobenius_matrix(1) in Sage 9.0, the matrix
column lists the average time to compute the Cartier–Manin matrix modulo p using algorithm
COMPUTECARTIERMANINMATRICES, and the trace column is the average time to compute the
trace of Frobenius via Remark 18.



COUNTING POINTS ON SUPERELLIPTIC CURVES IN AVERAGE POLYNOMIAL TIME 421

References

[1] Jeffrey D. Achter and Everett W. Howe, Hasse–Witt and Cartier–Manin matrices: a warning and a request, Arithmetic
geometry: computation and applications, Contemp. Math., no. 722, Amer. Math. Soc., Providence, RI, 2019, pp. 1–18.
MR 3896846

[2] Vishal Arul, Alex J. Best, Edgar Costa, Richard Magner, and Nicholas Triantafillou, Computing zeta functions of cyclic
covers in large characteristic, Proceedings of the Thirteenth Algorithmic Number Theory Symposium (Berkeley, CA),
Open Book Ser., no. 2, Math. Sci. Publ., 2019, pp. 37–53. MR 3952003

[3] Andrew R. Booker, Jeroen Sijsling, Andrew V. Sutherland, John Voight, and Dan Yasaki, A database of genus-2 curves
over the rational numbers, LMS J. Comput. Math., 19A (2016), 235–254. MR 3540958

[4] Alin Bostan, Pierrick Gaudry, and Éric Schost, Linear recurrences with polynomial coefficients and application to integer
factorization and Cartier–Manin operator, SIAM J. Comput. 36 (2007), no. 6, 1777–1806. MR 2299425

[5] Irene I. Bouw, The p-rank of ramified covers of curves, Compositio Math. 126 (2001), no. 3, 295–322. MR 1834740

[6] Irene I. Bouw and Stefan Wewers, Computing L-functions and semistable reduction of superelliptic curves, Glasg. Math.
J. 59 (2017), no. 1, 77–108. MR 3576328

[7] Alina Bucur, Francesc Fité, and Kiran S. Kedlaya, Effective Sato–Tate conjecture for abelian varieties and applications,
preprint, 2020. arXiv 2002.08807

[8] Claude Chevalley, Introduction to the Theory of Algebraic Functions of One Variable, Mathematical Surveys, no. 6,
American Mathematical Society, New York, 1951. MR 0042164

[9] Edgar Costa, Francesc Fité, and Andrew V. Sutherland, Arithmetic invariants from Sato–Tate moments, C. R. Math. Acad.
Sci. Paris 357 (2019), no. 11-12, 823–826. MR 4038255

[10] A. Eisinberg and G. Fedele, On the inversion of the Vandermonde matrix, Appl. Math. Comput. 174 (2006), no. 2, 1384–
1397. MR 2220623

[11] Francesc Fité, Kiran S. Kedlaya, Víctor Rotger, and Andrew V. Sutherland, Sato–Tate distributions and Galois endomor-
phism modules in genus 2, Compos. Math. 148 (2012), no. 5, 1390–1442. MR 2982436

[12] Francesc Fité, Kiran S. Kedlaya, and Andrew V. Sutherland, Sato–Tate groups of abelian threefolds: a preview of the
classification, preprint, 2019. arXiv 1911.02071

[13] Cécile Gonçalves, A point counting algorithm for cyclic covers of the projective line, Algorithmic arithmetic, geometry,
and coding theory, Contemp. Math., no. 637, Amer. Math. Soc., Providence, RI, 2015, pp. 145–172. MR 3364447

[14] Daniel Gorenstein, An arithmetic theory of adjoint plane curves, Trans. Amer. Math. Soc. 72 (1952), 414–436. MR 49591

[15] David Harvey, Maike Massierer, and Andrew V. Sutherland, Computing L-series of geometrically hyperelliptic curves of
genus three, LMS J. Comput. Math., 19A (2016), 220–234. MR 3540957

[16] David Harvey and Andrew V. Sutherland, Computing Hasse–Witt matrices of hyperelliptic curves in average polynomial
time, LMS J. Comput. Math., 17A (2014), 257–273. MR 3240808

[17] David Harvey and Andrew V.Sutherland, Computing Hasse–Witt matrices of hyperelliptic curves in average polynomial
time, II, Frobenius distributions: Lang–Trotter and Sato–Tate conjectures, Contemp. Math., no. 663, Amer. Math. Soc.,
Providence, RI, 2016, pp. 127–147. MR 3502941

[18] David Harvey and Joris van der Hoeven, Integer multiplication in time O(n log n), preprint, 2019.

[19] David Harvey and Joris van der Hoeven, Polynomial multiplication over finite fields in time O(n log n), preprint, 2019.

[20] Moritz Minzlaff, Computing zeta functions of superelliptic curves in larger characteristic, Math. Comput. Sci. 3 (2010),
no. 2, 209–224. MR 2608297

[21] Pascal Molin and Christian Neurohr, Computing period matrices and the Abel–Jacobi map of superelliptic curves, Math.
Comp. 88 (2019), no. 316, 847–888. MR 3882287

[22] Jean-Pierre Serre, Lectures on NX (p), Research Notes in Mathematics, no. 11, CRC Press, 2012. MR 2920749

[23] Henning Stichtenoth, Algebraic function fields and codes, 2nd ed., Graduate Texts in Mathematics, no. 254, Springer,
2009. MR 2464941

https://doi.org/10.1090/conm/722/14534
http://msp.org/idx/mr/3896846
https://msp.org/obs/2019/2-1/p03.xhtml
https://msp.org/obs/2019/2-1/p03.xhtml
http://msp.org/idx/mr/3952003
https://doi.org/10.1112/S146115701600019X
https://doi.org/10.1112/S146115701600019X
http://msp.org/idx/mr/3540958
https://doi.org/10.1137/S0097539704443793
https://doi.org/10.1137/S0097539704443793
http://msp.org/idx/mr/2299425
https://doi.org/10.1023/A:1017513122376
http://msp.org/idx/mr/1834740
https://doi.org/10.1017/S0017089516000057
http://msp.org/idx/mr/3576328
http://arxiv.org/abs/2002.08807
https://doi.org/10.1090/surv/006
http://msp.org/idx/mr/0042164
https://doi.org/10.1016/j.crma.2019.11.008
http://msp.org/idx/mr/4038255
https://doi.org/10.1016/j.amc.2005.06.014
http://msp.org/idx/mr/2220623
https://doi.org/10.1112/S0010437X12000279
https://doi.org/10.1112/S0010437X12000279
http://msp.org/idx/mr/2982436
http://arxiv.org/abs/1911.02071
https://doi.org/10.1090/conm/637/12754
http://msp.org/idx/mr/3364447
https://doi.org/10.2307/1990710
http://msp.org/idx/mr/49591
https://doi.org/10.1112/S1461157016000383
https://doi.org/10.1112/S1461157016000383
http://msp.org/idx/mr/3540957
https://doi.org/10.1112/S1461157014000187
https://doi.org/10.1112/S1461157014000187
http://msp.org/idx/mr/3240808
https://doi.org/10.1090/conm/663/13352
https://doi.org/10.1090/conm/663/13352
http://msp.org/idx/mr/3502941
https://hal.archives-ouvertes.fr/hal-02070778
https://hal.archives-ouvertes.fr/hal-02070816
https://doi.org/10.1007/s11786-009-0019-4
http://msp.org/idx/mr/2608297
https://doi.org/10.1090/mcom/3351
http://msp.org/idx/mr/3882287
http://www.crcnetbase.com/isbn/9781466501935
http://msp.org/idx/mr/2920749
http://msp.org/idx/mr/2464941


422 ANDREW V. SUTHERLAND

[24] Karl-Otto Stöhr and José Felipe Voloch, A formula for the Cartier operator on plane algebraic curves, J. Reine Angew.
Math. 377 (1987), 49–64. MR 887399

[25] Andrew V. Sutherland, A database of nonhyperelliptic genus-3 curves over Q, Proceedings of the Thirteenth Algorithmic
Number Theory Symposium (Berkeley, CA) (Renate Scheidler and Jonathan Sorenson, eds.), Open Book Ser., no. 2, Math.
Sci. Publ., 2019, pp. 443–459. MR 3952027

[26] Joachim von zur Gathen and Jürgen Gerhard, Modern computer algebra, 3rd ed., Cambridge University Press, 2013.
MR 3087522

[27] Yuri G. Zarhin, Endomorphism algebras of abelian varieties with special reference to superelliptic Jacobians, Geometry,
algebra, number theory, and their information technology applications, Springer Proc. Math. Stat., no. 251, Springer, 2018,
pp. 477–528. MR 3880401

Received 28 Feb 2020. Revised 28 Feb 2020.

ANDREW V. SUTHERLAND: drew@math.mit.edu
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, United States

msp

https://doi.org/10.1515/crll.1987.377.49
http://msp.org/idx/mr/887399
https://msp.org/obs/2019/2-1/p27.xhtml
http://msp.org/idx/mr/3952027
https://doi.org/10.1017/CBO9781139856065
http://msp.org/idx/mr/3087522
https://doi.org/10.1007/978-3-319-97379-1_22
http://msp.org/idx/mr/3880401
mailto:drew@math.mit.edu
http://msp.org


VOLUME EDITORS

Stephen D. Galbraith
Mathematics Department
University of Auckland

New Zealand

https://orcid.org/0000-0001-7114-8377

The cover image is based on an illustration from the article “Supersingular
curves with small noninteger endomorphisms”, by Jonathan Love and Dan
Boneh (see p. 9).

The contents of this work are copyrighted by MSP or the respective authors.
All rights reserved.

Electronic copies can be obtained free of charge from http://msp.org/obs/4
and printed copies can be ordered from MSP (contact@msp.org).

The Open Book Series is a trademark of Mathematical Sciences Publishers.

ISSN: 2329-9061 (print), 2329-907X (electronic)

ISBN: 978-1-935107-07-1 (print), 978-1-935107-08-8 (electronic)

First published 2020.

msp

MATHEMATICAL SCIENCES PUBLISHERS

798 Evans Hall #3840, c/o University of California, Berkeley CA 94720-3840

contact@msp.org http: //msp.org

http://msp.org/obs/4
mailto:contact@msp.org
mailto:contact@msp.org
http://msp.org


THE OPEN BOOK SERIES 4
Fourteenth Algorithmic Number Theory Symposium

The Algorithmic Number Theory Symposium (ANTS), held biennially since 1994, is the premier international forum
for research in computational and algorithmic number theory. ANTS is devoted to algorithmic aspects of number
theory, including elementary, algebraic, and analytic number theory, the geometry of numbers, arithmetic algebraic
geometry, the theory of finite fields, and cryptography.

This volume is the proceedings of the fourteenth ANTS meeting, which took place 29 June to 4 July 2020 via video
conference, the plans for holding it at the University of Auckland, New Zealand, having been disrupted by the
COVID-19 pandemic. The volume contains revised and edited versions of 24 refereed papers and one invited paper
presented at the conference.

TABLE OF CONTENTS

1Commitment schemes and diophantine equations — José Felipe Voloch

7Supersingular curves with small noninteger endomorphisms — Jonathan Love and Dan Boneh

23Cubic post-critically finite polynomials defined over Q — Jacqueline Anderson, Michelle Manes and Bella Tobin

39Faster computation of isogenies of large prime degree — Daniel J. Bernstein, Luca De Feo, Antonin Leroux and Benjamin
Smith

57On the security of the multivariate ring learning with errors problem — Carl Bootland, Wouter Castryck and Frederik
Vercauteren

73Two-cover descent on plane quartics with rational bitangents — Nils Bruin and Daniel Lewis

91Abelian surfaces with fixed 3-torsion — Frank Calegari, Shiva Chidambaram and David P. Roberts

109Lifting low-gonal curves for use in Tuitman’s algorithm — Wouter Castryck and Floris Vermeulen

127Simultaneous diagonalization of incomplete matrices and applications — Jean-Sébastien Coron, Luca Notarnicola and
Gabor Wiese

143Hypergeometric L-functions in average polynomial time — Edgar Costa, Kiran S. Kedlaya and David Roe

161Genus 3 hyperelliptic curves with CM via Shimura reciprocity — Bogdan Adrian Dina and Sorina Ionica

179A canonical form for positive definite matrices — Mathieu Dutour Sikirić, Anna Haensch, John Voight and Wessel P.J. van
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Kostić
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