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The Algorithmic Number Theory Symposium (ANTS), held biennially since 1994, is the
premier international forum for research in computational and algorithmic number theory.
ANTS is devoted to algorithmic aspects of number theory, including elementary, algebraic,
and analytic number theory, the geometry of numbers, arithmetic algebraic geometry, the
theory of finite fields, and cryptography.

This volume is the proceedings of the fourteenth ANTS meeting, which took place June 29
to July 4, 2020 via video conference, the plans for holding it at the University of Auckland,
New Zealand, having been disrupted by the COVID-19 pandemic. The volume contains
revised and edited versions of 24 refereed papers and one invited paper presented at the
conference.
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Commitment schemes and diophantine equations

José Felipe Voloch

Motivated by questions in cryptography, we look for diophantine equations that are hard to solve but for
which determining the number of solutions is easy.

1. Commitment schemes

Solving a diophantine equation is typically hard but, given a point, it is typically easy to find a variety
containing that point. This is an example of a “one-way function” with potential applications to cryptog-
raphy. Our current (lack of) knowledge suggests that such a function is possibly quantum resistant and,
therefore, cryptosystems based on these could be used for postquantum cryptography [BL17].

An encryption system based on this principle was proposed by Akiyama and Goto [AG06; AG08],
then broken by Ivanov and the author [IV09]. It was then fixed, broken again, fixed again. . . Current
status unclear.

The purpose of a commitment scheme is for a user to commit to a message without revealing it (e.g.,
vote, auction bid) by making public a value obtained from the message in such a way that one can check,
after the message is revealed, that the public value confirms the message.

Using such diophantine one-way functions for commitment schemes was proposed by Boneh and
Corrigan-Gibbs [BCG14]. They also suggested working modulo an RSA modulus N . This could con-
ceivably weaken the system. It will definitely no longer be quantum resistant. Some partial attacks on
this particular system are presented in [ZW17].

Here is the general format of a diophantine commitment scheme. Encode a message as point P over
some field F . Make public a variety V/F with P ∈ V , with V taken from some fixed family of varieties.
To check the commitment, one verifies that P satisfies the equations of V . We need the following
conditions to be satisfied for this to work:

• Given P , it is easy to construct V .

• Given V , it is hard to find V (F) (hence P).

• Given V (and perhaps P), it is easy to verify that #V (F)= 1.

MSC2020: 11D45, 94A60.
Keywords: commitment schemes, diophantine equations, algebraic varieties.
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2 JOSÉ FELIPE VOLOCH

The last condition is important to prevent cheating. It proves that P was indeed the committed message.
In general, a commitment scheme consists of two algorithms Commit(m,r), Reveal(m,r,c). The first
takes as input a message m and a random string r to produce an output c, which is then made public. The
second takes as input m,r,c as before and outputs yes or no, depending on whether c is the correct output
of Commit(m,r). The randomness is needed, e.g., if the list of possible messages is small enough that
it can be brute force searched. Note that our requirement that #V (F)= 1 corresponds to the notion of
perfect binding for a commitment scheme. There is a weaker notion of computational binding in which
the condition is relaxed to only hold with probability close to one. See [BCG14, Section 4.1] for the
precise definition of a commitment scheme and some discussion.

These commitment schemes are similar in spirit to the class of multivariate polynomial cryptosystems.
In analogy to what is done there, it is conceivable to have encryption by selecting a subset of varieties
V/F such that V (F) can be easily found but that V can be disguised as a general member of the collection
of varieties. We do not address the interesting problem of doing this for schemes we consider.

2. Diophantine equations

Answering a question of Friedman, Poonen [Poo10] proved:

Theorem 2.1. Assuming the Bombieri–Lang conjecture, there exists f (x, y) ∈Q[x, y] inducing an in-
jection Q×Q→Q.

Boneh and Corrigan-Gibbs [BCG14] then use the following construction from such a function. For
P = (a, b), take V : f (x, y)= f (a, b) to get a commitment scheme fitting the general setting of Section 1.
Unfortunately, Poonen’s proof, besides being conditional on a conjecture, is also nonconstructive!

Zagier suggested f (x, y) = x7
+ 3y7 as a polynomial defining an injective function. But we don’t

have a proof. With exponent 13 instead of 7, the abcd conjecture implies that this function essentially
injective.

Question 2.2. Is solving x7
+ 3y7

= k over Q hard?

Pasten [Pas20] proved that there exists an affine surface S of the form U ×U with S(Q) Zariski-
dense in S and a morphism S→ A1 inducing an injection S(Q)→ Q. But, S(Q) is too sparse to be
cryptographically useful.

Cornelissen [Cor99], using that the abcd conjecture is true for function fields of characteristic 0, noted
that xm

+ t ym is injective in K (t), char K = 0 for m large.

Question 2.3. Is solving xm
+ t ym

= k over Q(t) hard?

My guess is that the answer is no.
Cornelissen also noted that x p

+ t y p is injective in K (t), char K = p. But solving x p
+ t y p

= k is
easy.

The following was noted in [SV20], with the proof being an extension of [Vol85] (see also [Wan] for
a related result without a hypothesis on the degree of the morphism):
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Theorem 2.4. Let F be a function field of a curve C of genus g with field of constants K of characteristic
p > 0 and let S be a finite set of places of F. If u1, . . . , ut are S-units of F , linearly independent over K ,
such that the degree of the morphism (u1 : · · · : ut) : C→ Pt−1 is less than p and satisfy

u1+ · · ·+ ut = 1

then

max{deg ui | i = 1, . . . , t} ≤
t (t − 1)

2
(2g− 2+ #S)

The above result implies the injectivity of x13
+ t y13 in the set of pairs of elements of K (t)− K of

degree at most p/13 if 13- p(p− 1).
This is enough for the application to commitment schemes by taking a sufficiently large finite field K

and considering the function x13
+ t y13 restricted to the above set where the function is injective.

But the function is not injective in the whole of K (t). Indeed, if x13
+ t y13

= k, q = p12, then

(xq/k(q−1)/13)13
+ t (t (q−1)/13 yq/k(q−1)/13)13

= k

3. Curves on surfaces

The cryptosystem of Akiyama and Goto [AG06; AG08] actually uses curves on surfaces over finite fields.
We now consider the use of rational curves on surfaces in P3 over a finite field for commitment schemes.

We start with a rational curve P parametrized by ( f0 : f1 : f2 : f3) in P3 over a finite field Fq , where
the fi are polynomials of degree at most m (i.e., a point in P3 over Fq(t)). Such a curve will include the
message and randomness and our commitment will be a smooth surface S/Fq of degree d containing P .
This is a bit different from previous schemes as the surface is constant (i.e., independent of t). If S is
given by an homogeneous equation F = 0, the condition that P ⊂ S is simply F( f0, f1, f2, f3) = 0
which can be viewed as a system of linear equations on the coefficients of F , once the fi are given.
There are

(d+3
3

)
coefficients and dm+ 1 equations. One has solutions to the system as soon as there are

more coefficients than equations but these are not guaranteed to be smooth. Poonen [Poo08] has proved
that, for d large, a positive proportion of those solutions do indeed give smooth surfaces. One expects in
practice that, as long as the finite field is big enough, there will be plenty of smooth surfaces.

To guarantee uniqueness of the curve P inside S, we prove the following result.

Theorem 3.1. Let S/Fq be a smooth surface in P3 of degree d > 3 with Picard number two. Then S
contains at most one smooth rational curve of degree m, if m < 2d(d − 4)/(d − 2).

Proof. Let H be a hyperplane section and D1, D2 two distinct smooth rational curves of degree m
contained in S. We compute the determinant of the matrix of intersection pairings for H, D1, D2 and
show it is nonzero, hence these curves are independent in the Néron–Severi group, contradicting the
hypothesis on the Picard number.

Clearly, H 2
= d, H Di = m, i = 1, 2. The canonical class of S is (d − 4)H , so the adjunction formula

gives D2
i + (d − 4)H Di = −2, hence D2

i = −(2+ (d − 4)m). Let δ = D1 D2. The determinant of the



4 JOSÉ FELIPE VOLOCH

matrix of intersection pairings is therefore∣∣∣∣∣∣
H 2 H D1 H D2

D1 H D2
1 D1 D2

D2 H D2 D1 D2
2

∣∣∣∣∣∣=
∣∣∣∣∣∣
d m m
m −(2+ (d − 4)m) δ

m δ −(2+ (d − 4)m)

∣∣∣∣∣∣
=−dδ2

+ 2m2δ+ d(2+ (d − 4)m)2+m2(2+ (d − 4)m).

This vanishes precisely when δ=−(2+(d−4)m), 2m2/d+(2+(d−4)m). The first value is negative so
cannot be D1 D2 and the second value is bigger than m2 by our hypothesis but D1 D2 ≤ m2 by Bézout’s
theorem so cannot be D1 D2 either. �

To apply the theorem, we need to know that the Picard number of S is at most two. For a given surface,
this can be done using the algorithm of [Cos15], for example. This algorithm computes the L-function of
S and the Picard number of S is the multiplicity of q as a root of the L-function, conditional on the Tate
conjecture. However, the surfaces we construct will have Picard number at least two and a theorem of
Tate shows that the multiplicity of q as a root of the L-function is an upper bound for the Picard number.
So, if this multiplicity is two, it is verified that the Picard number is two. There is a parity condition
coming from the functional equation for L-functions which implies that this will not work if d is odd. It
is reasonable to expect that a sizable proportion of such surfaces have Picard number two if d is even,
but this is not currently known and is worthy of further investigation.

In sum, our commitment scheme is as follows, with a finite field Fq and integers m, d selected a priori:

(1) Encode a message as well as some randomness within ( f0, f1, f2, f3), fi ∈ Fq [t], deg fi ≤ m.

(2) Choose a random F ∈ Fq [x0, x1, x2, x3] homogeneous of degree d with F( f0, f1, f2, f3)= 0.

(3) Check whether the surface defined by F = 0 is smooth and has Picard number two. If so, publish
F as the commitment. If not, pick a different F in step (2).

For an explicit example, consider m = 3, d = 6. For a sextic surface to contain a given twisted cubic,
one needs to satisfy a system of 19 equations in 84 variables and, hopefully, many of those will give rise
to smooth surfaces with Picard number two. The space of available messages depends on 16 variables.

One can also use m = 3, d = 4. The inequality in the theorem is not satisfied but the second value
for δ is 13/2, which is not an integer so cannot be D1 D2 and the result holds. In this case, we have a
system of 13 equations in 35 variables for the coefficients of the surface and again, the space of available
messages depends on 16 variables.

The expansion from 16 variables to 84 (or 35) from the message to the commitment is potentially
wasteful and it is worth investigating whether a priori setting many of these variables to zero will still
allow enough variability so that step (3) above succeeds. Another, less explicit way, of achieving the
same result is to require that F vanishes at a prespecified set of points Z0 not lying on the curve P .
Poonen (personal communication) informs me that the results of [Poo08] can be adapted to show that,
for d large, a positive proportion of the surfaces containing both P and Z0 are smooth.
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Another issue worth studying is the choice of q. In some ways, small q is better for computations.
But, if a very small value of q , such as q = 2 is chosen, then m = 3 is too small, as it allows brute force
searching for the rational curve.

Given a surface, to find a rational curve inside it, one can either do a brute force search on the coef-
ficients of the parametrization, or set up a system of equations for these coefficients and try to solve it,
e.g., using Gröbner bases. Neither option seem particularly efficient. Neither option also appears to be
much improved by the use of quantum computers. There are general algorithms in the literature (e.g.,
[PTvL15]) that compute the Néron–Severi group of a variety but these make no claim of practicality.
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Supersingular curves with
small noninteger endomorphisms

Jonathan Love and Dan Boneh

We introduce a special class of supersingular curves over Fp2 , characterized by the existence of noninteger
endomorphisms of small degree. We prove a number of properties about this set. Most notably, we can
partition this set into subsets such that curves within each subset have small-degree isogenies between
them, but curves in distinct subsets have no small-degree isogenies between them. Despite this, we show
that isogenies between distinct subsets can heuristically be computed efficiently, giving a technique for
computing isogenies between certain prescribed curves that cannot be efficiently found by searching on
`-isogeny graphs.

1. Introduction

Given an elliptic curve E over a field k, let End(E) denote the ring of endomorphisms of E that are
defined over k. The curve E is supersingular if End(E) is noncommutative; this can only occur if E
is defined over Fp2 for some prime p [19, Theorem V.3.1]. The set SS(p) of all supersingular curves
up to Fp-isomorphism can be quite complicated, but in this paper we define subsets of SS(p) which are
relatively straightforward to compute with and to classify.

Definition 1.1. Given M < p, an elliptic curve E over a finite field of characteristic p is M-small (we
also say that the j-invariant of E is M-small) if there exists α ∈ End(E) with degα ≤ M such that α
is not multiplication by an integer. The set of Fp-isomorphism classes of supersingular M-small curves
over Fp2 is denoted SSM(p).

Assume for the rest of this paper that p ≥ 5. We will study the structure of the set SSM(p) of
supersingular M-small curves, and in particular, we will discuss the following properties of this set:

(a) If M <
√

p/2, the set SSM(p) of M-small supersingular curves partitions into O(M) subsets, each
connected by small-degree isogenies, such that there is no isogeny of degree less than

√
p/(2M)

between distinct subsets (Theorem 1.3).

This research was supported by NSF grant #1701567.
MSC2010: 11G20, 11R52, 11T71.
Keywords: supersingular, elliptic curve, isogeny graph, M-small, endomorphism, quaternion, maximal order, Deuring

correspondence, partition, archipelago, island, airport, orientation, Hilbert class polynomial.
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8 JONATHAN LOVE AND DAN BONEH

(b) The endomorphism rings of M-small supersingular curves, and isogenies between any two of them,
can heuristically be computed in time polynomial in M and log p (Section 7).

Let us state point (a) more precisely. Given an elliptic curve E over Fp2 , let E (p) denote its image
under the p-th power Frobenius map (x, y) 7→ (x p, y p). If E is defined over Fp, then E = E (p); otherwise
we have E = (E (p))(p) and so this map will swap conjugate pairs of curves.1

Definition 1.2. Let E and E ′ be supersingular elliptic curves over Fp2 . The distance from E to E ′,
denoted d(E, E ′), is the minimum degree of an isogeny E→ E ′ or E→ E ′(p) defined over Fp.

By basic properties of isogenies (e.g., [19, Chapter III]), log d is a pseudometric on the set of super-
singular curves over Fp2 , and it descends to a metric on the set of Galois orbits {E, E (p)}.

Given a positive integer M and a fundamental discriminant D, we can define the following subset
of SSM(p):

T M
D := {E ∈ SS(p) :Q(α)∼=Q(

√
D) for some α ∈ End(E)−Z with degα ≤ M}.

Theorem 1.3. Let M be a positive integer. Then SSM(p) is a union

SSM(p)=
⋃
D

T M
D ,

of nonempty subsets T M
D , indexed by fundamental discriminants −4M ≤ D < 0 which are not congruent

to a square mod p. These sets have the following properties:

(a) If E, E ′ are in distinct subsets T M
D 6= T M

D′ , then

d(E, E ′)≥
√

p
2M

.

(b) If E, E ′ are in the same T M
D , then there is a sequence E = E0, E1, . . . , Er = E ′ of elements of T M

D

such that

d(Ei−1, Ei )≤
2
3

√
3M

for all i = 1, . . . , r . We can take r ≤ 3, or alternatively, we can take r ≤ 3 log2
( 2

3

√
3M

)
and require

all d(Ei−1, Ei ) to be prime.

Remark 1.4. If M < 1
2
√

p, then Theorem 1.3(a) implies that the sets T M
D are disjoint, and hence form

a partition of SSM(p).

Figure 1 illustrates Theorem 1.3 for p= 20011 and M = 12. In particular, since
√

20011/(2 ·12)≈ 5.9,
Theorem 1.3(a) predicts that curves in distinct sets T M

D are at least two steps apart in the graph. Also,
as the primes less than 2

3

√
3 · 12 are 2 and 3, Theorem 1.3(b) predicts that the sets T M

D are connected
components of the subgraph of 12-small curves. One can see that both these claims are true in the figure.

1The map E → E(p) on supersingular curves is called the “mirror involution” in [1], where the relationship between
conjugate pairs, along with many other structural properties of supersingular isogeny graphs, is studied in detail.
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Figure 1. Supersingular curves in characteristic 20011 with conjugate pairs {E, E (p)
} identified.

The 12-small curves are highlighted and labeled with the smallest degree of a noninteger endo-
morphism. The sets T M

D from Theorem 1.3 are indicated. Two curves E, E ′ are connected by an
edge if there is an isogeny E→ E ′ of degree 2 or 3. Data computed using Magma, plotted using
Mathematica.

If we think of M minus the degree of the smallest noninteger endomorphism as a measure of elevation,
then the set of supersingular curves can be thought of as an archipelago. The M-small curves are above
sea level, and hence are easy to find and to study (Section 2). Each set T M

D is an island: curves on the same
island are close enough to walk between, but distinct islands are very far from each other. We shall see
in Section 5 that the islands T M

D are closely related to the craters of isogeny volcanoes (which appear in
ordinary isogeny graphs [22] and in oriented supersingular isogeny graphs [7; 16]), so perhaps we can say
that this archipelago was formed by volcanic activity! In Section 7 we will construct “airports” that allow
us to efficiently travel between the islands, allowing us to find isogenies between any two M-small super-
singular curves. Unfortunately, most supersingular curves remain deep underwater, shrouded in mystery.

The fact that the sets T M
D are connected by small-degree isogenies (as described in Theorem 1.3(b))

will not be evident if we only consider isogenies of a single prime degree. In fact, if ` is a small prime,
then under relatively mild conditions on M (Remark 6.2), there are two M-small curves that are connected
by a degree ` isogeny, but such that any isogeny of degree relatively prime to ` will have degree greater
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than p`/(4M). So if we exclude isogenies of degree divisible by ` for any sufficiently small prime `,
the sets T M

D will no longer be connected by short paths.

1A. Motivation. We say that a supersingular elliptic curve E over Fp2 is “hard” if it is computationally
infeasible to compute its endomorphism ring. A number of applications in cryptography (e.g., [9]) need
an explicit hard curve E where no one, including the party who generated the curve, can compute its
endomorphism ring. Currently, there is no known method to generate such a curve.

To illustrate the problem, suppose p ≡ 2 (mod 3) and let E0 be the supersingular curve with j-
invariant 0. One can generate a large number of supersingular curves by starting at E0 and taking a
random walk along the graph of degree ` isogenies for some small prime `. However, for any curve E
found in this way, we can compute End(E) using the isogeny path from E0 to E .

We may consider using the set of M-small supersingular elliptic curves, for some polynomial size M,
as a candidate set of explicit hard curves. If E is a typical M-small curve, then point (a) tells us that
E could not reasonably be found by searching from E0 on `-isogeny graphs for any small primes `.
A priori, this might suggest that it would be difficult to compute the isogeny path from E0 to E , and
therefore there is hope that the endomorphism ring of E will remain unknown.

However, point (b) suggests that this is likely not the case, and that a hard curve will not be M-
small. By the classification results of Section 2, this rules out using roots of low-degree Hilbert class
polynomials as a reasonable candidate for a method of constructing hard curves. It remains an open
problem to construct a single explicit hard supersingular curve.

1B. Organization. We briefly discuss how to generate M-small curves in Section 2, and begin the proof
of Theorem 1.3 with Lemma 2.3. An overview of some concepts we will need from the theory of
quaternion algebras2 can be found in Section 3. In Section 4 we define a notion of distance for maximal
orders of quaternion algebras, and use it to prove Theorem 1.3(a). We review the theory of orientations
of supersingular curves in Section 5 and use this theory to prove Theorem 1.3(b). In Section 6 we show
that certain isogenies of degree ` cannot be replaced by short isogenies of degree relatively prime to `.
We finish by describing an algorithm for computing isogenies between elliptic curves in Section 7.

A list of (mostly standard) results on the sizes of various sets of M-small curves can be found in an
appendix, available with the unpublished version of this paper [15].

2. Hilbert class polynomials and M-small curves

Most well-known examples of supersingular curves are M-small for relatively small values of M. For
instance, supersingular curves with a nontrivial automorphism are 1-small. This includes the curve
y2
= x3
+x with j -invariant 1728 when p≡ 3 (mod 4), and the curve y2

= x3
+1 with j -invariant 0 when

p ≡ 2 (mod 3). More generally, Bröker in [2] proposes a general algorithm for producing a supersingular

2Many prior papers on supersingular isogenies use the structure of quaternion algebras to study supersingular isogenies; see
for instance [13] and [10].
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curve over an arbitrary finite field. We will show that his algorithm returns M-small curves, and then
discuss how to generalize his approach to generate all M-small curves.

A ring O is a quadratic order if it is a finite-index subring of the ring of integers OK of some imaginary
quadratic field K. To each quadratic order O, we can associate its Hilbert class polynomial HO(x) ∈ Z[x],
which has the property that z ∈ C is a root of HO if and only if z is the j-invariant of an elliptic curve Ẽ
over C with endomorphism ring isomorphic to O [8, Proposition 13.2]. The degree of HO equals the
class number of O.

Bröker’s algorithm [2, Algorithm 2.4] proceeds as follows. To construct a supersingular curve over Fp

with p ≡ 1 (mod 4),3 one first finds a small prime q ≡ 3 (mod 4) with Legendre symbol (−q/p)=−1.
We compute the Hilbert class polynomial HOK (x) for K =Q(

√
−q), and find a root of HOK (x) (mod p)

in Fp. The condition (−q/p) = −1 then guarantees that this root is the j-invariant of a supersingular
curve. This algorithm generates M-small curves for a reasonably small value of M, as the following
proposition shows.

Proposition 2.1. The supersingular curves found by Algorithm 2.4 of [2] are ((q+1)/4)-small. Assuming
GRH, they are M-small for M = O(log2 p).

Proof. The output of the algorithm is a curve E over Fp with the following property: there is curve Ẽ
over the Hilbert class field of Q(

√
−q) such that End(Ẽ) ∼= OK , and E is the reduction of Ẽ modulo

some prime of OL . In particular, (1+
√
−q)/2 ∈OK is a noninteger endomorphism of Ẽ . The reduction

map End(Ẽ)→ End(E) is a degree-preserving injection [20, Proposition II.4.4], so End(E) contains a
noninteger endomorphism of norm (q + 1)/4, proving that E is ((q + 1)/4)-small. As discussed in the
proof of [2, Lemma 2.5], under GRH we can take q = O(log2 p). �

A natural generalization of Bröker’s algorithm is to compute all roots (not just those in Fp) of HO(x)
(mod p), for all imaginary quadratic orders O with sufficiently small discriminant. By Proposition 2.2,
this process can be used to generate the set of all M-small elliptic curves. Note that if M is an integer,
then an imaginary quadratic order O has discriminant |discO| ≤ 4M if and only if O−Z has an element
with norm at most M.

Proposition 2.2. Let M ∈Z satisfy 3≤M < p, let E be an elliptic curve over a finite field of characteristic
p, and let z ∈ Fp be the j-invariant of E. Then E is M-small if and only if HO(z)= 0 for some quadratic
order O with discriminant −4M ≤ discO < 0. In this setting End(E) contains an isomorphic copy of O,
and E is supersingular if and only if p does not split in the field of fractions of O.

The proof is analogous to that of Proposition 2.1, applying Deuring’s lifting theorem [14, Theo-
rem 13.14] to show that every M-small curve arises in this way. This result allows us to prove the
first portion of Theorem 1.3.

Lemma 2.3. The sets T M
D appearing in Theorem 1.3 are nonempty, and their union is SSM(p).

3For p = 2, the curve y2
+ y = x3 is supersingular, and for p ≡ 3 (mod 4) the curve y2

= x3
+ x is supersingular.
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Proof. Given any fundamental discriminant −4M ≤ D < 0 with (D/p) = −1, p does not split in
the quadratic field K with discriminant D. So by Proposition 2.2, the roots of HOK (x) (mod p) are
j-invariants of M-small supersingular curves in T M

D .
Now consider E ∈SSM(p). By Proposition 2.2, End(E) contains a quadratic order O with discriminant
−4M < discO < 0, and p does not split in the field of fractions of O. Letting D be the discriminant of
the field of fractions of O, we hence have −4M ≤ D < 0 and (D/p)=−1. Since M is an integer, O−Z

contains an element with norm at most M, so that E ∈ T M
D . �

3. Maximal orders of quaternion algebras

Unless otherwise cited, all the material in this section can be found in [25].
There is a quaternion algebra B over Q, unique up to isomorphism, that ramifies exactly at p and∞.

For p 6= 2, we can take

B := {w+ xi + y j + zk : w, x, y, z ∈Q}, i2
=−q, j2

=−p, i j =− j i = k

for an appropriate integer q depending on p (mod 8) [17, Proposition 5.1].
Given α = w+ xi + y j + zk ∈ B, we define its conjugate, α := w− i x − j y− kz, its reduced norm,

nrd(α) := αα = w2
+ qx2

+ py2
+ qpz2, and its reduced trace, trd(α) := α+α = 2w. Any α ∈ B is the

root of a polynomial

x2
− trd(α)x + nrd(α)

with rational coefficients; if α /∈Q, this is the minimal polynomial of α. Any α /∈Q generates an imaginary
quadratic subfield Q(α)⊆ B. Conversely, an imaginary quadratic field K embeds into B if and only if p
does not split in K [25, Proposition 14.6.7], or equivalently, if the Legendre symbol ((disc K )/p) is not
equal to 1.

An ideal I ⊆ B is a subgroup under addition which is generated by a basis of B considered as a vector
space over Q. An order O⊆ B is an ideal which contains 1 and is closed under multiplication. An order
is maximal if there are no orders properly containing it. An element α ∈ B with trd(α), nrd(α) ∈ Z is
called integral; α is integral if and only if it is contained in some order of B.

Given an ideal I ⊆ B, we can define left and right orders of I ,

OL(I ) := {x ∈ B : x I ⊆ I }, OR(I ) := {x ∈ B : I x ⊆ I }.

We say that I is a left ideal of O if OL(I )=O, and that I is a right ideal of O′ if OR(I )=O′. In this
scenario we say I links O to O′.

An ideal I that is closed under multiplication is called an integral ideal. An integral ideal is necessarily
contained in its left and right orders, and hence nrd(α) ∈ Z for all α in an integral ideal. Given an integral
ideal I ⊆ B, the reduced norm of I is defined to be

nrd(I ) := gcd{nrd(α) | α ∈ I }.
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Given a quadratic order O and a maximal order O⊆ B, we say that O is optimally embedded in O if
O ∼=O∩ K for some subfield K ⊆ B. The map O→ B with image O∩ K is an optimal embedding.

3A. The Deuring correspondence. Let SS(p)⊆ Fp2 denote the set of supersingular curves up to Fp-
isomorphism. Given E ∈ SS(p), End(E) will be isomorphic to a maximal order in B. If E and E (p) are
Frobenius conjugates, then End(E) and End(E (p)) will be isomorphic orders. Aside from this relation,
nonisomorphic curves will always have nonisomorphic endomorphism rings. In fact, we have a bijection,
known as the Deuring correspondence

SS(p)/(E ∼ E (p)) ↔ {maximal orders of B}/∼=

sending E to the set of maximal orders isomorphic to End(E). The degree (resp. trace, resp. dual) of
an endomorphism is equal to the norm (resp. trace, resp. conjugate) of the corresponding element of B,
and composition of endomorphisms corresponds to multiplication of elements of B. Further, if we fix
E ∈ SS(p) and a maximal order OE ∼= End(E), then we have a one-to-one correspondence

{separable isogenies out of E}/∼= ↔ {left ideals of OE }.

An isogeny φ : E→ E ′ will correspond to an ideal I linking OE to some maximal order OE ′ isomorphic
to End(E ′), and degφ = nrd(I ).

4. Large distances between T M
D

We first define a notion of distance between maximal orders and prove some of its properties. We will
then use this notion to prove part (a) of Theorem 1.3.

4A. Distance between maximal orders.

Definition 4.1. Given maximal orders O,O′ ⊆ B, the distance from O to O′, d(O,O′), is any of the
following quantities:

(a) |O :O∩O′| (the index of O∩O′ in O).

(b) |O′ :O∩O′| (the index of O∩O′ in O′).

(c) The smallest reduced norm of an integral ideal linking O to O′.

Lemma 4.2. The three quantities in Definition 4.1 are all equal.

Proof. We observe that these values are equal if and only if the corresponding quantities obtained by
localizing at each prime are all equal [25, Lemma 9.5.7]. There is a unique maximal order at the ramified
prime p, and so all three of the local quantities at p are equal to 1.

For ` 6= p, the statement follows from the theory of the Bruhat–Tits tree [25, Section 23.5]. Specifically,
we have B` ∼= M2(Q`). With respect to an appropriate basis, if we set $ =

(
`
0

0
1

)
, we will have O` =

M2(Z`) and O′` =$
−eO`$

e for some exponent e [25, Lemma 23.5.14]. Then O`$
e
=$ eO′` is the
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linking ideal of smallest reduced norm, and we can check directly that

|O` :O` ∩O
′

`| = |O
′

` :O` ∩O
′

`| = nrd(O`$
e)= `e. �

Note that log d defines a metric on the set of maximal orders of B; the triangle inequality follows
because nrd(I J ) ≤ nrd(I ) nrd(J ) for any compatible ideals I and J [25, Example 16.3.6]. Unlike
distances between elliptic curves, Definition 4.1 is not isomorphism-invariant, but we can relate the two
notions of distance as follows.

Lemma 4.3. Let E and E ′ be supersingular curves. Then

d(E, E ′)=min{d(O,O′) |O∼= End(E),O′ ∼= End(E ′)}.

Proof. By the Deuring correspondence, both sides are equal to

min{degφ | φ : E→ E ′′ for some E ′′ ∈ SS(p) with End(E ′′)∼= End(E ′)}. �

4B. Proof of Theorem 1.3(a). Suppose that E ∈ T M
D and E ′ ∈ T M

D′ . Let O∼= End(E) and O′ ∼= End(E ′)
be maximal orders in B. Thus there exist α ∈O−Z and α′ ∈O′−Z, each with reduced norm at most M.
The quadratic orders

O :=Q(α)∩O and O′ :=Q(α′)∩O

are both optimally embedded in O. Since Q(α) 6∼=Q(α′), O and O′ are distinct. Hence

discO discO′ ≥ 4p,

as a result of the following theorem due to Kaneko.

Theorem 4.4 [12, Theorem 2′]. Let O ⊆ B be a maximal order. If O and O′ are quadratic orders of
imaginary quadratic fields, optimally embedded into O with distinct images, then discO discO′ ≥ 4p. If
in addition O and O′ have isomorphic fields of fractions, then discO discO′ ≥ p2.

Let D denote the discriminant of K =Q(α). Since α ∈O−Z, and the quadratic order O must be of
the form O = Z+ f OK for some positive integer f , we have

nrd(α)≥ NK/Q
( 1

2 f
√

D
)
=

1
4 discO.

Letting d = d(O,O′) = |O′ :O∩O′|, we have dα′ ∈O∩O′ ⊆O. As we did with nrd(α), we can
compute d2 nrd(α′)≥ 1

4 discO′. Hence

d2 M2
≥ d2 nrd(α) nrd(α′)≥ 1

16
discO discO′ ≥ p

4
.

This implies that d(O,O′) ≥
√

p/(2M). Since this bound holds for all maximal orders O ∼= End(E)
and O′ ∼= End(E ′), Lemma 4.3 allows us to conclude that d(E, E ′)≥

√
p/(2M), concluding the proof

of Theorem 1.3(a).
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5. Short paths within T M
D

We first introduce the theory of orientations4 as defined by Colò and Kohel [7]. We then use these results
to prove part (b) of Theorem 1.3.

5A. Orientations.

Definition 5.1. Given a supersingular curve E ∈ SS(p) and an imaginary quadratic field K, a K -
orientation of E is a fixed embedding ι : K ↪→ End(E)⊗Q. Given a quadratic order O ⊆ K, a K -
orientation is a primitive O-orientation if End(E)∩ ι(K )∼=O, or in other words, if ι restricted to O is
an optimal embedding of O in End(E).

Definition 5.2. If E, E ′ ∈ SS(p) have K -orientations ι and ι′, respectively, an isogeny φ : E → E ′ is
K -oriented if

ι′(x)=
1

degφ
φ ◦ ι(x) ◦ φ̂, x ∈ K ,

where φ̂ denotes the dual isogeny of φ.

Let SSO(p) denote the set of elliptic curves equipped with a primitive O-orientation, up to K -oriented
isomorphism. Onuki describes two types of isogenies that we will use to construct paths. First there are
“ascending” isogenies, which can be used to decrease the conductor of the optimally embedded quadratic
order.

Proposition 5.3 [16, Proposition 4.1]. Suppose ` is a prime and f is a positive integer. Let O ⊆ K have
conductor ` f , and O′⊆ K have conductor f . Then for any (E, ι)∈SSO(p), there exists (E ′, ι′)∈SSO′(p)
with a K -oriented isogeny E→ E ′ of degree `.

In order to describe “horizontal” isogenies, we first describe an action of the class group Cl(O)
on SSO(p). Given an invertible ideal a ⊆ O relatively prime to p, and a curve E with a primitive
O-orientation, define the a-torsion subgroup

E[a] :=
⋂
x∈a

ker ι(x).

Up to K -oriented isomorphism, there is a unique elliptic curve (a ∗ E) with a primitive O-orientation
and a separable isogeny φa : E→ (a ∗ E) such that kerφa = E[a] [16, Proposition 3.5]. Since principal
ideals act by endomorphisms, the action (a, E) 7→ a ∗ E is well-defined on ideal classes.

Proposition 5.4 [16, Proposition 3.3 and Theorem 3.4]. Suppose p does not divide the conductor of O.
Either the ideal class group Cl(O) acts transitively on SSO(p), or SSO(p) splits into two conjugate
orbits: (E, ι) is in one orbit if and only if (E (p), ι(p)) is in the other.

4A previous version of this paper took a different approach to proving analogues of Propositions 5.3 and 5.4. While the
underlying ideas are similar, we have found that the language of orientations provides a much cleaner framework for these
results.
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Suppose E ∈ SSO(p) and a is an invertible ideal of O relatively prime to p. The proof of [16,
Proposition 3.5] shows that the dual isogeny of φa has kernel (a ∗ E)[a], and so by the proof of [16,
Proposition 3.6], φ̂a ◦φa has kernel E[aa] = E[N(a)]. Thus

(degφa)2 = deg(φ̂a ◦φa)

= |E[N(a)]| = N(a)2,

so we can conclude that degφa = N(a).

5B. Proof of Theorem 1.3(b). Suppose E, E ′ ∈ T M
D , so there exist α ∈End(E)−Z and α′ ∈End(E ′)−Z

with Q(α)∼=Q(α′). Set K ∼=Q(α).

Ascending isogenies. We may equip E with a K -orientation ι that has image Q(α) ⊆ End(E)⊗Q.
This K -orientation is a primitive O-orientation for some quadratic order O ⊆ K. By Proposition 5.3,
a sequence of K -oriented isogenies of prime degree can take us from E to a curve F ∈ SSOK (p),
successively dividing the conductor of the optimally embedded order by one prime factor at a time.
We can use the fact that α ∈ ι(O) to bound the conductor f of O:

3
4

f 2
≤

f 2
|D|
4
≤ deg(α)≤ M,

so that f ≤ b := 2
3

√
3M . Hence, the isogeny E → F obtained by composing all the prime-degree

isogenies has degree at most b.
In the same way, we can find a sequence of prime-degree isogenies from E ′ to a curve F ′ ∈ SSOK (p),

and the degree of their composition is at most b. Take the dual to obtain an isogeny F ′→ E ′.

Horizontal isogenies. We first consider the case that F and F ′ are in the same orbit under the action of
Cl(OK ). By Proposition 5.4, there is an ideal a of OK such that a ∗ F = F ′. Since this action depends
only on the ideal class, we may take a to have norm at most 1

√
3

√
|D|,5 which is at most b = 2

3

√
3M

since |D| ≤ 4M. Hence there is an isogeny F→ F ′ of degree at most b.
Combining this isogeny with the vertical isogenies found above, the sequence E, F, F ′, E ′ has con-

secutive distances at most b. The curves F and F ′ are in T M
D because they have an optimally embedded

quadratic order strictly larger than O and O′. This shows that we can find a sequence as in Theorem 1.3(b)
with r = 3.

If F and F ′ are in different orbits, first apply Frobenius conjugation to F ′ and E ′ (as well as to the
isogeny connecting them). Then F and F ′(p) are in the same Cl(OK )-orbit, so the argument above shows
that the sequence E, F, F ′(p), E ′(p) has consecutive distances at most b. But by Definition 1.1, replacing
E ′(p) with E ′ does not change distances.

5Minkowski’s bound has the coefficient 2
π instead of 1√

3
, but we get a stronger bound using the Hermite constant γ2 =

2√
3

.
Namely, the fractional ideal a−1 must contain an element x of norm at most γ2(

1
2
√
|D|)N(a)−1, and we can take the ideal

xa∼ a.
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Prime-degree isogenies. We decompose each of the isogenies E → F, F → F ′, and F ′ → E ′ into
isogenies of prime degree. Note that E → F and E ′ → F ′ were defined as compositions of prime-
degree isogenies to begin with, and every curve along the way is in T M

D because the optimally embedded
quadratic order grows at each step. For the isogeny F → F ′, write the ideal a as a product of prime
ideals. We can choose a so that none of its prime ideal factors will be principal, so that they will all have
prime norm. These ideals therefore induce prime-degree isogenies, and their composition is an isogeny
F→ F ′.

Since the isogenies E→ F, F→ F ′, and F ′→ E ′ each have degree b, the full sequence of prime-
degree isogenies

E = E0→ E1→ · · · → Er ∼= E ′

must satisfy

2r
≤

r∏
i=1

d(Ei−1, Ei )≤ b3,

which gives us the bound r ≤ 3 log2 b.
Combining Lemma 2.3, Section 4B, and Section 5B, we have a complete proof of Theorem 1.3.

6. Vertical `-isogenies have no short detours

As discussed in Section 5, M-small curves within a single set T M
D may be given a Q(

√
D)-orientation,

and then connected by “horizontal” or “vertical” isogenies. In this section we prove that if two oriented
curves are connected by a vertical `-isogeny, then there is no short isogeny between them with degree
relatively prime to `.6 As a result, the short paths described in Theorem 1.3(b) will only exist if all
sufficiently small primes are allowed as degrees of isogenies.

Proposition 6.1. Let ` be a prime, M ∈ Z, and β be an imaginary quadratic integer with norm at
most M/`2. Suppose E, E ′ ∈ SSM(p) have Z[β] optimally embedded in End(E) and Z[`β] optimally
embedded in End(E ′). If φ : E→ E ′ is any isogeny with degree relatively prime to `, then

degφ ≥
p`

4M
.

Remark 6.2. Given M ∈ Z and prime `, if SSM/`2
(p) is nonempty then there are E, E ′ ∈ SSM(p)

satisfying the conditions of Proposition 6.1: we can take E ∈ SSM/`2
(p) and follow a “descending” `-

isogeny [16, Proposition 4.1] to E ′.

Proof of Proposition 6.1. Let φ : E → E ′ be an isogeny with degree relatively prime to `. Fix a
maximal order O⊆ B with O∼= End(E). By the Deuring correspondence, φ corresponds to an ideal I
linking O to some maximal order O′ ∼= End(E ′). Since I is a sublattice of O∩O′, nrd(I )2 = |O : I |
[25, Main Theorem 16.1.3] is a multiple of d(O,O′)= |O :O∩O′|. Thus, since nrd(I )= degφ is not
divisible by `, neither is d(O,O′).

6A result of this form does not hold for horizontal isogenies, because a single ideal class may have multiple representatives
with small, relatively prime norms.
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If the optimal embeddings Z[β] ↪→ O and Z[`β] ↪→ O′ were to land in the same subfield of B,
then |O : O∩O′| would be divisible by `, a contradiction. Hence we must have O∩ K ∼= Z[`β] and
O′ ∩ K ′ ∼= Z[β] for distinct but isomorphic fields K and K ′. Let O := O∩ K and O′ := O∩ K ′ both
be optimally embedded in O. Since K and K ′ are isomorphic but distinct, Theorem 4.4 tells us that
discO discO′ ≥ p2.

Letting d := d(O,O′), we have `β ∈O and dβ ∈O′. So just as in Section 4B,

d2`2 nrd(β)2 ≥ 1
16

discO discO′ ≥ p2

16
.

Finally, applying Definition 4.1(c),

degφ = nrd(I )≥ d(O,O′)≥
p

4` nrd(β)
≥

p`
4M

. �

7. Isogenies between M-small supersingular curves

Despite the large distances between M-small curves in distinct subsets T M
D , we show that isogenies

between them can nonetheless be computed efficiently under certain heuristic assumptions. On each
“island” T M

D , we will construct an “airport,” a curve with known endomorphism ring. To find an isogeny
between two M-small curves, we will apply Theorem 1.3(b) to find a path from each curve to the airport
on its respective island, and then compute an isogeny between the airports.

7A. Locating the airports. From our definition of B, we have j2
=−p and i2

=−q for some relatively
small value of q; for p ≡ 3 (mod 4) we can use q = 1, and for p ≡ 1 (mod 4) we can use the same q
as in Proposition 2.1, so that under GRH we have q = O(log2 p). Let K 6=Q(i) be a quadratic field of
discriminant −4M ≤ D < 0. We must make an assumption which we leave unproven, but is plausible
both heuristically and experimentally (see Remark 7.3).

Assumption 7.1. Let α ∈ B satisfy 4α2
= D (if D ≡ 0 (mod 4)) or 4α2

−4α+1= D (if D ≡ 1 (mod 4)).
Then it is feasible to find an integral element β ∈ B with the following property: if n is the denominator
of trd(αβ), then the discriminant of the order Z〈α, nβ〉 can be efficiently factored into primes.7

Lemma 7.2. Assume GRH and an oracle for Assumption 7.1. Given a fundamental discriminant −4M ≤
D < 0 with (D/p)=−1, a maximal order of B containing an integral element α with nrd(α)≤ M and
Q(α)∼=Q(

√
D) can be computed in probabilistic polynomial time in M and log p.

Proof. The computation is as follows. First find x, y, z, w ∈Q such that

(x + y
√

D)2+ q(z+w
√

D)2 =−p. (1)

If we set
γ = pi + qz j + xk and δ = qw j + yk,

7The definition of n guarantees that Z〈α, nβ〉 is in fact an order. Aside from the fact that the discriminant will be divisible by
p2 (since any order is contained in a maximal order), we expect this discriminant to behave in some sense as a “random integer”
as we vary β. In the range of values that seem to arise in practice, integers that can be easily factored are relatively common.
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the proof of [25, Lemma 5.4.7] shows that (γ δ−1)2 = D, giving us an explicit embedding of Q(
√

D)
into B. Let α = 1

2γ δ
−1 or α = 1

2(1+ γ δ
−1), whichever is integral. Then α satisfies the conditions

for Assumption 7.1, so we can use the oracle to find an order containing α and a factorization of its
discriminant. Then use [24, Proposition 4.3.4] to construct a maximal order containing this order. The
resulting maximal order contains α, and so the required conditions are satisfied.

We now discuss the validity and runtime of this process. If we set K = Q(
√

D), there exists an
embedding of K = Q(

√
D) into B [25, Proposition 14.6.7]. This implies that B ⊗Q K is split [25,

Lemma 5.4.7], so there exists a solution v ∈ K (i)× to the relative norm equation NK (i)/K (v)=−p [25,
Theorem 5.4.6(vi)], implying that (1) has a solution.

We can solve (1) using an algorithm due to Simon [21, Algorithm 6.5], which requires computing
the relative class group of K (i)/K, factoring the norms of the generators of the relative class group into
prime ideals of K, factoring p into prime ideals of K, and linear algebra. Under GRH, the discriminant
1 of K (i) ∼= Q(

√
D,
√
−q) is polynomial in M and log p, so the first two of these tasks can be done

in polynomial time.8 Since (D/p)=−1, p is already prime in K, and the necessary linear algebra can
also be done in polynomial time.

Constructing a maximal order containing disc Z〈α, nβ〉 takes polynomial time in log p and the bit-
lengths of α and nβ, assuming the factorization of disc Z〈α, nβ〉 is given, and a probabilistic algorithm
(e.g., [18]) is used for factoring polynomials over finite fields. �

Remark 7.3. We checked Assumption 7.1 experimentally using Magma, by computing the maximal
order of Lemma 7.2 for p = 2256

+ 297 (in this case we can take q = 7), M = 100, and all 62 al-
lowable values of D. We used the function NormEquation to solve the relative norm equation, and
MaximalOrder to find a maximal order containing a given order. In every case, either β = i or β = j
satisfied Assumption 7.1. Constructing all of these maximal orders took 60 seconds on a generic personal
laptop (16 GB RAM, 1.80 GHz CPU).

7B. An algorithm for computing isogenies. We describe an algorithm9 for computing an isogeny be-
tween any two curves E, E ′ ∈ SS(p). In general, the runtime will be exponential in log p, but it is
efficient when E and E ′ are both M-small for relatively small M. Note that the algorithm does not
require knowledge of any noninteger endomorphisms of E or E ′, or even a nontrivial bound on M.

Lemma 7.4. Let M < p be such that E, E ′ ∈ SSM(p) (the value of M may not be known to the algo-
rithm).10 Assuming GRH and an oracle for Assumption 7.1, Algorithm 1 runs successfully in probabilistic
polynomial time in M and log p.

8The (absolute) class groups Cl(K (i)) and Cl(K ) can be computed in probabilistic subexponential time in log|1| [3], and
the relative class group can be efficiently computed from this data using linear algebra [6, Algorithm 7.3.1]. Under GRH,
generators of the relative class group will have (absolute) norm O(log2

|1|) [6, p. 369] and so factoring their (relative) norms
can also be done efficiently.

9This algorithm is primarily a proof of concept; there is a lot of optimization that can be done if it is to be used in practice.
10Every E ∈ SS(p) is M-small for M =

⌊ 1
2 p2/3

+
1
4
⌋

[11, Section 4].
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Algorithm 1: Computing isogenies between supersingular curves.

Input : E, E ′ ∈ SS(p).
Output :An isogeny E→ E ′.

(1) Find the roots in Fp2 of the Hilbert class polynomials HO(x) (mod p), for quadratic orders O of
successively increasing discriminant. Stop when the j-invariant of E is found as a root of
HOE (x) (mod p), for some order OE . Let S denote the set of all roots in Fp2 of all quadratic orders
considered.

(2) Let D be the discriminant of the field of fractions of OE . Compute a maximal order OD ⊆ B as in
Lemma 7.2.

(3) Compute an elliptic curve ED ∈ SS(p) such that End(ED)∼=OD .
(4) Find an isogeny in S from E to ED by breadth-first search. That is, from the current curve, use modular

polynomials to find all curves in S that are connected to the current curve by an isogeny of prime degree
at most

2
3

√
3
⌈ 1

4 |discOE |
⌉
.

Continue until either ED or E (p)
D is found. If E (p)

D is found, replace ED with E (p)
D .

(5) Repeat Steps (1) to (4) for E ′, obtaining a curve ED′ with known endomorphism ring, as well as a path
from E ′ to ED′ .

(6) Compute an isogeny from ED to ED′ .
(7) Compose the isogeny E→ ED (from Step (4)), the isogeny ED→ ED′ (from Step (6)), and the isogeny

ED′→ E ′ (dual of the isogeny from Step (5)).

Proof. First we examine Step (1). Each polynomial HO(x) (mod p) can be computed in O(|discO|1+ε)
time [23, Theorem 1]. The roots of this polynomial in Fp2 can be found by factoring it over Fp, and
keeping the linear and quadratic factors. There is a probabilistic algorithm for factoring which is poly-
nomial time in deg HO(x) and log p [18]. The degree of HO(x) equals the class number of O, which is
O(|discO|1/2+ε). By Proposition 2.2, the j-invariant of E is a root of HOE (x) (mod p) for an order OE

with |discOE | ≤ 4M, so Step (1) computes S and OE in time polynomial in M and log p.
Step (2) requires an oracle for Assumption 7.1 but otherwise runs in polynomial time in M and log p;

note that (D/p) = −1 by Proposition 2.2 so the conditions of Lemma 7.2 are met. There are known
algorithms for performing Steps (3) [10, Proposition 13] and (6) [10, Proposition 7] in polynomial time.

Now consider Step (4). Let M̂ =
⌈1

4 |discOE |
⌉
, so that −4M̂ ≤ discOE < 0. Thus E ∈ T M̂

D , and
ED ∈ T M̂

D by the properties of O described in Lemma 7.2. Since S contains SSM̂(p) by construction,
Theorem 1.3(b) guarantees that Step (4) will find a path from E to either ED or E (p)D . Since the number of
elements of S is polynomial in M, the process can be done in time polynomial in M and log p. Replacing
ED with E (p)D does not change the endomorphism ring, and so Step (6) can still be done. �

7C. Isogenies defined over Fp. Suppose E and E ′ are M-small curves defined over Fp. Some situations,
such as key recovery for the CSIDH protocol [4], require being able to find an Fp-isogeny E→ E ′. While
Algorithm 1 allows us to construct an isogeny between these curves, this isogeny will not necessarily be
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defined over Fp. This is solved by concurrent work of Castryck, Panny, and Vercauteren [5], in which
they provide an algorithm to compute an Fp-isogeny E→ E ′, given the endomorphism rings of E and
E ′ (which can be computed from the isogenies E→ ED and E ′→ ED′ , found in Steps (4) and (5) of
Algorithm 1).
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Cubic post-critically finite polynomials defined over Q

Jacqueline Anderson, Michelle Manes, and Bella Tobin

We find all post-critically finite (PCF) cubic polynomials defined over Q, up to conjugacy over PGL2(Q).
We describe normal forms that classify equivalence classes of cubic polynomials while respecting the
field of definition. Applying known bounds on the coefficients of post-critically bounded polynomials to
these normal forms simultaneously at all places of Q, we create a finite search space of cubic polynomials
over Q that may be PCF. Using a computer search of these possibly PCF cubic polynomials, we find
fifteen which are in fact PCF.

1. Introduction

Let K be a number field, and let f (z) ∈ K [z] have degree d ≥ 2. Consider iterates of f :

f n(z) := f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n times

(z), and f 0(z) := z.

The orbit of a point α ∈ K is the set O f (α)= { f n(α) | n ≥ 0}.
Rather than studying individual polynomials, we consider equivalence classes of polynomials under

conjugation by affine elements φ ∈ PGL2(K ). For φ(z)= az+ b ∈ K [z], we define

f φ = φ ◦ f ◦φ−1.

Note that f and f φ have the same dynamical behavior over K in the sense that φ maps the orbit O f (α)

to O f φ (φ(α)).
Critical points of f are the points α ∈ K such that f ′(α)= 0. Branner and Hubbard write in [6] “the

main question to ask about a rational map is: what are the orbits under iteration of the critical points?”
Of particular interest are functions for which all critical points have either a bounded or finite orbit.

Definition 1.1. A polynomial f is postcritically finite (PCF) if the orbit of each critical point is finite.
A polynomial is postcritically bounded with respect to a given absolute value if the orbit of each critical
point is bounded with respect to that absolute value.

Manes’ work partially supported by Simons collaboration grant #359721.
MSC2010: 37P05.
Keywords: arithmetic dynamics, post-critically finite, cubic polynomials.
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The study of PCF maps has a long history in complex dynamics, from Thurston’s work in the early
1980s and continuing to the present day, for example [3; 9; 10; 11; 12; 13]. In [18], Silverman describes
PCF maps as an analog of abelian varieties with complex multiplication, so these maps are of particular
interest in arithmetic dynamics as well. For example, all quadratic post-critically finite rational maps
over Q have been found in [15], and many cubic post-critically finite polynomials over Q have been
found in [14].

Theorem. There are exactly fifteen Q conjugacy classes of cubic PCF polynomials defined over Q:

(1) z3 (2) − z3
+ 1 (3) − 2z3

+ 3z2
+

1
2

(4) − 2z3
+ 3z2 (5) − z3

+
3
2 z2
+ 1 (6) 2z3

− 3z2
+ 1

(7) 2z3
− 3z2

+
1
2 (8) z3

−
3
2 z2 (9) − 3z3

+
9
2 z2

(10) − 4z3
+ 6z2

−
1
2 (11) 4z3

− 6z2
+

3
2 (12) 3z3

−
9
2 z2
+ 1

(13) − z3
+

3
2 z2
− 1 (14) − 1

4 z3
+

3
2 z+ 2 (15) − 1

28 z3
−

3
4 z+ 7

2

Of these, (1), (4), (6), (8), (10), and (11) were found by Ingram in [14]. To complete the list, we adapt
Ingram’s techniques as described below.

Let K be a number field, and let f (z) ∈ K [z] be a cubic polynomial. Critical points of f are roots of
the quadratic polynomial f ′(z) ∈ K [z], so there are three possibilities:

(a) There are two distinct critical points: γ1 6= γ2, and they are both K -rational.

(b) There are two distinct critical points γ1 6= γ2 with K (γ1)= K (γ2) a quadratic extension of K .

(c) There is exactly one critical point, γ ∈ K .

In the first two cases, we say that f is bicritical. In the third case, we say f is unicritical. In determining
a complete list of cubic PCF polynomials defined over Q[z], we treat each of these cases separately:

(1) For each of cases (a)–(c) above, find a normal form for cubic polynomials such that every cubic
polynomial over Q[z] is conjugate to a map in one of these forms, and the conjugation respects the
field of definition for the given case.

(2) For a map to be PCF, it must be post-critically bounded in each absolute value. Find archimedean
and p-adic bounds on the coefficients for maps in the normal forms to be post-critically bounded.

(3) Use the bounds in (2) to create a finite search space of possibly PCF maps.

(4) For each map in the finite search space, test if it is PCF or not.

1A. Outline. We begin in Section 2 by treating the special case of a polynomial with a unique critical
point. In Section 3, we find the normal forms needed in Step (1) of the algorithm above. Section 4
provides the coefficient bounds described in Step (2). Finally, Section 5 describes the algorithms and
provides the complete list of PCF cubic polynomials defined over Q.
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2. Unicritical PCF polynomials

We begin by considering unicritical PCF polynomials. First, we will determine a normal form for uni-
critical polynomials of arbitrary degree defined over a number field K . In [8], Buff studied unicritical
polynomials from a complex dynamics point of view, and he used that work to answer questions of Milnor
and of Baker and DeMarco. Some of his preliminary work overlaps with the work here, specifically the
normal form in Theorem 2.1 and the bound on |a| in Proposition 2.2. Because Buff was working over C,
he did not consider questions about field of definition. Therefore, we provide full proofs of these results
from a more arithmetic point of view.

Theorem 2.1. Let f (z) ∈ K [z] be a degree d unicritical polynomial. Then either f (z) is K -conjugate
to zd , or f is conjugate to a unique polynomial of the form

azd
+ 1 ∈ K [z].

Proof. Without loss of generality, we may replace f by a conjugate map where the unique critical
point γ is moved to 0. Since γ ∈ K , this does not change the field of definition. So we assume that
f (z)= bzd

+ c ∈ K [z].
If c = 0, then f (z)= bzd for b ∈ K×. Letting φ(z)= b1/(d−1)z, we have f φ(z)= zd .
Now, assume c 6= 0. Conjugating by φ(z)= z/c gives

f φ(z)= bcd−1zd
+ 1.

Since b, c ∈ K×, then bcd−1
∈ K×. Letting a = bcd−1 gives the result.

Finally, φ is the only affine map in PGL2(K ) fixing 0 and satisfying f φ(0) = 1. Therefore, f (z) is
K -conjugate to azd

+ 1 ∈ K [z] for a unique a ∈ K×. �

Theorem 2.1 implies that up to conjugacy every unicritical polynomial f ∈ K [z] is a power map or
of the form azd

+ 1. In both cases Crit( f )= {0}. If f is a power map then f (0)= 0, hence f is PCF.
Therefore, in order to completely describe all other PCF unicritical polynomials in Q[z] (of any degree),
we need only consider those of the form f (z)= azd

+ 1 for a ∈Q×.

Proposition 2.2 [8, Corllary 8]. If f (z)= azd
+ 1 ∈ K [z] is post-critically finite, then |a| ≤ 2.

Proof. Suppose |a|> 2 and |α| ≥ 1. Then

| f (α)| = |aαd
+ 1|> |α|.

Inductively, α must be a wandering point. Since Crit( f )= {0} and f (0)= 1, we see that f is not PCF.
Therefore, if f ∈ K [z] is PCF it must be that |a| ≤ 2. �

Theorem 2.3. Let f (z)= azd
+ 1 ∈Q[z] and d ≥ 2. For d even, f is PCF if and only if a ∈ {−2,−1}.

For d odd, f is PCF if and only if a =−1.

Proof. Suppose |a|p > 1 for some prime p. If |z|p ≥ 1, then | f (z)|p = |azd
+ 1|p = |azd

|p > |z|p, so α
is a wandering point if there exists n ≥ 0 such that | f n(α)|p ≥ 1. In particular, f (0)= 1, so the critical
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point 0 is a wandering point and f is not PCF. We conclude that for all primes p, |a|p ≤ 1; hence a ∈ Z.
By Proposition 2.2, |a| ≤ 2, so a ∈ {±1,±2}.

Suppose that |α|> 2. Then

| f (α)| = |aαd
+ 1|> 2d−1

|α| − 1> |α|.

Inductively, α must be a wandering point for f .
If a = 1, then f 3(0)= 2d

+ 1, so 0 must be a wandering point. If a = 2, then f 2(0)= 3, so 0 must
be a wandering point. If a =−1, then f 2(0)= 0, so f is PCF.

Finally, consider the case a = −2. If d is even then f 2(0) = f 3(0) = −1, so f is PCF. If d is odd,
then f 3(0)= 3, so 0 is a wandering point. �

3. Normal forms for bicritical polynomials

Cubic polynomials have been studied extensively in complex dynamics, e.g., [5; 4; 6; 7; 16], and in
arithmetic dynamics, e.g., [14]. All of these use the Branner–Hubbard normal form, sometimes also
called the monic centered form:

F(z)= z3
+ Az+ B with critical points ±α where α =

√
−A

3
.

This form may be preferred in complex dynamics, but it is not ideal in arithmetic dynamics because it
does not preserve the field of definition of the polynomial. For example, in [14], Ingram shows that if
K is a number field and F(z) ∈ K [z] is PCF, then the pairs (A, B) are in a finite computable set, and he
finds the set in the case F(z) ∈Q(z). However, our Table 1 shows that fewer than half of the PCF cubic
polynomials defined over Q are conjugate to some F(z) ∈Q[z] in the Branner–Hubbard form.

Example 3.1. Consider the PCF polynomial f ∈Q[z] given by f (z)= 3z3
−

9
2 z2
+ 1. Conjugating by

φ(z)=
√

3z−
√

3
2 gives f φ(z)= z3

−
9
4 z−

√
3

4 6∈Q[z].

In this section, we describe normal forms for cubic bicritical polynomials, one for the case of rational
critical points and one for the case of irrational critical points. These cases are not disjoint, but both are
necessary to exhaustively list all PCF cubic polynomials. It is a simple matter to check that our final list
of cubic polynomials contains no conjugate maps, so this is of no concern.

Example 3.2. Let

f1(z)=
z3

4
−

3z
2
, so Crit( f1)= {±

√
2}.

Moving the two critical points to 0 and 1 gives the polynomial g1(z)= 2z3
− 3z2

+ 1. These conjugate
polynomials — one with rational critical points and one with irrational critical points — are both defined
over Q.
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If f (z) ∈ K [z] has two rational critical points, we may conjugate to move them to 0 and 1 without
changing the field of definition. From [2, Proposition 2.3], we know that there is a unique conjugacy
class of bicritical polynomials of degree d ≥ 3 with fixed critical points γ1 and γ2, and with prescribed
ramification at the two critical points. Moreover, we have a formula for this polynomial when {γ1, γ2} =

{0, 1}. Call the polynomial Bd,k(z). Since the critical points are at 0 and 1 and the polynomial has degree
d , we have

B′d,k(z)= czd−k−1(z− 1)k

for some 1≤ k < d − 1 and some constant c. So d − k is the ramification index of Bd,k(z) at the critical
point 0, and k+ 1 is the ramification index at the critical point 1. Expanding with the binomial theorem,
integrating term-by-term, and requiring that the two critical points are fixed gives

Bd,k(z)=
(

1
k!

k∏
j=0

(d − j)
)

zd−k
k∑

i=0

(−1)i

(d − k+ i)

(
k
i

)
zi . (3-1)

Since we are concerned with the case d = 3, necessarily k = 1, giving the polynomial

B3,1(z)=−2z3
+ 3z2. (3-2)

Proposition 3.3. Let g ∈ K [z] be a bicritical polynomial of degree d ≥ 3 with Crit(g) = {γ1, γ2} ⊆ K .
There exists an element φ ∈ PGL2(K ) such that gφ = aBd,k + c for some k ∈ N and some a, c ∈ K .

Proof. Let g ∈ K [z] with critical points γ1, γ2 ∈ K . Choose k ∈ N such that d − k is the ramification
index of γ1 and k+1 is the ramification index of γ2. Define φ(z)= (z−γ1)/(γ2−γ1)∈ PGL2(K ), which
moves the critical points to 0 and 1, respectively.

If f (z)= gφ(z), then f has critical points at 0 and 1 and degree d , so

f ′(z)= αzd−k−1(z− 1)k = aB′d,k(z)

for some a ∈ K×.
Then f (z)= aBd,k(z)+ c, and since f = gφ where both g, φ ∈ K [z], we have a, c ∈ K . �

We now consider a normal form for cubic polynomials g ∈ K [z] with critical points in a quadratic
extension of K .

Let D ∈O×K and let d ≥ 3 be odd. We define a polynomial Pd,D(z) ∈ K [z] by the following conditions:

• P ′d,D(z)= (z
2
− D)(d−1)/2.

• Pd,D(0)= 0.

Then Pd,D(z) is a bicritical polynomial having critical points {±
√

D} each with ramification index
(d + 1)/2. Just as with the polynomials Bd,k(z), we expand the derivative P ′d,D(z) using the binomial
theorem, integrate term-by-term, and use the fact that 0 is fixed to find a formula for these polynomials:

Pd,D(z)=
(d−1)/2∑

j=0

(−D)(d−1)/2− j
(d−1

2
j

)
z2 j+1

2 j + 1
. (3-3)
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Of particular interest in the sequel is the cubic case

P3,D(z)=
z3

3
− Dz. (3-4)

Proposition 3.4. Let g(z) ∈ K [z] be a bicritical polynomial of degree d ≥ 3. Suppose that Crit(g) =
{γ1, γ2} 6⊂ K . Then g is conjugate to a map of the form aPd,D(z)+ c for some a, c ∈ K and some
D ∈O×K /O

2
K .

Proof. By definition, {γ1, γ2} are roots of the polynomial g′(z) ∈ K [z]. Since they are not in K , we must
have g′(z) = α(h(z))β where h ∈ K [z] is an irreducible quadratic polynomial. Note: In this case, d is
odd and the ramification index of each critical point is (d + 1)/2.

Therefore there are m, n ∈ K with n 6= 0 and D ∈O×K /O
2
K such that γ1=m+n

√
D and γ2=m−n

√
D.

Consider
φ(z)=

z−m
n
∈ K [z], which satisfies φ(γ1)=

√
D and φ(γ2)=−

√
D.

Define f (z) = gφ(z). Since g, φ ∈ K [z], we have f (z) ∈ K [z]. Hence f ′(z) ∈ K [z]. Furthermore,
Crit( f )=Crit(gφ)= φ(Crit(g))= {±

√
D}. Therefore, f ′(z)= a(z2

−D)(d−1)/2 for some a ∈ K , which
means that f (z)= aPd,D(z)+ c ∈ K [z]. �

4. Coefficient bounds for PCF cubic polynomials over Q

From Corollary 1.2 in [14], for any number field K there are finitely many conjugacy classes of post-
critically finite polynomial maps of degree d in K [z]. We would like to use the normal forms in Section 3
to determine a representative of each conjugacy class of PCF cubic polynomials over Q. Many of these
results can be extended to bicritical maps of arbitrary degree (see [19]).

Let f (z) = ad zd
+ ad−1zd−1

+ · · · + a1z+ a0 ∈ K [z]. Following Ingram [14], we set the following
notation:

(2d)ν =
{

1 ν is nonarchimedean,
2d ν is archimedean,

C f,ν = (2d)ν max
0≤i<d

{
1,
∣∣∣∣ ai

ad

∣∣∣∣1/(d−i)

ν

, |ad |
−1/(d−1)
ν

}
.

The following lemma show that C f,ν gives an effective ν-adic bound for preperiodic points (points
with finite orbit) of a polynomial f (z) ∈ Q[z]. Applying this bound to the critical points will, in turn,
give ν-adic bounds on the coefficients for PCF polynomials. Ingram uses C f,ν in exaclty this way in [14]
without stating and proving a lemma of this sort. We provide Lemma 4.1 and its proof for clarity and
completeness.

Lemma 4.1. Let f (z) ∈ Q[z] be a polynomial of degree d ≥ 2. For α ∈ Q, if there exists ν ∈ MQ and
n ∈ N such that

| f n(α)|ν > C f,ν,

then α must be a wandering point (have infinite orbit) for f .
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Proof. First, notice that α is a wandering point if and only if f n(α) is a wandering point for all n ∈ N,
so without loss of generality, assume |α|ν > C f,ν for some ν ∈ MK . We will show that α is a wandering
point by proving that whenever |α|ν > C f,ν , we must have | f (α)|ν > |α|ν .

If ν is nonarchimedean, then |α|ν > |ai/ad |
1/(d−i)
ν guarantees that |adα

d
|ν > |aiα

i
|ν for all i < d, so

we have

| f (α)|ν =
∣∣∣∣ d∑

i=0

aiα
i
∣∣∣∣
ν

= |adα
d
|ν > |α|ν .

The inequality above comes from the fact that |α|ν > C f,ν ≥ |ad |
−1/(d−1)
ν .

If ν is archimedean, then starting with |α|ν > 2d|ai/ad |
1/(d−i)
ν , we see that

|adα
d
|ν > max

0≤i<d
{(2d)d−i

|aiα
i
|ν} ≥ 2d max

0≤i<d
{|aiα

i
|ν},

and so we have

| f (α)|ν =
∣∣∣∣ d∑

i=0

aiα
i
∣∣∣∣
ν

≥ |adα
d
|ν − d max

0≤i<d
|aiα

i
|ν >

1
2 |adα

d
|ν .

Finally, it follows from |α|ν > 2d|ad |
−1/(d−1)
ν that

1
2 |adα

d
|ν >

1
2(2d)d−1

|α|ν > |α|ν,

as desired. �

4A. PCF cubics with rational critical points. We begin by specializing Lemma 4.1 to bicritical cubic
polynomials with rational critical points, using the normal form in Proposition 3.3.

Lemma 4.2. Let

f (z)= aB3,1+ c = a(−2z3
+ 3z2)+ c ∈Q[z]

be a bicritical polynomial and let α ∈Q. If there exist ν ∈ MQ and n ∈ N such that

| f n(α)|ν > C f,ν = (6)ν max
{
1,
∣∣3

2

∣∣
ν
, | 1

2a |
1/2
ν , | c

2a |
1/3
ν

}
,

then α is a wandering point for f .

Proof. The result follows immediately from applying the definition of C f,ν and Lemma 4.1 to the coef-
ficients of f (z). �

Remark 4.3. Let f (z)= a(−2z3
+ 3z2)+ c ∈Q[z], so Crit( f )= {0, 1}. If f is PCF then every element

in the orbits of 0 and 1 must be bounded by C f,ν . In particular,

| f (1)|ν = |a+ c|ν ≤ C f,ν and | f (0)|ν = |c|ν ≤ C f,ν .

Thus if f is PCF, then max{|c|ν, |a+ c|ν} ≤ C f,ν for all ν ∈ MQ. For every nonarchimedean place ν, this
means max{|a|ν, |c|ν} ≤ C f,ν .
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Using the bound given above, we can find bounds on the absolute values of the parameters a and c of
a PCF polynomial of the form f (z)= a(−2z3

+ 3z2)+ c ∈Q[z]. We begin with an archimedean bound
on the parameter a.

Lemma 4.4. Let f (z)= a(−2z3
+ 3z2)+ c ∈Q[z]. If f is PCF, then |a|< 4.

Proof. Suppose |a| ≥ 4 and |α| ≥max{|c|, 2}. Then

| f (α)| = |aαd−1(−(d − 1)α+ d)+ c|,

and a straightforward calculation shows that | f (α)|> |α|. If |c| ≥ 2, then 0 must be a wandering point.
If |c|< 2, then

|a+ c| ≥ |a| − |c|> 2,

so 1 must be a wandering point. Thus, if f is PCF, we must have |a|< 4. �

The following lemmas give p-adic bounds on the parameters a and c when f is PCF.

Lemma 4.5. If f (z)= a(−2z3
+ 3z2)+ c ∈Q[z] is PCF then for nonarchimedean ν ∈ MQ

C f,ν =max
{
1,
∣∣ 3

2

∣∣
ν
,
∣∣ 1

2a

∣∣1/2
ν

}
.

Proof. Let f (z)= a(−2z3
+ 3z2)+ c ∈Q[z] and ν ∈ MQ be nonarchimedean. From Lemma 4.2,

C f,ν =max
{
1,
∣∣ 3

2

∣∣
ν
,
∣∣ 1

2a

∣∣1/2
ν
,
∣∣ c

2a

∣∣1/3
ν

}
.

Suppose
C f,ν =

∣∣ c
2a

∣∣1/3
ν
>
∣∣ 1

2a

∣∣1/2
ν
; then |c|2ν >

∣∣ 1
2a

∣∣
ν
.

However, since f is PCF,

|c|ν ≤ C f,ν =
∣∣ c

2a

∣∣1/3
ν
, so |c|2ν ≤

∣∣ 1
2a

∣∣
ν
,

giving a contradiction. �

Notice that the statement above holds for a, c ∈ K and ν ∈ MK for any number field K and the proof
is identical.

Lemma 4.6. Let f (z) = a(−2z3
+ 3z2)+ c ∈ Q[z] be PCF, let p be an odd prime, and let |·|p be the

p-adic absolute value. Then |a|p ≤ 1 and |c|2p ≤ |a|
−1
p .

Proof. From Lemma 4.5,

C f,p =max
{
1,
∣∣ 3

2

∣∣
p,
∣∣ 1

2a

∣∣1/2
p

}
=max{1, |3|p, |a|−1/2

p } =max{1, |a|−1/2
p }.

There are two distinct cases

(1) C f,p = 1, or

(2) C f,p = |a|
−1/2
p > 1.
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First, suppose C f,p = 1≥ |a|−1/2
p . Then |a|p ≥ 1. However, since f is PCF,

|a|p, |c|p ≤ C f,p = 1.

Therefore |a|p = 1, |a|−1
p = 1, and |c|2p ≤ 1= |a|−1

p .

Now, suppose C f,p = |a|
−1/2
p > 1. Then |a|p < 1, as desired. Furthermore, since f is PCF,

|c|p ≤ C f,p = |a|−1/2
p . �

Lemma 4.7. Let f (z)= a(−2z3
+ 3z2)+ c ∈Q[z] be PCF. Then

|2a|2 ≤ 1 and |2c|2 ≤ 1.

In fact, 2a ∈ Z.

Proof. From Lemma 4.6, we have |2a|p ≤ 1 for all odd primes p, so 2a ∈ Z will follow immediately
once we know that |2a|2 ≤ 1.

From Lemma 4.5,
C f,2 =max

{
1,
∣∣ 3

2

∣∣
2,
∣∣ 1

2a

∣∣1/2
2

}
=max

{
2,
∣∣ 1

2a

∣∣1/2
2

}
. (4-1)

Suppose C f,2 = 2: Since f is PCF, both |a|2 and |c|2 ≤ 2. Therefore, both |2a|2 and |2c|2 ≤ 1 as
desired.

Suppose C f,2 = |1/(2a)|1/22 > 2: Then

|2a|2 < 1
4 < 1. (4-2)

By Lemma 4.4, |a|< 4, so since 2a ∈ Z, we must have

a ∈
{ n

2 : 1≤ |n|< 8
}
. (4-3)

However, all of these possible a-values fail to satisfy equation (4-2), so the case C f,2 =
∣∣ 1

2a

∣∣1/2
2 > 2 does

not happen. Therefore, if f is PCF then C f,2 = 2, and both |2a|2 and |2c|2 ≤ 1 as desired. �

Proposition 4.8. If f is a cubic PCF polynomial of the form aBd,k(z)+ c ∈Q[z], then

±a ∈
{1

2 , 1, 3
2 , 2, 5

2 , 3, 7
2

}
and ± c ∈

{
0, 1, 1

2 ,
3
2 , 2

}
.

Proof. The result for a follows from equation (4-3) and Lemma 4.7.
Given the list for a, we see that |a|p = 1 for any prime p 6∈ {2, 3, 5, 7}. For p ∈ {3, 5, 7}, we have
|a|p ≥ 1

p , so |a|−1
p ≤ p. Using Lemma 4.6, we conclude that |c|p ≤ 1 in both cases. Combining this with

the fact that |2c|2 ≤ 1 from Lemma 4.7, we see that |2c|p ≤ 1 for all primes p. That is, 2c ∈ Z.
We will show that |c|< 5

2 . Suppose that a is contained in the above list and |α| ≥ |c| ≥ 5
2 . Then

| f (α)| ≥ |a||α|2|−2α+ 3| − |c|,

and this implies | f (α)|> |α|. Hence α is a wandering point for f . Then c = f (0) must be a wandering
point for f , in which case f would not be PCF. The result for c follows. �



32 JACQUELINE ANDERSON, MICHELLE MANES, AND BELLA TOBIN

4B. PCF cubics with irrational critical points. As in Section 4A, we can use the bound C f,ν to find
bounds on the (archimedean and nonarchimedean) absolute values of the parameters a, c and D of a
PCF polynomial of the form f (z)= aP3,D + c ∈Q[z]. Unlike in Section 4A, the bounds are not given
explicitly. Instead, we will determine restrictions on the relationships between the three parameters. In
Theorem 5.2, we use these relationships to implement an algorithm that determines a finite set of triples
(D, a, c) for which the polynomial f (z)= aP3,D + c ∈Q[z] is possibly PCF.

Proposition 4.9. Let f (z)= a(z3/3− Dz)+ c ∈Q[z]. If f is PCF, then

±aD ∈
{3

4 ,
3
2 ,

9
4 , 3, 15

4 ,
9
2 ,

21
4

}
.

Proof. Let φ(z)= (z−
√

D)/(−2
√

D). Then

f φ(z)=
−2
3

aD(−2z3
+ 3z2)+

aD
3
−

c−
√

D

2
√

D
.

None of the bounds on a in the previous section depended on the fact that c ∈Q, so we may apply them
to f φ . From Proposition 4.8, we have that

±
2
3aD ∈

{ 1
2 , 1, 3

2 , 2, 5
2 , 3, 7

2

}
. �

Lemma 4.10. Let f (z)= a(z3/3− Dz)+ c ∈Q[z] with ±aD ∈
{ 3

4 ,
3
2 ,

9
4 , 3, 15

4 ,
9
2 ,

21
4

}
. If f is postcriti-

cally finite, then |c|2 < 11|D|.

Proof. Crit( f )= {±
√

D} and

f (±
√

D)=∓ 2
3aD3/2

+ c.

A calculation shows that if |c|2 ≥ 11|D| and α ∈ C with |α|> |c|, then | f (α)|> |α|. Since a 6= 0 then
at least one of the critical points γ must satisfy | f (γ )|> |c|. �

Lemma 4.11. Let f (z)= a(z3/3− Dz)+ c ∈Q[z]. If f is p-adically post-critically bounded, then

|c
√

a|p ≤


1 if p ≥ 5,
3−1/2 if p = 3,
23 if p = 2.

Proof. Let g = f φ for some φ ∈ PGL2(Q) so that f φ is monic and has a fixed point at 0. Then g is of
the form

g(z)= z3
+ 3αz2

+ (3α2
− aD)z (4-4)

where α is a root of the polynomial

z3
− (aD+ 1)z+ c

√
a
3
. (4-5)

The critical points for g are now −α±
√

aD/3.
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From [1, Theorems 1.2 and 4.1], we know that if g is p-adically post-critically bounded, the critical
points must satisfy ∣∣∣∣−α±

√
aD
3

∣∣∣∣
p
≤

{
1 if p > 2,
2 if p = 2.

First consider p ≥ 3. Add the critical points to see that

|−2α|p ≤ 1, so |α|p ≤ 1.

Therefore, the polynomial in equation (4-5) is monic and all three roots lie in the p-adic unit disk. A
Newton polygon argument says that the coefficients of that polynomial must also lie in the p-adic unit
disk: if any coefficient had negative valuation, some segment of the Newton polygon would have positive
slope, which would imply that the polynomial has a root of absolute value greater than one.

Since the constant term lies in the p-adic unit disk,∣∣∣∣c√a
3

∣∣∣∣
p
≤ 1.

That gives the following bounds for p 6= 2:

|c
√

a|p ≤
{

1 if p ≥ 5,
3−1/2 if p = 3.

Now consider the case p = 2. We have∣∣∣∣−α±
√

aD
3

∣∣∣∣
2
≤ 2. (4-6)

Using the list of possible aD values from Proposition 4.9, we see that∣∣∣∣
√

aD
3

∣∣∣∣
2
≤ 2.

Applying the ultrametric triangle inequality to equation (4-6) yields |−α|2 ≤ 2. Therefore the Newton
polygon for that polynomial at p = 2 can have a segment of slope at most 1. Since the polynomial in
equation (4-5) is cubic, that means the constant term must satisfy

v2

(
c
√

a
3

)
≥−3.

So |c
√

a|2 ≤ 23, which completes the proof. �

5. The algorithms

This section presents algorithms for finding all bicritical cubic PCF polynomials over Q[z]; the algorithms
depend on normal forms found in Section 3 and coefficient bounds proven in Section 4.
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5A. Case 1: Rational critical points. Results in Section 4 give a finite set of coefficients to test, so the
first algorithm is straightforward.

Theorem 5.1. If f (z) ∈ Q[z] is a cubic bicritical PCF polynomial with rational critical points, then
f (z) is conjugate to fa,c(z)= a(−2z3

+ 3z2)+ c where

(a, c) ∈
{
(1, 0),

(
±1, 1

2

)
,
(1

2 ,±1
)
,
(
2,− 1

2

)
,
(3

2 , 0
)
, (−1, 1),

(
−2, 3

2

)
,
(
−

3
2 , 1

)
,
(
−

1
2 , 0

)}
.

Proof. From Proposition 3.3, we know that every cubic polynomial in Q[z] with rational critical points
is conjugate to a map of the form fa,c(z)= a(−2z3

+ 3z2)+ c for some a, c ∈Q.
From Proposition 4.8, if fa,c is post-critically bounded in every place, then

±a ∈
{ 1

2 , 1, 3
2 , 2, 5

2 , 3, 7
2

}
and ± c ∈

{
0, 1, 1

2 ,
3
2 , 2

}
.

This gives 126 possibilities for (a, c). The authors used built-in Sage [17] functionality to test all such
pairs.1 �

5B. Case 3: Irrational critical points. This case is more delicate. Results in Section 4 give relationships
between absolute values of the coefficients for cubic PCF maps. We must disentangle these relationships
to build a finite search space.

Theorem 5.2. If f (z) ∈Q[z] is a cubic bicritical PCF polynomial that is not conjugate to a polynomial
with rational critical points, then f (z) is conjugate to fD,a,c(z)= a( z3

3 − Dz)+ c where

(D, a, c) ∈
{(

2,− 3
4 , 2

)
,
(
−7,− 3

28 ,
7
2

)}
.

Proof. From Proposition 3.4, we know that every cubic polynomial in Q[z] with irrational critical points
is conjugate to a map of the form

fD,a,c(z)= a(z3/3− Dz)+ c

for some a, c ∈Q and a squarefree integer D.
Note that if c = 0, then fD,a,c(z) is conjugate to a cubic polynomial with rational critical points via

conjugation by φ(z) = (a −
√

D)/(−z
√

D). Furthermore, fD,a,−c(z) is conjugate to fD,a,c(z), so we
may assume that c > 0. Therefore, we build a list of triples (D, a, c) with D, a, c > 0, and each triple
corresponds to four possibly PCF polynomials (varying the signs of D and a). We split the algorithm
into two cases corresponding to D even and D odd.

Step 1: Loop over possible aD values. From Proposition 4.9, if fD,a,c is PCF then:

±aD ∈
{3

4 ,
3
2 ,

9
4 , 3, 15

4 ,
9
2 ,

21
4

}
.

1Sage code is available with the arXiv distribution of this article.
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Step 2: Compute |a|2. We use the value of aD in Step 1 and the parity of D.

Step 3: Find an upper bound for |c|p for each prime p. From Lemma 4.11, we know that if fD,a,c(z) is
p-adically post-critically bounded, then

|c
√

a|p ≤


1 if p ≥ 5,
3−1/2 if p = 3,
23 if p = 2.

(5-1)

So from Step 2 we can find e ≤ 3 such that |c|2 ≤ 2e. Also using the list in Step 1, we conclude
that |c|p ≤ 1 for each prime p ≥ 3.

Step 4: Factor D and c. Write D=m P or D= 2m P , where m and P are relatively prime odd squarefree
integers such that m divides the numerator of aD and P divides the denominator of a. By
equation (5-1), P must also divide the numerator of c. Thus, c = Pk

2e for some positive integer k.
Note: For a fixed aD from the list above, m comes from a finite set, but for now P and k can be
arbitrarily large.

Step 5: Bound the factors of D and c. From Lemma 4.10, we know that if fD,a,c(z) is post-critically
bounded at the archimedean place, then |c|2 < 11|D|. Depending on the parity of D, this gives

P2k2

22e < 11m P or
P2k2

22e < 22m P.

So Pk2 < B where B = 11m · 22e when D is odd, and B = 11m · 22e+1 when D is even. We
know e from Step 3, so for each m we have an explicit value for the upper bound B.

Step 6: Loop over P values. For all odd, squarefree integers P < B, we determine the set of possible k
values such that Pk2 < B.

Step 7: Create the triple. Each triple (m, P, k) yields a triple (D, a, c) = (m P, aD/(m P), Pk/2e) or
(D, a, c)= (2m P, aD/(2m P), Pk/2e). Finally, check that 3 | ac to verify that the triple satisfies
the 3-adic condition in equation (5-1). If so, add (D, a, c) to the list of possible PCF triples.

This algorithm yields a list of 5,957 triples corresponding to 23,828 possibly PCF polynomials. The
authors used built-in Sage [17] functionality to test all such triples. Only the two listed in the theorem
statement above are actually PCF and are not conjugate to a polynomial already found in Theorem 5.1.

�

Combining the results in Theorems 2.3, 5.1, and 5.2 yields a total of 15 conjugacy classes of PCF
cubic polynomials over Q[z], and this list is exhaustive. In the table below, we provide one representative
of each conjugacy class along with the critical portrait for the polynomial. In the portrait, the critical
points are given by γ and other points in the post-critical set are denoted •. The monic centered form is
given when it is defined over Q[z]; these appeared in [14].
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PCF polynomial Critical portrait Monic centered form

z3
γ1
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+ 1 γ1 γ2 •
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γ1 γ2
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3
2 z

−3z3
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9
2 z2

γ1γ2 •

−z3
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3
2 z2
− 1 γ1 • • γ2 •

−4z3
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−
1
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γ1 • • γ2 z3
+ 3z

2z3
− 3z2

+ 1 γ1 γ2 z3
−

3
2 z

4z3
− 6z2

+
3
2 γ1 • γ2 •

z3
− 3z

2z3
− 3z2

+
1
2 γ1 • γ2 •

3z3
−

9
2 z2
+ 1

γ1 γ2 •

z3
−

3
2 z2

γ1 γ2 •

z3
−

3
4 z+ 3

4 and z3
−

3
4 z− 3

4

−
1
4 z3
+

3
2 z+ 2 γ1 • • γ2 • •

−
1

28 z3
−

3
4 z+ 7

2
γ1 • γ2 •

Table 1. Critical Portraits of Cubic PCF Polynomials over Q
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Let E/Fq be an elliptic curve, and P a point in E(Fq) of prime order `. Vélu’s formulæ let us compute a
quotient curve E ′= E/〈P〉 and rational maps defining a quotient isogeny φ : E→ E ′ in Õ(`) Fq -operations,
where the Õ is uniform in q . This article shows how to compute E ′, and φ(Q) for Q in E(Fq), using only
Õ(
√
`) Fq -operations, where the Õ is again uniform in q . As an application, this article speeds up some

computations used in the isogeny-based cryptosystems CSIDH and CSURF.

1. Introduction

Let E be an elliptic curve over a finite field Fq of odd characteristic, and let P be a point in E(Fq) of
order n. The point P generates a cyclic subgroup G ⊆ E(Fq), and there exists an elliptic curve E ′ over
Fq and a separable degree-n quotient isogeny

φ : E −→ E ′ with kerφ = G = 〈P〉 ;

the isogeny φ is also defined over Fq . We want to compute φ(Q) for a point Q in E(Fq) as efficiently as
possible.

If n is composite, then we can decompose φ into a series of isogenies of prime degree. Computation-
ally, this assumes that we can factor n, but finding a prime factor ` of n is not a bottleneck compared to
the computation of an `-isogeny by the techniques considered here. We thus reduce to the case where
n = ` is prime.
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Vélu introduced formulæ for φ and E ′ (see [56] and [38, §2.4]): for E defined by y2
= x3
+ a2x2

+

a4x + a6 and `≥ 3, we have

φ : (X, Y ) 7−→
(
8G(X)
9G(X)2

,
Y�G(X)
9G(X)3

)
where

9G(X)=
∏(`−1)/2

s=1

(
X − x([s]P)

)
,

8G(X)= 4(X3
+ a2 X2

+ a4 X + a6)(9
′

G(X)
2
−9 ′′G(X)9G(X))

− 2(3X2
+ 2a2 X + a4)9

′

G(X)9(X)+ (`X −
∑`−1

s=1 x([s]P))9G(X)2 ,

�G(X)=8′G(X)9G(X)− 28G(X)9 ′G(X) .

The obvious way to compute φ(Q) is to compute the rational functions shown above, i.e., to compute
the coefficients of the polynomials 9G,8G, �G ; and then evaluate those polynomials. This takes Õ(`)
operations. (If we need the defining equation of E ′, then we can obtain it by evaluating φ(Q) for a few
Q outside G, possibly after extending Fq , and then interpolating a curve equation through the resulting
points. Alternatively, Vélu gives further formulas for the defining equation.) We emphasize, however,
that the goal is not to compute the coefficients of these functions; the goal is to evaluate the functions at
a specified point.

The core algorithmic problem falls naturally into a more general framework: the efficient evaluation
of polynomials and rational functions over Fq whose roots are values of a function from a cyclic group
to Fq .

Fix a cyclic group G (which we will write additively), a generator P of G, and a function f : G→ Fq .
For each finite subset S of Z, we define a polynomial

hS(X)=
∏
s∈S

(X − f ([s]P)) ,

where [s]P denotes the sum of s copies of P . The kernel polynomial 9G(x) above is an example of this,
with f = x and S = {1, . . . , (`− 1)/2}. Another example is the cyclotomic polynomial 8n , where f
embeds Z/nZ in the roots of unity of Fq , and 8n(X)= hS(X) where S = {i | 0≤ i < n, gcd(i, n)= 1}.
More generally, if f maps i 7→ ζ i for some ζ , then hS(X) is a polynomial whose roots are various powers
of ζ ; similarly, if f maps i 7→ iβ for some β, then hS(X) is a polynomial whose roots are various integer
multiples of β.

Given f and S, then, we want to compute hS(α) =
∏

s∈S(α − f ([s]P)) for any α in Fq . One can
always directly compute hS(α) in O(#S) Fq -operations; this is the standard way to compute 9G(α). But
if S has enough additive structure, and if f is sufficiently compatible with the group structure on G, then
we can compute hS(α) in Õ(

√
#S) Fq -operations, as we will see in §2, §3, and §4. Our main theoretical

result is Theorem 4.11, which shows how to achieve this quasi-square-root complexity for a large class of
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S when f is the x-coordinate on an elliptic curve. We apply this to the special case of efficient `-isogeny
computation in §5. We discuss applications in isogeny-based cryptography in §6.

Most of this paper focuses on asymptotic exponents, in particular improving `-isogeny evaluation
from cost Õ(`) to cost Õ(

√
`). However, this analysis hides polylogarithmic factors that can swamp the

exponent improvement for small `. In the full version [6], we instead analyze costs for concrete values
of `, and ask how large ` needs to be for the Õ(

√
`) algorithms to outperform conventional algorithms.

1.1. Model of computation. We state our framework for Fq for concreteness. All time complexities are
in Fq -operations, with the O and Õ uniform over q .

The ideas are more general. The algorithms here are algebraic algorithms in the sense of [16], and
can further be lifted to algorithms defined over Z[1/2] and in some cases over Z. In other words, the
algorithms are agnostic to the choice of q in Fq , except for sometimes requiring q to be odd; and the
algorithms can also be applied to more general rings, as long as all necessary divisions can be carried
out.

Restricting to algebraic algorithms can damage performance. For example, for most input sizes, the
fastest known algorithms to multiply polynomials over Fq are faster than the fastest known algebraic
algorithms for the same task. This speedup is only polylogarithmic and hence is not visible at the level
of detail of our analysis (the full version [6] contains a detailed analysis of concrete performances), but
implementors should be aware that simply performing a sequence of separate Fq -operations is not always
the best approach.

2. Strassen’s deterministic factorization algorithm

As a warmup, we review a deterministic algorithm that provably factors n into primes in time Õ(n1/4).
There are several such algorithms in the literature using fast polynomial arithmetic, including [53], [12],
[23], and [34]; there is also a separate series of lattice-based algorithms surveyed in, e.g., [4]. Strassen’s
algorithm from [53] has the virtue of being particularly simple, and is essentially the algorithm presented
in this section.

The state of the art in integer factorization has advanced far beyond Õ(n1/4). For example, ECM [39],
Lenstra’s elliptic-curve method of factorization, is plausibly conjectured to take time no(1). We present
Strassen’s algorithm because Strassen’s main subroutine is the simplest example of a much broader
speedup that we use.

2.1. Factorization via modular factorials. Computing gcd(n, `! mod n) reveals whether n has a prime
factor ≤`. Binary search through all ` ≤

√
n then finds the smallest prime factor of n. Repeating this

process completely factors n into primes.
The rest of this section focuses on the problem of computing `! mod n, given positive integers ` and n.

The algorithm of §2.3 uses Õ(
√
`) additions, subtractions, and multiplications in Z/nZ, plus negligible

overhead. For comparison, a straightforward computation would use `− 1 multiplications modulo n.
The Õ here is uniform over n.
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2.2. Modular factorials as an example of the main problem. Define G as the additive group Z, define
P = 1, define f : G→ Z/nZ as s 7→ s, and define hS(X)=

∏
s∈S(X − f ([s]P)) ∈ (Z/nZ)[X ]. Then, in

particular, hS(X)= (X − 1) · · · (X − `) for S = {1, . . . , `}, and one can compute `! mod n by computing
hS(`+ 1) or, alternatively, by computing (−1)`hS(0). This fits the modular-factorials problem, in the
special case that n is a prime number q , into the framework of §1.

2.3. An algorithm for modular factorials. Compute b= b
√
`c, and define I = {0, 1, 2, . . . , b−1}. Use

a product tree to compute the polynomial h I (X)= X (X − 1)(X − 2) · · · (X − (b− 1)) ∈ (Z/nZ)[X ].
Define J = {b, 2b, 3b, . . . , b2

}. Compute h J (X), and then compute the resultant of h J (X) and h I (X).
This resultant is h I (b)h I (2b)h I (3b) · · · h I (b2), i.e., (b2)! mod n.

One can compute the resultant of two polynomials via continued fractions; see, e.g., [54]. An alter-
native here, since h J is given as a product of linear polynomials, is to use a remainder tree to compute
h I (b), h I (2b), . . . , h I (b2) ∈ Z/nZ, and then multiply. Either approach uses Õ(

√
`) operations.

Finally, multiply by (b2
+ 1)(b2

+ 2) · · · ` modulo n, obtaining `! mod n.

3. Evaluation of polynomials whose roots are powers

Pollard [49] introduced a deterministic algorithm that provably factors n into primes in time O(n1/4+ε).
Strassen’s algorithm from [53] was a streamlined version of Pollard’s algorithm, replacing O(n1/4+ε)

with Õ(n1/4).
This section reviews Pollard’s main subroutine, a fast method to evaluate a polynomial whose roots

(with multiplicity) form a geometric progression. For comparison, Strassen’s main subroutine is a fast
method to evaluate a polynomial whose roots form an arithmetic progression. See §2.3 above.

3.1. A multiplicative version of modular factorials. Fix ζ ∈ (Z/nZ)∗. Define G=Z, define P=1, define
f : G→ (Z/nZ)∗ as s 7→ ζ s , and define hS(X) =

∏
s∈S(X − f ([s]P)) =

∏
s∈S(X − ζ

s) ∈ (Z/nZ)[X ].
(For comparison, in §2, f was s 7→ s, and hS(X) was

∏
s∈S(X − s).)

In particular, hS(X) =
∏`

s=1(X − ζ
s) for S = {1, 2, 3, . . . , `}. Given α ∈ Z/nZ, one can straight-

forwardly evaluate hS(α) for this S using O(`) algebraic operations in Z/nZ. The method in §3.2
accomplishes the same result using only Õ(

√
`) operations. The O and Õ are uniform in n, and all of

the algorithms here can take ζ as an input rather than fixing it. There are some divisions by powers of ζ ,
but divisions are included in the definition of algebraic operations.

Pollard uses the special case hS(1)=
∏`

s=1(1−ζ
s). This is (1−ζ )` times the quantity (1+ζ )(1+ζ +

ζ 2) · · · (1+ ζ +· · ·+ ζ `−1). It would be standard to call the latter quantity a “q-factorial” if the letter “q”
were used in place of “ζ”; beware, however, that it is not standard to call this quantity a “ζ -factorial”. For
a vast generalization of Pollard’s algorithm to q-holonomic sequences, see [11]; in §4, we will generalize
it in a different direction.

3.2. An algorithm for the multiplicative version of modular factorials. Compute b= b
√
`c, and define

I = {1, 2, 3, . . . , b}. Use a product tree to compute the polynomial h I (X)=
∏b

i=1(X − ζ
i ).
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Define J ={0, b, 2b, . . . , (b−1)b}, and use a remainder tree to compute h I (α/ζ
j ) for all j ∈ J . Pollard

uses the chirp-z transform [50] (Bluestein’s trick) instead of a remainder tree, saving a logarithmic factor
in the number of operations, and it is also easy to save a logarithmic factor in computing h I (X), but
these speedups are not visible at the level of detail of the analysis in this section.

Multiply ζ jb by h I (α/ζ
j ) to obtain

∏b
i=1(α − ζ

i+ j ) for each j , and then multiply across j ∈ J to
obtain

∏b2

s=1(α− ζ
s). Finally, multiply by

∏`
s=b2+1(α− ζ

s) to obtain the desired hS(α).

One can view the product
∏b2

s=1(α−ζ
s) here, like the product (b2)! in §2, as the resultant of two degree-

b polynomials. Specifically,
∏

j h I (α/ζ
j ) is the resultant of

∏
j (X−α/ζ

j ) and h I ; and
∏

j ζ
jbh I (α/ζ

j )

is the resultant of
∏

j (ζ
j X −α) and h I . One can, if desired, use continued-fraction resultant algorithms

rather than multipoint evaluation via a remainder tree.

3.3. Structures in S and f . We highlight two structures exploited in the above computation of
∏`

s=1(α−

ζ s). First, the set S = {1, 2, . . . , `} has enough additive structure to allow most of it to be decomposed
as I + J , where I and J are much smaller sets. Second, the map s 7→ ζ s is a group homomorphism,
allowing each ζ i+ j to be computed as the product of ζ i and ζ j ; we will return to this point in §4.1.

We now formalize the statement regarding additive structure, focusing on the Fq case that we will
need later in the paper. First, some terminology: we say that sets of integers I and J have no common
differences if i1 − i2 6= j1 − j2 for all i1 6= i2 in I and all j1 6= j2 in J . If I and J have no common
differences, then the map I × J → I + J sending (i, j) to i + j is a bijection.

Lemma 3.4. Let q be a prime power. Let ζ be an element of F∗q . Define hS(X)=
∏

s∈S(X − ζ
s) ∈ Fq [X ]

for each finite subset S of Z. Let I and J be finite subsets of Z with no common differences. Then

h I+J (X)= ResZ (h I (Z), HJ (X, Z))

where ResZ (·, ·) is the bivariate resultant, and

HJ (X, Z) :=
∏
j∈J

(X − ζ j Z).

Proof. ResZ (h I (Z), HJ (X, Z))=
∏

i∈I
∏

j∈J (X − ζ
iζ j )=

∏
(i, j)∈I×J (X − ζ

i+ j )= h I+J (X) since the
map I × J → I + J sending (i, j) to i + j is bijective. �

Algorithm 1 is an algebraic algorithm that outputs hS(α) given α. The algorithm is parameterized by
ζ and the set S, and also by finite subsets I, J ⊂ Z with no common differences such that I + J ⊆ S. The
algorithm and the proof of Proposition 3.5 are stated using generic resultant computation (via continued
fractions), but, as in §2.3 and §3.2, one can alternatively use multipoint evaluation.

Proposition 3.5. Let q be a prime power. Let ζ be an element of F∗q . Let I, J be finite subsets of Z with
no common differences. Let K be a finite subset of Z disjoint from I + J . Given α in Fq , Algorithm 1
outputs

∏
s∈S(α− ζ

s) using Õ(max(#I, #J, #K )) Fq -operations, where S = (I + J )∪ K .
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Algorithm 1: Computing hS(α)=
∏

s∈S(α− ζ
s)

Parameters: a prime power q; ζ ∈ F∗q ; finite subsets I, J, K ⊆ Z such that I and J have no
common differences and (I + J )∩ K = {}; ζ s for each s ∈ I ∪ J ∪ K

Input: α in Fq

Output: hS(α) where hS(X)=
∏

s∈S(X − ζ
s) and S = (I + J )∪ K

1 h I ←
∏

i∈I (Z − ζ
i ) ∈ Fq [Z ]

2 HJ ←
∏

j∈J (α− ζ
j Z) ∈ Fq [Z ]

3 h I+J ← ResZ (h I , HJ ) ∈ Fq

4 hK ←
∏

k∈K (α− ζ
k) ∈ Fq

5 return h I+J · hK

The Õ is uniform in q. Instead of taking ζ and various precomputed powers of ζ as parameters, the
algorithm can take ζ as an input, at the cost of computing ζ i for i ∈ I , ζ j for j ∈ J , and ζ k for k ∈ K .
This preserves the time bound if the elements of I, J, K each have polylog(max(#I, #J, #K )) bits.

Proof. Since S \ K = I + J , we have hS(α)= h I+J (α) · hK (α), and Lemma 3.4 shows that h I+J (α)=

ResZ (h I (Z), HJ (α, Z)). Line 1 computes h I (Z) in Õ(#I ) Fq -operations; Line 2 computes HJ (α, Z) in
Õ(#J ) Fq -operations; Line 3 computes h I+J (α) in Õ(max(#I, #J )) Fq -operations; and Line 4 computes
hK (α) in Õ(#K ) Fq -operations. The total is Õ(max(#I, #J, #K )) Fq -operations. �

3.6. Optimization. The best conceivable case for the time bound in Proposition 3.5, as a function of #S,
is Õ(
√

#S). Indeed, #S = #I · #J + #K , so max(#I, #J, #K )≥
√

#S+ 1/4− 1/2.
To reach Õ(

√
#S) for a given set of exponents S, we need sets I and J with no common differences

such that I + J ⊆ S with #I , #J , and #(S \ (I + J )) in Õ(
√

#S). Such I and J exist for many useful
sets S. Example 3.7 shows a simple form for I and J when S is an arithmetic progression.

Example 3.7. Suppose S is an arithmetic progression of length n: that is,

S = {m,m+ r,m+ 2r, . . . ,m+ (n− 1)r}

for some m and some nonzero r . Let b = b
√

nc, and set

I := {ir | 0≤ i < b} and J := {m+ jbr | 0≤ j < b} ;

then I and J have no common differences, and I + J = {m+ kr | 0≤ k < b2
}, so

I + J = S \ K where K = {m+ kr | b2
≤ k < n} .

Now #I = #J = b, and #K = n−b2
≤ 2b, so we can use these sets to compute hS(α) in Õ(b)= Õ(

√
n)

Fq -operations, following Proposition 3.5. (In the case r = 1, we recognise the index sets driving Shanks’
baby-step giant-step algorithm.)
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4. Elliptic resultants

The technique in §3 for evaluating polynomials whose roots are powers is well known. Our main theoret-
ical contribution is to adapt this to polynomials whose roots are functions of more interesting groups: in
particular, functions of elliptic-curve torsion points. The most important such function is the x-coordinate.
The main complication here is that, unlike in §3, the function x is not a homomorphism.

4.1. The elliptic setting. Let E/Fq be an elliptic curve, let P ∈ E(Fq), and define G = 〈P〉. Let S be a
finite subset of Z. We want to evaluate

hS(X)=
∏
s∈S

(X − f ([s]P)) , where f : Q 7−→
{

0 if Q = 0 ,
x(Q) if Q 6= 0 ,

at some α in Fq . Here x : E→ E/〈±1〉 ∼= P1 is the usual map to the x-line.
Adapting Algorithm 1 to this setting is not a simple matter of replacing the multiplicative group with

an elliptic curve. Indeed, Algorithm 1 explicitly uses the homomorphic nature of f : s 7→ ζ s to represent
the roots ζ s as ζ iζ j where s= i+ j . This presents an obstacle when moving to elliptic curves: x([i+ j]P)
is not a rational function of x([i]P) and x([ j]P), so we cannot apply the same trick of decomposing
most of S as I + J before taking a resultant of polynomials encoding f (I ) and f (J ).

This obstacle does not matter in the factorization context. For example, in §3, a straightforward
resultant

∏
i, j (α/ζ

j
− ζ i ) detects collisions between α/ζ j and ζ i ; our rescaling to

∏
i, j (α− ζ

i+ j ) was
unnecessary. Similarly, Montgomery’s FFT extension [44] to ECM computes a straightforward resul-
tant

∏
i, j (x([i]P)− x([ j]P)), detecting any collisions between x([i]P) and x([ j]P); this factorization

method does not compute, and does not need to compute, a product of functions of x([i + j]P). The
isogenies context is different: we need a product of functions of x([i + j]P).

Fortunately, even if the x-map is not homomorphic, there is an algebraic relation between x(P), x(Q),
x(P + Q), and x(P − Q), which we will review in §4.2. The introduction of the difference x(P − Q)
as well as the sum x(P + Q) requires us to replace the decomposition of most of S as I + J with a
decomposition involving I + J and I − J , which we will formalize in §4.5. We define the resultant
required to tie all this together and compute h I±J (α) in §4.8.

4.2. Biquadratic relations on x-coordinates. Lemma 4.3 recalls the general relationship between x(P),
x(Q), x(P + Q), and x(P − Q). Example 4.4 gives explicit formulæ for the case that is most useful in
our applications.

Lemma 4.3. Let q be a prime power. Let E/Fq be an elliptic curve. There exist biquadratic polynomials
F0, F1, and F2 in Fq [X1, X2] such that

(X − x(P + Q))(X − x(P − Q))= X2
+

F1(x(P), x(Q))
F0(x(P), x(Q))

X +
F2(x(P), x(Q))
F0(x(P), x(Q))

for all P and Q in E such that 0 /∈ {P, Q, P + Q, P − Q}.
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Proof. The existence of F0, F1, and F2 is classical (see e.g. [17, p. 132] for the Fi for Weierstrass models);
indeed, the existence of such biquadratic systems is a general phenomenon for theta functions of level 2
on abelian varieties (see e.g. [47, §3]). �

Example 4.4 (biquadratics for Montgomery models). If E is defined by an affine equation By2
= x(x2

+

Ax + 1), then the polynomials of Lemma 4.3 are

F0(X1, X2)= (X1− X2)
2 ,

F1(X1, X2)=−2((X1 X2+ 1)(X1+ X2)+ 2AX1 X2) ,

F2(X1, X2)= (X1 X2− 1)2 .

The symmetric triquadratic polynomial (X0 X1− 1)2+ (X0 X2− 1)2+ (X1 X2− 1)2− 2X0 X1 X2(X0+

X1+ X2+ 2A)− 2 is X2
0 F0(X1, X2)+ X0 F1(X1, X2)+ F2(X1, X2).

Montgomery curves By2
= x(x2

+Ax+1), and the remarkably simple formula (X1 X2−1)2/(X1−X2)
2

for the product x(P + Q)x(P − Q) on these curves, were introduced by Montgomery in [43, Section
10.3.1]. See [7] for more information about Montgomery curves.

4.5. Index systems. In §3, we represented most of S as I + J ; requiring I and J to have no common
differences ensured this representation had no redundancy. Now we will represent most elements of S
as elements of (I + J )∪ (I − J ), so we need a stronger restriction on I and J to avoid redundancy.

Definition 4.6. Let I and J be finite sets of integers.

(1) We say that (I, J ) is an index system if the maps I×J→Z defined by (i, j) 7→ i+ j and (i, j) 7→ i− j
are both injective and have disjoint images.

(2) If S is a finite subset of Z, then we say that an index system (I, J ) is an index system for S if I + J
and I − J are both contained in S.

If (I, J ) is an index system, then the sets I + J and I − J are both in bijection with I × J . We write
I ± J for the union of I + J and I − J .

Example 4.7. Let m be an odd positive integer, and consider the set

S = {1, 3, 5, . . . ,m}

in arithmetic progression. Let

I := {2b(2i + 1) | 0≤ i < b′} and J := {2 j + 1 | 0≤ j < b}

where b = b
√

m+ 1/2c; b′ = b(m+ 1)/4bc if b > 0; and b′ = 0 if b = 0. Then (I, J ) is an index system
for S, and S \ (I ± J )= K where K = {4bb′+ 1, . . . ,m− 2,m}. If b > 0 then #I = b′ ≤ b+ 2, #J = b,
and #K ≤ 2b− 1.
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4.8. Elliptic resultants. We are now ready to adapt the results of §3 to the setting of §4.1. Our main
tool is Lemma 4.9, which expresses h I±J as a resultant of smaller polynomials.

Lemma 4.9. Let q be a prime power. Let E/Fq be an elliptic curve. Let P be an element of E(Fq). Let
n be the order of P. Let (I, J ) be an index system such that I , J , I + J , and I − J do not contain any
elements of nZ. Then

h I±J (X)=
1

1I,J
·ResZ (h I (Z), E J (X, Z))

where

E J (X, Z) :=
∏
j∈J

(
F0(Z , x([ j]P))X2

+ F1(Z , x([ j]P))X + F2(Z , x([ j]P))
)

and 1I,J := ResZ (h I (Z), DJ (Z)) where DJ (Z) :=
∏

j∈J F0(Z , x([ j]P)).

Proof. Since (I, J ) is an index system, I + J and I − J are disjoint, and therefore we have h I±J (X)=
h I+J (X) · h I−J (X). Expanding and regrouping terms, we get

h I±J (X)=
∏

(i, j)∈I×J

(X − x([i + j]P)) (X − x([i − j]P))

=

∏
i∈I

∏
j∈J

(
X2
+

F1(x([i]P), x([ j]P))
F0(x([i]P), x([ j]P))

X +
F2(x([i]P), x([ j]P))
F0(x([i]P), x([ j]P))

)
by Lemma 4.3. Factoring out the denominator, we find

h I±J (X)=
∏

i∈I E J (X, x([i]P))∏
i∈I
∏

j∈J F0(x([i]P), x([ j]P))
=

∏
i∈I E J (X, x([i]P))∏

i∈I DJ (x([i]P))
;

and finally
∏

i∈I E J (X, x([i]P)) = ResZ (h I (Z), E J (X, Z)) and
∏

i∈I DJ (x([i]P)) = ResZ (h I (Z),
DJ (Z))=1I,J , which yields the result. �

4.10. Elliptic polynomial evaluation. Algorithm 2 is an algebraic algorithm for computing hS(α); it is
the elliptic analogue of Algorithm 1. Theorem 4.11 proves its correctness and runtime.

Theorem 4.11. Let q be a prime power. Let E/Fq be an elliptic curve. Let P be an element of E(Fq). Let
n be the order of P. Let (I, J ) be an index system for a finite set S ⊂ Z. Assume that I , J , and S contain
no elements of nZ. Given α in Fq , Algorithm 2 computes

hS(α)=
∏
s∈S

(
α− x([s]P)

)
in Õ(max(#I, #J, #K )) Fq -operations, where K = S \ (I ± J ).

In particular, if #I , #J , and #K are in Õ(
√

#S), then Algorithm 2 computes hS(α) in Õ(
√

#S) Fq-
operations. The Õ is uniform in q . Instead of taking P and various x([s]P) as parameters, Algorithm 2
can take P as an input, at the cost of computing the relevant multiples of P .
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Algorithm 2: Computing hS(α)=
∏

s∈S

(
α− x([s]P)

)
for P ∈ E(Fq)

Parameters: a prime power q; an elliptic curve E/Fq ; P ∈ E(Fq); a finite subset S ⊂ Z; an index
system (I, J ) for S such that S ∩ nZ= I ∩ nZ= J ∩ nZ= {}, where n is the order
of P; x([s]P) for each s ∈ I ∪ J ∪ K

Input: α in Fq

Output: hS(α) where hS(X)=
∏

s∈S(X − x([s]P))
1 h I ←

∏
i∈I (Z − x([i]P)) ∈ Fq [Z ]

2 DJ ←
∏

j∈J F0(Z , x([ j]P)) ∈ Fq [Z ]
3 1I,J ← ResZ (h I , DJ ) ∈ Fq

4 E J ←
∏

j∈J

(
F0(Z , x([ j]P))α2

+ F1(Z , x([ j]P))α+ F2(Z , x([ j]P))
)
∈ Fq [Z ]

5 R← ResZ (h I , E J ) ∈ Fq

6 hK ←
∏

k∈S\(I±J )(α− x([k]P)) ∈ Fq

7 return hK · R/1I,J

Proof. The proof follows that of Proposition 3.5. Since S \ K = I ± J , we have hS(α) = h I±J (α) ·

hK (α). Using the notation of Lemma 4.9: Line 1 computes h I (Z) in Õ(#I ) Fq-operations; Line 2
computes DJ (Z) in Õ(#J ) Fq-operations; Line 3 computes 1I,J in Õ(max(#I, #J )) Fq-operations;
Line 4 computes E J (α, Z) in Õ(#J ) Fq -operations; Line 5 computes ResZ (h I (Z), E J (α, Z)), which is
the same as 1I,J h I±J (α) by Lemma 4.9, in Õ(max(#I, #J )) Fq -operations; Line 6 computes hK (α) in
Õ(#K ) Fq -operations; and Line 7 returns hS(α)= hK (α) · h I±J (α). The total number of Fq -operations
is in Õ(max(#I, #J, #K )). �

Example 4.12 (evaluating kernel polynomials). We now address a problem from the introduction: eval-
uating 9G , the radical of the denominators of the rational functions defining the `-isogeny φ : E→ E ′

with kernel G = 〈P〉, for ` odd. Here

9G(X)= hS(X)=
∏
s∈S

(X − x([s]P)) where S = {1, 3, . . . , `− 2}

(the set S may be replaced by any set of representatives of ((Z/`Z) \ {0})/〈±1〉). Following Example 4.7,
let I = {2b(2i + 1) | 0 ≤ i < b′} and J = {1, 3, . . . , 2b − 1} with b = b

√
`− 1/2c and (for b > 0)

b′ = b(`− 1)/4bc; then (I, J ) is an index system for S, and Algorithm 2 computes hS(α)=9G(α) for
any α in Fq in Õ(

√
`) Fq -operations.

Example 4.13 (evaluating derivatives of polynomials). Algorithm 2 can evaluate hS at points in any Fq -
algebra, at the cost of a slowdown that depends on how large the algebra is. These algebras need not be
fields. For example, we can evaluate hS(α+ε) in the algebra Fq [ε]/ε

2 of 1-jets, obtaining hS(α)+εh′S(α).
We can thus evaluate derivatives, sums over roots, etc. The algebra of 1-jets was used the same way in,
e.g., [46; 40; 5]; [2] also notes Zagier’s suggested terminology “jet plane”.
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4.14. Irrational generators. The point P in Lemma 4.9, Algorithm 2, and Theorem 4.11 need not be in
E(Fq): everything is defined over Fq if x(P) is in Fq . More generally, take P in E(Fqe) with x(P) in Fqe

for some minimal e ≥ 1. The q-power Frobenius π on E maps P to π(P)= [λ]P for some eigenvalue
λ in Z/nZ of order e in (Z/nZ)∗. Let L = {λa

| 0≤ a < e}. For hS(X) to be in Fq [X ], we need S = L S′

for some S′ ⊆ Z (modulo n): that is, S = {λas ′ | 0≤ a < e, s ′ ∈ S′}. Then

hS(X)=
∏
s′∈S′

e−1∏
a=0

(X − x([λas ′]P))=
∏
s′∈S′

gs′(X)

where the polynomial

gs′(X)=
e−1∏
a=0

(X − x([λas ′]P))=
e−1∏
a=0

(X − x(πa([s ′]P)))=
e−1∏
a=0

(X − x([s ′]P)q
a
)

is in Fq [X ], and can be easily computed from x([s]P).
To write h I , DJ , and E J as products of polynomials over Fq , we need the index system (I, J ) for

S to satisfy (I, J ) = (L I ′, L J ′) for some index system (I ′, J ′) for S′. While this does not affect the
asymptotic complexity of the resulting evaluation algorithms at our level of analysis, it should be noted
that the requirement that (I, J ) = (L I ′, L J ′) is quite strong: typically e is in O(`), so #L is not in
Õ(
√

#S), and a suitable index system (I, J ) with #I and #J in Õ(
√

#S) does not exist.

4.15. Other functions on E . We can replace x with more general functions on E , though for completely
general f there may be no useful analogue of Lemma 4.3, or at least not one that allows a Lemma 4.9
with conveniently small index system. However, everything above adapts easily to the case where x is
composed with an automorphism of P1 (that is, f = (ax + b)/(cx + d) with a, b, c, d in Fq such that
ad 6= bc). Less trivially, we can take f = ψx for any isogeny ψ : E→ E ′′. In this case, the F0, F1, and
F2 of Lemma 4.3 are derived from the curve E ′′, not E .

4.16. Abelian varieties. It is tempting to extend our results to higher-dimensional principally polarized
abelian varieties (PPAVs), replacing E with a PPAV A/Fq , and x with some coordinate on A, but evaluat-
ing the resulting hS using our methods is more complicated. The main issue is the analogue of Lemma 4.3.
If we choose any even coordinate x on A, then the classical theory of theta functions yields quadratic
relations between x(P + Q), x(P − Q), and the coordinates of P and Q, but not only x(P) and x(Q):
they also require the other even coordinates of P and Q. (The simplest example of this is seen in the
differential addition formulæ for Kummer surfaces: see [22, §6], [31, §3.2], and [18, §4.4].) This means
that an analogue of Algorithm 2 for PPAVs would require multivariate polynomials and resultants; an
investigation of this is well beyond the scope of this article.
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5. Computing elliptic isogenies

We now apply the techniques of §4 to the problem of efficient isogeny computation. The task is divided
in two parts: evaluating isogenies on points (§5.1), and computing codomain curves (§5.2). Our crypto-
graphic applications use isogenies between Montgomery models of elliptic curves, and we concentrate
exclusively on this case here; but our methods adapt easily to Weierstrass and other models.

5.1. Evaluating isogenies. Let E/Fq : y2
= x(x2

+ Ax + 1) be an elliptic curve in Montgomery form,
and let P be a point of prime order ` 6= 2 in E(Fq). Costello and Hisil give explicit formulæ in [25] for a
quotient isogeny φ : E→ E ′ with kernel G = 〈P〉 such that E ′/Fq : y2

= x(x2
+ A′x+1) is a Montgomery

curve:

φ : (X, Y ) 7−→
(
φx(X), c0Yφ′x(X)

)
where c0 =

∏
0<s<`/2 x([s]P) and

φx(X)= X
∏

0<s<`

x([s]P)X − 1
X − x([s]P)

. (1)

See [51] for generalizations and a different proof, and see the earlier paper [45] for analogous Edwards-
coordinate formulas.

Our main goal is to evaluate φ on the level of x-coordinates: that is, to compute φx(α) given α = x(Q)
for Q in E(Fq). This is sufficient for our cryptographic applications. Applications that also need the y-
coordinate of φ(Q), namely c0 y(Q)φ′x(α), can compute c0 as (−1)(`−1)/2hS(0), and can compute φ′x(α)
together with φx(α) by the technique of Example 4.13. To compute φx(α), we rewrite Eq. (1) as

φx(X)=
X`
· hS(1/X)2

hS(X)2
where S = {1, 3, . . . , `− 2} .

Computing φx(α) thus reduces to two applications of Algorithm 4.11, using (for example) the index
system (I, J ) for S in Example 4.7. The constant 1I,J appears with the same multiplicity in the numer-
ator and denominator, so we need not compute it. All divisions in the computation are by nonzero field
elements except in the following cases, which can be handled separately: if Q = 0 then φ(Q) = 0; if
Q 6= 0 but hS(α)= 0 for α = x(Q) then φ(Q)= 0; if Q = (0, 0) then φ(Q)= (0, 0).

5.2. Computing codomain curves. Our other main task is to determine the coefficient A′ in the defining
equation of E ′.

One approach is as follows. We can now efficiently compute φ(Q) for any Q in E(Fq). Changing the
base ring from Fq to R = Fq [α]/(α

2
+ Aα+ 1) (losing a small constant factor in the cost of evaluation)

gives us φ(Q) for any Q in E(R). In particular, Q = (α, 0) is a point in E[2](R), and computing
φ(Q)= (α′, 0) reveals A′ =−(α′+ 1/α′). An alternative—at the expense of taking a square root, which
is no longer a q-independent algebraic computation—is to find a point (α, 0) in E(Fq2) with α 6= 0.
Sometimes α is in Fq , and then extending to Fq2 is unnecessary.
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Another approach is to use explicit formulas for A′. The formulas from [25] give A′ = c2
0(A− 3σ)

where c2
0 =

∏
0<s<` x([s]P) and σ =

∑
0<s<`(x([s]P) − 1/x([s]P)). As pointed out in [42] in the

context of CSIDH, one can instead transform to twisted Edwards form and use the formulas from [45],
obtaining A′ = 2(1+ d)/(1− d) where

d =
(

A− 2
A+ 2

)` (∏
s∈S

x([s]P)− 1
x([s]P)+ 1

)8

=

(
A− 2
A+ 2

)` ( hS(1)
hS(−1)

)8

.

We can thus compute A′ using Õ(
√
`) operations: every task we need can be performed by some evalu-

ations of hS and some (asymptotically negligible) operations.

6. Applications in isogeny-based cryptography

With the notable exception of SIDH/SIKE [36; 27; 1], most isogeny-based cryptographic protocols need
to evaluate large-degree isogenies. Specifically, CRS [52; 26], CSIDH [20], CSURF [19], etc. use large-
degree isogenies, since not enough keys are fast compositions of isogenies of a few small prime degrees.
The largest isogeny degree, with standard optimizations, grows quasi-linearly in the pre-quantum security
level. For the same post-quantum security level, known quantum attacks require an asymptotically larger
base field but do not affect the largest isogeny degree; see [20, Remark 11].

Concretely, targeting 128 bits of pre-quantum security, CSIDH-512 fixes

p = 4 ·(3 · 5 · · · 373)︸ ︷︷ ︸
73 first odd primes

· 587− 1

and uses isogenies of all odd prime degrees ` | p+ 1. Similarly, CSURF-512 fixes

p = 8 · 9 ·(5 · 7 · · · 337)︸ ︷︷ ︸
66 consecutive primes

·349 · 353 ·(367 · · · 389)︸ ︷︷ ︸
6 consecutive primes

−1

and uses isogenies of all prime degrees ` | p+ 1, including `= 2.
The CSIDH and CSURF algorithms repeatedly sample a random point of order dividing p+1 in E/Fp,

multiply it by an appropriate cofactor to get P , and then apply Vélu’s formulas for each of the primes
` | ord(P) to obtain E ′ = E/〈P〉. Our algorithm seamlessly replaces Vélu’s formulas in both systems.
Computing E ′ is easy in CSURF: all curves involved have rational 2-torsion, and can thus be represented
by a root of α2

+ Aα− 1 in Fp. For CSIDH, we can apply the techniques of §5.2; alternatively, we can
walk to the surface and represent curves as in CSURF.

B-SIDH [24] is an SIDH variant using smaller prime fields, at the cost of much larger prime isogeny
degrees. One participant uses isogenies of degree ` | p+ 1, and the other uses ` | p− 1. Since primes p
such that p−1 and p+1 both have many small prime factors are rare, some of the ` involved in B-SIDH
tend to be even larger than in CSIDH and CSURF. The B-SIDH algorithm starts from a single point P
and computes E/〈P〉 together with the evaluation of φ : E→ E/〈P〉 at three points. Unlike CSIDH and
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CSURF, there is no repeated random sampling of points: a single `-isogeny evaluation for each prime
` | p± 1 is needed.

Our asymptotic speedup in isogeny evaluation implies asymptotic speedups for CRS, CSIDH, CSURF,
and B-SIDH as the security level increases. This does not imply, however, that there is a speedup for
(e.g.) pre-quantum security 2128.

The Appendix of this paper’s full version [6] addresses the question of how large ` needs to be before
our algorithms become faster than the conventional algorithms. It looks more closely at performance and
quantifies the cross-over point by considering different metrics such as time in several software or the
number of multiplications. More precisely, we present four implementations: one in magma [10], one
in julia [9] (with nemo [29] for the underlying arithmetic) and two in C (a first one using the underlying
arithmetic of FLINT [32] and the second one on top of the arithmetic subroutines of [20]). In each of the
metrics considered there, the cross-over point is within the range of primes used in CSIDH-512. The new
`-isogeny algorithm sets new speed records for CSIDH-512 and CSIDH-1024 by small but measurable
percentages, and has more effect on protocols that use larger `-isogenies. Our code is available from
https://velusqrt.isogeny.org.

Cryptographic protocols that exploit the KLPT algorithm [37] for isogeny path renormalization, such
as the signature scheme [30] and the encryption scheme SÉTA [28], need to work with irrational torsion
points. They may thus benefit from the technique of §4.14. We did not investigate these protocols further.
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the multivariate ring learning with errors problem
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The multivariate ring learning with errors (m-RLWE) problem was introduced in 2015 by Pedrouzo-
Ulloa, Troncoso-Pastoriza and Pérez-González. Instead of working over a polynomial residue ring with
one variable as in RLWE, it works over a polynomial residue ring in several variables. However, care
must be taken when choosing the multivariate rings for use in cryptographic applications as they can be
either weak or simply equivalent to univariate RLWE. For example, Pedrouzo-Ulloa et al. suggest using
tensor products of cyclotomic rings, in particular power-of-two cyclotomic rings. They claim incorrectly
that the security increases with the product of the individual degrees. We present simple methods to
solve the search m-RLWE problem far more efficiently than was claimed in the previous literature by
reducing the problem to the RLWE problem in dimension equal to the maximal degree of its components
(and not the product) and where the noise increases with the square-root of the degree of the other
components. Our methods utilise the fact that the defining cyclotomic polynomials share algebraically
related roots. We use these methods to successfully attack the search variant of the m-RLWE problem for
a set of parameters estimated to offer more than 2600 bits of security, and being equivalent to solving the
bounded distance decoding problem in a highly structured lattice of dimension 16384, in less than two
weeks of computation time or just a few hours if parallelized on 128 cores. Finally, we also show that
optimizing module-LWE cryptosystems by introducing an extra ring structure as is common practice to
optimize LWE, can result in a total breakdown of security.

1. Introduction

In concurrent and independent work, Stehlé et al. [22] and Lyubashevsky et al. [14] introduced ring vari-
ants of the learning with errors (LWE) problem. The problem in the former is known as the polynomial
learning with errors (PLWE) problem while the latter is known as the ring learning with errors (RLWE)
problem. The main advantage of using a ring variant over the original problem is that the schemes are
much more efficient and the size of the public keys is significantly smaller. Later, a module variant was
introduced in [4] where it is called the general learning with errors problem and captures both previous
problems as extremes of a broader class of problems.
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For a ring R, free and of finite rank (as a module) over Z, and positive integers n and q set Rq = R/q R.
Samples from the module-LWE distribution are of the form (a, b) where a← Rn

q is uniformly sampled
and b=〈a, s〉+e mod q where e←χ is sampled from an error distribution and s∈ Rn

q is the secret vector.
LWE is the case when R = Z and the ring variant is when n = 1 but now the ring R can be thought of as
a polynomial residue ring. Thus in going from LWE to its ring variant we replace the inner product of
vectors by the product of polynomials (modulo some polynomial modulus). The module-LWE problem
is used in cryptographic primitives such as the NIST submissions Saber [8] and Kyber [3].

As previously stated, module-LWE bridges the gap between LWE and RLWE, but is still not as efficient
as RLWE. It is thus tempting to replace the inner product in module-LWE by a product of polynomials,
just like RLWE, but where now the coefficients are from a polynomial residue ring (in an independent
variable) rather than simply integers. This idea naturally leads to the multivariate ring learning with
errors (m-RLWE) problem as introduced by Pedrouzo-Ulloa, Troncoso-Pastoriza and Pérez-González
in a series of papers [18; 19; 20] between 2015 and 2017. Essentially this does to module-LWE what
RLWE does to LWE — by adding more structure they are able to construct more efficient schemes with
smaller key sizes.

Originally, only the simplest case of the problem in two variables was formulated. They define this
problem in [18], which they call the bivariate RLWE (2-RLWE) problem using the ring Rq [x, y] =
Zq [x, y]/( f (x), g(y)) as follows:

Problem 1.1. Given a bivariate polynomial residue ring Rq [x, y] with f (x)= xn1 + 1, g(y)= yn2 + 1
and an error distribution χ [x, y] on Rq [x, y] that generates small-norm random bivariate polynomials
in Rq [x, y],1 2-RLWE relies upon the computational indistinguishability between samples (ai , bi =

ai · s+ ei ) and (ai , ui ) where ai , ui ← Rq [x, y] are chosen uniformly at random from the ring Rq [x, y],
and s, ei ← χ [x, y] are drawn from the error distribution.

Although not explicitly stated in [18], f and g are taken to be two-power cyclotomics, i.e., n1 and n2

are powers of two.
The authors then construct a method for encrypted image processing whose security is based on the

2-RLWE problem. The sample parameters proposed for use are n1 = n2 = 2i, dlog2 qe = 22+ 3i for
i = 7, 8, 9, 10. Using the lower bound given in [13, Equation (5.2)] these instances are estimated to
have bit security 2663, 10288, 38880 and 146675 respectively, though these parameters fall well outside
the range of parameters for which the bound was derived, so these security levels are unlikely to be
accurate; however, using the LWE-estimator of Albrecht et al. [1] gives even larger security estimates.
Thus it is clear Pedrouzo-Ulloa et al. believe these parameter suggestions give a very high security level.
However, in light of our attack, which we will see works in dimension n1 = n2, the LWE-estimator gives
the estimated security levels as 32, 33, 35 and 98 bits respectively.

1Technically, there is no norm on the ring Rq [x, y] so this statement does not make mathematical sense. What is meant by
χ [x, y] is to sample an element in Z[x, y] whose degree in x is at most n1 − 1 and whose degree in y is at most n2 − 1 and
whose coefficient vector has small-norm, smallness being a function of q , and then reducing the polynomial modulo q , f and g.
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Further, in [19], Pedrouzo-Ulloa et al. reformulate the m-RLWE problem in terms of the tensor prod-
uct of number fields and consider the ring R now as the tensor product of the corresponding rings of
integers. They proceed by generalising the security reductions of Lyubashevsky et al. from RLWE to
standard problems on ideal lattices to the multivariate case, now reducing them to multivariate ideal
lattice problems.

Finally, in [20], Pedrouzo-Ulloa et al. build upon the m-RLWE problem, this time again specialised to
power-of-two cyclotomics, and give a number of useful multidimensional signal processing operations
and optimizations for use with their m-RLWE based homomorphic encryption scheme.

For the security of their multivariate schemes, the authors claim and give a sketch proof in [20, Propo-
sition 1] that the 2-RLWE problem above is equivalent to the RLWE problem in the ring Zq [z]/(h(z))
where h(z)= zn1n2 + 1, however, as will become obvious, this is not true, as we can solve the 2-RLWE
problem far more easily. The flaw is that while Q[z]/(h(z)) certainly contains isomorphic copies of
Q[x]/( f (x)) and Q[y]/(g(y)), it is not the smallest number field which does so. If we assume n1 ≥ n2

then in this specific case, Q[x]/( f (x)) itself has this property. This shows that we expect to be able to
solve the 2-RLWE problem by solving max{n1, n2} dimensional problems, not dimension n1n2. This
logic can be made to work more generally with any cyclotomic fields, not just power of two cyclotomics,
as detailed in Section 3A.

In this paper, we give a simple assessment of the security of the m-RLWE problem and present an
efficient attack when the polynomial moduli are related in a certain way. The basic idea of the attack is to
apply a number of “smallness”-preserving ring homomorphisms which reduce the problem to standard
RLWE problems of much lower dimension and with a slightly larger error distribution. Solving the
search variant in each case gives us enough information to recover the secret in the original m-RLWE
problem. For example, for the 2-RLWE problem above with n1 ≥ n2 the problem is reduced to n2

instances of the RLWE problem in dimension n1, the same modulus q and with the noise growing only
by a factor of

√
n2. This attack shows that the stated hardness of the problem is much lower than had

been previously asserted in the literature which claimed security equivalent to RLWE in dimension n1n2.
We remark that shortly after our results appeared in an online preprint, Cheon, Kim and Yhee [7] used

the m-RLWE problem in defining a generalisation of the HEAAN homomorphic encryption scheme
suitable for approximate matrix arithmetic. They also pointed out our evaluation attack and hence used
cyclotomic polynomials of coprime order. Furthermore, the original authors of m-RLWE, together with
Gama and Georgieva suggested redefining the problem to instead use modular functions of the form
xn1 + d1, yn2 + d2, . . ., where the di are small integers, in order to avoid our attack [17].

The remainder of the paper is organised as follows: in Section 2 we recall the required background
and in Section 3 we define the m-RLWE problem and show that in many cases it is equivalent to the
standard RLWE problem. In Section 4 we present our attack on the remaining cases of m-RLWE and the
results of our implementation, and in Section 5 we remark that the standard optimization trick of going
from LWE to RLWE, when applied to module-LWE, can result in a total breakdown of security. Finally,
we conclude the paper in Section 6.
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2. Preliminaries

Let [n] denote the set {0, 1, 2, . . . , n− 1}. For a commutative ring R and an element r ∈ R we denote
by (r) the principal ideal of R generated by r ; namely,

(r)= {rs | s ∈ R}.

For a finite set S we denote by U (S) the uniform distribution on S.

2A. Subgaussians. We also require the notion of a subgaussian random variable. We follow the ap-
proach in [15, Section 2.3] and say that a random variable X over R is subgaussian with parameter s > 0
if for all t ∈ R we have

E(e2π t X )≤ eπs2t2
.

We also use the same notation for the probability distribution of X. It is a simple exercise to show that
the sum of subgaussian distributions is also subgaussian:

Lemma 2.1. Let si ≥ 0 and suppose that we have independent and identically distributed random vari-
ables X i which are subgaussian with parameter si . Define X to be the random variable that is the sum
of the X i and set s =

(∑
i s2

i

)1/2, then X is subgaussian with parameter s.

We can also apply Markov’s inequality to the subgaussian random variable X with parameter s which
shows that

Pr(|X | ≥ t)≤ 2e−π t2/s2
.

2B. RLWE and its variants. Here we also introduce the distinction between the so-called dual- and
primal-RLWE problems as well as the polynomial RLWE problem, abbreviated to PLWE. The starting
point for the first two problems is a number field K and its ring of integers OK and an integer modu-
lus q ≥ 2. Typically K is a cyclotomic number field but this need not be the case. Samples are of the
form (ai , bi ) where bi = ai s+ ei and ai ∈OK /qOK is sampled uniformly at random and ei is sampled
from an error distribution on KR := K ⊗Q R. The difference between the two cases is that in the dual-
RLWE case the secret s is sampled from O∨K /qO

∨

K , with O∨K the fractional ideal dual to OK , while in
the primal-RLWE case it is sampled from OK /qOK . Finally, in the PLWE case ai , s ∈ Zq [x]/( f ) for
some monic irreducible polynomial f and the error term is an element of R[x]/( f ).

The actual problems come in two variants; a decision version where one has to determine whether the
second component of the samples is computed according to the RLWE distribution or chosen randomly
as in Problem 1.1, and a search version where one is asked to find the secret s.

It has been shown by Ducas and Durmus [9] for cyclotomic fields, and by Rosca, Stehlé, and Wal-
let [21] more generally, that one can reduce dual-RLWE to primal-RLWE with only a limited growth in
the error term. Also in [21] they show that the reduction can be extended from primal-RLWE to PLWE.
Since m-RLWE is defined to use exclusively cyclotomic rings, for simplicity, we will focus on the PLWE
problem in this paper. Our attack is, however, more general and we explain the modifications needed to
generalise this to the other more general RLWE problems where appropriate.
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2C. Search RLWE as a BDD problem. In this section we recall a simple and well-known lattice attack
on the search variant of the RLWE problem by considering it as a special case of the bounded distance
decoding problem (BDD). The attack works given enough samples and is practical for low-dimensional
problems.

Suppose we are given ` samples {(ai , bi )}i∈[`] from the PLWE distribution and suppose we are working
in the ring R = Zq [x]/( f (x)), deg( f ) = n. Then we know that if s is the secret polynomial we have
bi = sai + ei for some ei with small coefficients. We can rewrite this as a vector-matrix equation by
replacing the elements of R by their (row) vector of coefficients (with respect to the standard power basis
in x) which we denote in bold; if Mai is the matrix of multiplication by ai then we have bi = sMai + ei .
Since s is the same for each sample we can concatenate all of the samples into one equation:

(b1 · · · b`)= s(Ma1 · · ·Ma`)+ (e1 · · · e`).

This is an instance of the bounded distance decoding (BDD) problem in the q-ary lattice L spanned by
the rows of (Ma1 · · ·Ma`) (with entries taken as integers) and q In`; the target vector being v = (b1 · · · b`).
Any BDD-solver, such as Kannan’s embedding technique [12] or Babai’s nearest plane algorithm [2],
can thus be used to solve search PLWE. In general, both the ring R and its dual R∨ can be written as
an integral lattice with a suitable choice of basis and the same approach can be taken to write the search
problem as a BDD problem.

Two samples will in practice uniquely define s, and the more samples one has, the better the chance
of solving the problem. Since we will use the BDD-solver as a black box in our algorithm, we simply
refer to the tool of Albrecht et al. [1] which can be used to estimate the running time of these algorithms.

3. The m-RLWE Problem

In [19] the authors define the multivariate RLWE distribution, in its dual formulation, in terms of a tensor
product of number fields K =

⊗
i∈[m] Ki where each Ki is a cyclotomic field; not necessarily distinct.

The ring R used is now the tensor product, R =
⊗

i∈[m]OKi , where OKi is the ring of integers of the
number field Ki . Further, one defines T := KR/R∨ where R∨ is the dual fractional ideal of R called the
codifferent ideal. Finally, for an integer modulus q ≥ 2, set Rq = R/q R and R∨q = R∨/q R∨.

Definition 3.1 (multivariate RLWE distribution). For s ∈ R∨q and an error distribution ψ over KR, a
sample from the m-RLWE distribution As,ψ over Rq ×T is generated by sampling a← Rq uniformly at
random, e← ψ , and outputting (a, b = (a · s)/q + e mod R∨).

One can then define the multivariate RLWE search and decision problems in the standard way.

Definition 3.2 (multivariate RLWE search problem). Let 9 be a family of distributions over KR. Denote
by m-RLWEq,9 the search version of the m-RLWE problem: given access to arbitrarily many indepen-
dent samples from As,ψ for some fixed uniformly random s ∈ R∨q and ψ ∈9, find s.

Definition 3.3 (multivariate RLWE decision problem). Let 0 be a distribution over a family of error
distributions, each over KR. The average-case-decision version of the m-RLWE problem, denoted by
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m-R-DLWEq,0, is to distinguish with nonnegligible advantage between arbitrarily many independent
samples from As,ψ , for a random choice of (s, ψ)← U (R∨q )×0, and the same number of uniformly
random and independent samples from Rq ×T.

3A. Decomposition of m-RLWE and the compositum field. It is well known that the n-th cyclotomic
ring (respectively, field) can be split into a tensor product of prime-power cyclotomic rings (respectively,
fields), with these prime powers being those appearing in the factorisation of n. In the case of rings, if
we denote the j-th cyclotomic polynomial by 8 j , we have that if the prime power factorisation of n is
n = pe1

1 · · · p
em
m then,

Z[x]
(8n(x))

∼=
Z[x]

(8p
e1
1
(x))
⊗ · · ·⊗

Z[x]
(8pem

m
(x))

.

If ϕ is the isomorphism from the right-hand side to the left, and we have an instance of the m-RLWE
problem in the right-hand tensor product of rings modulo q then lifting the coefficients to Z, applying ϕ
and reducing modulo q will give an instance of the RLWE problem since ϕ(q) = q and ϕ is a linear
map when considering the rings as Z-lattices. Furthermore, this map is “smallness”-preserving so the
resulting error distribution is still a distribution of small elements, though possibly with some degradation
in precisely how small. As a result we obtain the following observation.

Observation. The m-RLWE problem for cyclotomic fields with defining polynomials 8ni is only distinct
from the RLWE problem when the ni are not all pairwise coprime.

Going back to the more general case of arbitrary number fields Ki , the way to view the problem is
via the notion of the compositum of fields; in our case this is the smallest number field which contains
isomorphic copies of each Ki . Then there is a natural algebra homomorphism from the tensor product
of the Ki to the compositum; in fact, there can be many such homomorphisms: if we fix one then we
can first apply any automorphisms of the Ki before applying this homomorphism to give the others.

We can then distinguish two cases. The first case is the so-called linearly disjoint case: the map is
injective (and, as such, automatically bijective in our case) and so the tensor product and the compositum
are isomorphic. We remark this is only true in terms of the number fields themselves and not the corre-
sponding rings of integers. However, only when this map is not injective is the m-RLWE problem distinct
from the RLWE problem and this is the crux of the flaw in the reduction from m-RLWE to RLWE given
in [19]. Instead of having to solve a lattice problem in the tensor product of fields whose dimension is the
product of the degrees of the defining polynomials, one can work in the compositum field where the lattice
problem now has dimension the degree of the compositum as a number field which can be much smaller.

For well-behaved number fields, the natural linear map from the tensor product of the Ki to the
compositum is again somewhat “smallness”-preserving. This means that the corresponding RLWE prob-
lems in the compositum field may still have small enough error polynomials to be able to mount an
attack against them. We note that the m-RLWE problem was introduced to improve the efficiency of
certain applications of somewhat homomorphic encryption; the number fields which can be used in
these advanced cryptographic primitives are well-behaved in this sense.
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Since the RLWE problem is widely deemed to be a hard problem in large dimensions, we will only be
interested in the case when the fields Ki are not linearly disjoint. The simplest case of this for cyclotomic
fields is when m= 2 and the two fields are prime-power cyclotomic fields for the same prime. In particular
we will focus on the prime 2 as this is a very popular choice for efficiency reasons.

4. Attacks

4A. A distinguishing attack. Our attack is inspired by the “evaluation at one” attack and its variants on
nonstandard decisional PLWE problems [10; 11; 5]. These attacks work if the defining polynomial f of
the ring R = Z[x]/( f (x)) has a small root modulo q, say f (θ)≡ 0 mod q. Then evaluation at x = θ is
well defined and guessing the value of s(θ) one can test if e(θ)= b(θ)−a(θ)s(θ) is distributed according
to the error distribution evaluated at θ . This requires e(θ) to be distinguishable from uniform, which it
is if e(θ) remains small enough; hence θ should also be small, e.g., θ =±1.

Note that evaluation at θ is equivalent to reduction modulo the ideal generated by x − θ and on further
reduction by q the ring is nontrivial if and only if f (θ) and q are not coprime. To stand any chance of
distinguishing though, f (θ) and q should have a large common factor so that the quotient ring is not too
small; this is the case when f (θ)≡ 0 mod q. More generally, for the attack to succeed we really only
need that Z[x]/( f (x), q, x − θ) = Z/( f (θ), q) is large enough to distinguish the distribution of e(θ)
from uniform.

In our setting, the ring R is equal to Z[x, y]/( f (x), g(y)) so we look for an ideal I of R such that I
and (q) are not coprime. In particular, viewing R as

Z[x]
( f (x))

[y]

(g(y))

we can try to find a root of g(y) modulo q in the ring Z[x]/( f (x)). If such a root θ(x) exists, we can
try to distinguish between e(x, θ(x)) of the form b(x, θ(x))− a(x, θ(x))s(x, θ(x)), hence coming from
genuine m-RLWE samples, and e(x, θ(x)) coming from uniformly random samples.

Example 4.1. As a small example let us take f (x)= x4
+1 and g(y)= y2

+1. We look for a solution to
y2
+1≡ 0 mod q in the ring Z[x]/(x4

+1). It is easy to see that a solution is y= x2; hence we have found
a root. Thus the mapping a(x, y) 7→ a(x, x2) is a ring homomorphism from Z[x, y]/(x4

+ 1, y2
+ 1)

to Z[x]/(x4
+ 1). The error polynomials will be sampled coefficient-wise with respect to the standard

power basis x i y j which we use throughout this paper. Thus writing e(x, y)=
∑3

i=0
∑1

j=0 ei, j x i y j we
see that under this homomorphism the error polynomial e(x, y) is mapped to

3∑
i=0

1∑
j=0

ei, j x i+2 j
= (e0,0− e2,1)+ (e1,0− e3,1)x + (e2,0+ e0,1)x2

+ (e3,0+ e1,1)x3.

We thus see that the image of the error polynomial also has small coefficients as they are just a signed sum
of two of the original coefficients. In particular, the coefficients of the error term are distinguishable from
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random elements modulo q for large enough q. This means a distinguishing attack can be successfully
mounted against the decisional m-RLWE problem in this setting.

We can in fact go a step further in the above example as y=−x2 is another solution to y2
+1≡ 0 mod q .

This may not seem to add much but using this second solution we can perform an attack on the search
variant of the problem making the attack much more powerful. More generally, having multiple roots
may make a direct attack on the search variant feasible. This will be demonstrated in practice in the next
section.

4B. Multiple roots. Take the example of the 2-RLWE problem of Problem 1.1 with f (x)= xn1 + 1 and
g(y)= yn2 + 1 for n1 and n2 powers of two so that without loss of generality we can assume that n2 | n1

and let k = n1/n2. Here we have many roots of g(y) in Z[x]/( f (x)) even before reducing modulo q.
Namely we have g(x (2i+1)k)= 0 for i ∈ [n2] and each of the roots is distinct. We can thus define the map

2 : Z[x, y]/( f (x), g(y))→ (Z[x]/( f (x)))n2,

a(x, y) 7→ (a(x, xk), a(x, x3k), . . . , a(x, x (2n2−1)k)).

This map is essentially the canonical embedding of Z[y]/(yn2 + 1) where, instead of mapping into
Z[eπ i/n2]

n2 ⊂ Cn2 , each component maps into the ring of integers of the compositum of fields which is
isomorphic to Z[x]/(xn1 + 1) in our case. Thus we see that 2 is a ring homomorphism. We denote by
2i the i-th component of 2 which is again a ring homomorphism.

Just like the canonical embedding, the map 2 is injective. Write a(x, y)=
∑n2−1

j=0 a j (x)y j and let a
be the vector of coefficients with respect to the power basis in y: a = (a0(x), . . . , an2−1(x)). Then,

2(a(x, y))= a


1 1 · · · 1
xk x3k

· · · x (2n2−1)k

x2k x6k
· · · x (2n2−1)2k

...
...

. . .
...

x (n2−1)k x3(n2−1)k
· · · x (2n2−1)(n2−1)k

 .

This matrix is a Vandermonde matrix and thus has determinant
∏

0≤i< j<n2
(x (2 j+1)k

− x (2i+1)k) which
is nonzero as the x (2i+1)k are distinct for i ∈ [n2]. Hence 2 is injective and can thus be inverted. Further,
for n2 > 2, the absolute value of this determinant is a square root of the discriminant of the number field
Q(eπ i/n2). It is well known (see, for example, [24, Proposition 2.1]) that the discriminant is nn2

2 so the
determinant is one of ±nn2/2

2 . Hence for odd q the corresponding map 2 modulo q which we denote
by 2 is also invertible; here we mean the map

2 : Zq [x, y]/( f (x), g(y))→ (Zq [x]/( f (x)))n2,

a(x, y) 7→ (a(x, xk), a(x, x3k), . . . , a(x, x (2n2−1)k)).

The inverse mapping from the image of 2 (or 2 if it exists) is given by multiplying by the inverse of
the Vandermonde matrix on the right. If we denote the Vandermonde matrix by T = (Ti, j )i, j∈[n2] then
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its inverse is given by U = (Ui, j )i, j∈[n2] where Ui, j =
1
n2

x−2 jk T j,n2−i =
1
n2

x− j (2i+1)k where the indices
are taken modulo n2. To see this we compute

(T U )i, j =

n2−1∑
m=0

Ti,mUm, j =

n2−1∑
m=0

x i(2m+1)k 1
n2

x− j (2m+1)k

=
1
n2

n2−1∑
m=0

x (i− j)(2m+1)k
= δi, j .

We now look at how large the coefficients of the t-th component of 2(e(x, y)), denoted 2t(e(x, y)),
are if e(x, y) is sampled from the m-RLWE error distribution. We suppose that this error distribution has
coefficients, with respect to the basis x i y j, sampled independently from a distribution that is subgaussian
with parameter σ so writing e(x, y)=

∑n2−1
i=0

∑n1−1
j=0 ei, j x j yi , each ei, j is an independent subgaussian

random variable with parameter σ . Then applying 2t for some t ∈ [n2] gives

2t(e(x, y))=
n2−1∑
i=0

n1−1∑
j=0

ei, j x j+i(2t+1)k
=

n1−1∑
l=0

(n2−1∑
i=0

(−1)qi,l ei,ri,l

)
x l,

where we define qi,l and ri,l as the quotient and remainder of l − i(2t + 1)k on division by n1 (which
depends on t): l − i(2t + 1)k = qi,ln1 + ri,l with ri,l ∈ [n1]. This can be seen by rewriting j as j =
l − i(2t + 1)k mod n1 for some l ∈ [n1] (for each i separately) and noting that as j runs over [n1] so
does l, after which one swaps the order of summation.

Thus we see that the coefficients of 2t(e(x, y)) are the sum of n2 subgaussians with parameter σ and
so are themselves subgaussian with parameter

√
n2σ .

4C. Our attack. Here we present a simple attack on the 2-RLWE problem. It combines both the simple
lattice attack and the distinguishing attack. We stress that the attack is much more powerful than the
distinguishing attack alone as firstly it solves a search rather than a decisional problem and secondly
there is no need for any guessing during the attack. We point out that our attack has a strong similarity
to Nussbaumer’s algorithm for fast convolution [16].

We start with a number of samples {(a j (x, y), b j (x, y))} j∈[`] where

b j (x, y)= a j (x, y)s(x, y)+ e j (x, y).

The attack starts by evaluating the map 2 on each sample; we define αi, j (x) := 2i (a j (x, y)) and
βi, j (x) :=2i (b j (x, y)). We note that since 2 is a ring homomorphism we have, on defining εi, j (x) :=
2i (e j (x, y)) and σi (x) :=2i (s(x, y)), that

βi, j (x)= αi, j (x)σi (x)+ εi, j (x) for i ∈ [n2], j ∈ [`].

Our first goal is to find the σi (x) and to do this we use the simple lattice attack from Section 2C since
for a fixed i the samples (αi, j (x), βi, j (x)) follow an RLWEq,

√
n29 distribution. This means we need to

simply solve n2 instances of an RLWE problem in dimension n1 with noise distribution that is
√

n2 times



66 CARL BOOTLAND, WOUTER CASTRYCK, AND FREDERIK VERCAUTEREN

n1

4 8 16 32 64 128

instances 100 100 100 10 1 1
block size 30 30 30 30 10 10

` p ` p ` p ` p ` p ` p

4 2 13 2 13 2 13 2 13 2 15 2 21
3 9 3 10 3 10 3 11 3 13 3 20

8 2 13 2 13 2 14 2 17 2 22
3 10 3 10 3 11 3 15 3 20

n2 16 2 14 2 15 2 18 2 23
3 11 3 12 3 16 3 22

32 2 15 2 19 2 24
3 12 3 17 3 22

64 2 20 2 31
3 18 3 24

Table 1. The number of samples `≤ 3 and the minimal p ∈N, p ≈ log2(q), for which our attack
succeeded in each of the stated number of attempts for the stated block size, given n1, n2 and
q = 2p

+ 1, and where the secret polynomial is sampled uniformly at random in Rq .

wider than for the m-RLWE problem; each instance is independent so can be solved in parallel. If this
succeeds we have computed the image of s(x, y) under 2 and since 2 is invertible for odd q we can
compute s(x, y) and solve the 2-RLWE problem.

4D. Implementation results. We implemented and tested our attack in SageMath [23], using the NTL
library for lattice reduction. We tested our attack on the smallest parameter set given in [18], namely for
n1 = n2 = 128 and q being the smallest prime larger than 242. The secret polynomial is sampled from the
error distribution which samples coefficients independently from a discrete Gaussian with σ = 8/

√
2π ≈

3.19 (the default in SEAL [6]), larger than the stated σ = 1 in [18]. We were able to successfully recover
the secret polynomial with just one sample using BKZ reduction with block size 10 to solve the BDD
problem instances. This clearly shows that the estimated security level of over 2500 bits is a significant
overestimate. We can see from the estimates given by the LWE estimator [1] that the parameter sets with
n1 = n2 = 256 and n1 = n2 = 512 also offer little to no security (33 and 35 bits, respectively) while that
for n1 = n2 = 1024 offers at most 98 bits.

In Table 1 we report on a run of our attack with n1 ≥ n2 and q of the form 2p
+ 1 for p ∈ N. The

secret polynomial s we try to find is chosen uniformly at random from Zq [x, y]/(xn1 + 1, yn2 + 1) so
the minimum number of 2-RLWE samples possible to recover s is two. We give the minimum q of the
stated form for which the attack succeeded in a fixed number of consecutive instances with the stated
number of samples; here we used the embedding approach combined with BKZ reduction to attempt to
solve the BDD instances. Further, the coefficients of the error polynomials were sampled independently
using a discrete Gaussian sampler with σ = 3.19. The results are heuristic as we only attempted to solve
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n1

4 8 16 32 64 128

instances 100 100 100 10 1 1
block size 30 30 30 30 10 10

` p ` p ` p ` p ` p ` p

4 1 11 1 12 1 12 1 13 1 14 1 22
2 9 2 9 2 10 2 11 2 13 2 20

8 1 13 1 13 1 14 1 15 1 22
2 10 2 10 2 11 2 14 2 21

n2 16 1 14 1 14 1 17 1 22
2 11 2 12 2 15 2 21

32 1 15 1 18 1 23
2 12 2 16 2 22

64 1 20 1 25
2 17 2 23

Table 2. The number of samples `≤ 2 and the minimal p ∈ N, p ≈ log2(q) for which our attack
succeeded in the stated number of instances and with the stated block size, given n1, n2 and
q = 2p

+ 1, and where the secret polynomial is sampled coefficient-wise with each coefficient
uniformly random in {−1, 0, 1}.

a limited number of instances for each choice of n1, n2 and q. It is certainly possible to find the secret
for smaller q by increasing the block size used, and in specific instances this may not even be necessary.

In Table 2 we performed the same attack but this time with the coefficients of the secret polynomial
taken from the uniform distribution on {−1, 0, 1}; hence a successful attack is possible with only one
sample. While the case of the secret being sampled from the error distribution, as in the proposed image
processing scheme of [20], can be viewed as having an extra sample (1, 0= 1 · s− s) whose error is −s, it
is often the case in practical applications of somewhat homomorphic encryption that the secret is sampled
from this narrower distribution to get the most efficiency out of the scheme. It is therefore interesting to
see how this choice affects our attack.

4E. The case of the general m-RLWE problem. The previous subsection showed that the 2-RLWE
problem can be readily attacked with the combination of an evaluation attack and simple lattice reduc-
tion techniques. More generally, if the defining polynomials of the 2-RLWE problem are both p-th
power cyclotomic polynomials of degree φ(pri ), where φ is the Euler-totient function, then our attack
straightforwardly applies to this case with the caveat that 2 must be invertible modulo q which holds
if q is coprime with φ(pr2) = pr2−1(p − 1). We remark that if h = gcd(q, φ(pr2)) and φ(pr2) are
small, it is possible to compute all possible preimages of 2 and test each of them in turn to determine
the correct value of the secret, however this rather quickly becomes prohibitively expensive the larger h
and r2 become as there are hφ(p

r2 ) possibilities to check.
Increasing the value of m when each of the defining polynomials is a p-th power cyclotomic polyno-

mial of degree ni = φ(pri ) increases the difficulty of the problem since the error grows by a multiplicative
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factor of
√∏m

i= j+1 ni in a lattice of dimension
∏ j

i=1 ni for some 1 ≤ j ≤ m; here we can choose the
order of the ni which best suits the attack. We therefore see that a trade-off can be made in choosing j :
if j = 1 means the error is already too large for the lattice reduction attack to succeed, we can choose
a larger j at the cost of having to perform lattice reduction in a lattice of larger dimension. In this way,
taking large m offers some security but at a loss of efficiency if such a large m is not needed specifically
for the application in mind.

When instantiating m-RLWE with an arbitrary tensor product of number fields we again wish to find
an analogue for the map 2. This will consist of algebra homomorphisms from K =

⊗
i∈[m] Ki to the

compositum field, which we denote by L . These algebra homomorphisms can naturally be extended to
maps from KR to L ⊗Q R which fix q so we can evaluate them on the components of samples from the
m-RLWE distribution.

In the case that all the number fields Ki are Galois extensions then there are exactly

n :=
∏

i∈[m]

[Ki :Q] =
∏

i∈[m]

ni

such algebra homomorphisms from K to L . Since all of the Ki are Galois, so is L; if we define N :=
|Aut(L)|= [L :Q] as the number of automorphisms of L then up to automorphism in L there are k := n/N
distinct algebra homomorphisms which we denote by 2= (2i )i∈[k].

Again, 2 is injective so can be inverted; however for the attack to work we need 2 to be invertible,
that is, 2 to be invertible modulo q . Further, we also require 2 to map the error distribution ψ over KR

to elements of LR which have small coefficients with respect to a known basis for L as a Q-vector space.
If these conditions are met then we can carry out the same attack of applying 2 to the m-RLWE samples,
solving k instances of the reduced problem in a lattice of dimension N and applying 2

−1
to recover the

secret.
To summarise the requirements for the full attack, we require for the number fields Ki to be Galois,

for the map 2 to be invertible and for 2 to map small elements to small elements. Nevertheless, if either
of the first two conditions are not met it may still be possible to recover partial information about the
secret using our approach.

5. The dangers of optimizing module based cryptosystems

We take the example of Kyber [3] which, when reduced to its simplest form, has a public key which is a
module-LWE sample where the secret s is a small element of the module Rk

q where R = Z[x]/(xn
+ 1)

with n a power of two. Such a public key is then a pair (A, b) with A a k× k matrix whose entries are
chosen uniformly at random from Rq and b ∈ Rk

q with b= As+ e for some small error element e ∈ Rk
q .

This means a public key consists of k(k+ 1) elements of Rq . One might be tempted to use a structured
matrix, such as a negacyclic one, instead of a uniformly random one; after all this is essentially how
one goes from LWE to its ring based counterpart RLWE and with our current understanding this latter
optimization only incurs a negligible deterioration in security.
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Let us fix some parameters and observe what happens. The suggested “paranoid” parameters from [3]
are to take k = 4 and n = 256 and q = 6781 which gives a (post-quantum) security level of 218 bits, the
largest given by the authors. Taking the matrix A to be negacyclic, that is a matrix of the form

a0 −ak−1 −ak−2 · · · −a1

a1 a0 −ak−1 · · · −a2

a2 a1 a0 · · · −a3
...

...
...

. . .
...

ak−1 ak−2 ak−3 · · · a0

,

means that only 5 elements of Rq are needed to define the public key instead of 20. Further, as shown
below, the scheme can be interpreted as adding a ring structure on top of Rq in a new variable y satis-
fying y4

+ 1 and replacing matrix multiplication by ring multiplication. Hence, we are in the m-RLWE
setting and working in the tensor product of two power-of-two cyclotomic fields of degrees 256 and 4,
respectively.

Formally, we can define the negacyclic module-LWE problem as follows. Let R = Z[x]/(xn
+ 1) with

n a power of two and let q ≥ 2 and k be positive integers. Let s be an element of Rk
q and χ a distribution

of small elements in Rk
q . A sample from the negacyclic module-LWE distribution with secret s is of the

form (A, b= As+ e), where A ∈ Rk×k
q is a negacyclic matrix and e← χ . The negacyclic module-LWE

decision problem is to decide whether a given set of samples of the form (Ai , bi ) ∈ Rk×k
q × Rk

q , with
each Ai a negacyclic matrix are sampled from the negacyclic module-LWE distribution or with each bi

sampled uniformly at random from Rk
q instead. The negacyclic module-LWE search problem is, given

samples from the negacyclic module-LWE distribution with secret s, to recover s.
Given a negacyclic matrix A ∈ Rk×k

q whose first column is (a0, . . . , ak−1)
T, we can write a(y) =∑k−1

i=0 ai yi so that the equality b= As is equivalent to

b(y)= a(y)s(y) mod yk
+ 1,

where b(y)=
∑k−1

i=0 bi yi and s(y)=
∑k−1

i=0 si yi with the bi and si the coordinates of the vectors b and s,
respectively. We therefore see that the negacyclic module-LWE problem is equivalent to the m-RLWE
problem in the ring Z[x, y]/(xn

+ 1, yk
+ 1).

Returning to our example of a structured Kyber variant, we can thus apply our attack with n1 = 256
and n2 = 4 which shows that we can recover s by solving four RLWE problems in dimension 256 from
one sample where the error distribution has variance twice that of the original error distribution. Using
the LWE-estimator [1], we find that this basic version of a structured Kyber offers at most 107 bits of
security, essentially halving the bit security when compared to the original version of Kyber without any
additional structure. Thus there is a large difference in terms of security between going from LWE to
RLWE and going from module-LWE to m-RLWE if one is not careful.

We note this structured Kyber would also be weak with the “light” parameter set where k = 2, but
for the standard parameters where k = 3 the above attack does not apply as 3 is not a power of two;
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that is, x3
+ 1 has no roots in a power-of-two cyclotomic field. This again shows the subtlety of the

problem of trying to optimize module-LWE. Care needs to be taken in choosing which method and for
which parameters such an optimization can be applied without severely damaging the security of the
problem.

6. Conclusion

In this paper we reconsidered the m-RLWE problem and its security. We showed that, with a combi-
nation of simple evaluation and lattice attacks, the security of the m-RLWE problem was dramatically
less than had been previously estimated in the literature. We would therefore not recommend using 2-
RLWE for values of n1 or n2 less than those used in standard RLWE based schemes for cryptographic
purposes. More generally, we conclude that the m-RLWE problem using number fields with a small
degree compositum field is insecure. Finally, this paper should also serve as a warning to implementers
of module-LWE based cryptosystems to not blindly apply the standard optimization trick that is used to
transform LWE into RLWE.
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Two-cover descent on plane quartics with rational bitangents

Nils Bruin and Daniel Lewis

We implement two-cover descent for plane quartics over Q with all 28 bitangents rational and show that
on a significant collection of test cases, it resolves the existence of rational points. We also review a
classical description of the relevant moduli space and use it to generate examples. We observe that local
obstructions are quite rare for such curves and only seem to occur in practice at primes of good reduction.
In particular, having good reduction at 11 implies having no rational points. We also gather numerical
data on two-Selmer ranks of Jacobians of these curves, providing evidence these behave differently from
those of general abelian varieties due to the frequent presence of an everywhere locally trivial torsor.

1. Introduction

A central problem in arithmetic geometry is to determine if a variety C over a number field k, for instance
a nonsingular projective curve, has any k-rational points. The most elementary way of showing that C(k)
is empty is by showing that C(kv)=∅ for some completion kv of k. In that case, we say C has a local
obstruction to having rational points.

We consider a more refined descent obstruction here. Our construction can be read in elementary
terms, but the theoretical motivation is enlightening. Suppose we have an unramified cover π : D→ C
of nonsingular proper varieties over k with geometric automorphism group 0 = Autkalg(D/C) satisfying
#0 = deg(π). The twisting principle [Mil80, III.4.3(a)] gives us that the Galois cohomology set H1(k, 0)
parametrizes twists πγ : Dγ → C , as well as a map γ : C(k)→ H1(k, 0) such that for P ∈ C(k) and
γ = γ (P), we have Q ∈ Dγ (k) such that πγ (Q)= P. This leads us to consider the associated Selmer
set

Sel(π)(C/k)= {γ ∈ H1(k, 0) : Dγ (kv) 6=∅ for all completions kv of k}.

Since the map γ takes values in Sel(π)(C/k), we see that if the latter is empty then C(k) is empty too.
In that case we say that C has a π-cover obstruction to having rational points: C has no rational points
because a collection of covering varieties all have local obstructions.

Bruin acknowledges the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), funding
reference number RGPIN-2018-04191.
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The proof of the Chevalley–Weil theorem [CW32] implies that Sel(π)(C/k)⊂ H1(k, 0; S), where the
latter denotes the classes that are unramified outside the set S of bad places for the cover π : D→C . The
set H1(k, 0; S) is finite and explicitly computable. This means that to compute Sel(π)(C/k) one only
needs to check the local solvability of finitely many Dγ . Hence, Sel(π)(C/k) is explicitly computable,
although not necessarily efficiently.

For hyperelliptic curves, there is a well-developed theory of two-covers in [BS09], where 0 = JacC [2].
Their associated Selmer sets are relatively practical to compute and, as is described there, many genus
two curves over Q have no local obstruction, but can be shown to have Sel(2)(C/Q)=∅. In fact it has
since been shown [BGW17] that in a precise way, most hyperelliptic curves have a two-cover obstruction.

Results beyond hyperelliptic curves are sparse. The general descent theory is available in [BPS16],
which also provides some genus three examples, but in its full generality, the need to compute class
group information of degree 28 extensions limits large-scale experiments significantly. There has also
been some progress on creating an appropriate setting for arithmetic statistical techniques [Tho16] to
two-descent on Jacobians of curves of genus three, but it is presently not clear how to generalize the
Bhargava–Gross–Wang approach to this setting.

In this article we endeavour to start a more systematic study by considering plane quartics C with
a restricted 2-level structure; in particular JacC [2](Q) = (Z/2Z)6. This forces the 28 bitangents of C
to be defined over Q and has the computational and expository advantage that all required data can be
expressed over Q; no algebraic number theory is required.

Remark 1.1. For a hyperelliptic curve C of genus g, having JacC [2](k) = (Z/2Z)2g implies that all
2g+ 2 Weierstrass points on C are rational, making two-cover descent rather uninteresting. In this sense,
two-cover descent on plane quartics has simpler nontrivial applications than on hyperelliptic curves.

In Section 3 we review an explicit description of the moduli space of smooth plane quartics with
labelled bitangents as the space of seven labelled points in general position in P2. For small fields we
prove:

Proposition 1.2. For p = 3, 5, 7, there exist no nonsingular plane quartics over Fp with all bitangents
defined over Fp. Over F9, there is only one isomorphism class, represented by the Fermat quartic

C9 : x4
+ y4
+ z4
= 0, with #C9(F9)= 28.

Over F11, there is only one isomorphism class, represented by

C11 : x4
+ y4
+ z4
+ x2 y2

+ x2z2
+ y2z2

= 0, and C11(F11)=∅.

In particular, a plane quartic C over Q with rational bitangents has bad reduction at 3, 5, and 7. If it
has good reduction at 11, then it has a local obstruction there. The curve C9 attains the maximum number
of rational points for a genus three curve over F9. Its rational points are contacts of the 28 hyperflexes.
Both C9 and C11 are reductions of the Klein quartic x4

+ y4
+ z4
−

3
2(1+

√
−7)(x2 y2

+ x2z2
+ y2z2).
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Section 4 describes, given a smooth plane quartic C with rational bitangents, an explicit model for a
two-cover πγ : Dγ → C , with 0 = (Z/2Z)6 as a Galois-module. This directly establishes a description
of two-covers and their twists, without appealing to étale cohomology.

In Section 5 we describe an algorithm to compute, with reasonable efficiency, sets

Sel(2)(C/k, N )⊃ Sel(2)(C/k),

for integers N ≥ 1, with equality holding for N ≥ 66569, and, in practice, for much smaller values of N
already.

In Section 6 we describe a numerical experiment, where we tabulate the behaviour of Sel(2)(C/Q)
for various quartics C . We consider a systematic collection of 81070 moduli points with coordinates
from {−6, . . . , 6}, as well as a collection of 70000 randomly selected points with coordinates from
{−40, . . . , 40}.

Observation 1.3. For all curves C in our collections with Sel(2)(C/Q) 6= ∅, we can find a point
P ∈ C(Q).

This leaves the following question, which we fully expect to have an affirmative answer, but remains
open for now.

Question 1.4. Is it possible to construct a smooth plane quartic C over Q with rational bitangents such
that Sel(2)(C/Q) 6=∅ but C(Q)=∅?

Remark 1.5. For a considerable number of curves in our collections we also get information on the
2-Selmer groups of their Jacobians. The data matches the distribution conjectured in [PR12, Conjec-
ture 1.1] quite closely, but only after taking into account that the JacC -torsor representing Pic1 is very
frequently everywhere locally trivial. Since nonhyperelliptic curves often have points everywhere locally,
this phenomenon should be general: one should expect Jacobians to exhibit special arithmetic behaviour.

This work is based on the master’s thesis [Lew19] of the second author.

2. Plane quartics and their bitangents

In this section we collect the classical combinatorics and geometry of bitangents and theta characteristics
on nonhyperelliptic curves of genus three. See [Dol12, Chapter 6] or [GH04] for a more comprehensive
modern treatment.

Let k be a field of characteristic different from 2 and let C be a curve of genus three over k. Then
Jac(C)[2] is a 0-dimensional separated group scheme of degree 64 and exponent 2, equipped with a
nondegenerate alternating bilinear pairing. Indeed, the automorphism group of Jac(C)[2] is Sp6(F2).

Definition 2.1. A theta characteristic on a curve C of genus g is a divisor class θ ∈ Picg−1(C) such
that 2θ is the canonical class. The parity of θ is determined by the parity of the dimension of the
Riemann–Roch space H0(C, θ).



76 NILS BRUIN AND DANIEL LEWIS

It is a classical result [GH04, Proposition 1.11] that a curve of genus g has 2g−1(2g
+ 1) even and

2g−1(2g
− 1) odd theta characteristics. For g = 3 and C nonhyperelliptic it is easily checked that

h0(C, θ)≤ 1, so the odd theta characteristics are exactly the ones that admit a (unique) effective repre-
sentative.

The canonical model of a nonhyperelliptic genus three curve C is a quartic in P2:

C : f (x, y, z)= 0, with f ∈ k[x, y, z] homogeneous of degree four.

Since canonical classes are exactly line sections C · l, we see there are 28 lines l such that C · l = 2θ ,
where θ is a degree two effective divisor representing a theta characteristic: we recover the 28 bitangents
of a smooth plane quartic. Fix for each bitangent line l, a linear form ` describing the line.

Lemma 2.2. Let C be a smooth plane quartic. Then no seven distinct bitangents pass through a single
point.

Proof. Suppose l1, . . . , l7 intersect in P0. If P0 were to lie on C it would be singular, so it does not.
Hence projecting away from P0 gives a degree four map C→ P1. Since li ·C is a fibre of this projection,
the ramification divisor has degree at least 2 · 7. But that exceeds the degree 12 given by the Riemann–
Hurwitz formula. �

Let θ1, θ2 be two odd theta-characteristics. Then 2(θ1−θ2)= div(`1/`2), where we regard the quotient
of linear forms as a rational function on C . We see that

[θ2− θ1] ∈ Pic0(C)[2].

As it turns out, all nonzero 2-torsion classes admit such a representative; in fact,
(28

2

)
/63 = 6 of them.

We see that θ1− θ2 and θ3− θ4 are linearly equivalent precisely when θ1+ · · · + θ4 is twice canonical.
For bitangent forms, this leads to the following concept.

Definition 2.3. We say a quadruple of bitangent forms q= {`1, . . . , `4} is a syzygetic quadruple if their
contact points with C lie on a conic. This means there are constants δq, cq ∈ k∗ and a quadratic form
Qq ∈ k[x, y, z] such that

`1`2`3`4 = δqQ2
q+ cq f. (2-1)

There are 315 syzygetic quadruples. We say a triple of bitangents is syzygetic if it is part of a syzygetic
quadruple. If it is, then it is part of only one.

Definition 2.4. We say that a set of seven bitangent forms {`1, . . . , `7} is an Aronhold set if none of its
triples are syzygetic.

There are 288 Aronhold sets. For an Aronhold set, write {θ1, . . . , θ7} for the corresponding theta
characteristics. Then θ1+ · · ·+ θ7− 3κC is again a theta characteristic: an even one. We see that each
even theta characteristic has 288/36= 8 Aronhold sets associated with it. Additionally, one can check
that {θ1− θ7, . . . , θ6− θ7} forms a basis for Pic(C)[2].
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It follows that specifying a labelled Aronhold set on a smooth plane quartic amounts to marking a
2-level structure on its Jacobian. The converse holds too.

Proposition 2.5 [GH04]. The following two moduli spaces are naturally isomorphic:

• Nonhyperelliptic genus three curves with a labelled Aronhold set

• Nonhyperellipic genus three curves with full 2-level structure.

There is a unique conjugacy class Sym(8) ⊂ Sp6(F2). It is of length 36 and it corresponds to the
stabilizer of an even theta characteristic. The action can be made explicit by labelling the bitangents by

{`i j = `{i, j} : i ∈ {0, . . . , 7}, j ∈ {i + 1, . . . , 7}}, (2-2)

with Sym(8) acting in the obvious way on the subscripts. This labelling can be chosen in such a way
that the syzygetic quadruples come in two Sym(8)-orbits: one of length 210 and one of length 105,
represented by, respectively,

{`01, `12, `23, `03} and {`01, `23, `45, `67}. (2-3)

We see that for i = 0, . . . , 7, we have the Aronhold sets {`i j : j 6= i}. We sometimes suppress i = 0 in
our indices, so `0 j = ` j .

Proposition 2.6. Let `1, . . . , `7 be an Aronhold set of bitangent forms on a smooth plane quartic C :
f (x, y, z)= 0. Then the square class of each of the other bitangents `i j is determined in the sense that
there is a constant δi j ∈ k× and a cubic form gi j ∈ k[x, y, z] such that( ∏

n /∈{i, j}

`n

)
`i j ≡ δi j g2

i j (mod f k[x, y, z]).

Proof. To ease notation, set {i, j} = {6, 7}. By combining the syzygetic quadruples

{`1, `23, `45, `67}, {`2, `7, `23, `37}, {`4, `7, `45, `57}, {`3, `5, `37, `57},

we get that the left-hand side has a divisor with even multiplicities. The existence of gi j follows from
the projective normality of C . �

3. Generating plane quartics with rational bitangents

We use del Pezzo surfaces of degree two (see [Dol12, 6.3.3] or [GH04]) to describe a classical link
between nonhyperelliptic genus three curves with 2-level structure and point configurations in the plane.

Definition 3.1. We say seven points p1, . . . , p7 ∈ P2 lie in general position if no three are collinear and
no six lie on a conic.

Given seven points p1, . . . , p7 ∈ P2 in general position, we obtain a del Pezzo surface X of degree
two by blowing up the seven points. In fact we obtain a labelling of the 56 exceptional curves on X :

• 7 exceptional components E ′i above the blown-up points pi .
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• 7 proper transforms Ei of cubics Ẽi through the seven points with a nodal singularity at pi .

• 21 proper transforms Ei j of lines Ẽi j connecting pi and p j .

• 21 proper transforms E ′i j of conics Ẽ ′i j through {p1, . . . , p7} \ {pi , p j }.

A del Pezzo surface X of degree 2 comes equipped with a 2 : 1 map X→ P2, given by the anticanonical
system |−κX | on X. The branch locus C in P2 is a smooth plane quartic.

If X is obtained as the blow-up of p1, . . . , p7 ∈ P2 then there is an induced rational map φ making
the following diagram commute:

X

P2 P2

2:1bl

φ

Let φ1, φ2, φ3 generate the space of cubics passing through p1, . . . , p7. It is straightforward to check
that the bl∗φi generate |−κX |, so φ = (φ1 : φ2 : φ3). The branch locus of φ is contained in the plane
sextic curve

C ′ : det
(
∂φi

∂x j

)
i j
= 0 (3-1)

and indeed, C = φ(C ′) turns out to be a plane quartic.
Since Ẽi and Ẽi j ∪ Ẽ ′i j are loci described by cubics in the span of φ1, φ2, φ3, they map to lines, whose

defining forms we denote by `i and `i j respectively.

Lemma 3.2. The labelling described above is compatible with (2-2), so {`1, . . . , `7} is an Aronhold set
and Definition 2.3 describes the syzygetic quadruples.

Proof. The deeper reason is that the configuration of seven points in P2 has the same moduli as seven
points in P3 by association of point sets [Cob22]. The sextic model C ′ actually arises as the projection
from a linear system |θeven+ κC | (see [GH04]), so the labelling is indeed directly linked to the choice of
an even theta characteristic on C . However, it is also sufficient to just verify the statement for a particular
case and then argue via connectedness of the moduli space. �

The construction above provides a very explicit description of the moduli space of nonhyperelliptic
genus three curves with full 2-level structure. For explicitly parametrizing it, we lose no generality by
setting p1, p2, p3, p4 to be the standard simplex and choosing p5, p6, p7 = (u1 : v1 : 1), (u2 : v2 : 1),
(u3 : v3 : 1). General position means the 3× 3, respectively 6× 6 minors of

1 0 0 1 u1 u2 u3

0 1 0 1 v1 v2 v3

0 0 1 1 1 1 1

 and



1 0 0 1 u2
1 u2

2 u2
3

0 1 0 1 v2
1 v2

2 v2
3

0 0 1 1 1 1 1
0 0 0 1 u1v1 u2v2 u3v3

0 0 0 1 u1 u2 u3

0 0 0 1 v1 v2 v3


,

do not vanish.
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Proof of Proposition 1.2. With the description given above, it is a finite amount of work to check all
the possibilities for p = 3, 5, 7, 11. For p = 3, 5, 7 there are no 7 points over Fp in general position
(see also [BFL19, Proposition 4.4]). For F9 there are 40 triples {(u1 : v1 : 1), (u2 : v2 : 1), (u3 : v3 : 1)}
that complement the standard simplex to 7 points in general position. The construction (3-1) requires
lifting to characteristic 0, but the rest of the construction remains valid. We find all resulting curves are
isomorphic to C9. For F11 there are 1440 triples, all giving curves isomorphic to C11. �

4. Two-covers of smooth plane quartics with rational bitangents

Let C : f (x, y, z)= 0 be a smooth plane quartic with an Aronhold set `1, . . . , `7. We adopt the notation
of Proposition 2.6. For γ = (γ1, . . . , γ7) ∈ (k×)7 we define the following curve in weighted projective
space P[23, 128

] with coordinates x, y, z of weight 2 and w1, . . . , w7, w12, . . . , w67 of weight 1:

D′γ :


f (x, y, z)= 0,

`i (x, y, z)= γiw
2
i for i = 1, . . . , 7,

`i j (x, y, z)= δi j/
(∏

n 6=i, j γn
)
w2

i j for 1≤ i < j ≤ 7,

gi j (x, y, z)= wi j
∏

n 6=i, j wn for 0≤ i < j ≤ 7.

Thanks to the relations from Proposition 2.6 we have a well-defined projection D′γ → C . In fact, from
the sign changes on w1, . . . , w7 we see that Aut(D′γ /C) = (Z/2Z)7. Furthermore, from the fact that
the representation of the automorphism group on w12, w23, . . . , w67, w17 is faithful and for any fibre of
D′γ → C at most one of wi or wi j is zero, it follows the cover is unramified and that D′γ is not geomet-
rically connected. Indeed the involution on D′γ that swaps the signs of all of w1, . . . , w7 interchanges
geometric components. We consider the projection P[23, 128

] → P27 away from the weight 2 part and
consider the image Dγ of D′γ .

Lemma 2.2 yields three linearly independent linear forms `i , ` j , `n , so that we can express x, y, z as
linear forms in w2

i , w
2
j , w

2
k . Eliminating x, y, z from the equations gives us Dγ as an intersection of an

octic equation, 25 quadratic equations, and 28 sextic equations. Alternatively we derive quartic relations
from the syzygetic quadruples and their described relations (see Definition 2.3).

We introduce notation for a group naturally isomorphic to (k×/k×2)6, but presented in a way more
natural for our purposes.

Definition 4.1. We define L ′(2, k)' (k×/k×2)6 by the exact sequence

1→ (k×/k×2)
diagonal
−−−→ (k×/k×2)7→ L ′(2, k)→ 1

and we usually represent elements in L ′(2, k) by (γ1, . . . , γ7) ∈ (k×)7.

Proposition 4.2. The two-covers of C are exactly

{πγ : Dγ → C, where γ ∈ L ′(2, k)}.
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Proof. The projection of Dγ onto the coordinates (w1 : · · · : w7) gives a birational map to an intersection
D̃γ of four quadrics and an octic hypersurface. Its singular locus is the pull-back along πγ of the contact
locus of the bitangents `1, . . . , `7. We see that π̃ : D̃γ → C is a finite rational cover of degree 26 and that
π̃∗(`i/`7)= (γi/γ7)(wi/w7)

2. This shows that a basis for Pic0(C)[2] pulls back to principal divisors, and
hence that D̃γ is a birational model of a two-cover, and therefore so is Dγ . To see that Dγ is nonsingular,
we use that for P ∈ Dγ (kalg) we can find an Aronhold set of bitangents that do not meet πγ (P).

In order to show that all 2-covers arise as Dγ , we observe that Pic(C/k)[2] = (µ2)
6, where we write

µ2 for the Galois module {−1, 1}. By the Kummer sequence we have

H1(k,Pic(C/k)[2])= (k×/k×2)6 ' L ′(2, k).

For σ ∈ Gal(ksep/k) we define the cocycle

ξγ (σ ) : (w1 : · · · : w7) 7→

(√
γ1
σ

√
γ1
w1 : · · · :

√
γ7
σ

√
γ7
w7

)
.

This gives an isomorphism L ′(2, k) ' H1(k,Aut(D1/C)) ' H1(k,Pic0(C)[2]), and Dγ is the twist of
D1 by the Galois cocycle ξγ . �

We define a partial map

γ : C(k) 99K L ′(2, k); P 7→ (`1(P), . . . , `7(P))

and extend it to a full map by observing that by Definition 2.3, for any syzygetic quadruple q =

{`i , `a, `b, `c} we have that

`i (P)≡ δq`a(P)`b(P)`c(P) (mod squares)

whenever both sides are nonzero, so if `i (P)= 0, we assign the appropriate value by taking the right-hand
side for a suitable quadruple q. We obtain:

Proposition 4.3. The map γ : C(k)→ L ′(2, k) assigns to P ∈ C(k) the cover Dγ (P) for which there is a
point Q ∈ Dγ (P)(k) such that πγ (P)(Q)= P.

5. Selmer sets

We restrict to the case where k is a number field, but our method applies to any global field of characteristic
different from 2. We write O for its ring of integers, � for the set of places of k, and kv for the completion
of k at v ∈�. For nonarchimedean v we write Ov ⊂ kv for its ring of integers, pv for its maximal ideal,
and Ov/pv for its residue field.

The map γ from Proposition 4.3 and its local variant γ v fit in the commutative diagram

C(k) L ′(2, k)

C(kv) L ′(2, kv) .

γ

ρv

γ v
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We define
Sel(2)(C/k)= {γ ∈ L ′(2, k) : ρv(γ ) ∈ γ v(C(kv)) for all v ∈�k}.

Clearly we have γ (C(k))⊂ Sel(2)(C/k) and in particular, if Sel(2)(C/k)=∅ then C(k)=∅.
Let us now fix an integral model C : f (x, y, z)= 0 with f ∈O[x, y, z], as well as 28 bitangent forms

`i j ∈O[x, y, z]. The discriminant D27( f ) of a quartic (see [GKZ08, Chapter 13, Proposition 1.7]) is an
integer form of degree 27 in the coefficients of f that vanishes precisely when f describes a singular
curve. Thus, if we take

S = {v ∈�k : ordv(2D27( f )) > 0, or `i j ∈ pv[x, y, z], or v is archimedean}

then C has good reduction at all v not in S, meaning that the coefficient-wise reductions of f and `i j

describe a nonsingular plane quartic and its bitangents over Ov/pv. We consider the unramified part

L ′(2, kv)unr
= {γ ∈ L ′(2, kv) : ordv(γi )≡ ordv(γ j ) (mod 2) for all i, j}.

Proposition 5.1. If C/kv has good reduction as a plane quartic and the residue characteristic of kv is
odd, then γ v(C(kv))⊂ L ′(2, kv)unr. If furthermore #Ov/pv ≥ 66562 then γ v(C(kv))= L ′(2, kv)unr.

Proof. Let C be the reduction of C . Any point P ∈ C(kv) reduces to a point P ∈ C(Ov/pv). Since the
bitangents do not share contact points, ordv(`i (P)) > 0 for at most one i . Let q = {`i , `a, `b, `c} be a
syzygetic quadruple. The good reduction properties imply ordv(δq)= 0, in the notation of Definition 2.3.
We see `i (P)`a(P)`b(P)`c(P) must have even valuation, but that implies ordv(`i (P)) is even.

For the second part, we observe that for γ ∈ L ′(2, kv)unr, the curve Dγ has good reduction as well.
This curve has genus 129 and, writing q = #Ov/pv, the Hasse–Weil bounds give

#Dγ (Ov/pv)≥ q + 1− 2 · 129
√

q,

so if q ≥ 66562, then there is a (necessarily smooth) point on Dγ , so Hensel lifting gives a point in
Dγ (kv). The image of that point on C maps to γ . �

We define

L ′(2, k; S)= {γ ∈ L ′(2, k) : ρv(γ ) ∈ L ′(2, kv)unr for all v ∈�k \ S}.

Let OS be the ring obtained by inverting the primes of the finite places in S. If OS has odd ideal class
number then L ′(2, k; S) is generated by (O×S /O

×2
S )7, so it is a finite group. Note that by enlarging S, we

can ensure that OS has odd class number.
It follows from Proposition 5.1 that Sel(2)(C/k)⊂ L ′(2, k; S). Furthermore, if we set

T = S ∪ {v ∈�k : #Ov/pv < 66562},

then we obtain

Sel(2)(C/k)= {γ ∈ L ′(2, k; S) : ρv(γ ) ∈ γ v(C(kv)) for v ∈ T }. (5-1)

Hence, if we can compute generators for O×S , which is a standard task in algebraic number theory, and
compute γ v(C(kv)) for finite and real v, then we can compute the Selmer set.
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5.1. Computing the local image for archimedean places. For kv = C we have that C× = C×2 and
C(C) 6=∅, so there is nothing to compute; the local image is the whole (trivial) group L ′(2,C).

For k = R we have that R×/R×2 is represented by {±1}. Furthermore, a smooth plane quartic C/R
with all bitangents defined over R has four components [GH81, Proposition 5.1], and the map γ :

C(R)→ L ′(2,R)' F6
2 is continuous and therefore constant on components. In order to find γ (C(R))

we only need to find points on each component and evaluate γ there. Each pair of components has four
bitangents touching each, so these contact points must be real. The remaining four bitangents might have
complex conjugate contact points. Each pair of components is separated by a bitangent, so γ actually
takes different values on the components; we know that #γ (C(R))= 4.

Since we need to compute the bitangents anyway, we can use the real contact points to evaluate γ .
Once we have found four different images, we know we have determined the entire image.

5.2. Computing the local image for finite places. In this section, we take k to be a local field with ring
of integers O, uniformizer π with p= πO, and a set D of representatives of O/p.

We have k× ' Z⊕O×. The map µ : k×→ k×/k×2
' (Z/2Z)⊕ (O×/O×2) is constant on sets of

the form x0+ pord(4)+1, with x0 ∈ O×, as can easily be checked from the fact that Newton iteration for
finding the roots of y2

− x0 amounts to iterating the map y 7→ 1
2

(
y+ x

y

)
, which converges for y ∈ 1+ 2p

if ord((x0− 1)/4) > 1.
We assume we have f, `i j ∈O[x, y, z] representing a quartic curve C : f (x, y, z)= 0 and its bitangents.

Furthermore, we assume we have the δq from Definition 2.3 for all syzygetic quadruples q, or at least
the 210 that involve `1, . . . , `7.

Note any P ∈C(k) admits a representative of one of the forms (x0 : y0 : 1), (x0 : 1 :πy0), (1 :πx0 :πy0),
with x0, y0 ∈O, so it is sufficient to restrict ourselves to O-valued points on affine plane quartics.

We say a set of the form B= (x0+pe)× (y0+pe) is a Hensel-liftable ball for f (x, y)= 0 if 0 ∈ f (B)
and (0, 0) /∈ ∇xy f (B), with ∇xy denoting the gradient. In that case, applying Newton iteration to any
point in B converges to an O-valued point of f (x, y)= 0. It is a standard result that the O-valued points
on a nonsingular curve can be covered with finitely many Hensel-liftable balls (see Algorithm 2 in the
Appendix).

In addition, we require that γ is constant on B∩C(k). For this we use that the component γ i (P) can be
computed via either µ(`i (P)) or, for a syzygetic quadruple q={`i , `a, `b, `c}, by µ(δq`a(P)`b(P)`c(P)).
Since bitangents do not share contact points, we see that for sufficiently small balls, at least one of the
descriptions will be constant. We can then evaluate the map at a single representative. We start with a
covering of Hensel-liftable balls and refine it as required. With Algorithm 3 (see the Appendix) we find

γ (C(k))= LOCALIMAGE( f (x, y, 1))∪ LOCALIMAGE( f (x, 1, πy))∪ LOCALIMAGE( f (1, πx, πy)).

Remark 5.2. The additional condition that γ be constant on our Hensel-liftable balls B is surprisingly
easily satisfied. In experiments with O = Zp, including for p = 2, we find that refinement is only rarely
required.
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This happens because there are many syzygetic quadruples: each `i is involved in 45. Hence, if P
lies close to a zero of `i , then there is likely a quadruple q such that P lies far away from the contact
points of the other three bitangents.

This is in stark contrast with the hyperelliptic case, where the role of the bitangent contact points is
played by the Weierstrass points. They are fewer in number, but there are also fewer relations between
them, necessitating higher lifting.

5.3. Overcoming combinatorial explosion. If k is a number field, then we can compute L ′(2, k; S) and
the algorithms from Sections 5.1 and 5.2 allow us to compute the local images, so using (5-1) we can
compute Sel(2)(C/k). However, as an F2-vector space, we have dim2 L ′(2, k; S)= 6(#S), and S tends to
have considerable size. For instance, if k =Q and C has points everywhere locally, then Proposition 1.2
yields that {2, 3, 5, 7, 11,∞} ⊂ S, so #L ′(Q, 2; S) ≥ 236. Consequently, the pointwise iteration over
L ′(k, 2; S) that (5-1) suggests, is usually practically infeasible. We use some linear algebra first.

We extend γ linearly to divisors, while also keeping track of the parity of the degree,

γ̃ : Div(C)→ F2× L ′(2, k); γ̃

(∑
n P P

)
=

(∑
n P ,

∏
γ (P)n P

)
(see [BPS16, §6]). One finds that principal divisors lie in the kernel, so γ̃ descends to a map on Pic(C/k).
We write Wv = 〈γ̃ (C(kv))〉 for the F2-span. We write W 0

v for the kernel of the projection Wv→ F2 on
the first coordinate, and W 1

v for its complement.
Given explicit representations for L ′(2, k; S) and L ′(2, kv) as F2-vector spaces, it is easy to find a

description of ρ̃v : F2× L ′(2, k; S)→ F2× L ′(2, kv) as a linear transformation. We immediately obtain

Sel(2)(C/k)⊂W 1
C :=

⋂
v∈S

ρ̃−1
v (W 1

v ), (5-2)

where the intersection on the right-hand side is easily computed as an affine subset using standard linear
algebra tools, even if #S ∼ 100.

On Pic0(C/kv), the kernel of γ̃ v is exactly 2 Pic0(C/kv). Furthermore, with the presence of a point
P0 ∈ C(kv) we have that Pic0(C/kv)= JacC(kv), and since the latter is a compact kv-Lie group we have

#(JacC(kv)/2 JacC(kv))= (# JacC [2](kv))/|2|3v, (5-3)

where we normalize

|2|v =


2 if v is a real place,
4 if v is a complex place,
(#Ov/pv)− ordv(2) if v is a finite place.

Lemma 5.3. Suppose C is defined over a completion Qv of Q. If {P0, . . . , Pr } ⊂ C(Qv) are such that

dim2〈γ v(Pi )− γ v(P0) : i = 1, . . . , r〉 =


3 if Qv = R,

9 if Qv =Q2,

6 otherwise,

then γ̃ v(Pic0(C/Qv))=W 0
v and Wv = 〈γ̃ (P0), . . . , γ̃ (Pr )〉.
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Proof. We have # JacC [2](Qv) = 64, so the dimension bound is just (5-3). Thus the condition is that
the divisor classes [P1− P0], . . . , [Pr − P0] generate Pic0(C/Qv)/2 Pic0(C/Qv). The second statement
follows simply from Wv =W 0

v + γ̃ (P0). �

This lemma provides us in many cases with a way to compute Wv directly and quickly. An alternative
is to determine γ̃ v(C(kv)) using the algorithm sketched in Section 5.2. This has a complexity proportional
to the size of the residue field Ov/pv, which is rather bad.

In many cases the kv-valued contact points of the bitangents are already sufficient to generate Wv . In
fact for real places this is always the case by the argument in Section 5.1.

It may be the case that Pic0(C/kv)/2 Pic0(C/kv) really does need divisors with higher degree places
in their support. In that case, if the residue field is small enough, we can compute Wv via Section 5.2 or
we can search for these higher degree places and use

〈γ̃ v(P0)〉+ γ̃ v(Pic0(C/kv))

as an upper bound for Wv in (5-2).

Remark 5.4. If Lemma 5.3 applies to all v ∈ S then we compute the 2-Selmer group of JacC as well, via

Sel(2)(JacC /Q)=
⋂
v∈S

ρ̃−1
v (W 0

v ),

and in any case the right-hand side gives a subgroup of the Selmer group, so we get a lower bound in all
cases. See Section 6.2.

5.4. Information at good primes. Let kv be a local field of odd residue characteristic, with q = #(Ov/pv).
Then

#L ′(2, kv)unr
= 64.

If C/kv has good reduction C , then γ v(P) is already determined by the reduction of P, so using the
Hasse–Weil bounds, we obtain

#γ v(C(kv))≤ #C(Ov/pv)≤ q + 1+ 6
√

q.

If q ≤ 29 then γ v(C(kv)) ( L ′(2, kv)unr, and even if q is larger, it is quite likely that the local image
is not the entire unramified set. Hence, for small residue class field, many of the two-covers Dγ fail to
have points locally, even at primes of good reduction. We see that in the intersection (5-1), the primes
of small norm actually impose significant conditions.

Because computing local images for primes of larger norm is expensive, we define a more easily
computed set that contains Sel(2)(C/k), by

Sel(2)(C/k; N )=
{
γ ∈ L ′(2, k; S) :

(1, γ ) ∈W 1
C for v ∈ S and ρv(γ ) ∈ γ v(C(kv)) for v such that #(Ov/pv)≤ N

}
.

We compute this set using Algorithm 1. If the resulting set is empty, then C(k) is empty.
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Algorithm 1: TWOCOVERDESCENT

Input: Quartic f ∈O[x, y, z] describing a nonsingular plane quartic C with bitangent forms
{`i j ∈O[x, y, z] : 0≤ i < j ≤ 7} and the δq according to Definition 2.3, and a norm bound N

Output: Sel(2)(C/k; N )

1 S← {v ∈�k : ordv(2D27( f )) > 0, or `i j ∈ pv[x, y, z], or v is archimedean}
2 W ← F2× L ′(2, k; S)
3 for v ∈ S:
4 P← {γ̃ v(P) ∈ C(kv) : `i j (P)= 0 for some i, j}
5 if dim2〈P − Q : P, Q ∈ P〉 equals the bound in Lemma 5.3:
6 Wv← 〈P〉
7 else:
8 Wv← 〈γ̃ v(C(kv))〉 as computed in Sections 5.1 and 5.2
9 W ←W ∩ ρ−1

v (Wv)

10 W 1
← {w ∈W : w1 = 1}, where w1 is the image of w in F2 from line 2

11 for v ∈�k : v is finite and #(Ov/pv)≤ N :
12 W 1

← {w ∈W 1
: ρ̃v(w) ∈ γ̃ v(C(kv))}

13 return W

6. Results

We implemented Algorithm 1 for k =Q in Magma and tested it on two sample sets:

A. Curves parameterized by

{(u1, . . . , v3) ∈ {−6, . . . , 6} : u1 < u2 < u3 and u1 < v1}.

The inequalities normalize some of the permutations possible on the points that lead to isomorphic
curves. We found 81070 configurations in general position. However, because of the small values of the
coefficients, there are many configurations with extra symmetries, so we find many isomorphic curves in
the configurations. We find 33471 distinct values for D27, indicating that the collection contains many
nonisomorphic curves as well.

B. 70000 curves with u1, . . . , v3 chosen uniformly randomly from {−40, . . . , 40}, while discarding
configurations not in general position. We originally found two quartics with matching D27. Their
configurations differed by a permutation, so the curves were isomorphic. We replaced one of them.

In each case, we used Magma’s MinimizeReducePlaneQuartic to find a nicer plane model, with
smaller discriminant. Since isomorphisms change D27 by a 27-th power, it is easy to tell from discrimi-
nants when curves are not isomorphic.

Typical examples take less than 2 seconds to execute, with the quartic reduction step being one of the
more expensive and less predictable steps. Occasional anomalies arise, where computation of a local
image at a large prime is required. The whole experiment represents about 126 CPU hours of work.
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C(Qv)=∅ Sel(2)(C/Q)=∅ rational bitangent contact point other rational point total

A 3654 42477 34025 4568 81070
4.5% 52% 42% 5.6% 100%

B 521 63926 4830 1244 70000
0.7% 91% 6.9% 1.8% 100%

Table 6.1. Two-cover descent results

Example 6.1. As a small, typical, example, take(
u1 u2 u3

v1 v2 v3

)
=

(
17 −7 −9
35 3 9

)
.

We find

C : 9x4
− 60x3 y+ 357x2 y2

+ 246xy3
+ 16y4

− 42x3z+ 259x2 yz− 168xy2z

−141y3z+ 31x2z2
− 492xyz2

+ 207y2z2
+ 42xz3

− 27yz3
+ 9z4

= 0

and D27(C)= 234
· 320
· 510
· 78
· 112
· 136
· 174
· 194
· 292
· 372
· 412. The curve C has points everywhere

locally. We have dim2 L ′(2,Q; S)= 72 and WC =
⋂
v∈S ρ̃

−1
v (Wv) has dim2 WC = 10. We find that W 1

C

is nonempty, so it has 29 elements. Computing

W 1
C,T = {w ∈W 1

C : ρ̃v(w) ∈ γ̃ v(C(kv)) for v ∈ T }

is quite doable, for various sets T. We conclude that C(Q)=∅ from, for example,

Sel(2)(C/Q)⊂W 1
C,T =∅ for T = {2, 3, 5} or {31, 43, 47, 53, 71, 83}.

Furthermore, from the data computed we can conclude that

dim2 Sel(2)(JacC /Q)= dim2 W 0
C = 9,

so either JacC(Q) has free rank 3 or X(JacC /Q)[2] is nontrivial.

6.1. Results of two-cover descent. We executed Algorithm 1 on our samples, with N = 50. This allowed
us to determine the existence of rational points on each of the curves. We summarize our findings in
Table 6.1.

When Sel(2)(C/Q) 6= ∅ and C has no rational bitangent contact points (possibly a hyperflex), we
search for a low-height nonsingular point using PointSearch on either the sextic model (3-1) or the
plane quartic model we construct from it. These are the curves reported in the “other rational point”
column. For two curves we needed to search up to a height bound of 107.

Another interesting fact is that local obstructions are quite rare (having a local obstruction implies
Sel(2)(C/Q)=∅). Furthermore we only found C(Qp)=∅ for p= 2, 11, 23, and only when C has good
reduction at those places. Proposition 1.2 gives a partial explanation of this fact. This is quite contrary
to the case of hyperelliptic curves, where local obstructions do tend to occur at primes of bad reduction.
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6 7 8 9 10 11 12 13

A 0.05% 18.7% 39.4% 29.1% 10.1% 2.28% 0.29% 0.006% (n = 31990)
B 0 20.2% 41.8% 27.9% 8.71% 1.27% 0.10% 0.006% (n = 51685)

Table 6.2. Distribution of dim2 Sel(2)(JacC /Q) where our data allowed its computation

6.2. Information on rank and X. We have

Sel(2)(JacC /Q)= L ′(Q, 2; S)∩
⋂
v∈S

ρ−1
v γ v(Pic0(C/Qv)).

Lemma 5.3 gives a condition for when the sets on the right-hand side are generated by differences of
degree 1 points. For a reasonable proportion of our curves, our data allows us to compute Sel(2)(JacC /Q).
We list the results in Table 6.2. In the rest of this section, we only consider these examples.

With JacC [2](Q)= (Z/2Z)6, we must have that the Selmer rank is at least 6, but as one can see, the
distribution has an average significantly higher than that. Part of that is explained by the fact that C ,
and hence the class J 1

∈ H1(k, JacC) representing Pic1(C/Q), is trivial everywhere locally. Since C has
quadratic points, we can pull the class back under the homomorphism

Sel(2)(JacC /Q)→ H1(k, JacC)[2]

and the preimage is likely independent of the image of JacC [2](Q).
If W 1

C = ∅ in (5-2) then it follows by [Cre20, Theorem 5.3] that J 1 is not divisible by two in
X(JacC /Q), and therefore is nontrivial. This happens in about half the examples.

Once we take into account that we expect that

dim2 Sel(2)(JacC /Q)≥ 7,

we find that the distributions in Table 6.2, particularly for collection B, match [PR12, Conjecture 1.1]
rather well. This does require us to account for the fact that J 1 almost always has points everywhere
locally.

Generally, nonhyperelliptic curves tend to have points everywhere locally. Therefore, one actually
should expect that Selmer groups of Jacobians of curves behave a little differently from those of general
abelian varieties, because they tend to come equipped with an everywhere locally trivial torsor.
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Appendix: Local algorithms

We use the notation from Section 5.2. The algorithms here are in the spirit of [Bru06, §5; BS09, §4].
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Algorithm 2: HENSELBALLS

Input: f ∈O[x, y], describing a smooth curve
Output: A finite set {(xt , yt , et )}t of Hensel-liftable balls covering the O-valued solutions of f (x, y)= 0

1 for (x0, y0) ∈ {(x0, y0) ∈ D2
: f (x0, y0)≡ 0 (mod p)}:

2 R←∅
3 if ∂ f

∂x (x0, y0) 6≡ 0 (mod p) or ∂ f
∂y (x0, y0) 6≡ 0 (mod p):

4 R← R ∪ {(x0, y0, 1)}
5 else:
6 g← f (x0+πx, y0+πy)
7 T ← HENSELBALLS(g/content(g))
8 R← R ∪ {(x0+πx1, y0+πy1, e+ 1) : (x1, y1, e) ∈ T }
9 return R

Algorithm 3: LOCALIMAGE

Input: f ∈O[x, y] describing a smooth plane quartic, together with its bitangent forms
{`i j ∈O[x, y] : 0≤ i < j ≤ 7} and syzygetic data δq as in Definition 2.3

Output: Local image of γ v on the given affine patch

1 Denote the mod-squares map by µ :O \ {0} → k×/k×2

2 T ← HENSELBALLS( f )
3 R←∅
4 while T 6=∅:
5 Take (x0, y0, e) from T
6 L← [`i j (x0, y0) : 0≤ i < j ≤ 7]
7 for i = 1, . . . , 7:
8 if ord(L i ) < e− ord(4):
9 γi ← µ(L i )

10 else if there is a syzygetic quadruple q= {`i , `a, `b, `c} such that
max(ord(`a(x0, y0)), ord(`b(x0, y0)), ord(`c(x0, y0))) < e− ord(4):

11 γi ← µ(δq`a(x0, y0)`b(x0, y0)`c(x0, y0))

12 else: /* we refine the covering */
13 g← f (x0+π

ex, y0+π
e y)

14 h← g/content(g) /* h (mod p) will be linear */
15 for (x1, y1) ∈ {(x1, y1) ∈ D2

: h(x1, y1)≡ 0 (mod p)}:
16 T ← T ∪ (x0+π

ex1, y0+π
e y1, e+ 1)

17 break to while
18 Add (γ1, . . . , γ7) to R
19 return R.
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Abelian surfaces with fixed 3-torsion

Frank Calegari, Shiva Chidambaram, and David P. Roberts

Given a genus two curve X : y2
= x5
+ ax3

+ bx2
+ cx + d, we give an explicit parametrization of all

other such curves Y with a specified symplectic isomorphism on three-torsion of Jacobians Jac(X)[3] ∼=
Jac(Y )[3]. It is known that under certain conditions modularity of X implies modularity of infinitely
many of the Y , and we explain how our formulas render this transfer of modularity explicit. Our method
centers on the invariant theory of the complex reflection group C3×Sp4(F3). We discuss other examples
where complex reflection groups are related to moduli spaces of curves, and in particular motivate our
main computation with an exposition of the simpler case of the group Sp2(F3)= SL2(F3) and 3-torsion
on elliptic curves.

1. Introduction

1.1. Overview. Consider a genus two curve X over Q given by an affine equation

y2
= x5
+ ax3

+ bx2
+ cx + d. (1-1)

The representation ρ : Gal(Q/Q)→ GSp4(F3) on the three-torsion Jac(X)[3] of its Jacobian is given by
an explicit degree 80 polynomial with coefficients in Q[a, b, c, d]. The polynomial can be extracted from
[Shi91], or by following the recipe given in Section 3.1. The main theorem of this paper parametrizes
all pairs (Y, i) consisting of a curve

Y : y2
= x5
+ Ax3

+ Bx2
+Cx + D (1-2)

and a Gal(Q/Q)-equivariant symplectic isomorphism, i : Jac(X)[3] → Jac(Y )[3]. The curves in (1-2) all
have a rational Weierstrass point at∞. The reader may wonder why we did not instead try to parametrize
pairs (Y, i) for all genus two curves Y . The answer is that the corresponding moduli space, while rational
over C, will not typically be rational over Q (see the discussion towards the end of Section 1.2).
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Keywords: abelian surfaces, three torsion, Galois representations.
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Analogous problems for genus one curves and their mod p representations for p ≤ 5 were solved by
Rubin and Silverberg [RS95]. In Section 2, we explain how the mod 3 formulas of [LR96] can be recon-
structed by using that Sp2(F3) has a two-dimensional complex reflection representation, summarizing
the result in Theorem 1.

Section 3 contains our main result, Theorem 2. It follows Section 2 closely, using now that Sp4(F3) is
the main factor in the complex reflection group C3×Sp4(F3). We write the new curves as Y = X (s, t, u, v)
with X (1, 0, 0, 0)= X . The new coefficients A, B, C and D are polynomials in a, b, c, d , s, t , u, and v.
While the genus one and two cases are remarkably similar theoretically, the computations in the genus
two case are orders of magnitude more complicated. For example, A, B, C , and D have 14604, 112763,
515354, and 1727097 terms respectively, while the corresponding two coefficients in the genus one case
have only 6 and 9 terms. We give all these coefficients and other information the reader may find helpful
in Mathematica files in the online supplement.

Section 4 provides four independent complements. Section 4.1 sketches an alternative method for
computing the above (A, B,C, D). Section 4.2 presents a family of examples involving Richelot iso-
genies. Section 4.3 gives an application to modularity which was one of the motivations for this paper.
Section 4.4 illustrates that much of what we do works for arbitrary complex reflection groups; in par-
ticular, it sketches direct analogs of our main result in the computationally yet more difficult settings of
2-torsion in the Jacobians of certain curves of genus 3 and 4.

1.2. Moduli spaces. Theorems 1 and 2 and the analogs sketched in Section 4.4 are all formulated in
terms of certain a priori complicated moduli spaces being actually open subvarieties of projective space.
To underscore this perspective, we consider a whole hierarchy of standard moduli spaces as follows.

Let A be an abelian variety over Q of dimension g with a principal polarization λ. If VA = A[p] is
the set of p-torsion points with coefficients in Q, then VA is a 2g-dimensional vector space over Fp with
a symplectic form ∧2

A induced by the Weil pairing A[p] × A[p] → µp. This structure is preserved by
Gal(Q/Q), and so gives rise to a Galois representation

ρA : Gal(Q/Q)→ GSp2g(Fp);

here the similitude character Gal(Q/Q)→ F×p is the mod-p cyclotomic character.
Conversely, if ρ is any such representation on a symplectic space (V,∧2), coming from an abelian

variety or not, there exists a moduli space Ag(ρ) over Q parametrizing triples (A, λ, ι) consisting of a
principally polarized abelian variety A together with an isomorphism ι : (V,∧2)' (VA,∧

2
A) of symplectic

representations.
Via (A, λ, ι) 7→ (A, λ), one has a covering map Ag(ρ)→ Ag to the moduli space of principally

polarized g-dimensional abelian varieties. For the split Galois representation ρ0, corresponding to the
torsion structure (Z/pZ)g ⊕ (µp)

g with its natural symplectic form, the cover Ag(ρ0) is the standard
“full level p” cover Ag(p) of Ag. In general, Ag(ρ) is a twisted version of Ag(p), meaning that the two
varieties become isomorphic after base change from Q to Q.

http://msp.org/obs/2020/4-1/obs-v4-n1-x01-MathematicaMatrixCode.zip
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The varieties Ag(ρ) become rapidly more complicated as either g or p increases. In particular, they are
geometrically rational exactly for the cases (g, p)= (1, 2), (1, 3), (1, 5) (2, 2), (2, 3), and (3, 2) [HS02,
Theorem II.2.1]. In the three cases when g = 1, the curves A1(ρ) are always rational. In the main
case of interest (2, 3) for this paper, the three-dimensional variety A2(3)= A2(ρ0) is rational [BN18].
However, for many ρ, including all surjective representations, it is proven in [CC20] that the variety
A2(ρ) is never rational. It is true, however, that there exists a degree 6 cover Aw2 (ρ) which is rational
[BCGP18, Lemma 10.2.4]. Thus while Theorem 1 corresponds to a parametrization of A1(ρ) for p = 3,
Theorem 2 corresponds to a parametrization of Aw2 (ρ). More precisely, the Torelli map M2→ A2 is
an open immersion, and the pullback of Aw2 (ρ) is the moduli space Mw

2 (ρ) of genus two curves of the
form (1-1) whose Jacobians give rise to ρ, and it is Mw

2 (ρ) which we explicitly parametrize. The retreat
to this cover is optimal in the sense that six is generically the minimal degree of any dominant rational
map from P3

Q
to A2(ρ) [CC20]. We mention in passing that our arguments give an alternative proof of

[BCGP18, Lemma 10.2.4].
There is a natural generalization of the varieties Ag(ρ). Namely, for any m ∈ F×p , one can require

instead an isomorphism i : (V,∧2) ' (VA,m∧2
A). For m/m′ a square, the corresponding varieties are

canonically isomorphic, so that one gets a new moduli space only in the case of p odd. We denote this
new moduli space involving “antisymplectic” isomorphisms by A∗g(ρ). Our policy throughout this paper
is to focus on Ag(ρ) and be much briefer about parallel results for A∗g(ρ).

2. Elliptic curves with fixed 3-torsion

In this section, as a warm up to Section 3, we rederive the formulas in [LR96] describing elliptic curves
with fixed 3-torsion from the invariant theory of the group Sp2(F3) as in [Fis12]. Many of the steps in
the derivation transfer with no theoretical change to our main case of abelian surfaces. We present these
steps in greater detail here, because space allows us to give explicit formulas right in the text. Throughout
this section and the next, we present the derivations in elementary language which stays very close to
the computations involved. Only towards the end of the sections do we recast the results in the moduli
language of the introduction.

2.1. Elliptic curves and their 3-torsion. Let a and b be rational numbers such that the polynomial dis-
criminant 1poly =−4a3

− 27b2 of x3
+ ax + b is nonzero and consider the elliptic curve X over Q with

affine equation
y2
= x3
+ ax + b. (2-1)

We emphasize the discriminant 1(a, b) = 1 = 241poly in the sequel, because it makes Section 2.7
cleaner.

By a classical division polynomial formula, the eight primitive 3-torsion points (x, y) ∈ C2 are exactly
the points satisfying both (2-1) and

3x4
+ 6ax2

+ 12bx − a2
= 0. (2-2)



94 FRANK CALEGARI, SHIVA CHIDAMBARAM, AND DAVID P. ROBERTS

Equations (2-1) and (2-2) together define an octic algebra over Q. Rather than work with the two gener-
ators x and y and the two relations (2-1) and (2-2), we will work with z, the slope of a tangent line to
the elliptic curve at the 3-torsion point (x, y). Then z2

= 3x and assuming a 6= 0 to avoid inseparability
issues, the algebra in question is the quotient K := Ka,b of Q[z] coming from the equation

F(a, b, z) := z8
+ 18az4

+ 108bz2
− 27a2

= 0. (2-3)

2.2. Sp2(F3) and related groups. For generic (a, b), the Galois group of the polynomial F(a, b, z) is
GSp2(F3) = GL2(F3). The discriminant of F(a, b, z) is −28321a214. Thus the splitting field K ′a,b of
F(a, b, z) contains E = Q(

√
−3) for all a, b. The relative Galois group Gal(K ′a,b/E) is Sp2(F3) =

SL2(F3). We will generally use symplectic rather than linear language in the sequel, to harmonize our
notation with our main case of genus two. Also we will systematically use ω = exp(2π i/3) = (−1+
√
−3)/2 as our preferred generator for E .
To describe elliptic curves with fixed 3-torsion, we use that (2-3) arises as a generic polynomial in

the invariant theory of Sp2(F3). The invariant theory is simple because Sp2(F3) =
〈(1

1
0
1

)
,
( 1

0
1
1

)〉
can be

realized as a complex reflection group by sending the generators in order to

g1 =

(
ω ω− 1
0 1

)
, g2 =

(
1 0

(ω− 1)/3 ω

)
. (2-4)

The matrices g1 and g2 are indeed complex reflections because all but one eigenvalue is 1. In our study
of the image ST 4= G = 〈g1, g2〉, the subgroup H = 〈g1〉 will play an important role. Here our notation
ST 4 refers to the placement of G in the Shephard–Todd classification of the thirty-seven exceptional
irreducible complex reflection groups sorted roughly by increasing size [ST54, Table VII].

For both the current case of n = 2 and the main case of n = 4, we are focused principally on three
irreducible characters of Spn(F3), the unital character χ1 and a complex conjugate pair χna and χnb.
Here χna corresponds to the representations (2-4) and (3-2) on V = En . Just as invariant is used for
polynomials associated to χ1, we will use the terms covariant and contravariant for polynomials similarly
associated to χna and χnb respectively.

The left half of Table 1 shows how the three characters 1, χ2a , and χ2b fit into the entire character
theory of Sp2(F3). For example, via ω+1=−ω and its conjugate, g1 and g2 lie in the classes 3A and 3B
respectively. While this information is clarifying, it is not strictly speaking needed for our arguments.

The right half of Table 1 gives numerical information that will guide our calculation with explicit
polynomials in the next subsections. The characters are orthonormal with respect to the Hermitian inner
product 〈 f, g〉 = |G|−1∑

C |C | f (C)g(C). Let φk =
∑

i 〈χi , φk〉χi be the character of the k-th symmetric
power Symk V . The multiplicities 〈χi , φk〉 for k ≤ 8 are given in the right half of Table 1. These numbers
are given for arbitrary k by

∑
∞

k=0〈χi , φk〉xk
= Ni (x)/((1−x4)(1−x6)). The character of the permutation

representation of G on the coset space G/H is φG/H = χ1+χ3+χ2a +χ2b. If W has character χi then
the dimension of the subspace W H of H -invariants is 〈χi , φG/H 〉. So dim(W H )= 1 if i ∈ {1, 2a, 2b, 3}
and dim(W H )= 0 if i ∈ {1a, 1b, 2}.
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|C | 1 1 4 4 6 4 4 〈χi , φk〉

C 1A 2A 3A 3B 4A 6A 6B 0 1 2 3 4 5 6 7 8 Ni (x)

χ1 1 1 1 1 1 1 1 1 1 1 1 1
χ1a 1 1 ω ω 1 ω ω 1 1 x4

χ1b 1 1 ω ω 1 ω ω 1 x8

χ2 2 −2 −1 −1 0 1 1 1 1 x5
+ x7

χ2a 2 −2 −ω −ω 0 ω ω 1 1 1 2 x + x3

χ2b 2 −2 −ω −ω 0 ω ω 1 1 1 x3
+ x5

χ3 3 3 0 0 −1 0 0 1 1 2 2 x2
+ x4
+ x6

Table 1. Character table of Sp2(F3) and invariant-theoretic information

2.3. Rings of invariants. The group G acts on the polynomial ring E[u, z] by the formulas induced
from the matrices in (2-4),

g1u = ωu+ (ω− 1)z, g2u = u,

g1z = z, g2z = (ω− 1)u/3+ωz.

Despite the appearance of the irrationality ω in these formulas, there is an important rationality present.
Namely we have arranged in (2-4) that g2

1 = g1 and g2
2 = g2. Accordingly G is stable under complex

conjugation, a stability not present in either the original Shephard and Todd paper [ST54, Section 4] or
in Magma’s implementation ShephardTodd(4).

We can use stability under complex conjugation to interpret G and H as the E-points of group schemes
G and H over Q. Then actually G acts on Q[u, z]. All seven irreducible representations of G are defined
over Q, just like all three representations of the familiar group scheme H ∼= µ3, are defined over Q. In
practice, we continue thinking almost exclusively in terms of ordinary groups; these group schemes just
provide a conceptually clean way of saying that in our various choices below we can and do always take
all coefficients rational.

Define

w =
u3

3
+ u2z+ uz2, a =

wz
9
, b =

w2
− 6wz3

− 3z6

324
(2-5)

in Q[u, z]. Then the subrings of H - and G-invariants are respectively

Q[u, z]H =Q[w, z], Q[u, z]G =Q[a, b]. (2-6)

Giving u and z weight one, the elements w, a, and b clearly have weights 3, 4, and 6 respectively. If one
eliminates w from the last two equations of (2-5), then one gets the polynomial relation F(a, b, z)= 0 of
(2-3), explaining our choice of overall scale factors in (2-5). The fact that the rings on the right in (2-6)
are polynomial rings, rather than more complicated rings requiring relations to describe, comes exactly
from the fact that H and G are complex reflection groups, by the Chevalley–Shephard–Todd theorem
[Che55].
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2.4. Covariants and contravariants. The graded ring Q[w, z] is free of rank eight over the graded ring
Q[a, b]. Moreover there is a homogeneous basis 1, z2, z4, z6, α1, α3, β3, β5 with the following properties.
The exponent or index d gives the weight, and the elements αd and βd are in the isotypical piece of
Q[u, z]d corresponding to χ2a and χ2b respectively.

The covariants αd and the contravariants βd are each well-defined up to multiplication by a nonzero
rational scalar. Explicit formulas for particular choices can be found by simultaneously imposing the
G-equivariance condition and the H -invariance condition. We take

α1 = z, α3 =
w+ z3

6
, β3 =

w− z3

2
, β5 =

5wz2
+ 3z5

18
. (2-7)

Ideas from classical invariant theory are useful in finding these quantities. For example, the polynomials
in Q[u, z]3 which have the required G-equivariance property for contravariance are exactly the linear
combinations of the partial derivatives ∂ua and ∂za. The subspace fixed by H is the line spanned by
(∂u − ∂z)a. Thus β3 ∝ (∂u − ∂z)a and, in the same way, β5 ∝ (∂u − ∂z)b. Further the covariant α3 ∝ ∂u D,
where D3

=1(a, b).

2.5. New coefficients. While we call the unique (up to scalar) homogeneous H -invariant elements α1, α3

generating the χ2a isotypical pieces as covariants, Fisher defines in [Fis12] a covariant to be a tuple
defining an equivariant map Q[u, z]1→ Q[u, z]d . For d = 1, a covariant tuple is given by l1 = (u, z)
corresponding to the identity map. For d = 3, a covariant tuple is given as l3 = (α3,1, α3,2), where α3,2 :=

α3 and the first entry α3,1 is uniquely determined because of the required G-equivariance. Following
[Fis12], one can obtain new coefficients by evaluating the invariants a and b at the general covariant
tuple (u, z) = s · l1+ t · l3 = (su + tα3,1, sz+ tα3,2). This approach yields our answer immediately in
the case of g = 1, but becomes computationally difficult for g = 2. So we continue to treat covariants as
polynomials as in Section 2.4 and describe two approaches to obtain new coefficients.

The octic Q[a, b]-algebra Q[w, z] acts on itself by multiplication and so every element e in Q[w, z]
has an octic characteristic polynomial φ(e, u) ∈Q[a, b, u]. One has φ(z, u)= F(a, b, u) from (2-3). To
obtain the characteristic polynomial for a general e, one can express e as an element of Q(a, b, z) via
(2-7) and w= 9a/z. Then one removes z by a resultant to get the desired octic relation on e. Alternatively,
we could have calculated these characteristic polynomials by using 8-by-8 matrices; in Section 3.5 we
use the matrix approach.

Carrying out this procedure for the general covariant and contravariant gives

φ(sα1+tα3, u)=F(A(a, b, s, t),B(a, b, s, t), u), φ(sβ3+tβ5, u)=F(A∗(a, b, s, t),B∗(a, b, s, t), u),

with

3A(a, b, s, t)= 3as4
+18bs3t−6a2s2t2

−6abst3
−(a3

+9b2)t4,

9B(a, b, s, t)= 9bs6
−12a2s5t−45abs4t2

−90b2s3t3
+15a2bs2t4

−2a(2a3
+9b2)st5

−3b(a3
+6b2)t6,
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and A∗ and B∗ in the online supplement. As stated in the introduction, A and B when fully expanded
have 6 and 9 terms respectively and agree exactly with expressions in [LR96, Section 2].

The polynomials A and B and their starred versions are respectively of degrees four and six in s and t .
Also in the main case assign weights (4, 6,−1,−3) to (a, b, s, t) and in the starred case make these
weights (4, 6,−3,−5) instead. Then all four polynomials are homogeneous of weight zero.

2.6. Geometric summary. The following theorem summarizes our calculations in terms of moduli spaces.
The ρ of the introduction is the mod 3 representation of the initial elliptic curve, so to be more explicit
we write Aa,b rather than A1(ρ).

Theorem 1. Fix an equation y2
= x3
+ax+b defining an elliptic curve X over Q. Let Aa,b be the moduli

space of pairs (Y, i) with Y an elliptic curve and i : X [3] → Y [3] a symplectic isomorphism. Then Aa,b

can be realized as the complement of a discriminant locus Za,b in the projective line Proj Q[s, t]. The
natural map to the j-line A1 ⊂ Proj Q[A, B] has degree twelve and is given by

(A, B)= (A(a, b, s, t), B(a, b, s, t)). (2-8)

The formula y2
= x3
+ A(a, b, s, t)x + B(a, b, s, t) gives the universal elliptic curve X (s, t) over Aa,b.

The discriminant locus Za,b is given by the vanishing of the discriminant

1(A, B)=1(a, b)δ(a, b, s, t)3/27, δ(a, b, s, t)= 3s4
+ 6as2t2

+ 12bst3
− a2t4. (2-9)

It thus consists of four geometric points. Comparing with (2-2), one sees that these points are permuted
by Gal(Q/Q) according to the projective mod 3 representation into PGL2(F3) ∼= S4. Theorem 1 has a
direct analog for the covers A∗a,b→A1.

2.7. Finding (s, t). Let X : y2
= x3

+ ax + b and Y : y2
= x3

+ Ax + B be elliptic curves over
Q with isomorphic 3-torsion. Then, in contrast with the analogous situation for the genus two case
described in Section 3.7, it is very easy to find associated (s, t) ∈ Q2. Namely, (2-8) and its analog
(A, B) = (A∗(a, b, s, t), B∗(a, b, s, t)) each have twenty-four solutions in C2. One just extracts the
rational ones, say by eliminating s and factoring the resulting degree twenty-four polynomials f (t) and
f ∗(t). If the image of Gal(Q/Q) is all of GSp2(F3)= GL2(F3), then one of these polynomials factors
as 1+ 1+ 6+ 8+ 8 and the other as 12+ 12. The two 1’s correspond to the desired solutions ±(s, t).

Discriminants are useful in distinguishing the two moduli spaces as follows. If Y has the form X (s, t)
then 1X/1Y is a perfect cube by (2-9). If it has the form X∗(s, t) then 1X1Y is a perfect cube by
the starred analog of (2-9). These implications determine a unique space on which Y represents a point
unless 1X and 1Y are both perfect cubes. Since x3

−1 is a resolvent cubic of the octic (2-3), this
ambiguous case arises if and only if the image 0 of ρX has order dividing 16.

As an example, let (a, b) = (−1, 0) so that X has conductor 25 and discriminant 26. Let (A, B) =
(−27,−162) so that Y has conductor 2533 and discriminant −2939. The octic polynomials F(a, b, z)
and F(A, B, z) define the same field because under Pari’s polredabs they each become z8

+ 6z4
− 3.

http://msp.org/obs/2020/4-1/obs-v4-n1-x01-MathematicaMatrixCode.zip
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This polynomial has Galois group of order 16. The procedure in the first paragraph yields solutions only
in the starred case, these being (s, t)=±

(
−

1
2 ,

3
2

)
.

An elliptic curve Y can give rise to a point on both moduli spaces constructed from X if and only if
the two moduli spaces coincide. The spaces coincide exactly when there is an equivariant isomorphism
(X [3],∧)' (X [3],−∧) where ∧ is the Weil pairing. Such an isomorphism exists if and only if X [3] is
either a twist of ρ0 = Z/3Z⊕µ3 or when X [3] is irreducible but not absolutely irreducible. (The latter
occurs precisely when the image factors through the nonsplit Cartan subgroup F×9 and has order > 2;
this case does not arise over Q.) An instance over Q is X = Y coming from (a, b)= (5805,−285714)
which is the modular curve X0(14) of genus one and discriminant −21831273; here (s, t)=±(1, 0) in
the main case and 263472(s, t)=±(435, 11) in the starred case.

3. Abelian surfaces with fixed 3-torsion

In this section, we present our main theorem on abelian surfaces with fixed 3-torsion. We are brief on
parts of the derivation which closely follow steps described in the previous section, and concentrate on
steps which have a new feature.

3.1. Weierstrass curves and their 3-torsion. By a Weierstrass curve in this paper we will mean a genus
two curve together with a distinguished Weierstrass point. Placing this marked point at infinity and
shifting the variable x , one can always present a Weierstrass curve via the affine equation (1-1), which
we call a Weierstrass equation. Replacing (a, b, c, d) by (u4a, u6b, u8c, u10d) yields an isomorphic
Weierstrass curve via the compensating change (x, y) 7→ (u2x, u5 y). The standard discriminant of the
genus two curve (1-1) is 1(a, b, c, d) = 1 = 281poly, where 1poly is the discriminant of the quintic
polynomial on the right of (1-1). It is best for our purposes to give the parameters a, b, c, and d weights
12, 18, 24, and 30. In this system, 1 is homogeneous of weight 120. The (coarse) moduli space of
Weierstrass curves Mw

2 is then the complement of the hypersurface 1 = 0 in the weighted projective
space P3(12, 18, 24, 30)= P3(2, 3, 4, 5). As explained at the end of Section 1.2, rather than describing
moduli spaces mapping to A2, we will be describing their base changes to Mw

2 .
The group law in terms of effective divisors on the Jacobian of a general genus two curve X : y2

=

f (x) yields a classical Gal(Q/Q)-equivariant bijection [CF96] from the nonzero 3-torsion points to
decompositions of the form

f (x)= (b4x3
+ b3x2

+ b2x + b1)
2
− b7(x2

+ b6x + b5)
3.

In the quintic case of (1-1), one has b2
4 = b7. The minimal polynomial of b−2

4 is a degree 40 polynomial
p40 such that p40(x2) describes the 3-torsion representation of X .

In our reflection group approach, it is actually p40(z6) which appears naturally. It has 1673 terms and
begins as

F(a, b, c, d, z)= z240
+ 15120az228

+ 2620800bz222
− 504(70227a2

− 831820c)z216

− 1965600(2529ab− 33550d)z210
+ · · · . (3-1)
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The splitting field of F(a, b, c, d, z) is the compositum of the splitting fields of p40(x2) and x3
−1.

In particular, having chosen a Weierstrass equation, the field E(11/3) remains constant throughout our
family of Weierstrass equations, even though E(11/3) is not determined by the 3-torsion representation.
On the other hand, the change of coordinates (x, y) 7→ (u2x, u5 y) maps 1 to u401, and so this auxil-
iary choice places no restrictions on the Weierstrass curves which can occur in the family. In contrast,
when g = 1, the field E(11/3) also remains constant, but in this case it is determined by the 3-torsion
representation as it is the fixed field of the 2-Sylow of the image of Gal(Q/E) in Sp2(F3).

3.2. Sp4(F3) and related groups. Define g1, g2, g3, and g4 to be
1 0 0 0
0 1 0 0
0 0 ω 0
0 0 0 1

 ,

α −α −α 0
−α α −α 0
−α −α α 0
0 0 0 1

 ,


1 0 0 0
0 ω 0 0
0 0 1 0
0 0 0 1

 ,

α α 0 α

α α 0 −α
0 0 1 0
α −α 0 α

 , (3-2)

where α = ω/
√
−3. Define

H = 〈g1, g2, g3〉 and G = 〈g1, g2, g3, g4〉.

The matrices gi are all complex reflections of order 3, and they are exactly the matrices given in [ST54,
10.5]. As with H = C3 and G = ST 4 = Sp2(F3) of the last section, the new groups H = ST 25 and
G = ST 32 are also complex reflection groups. The group G has the structure C3× Sp4(F3) and it is the
extra C3 that is the reason that 1 behaves differently in the two cases.

Again numeric identities guide polynomial calculations as we discussed around Table 1. For example,
orders are products of degrees of fundamental invariants. Analogous to the old cases |C3| = 3 and
|Sp2(F3)| = 4 · 6, the new cases are |H | = 6 · 9 · 12 and |G| = 12 · 18 · 24 · 30. Thus again the index
|G|/|H | = 240 matches the degree of the main polynomial (3-1). The character table of G has size
102× 102, so we certainly will not present the analog of Table 1. The most important information is that
the degrees in which co- and contravariants live, previously 1, 3 and 3, 5, are now 1, 7, 13, 19 and 11,
17, 23, 29 for G.

3.3. Rings of invariants. One has the rationality condition g2
i = gi for all four i , allowing us again to

interpret H and G as E-points of group schemes H and G over Q. The matrices gi together give an
action of G on Q[z1, z2, z3, z4]. The variable z = z4 plays a role which is different from the other zi .

Define, following [Hun96, 4.72],

p = z6
1+ z6

2+ z6
3− 10(z3

2z3
3+ z3

2z3
1+ z3

3z3
1),

q = (z3
1− z3

2)(z
3
2− z3

3)(z
3
3− z3

1),

r = (z3
1+ z3

2+ z3
3)[(z

3
1+ z3

2+ z3
3)

3
+ 216z3

1z3
2z3

3].

Also define a, b, c, and d by taking (24375a, 263952b, 2831253c, 21031655d) to be
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−p2
−5r+1320qz3

−132pz6
−6z12,

p3
−400q2

−5pr−680pqz3
+323p2z6

−255r z6
−7480qz9

+68pz12
−4z18,

2p4
−800pq2

−5p2r+320p2qz3
−3000qrz3

−722p3z6
+175200q2z6

+990prz6
+33040pqz9

−953p2z12
+3495r z12

+15720qz15
+268pz18

−3z24,

13p5
−6000p2q2

−25p3r+21600p3qz3
−9600000q3z3

−45000pqrz3
+11790p4z6

−4572000pq2z6

−37575p2r z6
+28125r2z6

−247200p2qz9
−945000qrz9

+37155p3z12
+234000q2z12

−150075prz12
−214200pqz15

+30855p2z18
−143775r z18

+354600qz21
+2340pz24

−12z30).
Because H and G are complex reflection groups, the rings of invariants are freely generated, explicit
formulas being

Q[z1, z2, z3, z]H =Q[p, q, r, z], Q[z1, z2, z3, z]G =Q[a, b, c, d].

When one removes p, q, r from the equations defining a, b, c, d, one gets exactly the degree 240
equation (3-1) for z.

3.4. Covariants and contravariants. As mentioned before, group-theoretic calculations like those in
Table 1 say that covariants lie in degrees 1, 7, 13, and 19. Formulas for H -invariant covariants in these
degrees are

α1 = z, 22335α7 = 7pz− 3z7, 2436α13 = (11r − 3p2)z+ 216qz4
+ 72pz7,

24310α19 = (p3
− pr − 468q2)z− 24pqz4

+ (66r − 6p2)z7
− 288qz10

− 12pz13.

Here, unlike in the genus one case, there is an ambiguity beyond multiplying by a nonzero scalar. Namely
rather than working with α13 we could work with any linear combination of aα1 and α13 that involves α13

nontrivially. Similarly we could replace α19 by c1bα1+ c7aα7+ c19α19 for any nonzero c19. The choices
involved in picking particular contravariants βk mirror the choices involved in picking αk−10. Our choice
of (β11, β17, β23, β29) is given in the online supplement. Just as in Section 2.4, the contravariants βk can
be described in terms of partial derivatives of the invariants. To be precise, we take (β11, β17, β23, β29)=

(∂za, ∂zb, ∂zc, ∂zd).

3.5. New coefficients. Each covariant element αd is the last entry of a uniquely determined covariant
tuple ld of length 4 defining an equivariant map Q[z1, z2, z3, z]1→Q[z1, z2, z3, z]d . By evaluating the
invariants a, b, c, d at the general covariant tuple i.e., by setting (z1, z2, z3, z)= s ·l1+ t ·l7+u ·l13+v ·l19,
one can theoretically obtain the new coefficients. For computational reasons, we instead follow the matrix
approach as stated in Section 2.5.

Our key computation takes place in the algebra Q[p, q, r, z] of H -invariants viewed as a graded
module over the algebra Q[a, b, c, d] of G-invariants. As a graded basis we use pi q jr kzl with 0 ≤
i, j, k < 2 and 0≤ l < 30. Repeatedly using the vector equation in Section 3.3, we expand the products

αe pi q jr kzl
=

∑
I,J,K ,L

M(e)i, j,k,l
I,J,K ,L p I q J r K zL

http://msp.org/obs/2020/4-1/obs-v4-n1-x01-MathematicaMatrixCode.zip
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to represent the covariants αe as 240-by-240 matrices M(e) with entries in Q[a, b, c, d]. The general
covariant

Z = sα1+ tα7+ uα13+ vα19 (3-3)

satisfies the characteristic polynomial of M = s M(1)+ t M(7)+ uM(13)+ vM(19). In other words, Z
satisfies a degree 240 polynomial equation

F(A, B,C, D, Z)= Z240
+ c2 Z228

+ c3 Z222
+ c4 Z216

+ c5 Z210
+ · · · = 0

with F from (3-1). We need to calculate A, B, C , D in terms of the free parameters a, b, c, d, s, t , u,
and v. Define normalized traces τn by

6τn = Tr(M6n)=
∑

i+ j+k+l=6n

( 6n
i, j, k, l

)
si t j ukvl Tr(M(1)i M(7) j M(13)k M(19)l).

Because the first trace τ1 is 0, standard symmetric polynomial formulas simplify, giving (c2, c3, c4, c5)=

(−τ2/2, τ3/3, τ 2
2 /8− τ4/4, τ2τ3/6− τ5/5). Then (3-1) yields

(A, B,C, D)=
(
−τ2

30240
,
−τ3

7862400
,

3667τ 2
2 − 5600τ4

9390915072000
,

2521τ2τ3− 2688τ5

886312627200000

)
. (3-4)

The matrices Mk have entries in Q[a, b, c, d, s, t, u, v] and for k = 1, . . . , 6 they take approximately
2, 10, 40, 125, 300, and 675 megabytes to store. The matrix M6 suffices to determine A because the
evaluation of Tr(M12)=Tr(M6

·M6) does not require the full matrix multiplication on the right. However
we would not be able to continue in this way to the needed M15. In contrast, the M(e) have entries only
in Q[a, b, c, d] and take less space to store. The worst of the M(e) j that we actually use in the above
expansion is M(19)15, which requires about 210 megabytes to store. By getting the terms in smaller
batches and discarding matrix products when no longer needed, we can completely compute all of A, B,
C , and D without memory overflow. In principle, one could repeat everything in the contravariant case,
although here the initial matrix M∗ takes twice as much space to store as M .

The polynomials A, B, C , and D have respectively degrees 12, 18, 24, and 30 in s, t , u, and v. Also,
assign weights (12, 18, 24, 30,−1,−7,−13,−19) to (a, b, c, d, s, t, u, v). Then all four polynomials
are homogeneous of weight zero. The bigradation allows A, B, C , and D to have 14671, 112933, 515454,
and 1727921 terms respectively. With our choice of α13 and α19, respectively 67, 170, 100, and 824 of
these terms vanish, so A, B, C , and D have the number of terms reported in the introduction. Not only
do the polynomials have many terms, but the coefficients can have moderately large numerators. The
largest absolute value of all the numerators is achieved by the term

230
· 33
· 523
· 1381131815224116413 · a3bc5d10u16v14

in D. On the another hand, denominators of the coefficients in A, B, C , and D always divide 5, 52, 53,
and 55 respectively.
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3.6. Geometric summary. We now summarize our results in the following theorem. The ρ of Section 1.2
is the mod 3 representation of the initial genus two curve (1-1). So, to be more explicit, we write
Ma,b,c,d =Mw

2 (ρ) below.

Theorem 2. Fix an equation y2
= x5
+ ax3

+ bx2
+ cx + d defining a curve X over Q. Let Ma,b,c,d be

the moduli space of pairs (Y, i) with Y a Weierstrass curve and i : Jac(X)[3] → Jac(Y )[3] a symplectic
isomorphism on the 3-torsion points of their Jacobians. Then Ma,b,c,d can be realized as the complement
of a discriminant locus Za,b,c,d in the projective three-space Proj Q[s, t, u, v]. The covering maps to the
moduli space Mw

2 ⊂ Proj Q[A, B,C, D] have degree 25920 and are given by

(A, B,C, D)= (A(a, . . . , v), B(a, . . . , v),C(a, . . . , v), D(a, . . . , v)). (3-5)

The formula

y2
= x5
+ A(a, . . . , v)x3

+ B(a, . . . , v)x2
+C(a, . . . , v)x + D(a, . . . , v) (3-6)

gives the universal Weierstrass curve X (s, t, u, v) over Ma,b,c,d .

The discriminant locus Za,b,c,d is given by the vanishing of the discriminant

1(A(a, . . . , v), . . . , D(a, . . . , v))=1(a, b, c, d)δ(a, b, c, d, s, t, u, v)3. (3-7)

where δ is homogeneous of degree 40 in s, t , u, v. Geometrically, Za,b,c,d is the union of forty planes
and these planes are permuted by Gal(Q/Q) according to the roots of p40 from the end of Section 3.1.
While the fibers of Ma,b,c,d over Mw

2 are projective spaces, the entire space defines a nontrivial projective
bundle which can be determined explicitly from our equations in terms of Pic(Mw

2 ) (for more details, see
the blog post [Cal20], in particular the comments of Najmuddin Fakhruddin). In principle, Theorem 2 has
a direct analog for M∗

a,b,c,d →Mw
2 . The online supplement only gives the starred coefficients evaluated

at (a, b, c, d, 1, 0, 0, 0), as this is sufficient for moving from one moduli space to the other.

3.7. Finding (s, t, u, v). Let X and Y be Weierstrass curves over Q having isomorphic 3-torsion and
given by coefficient sequences (a, b, c, d) and (A, B,C, D) respectively. Then finding associated ratio-
nal (s, t, u, v) is both theoretically and computationally more complicated than in the genus one case of
Section 2.7.

As in the genus one case, for (3-5) to have a solution, the ratio 1X/1Y must be a perfect cube by (3-7).
Similarly, for the starred version of (3-5) to have a solution the product 1X1Y must be a perfect cube.
The theoretical complication was introduced at the end of Section 3.1: the class modulo cubes of the
discriminant now depends on the model via 1(u4 A, u6 B, u8C, u10 D) = u401(A, B,C, D). So as a
preparatory step one needs to adjust the model of Y to some new (A, B,C, D) before seeking solutions
to (3-5), and also to some typically different (A∗, B∗,C∗, D∗) before seeking solutions to the starred
analog of (3-5).

Having presented Y properly, one then encounters the computational problem. Namely both (3-5) and
its starred version have 155520 solutions (s, t, u, v) ∈ C4, and so one cannot expect to find the rational

http://msp.org/obs/2020/4-1/obs-v4-n1-x01-MathematicaMatrixCode.zip
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ones by algebraic manipulations. Working numerically instead, one gets 240 solutions (p, q, r, z) ∈
C4 to the large vector equation in Section 3.3. Eight of these solutions are in R4. These vectors
yield eight vectors (α1, α7, α13, α19) ∈ R4 from the covariants in Section 3.4, and also eight vectors
(β11, β17, β23, β29) ∈ R4. Let Z and Z∗ respectively run over the eight real roots of F(A, B,C, D,U )
and F(A∗, B∗,C∗, D∗,U ). Then one can apply the LLL algorithm to find low height relations of the
form (3-3) and its starred variant

Z∗ = sβ11+ tβ17+ uβ23+ vβ29.

When the image of Gal(Q/Q) on 3-torsion is sufficiently large then there will just be a single pair of
solutions ±(s, t, u, v) from the eight equations of one type and none from the other eight equations. The
online supplement provides a Mathematica program findisos to do all steps at once. Examples are
given in Sections 4.2 and 4.3.

4. Complements

The four subsections of this section can be read independently.

4.1. A matricial identity. The polynomials A, B, C , and D in Theorem 2 satisfy the matricial identity

E(A(a, . . . , v), B(a, . . . , v),C(a, . . . , v), D(a, . . . , v), S, T,U, V )= E(a, b, c, d,M(S, T,U, V )t ),

where E can be any one of A, B, C , D, and M is a 4× 4 matrix with entries in Q[a, b, c, d, s, t, u, v]
whose first column is (s, t, u, v)t . The columns of M are homogeneous of degrees 1, 7, 13, 19 in s, t, u, v,
and the rows are homogeneous of degrees −1,−7,−13,−19 with respect to the weights assigned in
Section 3.5.

The situation in the g = 1 case is analogous but enormously simpler:

A(A(a, b, s, t), B(a, b, s, t), S, T )= A(a, b,M(S, T )t),

B(A(a, b, s, t), B(a, b, s, t), S, T )= B(a, b,M(S, T )t),
M =

(
s −as2t − 3bst2

+ a2t3/3
t s3

+ ast2
+ bt3

)
Here, as is visible, columns of M have degrees 1 and 3 in s, t , while rows have weights −1 and −3 with
respect to the weights assigned in Section 2.5. The second column is in fact proportional to [−∂tδ, ∂sδ]

t ,
where δ is as in (2-9). Hence M is the matrix found in Lemma 8.4 of [Fis12], up to rescaling of the
columns.

The identities say that changing the initial Weierstrass curve to a different one in Ma,b,c,d has the
effect of changing the parametrization of the family through a linear transformation M of the covariants.
In fact, our first method of calculating the quantities E(a, . . . , v) exploited this ansatz. Starting from
a few curves with a = b = 0, computing covariants numerically, and changing bases so as to meet
the bigradation conditions of Section 3.5, we obtained the polynomials E(0, 0, c, d, s, t, u, v). We then
examined the matricial identity with a = b= 0. Comparing certain monomial coefficients, we determined
the second column of M precisely, the third column up to one free parameter, and the fourth column
up to two free parameters. This corresponds to the ambiguity in the covariants in degrees 13 and 19

http://msp.org/obs/2020/4-1/obs-v4-n1-x01-MathematicaMatrixCode.zip
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described in Section 3.4. Once a choice of M was made, comparing coefficients again and solving the
resulting linear equations determined the polynomials E(a, . . . , v) completely.

4.2. Examples involving Richelot isogenies. Let X and Y be Weierstrass curves and let I : Jac(X)→
Jac(Y ) be an isogeny with isotropic kernel of type (m,m) with m prime to 3. Then I induces an isomor-
phism ι : Jac(X)[3] → Jac(Y )[3] which is symplectic if m ≡ 1(3) and antisymplectic if m ≡ 2(3). In the
following examples, m = 2.

Let Xe, f,g be defined by (1-1) with

(a, b, c, d)= (−5(7e2
− 2 f ),−10e(3e2

− 2 f ), 5(32e4
− 39e2 f + g),−4e(24e4

+ 115e2 f − 5g)).

The discriminant of Xe, f,g is

1X =−21255(125e4
+ 20 f 2

− 4g)2(25e2 f − g)(25e2 f + g)2.

Define Ye, f,g to be the quadratic twist by 2 of Xe,− f,g. The form of (a, b, c, d) has been chosen so that
there is a Richelot isogeny from Jac(Xe, f,g) to Jac(Ye, f,g).

Let · be the involution of Q[e, f, g] given by (e, f , g)= (e,− f, g). To make 1X1Y a cube and avoid
denominators in (s, t, u, v), present Ye, f,g via

(A, B,C, D)= (az2, bz3, cz4, dz5)

with

z = 2354(125e4
+ 20 f 2

− 4g)4(25e2 f + g)6.

Applying the numeric method of Section 3.7 and interpolating strongly suggests

(s, t, u, v)=±(−4e(80e4
+ 7e2 f − g), 2(40e4

− 9e2 f − g),−4e(5e2
+ 2 f ), 5e2

+ 2 f ).

Specializing the contravariant matrix M(a, b, c, d, s, t, u, v)∗ of Section 3.5 to M(e, f, g)∗ allows di-
rect computation of its powers up through the needed fifteenth power. Applying (3-4) indeed recovers
(A, B,C, D) so that the interpolation was correct.

The examples of this subsection are already much simpler than the general case with its millions of
terms. For a smaller family of even simpler examples, now with all mod 3 representations nonsurjective,
one can set e = 0. Then b, d, B, D, s, and u are all 0, while a, c, A, C , t , and v are given by tiny
formulas.

4.3. Explicit families of modular abelian surfaces. Our main theorem gives a process by which modu-
larity of a genus two curve can be transferred to modularity of infinitely many other genus two curves.

Corollary 3. Suppose the genus two curve X : y2
= x5
+ ax3

+ bx2
+ cx + d has good reduction at 3,

and assume that A = Jac(X) satisfies all the conditions of [BCGP18, Propositions 10.1.1 and 10.1.3], so
that X is modular. Then all the curves X (s, t, u, v) or X∗(s, t, u, v) having good reduction at 3 are also
modular.
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The conclusion follows simply because the hypotheses imply that the new Jacobians also satisfy the
conditions of [BCGP18, Propositions 10.1.1, and 10.1.3] and are thus modular. In particular, for any
(s, t, u, v) ∈ P3(Q) reducing to (1, 0, 0, 0) ∈ P3(F3), the curves X and X (s, t, u, v) are identical modulo
3 and therefore X (s, t, u, v) is modular.

The hypotheses of [BCGP18, Propositions 10.1.1 and 10.1.3] include that the mod 3 representation ρ
is not surjective. The easiest way to satisfy the hypotheses is to look among X for which the geometric
endomorphism ring of Jac(X) is larger than Z. One such X , appearing in [CCG20, Example 3.3], is
given by

(a, b, c, d)=
(

12
5
,

12
52 ,

292
53 ,−

3672
55

)
,

having arisen from the simple equation y2
= (x2

+ 2x + 2)(x2
+ 2)x . This curve has conductor 215

and discriminant 1X = 223. Applying the corollary, one gets infinitely many modular genus two curves
X (s, t, u, v). For generic parameters, the geometric endomorphism ring of Jac(X (s, t, u, v)) is just Z.

It is much harder to directly find curves Y satisfying the hypotheses of [BCGP18, Propositions 10.1.1
and 10.1.3] and also satisfying EndQ(Jac(Y ))= Z. A short list was found in [CCG20]. The curve Y in
Example 3.3 there has

(A, B,C, D)=
(

27

5
,

211
· 57

52 ,−
212
· 503
53 ,

217
· 17943
55

)
and comes from the simple equation y2

= (2x4
+2x2

+1)(2x+3). It has conductor 2155 and Example 3.3
also observes that its 3-torsion is isomorphic to that of X .

While Y was found in [CCG20] via an ad hoc search, it now appears as just one point in an infi-
nite family. To see this explicitly, note that 1Y = 28356 so that 1Y /1X is a perfect cube. Numerical
computation as in Section 3.7 followed by algebraic verification yields

Y = X
(

129
125

,
11
25
,

3
100

,
1

20

)
.

If this procedure had failed, we would have found the proper X∗(s, t, u, v) by dividing (A, B,C, D) by
(24, 26, 28, 210) to make 1X1Y a cube.

4.4. Analogs for p = 2. Complex reflection groups also let one respond to the problem of the introduc-
tion for residual prime p = 2 and dimensions g = 2, 3, and 4 via descriptions of moduli spaces related
to Ag(ρ). A conceptual simplification is that since p = 2 one does not have the second collection of
spaces A∗g(ρ). Correspondingly, the relevant groups are actually reflection groups defined over Q, so
that covariants and contravariants coincide. The cases of dimension g = 3, 4 make fundamental use of
work of Shioda [Shi91].

We begin with the easiest case g = 2, because it shows clearly that our approach has classical roots in
Tschirnhausen transformations. Greater generality would be possible by using the symmetric group S6,
but we describe things instead using S5 to stay in the uniform context of Weierstrass curves. Let α1 be a
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companion matrix of x5
+ ax3

+ bx2
+ cx + d . For j = 2, 3, 4, let α j = α

j
1 − k j I where k j is chosen to

make α j traceless. Then the curve

y2
= det(x I − sα1− tα2− uα3− vα4)

has the same 2-torsion as the original curve. From this fact follows a very direct analog of Theorem 2,
with the new Ma,b,c,d ⊂ Proj Q[s, t, u, v] now mapping to the same Mw

2 ⊂ Proj Q[A, B,C, D] with
degree 120. Carrying out this easy computation, the elements A, B, C , and D of Q[a, b, c, d, s, t, u, v]
respectively have 24, 86, 235, and 535 terms. Of course there is nothing special about degree 5, and the
analogous computations in degrees 2g+ 1 and 2g+ 2 give statements about genus g hyperelliptic curves
with fixed 2-torsion.

For g = 3, we work with the moduli space Mq
3 of smooth plane quartics which maps isomorphically

to an open subvariety of A3. From the analog addressed in [CC20], we suspect that the varieties A3(ρ)

are in general not rational. To place ourselves in a clearly rational setting, we work with the moduli
space M f

3 of smooth plane quartics with a rational flex. This change is analogous to imposing a rational
Weierstrass point on a genus two curve, although now the resulting cover M f

3 →Mq
3 has degree twenty

four. A quartic curve with a rational flex can always be given in affine coordinates by

y3
+ (x3

+ a8x + a12)y+ (a2x4
+ a6x3

+ a10x2
+ a14x + a18)= 0. (4-1)

Here the flex in homogeneous coordinates is at (x, y, z) = (0, 1, 0) and its tangent line is the line at
infinity z = 0. Changing ad to udad gives an isomorphic curve via (x, y) 7→ (u4x, u6 y). The variety
M f

3 is the complement of a discriminant locus in the weighted projective space Proj Q[a2, . . . , a18] =

P6(2, . . . , 18). The invariant theory of the reflection group ST 36 = W (E7) = C2 × Sp6(F2) gives
polynomials Ai (a2, . . . , a18, s−1, . . . , s−17) of degree i in the s− j and total weight 0. Following the
template of the previous cases, for fixed (a2, . . . , a18) one has a six-dimensional variety Ma2,...,a18 ⊂

Proj Q[s−1, . . . , s−17] parametrizing genus three curves with a rational flex and 2-torsion identified with
that of (4-1). The covering maps Ma2,...,a18 →M f

3 now have degree |Sp6(F2)| = 1451520. The number
of terms allowed in Ai (a2, . . . , a18, s−1, . . . , s−17) by the bigradation is the coefficient of x i t19i in∏

d∈{2,6,8,10,12,14,18}

1
(1− td)(1− xtd)

. (4-2)

For i = 18, this number is 11, 617, 543, 745, so complete computations in the style of this paper seem
infeasible.

For g = 4, one needs to go quite far away from the 10-dimensional variety A4 to obtain a statement
parallel to the previous ones. Even the nine-dimensional variety M4 is too large because for a generic
genus four curve X corresponding to a point in M4, the image of Gal(Q/Q) in its action on Jac(X)[2]
is Sp8(F2), and this group is not a complex reflection group. However, one can work with the smooth
curves

y3
+ (a2x3

+ a8x2
+ a14x + a20)y+ (x5

+ a12x3
+ a18x2

+ a24x + a30)= 0 (4-3)
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and a corresponding seven-dimensional moduli space Ms
4 ⊂ P7(2, . . . , 30). For a generic curve in

(4-3), the image of Gal(Q/Q) is the index 136 subgroup O+8 (F2) : 2 of Sp8(F2). Now from the in-
variant theory of the largest Shephard–Todd group ST 37 = W (E8) = 2.O+8 (F2) : 2, one gets polyno-
mials Ai (a2, . . . , a30, s−1, . . . , s−29) and covering maps Ma2,...,a30 → Ms

4 of degree |O+8 (F2) : 2| =
348, 364, 800. Aspects of this situation are within computational reach; for example Shioda computed
the degree 240 polynomial F(a2, . . . , a30, z) analogous to (2-3) and (3-1). However the number of
allowed terms in Ai (a2, . . . , a30, s−1, . . . , s−29) is even larger than in the previous g = 3 case, being the
coefficient of x i t31i in the analog of (4-2) where d runs over {2, 8, 12, 14, 18, 20, 24, 30}. For i = 30,
this number is 100, 315, 853, 630, 512. We close the paper with this W (E8) case because it is here that
the paper actually began: the polynomial (3-1) for our main case C3× Sp4(F3) is also the specialization
F(0, 0, a12, 0, a18, 0, a24, a30, z) of Shioda’s polynomial.
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Lifting low-gonal curves for use in Tuitman’s algorithm

Wouter Castryck and Floris Vermeulen

Consider a smooth projective curve C over a finite field Fq , equipped with a simply branched morphism
C → P1 of degree d ≤ 5. Assume char Fq > 2 if d ≤ 4, and char Fq > 3 if d = 5. In this paper we
describe how to efficiently compute a lift of C to characteristic zero, such that it can be fed as input
to Tuitman’s algorithm for computing the Hasse–Weil zeta function of C/Fq . Our method relies on the
parametrizations of low rank rings due to Delone and Faddeev, and Bhargava.

1. Introduction

About 20 years ago, Kedlaya published an influential paper [22], showing how one can employ Monsky–
Washnitzer cohomology to efficiently compute Hasse–Weil zeta functions of hyperelliptic curves over
finite fields having small odd characteristic. Its many follow-up works include several generalizations
to geometrically larger classes of curves, first to superelliptic curves [18], then to Cab curves [13] and
then further to nondegenerate curves [6], i.e., smooth curves in toric surfaces. A more significant step
was taken in 2016, when Tuitman [28; 29] published a Kedlaya-style algorithm that potentially covers
arbitrary curves, and at the same time beats the methods from [6; 13] in terms of efficiency. Unfortunately,
the user of Tuitman’s algorithm is expected to provide a lift of the input curve to characteristic zero that
meets the technical requirements from [29, Assumption 1]. Beyond nondegenerate curves, this is a
nontrivial task. As a result, the exact range of applicability of Tuitman’s method remains unclear.

A partial approach to lifting curves having gonality at most four was sketched in [7], with concrete
details being limited to curves of genus five. In the current paper we present a different method, which
is faster, works for curves of gonality at most five, and is much easier to implement. Concretely, we
assume that we are given an absolutely irreducible curve over a finite field Fq of characteristic p > 2,
defined by a polynomial of the form

f d(x)yd
+ f d−1(x)yd−1

+ · · ·+ f 0(x) ∈ Fq [x, y] (1)

for some d ≤ 5. Moreover, the morphism ϕ from its nonsingular projective model C to the projective
line, induced by (x, y) 7→ x , is assumed to be simply branched of degree d; in other words, all fibers of
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Keywords: point counting, Tuitman’s algorithm, Delone–Faddeev correspondence, Bhargava correspondence.
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ϕ should consist of either d − 1 or d geometric points. Finally, if d = 5 then it is assumed that p > 3.
Then our method efficiently produces a lift satisfying the main requirement from [29, Assumption 1],
which therefore can be fed as input to Tuitman’s algorithm, modulo Heuristic H discussed below.

In terms of moduli, the locus of genus g curves admitting a simply branched morphism to P1 of
degree at most 5 has dimension min{2g + 5, 3g − 3} by a result of Segre [27]. For g = 6 and g ≥ 8
this exceeds the locus of nondegenerate curves (and hence the locus of curves for which point counting
was previously feasible) by four dimensions; see [10]. In particular, our lifting procedure applies to all
sufficiently general curves of genus g ≤ 8.

Remark 1.1. Expecting our curve to be given in the form (1) is essentially equivalent to assuming
knowledge of an Fq-rational degree d morphism C→ P1 that is simply branched, in contrast with the
assumptions from [7]. If such a morphism to P1 exists but is not known, then one can try to resort to
methods due to Schicho, Schreyer and Weimann [24] or Derickx [14, Section 2.3] for finding one.

Lifting strategy. Write q = pn and fix a degree n number field K in which p is inert. Let OK denote
its ring of integers and identify Fq with OK /(p). To lift the curve C means to produce a nonsingular
projective curve C/K whose reduction mod p is isomorphic to C/Fq ; necessarily, the genus of C should
be equal to that of C . Our actual goal is to lift the morphism ϕ, which means that we want to equip C with
a morphism ϕ :C→P1 reducing to ϕ :C→P1 mod p, up to isomorphism. Our approach to solving this
problem is based on the parametrization of low rank rings by Delone and Faddeev [17, Proposition 4.2],
and Bhargava [2; 3], in combination with algorithms due to Hess for computing reduced bases [21]. In
doing so, we will find concrete, typically nonplanar equations for C over Fq that have “free coefficients”,
which can be lifted to OK naively,1 in order to obtain a nonsingular projective curve C/K along with a
morphism ϕ : C→ P1 of the said kind. We refer to Section 2 for a more elaborate discussion.

Remark 1.2. In general, the polynomial (1), which defines a plane curve that is birationally equivalent
with C , is not liftable directly: there may be many singularities, which typically disappear when lifting
the coefficients of (1) naively to OK , causing an increase of the genus.

Remark 1.3. In Kedlaya’s original algorithm, corresponding to the case d = 2, an implicit first step is to
rewrite (1) into Weierstrass form. Indeed, Weierstrass models have “free coefficients” that can be lifted
naively to OK , always resulting in a hyperelliptic curve over K having the same genus. From now on
we assume d ≥ 3.

Through elimination of variables (i.e., projection) we then obtain a planar model of the form fd(x)yd
+

fd−1(x)yd−1
+· · ·+ f0(x)= 0, for polynomials fi ∈OK [x] which, in general, do not reduce to f i mod p;

here, the lifted morphism ϕ again corresponds to (x, y) 7→ x . The change of variables y← y/ fd(x) yields
a monic defining equation

Q(x, y)= yd
+ fd−1(x)yd−1

+ · · ·+ f0(x) fd(x)d−1, (2)

1Lifting a ∈ Fq \ {0} naively to OK means producing an element a ∈OK such that a mod p = a.
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having the right shape to serve as input for Tuitman’s algorithm. All subsequent arithmetic in Tuitman’s
algorithm is done in the p-adic completion Zq of OK (or rather its fraction field Qq), up to some finite
p-adic precision. But for the lifting step it suffices to work over OK , and this has some implementation-
technical advantages [7, Remark 2].

On Tuitman’s assumption. Let us discuss the specific requirements from [29, Assumption 1] in more
detail. A first assumption concerns the polynomial r(x)=1/ gcd(1, d1/dx) with 1 the discriminant
of (2), when viewed as a polynomial in y over OK [x]:

(a) The discriminant of r(x) is a unit in Zq .

Next, consider the ring R= Zq [x, 1/r, y]/(Q) and write Qq(x, y) for the field of fractions of R⊗Qq

and Fq(x, y) for the field of fractions of R⊗ Fq . A second assumption is that we know explicit matrices

W0 ∈ GLd(Zq [x, 1/r ]) and W∞ ∈ GLd(Zq [x±1, 1/r ])

such that, if we write b j,0 =
∑d−1

i=0 (W0)i+1, j+1 yi and b j,∞ =
∑d−1

i=0 (W∞)i+1, j+1 yi , then:

(b) {b0,0, . . . , bd−1,0} is an integral basis for Qq(x, y) over Qq [x] and its reduction mod p is an integral
basis for Fq(x, y) over Fq [x],

(c) {b0,∞, . . . , bd−1,∞} is an integral basis for Qq(x, y) over Qq [x−1
] and its reduction mod p is an

integral basis for Fq(x, y) over Fq [x−1
].

Finally, writing

R0 = Zq [x]b0,0+ · · ·+Zq [x]bd−1,0 and R∞ = Zq [x−1
]b0,∞+ · · ·+Zq [x−1

]bd−1,∞,

it is assumed that

(d) the discriminants of the finite Zq -algebras (R0/(r))red and (R∞/(1/x))red are units.

Here the subscript “red” means that we consider the reduced ring obtained by quotienting out the nilrad-
ical.2

The geometric meaning of assumptions (a) and (d) is discussed in [29, Proposition 2.3]; see also [28,
Remark 2.3]. They express that all branch points of ϕ : C→ P1, as well as all points lying over these
branch points, should be distinct mod p. In our context, these properties are automatic. Indeed, since
p > 2 and ϕ : C→ P1 is simply branched, there is no wild ramification, hence the ramification divisor
of ϕ reduces mod p to that of ϕ. Thus, again because ϕ is simply branched, we see that the ramification
points of ϕ must reduce to 2g+ 2d − 2 distinct points that take distinct images under ϕ, as wanted; here
g denotes the genus of C . We also see that ϕ is simply branched as well.

Assumptions (b) and (c), on the other hand, ask for an explicit description of our lift ϕ : C → P1

in terms of two affine patches ϕ−1(P1
\ {∞}) and ϕ−1(P1

\ {0}), glued together using W = W−1
0 W∞,

that is compatible with reduction mod p. In Tuitman’s own pcc_p and pcc_q code,3 the matrices W0

2This takes into account the erratum pointed out in https://jtuitman.github.io/erratum.pdf.
3https://github.com/jtuitman/pcc, see mat_W0() and mat_Winf() in coho_p.m and coho_q.m.

https://jtuitman.github.io/erratum.pdf
https://github.com/jtuitman/pcc
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and W∞ are found by computing integral bases for the function field extension K (x)⊆ K (C) defined
by (2), using the Magma intrinsic MaximalOrderFinite(), and hoping that these have good reduction
mod p. There is a nonzero probability that this approach fails, in which case Tuitman’s code outputs
“bad model for curve”, but in practice this probability become negligible very rapidly as q grows; see the
tables in [7]. We therefore content ourselves with relying on the same bet, which we call Heuristic H:

Definition 1.4 (informal). The output (2) satisfies Heuristic H if the associated integral bases of K (C)
over K [x] and K [x−1

], computed using Magma as in Tuitman’s implementation, meet the requirements
from [29, Assumption 1].

Of course, if through some other method one manages to find integral bases with good reduction, then
this would bypass Heuristic H. In particular, if d = 3 then, as explained in Remark 3.4, such integral
bases can be extracted as by-products of our lifting procedure.

Combined runtime. The running time of our lifting procedure is strongly dominated by that of Tuitman’s
algorithm, as should be clear from the discussions in Sections 3, 4 and 5 below. We will therefore omit
a detailed analysis, although it is crucial to note that lifting does not inflate the input size too badly.
Concretely, if we let δ =max0≤i≤d deg f i , then:

• The reader can check that all fi are of degree O(g), which in turn is O(δ) thanks to Baker’s bound
[1, Theorem 2.4].

• When lifting coefficients from Fq to OK naively, we can choose them to be of bit size O(n log q),
and as a result the same asymptotic estimate applies to the size of the coefficients of the fi .

• As discussed in [29, pages 313–314], the matrices W0,W∞ produced by the Magma intrinsic, as
well as their inverses, involve K (x)-coefficients whose pole orders are in O(δ), as required by [29,
Assumption 2]; for d = 3, the reader can check that the same bound applies to the integral bases
from Remark 3.4.

From [29, Theorem 4.10] it follows that Õ(pδ4n3) bit operations suffice for computing the Hasse–Weil
zeta function of any curve C/Fq of the form (1), where we recall our dependence on Heuristic H if
d = 4, 5.

Practical performance. This paper comes with an implementation of our lifting procedure in Magma [4],
which can be found in the online supplement. The arxiv version [8] of our paper contains an appendix
reporting on how the code performs in combination with Tuitman’s implementation for computing Hasse–
Weil zeta functions. As discussed there, this gives satisfactory results for d = 3 and d = 4, leading to
a substantial enlargement of the class of curves admitting fast computation of their zeta function (over
finite fields with small odd characteristic). In degree d = 5 the combined code is considerably slower.
This is almost entirely due to the seemingly harmless “elimination of variables” step, which is needed to
put the lifted curve C/K in the form (2) and which produces large hidden constants in the above O(g)
and O(n log q) estimates. Nevertheless, here too, it is practically feasible to compute zeta functions in a
nontrivial range.

http://msp.org/obs/2020/4-1/obs-v4-n1-x01-LiftingMagmaCode.zip
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Tracks for future work. Besides mitigating the effect of variable elimination and getting rid of Heuris-
tic H, a challenging goal is to dispose of the conditions on p and of the condition that ϕ is simply
branched. This seems to require changes to Tuitman’s algorithm that are similar to how Denef and
Vercauteren managed to make Kedlaya’s algorithm work in even characteristic [12]. Also, as explained
in Section 2, our naive lifting strategy using “free coefficients” is closely related to Schreyer’s proof [25,
Corollary 6.8] of the unirationality of Hg,d , the moduli space of simply branched degree d covers of P1

by curves of genus g, for d ≤ 5. Such unirationality results are known to be false for d ≥ 7, where there
is no hope for our strategy to work. This leaves d = 6 as an interesting open case, on which several
partial (positive) results have been proved by Geiss [20]; see [26, Figure 1] for an overview. It seems
worth investigating how Geiss’ results combine with our approach.

2. Preliminaries

Reduced bases and Maroni invariants. Let k be any field, which in the next sections will be specialized
to k = Fq and/or k = K . Consider a nonsingular projective curve C/k of genus g, along with a k-rational
degree d morphism ϕ : C→ P1. Consider the inclusion of function fields k(x)⊆ k(C) corresponding to
ϕ. Let k[C]0 and k[C]∞, denote the integral closure of k[x] and k[1/x] inside k(C), respectively.

Theorem 2.1. There exist unique negative integers r1 ≥ r2 ≥ · · · ≥ rd−1 for which there is a basis
1, α1, . . . , αd−1 of k[C]0 over k[x] such that 1, xr1α1, . . . , xrd−1αd−1 is a basis of k[C]∞ over k[1/x].

See [21] for a proof; it is standard to call ei =−ri−2 the Maroni invariants of C with respect to ϕ (e.g.,
if ϕ is a degree 2 cover, then there is just one Maroni invariant, namely g− 1). A corresponding basis
1, α1, . . . , αd−1 is called a reduced basis. In our cases of interest, the integers ri and an accompanying
reduced basis can be computed efficiently: if k is a finite field or a number field, then the Magma
command ShortBasis() takes care of this.

Remark 2.2. In more geometric language, the integers ri are characterized by the sheaf decomposition
ϕ∗OC ∼=OP1⊕OP1(r1)⊕OP1(r2)⊕· · ·⊕OP1(rd−1) which, according to a theorem due to Grothendieck,
is indeed unique. As a consequence to the Riemann–Roch theorem, the Maroni invariants satisfy the
following basic properties:

(i) −1≤ e1 ≤ e2 ≤ · · · ≤ ed−1,

(ii) e1+ e2+ · · ·+ ed−1 = g− d + 1,

(iii) ed−1 ≤ (2g− 2)/d .

Models with “free coefficients”. As mentioned in the introduction, every cover ϕ : C→ P1 of degree
3≤ d ≤ 5 admits a nonsingular projective model with “free coefficients” that can be lifted naively from
Fq to OK . This follows from Schreyer’s proof [25, Corollary 6.8] of the unirationality of Hg,d for d ≤ 5.
The natural ambient space for this model is a rational normal scroll, which can be obtained by gluing
together

(P1
\ {∞})×Pd−2 and (P1

\ {0})×Pd−2
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(0, 0) (2e2− e1+ 2, 0)

(2e1− e2+ 2, 3)(0, 3)

Figure 1. Polygon describing covers of degree 3.

in a nonstandard way; the gluing depends on the Maroni invariants e1, . . . , ed−1 of C with respect to ϕ.
We refer to [15; 25] for more details on this construction, as well as on the claims below. For the sake
of conciseness we only describe what the model looks like on the left copy A1

×Pd−2, which we equip
with coordinates x, Y1, . . . , Yd−1.

First assume that d = 3. Then C admits a defining equation of the form∑
l1+l2=3

fl1,l2(x)Y
l1
1 Y l2

2 = 0 (3)

with deg fl1,l2 ≤ l1e1+ l2e2+4−g, such that ϕ corresponds to projection on the x-coordinate. Conversely,
every irreducible polynomial of the form (3) defines a curve having genus at most g; this can also be seen
using Baker’s bound [1, Theorem 2.4], because the dehomogenization with respect to Y2 is supported on
the polygon from Figure 1. If equality holds then this polynomial defines a nonsingular projective curve
(on the entire rational normal scroll) and projection on the x-coordinate yields a degree 3 morphism to
P1 whose associated Maroni invariants are e1, e2.

Next, assume that d = 4. Then C arises as the intersection of two surfaces defined by∑
l1+l2+l3=2

fi,l1,l2,l3(x)Y
l1
1 Y l2

2 Y l3
3 = 0 (4)

for i=1, 2, where deg fi,l1,l2,l3≤ l1e1+l2e2+l3e3−bi for unique integers−1≤b1≤b2 with b1+b2= g−5,
called the Schreyer invariants of C with respect to ϕ. Conversely, every irreducible such intersection
defines a curve of genus at most g; this too can be seen using (a three-dimensional version of) Baker’s
bound [23, Theorem 1], by noting that the dehomogenizations with respect to Y3 are supported on the
polytopes from Figure 2. If equality holds then it concerns a nonsingular projective curve, and projection

(0, 0, 2)

(0, 0, 0)

(0, 2, 0) (2e2− bi , 2, 0)

(2e3− bi , 0, 0)
(2e1− bi , 0, 2)

Figure 2. Polytope describing covers of degree 4.
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on the x-coordinate defines a degree 4 morphism to P1 with associated Maroni invariants e1, e2, e3 and
Schreyer invariants b1, b2.

Finally, assume d = 5, which comes with five Schreyer invariants b1 ≤ · · · ≤ b5 summing up to 2g−12.
In this case C can be viewed as the intersection of five hypersurfaces, which are all obtained from a single
5× 5 skew-symmetric matrix M over k[x][Y1, Y2, Y3, Y4] whose (i, j)-th entry is of the form

M1,i, j (x)Y1+M2,i, j (x)Y2+M3,i, j (x)Y3+M4,i, j (x)Y4 (5)

with Mr,i, j (x) ∈ k[x] of degree at most er + bi + b j + 6− g. More precisely, our hypersurfaces are cut
out by the five 4× 4 sub-Pfaffians of M .4 Conversely, whenever the 4× 4 sub-Pfaffians of such a matrix
define an irreducible curve, it has genus at most g. If equality holds then it concerns a nonsingular
projective curve, and projection on the x-coordinate defines a degree 5 morphism to P1 with Maroni
invariants e1, e2, e3, e4 and Schreyer invariants b1, b2, b3, b4, b5.

Lifting strategy revisited. In the next sections we show how results on ring parametrizations due to
Delone and Faddeev [17, Proposition 2.4] and Bhargava [2; 3] can be used to efficiently produce such
a “free coefficient” model for our input curve C/Fq . Then, by the above discussion, and using that the
genus cannot increase under reduction mod p, any naive coefficient-wise lift of this model to OK will
define a nonsingular projective curve C/K along with a morphism ϕ : C→ P1 lifting C and ϕ.

Remark 2.3. From a nonalgorithmic viewpoint, the fact that the Delone–Faddeev and Bhargava cor-
respondences produce nonsingular curves in rational normal scrolls might have been known to some
specialists (e.g., for d = 3 this can be read in Zhao’s Ph.D. thesis [31]).

3. Lifting curves in degree d = 3

For R a PID, we recall that a ring of rank d over R is a commutative R-algebra which is free of rank
d as a module over R. Every ring S of rank d over R admits an R-basis of the form 1, α1, . . . , αd−1.
This can be seen by applying the structure theorem for finitely generated free modules over PIDs to the
submodule R · 1 of S.

Parametrizing cubic rings. Let R be a PID. Cubic rings over R admit a parametrization using binary
cubic forms over R, considered modulo a natural action by GL2(R): for an element

A =
(

a b
c d

)
∈ GL2(R),

and f = f3Y 3
1 + f2Y 2

1 Y2+ f1Y1Y 2
2 + f0Y 3

2 a cubic form over R, we let

A ∗ f (Y1, Y2)=
1

det A
f (aY1+ cY2, bY1+ dY2).

4The square roots of the determinants of the five 4× 4 skew-symmetric submatrices.
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Theorem 3.1 (Delone–Faddeev). There is a canonical bijection between the set of cubic R-rings up to
isomorphism and binary cubic forms over R, modulo the action of GL2(R).

For a proof see e.g., [17, Proposition 4.2]. For use below we briefly describe how this bijection is
constructed. Let S be a cubic R-ring with basis 1, α1, α2. By adding elements of 1 · R to α1 and α2 we
can assume that α1α2 is in R. We call such bases normal. Now write out the multiplication table of S:

α1α2 =−g0,

α2
1 =−g1+ f2α1− f3α2,

α2
2 =−g2+ f0α1− f1α2.

(6)

By associativity of S we have α2
1 ·α2 = α1 · (α1α2) and α1 ·α

2
2 = (α1α2) ·α2. This gives

g0 = f0 f3,

g1 = f1 f3,

g2 = f0 f2,

(7)

so the gi are determined by the fi . One then associates to S the cubic form f = f3Y 3
1 + f2Y 2

1 Y2+ f1Y1Y 2
2 +

f0Y 3
2 . Conversely, given such a form f , associate to this the cubic ring, formally equipped with basis

1, α1, α2 and multiplication defined by (6) and (7). The GL2(R)-action on cubic forms corresponds
precisely to changing one normal basis to another on the level of cubic rings.

Remark 3.2. A cubic form f = f3Y 3
1 + f2Y 2

1 Y2+ f1Y1Y 2
2 + f0Y 3

2 is irreducible if and only if its associated
cubic R-ring is a domain. In this case, we may describe it as the subring of

Frac
(

R[y]
( f3 y3+ f2 y2+ f1 y+ f0)

)
generated by 1, α1 = f3 y, α2 =− f0 y−1

= f3 y2
+ f2 y+ f1. This point of view is especially nice when

R = k[x] for some field k. Indeed, then f (y, 1) = 0 defines a curve in A2 over k and the cubic ring
associated to f has as its field of fractions the function field of this curve.

Lifting degree 3 covers. Consider the function field

Fq(C)= Frac
(

Fq [x, y]

( f 3 y3+ f 2 y2+ f 1 y+ f 0)

)
defined by our input polynomial, and consider the integral closure Fq [C]0 of Fq [x] inside it; this is a cubic
Fq [x]-ring. Let e1, e2 be the Maroni invariants of C with respect to ϕ and let 1, α1, α2 be a corresponding
reduced basis. After adding to α1 and α2 elements of Fq [x] we may assume that this basis is normal.
In more detail, if α1α2 = aα1 + bα2 + c, for a, b, c ∈ Fq [x], then we replace α1 by α1 − b and α2 by
α2− a. This operation will not change the fact that the basis is reduced. Applying the Delone–Faddeev
correspondence to this basis produces a new cubic form

f (Y1, Y2)= f 3Y 3
1 + f 2Y 2

1 Y2+ f 1Y1Y 2
2 + f 0Y 3

2
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whose coefficients we, abusingly, again denote by f i .

Lemma 3.3. Let f be obtained through the Delone–Faddeev correspondence as above. Then this is a
model for C of the form (3).

Proof. Note that the curve f (y, 1)= 0 is indeed birationally equivalent with C , in view of Remark 3.2.
Denote by e1, e2 the Maroni invariants of C . Since 1, α1, α2 is a reduced basis, the elements 1, x−e1−2α1,
x−e2−2α2 form a basis for Fq [C]∞, the integral closure of Fq [x−1

] inside Fq(C). Writing out the multi-
plication for this ring gives

x−e1−e2−4α1α2 =−x−e1−e2−4 f 0 f 3,

x−2e1−4α2
1 =−x−2e1−4 f 1 f 3+ x−e1−2 f 2x−e1−2α1− x−2e1+e2−2 f 3x−e2−2α2,

x−2e2−4α2
2 =−x−2e2−4 f 0 f 2+ x−2e2+e1−2 f 0x−e1−2α1− x−e2−2 f 1x−e2−2α2.

Since the coefficients of this table must be elements of Fq [x−1
]we see that deg f i ≤ (i−1)e1+(2−i)e2+2

for i = 1, 2, hence f (y, 1) is supported on the polygon from Figure 1. �

Thus we can proceed as follows. We compute a reduced basis for the function field Fq(C) over Fq [x],
make it normal if needed, and apply the Delone–Faddeev correspondence to it to obtain a model f = 0
of the form (3). As discussed in Section 2, any naive coefficient-wise lift of the polynomial f (y, 1) to a
polynomial f = f3 y3

+ f2 y2
+ f1 y+ f0 ∈ OK [x] defines a good lift. After making the polynomial f

monic as in (2), it can be fed to Tuitman’s algorithm to compute the zeta function of C over Fq .

Remark 3.4. Our discussion also shows that 1, f3 y, f0 y−1
= f3 y2

+ f2 y+ f1 is an integral basis of
K (C) over K [x] that reduces to an integral basis of Fq [C] over Fq [x]. Using the variable change x= x−1

and y = y/xe2−e1 we find the patch

f recipr.
3 (x)y3

+ f recipr.
2 (x)y2

+ f recipr.
1 (x)y+ f recipr.

0 (x)

above infinity, which admits an analogous integral basis. Here f recipr.
i denotes the degree (i − 1)e1 +

(2− i)e2 + 2 reciprocal of fi . We can supply these bases as additional input to Tuitman’s algorithm,
thereby bypassing Heuristic H.

4. Lifting curves in degree d = 4

Parametrizing quartic rings. The parametrization of quartic R-rings S is due to Bhargava [2]. This time,
the objects involved are pairs of ternary quadratic forms, up to an action of GL3(R)×GL2(R). For an
element

(A, B) ∈ GL3(R)×GL2(R),

and a pair of ternary quadratic forms (Q1, Q2) over R represented as 3×3 matrices, the action is defined
by

(A, B) ∗ (Q1, Q2)= B ·
(

AQ1 AT

AQ2 AT

)
.
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Concretely, the quadratic forms associated with a quartic ring are obtained by specifying a cubic resolvent
(the next paragraph provides more details).

Theorem 4.1 (Bhargava). There is a canonical bijection between pairs (S, S′) where S is a quartic ring
over R and S′ is a cubic resolvent for S, considered up to isomorphism, and pairs of ternary quadratic
forms over R, up to the action of GL3(R)×GL2(R).

See [2, Theorem 1], although we will not explicitly rely on this theorem. But we will recycle its
central map φ, whose construction we briefly recall, while zooming in on our main case of interest,
namely where S is a domain, say with field of fractions F . We assume moreover that F is a separable
S4-extension of K = Frac R, i.e., its Galois closure E/K has as Galois group the full symmetric group S4.
Then a cubic resolvent for S is a certain full-rank subring S′ ⊆ E D4 =: F res, where D4 = 〈(12), (1324)〉;
see [2, Definition 8] for a precise definition. In general, there might be more than one cubic resolvent
ring, but for maximal rings it is unique [2, Corollary 5]. Note that if F = K [y]/( f ) with

f = (y− r1)(y− r2)(y− r3)(y− r4)= y4
+ ay3

+ by2
+ cy+ d

then F res
= K [y]/(res f ) with

res f = (y− r1r2− r3r4)(y− r1r3− r2r4)(y− r1r4− r2r3)

= y3
− by2

+ (ac− 4d)y− (a2d + c2
− 4bd).

This polynomial is famously known as Lagrange’s cubic resolvent. The most important feature of the
Bhargava correspondence is the natural quadratic map

φ̃ : F→ F res
: α 7→ α(1)α(2)+α(3)α(4),

where the α(i) denote the conjugates of α inside E (numbered compatibly with the roots ri ). This map
turns out to descend to a quadratic map of R-modules

φ :
S
R
→

S′

R
.

Upon taking bases for S/R and S′/R we obtain our two ternary quadratic forms over R. Changing bases
of these modules then corresponds to an element of GL3(R)×GL2(R).

Lifting degree 4 covers. We can assume that f 4 = 1, i.e., our input polynomial (1) is monic. Let Fq(C)
denote the function field it defines, which is a separable S4-extension of Fq(x) because ϕ is simply
branched [16, Lemma 6.10]. Similarly, consider the cubic resolvent

y3
− f 2 y2

+ ( f 1 f 3− 4 f 0)y− ( f 0 f 2
3+ f 2

1− 4 f 0 f 2) (8)

defining Fq(C res) :=Fq(C)res. We let Fq [C]0 and Fq [C res
]0 be the respective integral closures of R=Fq [x]

inside these fields. It can be argued that Fq [C res
]0 is the unique cubic resolvent ring S′ for S = Fq [C]0,

but for our needs it suffices to know that S′ ⊆ Fq [C res
]0, which is immediate since Fq [C res

]0 is maximal.
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Let e1, e2, e3 be the Maroni invariants of C with respect to ϕ, and let b1, b2 be its Schreyer invariants.
Take reduced Fq [x]-bases 1, α1, α2, α3 ∈ Fq [C]0 and 1, β1, β2 ∈ Fq [C res

]0. With respect to these bases,
the map φ above gives us two ternary quadratic forms Q1, Q2 ∈ Fq [x][Y1, Y2, Y3]. To properly bound
the degrees of their coefficients, we have to understand how the Maroni invariants of the resolvent curve
C res relate to data associated with C . Surprisingly, up to a small shift, these turn out to be the Schreyer
invariants of C with respect to ϕ.

Theorem 4.2. Let k be a field of characteristic 6= 2 and consider a smooth projective curve over k
equipped with a simply branched degree 4 morphism to P1, say with Schreyer invariants b1, b2. Then the
Maroni invariants of its cubic resolvent are b1+ 2, b2+ 2.

Proof. This result is due to Casnati [5, Definition 6.4], although he formulated it in terms of Recillas’
trigonal construction, which is the geometric counterpart of Lagrange’s cubic resolvent, as pointed out
in [19, Section 8.6]. �

Lemma 4.3. The quadratic forms Q1, Q2 obtained through Bhargava’s correspondence as above are a
model of C of the form (4).

Proof. Note that the polynomials indeed cut out a curve that is birationally equivalent with C , in view of
[3, Section 2].5 Since 1, α1, α2, α3 and 1, β1, β2 are reduced bases, by Theorem 4.2 we have that

1, x−e1−2α1, x−e2−2α2, x−e3−2α3 and 1, x−b1−4β1, x−b2−4β2

are bases of Fq [C]∞ and Fq [C res
]∞, the integral closures of Fq [x−1

] in Fq(C) and Fq(C res), respectively.
Now the quadratic map

φ̃ : Fq(C)→ Fq(C res)

from above also descends to a quadratic map of Fq [x−1
]-modules

φ′ :
Fq [C]∞
Fq [x−1]

→
Fq [C res

]∞

Fq [x−1]
.

With respect to the above bases, φ′ is defined by two quadratic forms over Fq [x−1
], which are necessarily

obtained from Q1 and Q2 by applying the corresponding (diagonal) change of basis matrices. In other
words, φ′ is represented by the quadratic forms

xb1+4 Q1(x−e1−2Y1, x−e2−2Y2, x−e3−2Y3), xb2+4 Q2(x−e1−2Y1, x−e2−2Y2, x−e3−2Y3).

But these have coefficients in Fq [x−1
]. Hence the degree of the Yi Y j -coefficient in Q1 can be at most

ei + e j − b1, and similarly for Q2. In other words, the dehomogenized polynomials Q1(y1, y2, 1) and
Q2(y1, y2, 1) are supported on the polytopes from Figure 2. �

5Alternatively, the reader can check that resy2(Q
′
1(y1, y2, 1), Q′2(y1, y2, 1))= y4

1 + f 3 y3
1 + f 2 y2

1 + f 1 y1+ f 0, where Q′1
and Q′2 are the quadratic forms from below.
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To compute these liftable quadrics Q1, Q2 in practice we will not directly compute the resolvent map
φ with respect to reduced bases for Fq(C) and Fq(C res). Instead, we compute the map φ with respect to
certain naive bases for Fq(C) and Fq(C res) and then apply change of basis to a reduced basis. In more
detail, denoting by f ′i the coefficients of the cubic resolvent polynomial of f as in (8), we consider the
bases

1,− f 0 y−1, y, y2 for Fq(C) and 1, y,− f ′0 y−1 for Fq(C res). (9)

Computing the representation of the resolvent map φ with respect to these bases can be done symbolically
by means of Vieta’s formulas, yielding the quadrics

Q′1 =

 f 0 0 f 1/2
0 1 − f 3/2

f 1/2 − f 3/2 f 2

 , Q′2 =

 0 −1/2 f 3/2
−1/2 0 0
f 3/2 0 1

 . (10)

Now let 1, α1, α2, α3 and 1, β1, β2 be reduced bases for Fq [C]0 and Fq [C res
]0, respectively, as above. To

compute the cubic resolvent map with respect to these bases, we simply apply the change of basis action
from the naive bases in (9) to these reduced bases. We note that this involves elements of GL3(Fq(x))×
GL2(Fq(x)) rather than GL3(Fq [x])×GL2(Fq [x]). The resulting quadrics Q1, Q2 will be our model
of the form (4). Then, as explained in Section 2, we can take any Q1, Q2 ∈ OK [x][y1, y2] lifting the
Qi (y1, y2, 1) in a support-preserving way. In order to find a plane model, we can compute the resultant
resy2(Q1, Q2), which is indeed of degree 4 in y = y1. After making it monic, it can be fed as input to
Tuitman’s algorithm.

5. Lifting curves in degree d = 5

Parametrizing quintic rings. The parametrization of quintic R-rings S is also due to Bhargava [3]. We
assume that char R 6= 2, 3. The objects involved in the parametrization are now quadruples of 5× 5
skew-symmetric matrices over R. There is a natural action of GL5(R)×GL4(R) on such objects, given
by

(A, B) ∗M = B ·


AM1 AT

AM2 AT

AM3 AT

AM4 AT

 ,
with M = (M1,M2,M3,M4) a quadruple of 5× 5 skew-symmetric matrices and (A, B) ∈ GL5(R)×
GL4(R). Here the parametrization requires us to specify a sextic resolvent (see the next paragraph for
details).

Theorem 5.1 (Bhargava). There is a canonical bijection between pairs (S, S′) where S is a quintic ring
and S′ is a sextic resolvent for S, considered up to isomorphism, and quadruples of 5× 5 skew-symmetric
matrices over R, up to the action of GL5(R)×GL4(R).
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See [3]; although as in the previous sections, we will not explicitly rely on this theorem. But we
will need the fundamental resolvent map (11) below. Let us again focus on the setting where S is a
domain with field of fractions F , and let K = Frac R. We assume that F is a separable S5-extension of
K , i.e., its Galois closure E/K has as Galois group the whole of S5. Consider the order 20 subgroup
H = H (1)

= AGL1(F5) = 〈(12345), (1243)〉 ⊆ S5. Then a sextic resolvent for S is a certain full-rank
subring S′ ⊆ E H

=: F res; for a precise definition we refer to [3, Definition 5]. In general, such a sextic
resolvent ring is not unique, but for maximal quintic rings it is [3, Corollary 19]. If F = K [y]/( f ) with

f = (y− r1)(y− r2)(y− r3)(y− r4)(y− r5)= y5
+ ay4

+ by3
+ cy2

+ dy+ e,

then F res
= K [y]/(res f ) with res f = (y− ρ1)(y− ρ2)(y− ρ3)(y− ρ4)(y− ρ5)(y− ρ6), where

ρ1 = (r1r2+ r2r3+ r3r4+ r4r5+ r5r1− r1r3− r3r5− r5r2− r2r4− r4r1)
2

and {ρ1, ρ2, . . . , ρ6} is the orbit of ρ1 under the natural S5-action permuting the ri . Note that ρ1 is
stabilized by H (1). We choose ρ2+i to be stabilized by the conjugate subgroup

H (2+i)
= (12345)−i

〈(13254), (3245)〉(12345)i , for 0≤ i ≤ 4.

The polynomial res f is known as Cayley’s sextic resolvent; concrete expressions for its coefficients in
terms of a, b, c, d, e can be found in [11, Proof of Proposition 13.2.5].6

For an element α ∈ F res we denote by α(i) the conjugates of α inside E , labeled so that α(i) is fixed
by H (i). Consider bases α0 = 1, α1, . . . , α4 for S/R and β0 = 1, β1, . . . , β5 for S′/R, and define

√
disc S =

∣∣∣∣∣∣∣∣∣
1 1 · · · 1
α
(1)
1 α

(2)
1 · · · α

(5)
1

...
...

. . .
...

α
(1)
4 α

(2)
4 · · · α

(5)
4

∣∣∣∣∣∣∣∣∣ .
The central tool in Bhargava’s correspondence is the fundamental resolvent map, which is the bilinear
alternating form

g : F res
× F res

→ F : (α, β) 7→
√

disc S ·

∣∣∣∣∣∣
1 1 1

α(1)+α(2) α(3)+α(6) α(4)+α(5)

β(1)+β(2) β(3)+β(6) β(4)+β(5)

∣∣∣∣∣∣ . (11)

This turns out to descend to a well-defined map S̃′× S̃′→ S̃, where

S̃ = Rα∗1 + Rα∗2 + Rα∗3 + Rα∗4 ⊆ F, S̃′ = Rβ∗1 + Rβ∗2 + Rβ∗3 + Rβ∗4 + Rβ∗5 ⊆ F res

are defined in terms of the dual bases α∗0 , . . . , α
∗

4 and β∗0 , . . . , β
∗

5 with respect to the trace pairing, i.e.,
TrF/K (αiα

∗

j )= δi j (with δi j the Kronecker delta), and similarly for β∗j . Note that the extensions F/K and
F res/K are both separable and so their trace pairings are nondegenerate. With respect to the bases {β∗i }i

6Or they can be found hard-coded in our accompanying Magma file precomputed_5.m.
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and {α∗i }i , the map g is represented by a quadruple M = (M1,M2,M3,M4) of 5× 5 skew-symmetric
matrices. Changing bases of S̃′ and S̃ then corresponds to an element of GL5(R)×GL4(R).

Remark 5.2. Our fundamental resolvent map differs from Bhargava’s original map by a factor 4
3 , which

is not an issue in view of our restrictions on the field characteristic.

Lifting degree 5 covers. As in the d = 4 case, we assume that our input polynomial f from (1) is monic
(i.e., f 5 = 1). Let Fq(C) be the corresponding function field; this is a separable S5-extension of Fq(x)
because ϕ is simply branched [16, Lemma 6.10]. We also consider Cayley’s sextic resolvent associated
with our input polynomial, defining Fq(C res) := Fq(C)res. Let Fq [C]0 and Fq [C res

]0 be the respective
integral closures of R= Fq [x] inside these two function fields; it can be argued that Fq [C res

]0 is the unique
sextic resolvent ring S′ for S = Fq [C]0, but as in the d = 4 case it suffices to observe that S′ ⊆ Fq [C res

]0.
Let e1, e2, e3, e4 be the Maroni invariants of C with respect to ϕ, and let b1, b2, b3, b4, b5 be its

Schreyer invariants. Take reduced Fq [x]-bases 1, α1, . . . , α4 ∈ Fq [C]0 and 1, β1, . . . , β5 ∈ Fq [C res
]0 and

consider the quadruple (M1,M2,M3,M4) of 5× 5 skew-symmetric matrices over Fq [x] arising along
the above construction. We represent this by the single matrix

M = M1Y1+M2Y2+M3Y3+M4Y4 ∈ k[x][Y1, Y2, Y3, Y4]

whose entries are now linear and homogeneous in the Yi . To get a handle on the degrees of their co-
efficients, we should again express the Maroni invariants of the resolvent curve C res in terms of data
associated with C . As in the case of the cubic resolvent, this can be done in a surprisingly explicit way.

Theorem 5.3. Let k be a field of characteristic 6= 2 and consider a smooth projective curve over k
equipped with a simply branched degree 5 morphism to P1, say with Schreyer invariants b1, . . . , b5.
Then the Maroni invariants of its sextic resolvent are g− 2− b5, . . . , g− 2− b1.

Proof. This theorem seems new and is part of a generalization of Theorem 4.2, which is currently being
elaborated in collaboration with Yongqiang Zhao [9]. In the meantime, a proof of Theorem 5.3 can be
found in the master thesis of the second listed author [30]. �

Lemma 5.4. Denote by Mr,i, j the (i, j)-th entry of the matrix Mr constructed through Bhargava’s cor-
respondence as above. Then deg Mr,i, j ≤ er + bi + b j + 6− g. In particular, this defines a model for C
of the form (5).

Proof. The fact that the sub-Pfaffians of M cut out a curve birational to C follows again from [3, Sec-
tion 2]. As for the claim on the degrees, we apply the same proof strategy as in the degree 4 case. Denote
by Fq [C]∞ the integral closure of Fq [x−1

] in Fq(C). Let g0 be the fundamental resolvent form attached
to the basis 1, α1, . . . , α4 of Fq [C]0 over Fq [x], and let g∞ be the fundamental resolvent form attached
to the basis 1, x−e1−2α1, . . . , x−e4−2α4 of Fq [C]∞ over Fq [x−1

]. We have that, for all u, v ∈ Fq(C res),

g0(u, v)=

√
disc Fq [C]0√
disc Fq [C]∞

g∞(u, v)= xg+4g∞(u, v).



LIFTING LOW-GONAL CURVES FOR USE IN TUITMAN’S ALGORITHM 123

Let α∗0 , . . . , α
∗

4 and β∗0 , . . . , β
∗

5 be dual bases for 1, α1, . . . , α4 and 1, β1, . . . , β5, respectively. Then the
corresponding dual bases for the rings Fq [C]∞ and Fq [C res

]∞ are

α∗0 , xe1+2α∗1 , . . . , xe4+2α∗4 for Fq [C]∞ and β∗0 , xe′1+2β∗1 , . . . , xe′5+2β∗5 for Fq [C res
]∞,

where the e′i are the Maroni invariants of the resolvent. We now compute, for i, j > 0,

g∞(xe′i+2β∗i , xe j+2β∗j )= xe′i+e′j+4x−g−4g0(β
∗

i , β
∗

j ) (12)

=

4∑
l=1

x−el−g−2+e′i+e′j (M l)i j (xel+2α∗l ). (13)

It follows that g∞ is represented by the matrix whose entries have coefficients

x−el−g−2+e′i+e′j (M l)i j , i, j = 1, . . . , 5, l = 1, . . . , 4.

But these coefficients belong to Fq [x−1
]. Hence we find that deg(M l)i j ≤ el + bi + b j + 6 − g by

Theorem 5.3, as wanted. �

To compute such a liftable matrix in practice, we follow a similar approach as in the case of degree 4
covers. Namely, we will not be computing the fundamental resolvent map with respect to our reduced
bases directly, but rather compute this for certain naive bases and apply change of basis. Concretely,
consider the naive bases

1, y, y2, y3, y4 for Fq(C) and 1, y, y2, y3, y4, y5 for Fq(C res),

along with the slightly altered fundamental resolvent map

g′ : Fq(C res)× Fq(C res)→ Fq(C) : (α, β) 7→
√

disc f ·

∣∣∣∣∣∣
1 1 1

α(1)+α(2) α(3)+α(6) α(4)+α(5)

β(1)+β(2) β(3)+β(6) β(4)+β(5)

∣∣∣∣∣∣
where

√
disc f = det((yi )( j))0≤i≤4,1≤ j≤5. We compute the M ′(r)i j ∈ Fq [x] for which

g′(yi , y j )=

4∑
r=0

M ′(r)i j yr ,

giving five 5× 5 skew-symmetric matrices M ′(0), . . . ,M ′(4); here we used that M ′(r)i j = 0 as soon as i or
j is zero, allowing us to disregard these terms. We call this the naive model.

Remark 5.5. It is important to note that these expressions can be computed symbolically in terms of
the coefficients f i of f , by means of Vieta’s formulas. Therefore this computation only has to be done
once for all curves. This is in complete analogy with the degree 4 case, see (10). However, there the
naive model was very simple, whereas this time the expressions involved are rather long. However, a
computer has no trouble with these computations.



124 WOUTER CASTRYCK AND FLORIS VERMEULEN

Now compute reduced bases 1, α1, . . . , α4 for Fq [C]0 and 1, β1, . . . , β5 for Fq [C res
]0 along with their

corresponding dual bases. Acting on the naive model with a change of basis from the naive bases to
the duals of these reduced bases, yields the altered resolvent map g′ with respect to these dual reduced
bases. Note that this action will be by an element of GL5(Fq(x))×GL4(Fq(x)) rather than GL5(Fq [x])×
GL4(Fq [x]). To obtain instead the resolvent map g we have to multiply by√

disc Fq [C]0√
disc f

.

Since we already have the reduced bases at hand, this factor is easiest to compute as the determinant of
the change of basis matrix from the naive basis for Fq(C) to the reduced basis 1, α1, . . . , α4.

At this point, we have a representation of the fundamental resolvent map g with respect to the duals
of the reduced bases for Fq [C]0 and Fq [C res

]0 as a 5× 5 skew-symmetric matrix M with entries in
k[x][Y1, Y2, Y3, Y4], linear and homogeneous in the Yi . This is the desired model, which we can lift
naively, in a skew-symmetry preserving way, to a matrix having entries in OK [x][Y1, Y2, Y3, Y4]. Com-
puting its five 4× 4 sub-Pfaffians, dehomogenizing, and then eliminating variables finally returns our
output (2), ready to be fed as input to Tuitman’s algorithm.
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Simultaneous diagonalization of
incomplete matrices and applications

Jean-Sébastien Coron, Luca Notarnicola, and Gabor Wiese

We consider the problem of recovering the entries of diagonal matrices {Ua}a for a = 1, . . . , t from multi-
ple “incomplete” samples {Wa}a of the form Wa = PUa Q, where P and Q are unknown matrices of low
rank. We devise practical algorithms for this problem depending on the ranks of P and Q. This problem
finds its motivation in cryptanalysis: we show how to significantly improve previous algorithms for solving
the approximate common divisor problem and breaking CLT13 cryptographic multilinear maps.

1. Introduction

1A. Problem statement. This work considers the following computational problem from linear algebra.

Definition 1.1 (Problems A,B,C,D). Let n ≥ 2, t ≥ 2 and 2≤ p, q ≤ n be integers. Let {Ua : 1≤ a ≤ t}
be diagonal matrices in Qn×n. Let {Wa : 1 ≤ a ≤ t} be matrices in Qp×q and W0 ∈Qp×q such that W0

has full rank and there exist matrices P ∈Qp×n of full rank p and Q ∈Qn×q of full rank q, such that
W0 = P · Q and Wa = P ·Ua · Q for 1≤ a ≤ t . We distinguish the following cases:

(A) p = n and q = n, (B) p = n and q < n,

(C) p < n and q = n, (D) p < n and q = p.

In each of the four cases, the problem is stated as follows:

(1) Given the matrices {Wa : 0 ≤ a ≤ t}, compute {(u1,i , . . . , ut,i ) : 1 ≤ i ≤ n}, where for 1 ≤ a ≤ t ,
ua,1, . . . , ua,n ∈Q are the diagonal entries of matrices {Ua : 1≤ a ≤ t} as above.

(2) Determine whether the solution is unique.

Problem A is straightforward for any t ≥ 1 by simultaneous diagonalization of W−1
0 Wa = Q−1Ua Q

for every a. Problems B and C are equivalent in view of their symmetry in p and q, and any algorithm
for one solves the other upon transposing. Therefore, we shall devise algorithms for C and D only. We

MSC2010: 15A06, 94A60.
Keywords: simultaneous diagonalization, cryptanalysis, linear algebra, multilinear maps in cryptography, approximate

common divisor problem.
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refer to the matrices {Wa}a as “incomplete”, as the low rank matrices P and/or Q “steal” information. Of
interest is the case when p is much smaller than n. We remark that Problem A is an underlying problem
in previous works [CP19; CHL+15] in cryptanalysis.

1B. Our contributions. Mainly, we provide efficient algorithms for Problems C and D of Definition 1.1,
and show how to minimize the parameters p and t with respect to n. We further propose two concrete
applications of our algorithms in cryptography. We believe that our algorithms are of independent interest
and hope that more applications are to be found.

Algorithms for Problems C and D. Our approach to Problem C is to use the invertibility of Q and write
Wa = PUa Q = P Q Q−1Ua Q = W0 Za with Za = Q−1Ua Q, for every 1 ≤ a ≤ t . As W0 is not invert-
ible, we cannot recover Za directly. However we interpret this as a system of linear equations to solve
for {Za}a . This system is, in general, underdetermined and does not yield the matrices {Za}a uniquely.
However, exploiting the special feature that {Za}a commute among each other leads to additional linear
equations. This enables us to recover {Za}a uniquely, and simultaneous diagonalization eventually yields
the diagonal entries of {Ua}a . We determine exact bounds on the parameters to ensure that we have at
least as many linear equations as variables; we obtain that p and t can be set as O(

√
n). Our algorithm

is heuristic only, but performs well in practice.
We reduce Problem D to Problem C by “augmenting” Q with extra columns so that it becomes

invertible. In this case, we show that p can be close to 2n/3. We refer to Sections 3 and 4 for a complete
description of our algorithms and provide the results of practical experiments in Section 6.

Improved algorithm for an approximate common divisor problem. Approximate common divisor prob-
lems have gained a lot of interest and different variants have been investigated. In [CH13], Cohn and
Heninger study generalizations of the approximate common divisor problem via lattices. A simple ver-
sion including only a single prime number is studied in [GGM16]. A lattice cryptanalysis of the single-
prime version is described in [vDGHV10]. In this work we consider the multi-prime version (CRT-ACD
Problem) from [CP19], which is a factorization problem with constraints based on Chinese remaindering.

We improve the two-step algorithm by [CP19]. Namely, we remark that [CP19] relies on solving
a certain instance of Problem A. By solving an appropriate instance of Problem C instead, we obtain
a quadratic improvement in the number of input samples. Namely, letting n be the number of secret
primes in the public modulus M, we can factor M given only O(

√
n) input samples, whereas [CP19]

uses O(n). We therefore achieve complete factorization of the public modulus while limiting the input
size drastically.

Improved cryptanalysis of CLT13 multilinear maps. In 2013, [GGH13] described the first construction
of cryptographic multilinear maps, and since then, many important applications in cryptography have
been found. A similar construction over the integers was described in [CLT13] and a third construction
based on the LWE Problem was proposed [GGH15]. In the recent years, many attacks against these con-
structions appeared. The most devastating is the so-called “zeroizing attack”, exploiting the availability
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of low-level encodings of zero. The algorithm [CHL+15] recovers all secret parameters of [CLT13] in
the multiparty Diffie–Hellman key exchange. Similar attacks have been described against GGH13 and
GGH15; see [HJ16; CLLT16].

Our third contribution is therefore to improve the cryptanalysis of Cheon et al. [CHL+15] against
CLT13 when fewer encodings are public. Namely, [CHL+15] relies on solving some instance of Prob-
lem A. By solving instances of Problems C or D instead, we can lower the number of public encodings
required for the cryptanalysis. Specifically, for a composite modulus x0 of n primes, we obtain improved
algorithms using only O(

√
n) encodings of zero (compared to n in [CHL+15]), or in total 4n/3 encodings

(compared to 2n+ 2 in [CHL+15]). We confirm our results with practical experiments in Section 6.

2. Notations and preliminary remarks

2A. Notation. For n ∈ Z≥1, let [n] be the set {1, . . . , n}. For a set R and r, s ∈ Z≥1, we let Rr×s be the
set of r × s matrices with entries in R. For A ∈ Rr×s and B ∈ Rr×s′, [A|B] ∈ Rr×(s+s′) is the matrix
obtained by concatenating the columns of A and B. We let 1n be the identity matrix in dimension n ∈Z≥1.
For a set S, its cardinality is denoted by #S.

2B. Remarks about Definition 1.1. (i) Let {Wa}a be as in Definition 1.1, π ∈Sn be a permutation with
associated matrix Aπ ∈ {0, 1}n×n and D be any invertible diagonal n× n matrix. Then P ′ = P D Aπ and
Q′ = A−1

π D−1 Q satisfy W0 = P ′Q′ and Wa = P ′U ′a Q′ for all a ∈ [t], where U ′a = A−1
π Ua Aπ is obtained

from Ua by permuting its diagonal entries via π . Thus, P ′, {U ′a}a and Q′ satisfy the same problem. For
this reason, we only ask to recover the set {(u1,i , . . . , ut,i ) : 1≤ i ≤ n} in Definition 1.1.

(ii) If t = 1 in Problem C, then the problem is not solvable because its solution is not unique. Namely, we
write W1 =W0 Z1, where Z1 = Q−1U1 Q is diagonalizable with eigenvalues the diagonal entries of U1.
But also, for every v ∈ ker(W0) one has W1 =W0(Z1+vw

T
1 ) for some w1 ∈Qn. Now, Z1 and Z1+vw

T
1

likely have different eigenvalues which means that the solution is not unique.

(iii) There are cases when the problem is clearly not solvable for p<n. For example, if P=[1p|0p×(n−p)]

then for all a the matrix PUa only involves the first p diagonal entries of Ua and the information on the
remaining n− p is lost. These cases will not occur for “generic” or “random” instances of the problem.

(iv) If a matrix W0 = P Q is not available as input (we call it a “special input” here), then one can recover
ratios of diagonal entries of the matrices {Ua}a , if t ≥ 3. Namely, defining P ′ = PU1 and assuming that
U1 is invertible, one obtains W ′0 := P ′Q =W1 and for 2≤ a ≤ t , W ′a := P ′(UaU−1

1 )Q =Wa . Running
the algorithm on input {W ′a : 0≤ a ≤ t − 1} reveals the tuples of diagonal entries of the matrices UaU−1

1

for 1 ≤ a ≤ t − 1. We will use this approach in Section 5B3 to improve the (CLT13) multilinear map
cryptanalysis.

(v) For simplicity, we have stated Definition 1.1 over Q. More generally, we can consider matrices
over a field K with exact linear algebra (e.g., solving linear systems, diagonalizing matrices, etc.). Our
algorithms apply to that case.
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3. An algorithm for Problem C

We describe an algorithm to solve Problem C of Definition 1.1.

3A. Description. Consider integers n, t ≥ 2 and 2≤ p < n and an instance of Problem C. We remark
that it is enough to solve the following problem.

Definition 3.1 (Problem C′). Let integers n, t ≥ 2 and 2≤ p < n. Given

• a matrix V ∈Qp×n of rank p and a basis matrix E ∈Qn×(n−p) of ker(V ),

• a set of matrices {Ya : a ∈ [t]} ⊆Qn×n ,

compute matrices {Xa : a ∈ [t]} ⊆Q(n−p)×n, such that the matrices Ya + E Xa for a ∈ [t] commute with
each other.

Proposition 3.2. Let {Wa : 0≤ a ≤ t} as in Problem C. Let E ∈Qn×(n−p) be a basis matrix of the kernel
of W0. Let W+0 be a right-inverse1 of W0. Define V = W0 and Ya = W+0 Wa for a ∈ [t]. Assume that
Problem C′ is uniquely solvable for the input matrices V, E and {Ya : a ∈ [t]}.

Then Problem C is uniquely solvable for the input matrices {Wa : 0≤ a ≤ t}. Moreover, the matrix Q
in the assumption of Problem C is unique up to multiplication by a permutation matrix and an invertible
diagonal matrix if at least one of the matrices {Ua}a has pairwise distinct diagonal entries.

Proof. Write W0 = P Q and Wa = PUa Q as in Problem C. For all a ∈ [t], we will write Wa =

(P Q)(Q−1Ua Q) = W0 Za , where Za := Q−1Ua Q. The matrices {Za : a ∈ [t]} commute and are
simultaneously diagonalizable. For every a ∈ [t], Za can be written as Za = Ya + E Xa for some
Xa ∈ Q(n−p)×n since W0Ya = Wa . Since the matrices {Za}a commute, V , E and {Ya}a define a valid
input for Problem C′. By assumption, we can compute the matrices {Xa}a by solving Problem C′ and
these are unique. From the knowledge of {Xa}a , we compute Za = Ya + E Xa for a ∈ [t]. Then these
matrices are also unique. Thus the set of tuples of eigenvalues

{(u1,i , . . . , ut,i ) : 1≤ i ≤ n}

is unique and can be computed by simultaneous diagonalization.
For the last part of the statement, assume that we have matrices P ′, Q′, diagonal matrices {U ′a}a ,

which are necessarily of the form U ′a = A−1Ua A for a permutation matrix A, such that W0 = P ′Q′ and
W ′a = P ′U ′a Q′ for every a. By uniqueness of the matrices {Za}a , we have

Za = Q−1Ua Q = Q′−1U ′a Q′ = Q′−1 A−1Ua AQ′, a ∈ [t]

or, equivalently Ua(Q Q′−1 A−1)= (Q Q′−1 A−1)Ua for a ∈ [t]. Thus, D := Q Q′−1 A−1 commutes with
the matrices {Ua}a and so is diagonal itself, as one of {Ua}a has pairwise distinct entries. This gives
Q = D AQ′ and proves the statement. �

1If W0 (of full rank p) is defined over the complex numbers, one can take W+0 =W∗0 (W0W∗0 )
−1 where W∗0 is the conjugate

transpose of W0, and W∗0 =W T
0 over the real numbers.
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3A1. Solving problem C′. We consider matrices V, E, {Ya}a as in Problem C′. We want to compute
matrices {Xa}a such that the matrices Za = Ya + E Xa commute for all a ∈ [t], that is, the Jacobi bracket
[Za, Zb] = Za Zb− Zb Za is the zero matrix for all a < b. Using Za = Ya + E Xa , this is equivalent to

0= YaYb− YbYa + E · Sab+ Ya E Xb− Yb E Xa, (3-1)

where Sab := XaYb+ Xa E Xb− XbYa − Xb E Xa . Left multiplication by V and V E = 0 implies

V YaYb− V YbYa + V Ya E Xb− V Yb E Xa = 0,

which is equivalent to
1ab = V Yb E Xa − V Ya E Xb, 1≤ a < b ≤ t, (3-2)

where 1ab := V YaYb − V YbYa is completely explicit in terms of the input matrices. Equation (3-2)
describes a system of linear equations over Q in the variables given by the entries of Xa and Xb. Since
1ab has size p× n, this gives a system of np linear equations in the 2(n− p)n variables given by the
entries of Xa and Xb. Writing (3-2) for every (a, b) ∈ [t]2 with a < b we obtain a system of t (t−1)/2np
linear equations and t (n− p)n variables given by the entries of the matrices {Xa : a ∈ [t]}.

From this and Proposition 3.2, we deduce the following result.

Proposition 3.3. A unique solution to Problem C is implied by the existence of a unique solution to the
explicit system of linear equations given in (3-2), which is a system of 1

2 t (t − 1)np linear equations in
t (n− p)n variables. There are at least as many equations as variables as soon as

p
n
≥

2
t + 1

. (3-3)

Since there is no obvious linear dependence in the equations of the system, we heuristically expect,
in the generic case, to find a unique solution {Xa : a ∈ [t]} under (3-3). This solves Problem C′, and
therefore Problem C.

3B. Algorithm. We refer to this algorithm as Algorithm AC in the sequel.

Input: A valid input for Problem C.

Output: “Success” or “Fail”. In case of “Success”, also output a solution. “Success” means uniqueness
of the solution; “Fail” means that no solution was found.

1. Compute a basis matrix E of ker (W0).

2. Define W+0 = W T
0 (W0W T

0 )
−1 and for (a, b) ∈ [t]2 with a < b, compute the matrices 1ab =

WaW+0 Wb−WbW+0 Wa .

3. Solve the system of linear equations described in (3-2).

3.1. If the solution is not unique, output “Fail” and break.
3.2. Otherwise, denote by {Xa : a ∈ [t]} the unique solution.

4. Perform simultaneous diagonalization of Za =W+0 Wa + E Xa for a ∈ [t].

5. Output “Success” with the tuples of eigenvalues of the matrices {Za}a .
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3C. Optimization of the parameters. We find minimal possible (with respect to n) values for t and p. In
our applications in Section 5 we are led to minimize p+ t as a function of n. Following Proposition 3.3,
we set Fn(t)= pn(t)+ t = 2n

t+1 + t with t ∈ R>0 and n ∈ Z≥2. It is easy to see that Fn has a minimum at
t0 =
√

2n− 1 which gives p = pn(t0)=
√

2n. This shows that minimal values for p and t are O(
√

n).
This is confirmed practically in Section 6.

4. An algorithm for problem D

We now present an algorithm to solve Problem D of Definition 1.1.

4A. Description. Consider integers n, t ≥ 2 and 2≤ p< n and an instance of Problem D. The main idea
of our algorithm is a reduction to Problem C which can be solved using Algorithm AC. More precisely,
we exhibit matrices (that are augmentations of {Wa}a) W ′0 = P Q′ and W ′a = PUa Q′ for a ∈ [t], for the
same diagonal matrices {Ua}a and for some n× n invertible matrix Q′.

4A1. Reducing problem D to problem C. For 1≤ a, b ≤ t , we define the matrices

1ab =WaW−1
0 Wb−WbW−1

0 Wa. (4-1)

Note that 1ab =−1ba . We have the following lemma.

Lemma 4.1. Let W0= P Q and Wa = PUa Q for a ∈ [t] as in Problem D. Let B = QW−1
0 P−1n ∈Qn×n

and let r denote its rank. Then:

(i) r = n− p.

(ii) There exist matrices Va ∈Qp×r and Ga ∈Qr×p for a ∈ [t] such that for all 1≤ a < b ≤ t , one has
1ab = VaGb− VbGa.

Proof. (i) Let C = QW−1
0 P . Then C Q = Q and the column-image of Q is contained in the eigenspace,

say E , of C for eigenvalue 1. So, E has dimension at least p. However, the rank of C is bounded above by
the rank of Q, i.e., by p. Finally, E has dimension exactly p and the rank r of B = C − 1n equals n− p.

(ii) For every 1≤ a, b ≤ t , we can write

1ab = PUa(QW−1
0 P − 1n)Ub Q− PUb(QW−1

0 P − 1n)Ua Q = PUa BUb Q− PUb BUa Q (4-2)

since Ua and Ub commute. Since B has rank r , there exist matrices B1 ∈Qn×r , B2 ∈Qr×n with B= B1 B2.
Setting Va = PUa B1 and Ga = B2Ua Q gives the claim. �

The following properties of the matrix B defined in Lemma 4.1 are useful.

Lemma 4.2. Let W0 = P Q and Wa = PUa Q for a ∈ [t] as in Problem D. Let B ∈Qn×n be the matrix
of Lemma 4.1 with respect to P and Q and let r = n− p. Let B1 ∈ Qn×r and B2 ∈ Qr×n be such that
B = B1 B2. Then:

(i) P B1 = 0p×r .

(ii) The matrix Q′ := [Q|B1] is an n× n invertible matrix.
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Proof. (i) The matrix B2 defines a surjection B2 :Q
n
→Qr. Thus for every x ∈Qr, we write x = B2 y

for some y ∈Qn and obtain P B1x = P B1(B2 y)= (P B)y = 0.

(ii) Since r = n− p, Q′ has size n× n. To show its invertibility, we show that im(Q)∩ im(B1)= {0}.
Since B2 is surjective, the images of B1 and B1 B2 = B coincide. Let Qx = By ∈ im(Q)∩ im(B1), with
x ∈Qp and y ∈Qn. This gives Qx = (QW−1

0 P−1n)y= QW−1
0 Py− y. Thus y= QW−1

0 Py−Qx = Qz
with z =W−1

0 Py− x . Therefore, Qx = By = B(Qz)= 0 because B Q = 0. �

We now show that finding matrices {Va}a such that there exist {Ga}a satisfying 1ab = VaGb− VbGa

for every a, b is sufficient to solve Problem D. We view these matrices as being complementary to {Wa}a

because they define themselves an instance of Problem D with the same solution as {Wa}a (see the proof
of Lemma 4.1). This allows us to increase the rank of Q. We thus now formulate Problem D′.

Definition 4.3 (Problem D′). Let n, t ≥ 2 and 2 ≤ p < n be integers. For every 1 ≤ a, b ≤ t , let
1ab ∈Qp×p be such that 1ab = VaGb−VbGa for Va ∈Qp×(n−p) of rank n− p and Ga ∈Q(n−p)×p. The
problem is as follows: Given the matrices 1ab for all 1≤ a, b ≤ t , compute such matrices Va for a ∈ [t].

The following proposition links Problem D and Problem C.

Proposition 4.4. Let W0 = P Q and Wa = PUa Q for a ∈ [t] be as in Problem D. For 1 ≤ a, b ≤ t , let
1ab be the matrices defined in (4-1). Moreover, assume that:

(i) Problem D′ is uniquely solvable for the input matrices {1ab : 1≤ a < b ≤ t} and denote the unique
solution by {Va : a ∈ [t]}.

(ii) Problem C is uniquely solvable for the input matrices W ′0 = [W0|0p×(n−p)] ∈ Qp×n and W ′a =
[Wa|Va] ∈Qp×n for a ∈ [t].

Then Problem D is uniquely solvable on input {Wa : 0 ≤ a ≤ t} and the unique solution is given by the
unique solution to Problem C on input {W ′a : 0≤ a ≤ t}.

Proof. By Lemma 4.1 there exist Va ∈Qp×r and Ga ∈Qr×p for a ∈ [t] such that 1ab = VaGb−VbGa for
all 1≤ a< b≤ t . Therefore the matrices {1ab}a,b define an instance of Problem D′. By Proposition 4.4(i),
we compute the unique solution {Va}a for this problem.

Now, let W ′0 = [W0|0p×(n−p)] ∈Qp×n and W ′a = [Wa|Va] ∈Qp×n for a ∈ [t]. Let B = QW−1
0 P − 1n

as in Lemma 4.1 of rank r = n − p. Let B1 ∈ Qn×r and B2 ∈ Qr×n be a rank factorization of B; i.e.,
B= B1 B2. Letting Q′ := [Q|B1] ∈Qn×n, we have P Q′= P[Q|B1]= [W0|0p×r ]=W ′0 and, by uniqueness
of {Va}a (see proof of Lemma 4.1),

PUa Q′ = PUa[Q|B1] = [Wa|Va] =W ′a

for a ∈ [t], as P B1= 0n×r by Lemma 4.2(i). The matrix Q′ is invertible by Lemma 4.2(ii). Therefore, W ′0
and {W ′a}a define a valid input for Problem C. By Proposition 4.4(ii), this problem is uniquely solvable
and the solution must be the tuples of diagonal entries of the matrices {Ua}a . This is also a solution to
Problem D since the matrices {Ua}a are the same for the input matrices {Wa}a for Problem D and {W ′a}a
for Problem C. �
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4A2. Solving problem D′. In view of Proposition 4.4, it remains to compute matrices {Va}a from {1ab}a,b.
We achieve this by standard linear algebra, and combining with Algorithm AC describes a full algorithm
for Problem D.

From now on we assume t ≥ 3. Let 1ab = VaGb − VbGa for 1 ≤ a, b ≤ t as in Problem D′. Let
r = n− p and rab be the rank of1ab; clearly, rab≤min(2r, p). We further assume p> 2n/3 (equivalently,
2r < p), which is a necessary condition as otherwise the matrices 1ab likely have full rank and thus
cannot reveal any information. We define Kab := im(1ab)= Kba ⊆Qp and

Ka =
⋂

b∈[t],b 6=a

Kab, a ∈ [t].

Let Va be the image of the matrix Va for a ∈ [t]. We first argue that, heuristically, Va ⊆ Kab for every
b 6= a. Let v ∈Va . If there exists x ∈Qp such that v= VaGbx and VbGax = 0 then v=1abx , i.e., v ∈Kab.
Such an element x must therefore lie in (x0+ker(VaGb))∩ker(VbGa), where x0 ∈Qp is any vector such
that v = VaGbx0. It is easy to see that this intersection is nonempty if ker(VaGb)+ ker(VbGa) = Qp.
Heuristically, as {Va}a have rank r , ker(VaGb)+ker(VbGa) has dimension at least 2(p−r); accordingly
we can heuristically expect that ker(VaGb)+ ker(VbGa)=Qp as soon as 2(p− r) > p, i.e., p > 2n/3.

We now justify that, heuristically under a suitable parameter selection, Ka = Va for every a ∈ [t]. For
fixed a ∈ [t], we compute Ka modulo Va and consider Kab := Kab/Va ⊆Qp−r for b 6= a. Then Ka = Va

if and only if Ka :=
⋂

b 6=a Kab = {0}. Since Va has dimension r , Kab has dimension rab− r . For every
b 6= a, we view Kab as the kernel of Qp−r

→Qp−r/Kab, represented by a matrix Aab ∈Q(p−rab)×(p−r).
Therefore Ka is represented by an augmented matrix Aa = [Aa1| · · · |Aa,a−1|Aa,a+1| · · · |Aat ] describing
the kernel of Qp−r

→
⊕

b 6=a Qp−r/Kab. The matrix Aa has
∑

b∈[t],b 6=a(p−rab) rows and p−r columns.
Now, Ka = Va if and only if Aa has full rank; and heuristically, we expect this to be the case as soon as∑

b∈[t],b 6=a(p− rab)≥ p− r .

Remark 4.5. (i) In fact, we expect that rab = 2r for every a, b. Then, from what precedes, we expect,
heuristically that Ka = Va for every a, if (t − 1)(p− 2r)≥ p− r , i.e.,

p
n
≥

2t − 3
3t − 5

or, equivalently, t ≥
2p− n
3p− 2n

+ 1. (4-3)

(ii) We assumed t ≥ 3 so that the intersections {Ka}a are well-defined. If t = 2, K1 coincides with the
image of 112, which will not reveal V1 and V2.

We compute bases of {Ka}a by standard linear algebra. For the rest of this section, assume Ka = Va

for every a, and let Ca be a basis matrix for Ka . Thus, there exists Ma ∈ GLr (Q) such that Va = Ca Ma .
This gives for a < b:

1ab = VaGb− VbGa = Ca(MaGb)−Cb(MbGa)= Ca Nab−Cb Nba (4-4)

with Nab = MaGb. In (4-4), 1ab and Ca,Cb are known, which allows us to compute N (ab)
= [Nab|Nba]

T

as a solution to 1ab = [Ca| −Cb] · N (ab). Once the {Nab}a,b are computed, we obtain a system of linear
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equations over Q, given by
M−1

a · Nab = Gb, 1≤ a < b ≤ t. (4-5)

It has 1
2 t (t − 1)r p equations (there are 1

2 t (t − 1) choices for pairs (a, b) and for each pair the matrix
equality gives r p equations) and tr2

+ tr p = trn variables, given by the tr2 entries of the matrices
{M−1

a : a ∈ [t]} and the tr p entries of the matrices {Gb : b ∈ [t]}. Heuristically, if trn ≤ 1
2 t (t − 1)r p, i.e.,

2n ≤ (t − 1)p, the system is expected to have a unique solution. This bound is automatically satisfied if
(4-3) holds. This reveals {Ma : a ∈ [t]} and thus {Va : a ∈ [t]} by computing Va = Ca Ma .

Proposition 4.6. Assume that Ka = Va for every a ∈ [t] (see Remark 4.5(i)). Then, a unique solution
to Problem D′ is implied by the existence of a unique solution to the explicit system of linear equations
given in (4-5), which is a system of 1

2 t (t − 1)(n− p)p linear equations in t (n− p)n variables. There are
at least as many equations as variables as soon as p(t − 1)≥ 2n.

4B. Algorithm. We refer to this algorithm as Algorithm AD in the sequel.

Input: A valid input for Problem D.

Output: “Success” or “Fail”, and in case of “Success”, additionally output a solution. “Success” means
that the computed solution is unique; “Fail” means that a solution was not found.

1. Compute 1ab =WaW−1
0 Wb−WbW−1

0 Wa for 1≤ a 6= b ≤ t .

2. For a ∈ [t], compute a basis matrix Ca of Ka :=
⋂

b∈[t],b 6=a im(1ab).

3. Check whether dim(Ka) 6= n− p for all a ∈ [t].

3.1 If true, output “Fail” and break.
3.2 Otherwise, for every a < b compute Nab as solutions to 1ab = [Ca| −Cb] · [Nab|Nba]

T .

4. Solve for {Ma}a the system of linear equations M−1
a Nab = Gb for (a, b) ∈ [t]2, a < b.

4.1. If a unique solution is not found, output “Fail” and break.

5. Compute the matrices {Va : a ∈ [t]} as Va = Ca ·Ma .

6. Run Algorithm AC on the matrices W ′0 = [W0|0] and W ′a = [Wa|Va] for a ∈ [t] and return its output.

Remark 4.7. Problem D of Definition 1.1 is symmetric in the sense that P and Q have the same rank.
An asymmetric variant consists in having P and Q of ranks p 6= q. Our algorithm adapts to that case:
if p < q, then “cutting” the last q − p columns of {Wa}a means “cutting” the last q − p columns of Q,
which reduces to the symmetric case. This approach is however not very genuine, as it “cuts” information
instead of possibly exploiting it. We leave it open to find a better algorithm.

4C. Optimization of the parameters. We find minimal possible values for t and p with respect to a given
n. In Section 5B1 we will see that it is of interest to minimize 2p+ t in order to minimize the number
of public encodings in [CLT13]. According to (4-3), the main (heuristic) condition to be ensured is
p ≥ 2t−3

3t−5 n. We set Fn(t)= 2pn(t)+ t = 2t−3
3t−5 n+ t for t ∈ R>0\

{ 5
3

}
and n ≥ 2. Then Fn has a minimum
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at t0 = 1
3(
√

2n+ 5), with pn(t0)= 2
3 n+ 1

3
√

2

√
n and Fn(t0)= 4

3 n+ 2
3

√
2n+ 5

3 . In conclusion, we expect
Algorithm AD to succeed for p = dpn(t0)e and t = dt0e.

5. Applications

We describe two applications for our algorithms and obtain significant improvements on previous works.

5A. Improved algorithm for the CRT-ACD Problem. We consider the following “multi-prime” version
of the approximate common divisor problem [CP19] based on Chinese remaindering:

Definition 5.1 (CRT-ACD problem). Let n, η, ρ ∈ Z≥1. Let p1, . . . , pn be distinct η-bit prime numbers
and M =

∏n
i=1 pi . Consider a nonempty finite set S of integers in Z∩ [0,M) such that for every x ∈ S,

x ≡ xi (mod pi ), 1≤ i ≤ n,

for uniformly distributed integers xi ∈ Z satisfying |xi | ≤ 2ρ.
The CRT-ACD problem is stated as follows: given the set S, the integers η, ρ and M factor M com-

pletely (i.e., find the prime numbers p1, . . . , pn).

Clearly, the larger the set S, the more information one can exploit to factor M. Our interest is therefore
to minimize the cardinality of the set S with respect to n.

5A1. The algorithm of [CP19]. Coron and Pereira propose an algorithm for the case #S = n+ 1. They
proceed in two steps called the “orthogonal lattice attack” following [NS99] and the “algebraic attack”
following [CHL+15]. We briefly review their algorithm; for a complete description we refer to [CP19,
Section 4.3].

Let S = {x1, . . . , xn, y} and x = (x1, . . . , xn) ∈ Sn. Then, the vector b = (x, y · x) ∈ Z2n is public, and
by the Chinese remainder theorem, letting x ≡ x (i) (mod pi ) and y ≡ y(i) (mod pi ) for all i ∈ [n], one has
b ≡

∑n
i=1 ci (x (i), y(i)x (i)) =:

∑n
i=1 ci b(i) (mod M), for some integers c1, . . . , cn . If the vectors {x (i)}i

are R-linearly independent, then so are {b(i)}i and they generate a 2n-dimensional lattice L of rank n.
Importantly, by Definition 5.1, the vectors {b(i)}i are reasonably short vectors (of `2-norm approximately
22ρ ; and ρ is considered much smaller than η).

The “orthogonal lattice attack” is an algorithm, which on input b, outputs a basis of the completion
L= L⊗Z Q of L, performing lattice reduction on the lattice 〈b〉⊥M of vectors v ∈ Zm such that 〈v, b〉 ≡
0 (mod M). The parameters are chosen accordingly, and one essentially requires 2ρ < η.

Upon finding a basis {b′(i)}i of L, Coron and Pereira proceed with the “algebraic attack”. The bases
{b′(i)}i of L and {b(i)}i of L are related via an unknown invertible base change matrix Q ∈Qn×n . Letting
P = [x (1)| · · · |x (n)] ∈ Zn×n with columns {x (i)}i , one obtains matrix relations

W0 = P · Q,W1 = P ·U1 · Q, (5-1)

where U1 is n× n diagonal with entries {y(i)}i . The matrix W0 is invertible (over Q) and one computes
the eigenvalues {y(i)}i of W1W−1

0 = PU1 P−1. Using y ≡ y(i) (mod pi ), one factors M by computing
greatest common divisors.
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5A2. A naive improvement. There is a naive generalization of [CP19] using only O(
√

n) public in-
stances in S. However, we argue that this approach gives a worse range of parameters when combined
with [CP19].

For integers p ≥ 2 and t ≥ 1 of size O(
√

n), let x = (y1 · z, . . . , yt · z) ∈ Ztp of dimension O(n) for
y1, . . . , yt ∈ S and z ∈ S p. This variant reduces #S considerably, as #S = p+ t = O(

√
n). However,

[CP19] requires one to construct the vector b = (x, y · x) for y ∈ S. This gives rise to residue vectors
{b(i)}i of approximate `2-norm 23ρ instead of 22ρ as in [CP19]. Therefore the stronger condition 3ρ < η
will be required for the orthogonal lattice attack to succeed. In our improvement, we would like to lower
#S while continuing to use 2ρ < η, as in [CP19].

5A3. Our improved algorithm. We recognize that (5-1) defines an instance of Problem A of Definition 1.1
with t = 1 because P and Q have rank n. Our improvement lies in generalizing the vector b to obtain
an instance of Problem C.

We consider #S < n+1 and write for convenience S ={x1, . . . , x p, y1, . . . , yt } with integers 2≤ p< n
and 2≤ t <n satisfying 2n≤ (t+1)p. We let x = (x1, . . . , x p)∈S p and b= (x, y1 ·x, . . . , yt ·x)∈Z(t+1)p.
As before, let {b(i)}i denote the short residue vectors modulo the primes {pi }i and x ≡ x (i) (mod pi ),
ya ≡ y(i)a (mod pi ) for a ∈ [t] and i ∈ [n]. By the Chinese remainder theorem, we observe that b lies in
the lattice L=

⊕n
i=1 Zb(i) modulo M. Namely, there are integers c1, . . . , cn such that

b ≡
n∑

i=1

ci


x (i)

y(i)1 · x
(i)

...

y(i)t · x (i)

=:
n∑

i=1

ci b(i) (mod M).

As in [CP19], the orthogonal lattice algorithm reveals a basis {b′(i)}i of L and the `2-norm of {b(i)}i is
still approximately 2ρ.

Contrary to (5-1), we now derive matrix equations

W0 = P · Q,Wa = P ·Ua · Q, a ∈ [t], (5-2)

where P ∈ Zp×n has columns {x (i)}i and {Ua}a are n× n diagonal with entries {y(i)a }a,i . The matrix Q
is a base change matrix from {b′(i)}i to {b(i)}i . If W0 has rank p, (5-2) now defines a valid input for
Problem C of Definition 1.1 and Algorithm AC from Section 3 reveals the diagonal entries {y(i)a }a,i of
the matrices {Ua}a . One can then factor M by computing gcd(ya − y(i)a ,M).

From Section 3C we see that #S = p + t is minimized for p = d
√

2ne and t + 1 = d
√

2ne. Thus,
#S = 2d

√
2ne =O(

√
n). In summary, letting n be the number of secret primes in the public modulus M,

we can factor M given only O(
√

n) input samples, whereas [CP19] uses O(n).

Remark 5.2. We remark that we do not impact the security of the key-exchange from [CP19], as it uses
certain encodings of matrices. However, the product of matrices does not commute, so our techniques
do not apply to that case.
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5B. Improved cryptanalysis of CLT13 multilinear maps. We consider now the CLT13 multilinear map
scheme by Coron et al., [CLT13]. Cheon et al. [CHL+15] described a polynomial-time attack against
the Diffie–Hellman key exchange based on CLT13 when enough encodings of zero are public. Such
encodings are for instance public in the rerandomization procedure. It is of interest to investigate this
cryptanalysis when only a limited number of such encodings is available. Namely, not every CLT13-
based construction necessarily reveals enough such encodings and the attack of Cheon et al. is prevented.

5B1. CLT13 multilinear maps. The CLT13 multilinear map is a construction over the integers based on
the notion of graded encoding scheme [GGH13]. Its hardness relies on Chinese remainder representations
and factorization. We fix an integer n ≥ 2, thought of as a dimension for CLT13. The message space is⊕n

i=1 Z/gi Z for some small secret primes {gi }i . The encoding space has a graded structure and supports
homomorphic addition and multiplication. It is defined over

⊕n
i=1 Z/pi Z for large secret primes {pi }i

with public product x0 =
∏

i pi . More precisely, an encoding of a message m = (mi )i ∈
⊕n

i=1 Z/gi Z at
level k ∈ [κ] (where κ denotes the multilinearity degree) is an integer c such that

c ≡ (ri gi +mi ) · z−k (mod pi )

for all i ∈ [n] where z ∈ (Z/x0Z)× and ri is a random “small” noise. By the Chinese remainder theorem,
c is computed modulo x0. For encodings c at the last level κ , a public zero-testing procedure allows
one to test if c encodes zero. This procedure works by computing ω(c) := pzt · c for a public parameter
pzt ∈ Z/x0Z. Then c encodes the zero message if ω is “small” compared to x0. In [CLT13], one actually
defines a vector of n zero-test parameters {pzt,i : i ∈ [n]} to define a proper zero-testing. For the precise
parameter setting, we refer to [CLT13, Section 3.1].

5B2. Cryptanalysis. The algorithm from [CHL+15] reveals all secret parameters given sufficiently many
encodings of zero. We briefly recall the attack here, and for simplicity of exposition, assume κ = 3.
Consider sets A= {α j : j ∈ [n]}, B= {β1, β2} and C = {γk : k ∈ [n]} of encodings at level 1 and where all
encodings in A encode zero. Therefore, there are #A= n public encodings of zero and #(A∪B∪ C)=
2n+ 2 encodings in total. In the previous notation, we write α j ≡ α j i/z (mod pi ), βa ≡ βai/z (mod pi )

and γk ≡ γki/z (mod pi ) for all i, j, k ∈ [n] and a ∈ [2]. Because the products α jβaγk encode zero at
level 3, correct zero-testing ensures that the zero-test equations ω(a)jk = pzt(α jβaγk), given by

ω
(a)
jk =

n∑
i=1

pzt,iα j iβaiγki =
[
α j1 · · ·α jn

]βa1 pzt,1
. . .

βan pzt,n


γk1
...

γkn


for certain explicit integers pzt,i for i ∈ [n] defining the zero-test parameter, hold over Z instead of Z/x0Z.
Writing these relations out for all indices ( j, k) ∈ [n]2, the n× n matrices Wa := (ω

(a)
jk ) j,k∈[n] for a = 1, 2

satisfy
Wa = P ·Ua · Q (5-3)

for secret matrices P, Q of full rank n (corresponding to encodings of A and C, respectively) and diagonal
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matrices {Ua}a containing the elements {βai : i ∈ [n]}. If at least one of W1,W2 is invertible over Q

(say, W2), the attacker computes the eigenvalues {β1i/β2i : i ∈ [n]} of W1W−1
2 . These ratios are enough

to factor x0. Indeed, letting β1i/β2i = xi/yi for coprime integers xi , yi and using βa ≡ βai/z (mod pi ), we
deduce xiβ2− yiβ1 ≡ (xiβ2i − yiβ1i )/z ≡ 0 (mod pi ) for i ∈ [n] and therefore gcd(xiβ2− yiβ1, x0)= pi

with high probability.
In summary, the Cheon et al. attack recovers all secret primes {pi }i in polynomial time given the set

A of level-one encodings of zero and the sets B and C.

5B3. Attacking CLT13 with fewer encodings. We consider the following CLT13-based problem.

Definition 5.3 (CLT13 problem). Let n ≥ 2 be the dimension of CLT13 and x0 =
∏n

i=1 pi . Let E be a
finite nonempty set of encodings at level 1 and E0 ⊆ E a nonempty subset such that every element of E0

is an encoding of zero. The CLT13 problem is as follows: Given the sets E and E0, factor x0.

We refer to E and E0 as the sets of “available encodings” and “available encodings of zero”, respectively.
It is not a loss of generality to consider level-one encodings. As in [CHL+15], we write E =A∪B∪ C
with A⊆ E0. As recalled above, [CHL+15] requires #E0 ≥ n to factor x0, and a total number of public
encodings #E = 2n+ 2.

We aim at reducing the number of encodings needed for the factorization of x0 and treat the following
questions independently:

(i) Factor x0 with fewer available encodings of zero, i.e., #E0 < n.

(ii) Factor x0 with fewer available encodings, i.e., #E < 2n+ 2.

A naive improvement. As for the CRT-ACD problem, there is a naive improvement using fewer encodings,
but assuming κ = 4. One can form product encodings α jβaγkδ` at level 4, where every encoding is at
level 1. These can be partitioned into sets A,B and C such that A corresponds to encodings of zero with
#A = O(

√
n). However, this approach has the inconvenience of using κ = 4 and our improved attack

aims at lowering the number of public encodings while κ = 3.

Minimizing the number of encodings of zero. We explain how to use Algorithm AC to factor x0 using
only #E0 =O(

√
n) level-one encodings of zero.

We fix integers 2 ≤ p < n and 3 ≤ t < n and assume again κ = 3. As in [CHL+15], we write
E =A∪B∪ C with A⊆ E0. We let #A= p, #B = t and #C = n; and claim p =O(

√
n).

Every product encoding c = α jβaγk with (α j , βa, γk) ∈ A× B × C is an encoding of zero and by
correct zero-testing we obtain integer matrix relations

Wa = P ·Ua · Q, a ∈ [t], (5-4)

for P ∈ Zp×n, Q ∈ Zn×n corresponding to encodings in A and C, respectively, and diagonal matrices
{Ua}a corresponding to B. Exactly as in [CHL+15], the matrices {Ua}a contain integers βai such that
βa ≡ βai (mod pi ) for i ∈ [n]. With high probability the ranks of P and Q are p and n, respectively.
Defining W ′0 = W1 and W ′a = Wa−1 for 2 ≤ a ≤ t we obtain an instance similar to Problem C of
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Definition 1.1, but without a “special input matrix” P Q (see Section 2B). Using Algorithm AC, we reveal
eigenvalues (the diagonal entries) of the matrices {UaU−1

1 }a as it is likely that U1 will be invertible. We
finally deduce the prime factorization of x0 by taking greatest common divisors, as in [CHL+15].

By the optimization in Section 3C, we choose t = d
√

2ne and #A= p = d
√

2ne.

Minimizing the total number of encodings. We now explain how to use Algorithm AD to factor x0 using
#E = 4

3 n+O(
√

n) instead of #E = 2n+ 2 as in [CHL+15].
Contrary to the previous case, we now use a set C with #C= p; so #E = 2p+t . It is now straightforward

to see that upon correct zero-testing we derive equations as in (5-4) but with Q ∈ Zn×p instead. Thus, if
both P and Q have rank p, we obtain Problem D of Definition 1.1 without “special input matrix” W0.
Then Algorithm AD reveals ratios of diagonal entries of {UaU−1

1 } and we consequently factor x0.
Following Section 4C, we are led to minimize #E(n) = 2p+ t as a function of n. We can let p =⌈2

3 n+ 1
3
√

2

√
n
⌉

and t =
⌈1

3

√
2n+ 5

3

⌉
and obtain

#E(n)= 2
⌈2

3 n+ 1
3
√

2

√
n
⌉
+
⌈1

3

√
2n+ 5

3

⌉
=

4
3 n+O(

√
n).

Cryptanalysis with independent slots. In [CN19], Coron and Notarnicola cryptanalyze CLT13 when no
encodings of zero are available beforehand, but instead only “partial-zero” encodings. Messages are
nonzero modulo a product of several primes g1 · · · gθ for some integer θ ∈ [n]. We can improve this
cryptanalysis following the same techniques as above. Let ` the number of partial-zero encodings. Since
[CN19] is based on the algorithm of Cheon et al. to factor x0, we can now replace it by Algorithm AC

once ` encodings of zero are created. This means that we can set `= O(
√

n), which brings a twofold
improvement: first, lattice reduction (in the orthogonal lattice attack [CN19, Section 4]) is only run on a
lattice of dimension O(

√
n); and second, the number of partial-zero encodings is reduced to O(

√
n).

6. Computational aspects and practical results

We describe practical parameters for algorithms AC and AD. We have implemented our algorithms in
SageMath: our source code is provided in https://pastebin.com/Yg6QgZTh. Our experiments are done
on a standard Intel Core i7 3.3 GHz processor.

6A. Instance generation of problems C and D. As for applications in cryptanalysis, we consider ma-
trices with integer entries. To generate instances of Problems C and D, given fixed integers n, t, p, we
uniformly at random generate matrices P, Q and {Ua}a with entries in [−k, k] ∩Z for some k ∈ Z≥1 as
in Definition 1.1. Setting W0 = P Q and Wa = PUa Q for a ∈ [t] gives instances of Problems C or D.

We perform the linear algebra over Z/`Z for a large prime `, instead of over Q. It suffices to choose `
slightly larger than the diagonal entries of {Ua}a (e.g., `=O(maxa,i |uai |), where uai for i ∈ [n] denote
the diagonal entries of Ua). The running time depends on the entry size of the generated matrices. The
overall computational cost of our algorithms AC and AD is dominated by the cost of solving systems of
linear equations and performing simultaneous diagonalization, which can be done by standard algorithms
for nonsparse linear algebra.

https://pastebin.com/Yg6QgZTh
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Algorithm AC Algorithm AD

n
entry
size

practice
p t

theory
p0(n) t0(n)

running
time

practice
p t

theory
p0(n) t0(n)

running
time

15 1000 6 4 6 5 4 min 4 s 11 4 11 4 4 min 2 s
25 750 8 7 8 7 3 min 45 s 18 4 18 5 1 min 54 s
50 600 10 9 10 9 4 min 34 s 35 5 35 5 1 min 39 s

100 200 15 14 15 14 1 h 17 min 70 7 70 7 5 min 14 s
150 100 18 16 18 17 6 h 29 min 103 8 103 8 23 min 14 s
500 20 32 31 32 31 29 min 3 s 339 13 339 13 6 min 57 s

Table 1. Experimental data for Algorithms AC and AD.

6B. Practical experiments. We gather in Table 1 practical parameters for problems C and D, and our
applications of Section 5. We compare p, t with the theoretical values p0(n), t0(n) obtained in the two
algorithms. For Section 3, p0(n)=d

√
2ne and t0(n)=d

√
2n−1e. For Section 4, p0(n)=

⌈ 2
3 n+

√
n

3
√

2

⌉
and t0(n) =

⌈ 1
3(
√

2n+ 5)
⌉
. Here “entry size” is an approximation of the bit-size of the max-norm of

each input matrix.
Our work is compared with [CP19] for the CRT-ACD problem in Table 2 and with [CHL+15] for the

cryptanalysis of CLT13 in Table 3. We give parameters for obtaining a complete factorization of M (in
CRT-ACD) and x0 (in CLT13) of approximate bit-size nη. For CRT-ACD, the column “this work” equals
#S = p+ t (Series 1). For CLT13, “this work” shows #E = 2p+ t (Series 2) and #E0= p (Series 3). Thus,
for n= 50, our algorithm factors M (in CRT-ACD) using only 19 public samples, whereas [CP19] requires
51 samples; and similarly breaks CLT13 with only 10 public encodings of zero, while [CHL+15] uses 50.

In conclusion, these practical experiments overall confirm our theory, as well as the quadratic improve-
ment over [CP19] and [CHL+15].

Series 1 num. of samples

n η ρ p t this work [CP19]

20 1000 200 7 6 13 21
30 1000 100 8 7 15 31
50 800 100 10 9 19 51

Table 2. Experimental data for the CRT-ACD problem.

Series 2 num. of encodings Series 3 num. of encodings of zero

n η ρ p t this work [CHL+15] p t this work [CHL+15]

20 1000 200 15 4 34 42 7 6 7 20
30 1000 100 22 5 49 62 8 7 8 30
50 800 100 35 5 75 102 10 9 10 50

Table 3. Experimental data for the CLT13 Problem.
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Hypergeometric L-functions in average polynomial time

Edgar Costa, Kiran S. Kedlaya, and David Roe

We describe an algorithm for computing, for all primes p ≤ X , the mod-p reduction of the trace of
Frobenius at p of a fixed hypergeometric motive in time quasilinear in X . This combines the Beukers–
Cohen–Mellit trace formula with average polynomial time techniques of Harvey et al.

1. Introduction

In the past, computation of arithmetic L-functions has largely been limited to familiar classes of low-
dimensional geometric objects, such as hyperelliptic curves or K3 surfaces [CHK19]. Recently, it has
emerged that families of motives whose associated (Picard–Fuchs) differential equation is a hypergeomet-
ric equation also have L-functions which can be computed at large scale. Such motives provide accessible
examples of arithmetic L-functions with diverse configurations of Hodge numbers, some of which arise
in heretofore unanticipated applications. For example, certain hypergeometric motives appear among
families of Calabi–Yau threefolds, where they give rise to arithmetic manifestations of mirror symmetry
(as in [DKS+18]).

Using finite hypergeometric sums in the manner of Greene [Gre87], Katz [Kat90], and especially
McCarthy [McC13], an explicit formula for the L-function of a hypergeometric motive was given by
Beukers, Cohen and Mellit [BCM15]. It was then modified by Cohen and Rodriguez Villegas, using the
Gross–Koblitz formula [GK79] to replace classical Gauss sums with the Morita p-adic gamma function.
That work is unpublished, but is documented in the manuscript [Wat15]; the resulting formula appears
in [Coh15, §8] and [FKS16, §7.1]; it is implemented in PARI/GP [PAR19], Magma [Magma], and
SageMath [SageMath]; and it is being used to tabulate hypergeometric L-functions in the L-functions
and modular forms database [LMFDB]. (For an alternative approach using the p-adic Frobenius structure
on a hypergeometric equation, see [Ked19].)

The purpose of this paper is to describe a preliminary adaptation of average polynomial time techniques
for computation of L-functions to the setting of hypergeometric motives. Such techniques, based on

Costa and Roe were supported by the Simons Collaboration on Arithmetic Geometry, Number Theory, and Computation via
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accumulating remainder trees, were introduced by Costa, Gerbicz and Harvey [CGH14] for the problem
of finding Wilson primes; adapted to computing L-functions by Harvey [Har14; Har15]; and further
elaborated (and made practical in particular cases) by Harvey and Sutherland [HS14; HS16] and Harvey,
Massierer and Sutherland [HMS16].

To simplify matters, we consider here only a limited form of the problem: given a hypergeometric
motive over Q and a bound X, for each prime p ≤ X, we compute the reduction modulo p of the trace
of Frobenius at p in time quasilinear in X. This eliminates some technical issues that would arise when
computing the mod-pe reduction for e > 1, such as the computation of multiplicative lifts and evaluation
of the Morita p-adic gamma function in average polynomial time. Modulo p, the trace formula at p
for a parameter value t is a polynomial in t of degree O(p) whose coefficients are essentially ratios of
Pochhammer symbols. Computing the Pochhammer symbols themselves in average polynomial time
is a straightforward adaptation of the corresponding computation for factorials done in [CGH14]; this
approach can then be modified to include the polynomial evaluation.

At the end of the paper, we discuss the prospects of lifting our present restrictions of working mod-
ulo p (rather than a higher power) and of computing only the trace of the p-power Frobenius (rather
than a higher power). Eliminating both restrictions would yield an average polynomial time algorithm
for computing arbitrary hypergeometric L-series. However, the restricted computation described here
is already of significant value for hypergeometric motives of weight 1, for which the trace of the p-
power Frobenius is determined uniquely by its reduction modulo p (except when p is very small).
Since the formula for the trace of the q-power Frobenius involves a summation over q − 1 terms, our
method reduces the complexity of computing the first X terms of the L-series from X2 to X3/2 (see
Theorem 2.29).

We end this introduction by asking (as in [Ked19]) whether a similar trace formula exists for A-
hypergeometric systems in the sense of Gelfand, Kapranov and Zelevinsky [GKZ08]. Such a formula
might unlock even more classes of previously inaccessible L-functions.

2. Background

2A. The p-adic 0 function. For a detailed development of the following material, we recommend [Rob00,
§7.1] and [RV07, §6.2].

Definition 2.1. The (Morita) p-adic gamma function is the unique continuous function 0p : Zp→ Z×p

which satisfies

0p(n+ 1)= (−1)n+1
n∏

i=1
(i,p)=1

i = (−1)n+1 0(n+ 1)
pbn/pc0(bn/pc+ 1)

(2.2)

for all n ∈ Z≥0. For p ≥ 3, it is Lipschitz continuous with C = 1; i.e.,

|0p(x)−0p(y)|p ≤ |x − y|p. (2.3)
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There is also a functional equation analogous to the one for the complex 0 function:

0p(x + 1)= ω(x)0p(x), ω(x) :=
{
−x if x ∈ Z×p

−1 if x ∈ pZp.
(2.4)

Remark 2.5. It was originally observed by Dwork (writing pseudonymously in [Boy80], as corroborated
in [KT99]; see [RV07, §6.2] for the formulation given here) that 0p admits an easily computable Mahler
expansion on any mod-p residue disc:

0p(−a+ px)=
∑
k≥0

pkca+kp(x)k, (2.6)

where (x)k := x(x+1) · · · (x+k−1) is the usual Pochhammer symbol, and cn is defined by the recursion

ncn = cn−1+ cn−p, c0 = 1, cn = 0 for n < 0. (2.7)

Thus, one may compute 0p(x) modulo p f using O(p f ) ring operations.

2B. Hypergeometric motives and their L-functions. While the following discussion is needed to put
our work in context, the reader is encouraged to skip ahead to (2.22), as the essential content of the paper
is the computation of that formula.

Definition 2.8. A hypergeometric datum is a pair of disjoint tuples α= (α1, . . . , αr ) and β= (β1, . . . , βr )

valued in Q∩ [0, 1) which are Galois-stable (or balanced): any two reduced fractions with the same
denominator occur with the same multiplicity.

Remark 2.9. There are several equivalent ways to specify a hypergeometric datum. One is to specify
two tuples A and B for which the identity

r∏
j=1

x − e2π iα j

x − e2π iβ j
=

∏
a∈A 8a(x)∏
b∈B 8b(x)

holds in C(x), where 8n(x) denotes the n-th cyclotomic polynomial.

Definition 2.10. The zigzag function Zα,β : [0, 1] → Z associated to a hypergeometric datum (α, β) is
defined by

Zα,β(x) := #{ j : α j ≤ x}− #{ j : β j ≤ x}.

Notation 2.11. We denote by Mα,β the putative (see Remark 2.17) hypergeometric family over P1 asso-
ciated to the hypergeometric datum (α, β). Its expected properties are as follows:

• It is a pure motive of degree r with base field Q(t) and coefficient field Q.

• Its Hodge realization is the one constructed by Fedorov in [Fed18]. This means that as per [Fed18,
Theorem 2], its minimal motivic weight is

w =max{Zα,β(x) : x ∈ [0, 1]}−min{Zα,β(x) : x ∈ [0, 1]}− 1

=max{Zα,β(x) : x ∈ α}−min{Zα,β(x) : x ∈ β}− 1 (2.12)



146 EDGAR COSTA, KIRAN S. KEDLAYA, AND DAVID ROE

and a similar recipe (see [CG11, Conjecture 1.4] or [Fed18, Theorem 1]) computes the Hodge
numbers. Note that rw is even [Wat15, §1.2].

• Its `-adic étale realization is Katz’s perverse sheaf [Kat90, Chapter 8].

• For z ∈Q \ {0, 1,∞}, let Mα,β
z denote the specialization of Mα,β at t = z. Then the primes of bad

reduction for Mα,β
z are those primes p at which z and z− 1 are not both p-adic units (called tame

primes) and those primes p at which the αi and βi are not all integral (called wild primes). By the
compatibility with Katz, the L-function associated to Mα,β

z is given by the Beukers–Cohen–Mellit
trace formula [BCM15].

Remark 2.13. In order to avoid some case subdivisions in what follows, we assume hereafter that 0 /∈ α.
This is relatively harmless because of the isomorphism

Mα,β
z
∼= Mβ,α

1/z . (2.14)

Example 2.15. As per [Ono98], M (1/2,1/2),(0,0) is the motive H 1(E,Q), where

E : y2
=−x(x − 1)(x − t). (2.16)

For other (putative) examples, see [BK12] and [Nas17].

Remark 2.17. We use the qualifier “putative” in Notation 2.11 for two reasons. One is to avoid any
precision about motives; while [BCM15] describes a specific variety whose `-adic cohomology includes
Katz’s perverse sheaf, lifting this containment to the motivic level would require a deeper dive into
motivic categories (including a choice of which such category to consider).

The other, more serious issue is that there is no existing reference that provides this missing precision
on hypergeometric motives. The reader seeking to remedy this should start with [And04] for a user’s
guide to motives.

2B1. Trace formulas. We are particularly interested in computing

det(1− T Frob |Mα,β
z ), (2.18)

where Frob is the Frobenius automorphism at a prime p of good reduction for Mα,β
z . (For concrete-

ness, we may replace Mα,β
z with an étale realization.) We ignore primes of bad reduction both because

they are small enough to be handled individually and because a somewhat different recipe is required
(see [Wat15, § 11] for a partial description, noting that our z is Watkins’s 1/t).

Definition 2.19. Let {x} := x −bxc be the fractional part of x . For q = p f , define

0∗q(x) :=
f−1∏
v=0

0p({pvx}), (2.20)
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and then define a p-adic analogue of the Pochhammer symbol by setting

(x)∗m :=
0∗q

(
x + m

1−q

)
0∗q(x)

. (2.21)

Let [z] be the multiplicative representative in Zp of the residue class of z (the unique (p−1)-st root of
1 congruent to z modulo p). As in [Wat15, § 2], write

Hq

(
α

β

∣∣∣∣ z) := 1
1− q

q−2∑
m=0

(−p)ηm(α)−ηm(β)q D+ξm(β)

( r∏
j=1

(α j )
∗
m

(β j )∗m

)
[z]m, (2.22)

using the notation

ηm(x1, . . . , xr ) :=

r∑
j=1

f−1∑
v=0

{
pv
(

x j +
m

1−q

)}
−{pvx j }, (2.23)

ξm(β) := #{ j : β j = 0}− #
{

j : β j +
m

1−q
= 0

}
, (2.24)

D :=
w+ 1− #{ j : β j = 0}

2
. (2.25)

By adapting [BCM15, Theorem 1.3] using the Gross–Koblitz formula as in [Wat15, §2] (and twisting
by q D to minimize the weight), we deduce the following.

Theorem 2.26. We have

Hp f

(
α

β

∣∣∣∣ z)= Tr(Frob f
|Mα,β

z ) ∈ Z.

From [Wat15, §11], we also have a precise formula for the functional equation which is associated to
det(1− T Frob |Mα,β

z ).

Theorem 2.27. We have

det(1− q−wT−1 Frob |Mα,β
z )=±q−rw/2T−r det(1− T Frob |Mα,β

z ), (2.28)

where ± denotes +1 if w is even, and otherwise is given by{
(1|p), 1= z(z− 1)

∏
a∈A Disc(8a(x)) for r ≡ 0 (mod 2),

−(1|p), 1= (1− z)
∏

b∈B Disc(8b(x)) for r ≡ 1 (mod 2).

Here A, B,8a,8b are as in Remark 2.9 and (1|p) is the Kronecker symbol.

Using these two results, we recover det(1−T Frob |Mα,β
z ) from the values Hp f

(
α
β

∣∣ z) for f =1, . . . ,
⌊ r

2

⌋
.

2B2. Complexity considerations. Computing Hp f
(
α
β

∣∣ z) via (2.22) requires O( f p f ) arithmetic opera-
tions,1 due to the number of terms in the sum and product [Wat15, §2.1.4]. As these operations are in Zp,

1The factor of f comes from computing 0p . We do not incur a factor of f from computing 0∗q because the latter is invariant
under x 7→ {px}, so we only need O(q/ f ) evaluations of 0∗q .
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we must also pay attention to p-adic working precision; since Hp f
(
α
β

∣∣ z) is the sum of r algebraic integers
of complex norm pw f/2, it is uniquely determined by its reduction modulo pe for e > 1

2w f + logp(2r).
For the use case of computing L-series, a different analysis applies.

Theorem 2.29. Fix a hypergeometric datum (α, β). Given Hp
(
α
β

∣∣ z) for all primes p ≤ X, one can com-
pute the first X coefficients of the Dirichlet L-series associated to Mα,β

z in at most O(X3/2) arithmetic
operations.

Proof. The first X coefficients of the Dirichlet series are determined by the coefficients indexed by prime
powers up to X, and hence by the values Hq

(
α
β

∣∣ z) for all prime powers q ≤ X. The number of such q
which are not prime is

O(X1/2/ log X),

for q = p f ; evaluating (2.22) takes O( f p f )= O(X log X) arithmetic operations. �

3. Accumulating remainder trees

The use of a remainder tree to expedite modular reduction has its origins in the fast Fourier transform
(FFT). An early description was given by Borodin and Moenck [BM74]; for a modern treatment with
more historical references, see [Ber08].

Accumulating remainder trees were introduced in [CGH14] in order to compute (p− 1)! (mod p2)

for many primes p. We use the variant described in [HS14, §4].

Definition 3.1. Suppose P is a sequence p1, . . . , pb−1 of pairwise coprime integers with pi ≤ X, and
A0, . . . , Ab−2 is a sequence of 2× 2 integer matrices. We may use an accumulating remainder tree to
compute

Cn := A0 · · · An−1 mod pn (3.2)

for 1≤ n < b as follows. For notational convenience we assume b = 2`, set Ab−1 = 0 and p0 = 1. Then
as in [HS14, §4], write

mi, j := p j2`−i p j2`−i+1 · · · p( j+1)2`−i−1,

Ai, j := A j2`−i A j2`−i+1 · · · A( j+1)2`−i−1,

Ci, j := Ai,0 · · · Ai, j−1 mod mi, j .

(3.3)

This leads us to Algorithm 1.

Theorem 3.4 [HS14, Theorem 4.1]. Let B be an upper bound on the bit size of
∏b−1

j=0 p j and H an
upper bound on the bit size of any pi or Ai . The running time of Algorithm 1 is

O((B+ bH) log(B+ bH) log(b))

(using [HVDH19] for the runtime of integer multiplication) and its space complexity is

O((B+ bH) log(b)).



HYPERGEOMETRIC L -FUNCTIONS IN AVERAGE POLYNOMIAL TIME 149

Algorithm 1: Accumulating Remainder Tree

Input: A0, . . . , Ab−1, p0, . . . , pb−1 as in Definition 3.1
Output: {Ci }

1 def RemTree({Ai }, {pi }):
2 for j := 0 to b− 1 do
3 m`, j := p j and A`, j := A j

4 for i := `− 1 to 0 do
5 for j := 0 to 2i

− 1 do
6 mi, j := mi+1,2 j mi+1,2 j+1 and Ai, j := Ai+1,2 j Ai+1,2 j+1

7 C0,0 := id
8 for i := 1 to ` do
9 for j := 0 to 2i

− 1 do
10 if j even then
11 Ci, j := Ci−1,b j/2c mod mi, j

12 else
13 Ci, j := Ci−1,b j/2cAi, j−1 mod mi, j

14 return {C`, j } j=1,...,b−1

3A. Accumulating remainder tree with spacing. In most applications (including this one), there is not
a one-to-one correspondence between the moduli pi and the multiplicands Ai . Rather, we will be given
• a list of matrices A0, . . . , Ab−1,

• a list of primes p1, . . . , pc, and

• a list of distinct cut points b1, . . . , bc,

with the aim of computing Cn := A0 · · · Abn−1 mod pn for 1 ≤ n < c. This reduces to Algorithm 1 by
suitably grouping terms; see Algorithm 2. (One may also handle repeated cut points, as long as the cut
points up to X occur at most O(X) times.)

Remark 3.5. In practice, we split our products to work around discontinuities of (2.22) (see Section 5B).
One gains some savings (particularly in space complexity) by splitting a bit further, replacing remainder
trees with remainder forests [HS14, Theorem 4.2]; we omit the details here.

4. Nuts and bolts

We record two technical lemmas used in the description of our algorithm. For the rest of the paper, we
make the simplifying assumption q = p in Theorem 2.26.

Lemma 4.1. Set Ib := [0, 1] ∩ 1
b Z. Suppose γ ∈ Ib and p is a prime not dividing b. Let m = bγ (p− 1)c.

Then there exist δ ∈ Ib and ε ∈ {1, 2} so that

m+ ε ≡ δ (mod p).

Moreover, δ and ε only depend on b, γ , and p (mod b).
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Algorithm 2: Accumulating Remainder Tree with Spacing

Input: A0, . . . , Ab−1, p1, . . . , pc, b1, . . . , bc as in Section 3A
Output: C1, . . . ,Cc−1

1 def RemTreeWithSpacing({Ai }, {pi }, {bi }):
2 ` := dlog2(b)e
3 for j := b to 2`− 1 do
4 A j := 0
5 for j := 0 to 2`− 1 do
6 p′j := 1
7 for i := 1 to c do
8 p′bi

:= pi

9 C ′i := RemTree({Ai }, {p′i })
10 return {C ′bi

}i=0,...,c−1

Proof. Write γ = a
b and define an integer r ∈ {0, . . . , b− 1} by the condition that

a(p− 1)= mb+ r.

We then set {
ε := 1, δ := 1

b (b− a− r) if a+ r < b,

ε := 2, δ := 1
b (2b− a− r) otherwise.

Note that
b(δ− ε)=−(a+ r)= mb− ap

so m+ ε ≡ δ (mod p). The fact that δ ∈ Ib follows from the bounds 0≤ a, r ≤ b. �

Lemma 4.2. Suppose 0≤m< p−1 and either ηm(α)−ηm(β) 6=ηm+1(α)−ηm+1(β) or ξm(β) 6= ξm+1(β).
Then bγ (p− 1)c ∈ {m,m+ 1} for some γ ∈ α ∪β.

Proof. Since q = p, we have

ηm(α)− ηm(β)=

r∑
j=1

({
α j −

m
p−1

}
−{α j }

)
−

r∑
j=1

({
β j −

m
p−1

}
−{β j }

)
. (4.3)

For x, y ∈ [0, 1) we have

{x − y} =
{

x − y, (x ≥ y),
x − y+ 1, (x < y).

(4.4)

Consequently, the only way for ηm(α)− ηm(β) to change values when m goes to m+ 1 is for there to
exist γ ∈ α ∪β such that

γ −
m

p−1
≥ 0, γ −

m+1
p−1

< 0.

This occurs precisely when m = bγ (p − 1)c. Meanwhile, by (2.24), ξm(β) = ξm+1(β) unless β j =

m/(p− 1) or β j = (m+ 1)/(p− 1)= 0 for some j. �
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5. Computing trace functions of hypergeometric motives

Throughout this section, fix α, β and z. We now describe how to compute the trace Hp
(
α
β

∣∣ z) modulo p
in average polynomial time using (2.22), which we duplicate here modulo p for ease of reference:

Hp

(
α

β

∣∣∣∣ z)≡ p−2∑
m=0

(−p)ηm(α)−ηm(β) pD+ξm(β)

( r∏
j=1

(α j )
∗
m

(β j )∗m

)
zm (mod p). (5.1)

5A. Overview of the algorithm. In order to apply Algorithm 2, we would like to identify 2× 2 integer
matrices B(m), such that we may extract Hp

(
α
β

∣∣ z) (mod p) from B(0)B(1) · · · B(p− 2). In practice,
we will consider shorter subproducts and choose B(m) based on the residue of p modulo a fixed integer
(independent of m and p); we will then apply Algorithm 2 once for each subproduct and residue class.

As a first approximation, let us instead model the sum
∑p−2

m=0 Pm where

Pm := zm
r∏

j=1

(α j )
∗
m

(β j )∗m
∈ Z×p . (5.2)

If we can find f (m), g(m) ∈ Z[m] so that

Pm+1 ≡
f (m)
g(m)

Pm (mod p), (5.3)

we can then set

B(m) :=
(

g(m) 0
g(m) f (m)

)
= g(m)

(
1 0
1 f (m)/g(m)

)
(5.4)

and B̃ = B(0) · · · B(p− 2) (mod p), so that

B̃ ≡ g(0) · · · g(p− 2)

(
1 0∑p−2

m=0 Pm Pp−1

)
(mod p)

and so
∑p−2

m=0 Pm ≡ B̃21/B̃11 (mod p). That is, B̃11 tracks a common denominator, B̃22 tracks the prod-
uct Pm , and B̃12 computes the sum of the Pm .

There are two problems with the approach described above. First, to correctly simulate (5.1) we must
sum not Pm but

P ′m := (−p)ηm(α)−ηm(β) pD+ξm(β)Pm, (5.5)

which we cannot directly handle by modifying B(m)21 because the extra factor depends on both p and m.
Second, while we can find polynomials f and g satisfying (5.3) for most values of m using (2.21) and
the functional equation (2.4), there will be a few values of m where f (m) or g(m) is a multiple of p. We
cannot filter these values out during the remainder tree because p is not fixed.

The solution to both of these issues is to break up the range [0, p− 2] into intervals on which (5.3)
holds and the values ηm(α)− ηm(β) and ξm(β) are constant. The breaks between these intervals occur
when m = bγ (p− 1)c, where γ ∈ α ∪β. We thus use a separate accumulating remainder tree for each
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interval, yielding for each p a fixed number of subproducts with isolated missing terms in between; we
then compute separately for each p to bridge the gaps.

A third issue is that while we can vary the endpoint in an accumulating remainder tree as a function
of p (as described in Section 3), it is more difficult to change the start point. Our solution is to use
Lemma 4.1 to find a rational number δ so that adding δ to each α j and β j has the effect of shifting the
start point to 0.

5B. Construction of the matrix product. We now construct the matrix product described above. We
begin with the division of the interval [0, p − 1] and the division of primes into residue classes. We
assume that q = p is good and not 2.

Definition 5.6. Given a hypergeometric motive Mα,β
z , let 0= γ0 < · · ·< γs = 1 be the distinct elements

in α∪β ∪{0, 1}. Let b be the least common denominator of α∪β and fix c ∈ (Z/bZ)×. Let p be a prime
congruent to c modulo b and not dividing the denominator of z. Write mi for bγi (p− 1)c.

We next exhibit polynomials that we use to compute Pochhammer symbols and their partial sums on
the interval (γi , γi+1).

Definition 5.7. Fix an interval (γi , γi+1), choose δi and εi associated to γi as in Lemma 4.1, and let

ι(x, y) :=
{

1, x ≤ y,
0, x > y.

(5.8)

Define polynomials fi,c(k), gi,c(k) ∈ Z[k] as follows: set

Fi,c(k) := z
r∏

j=1

(α j + δi + ι(α j , γi )+ k− εi ),

Gi,c(k) :=
r∏

j=1

(β j + δi + ι(β j , γi )+ k− εi ),

(5.9)

let di,c be the least common multiple of the denominators of Fi,c and Gi,c, and set fi,c(k) := di,c Fi,c(k)
and gi,c(k) := di,cGi,c(k).

Lemma 5.10. Define Pm as in (5.2), and suppose mi < m < mi+1. Then

Pm+1 ≡
fi,c(k)
gi,c(k)

Pm (mod p),

where 1≤ k < mi+1−mi and m = mi + k.

Proof. We first focus on a single Pochhammer symbol (α j )
∗
m . First note that, for mi <m ≤mi+1, by (4.4)

we have {
α j +

m
1− p

}
= α j +

m
1− p

+

{
0 m ≤ bα j (p− 1)c

1 m > bα j (p− 1)c
= α j +

m
1− p

+ ι(α j , γi ). (5.11)
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Combining (5.11) with Lipschitz continuity (2.3) and the functional equation for 0p (2.4) and Lemma 4.1,
for mi < m < mi+1 we obtain

0p

({
α j +

m+1
1− p

})
≡ 0p(α j +m+ 1+ ι(α j , γi ))

=−(α j +m+ ι(α j , γi ))0p(α j +m+ ι(α j , γi ))

≡−(α j + δi + ι(α j , γi )+ k− εi )0p

({
α j +

m
1− p

})
(mod p).

(5.12)

Taking the product over all the Pochhammer symbols, the minus sign cancels out, and we obtain (5.9),
as desired. �

We next account for the power of p in the product, and assemble a matrix product that computes the
sum between two breaks.

Definition 5.13. Let ξ(β)= #{ j : β j = 0} and

σi :=


1, Zα,β(γi )+ ξ(β)+ D = 0 and Zα,β(γi )≡ 0 (mod 2),
−1, Zα,β(γi )+ ξ(β)+ D = 0 and Zα,β(γi )≡ 1 (mod 2),
0, otherwise.

(5.14)

By Lemma 4.2, σi gives the value of (−p)ηm(α)−ηm(β) pξm(β)+D mod p for all m with mi < m < mi+1.
Now set

Ai,c(k) :=
(

gi,c(k) 0
σi gi,c(k) fi,c(k)

)
. (5.15)

Since Ai,c(k) depends only on c and not p, we can use an accumulating remainder tree for each c to
compute

Si (p) := Ai,c(1)Ai,c(2) · · · Ai,c(mi+1−mi − 1) (mod p). (5.16)

Lemma 5.17. For P ′m as defined in (5.5),

Si (p)−1
11 Si (p)≡

(
1 0∑mi+1−1

m=mi+1 P ′m/Pmi+1 Pmi+1/Pmi+1

)
(mod p). (5.18)

Proof. By Lemma 5.10, for k = 1, . . . ,mi+1−mi − 1,

(Ai,c(1) · · · Ai,c(k))22

(Ai,c(1) · · · Ai,c(k))11
≡

Pmi+k+1

Pmi+1
(mod p)

and hence
(Ai,c(1) · · · Ai,c(k))21

(Ai,c(1) · · · Ai,c(k))11
≡ σi

k∑
l=1

Pmi+l

Pmi+1
(mod p).

Taking k = mi+1−mi − 1, and then applying Lemma 4.2 to replace σi with P ′m/Pm , yields the desired
result. �
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It remains to deal with the breaks. Since the number of breaks is independent of p, we have the luxury
of computing matrices Ti (p) separately for each p that move the Pochhammer symbols and partial sums
past the break γi .

Definition 5.19. With ω defined as in (2.4), let

hi (γ, p) :=


ω(γ +mi + 1) if γ (p− 1) < mi ,

ω(γ +mi ) if γ (p− 1)≥ mi + 1,

ω(γ +mi + 1)ω(γ +mi ) otherwise,

(5.20)

τi :=


0 γi = 0,

1 Zα,β(γi−1)+ ξmi (β)+ D = 0 and Zα,β(γi−1)≡ 0 (mod 2),

−1 Zα,β(γi−1)+ ξmi (β)+ D = 0 and Zα,β(γi−1)≡ 1 (mod 2),

0 otherwise,

(5.21)

and then set

Ti (p) :=

(
1 0
τi z

∏r
j=1

hi (α j ,p)
hi (β j ,p)

)
, (5.22)

S(p) :=
s−1∏
i=0

Ti (p)Si (p). (5.23)

Note that modulo p, Ti (p) is congruent to a matrix that depends on p only via c.

Lemma 5.24. For suitable choices of scalars, we have

i−1∏
j=0

T j (p)S j (p)≡ (scalar)
(

1 0∑mi−1
m=0 P ′m Pmi

)
(mod p),

(i−1∏
j=0

T j (p)S j (p)
)

Ti (p)≡ (scalar)
(

1 0∑mi
m=0 P ′m Pmi+1

)
(mod p).

Proof. This follows by induction on i using Lemma 5.17. �

Summing up, we obtain the following:

Proposition 5.25. For p ≡ c (mod b) not dividing the denominator of z,

Hp

(
α

β

∣∣∣∣ z)≡ S(p)21/S(p)11 (mod p).

Proof. This follows from (5.1) and the case i = s of Lemma 5.24. �

5C. Algorithm and runtime. We summarize with Algorithm 3.

Theorem 5.26. For fixed α, β, Algorithm 3 is correct and runs in time

O(X log(X)3).
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Algorithm 3: Trace mod p

Input: α, β ∈
(
Q∩ [0, 1)

)r, z ∈Q and a bound X

Output: Hp
(
α
β

∣∣ z) (mod p) for all good p ≤ X
1 def Traces(α, β, z, X):
2 if 0 ∈ α then
3 α, β, z := β, α, 1/z
4 gamma := Sorted( Set( α ∪β ∪ {0, 1}))
5 for good primes p ≤ X do
6 result[p] := IdentityMatrix(2)
7 for start, end consecutive elements of gamma do
8 b := Denominator(start)
9 for c ∈ (Z/bZ)× do

10 δ, ε := RationalShift(start, c) // Using Lemma 4.1
11 mats := Matrices(z, start, δ, ε) // As in (5.15)
12 cut := (p 7→ bend · (p− 1)c− bstart · (p− 1)c)
13 primes := {good primes p ≡ c (mod b), p ≤ X}
14 {Ci } := RemTreeWithSpacing(mats, primes, cut)
15 for i := 0, . . . , #primes− 1 do
16 p := primes[i]
17 result[p] := result[p] · FixBreak(z, start, p) // As in (5.22)
18 result[p] := result[p] ·Ci

19 for good primes p ≤ X do
20 result[p] := result[p]21/result[p]11 (mod p)
21 return result

Proof. Correctness is immediate from Proposition 5.25. The runtime is dominated by the calls to Algo-
rithm 2; these calls take place inside a loop over consecutive elements of α ∪ β ∪ {0, 1} and a second
loop over residue classes modulo a divisor of b. These two loops together have length O(rb); combining
with the runtime estimate from Theorem 3.4 (taking B = b = O(X), H = O(log X)) yields the desired
result. �

5D. Implementation notes. We have implemented Algorithm 3 in SageMath, using a variant of Al-
gorithm 2 implemented in C by Drew Sutherland (see Remark 3.5). Our implementation is available
at https://github.com/edgarcosta/amortizedHGM, and vastly outperforms SageMath and Magma while
giving matching answers; see Table 1 for sample timings.

5E. An example. Let α =
( 1

4 ,
1
2 ,

1
2 ,

3
4

)
, β =

( 1
3 ,

1
3 ,

2
3 ,

2
3

)
and z = 1

5 . We plot the zigzag function in
Figure 1. Using (2.12), we see that Mα,β has weight 1 and the intervals contributing to the computation

https://github.com/edgarcosta/amortizedHGM
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X Algorithm 3 Sage Magma X Algorithm 3

210 0.07s 0.39s 0.11s 218 1.81s
211 0.05s 0.68s 0.35s 219 4.59s
212 0.06s 2.12s 1.29s 220 10.71s
213 0.08s 7.39s 4.83s 221 24.53s
214 0.12s 26.0s 18.24s 222 58.0s
215 0.18s 92.27s 68.35s 223 135s
216 0.34s 343s 280s 224 322s
217 0.80s 1328s 1190s 225 857s

Table 1. Comparison of Algorithm 3 against SageMath and Magma for α =
( 1

4 ,
1
2 ,

1
2 ,

3
4

)
, β =( 1

3 ,
1
3 ,

2
3 ,

2
3

)
and z = 1

5 . Note the observable difference between linear and quadratic complexity.

of Hp
(
α
β

∣∣ z) are (γ2, γ3)=
( 1

3 ,
1
2

)
and (γ4, γ5)=

( 2
3 ,

3
4

)
. For the remainder of the example we will focus

on the congruence class p ≡ 7 (mod 12). Applying Lemma 4.1 to γ2 =
1
3 (resp. γ4 =

2
3 ), we obtain

δ2 =
2
3 and ε2 = 1 (resp. δ4 =

1
3 and ε4 = 1). By (5.9) and (5.14),

f2,7(k)= 5184k4
+ 8640k3

+ 4428k2
+ 852k+ 55,

g2,7(k)= 25920k4
+ 69120k3

+ 63360k2
+ 23040k+ 2880,

f4,7(k)= 5184k4
+ 12096k3

+ 9612k2
+ 2820k+ 175,

g4,7(k)= 25920k4
+ 86400k3

+ 106560k2
+ 57600k+ 11520,

and σ2 = σ4 = −1. Taking p = 67, we obtain (m2,m3) = (22, 33) and (m4,m5) = (44, 49). Using an
accumulating remainder tree (or simple multiplication), we get

S2(67)=
(

65 0
34 5

)
, S4(67)=

(
54 0
25 41

)
.

However, we can’t ignore the other intervals: they may not contribute to the sum, but they do track the
Pochhammer symbols. Similar computations show

S0(67)=
(

38 0
0 62

)
, S1(67)=

(
50 0
0 47

)
, S3(67)=

(
1 0
0 16

)
, S5(67)=

(
1 0
0 38

)
.

1
3
− 1

2
− 2

3
− 3

4
−

1

−1

1
12
− 1

6
− 1

4
− 5

12
− 7

12
− 5

6
− 11

12
−

Figure 1. Zα,β(x) for α =
( 1

4 ,
1
2 ,

1
2 ,

3
4

)
, β =

( 1
3 ,

1
3 ,

2
3 ,

2
3

)
.
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It remains to handle the break points. Using Definition 5.19 we get

T0(67)=
(

1 0
0 6

)
, T1(67)=

(
1 0
0 31

)
, T2(67)=

(
1 0
−1 12

)
,

T3(67)=
(

1 0
−1 40

)
, T4(67)=

(
1 0
−1 40

)
, T5(67)=

(
1 0
−1 31

)
.

Putting them all together, we get

S(67)= T0(67)S0(67) · · · T5(67)S5(67)=
(

21 0
33 21

)
yielding H67

(
α
β

∣∣ 1
5

)
≡

33
21 ≡ 59 (mod 67).

6. Future goals and challenges

We would like to be able to compute Hp f
(
α
β

∣∣z) (mod pe) in average polynomial time for general e and f ,
but we currently only implement this for e = f = 1. We highlight the key points at which new ideas
would be needed to achieve this goal.

6A. The case e > 1. Allowing e > 1 creates two related issues where our computation exploits extra
structure of the trace formula mod p: the replacement of [z] with z, and the use of the functional equation
in (5.12) to compare two values of 0p at arguments that differ by 1

1−p .
Such issues can usually be resolved using the “generic prime” technique of [Har15, §4.4]: make

the average polynomial time computation carrying suitable nilpotent variables, then make a separate
specialization for each p.

6B. The case f > 1. Allowing f > 1 creates more serious issues because of the change in the definition
of 0∗q(x), which interferes with our division of the summation into a fixed number of ranges. To see this
in more detail, fix v ∈ {0, . . . , f −1}. For each γ ∈α∪β, a break occurs when the value of

{
pv
(
γ − m

q−1

)}
changes when m goes to m+ 1; there are pv such breaks.

It is unclear whether one can rearrange the formula (2.22) to remedy this issue. It may help to imple-
ment the method of Frobenius structures suggested in [Ked19], which scales linearly in p rather than q.
We may then argue as in Theorem 2.29 to compute the first X coefficients of an L-series in average
polynomial time.
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Genus 3 hyperelliptic curves with CM via Shimura reciprocity

Bogdan Adrian Dina and Sorina Ionica

Up to isomorphism, every three-dimensional simple principally polarized abelian variety over C is the
Jacobian of a smooth projective curve of genus 3. Furthermore, this curve is either a hyperelliptic curve
or a plane quartic. To define hyperelliptic class polynomials, we note that given a hyperelliptic Jacobian
with CM, all principally polarized abelian varieties that are Galois conjugated to it are hyperelliptic.
Using Shimura’s reciprocity law, we then compute approximations of the invariants of the initial curve,
as well as their Galois conjugates. We show examples of class polynomials computed using this method
for the Shioda and Rosenhain invariants.

1. Introduction

Shimura and Taniyama’s complex multiplication theory shows that it is possible to construct certain
abelian extensions of CM fields by computing the values of Siegel modular functions evaluated at points
with CM in the Siegel upper half-space. In addition, the effective computation of these modular forms
makes it possible to compute models for CM curves, and also to effectively construct the related class
fields.

For example, in genus one, the field of modular functions of level 1 is generated by the j-invariant.
It is well known that the j-invariant of an elliptic curve with endomorphism ring isomorphic to the ring
of integers of the CM field K generates the Hilbert class field of K . In the genus 2 case, the field of
Siegel modular functions of level 1 is generated by the absolute Igusa invariants [11]. Similarly, when
evaluated at CM points, their values give invariants of a hyperelliptic curve whose Jacobian has CM, and
the class field equations, known as class polynomials, are recovered by computing these invariants for
all curves with CM by the field [22; 8]. In genus 3, every simple principally polarized abelian variety
(p.p.a.v.) over C of dimension 3 is isomorphic to the Jacobian of a complete smooth projective curve,
which is either a hyperelliptic curve or a plane quartic. Since two different sets of invariants for both
genus 3 hyperelliptic curves and plane quartics are known in the literature, it is more difficult to tackle
the problem of computing class polynomials for genus 3.
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In [27, Lemma 4.5], Weng shows that a simple principally polarized abelian threefold with CM by a
sextic CM field containing Q(i) is a hyperelliptic Jacobian. In the same paper, Weng gives an algorithm
to compute hyperelliptic curves whose Jacobians have CM by a sextic field containing Q(i). In later
work, Balakrishnan, Ionica, Lauter, and Vincent [1] give an algorithm which removes this restriction on
the CM field, by performing a heuristic check. This heuristic relies on Mumford’s Vanishing Criterion
[16; 18], which states that a genus 3 curve is hyperelliptic if and only if one of the 36 even theta constants
is 0. Given a period matrix with CM by a sextic CM field, the algorithm in [1] first computes the theta
constants with enough precision to see if there is one which approximates zero, and then computes the
Rosenhain invariants. These invariants generate a certain subfield of the ray class field of modulus 2
over the reflex field K r of K and by approximating them with high precision, we can recognize them
as algebraic numbers. This method has its limitations, since as soon as the degree of the class field
over which the Rosenhains are defined is large (≥ 500), the complexity of the algebraic dependance
computation becomes a bottleneck. From a concrete point of view, only examples of CM fields with
class number 1 were considered in [1].

In this paper, we extend the work in [1; 2] by considering the action on a hyperelliptic CM point of
the Galois group Gal(C Mm(K r )/K r ), where C Mm(K r ) is a subfield of the ray class field of a given
modulus m.

Once we identify a hyperelliptic curve X by verifying computationally and heuristically the vanishing
criterion condition, we compute the Galois conjugates of its invariants via Shimura’s reciprocity law.
With these in hand, we compute the Shioda and Rosenhain class polynomials given by

H R
K r ,i (t)=

∏
σ

(t − λσi ) and H S
K r , j (t)=

∏
σ

(t −Shiσj ), (1-1)

where λi (1 ≤ i ≤ 5) and Shi j (1 ≤ j ≤ 9) denote the Rosenhain and Shioda invariants (introduced in
Section 2) and σ ∈ Gal(C Mm(K r )/K r ), with m = (2) for the product in H R

K r ,i and m = (1) for the
product in H S

K r , j .
Aiming to implement our results in SageMath [25] and compute examples for the class polynomials

of the Rosenhain and Shioda invariants, we also propose some methods to construct the reflex field
associated to a given CM type, the typenorm, as well as the image of the typenorm as a subgroup in the
Shimura class group.

2. Background

This section briefly recalls the necessary background and notation on complex abelian varieties, theta
functions and the Vanishing Criterion which fully characterizes hyperelliptic principally polarized abelian
varieties. We also define the invariants of hyperelliptic curves that we will be computing in the next
sections.

2A. Principally polarized abelian varieties over C and period matrices. A principally polarized abelian
variety defined over C is isomorphic to a complex torus admitting a Riemann form [3, Chapter 4]. Let
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g ≥ 1 and let A = Cg/3, with 3 a full lattice in Cg and E a Riemann form for (Cg,3). We will write
(A, E) to denote the g-dimensional p.p.a.v. over C. We consider a symplectic basis for the lattice 3, by
which we mean the action of E on 3 with respect to this basis is given by the matrix

Jg =

(
0 Ig

−Ig 0

)
, (2-1)

where Ig is the g× g identity matrix.
Let �= [�1 |�2] be the g× 2g matrix whose columns are the elements of this symplectic basis. By

taking Z =�−1
2 �1 we obtain a g× g matrix Z called a period matrix, i.e., an element of the Siegel upper

half-space

Hg = {Z ∈Mg(C) : Z T
= Z , Im(Z) > 0}.

We note that the lattice 3 can be written as ZZg
+Zg.

There is an action on Hg by the symplectic group

Sp2g(Z)= {M ∈ GL2g(Z) : MT Jg M = Jg},

where Jg is as in equation (2-1), given by

M =
(

a b
c d

)
: Z 7→ M.Z = (aZ + b)(cZ + d)−1, (2-2)

where on the right-hand side the multiplication of g× g matrices is the usual matrix multiplication.
The association of Z to (Cg/(ZZg

+Zg), E) gives a bijection between Sp2g(Z)\Hg and the moduli
space of p.p.a.v. of dimension g over C. In the remainder of this paper, we will denote this moduli space
by Ag.

2B. Theta functions. For ω =
(
ω1
ω2

)
∈ R2g and Z ∈Hg, we define the following important theta series:

ϑ(ω, Z)=
∑
n∈Zg

exp(π i(ω1+ n)t Z(ω1+ n)+ 2π i(ω1+ n)tω2)). (2-3)

Given a period matrix Z ∈Hg, we obtain a set of coordinates on the torus A = Cg/(ZZg
+Zg) in the

following way: a vector
(
ω1
ω2

)
∈ R2g corresponds to the point Zω1+ω2 ∈ Cg/(ZZg

+Zg). Under this
identification, points of the form ξ = Zξ1+ ξ2 for ξ =

(
ξ1
ξ2

)
∈

1
2 Z2g yield 2-torsion points on A. Using

this notation we define

ϑ[ξ ](Z)= exp(π iξ t
1 Zξ1+ 2π iξ t

1ξ2)ϑ(ξ, Z). (2-4)

In this context, ξ is called a theta characteristic, and the value ϑ[ξ ](Z) is called a theta constant. We call
ξ a even (odd) theta characteristic if e∗(ξ)= 1 (e∗(ξ)=−1 respectively), where e∗(ξ)= exp(4π iξ T

1 ξ2).
If ξ is an even (odd) theta characteristic we call ϑ[ξ ](Z) an even (odd) theta constant.

It can be easily shown that all odd theta constants are 0. We note that in the case where g = 3 there are
exactly 36 even classes of theta characteristics in 1

2 Z6/Z6. We recall there is an action of the symplectic
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group Sp2g(Z) on theta characteristics ξ ∈ 1
2 Z2g defined by

M.ξ = M∗ξ + 1
2δ0, (2-5)

with M =
(a

c
b
d

)
∈ Sp2g(Z), M∗ = (M−1)t , and δ0 =

(
(ct d)0
(at b)0

)
a column vector where (ct d)0 and (at b)0

are the diagonal vectors of ct d and at b, respectively. In this context, given a period matrix Z ∈Hg, we
briefly recall the transformation formula on the theta constants [3, Formula 8.6.1]

ϑ[M.ξ ](M.Z)= ζ(M) exp(k(M, ξ))
√

det(cZ + d)ϑ[ξ ](Z), (2-6)

where:

(1) ζ(M) is an eighth root of unity depending on M , having the same sign ambiguity as
√

det(cZ + d).

(2) k(M, ξ)= π i(dξ1− cξ2)
t(−bξ1+ aξ2− (at b)0)− ξ t

1ξ2.

For more details on ζ(M), we refer the reader to [3, Exercice 8.11(9)].

2C. The Rosenhain invariants. Let Mg be the moduli space of smooth projective curves of genus g.
By a theorem of Torelli [15, Theorem 12.1], there is an injective map Mg ↪→Ag. Inside Mg we further
restrict our attention to the subspace of hyperelliptic curves Mhyp

g . We will be interested in the effective
reconstruction of a moduli point in Mhyp

g from a point in Ag, whenever this point is in the image of
Mhyp

g ↪→Ag.
Let X be a hyperelliptic curve of genus g over C defined by an equation y2

= f (x), where f is a
polynomial with deg( f ) ∈ {2g+1, 2g+2}. Let (λi )1≤i≤2g+2 be the distinct complex roots of f , with the
convention that λ2g is∞ if deg( f ) is odd. We identify these roots with the branch points for the covering
map π : X→ P1(C), that we denote by P1, . . . , P2g+1, P∞. This motivates the following definition.

Definition 2.1. By a marked hyperelliptic curve X of genus g we understand a certain ordering of the
branch points of the map π .

We will denote by Mhyp
g [2] the moduli space of marked hyperelliptic curves. Let us introduce more

terminology. We note that the action on Hg by the symplectic group of level 2

02g(2)= {M ∈ Sp2g(Z) : M ≡ I2g (mod 2)},

fixes 2-torsion points on the p.p.a.v. This leads to the following definition.

Definition 2.2. We define by Ag[2] = 02g(2)\Hg the moduli space of principally polarized abelian
varieties of dimension g over C with a level 2-structure.

We will identify the Jacobian of a marked hyperelliptic curve to a point in Ag[2] via the analytic
construction. Let H1(X,Z) be the first homology group of X and let H 0(ωX ) be the group of 1-
holomorphic forms on X . As explained in the literature, we view H1(X,Z) as a lattice in H 0(ωX )

∗,
the dual of H 0(ωX ) (see for example [3, Section 11.1]). As a consequence, we obtain the g-dimensional
complex torus J (X)= H 0(ωX )

∗/H1(X,Z). We choose a symplectic basis γ1, . . . γ2g for H1(X,Z) and
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a basis ω1, . . . , ωg for H 0(ωX ). With the notation in Section 2A, the corresponding g× 2g matrix is
�=

(∫
γ j
ωi
)

1≤i≤g,1≤ j≤2g and Z =�−1
2 �1.

Let Pic0(X)=Div0(X)/Princ(X) be the group of degree zero divisors on X modulo principal divisors.
The Abel–Jacobi map yields a canonical isomorphism [3, Theorem 11.1.3]

AJ : Pic0(X)→ J (X). (2-7)

Given a marked hyperelliptic curve X , we obtain a fixed set of 2-torsion points on J (X). We take P∞
as a base point and identify X with its image via the embedding X ↪→ Pic0(X). Then the branch points
Pi , i = 1, . . . , 2g+ 2, correspond to points of the form ei = [(Pi )− (P∞)] on Pic0(X). This allows us
to choose an indexed set of characteristics η = (ηi )1≤i≤2g+2 in (1/2)Z2g such that

AJ (ei )= Z(ηi )1+ (ηi )2 (mod ZZg
+Zg). (2-8)

This leads to the following definition.

Definition 2.3. Let V = 1
2 Z2g/Z2g the vector space over F2. By an azygetic system we understand an

indexed set η = (η1, . . . , η2g+2) of 2g+ 2 vectors in 1
2 Z2g such that the images of ηi in V , denoted by

ηi , satisfy

V = span(ηi ),

2g+1∑
i=1

ηi = 0, η2g+2 = 0, and ηt
iη j ≡ 1 (mod 2), (2-9)

for i, j different from 2g+ 2 and i 6= j .

Two azygetic sets η
′

and η
′′

are said to be in the same equivalence class if η
′

i = η
′′

i , i = 1, . . . , 2g+ 2.
Following Poor [18], the indexed set (η1, . . . , η2g+2) obtained in equation (2-8) is an azygetic system
and we call it an azygetic system associated to the period matrix Z .

If we change the homology basis by taking (γ ′1, . . . , γ
′

2g)= (γ1, . . . , γ2g)M t , with M ∈ Sp2g(Z), the
new period matrix obtained using the construction above is Z ′ = M.Z . The azygetic system associated
to Z ′ is η′ = (M∗η1, . . . ,M∗η2g+2). Since the map Sp2g(Z)→ Sp2g(F2)∼= Sp2g(Z)/02g(2) is surjective,
we further derive an action of Sp2g(F2) on equivalence classes of azygetic systems, which was shown to
be free an transitive [18, Lemma 1.4.13].

Let us introduce some further notations. Let T = {1, . . . , 2g+ 1,∞}. For a given azygetic system,
Poor defines the set Uη to be the set of indexes i ∈ T such that ηi is even. For any S1, S2 ⊆ T we
denote the symmetric difference S1 ◦ S2 = (S1 ∪ S2)\(S1 ∩ S2). For an azygetic system η and S ⊆ T ,
we define ηS =

∑
s∈S ηs . The following theorem, which we refer to as the Vanishing Criterion, gives a

characterization of hyperelliptic period matrices in terms of their associated azygetic system and theta
constants. For simplicity, we recall this theorem for genus 3 as stated in [1, Proposition 5] and refer the
reader to [16, Chapter III.9] and [18, Theorem 2.6.1] for the general result in genus g ≥ 1.
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Theorem 2.4 (The Vanishing Criterion). Let Z ∈H3 and let η be an azygetic system. The following two
statements are equivalent:

(1) Z is the period matrix of a symplectically irreducible abelian variety and there is exactly one of
even theta characteristic δ such that ϑ[δ](Z)= 0 and that δ = ηUη .

1

(2) There is a marked hyperelliptic curve of genus 3 whose Jacobian has period matrix Z and η is the
azygetic system associated to Z.

In other words, Theorem 2.4 shows that given a hyperelliptic period matrix Z ∈H3, choosing one of
its azygetic systems η such that ϑ[ηUη ] = 0 fixes a labeling of the branch points. We recover the point in
Mhyp

g [2] using Takase’s formulae [1; 24], which we recall in the following theorem.

Theorem 2.5 [1, Theorem 3]. Let Z ∈ 06(2)\H3 a period matrix and η be the azygetic system such
that the Vanishing Criterion is satisfied. Then with notation as above, for any disjoint decomposition
T −{∞} = V tW t {k, l,m} with #V = #W = 2, we have

λm − λl

λm − λk
= exp(4π i(ηk + ηl)1(ηm)2)

(
ϑ[ηUη◦(V∪{m,l})] ·ϑ[ηUη◦(W∪{m,l})]

ϑ[ηUη◦(V∪{k,m})] ·ϑ[ηUη◦(W∪{k,m})]
(Z)

)2

. (2-10)

Note that in [1] the sign before the quotient of theta constants in equation (2-10) is incorrect. We give
here the correct formula, as stated in several sources [2; 13].

Finally, note that by considering an affine map of C, we may assume without restricting the generality
that λ6 = 0 and λ7 = 1, i.e., X is given by

X : y2
= x(x − 1)

5∏
i=1

(x − λi ). (2-11)

In this case, we say that X is in normalized Rosenhain form. The moduli space Mhyp
3 [2] writes as

Mhyp
3 [2] ∼= {λ= (λ1, . . . , λ5), λi ∈ C−{0, 1}, λi 6= λ j }.

The coefficients λi ∈ C−{0, 1}, are called the Rosenhain invariants of the curve and will be the focus
of our work.

2D. Shioda invariants. Shioda [20] gave a set of generators for the algebra of invariants of binary oc-
tavics over the complex numbers, which are now called Shioda invariants. Following Shioda’s notation
(see [20, page 1025]), these are 9 weighted projective invariants (J2, J3, J4, J5, J6, J7, J8, J9, J10), where

1Poor defines symplectically irreducible on page 831 of [18]. His condition is equivalent to requiring that the abelian variety
is not isomorphic as a polarized abelian variety to a product of lower-dimensional polarized abelian varieties. In this work, our
period matrices are constructed to be simple, i.e., not isogenous to a product of lower-dimensional polarized abelian varieties.
Since isomorphism is stronger than isogeny, all of the period matrices we construct are symplectically irreducible, and we may
apply the theorem.
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Ji has degree i . The invariants J2, . . . , J7 are algebraically independent, while J8, J9, J10 depend alge-
braically on them. Note that over the complex numbers Shioda invariants completely determine points
in Mhyp

3 .
Using Igusa’s map between the graded ring of Siegel modular forms of degree 3, and the graded ring

of invariants of binary octavics, Lorenzo García [9] proposes a set of invariants which can be written
as quotients of modular forms. These invariants involve large powers of the modular form χ28 in the
denominators and we do not use them for experiments since they would need too much precision to
compute.

Starting from the projective invariants Ji , we consider the following absolute Shioda invariants:2

Shi=
(

J 7
2

1
,

J 4
2 J 2

3

1
,

J 5
2 J4

1
,

J5 J9

1
,

J 4
2 J6

1
,

J 2
7

1
,

J 3
2 J8

1
,

J 5
2 J 2

9

12 ,
J 2

2 J10

1

)
, (2-12)

with 1 the discriminant of the binary octavic, which is an invariant of degree 14. They are optimal for
computations in the sense that they involve invariants of small weight and the values of their denominators
for a given curve are products of powers of the primes of bad reduction of the curve; see [12]. Note that
a subset of this set was already used by Weng [27] for computing models of hyperelliptic curves with
CM by a field which contains i .

Proposition 2.1. The invariants in equation (2-12) are modular, i.e., they can be written as quotients of
Siegel modular forms of level 1.

Idea of the proof. In [26], Tsuyumine proposed a set of invariants for the algebra of binary octavics
and also computed them in terms of Siegel modular forms (see for instance [9, Theorem 3.4]). Using
relations between Tsuyumine’s invariants and the Shioda projective invariants (given in [9, Theorem 4.1]),
we were able to write each invariant in equation (2-12) as a quotient of Siegel modular forms. The full
computation is given in the arxiv version of this paper [7].

3. Computing abelian varieties with CM

In this section, we review results from the theory of complex multiplication, with the goal of describing
our implementation of algorithms for computing several notions, such as the reflex field and the typenorm.
Finally, we state the effective version of Shimura’s second main theorem of CM.

3A. Reflex field computation. Let K/Q be a CM field and let L be the Galois closure of K with Galois
group Gal(L/Q). A CM type of K is a set 8= {φ1, . . . , φg} of g embeddings K ↪→ C such that no two
embeddings appearing in 8 are complex conjugates. We say that 8 is induced from a CM subfield K ′

of K if the set {φ|K ′ | φ ∈8} is a CM type of K ′. A CM type of K is called primitive if it is not induced
by a proper CM subfield K ′ ⊂ K . In this paper, we fix the tuple (K ,8) and call it a CM-pair. Since L

2An absolute invariant is a ratio of homogeneous invariants of the same degree.
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is a CM field [14, Corollary 1.5], 8 extends to a CM type 8L of L , namely by

8L = {φ : L→ C | φ|K ∈8}. (3-1)

We fix once and for all an embedding ιK : K → L and an embedding π : L→ C. With these in hand,
we associate to every element in φ ∈ 8L an element σ ∈ Gal(L/Q) such that the following diagram
commutes:

L L

K C

σ

πιK

φ|K

(3-2)

Note that this identification is certainly dependent on the embeddings ιK and π . Let 8−1
L = {π ◦ σ

−1
∈

Hom(L ,C) | φ = π ◦σ for φ ∈8L}. One can easily check that 8−1
L is a CM type on L if and only if 8L

is a CM type on L . We denote by H r the subgroup of Gal(L/Q) of the form

H r
= {σ ∈ Gal(L/Q) | σ8L =8L}. (3-3)

Definition 3.1. The subfield of L fixed by the group H r in equation (3-3) is called the reflex field of
(K ,8). We denote it by K r .

Note that, from a computational point of view, choosing K r as the field fixed by H r also means fixing
the embedding ιK r : K r

→ L . As shown for instance in [14, Proposition 1.18], K r is also a CM field
and the associated CM type to K r is given by the following construction:

8r
=8−1

L |K r = {φ|K r | φ ∈8−1
L }. (3-4)

We call the tuple (K r ,8r ) the reflex CM-pair of (K ,8). We implemented a procedure for computing
the CM-pair (K r ,8r ) based on Definition 3.1 (see Algorithm 1 in [7] for full details). Our approach is
similar to the implementation of the reflex field in the code of [23].

3B. The reflex typenorm. Let (K ,8) be a primitive CM-pair with Galois closure L of K and reflex
CM-pair (K r ,8r ). The reflex typenorm is the map

N8r : K r
→ K ⊂ L , x 7→

∏
φ∈8r

φ(x). (3-5)

We denote by I (K ) and I (K r ) the set of nonzero fractional ideals of OK and OK r , respectively.

Lemma 3.1 [19, Chapter 2, Proposition 29]. The reflex typenorm in equation (3-5) induces a map be-
tween ideals

N8r : I (K r )→ I (K ), a 7→
∏
φ∈8r

φ(a),

which extends to a homomorphism between class groups N8r : Cl(K r )→ Cl(K ).



GENUS 3 HYPERELLIPTIC CURVES WITH CM VIA SHIMURA RECIPROCITY 169

When computing the typenorm of an ideal a ∈ I (K r ), the product
∏
φ∈8r φ(a) gives a priori an ideal

in L . To identify the ideal in K lying below this ideal, we first compute the factorization of this ideal
and rely on an algorithm in [5, Algorithm 2.5.3] to get the prime ideal lying below each of the ideals
appearing in this factorization. Algorithm 2 in [7] gives the pseudocode of our method. We remark that
an alternative implementation for computing the typenorm, based on the proof of Lemma 3.1, is given
in the code of [23].

3C. Class field theory. For a number field K and a finite modulus m (i.e., a product of prime ideals in
K ), let Im(K ) be the group of all fractional OK ideals coprime to m, and consider the subgroup

Pm(K )= {a ∈ Im(K ) : a= αOF , α ≡ 1 (mod ∗m)},

where the congruence α ≡ 1 (mod ∗m) means that for all primes p appearing in the factorization of m
we have νp(α− 1)≥ νp(m). The ray class group of K for the modulus m is defined as the quotient group
Clm(K )= Im(K )/Pm(K ).

For a modulus m in K we denote by Hm the unique (up to isomorphism) abelian extension of K whose
ramified primes divide m and such that the kernel of the Artin map

8m : Im(K )→ Gal(Hm/K )

is equal to Pm(K ). The field Hm is called the ray class field of K of modulus m; see for instance [6,
Theorem 8.6].

Let (K ,8) be a primitive CM-pair with reflex pair (K r ,8r ). Let m ∈ Z such that mZ=m∩Z and
denote by Im(K r ) the group of fractional ideals in K r coprime to m. Following Shimura [19, Chapter 16],
we consider

Hm(K r )= {a ∈ Im(K r ) : ∃α ∈ K ∗ with N8r (a)= αOK , NK r/Q(a)= αα, α ≡ 1 (mod ∗m)}. (3-6)

Note that Pm(K r )⊂ Hm(K r ). Then, after [6, Theorem 8.6], up to isomorphism there is a unique Abelian
extension of K r , denoted by C Mm(K r ), such that

Gal(C Mm(K r )/K r )∼= Im(K r )/Hm(K r ). (3-7)

The effective construction of C Mm(K ) relies on Shimura’s Main Theorem 2, that we state in Section 3D.
In order to compute Galois conjugates of elements in this number field in Section 4, we will need to
compute the group Im(K r )/Hm(K r ). In order to do this, we will need the following group introduced
by Shimura:

Cm(K )= {(a, α) : a ∈ Im(K ) such that aa= (α), α ∈ K0 totally positive, α ≡ 1 (mod ∗m)}/', (3-8)

where (a, α) ' (a′, α′) if and only if there exists µ ∈ K ∗ such that a = µa′ and α = α′µµ and µ ≡
1 (mod ∗m). Given a pair (a, α) satisfying the conditions in equation (3-8), we denote by (a, α)m the
corresponding equivalence class.
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Lemma 3.2. We denote by T : Clm(K r )→ Cm(K ) the map given by a→ (N8r (a), NK r/Q(a))m. Then:

(a) The kernel of this map is ker T = Hm(K r )/Pm(K r ).

(b) The image of the map T is isomorphic to Im(K r )/Hm(K r ).

Proof. (a) Let a ∈ ker T , i.e., (N8r (a), NK r/Q(a))m = (OK , 1)m. Then there exists an element µ ∈ K ∗

such that N8r (a) = µOK and NK r/Q(a) = µµ and µ ≡ 1 (mod ∗m). Conversely, by the definition of
Hm(K r ), any element in Hm(K r )/Pm(K r ) is in ker T .

(b) It follows immediately from point (a) that

T (Clm(K r ))∼= Clm(K r )/ ker T ∼= (Im(K r )/Pm(K r ))/(Hm(K r )/Pm(K r ))∼= Im(K r )/Hm(K r ). �

In our implementation we computed a set of generators for Clm(K r ) using Magma, and then imple-
mented an algorithm for enumerating the elements in the set T (Clm(K r )). Due to Lemma 3.2, this
allowed us to compute the group Im(K r )/Hm(K r ) and enumerate Galois conjugates of a CM point (see
Definition 4.1).

3D. CM abelian varieties. Before stating Shimura’s second main theorem, we briefly set the notation
and recall the terminology. Let A an abelian variety of dimension g defined over a field k. We say that A
has complex multiplication (CM) by a number field K if there exists an embedding ι : K → End(A)⊗Q.
If OK is the maximal order of K , then we say that A has CM by OK if ι−1(End(A))=OK . Let DK/Q be
the different of K , and let a be a fractional ideal of OK . Suppose that the ideal (DK/Qaa)

−1 is principal
and generated by ξ ∈ K× such that Im(φ(ξ)) > 0 for all φ ∈8. Then by tensoring the map

8(a)×8(a)→Q, (8(x),8(y)) 7→ TrK/Q(ξ x y)

with R we obtain a Riemann form E8,ξ : Cg
×Cg

→ R. Hence for any triple (8, a, ξ) as above, the pair
(Cg/8(a), E8,ξ ) is a p.p.a.v. of dimension g with CM by OK and of CM type 8. Conversely, every
p.p.a.v. of dimension g with CM by OK is isomorphic to a complex torus for some triple (8, a, ξ) as
above. Note that to go from the triple (8, a, ξ) to a period matrix as described in Section 2A, it suffices
to write a basis for the ideal a that is symplectic with respect to the Riemann form E8,ξ . This basis gives
the matrix �, and then the period matrix is simply Z =�−1

2 �1.
Let (A, E) be a p.p.a.v. with CM by OK , G the automorphism group of A and let k0 be its field of

moduli. To state Shimura’s second main theorem of CM, we consider the normalized Kummer variety
[19, Theorem 3, Section 4.4] of A. This is given by a tuple (W, h), where W is the quotient of A by
G, which is defined over k0, and h : A→ W is the corresponding surjective map. Moreover, given a
modulus m, we denote by A[m] the m-torsion points of A, i.e., A[m] = {x ∈ A|ι(α)x = 0,∀α ∈m}. A
point t ∈ A[m] is called proper if for all a ∈OK , we have that ι(a)t = 0 if and only if a ∈m.

Theorem 3.2 [19, Main Theorem 2]. Let (A, E) be a principally polarized abelian variety with CM by
OK and CM type 8 and let be (W, h) its normalized Kummer variety. Let m be an ideal of OK and t be
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a proper m-torsion point. Let k0 be the field of moduli of A, K r the reflex field of K and k∗0 = k0K r . Then
k∗0(h(t)) is the class field of K r corresponding to the ideal group Hm(K r ).

4. Computing class polynomials

We turn our attention now to the computation of the Shioda and Rosenhain invariants of a hyperelliptic
curve of genus 3 with CM by OK , and more precisely to obtaining their minimal polynomials over the
reflex field.

Given a primitive CM-pair (K ,8), we denote by Princ(K ,8,m) the set of isomorphism classes of
simple p.p.a.v. with CM by OK together with a proper m-torsion point. We denote by A(8, a, ξ, t)
the abelian variety given by the triple (8, a, ξ) and the proper m-torsion point t . When m = (1), we
simply denote it by A(8, a, ξ) and we take Princ(K ,8) to be the set of all such abelian varieties. In
our computations of Galois conjugates, we will extensively use the following action of the class group
Im(K r )/Hm(K r ) on Princ(K ,8,m) given by Shimura [19, Section 16.3].

Definition 4.1. Let A = A(8, a, ξ, t) ∈ Princ(K ,8,m). Then for any [c] ∈ Im(K r )/Hm(K r ) the action
of [c] on A is given by the abelian variety

A(8, N8r (c)−1a, NK r/Q(c)ξ, t (mod N8r (c)−1a)).

We will denote by Ac the p.p.a.v. obtained in this way.

Note that the action in Definition 4.1 yields in fact an isogeny between principally polarized abelian
varieties Ic : A→ Ac. Since the ideal c is coprime to m, we have that ker Ic ∩ A[m] = 0. In particular,
when m= (m) and we fix a level m structure on A, this isogeny fixes the level m structure on Ac.

Notation 4.2. In the remainder of this paper, we will restrict to m = (m), where m = 1 or m = 2.
For a given c ∈ Im(K r )/Hm(K r ), we will denote by σc ∈ Gal(C Mm(K r )/K r ) the image of c via the
isomorphism in equation (3-7). Let A = A(8, a, ξ, t) be a p.p.a.v. in Princ(K ,8,m). Let B = (B1|B2)

be a (3× 6) complex-valued matrix containing a symplectic basis for 8(a) with respect to E8,ξ , and
let Z = B−1

2 B1 ∈ H3 be the corresponding period matrix. The action of c on A yields a new p.p.a.v.
A(8, N8r (c)−1a, NK r/Q(c)ξ, t (mod N8r (c)−1a)). In a similar manner, let C = (C1|C2) be the matrix
containing a symplectic basis for 8(N8r (c)−1a) with respect to E8,NKr /Q(c)ξ and let Z ′ = C−1

2 C1 ∈H3.
We express C in terms of B by taking a matrix M , such that C = B MT . The matrix M is in GSp2g(Q) and
is m-integral and invertible (mod m) with inverse U ∈ GSp2g(Z/mZ). We also denote by Ũ ∈ Sp2g(Z)

a lift of U . Such a lift can be computed for instance thanks to [17, Theorem VII.21].

This notation will be used all throughout this section. We detail the computation of these matrices on
an example.

Example 4.3. Let K be the CM field defined by the polynomial x6
+ 43x4

+ 451x2
+ 729 and denote

by a a generator for this field. We choose the first CM type given by the implementation [2] and we get
that the tuple (a, ξ)=

(
OK ,

16
114939a5

+
1313

229878a3
+

5857
114939a

)
yields a CM point. We compute the action
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on this CM point by the ideal c=
(
9, 1

48a5
+

11
24a3
+

1
2a2
−

155
48 a+ 15

2

)
and get a second CM point given

by

(b, ξ ′)=
((

9, 1
48a5
+

11
24a3
+

1
2a2
−

155
48 a+ 15

2

)
, 16

114939a5
+

1313
229878a3

+
5857

114939a
)
.

The code in [2] gives symplectic bases for (a, ξ) and (b, ξ ′) and we compute

M =



−1 1 −1 0 1 3
2 −1 0 −2 1 4
2 0 1 2 4 −1
0 −1 −1 −1 3 −1
1 0 −1 1 −1 1
−1 −1 0 1 1 1


, U =



1 1 1 0 0 0
1 1 1 1 1 0
1 1 1 1 0 1
0 1 1 1 0 0
1 0 1 1 1 0
1 1 0 1 0 1


.

The following result gives an explicit version of Shimura’s reciprocity law.

Theorem 4.4 [23, Theorem 2.4]. Let c ∈ Im(K r )/Hm(K r ), σc ∈ Gal(C Mm(K r )/K r ), Z , Z ′ ∈ H3 and
the matrix M as in Notation 4.2. For every Siegel modular function f of level m with Fourier expansion
coefficients in Q(ξm), we have

f (Z)σc = f U (Z ′), (4-1)

where we denote by f U (Z ′)= f (Ũ .Z ′), for any Ũ ∈ Sp2g(Z) a lift of U.

We will use Theorem 4.4 to compute the Galois conjugates of the Shioda invariants of a hyperelliptic
curve whose period matrix is obtained via the complex multiplication construction.

Proposition 4.1. Let A ∈ Princ(K ,8) and Z ∈H3 a period matrix for it. Let [c] ∈Cl(K r ) corresponding
to σc ∈ Gal(C M1(K r )/K r ) and Z ′ obtained as in Notation 4.2. Then Ac is isomorphic to a hyperelliptic
Jacobian if and only if A is. Moreover, we have the following relation:

S j (Z)σc = S j (Z ′), (4-2)

where S j denotes the Siegel modular function giving the j-th Shioda absolute invariant, for all j =
1, . . . , 9.

Proof. Suppose that A ∼= Jac(X), with X a hyperelliptic curve. Since Jac(X)σc ∼= Jac(Xσc), it follows
that Ac is isomorphic to the Jacobian of the hyperelliptic curve Xσc . To prove equation (4-2), we apply
Theorem 4.4 on the Siegel modular functions Si . �

We now restrict to the case of the modulus m= (2). The following result allows us to compute the
Galois conjugates of the Rosenhain invariants.

Theorem 4.5. Let A ∈ Princ(K ,8) which is isomorphic to the Jacobian of a marked genus 3 hy-
perelliptic curve and Z ∈ 06(2)\H3 a period matrix for it. Let [c] ∈ I2(K r )/P2(K r ) corresponding
to σc ∈ Gal(C M2(K r )/K r ) and Z ′ obtained as in Notation 4.2. We consider η the azygetic system
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associated to Z and let (λl)1≤l≤5 be the Rosenhain invariants in equation (2-11). Then for any lift
Ũ =

( Ã
C̃

B̃
D̃

)
∈ Sp6(Z) of the matrix U with δ0 =

( (C̃T D̃)0
( ÃT B̃)0

)
, we have that

λ
σc
l = exp(4π i(ηl + η7)1(η6)2) · ζ4(Ũ , η) · λ′l, (4-3)

where

ζ4(Ũ , η)= exp
(

2
(

k
(
Ũ , Ũ T (ηUη◦(V∪{6,l})− 1

2δ0
))
+ k

(
Ũ , Ũ T (ηUη◦(W∪{6,l})− 1

2δ0
))

− k
(
Ũ , Ũ T (ηUη◦(V∪{6,7})− 1

2δ0
))
− k

(
Ũ , Ũ T (ηUη◦(W∪{6,7})− 1

2δ0
))))

,

and

λ′l =

(
ϑ
[
Ũ t
(
ηUη◦(V∪{6,l})−

1
2δ0
)]
·ϑ
[
Ũ t
(
ηUη◦(W∪{6,l})−

1
2δ0
)]

ϑ
[
Ũ t
(
ηUη◦(V∪{6,7})−

1
2δ0
)]
·ϑ
[
Ũ t
(
ηUη◦(W∪{6,7})−

1
2δ0
)])2

(Z ′).

Proof. Using Theorem 2.5 when λ6 = 0 and λ7 = 1, the coefficients λl with l = 1, . . . 5 can be computed
as

λl = exp(4π i(ηl + η7)1(η6)2)

(
ϑ[Uη ◦ (V ∪ {6, l})] ·ϑ[Uη ◦ (W ∪ {6, l})]
ϑ[Uη ◦ (V ∪ {6, 7})] ·ϑ[Uη ◦ (W ∪ {6, 7})]

)2

(Z).

For the sake of simplicity let

c1 = ηUη◦(V∪{6,l}), c2 = ηUη◦(W∪{6,l}), c3 = ηUη◦(V∪{6,7}) and c4 = ηUη◦(W∪{6,7}).

By using Theorem 4.4, we have that

λ
σc
l =

(
exp(4π i(ηl + η7)1(η6)2)

(
ϑ[c1] ·ϑ[c2]

ϑ[c3] ·ϑ[c4]

)2

(Z)
)σc

= exp(4π i(ηl + η7)1(η6)2)

((
ϑ[c1] ·ϑ[c2]

ϑ[c3] ·ϑ[c4]

)2)U

(Z ′). (4-4)

We denote by c′j = Ũ T
(
c j −

1
2δ0
)
. By applying the theta transformation formula, we get that

ϑ[c j ]
U (Z ′)= ϑ[Ũ .c′j ](Ũ .Z

′)= ζ(Ũ ) exp (k(Ũ , c′j ))
√

det(C̃ Z ′+ D̃)ϑ[c′j ](Z
′).

Hence equation (4-4) becomes

λ
σc
l = exp(4π i(ηl + η7)1(η6)2) exp(2(k(Ũ , c′1)+ k(Ũ , c′2)− k(Ũ , c′3)− k(Ũ , c′4)))

(
ϑ[c′1] ·ϑ[c

′

2]

ϑ[c′3] ·ϑ[c
′

4]

)2

(Z ′)

where one can easily see that ζ4(Ũ , η)= exp(2(k(Ũ , c′1)+ k(Ũ , c′2)− k(Ũ , c′3)− k(Ũ , c′4)))
2 is a fourth

root of unity. �

We will now give a geometric interpretation to our results. Recall that the Rosenhain coefficients are
invariants for the space Mhyp

3 [2]. The Galois conjugates of the Rosenhain invariants are the Rosenhain
invariants of another point in this moduli space and the following result gives a method to compute the
corresponding Z ′ ∈ 06(2)\H3 and the associated azygetic system.



174 BOGDAN ADRIAN DINA AND SORINA IONICA

Corollary 4.1. Assume that A(8, a, ξ) is isomorphic to the Jacobian of a marked hyperelliptic curve X
and let Z ∈ 06(2)\H3 be the corresponding period matrix for A and η be an azygetic system associated
to Z. Given [c] ∈ I2(K r )/H2(K r ), there exist Z ′, M and Ũ as in Notation 4.2 such that η′ = Ũ Tη is
an azygetic system associated to the period matrix Z ′ of the marked hyperelliptic curve with Rosenhain
invariants (λσcl )l=1,...,5.

Proof. We first note that we can choose C and the period matrix Z ′ in Notation 4.2 such that Ũ ∈ 06(2).
Indeed, if this is not the case, we define C ′ = B MT Ũ T

= B M ′T with M ′ = Ũ M ∈ GSp6(Q). Then
C ′ is still a symplectic basis for of 8(N8r (c)−1a) with respect to E8,NKr /Q(c)ξ . Let M ∈ Sp6(Z/2Z)

the reduction of M (mod 2). We get that M ′ = Ũ M = U M = I6. Then (M ′)−1
= I6 in Sp6(Z/2Z).

Therefore, by letting C = C ′ and Z ′ the period matrix obtained from this new symplectic basis, we
ensure that Ũ ∈ 06(2).

Recall that the action described in Definition 4.1 yields an isogeny between A and Ac which is given
by

Ic : C3/8(a)→ C3/8(N8r (c)−1a), x 7→ x .

For simplicity, we will work with Ic as an isogeny between the nonnormalized tori, i.e., Ic:C3/(B1Z3
+B2Z3)

→C3/(C1Z3
+C2Z3). We consider the image of the fixed points B1(ηi )1+B2(ηi )2 (mod (B1Z3

+B2Z3))

via Ic. We compute η′i such that

B1(ηi )1+ B2(ηi )2 = C1(η
′

i )1+C2(η
′

i )2 (mod (C1Z3
+C2Z3)). (4-5)

By writing M =
(a

c
b
d

)
and using that C = B MT , the 2-torsion point in equation (4-5) writes as

(B1at
+ B2bt)(η′i )1+ (B1ct

+ B2d t)(η′i )2 (mod (C1Z3
+C2Z3))=

B1(at(η′i )1+ ct(η′i )2)+ B2(bt(η′i )1+ d t(η′i )2) (mod (C1Z3
+C2Z3)).

Hence ηi = MTη′i . Then it is easy to check that η′i = Ũ Tηi is in fact an azygetic system associated to Z ′.
The first three facts in Definition 2.3 are trivial to check, the fourth equality follows by applying [15,
Proposition 13.2(b)] for the isogeny Ic, which has degree prime to 2.

To show that η′ is associated to Z ′, we will use the Vanishing Criterion. We choose an even theta
characteristic u ∈ 1

2 Z6 such that ϑ[u](Z) 6= 0 and ϑ[u](Z ′) 6= 0 and apply once more Shimura’s reciprocity
law [23] on the quotients of the type

(
ϑ[v](Z)
ϑ[u](Z)

)2, with v ∈ 1
2 Z6 even. We deduce that the unique even theta

constant vanishing Z ′ is ϑ[ηUη′ ] (since ηUη′ = ηUη ).
Finally, by applying Theorem 4.5 we get that

λ
σc
l = exp(4π i(ηl + η7)1(η6)2)

(
ϑ[c1] ·ϑ[c2]

ϑ[c3] ·ϑ[c4]

)2

(M ′.Z), (4-6)

for l = 1, . . . , 5. Hence the right-hand side expressions in equation (4-6) are the Rosenhain invariants of
a marked genus 3 hyperelliptic curve. �
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Computing the Shioda and Rosenhain class polynomials. From a computational point view, if we sim-
ply aim at computing the Galois conjugates of the Rosenhain invariants and deriving class field equations,
one can choose between the approach in Theorem 4.5 or the one in Corollary 4.1. One can pick any period
matrix for Ac and use the formula in Theorem 4.5, or construct the period matrix Z ′ and its associated
azygetic system as explained in the proof of the Corollary 4.1 and compute the resulting Rosenhain
invariants via Takase’s formula.

Algorithm 1 in the Appendix gives all the steps of our computation of a list of approximations for
the Galois conjugates of the Rosenhain invariants, that we use to get the polynomials H R

K r ,i in equa-
tion (1-1). The algorithm for computing H S

K r , j is similar and relies on the computation of the Siegel
modular functions S j in Equation (4-2). Note that in applications, for i, j ≥ 2, it is easier to use the
Hecke representation as introduced by Gaudry et al [10]:

Ĥ R
K r ,i (t)=

∑
σ

λσi

∏
σ ′ 6=σ

(t − λσ
′

1 ), Ĥ S
K r , j (t)=

∑
σ

Shiσj
∏
σ ′ 6=σ

(t −Shiσ
′

1 ),

where σ, σ ′ ∈ Gal(C Mm(K r )/K r ) with m = (2) for the product in H R
K r ,i and m = (1) for the product

and sum in H S
K r , j .

5. Benchmarks and results

We implemented the algorithms described here using SageMath [25] and Magma [4] by building on an
existing implementation [2]. The computation of primitive CM types for genus 3 in [2] is dependent on
the group structure of Gal(L/Q). Our CM type computation is independent of this group isomorphism,
and works for all genera. In this general setting, we also implemented the construction of the reflex field
of K and of the typenorm, as explained in Section 3. Since SageMath [25] does not implement ray class
groups, we used an interface to Magma [4] to compute the group Clm(K r ) and enumerate elements in
T (Clm(K r )).

5A. Practical experiments. For space reasons, we reproduce here partially an example and give the full
computation in [7]. Let K be the CM field defined by the polynomial x6

+ 43x4
+ 451x2

+ 729. Since
the field contains i , all p.p.a.v. with CM by K are hyperelliptic. For one of its primitive CM types, our
implementation yields the reflex field as the field of equation x6

+ 1012x4
+ 262048x2

+ 3968064. The
subgroup T (Clm(K r )), for m = (1), (2), has three elements, which means that the polynomials H R

K r ,i

and H S
K r , j have degree 3.

For most computations on the Rosenhains 500 bits of precision were enough, whereas for the Shiodas
we used 5000 bits of precision. Indeed, the Siegel modular forms appearing in the expressions of the
Shiodas have much larger weight, which results into much more precision needed when computing
with the Shiodas. To compute the Shiodas, we first computed the Rosenhain coefficients and got an
approximation of the equation of the curve, and afterwards computed the Shiodas from this equation.
All computations were performed on a single core of a Intel Core i7-4790 CPU 3.60GHz and took
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polynomial t3 t2 t 1

HK r ,1 1 1
16α

2
−

19
8 α+

181
16

1
48α

2
−

49
24α+

875
16

1
6α

2
−

16
3 α+

19
2

ĤK r ,2 1 −
7

144α
2
+

149
72 α−

3331
144

3
16α

2
−

65
8 α+

1295
16 −

11
4 8α2

+
239
24 α−

1521
16

ĤK r ,3 1 −
1

16α
2
+

19
8 α−

277
16

13
48α

2
−

277
24 α+

1791
16 −

11
24α

2
+

227
12 α−

1377
8

ĤK r ,4 1 7
144α

2
−

149
72 α+

2467
144 −

1
144α

2
+

11
72α+

59
144

7
144α

2
−

143
72 α+

2551
144

ĤK r ,5 1 −6 12 −8

Table 1. Coefficients of polynomials H R
K r ,i for the field of equation x6

+ 43x4
+ 451x2

+ 729.

approximately 5 minutes at 500 bits of precision and less than 2 hours for 5000 bits. Most time is
spent on the theta constants computation, which is performed using the naive implementation in [2].
To compute the coefficients of the class polynomials H R

K r ,i and H S
K r ,i as algebraic integers, we use

the algebraic dependence testing algorithm [5], implemented in PARI/GP by the function algdep. This
algorithm gives us a conjectured minimal polynomial for each coefficient of the class polynomials.

Since Princ(K ,8) is stable under complex conjugation, it can be shown by using similar arguments
as in [21, Section III.2] that the coefficients of the Shioda class polynomials are in fact in the field K r

0 ,
the real multiplication subfield of K r . We conjecture that a similar result holds for the Rosenhain class
polynomials. For the chosen example, K and K r are equal, so we take K r

0 to be the field given by the
equation

x3
− 43x2

+ 451x2
− 729

and we denote by α a generator for this field. Tables 1 and 2 give the coefficients of Rosenhain and
Shioda class polynomials, respectively. Table 2 gives the Shioda class polynomials for the first Shioda
invariant, and the full example is given in [7]. As expected, the polynomials for the Shiodas have larger
coefficients, which is due again to the shape of the modular forms in their expression.

In order to heuristically check the correctness of these computations, we use a well known approach
in the literature which consists in choosing a prime number p such that the abelian varieties with CM by
OK have good reduction, compute the roots of class polynomials (mod p) and check that the Jacobians
of the curves obtained in this way have the right number of points; see for instance [1] for details.

coefficients

t3 1

t2 −1504998103898184428692895719062876991414375
1106030051237012236054152188167439553303783103 α

2
+

57602191791353412833575829180223091649340630
1106030051237012236054152188167439553303783103 α−

182610135152410817952949427128063513960980968701
247750731477090740876130090149506459940047415072

t 271537582048409045934259507591982005281201875
867127560169817593066455315523272609790165952752 α

2
−

17155947238202790094437950965078959001849495535
1300691340254726389599682973284908914685248929128 α+

189221715181445169536136728129202262948355511744769
1165419440868234845081315944063278387557983040498688

1 −497018334394924228446745226194781840141344176875
24473808258232931746707634825328846138717643850472448 α

2
+

11444255640191890315301399097052785606070607022115
12236904129116465873353817412664423069358821925236224 α−

191953650625925394207069308222518633622840220848155861
16446399149532530133787530602620984605218256667517485056

Table 2. Coefficients of the polynomial H S
K r ,1 for the field of equation x6

+ 43x4
+ 451x2

+ 729.
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Appendix

Algorithm 1: Computing the Galois action using Shimura’s reciprocity law

Input: A CM-pair (K ,8), where K is a sextic CM field and 8 is a CM type, and precision prec.
Output: Lists containing the Galois conjugates of the Rosenhain invariants of hyperelliptic

curves with CM by (K ,8), if such curves exist.
1 Let Rl , 1≤ l ≤ 5 be an empty list.
2 Compute the Galois closure L of K/Q.
3 Compute the reflex CM-pair (K r ,8r ) and the fixed embedding ιK r : K r

→ L .
4 Determine the ray class group Clm(K r ) for the modulus m= (2).
5 Compute and store elements of T (Clm(K r )) in a list H(K r ,8r ).
6 Choose a p.p.a.v. A with CM by OK given by the triple (8, a, ξ) and construct period matrix Z

with [1, Algorithm 2].
7 if exactly one of the theta constants ϑ[c](Z), with c even, is zero then
8 Compute the Rosenhain invariants λl with precision prec using Takase’s formula (2-10).
9 for all (N8r (c), NK r/Q(c)) ∈ H(K r ,8r ) do

10 Compute the p.p.a.v. A(8, N8r (c)−1a, NK r/Q(c)ξ) and the corresponding Z ′.
11 Compute λσcl using the formula in Theorem 4.5 and add it to the list Rl .
12 return Rl, 1≤ l ≤ 5.
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A canonical form for positive definite matrices

Mathieu Dutour Sikirić, Anna Haensch, John Voight, and Wessel P.J. van Woerden

We exhibit an explicit, deterministic algorithm for finding a canonical form for a positive definite matrix
under unimodular integral transformations. We use characteristic sets of short vectors and partition-
backtracking graph software. The algorithm runs in a number of arithmetic operations that is exponential
in the dimension n, but it is practical and more efficient than canonical forms based on Minkowski
reduction.

1. Introduction

1.1. Motivation. For n a positive integer, let Sn denote the R-vector space of symmetric real n × n-
matrices and Sn

>0 ⊂ Sn denote the cone of positive definite symmetric n× n-matrices. For A ∈ Sn
>0, the

map x 7→ xTAx (where T denotes transpose) defines a positive definite quadratic form, with A its Gram
matrix in the standard basis; for brevity, we refer to A ∈ Sn

>0 as a form. The group GLn(Z) of unimodular
matrices acts on Sn

>0 by the action (U, A) 7→UTAU ; the stabilizer of a form A under this action is the
finite group

Stab(A) := {U ∈ GLn(Z) :UTAU = A}. (1.1.1)

Two forms A, B ∈ Sn
>0 are said to be (arithmetically) equivalent if there exists a unimodular matrix

U ∈ GLn(Z) such that
A =UTBU. (1.1.2)

In the geometry of numbers [39], forms arise naturally as Gram matrices of Euclidean lattices under a
choice of basis; in this context, two forms are arithmetically equivalent if and only if they correspond to
isometric lattices.

Plesken and Souvignier [35] exhibited algorithms to compute stabilizers and test for arithmetic equiv-
alence among forms, and these have been used widely in practice [2; 8; 10; 21; 37]. In a more theoretical
direction, Haviv and Regev [13] proposed algorithms based on the shortest vector problem and an isola-
tion lemma for these purposes as well, with a time complexity of nO(n).
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Keywords: canonical form, quadratic form, positive definite matrix, lattice isomorphism, graph isomorphism.
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While these algorithms have been sufficient for many tasks, they suffer from an unfortunate deficiency.
Suppose we have many forms A1, . . . , Am ∈ Sn

>0 and we wish to identify them up to equivalence. A
naive application of an equivalence algorithm requires O(m2) equivalence tests (in the worst case). The
number of tests can be somewhat mitigated if useful invariants are available, which may or may not be
the case.

Our approach in this article is to compute a canonical form CanGLn(Z)(A) for A ∈ Sn
>0. This canonical

form should satisfy the following two basic requirements:

(i) For every A ∈ Sn
>0, CanGLn(Z)(A) is equivalent to A.

(ii) For every A ∈ Sn
>0 and U ∈ GLn(Z), CanGLn(Z)(U

TAU )= CanGLn(Z)(A).

(The equivalence in (i) is unique up to Stab(A).) Combining a canonical form with a hash table, the
identification of equivalence classes in a list of m forms takes only m canonical form computations (and
m hash table lookups) and so has the potential to be much faster.

1.2. Minkowski reduction and characteristic sets. The theory of Minkowski reduction provides one
possible approach to obtain a canonical form. The Minkowski reduction domain [31] is a polyhedral
domain Pn ⊂ Sn

>0 with the property that there exists an algorithm for Minkowski reduction, taking as
input a form A and returning as output an equivalent form in Pn . For example, for n = 2 we recover the
familiar Gaussian reduction of binary quadratic forms. An implementation of Minkowski reduction is
available [34]; however, this reduction is quite slow in practice, and it is unsuitable for forms of large
dimension n (say, n ≥ 12).

For those forms whose Minkowski reduction lies in the interior of the domain Pn , the Minkowski
reduction is unique [7, page 203], thereby providing a canonical form. Otherwise, when the reduction
lies on the boundary of Pn , there are finitely many possible Minkowski reduced forms; one can then
order the facets of the polyhedral domain Pn to choose a canonical form among them. This approach was
carried out explicitly by Seeber (in 1831) for n = 3; and, citing an unpublished manuscript, Donaldson
claimed “Recently, Hans J. Zassenhaus has suggested that Minkowski reduction can be applied to the
problem of row reduction of matrices of integers” [7, page 201]. An extension to n = 5, 6, 7 is possible
at least in principle, since Pn is known in these cases [39]. However, the problem of determining the
facets of the Minkowski reduction domain is hard in itself and so this strategy seems unrealistic in higher
dimensions. Other reduction theories [11; 24] suffer from the same problem of combinatorial explosion
on the boundary.

In contrast, the approach taken by Plesken and Souvignier [35] for computing the stabilizer and check-
ing for equivalence of a form A uses the following notion.

Definition 1.2.1. A characteristic vector set function is a map that assigns to every n ≥ 1 and form
A ∈ Sn

>0 a finite subset of vectors V(A)⊆ Zn such that

(i) V(A) generates Zn (as a Z-module); and

(ii) for all U ∈ GLn(Z), we have U−1V(A)= V(UTAU ).
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The basic idea is then given a form A to define an edge-weighted graph from a characteristic vector set
V(A); using this graph, equivalence and automorphisms of forms becomes a problem about isomorphism
and automorphisms of graphs (see Lemma 3.1.1). The graph isomorphism problem has recently been
proved to be solvable in quasipolynomial time by Babai (see the exposition by Helfgott [15]); however,
the current approaches to computing characteristic vector sets (including ours) use algorithms to solve
the shortest vector problem which is known to be NP-hard [29], so it is difficult to take advantage of this
complexity result in the general case. Nevertheless, we may hope to leverage some practical advantage
from this approach.

1.3. Our approach. In this article, we adopt the approach of characteristic vector sets, using very effi-
cient programs [17; 28] that compute a canonical form of a graph using partition backtrack. A subfield
F of R is computable if it comes equipped with a way of encoding elements in bits along with determin-
istic, polynomial-time algorithms to test equality, to perform field operations, and to compute (binary)
expansions to arbitrary precision (for generalities, see e.g., Stoltenberg-Hansen and Tucker [40]). For
example, a number field with a designated real embedding is computable using standard algorithms.

Theorem 1.3.1. There exists an explicit, deterministic algorithm that, on input a (positive definite) form
A ∈ Sn

>0 with entries in a computable subfield F ⊂ R, computes a canonical form for A. For fixed n ≥ 1,
this algorithm runs in a bounded number of arithmetic operations in F and in a polynomial number of
bit operations when F =Q.

This theorem is proven by combining Proposition 3.4.2 for the first statement and Corollary 4.1.2
for the running time analysis. The running time in Theorem 1.3.1 is exponential in n, as we rely on
short vector computations; we are not aware of general complexity results, such as NP-hardness, for this
problem. In light of the comments about Minkowski reduction in the previous section, the real content
of Theorem 1.3.1 is in the word explicit. We also find this algorithm performs fairly well in practice (see
Section 4.2) — an implementation is available online [1].

1.4. Contents. In Section 2 we present the construction of some characteristic vector set functions. In
Section 3 we present how to construct a canonical form from a given characteristic set function. In
Section 4 we consider the time complexity of our algorithm; we conclude in Section 5 with extensions
and applications.

2. Construction of characteristic vector sets

In this section we build two characteristic vector set functions that can be used for the computation of
the stabilizer, canonical form, and equivalence of forms.

2.1. Vector sets. The sets of vectors that we use throughout this work are based on short or shortest
vectors. Given a set of vectors V ⊆ Zn , let span(V) be the (not necessarily full) lattice spanned over Z
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by V . For A ∈ Sn and x ∈ Rn , we write

A[x] := xTAx ∈ R. (2.1.1)

For a form A ∈ Sn
>0 we define the minimum

min(A) := min
x∈Znr{0}

A[x], (2.1.2)

the set of shortest (or minimal) vectors and its span

Min(A) := {v ∈ Zn
: A[v] =min(A)},

Lmin(A) := span(Min(A)).
(2.1.3)

The set of shortest vectors satisfies the desirable transformation property

Min(UTAU )=U−1 Min(A) (2.1.4)

for all U ∈ GLn(Z). If Min(A) is full-dimensional, then A is called well-rounded.
Two obstacles remain for using Min(A) as a characteristic vector set:

PB1. If n ≥ 2, then span(Min(A)) may not have rank n.

PB2. If n ≥ 5, then span(Min(A)) may have rank n but may not equal Zn .

Thus we have to consider other vector sets. For λ > 0, let

MinA(λ) := {v ∈ Zn r {0} : A[v] ≤ λ}. (2.1.5)

The vector set used for computing the stabilizer and automorphisms in the AUTO/ISOM programs of
Plesken and Souvignier [35] is:

VPS(A) :=MinA(maxdiag(A)), (2.1.6)

where maxdiag(A) := max{Ai i : 1 ≤ i ≤ n} is the maximum of the diagonal elements of A. The
vector set VPS(A) contains the standard basis as a subset and as a result is adequate for computing the
stabilizer. Typically LLL-reduction [25] is used, leading to a decrease in maxdiag(A), to prevent large
sets. However, when computing equivalence we have a potential problem since two forms A and B can
be equivalent but satisfy maxdiag(A) 6=maxdiag(B). This is a limitation of ISOM, which for equivalence
can be resolved by taking the bound max{maxdiag(A),maxdiag(B)} (something we cannot do for our
canonical form).

To prevent this problem we can use a more reliable vector set that consists of those vectors whose
length is at most the minimal spanning length:

Vms(A) :=MinA(λmin), where

λmin :=min{λ > 0 : span(MinA(λ))= Zn
}.

(2.1.7)

This vector set Vms(A) is a characteristic vector set. However, Vms(A) can still be very large, making it
impractical to use.
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Example 2.1.8. For example, the matrix Aλ =
( 1

0
0
λ

)
for λ≥ 1 gives

Vms(Aλ)= {±e2} ∪ {±e1,±2e1, . . . ,±b
√
λce1}.

while {±e1,±e2} would be adequate. This problem is related to PB1.

2.2. An inductive characteristic vector set, using closest vectors. Building on the observations made in
the previous section, we now present a construction that deals with PB1 and allows us to build a suitable
characteristic vector set.

For a set of vectors V ⊆ Zn , the saturated sublattice (of Zn) spanned by V is

satspan(V) :=QV ∩Zn. (2.2.1)

Beyond shortest vectors, we use the closest vector distance: for v ∈Qn , we define

cvd(A, v) := min
x∈Zn

A[x − v] (2.2.2)

as the minimum distance from Zn to the vector v and

CV(A, v) := {x ∈ Zn
: A[x − v] = cvd(A, v)} (2.2.3)

the set of closest vectors achieving this minimum.
Characteristic and closest vector sets behave well under restriction to a sublattice. The following

lemma describes this explicitly, in terms of bases.

Lemma 2.2.4. Let V be a characteristic vector set function, A ∈ Sn
>0 a form, and L ⊂ Rn a lattice of

rank r. Let B ∈Mn,r (R) be such that the columns are a Z-basis of L; let c be in the real span of L and
let cB := B−1c ∈ Rr be the unique vector such that BcB = c. Then the sets

BV(BTAB) and B CV(BTAB, cB)

are independent of B (depending only on L , c).

Proof. The form A|B := BTAB ∈ Sr
>0 is the restriction of A to L in the basis B, so BV(A|B) is the

characteristic vector set of this restricted form, as elements of L ⊂ Rn . Similarly, B CV(A|B, cB) is the
set of vectors in L ⊂ Rn , which are closest to c. Both sets only depend on L and are independent of the
chosen basis. �

Suppose that A is well-rounded. Let v1, . . . , vn be a Z-basis of the full rank lattice Lmin(A) spanned
by Min(A) and let B ∈Mn×n(Z) be the matrix with columns v1, . . . , vn . We then define

Vwr− cv(A) :=Min(A)∪
⋃

c∈Zn/Lmin(A)

(c− B CV(BTAB, B−1c)). (2.2.5)

(It is possible to reduce the size of this set, e.g., by removing 0 or filtering by length.) The set Vwr− cv(A)
consists of the union of the shortest vectors together with the set of points in each coset closest to
the origin. By Lemma 2.2.4, the set Vwr− cv(A) is well-defined, independent of the choice of basis.
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Furthermore it satisfies the necessary transformation property and spans Zn (as a Z-module) because it
contains at least one point from each coset in Zn/Lmin(A).

For a general form A, in geometrical terms we follow the filtration defined from the minimum [4]. We
define a set of vectors Vcv(A) inductively (described in an algorithmic fashion), as follows:

(1) Compute the set Min(A) of vectors of minimal length and compute the saturated sublattice L1 :=

satspan(Min(A)) spanned by these vectors.

(2) Compute a Z-basis v1, . . . , vr of L1, where r is its rank. Let B1 ∈ Mn,r (R) be the matrix with
columns v1, . . . , vr , and let A1 := BT

1 AB1 ∈ Sr
>0. Note that A1 is well-rounded by construction.

(3) Let proj : Zn
→ Rn be the orthogonal projection on L⊥1 with respect to the scalar product defined

by A.

(4) Compute a basis w1, . . . , wn−r of L2 := proj(Zn) and let B2 ∈Mn,(n−r)(R) the matrix with columns
w1, . . . , wn−r . Let A2 := BT

2 AB2.

(5) If r = n, let Vcv(A2) :=∅; otherwise, compute Vcv(A2) recursively and let

Vcv(A) := B1Vwr− cv(A1)∪
⋃

v∈B2Vcv(A2)

CV(A, v). (2.2.6)

Theorem 2.2.7. The following statements hold:

(a) The set Vcv(A) is well-defined (independent of the choices of bases).

(b) The association A 7→ Vcv(A) is a characteristic vector set function.

(c) We have #Vcv(A)= nO(n).

(d) There is an explicit, deterministic algorithm that on input A computes the set Vcv(A) in nO(n) arith-
metic operations over F. For F =Q it has bit complexity nO(n)sO(1) with s the input size of A.

Proof. We prove (a) by induction in the dimension n that Vcv is a characteristic vector set. The base
case n = 0 is trivial. For n > 0, note that A1 is well rounded and A2 has dimension at most n− 1 and
thus B1Vwr− cv(A1) and B2Vcv(A2) are independent of the choice of basis by induction and Lemma 2.2.4.
The lattice L2 is uniquely defined by the projection.

For (b), by part (a), we may choose convenient bases. Running the algorithm for A and A′ =UTAU
we can assume that v′i = U−1vi and w′i = U−1wi by using the transformation property of Min(A).
Then A′i = Ai and B ′i = U−1 Bi for i = 1, 2. We conclude by noting that CV also has the compatible
transformation property

CV(UTAU,U−1v)=U−1 CV(A, v). (2.2.8)

For (c), by Keller, Martinet and Schürmann [20, Proposition 2.1] for a well-rounded lattice the index of
the sublattice determined by the shortest vectors is at most bγ n/2

n c with γn the Hermite constant satisfying
γ

n/2
n ≤ (2/π)n/2 ·0(2+ n/2) = nO(n). The bound on Vcv follows by combining this with exponential

upper bounds on the kissing number [18] and the upper bound 2n on # CV(A, v) [6, Proposition 13.2.8].
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The running time estimate (d) for arithmetic operations follows by combining single exponential
upper estimates for algorithms to solve the CVP and SVP (see e.g., Micciancio and Voulgaris [30]). We
conclude with the bit complexity analysis for F =Q. The bit complexity of SVP and CVP algorithms
is indeed polynomial time in the input size [16; 36]. (We lack a reference for more general fields, and
although we do not see major obstacles doing such an analysis, it would be out of the scope of this
work). For the computed projection, the Gram–Schmidt orthogonalization process also has a polynomial
bit complexity in the input size (in bounded dimension, by induction). The remaining steps in computing
Vcv(A), including computing a basis out of a spanning set, computing a basis for the saturated sublattice,
and computing representatives of the cosets Zn/Lmin(A), are standard applications of the computation
of a Hermite normal form (HNF) — see also Section 3.4. A careful HNF computation can be achieved in
polynomial time in the input size [19]. In particular, the obtained basis vectors and coset representatives
also have a bit size that is polynomially bounded in the input size. Thus for F = Q all arithmetic
operations while computing Vcv(A) have a bit complexity polynomial in s. We note for completeness
that efficient versions of SVP, CVP, and HNF algorithms depend heavily on the famous LLL-algorithm.

�

Although the cost of computing many closest vector problems may make it quite expensive to compute
Vcv(A) in the worst case, we find in many cases that it gives a substantial improvement in comparison to
other characteristic vector sets.

Example 2.2.9. Returning to Example 2.1.8, we find that Vcv(Aλ)= {±e1,±e2}.

The construction of Vcv addresses PB1, but PB2 remains — even for well-rounded lattices #(Zn/Lmin(A))
can possibly be very large.

Example 2.2.10. The self-dual Niemeier lattice N23 [5, Chapter 18], whose root diagram is 24A1 is
well-rounded: it has minimum 2 with 48 shortest vectors, and #Vms(N23)= 194352. Since the index of
the lattice spanned by the shortest vectors in N23 is 224, the size of Vcv(N23) is at least 48+ 224.

Remark 2.2.11. It may be possible to deal with some cases (but still not Example 2.2.10) by working
with characteristic vector sets on forms attached in a canonical way to A: for example, one could work
with the dual form attached to A, for sometimes the dual has few minimal vectors (even if A has many).

2.3. A characteristic vector set, using Voronoi-relevant vectors. A well-known geometric shape asso-
ciated to lattices is the Voronoi cell. The Voronoi cell is the set of all points closer to 0 with respect to A
than to any other integer point. For a form A, the (open) Voronoi cell is the intersection of half-spaces

Vor(A) :=
⋂

x∈Zn\{0}

HA,x , (2.3.1)

with HA,x := {y ∈Rn
: A[y]< A[y− x]}. However, almost all vectors in this intersection are superfluous,

and we only consider the set of Voronoi-relevant vectors Vvor(A), i.e., the (unique) minimal set of vectors
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such that
Vor(A)=

⋂
x∈Vvor(A)

HA,x . (2.3.2)

Lemma 2.3.3. The following statements hold:

(a) The association A 7→ Vvor(A) is a characteristic vector set function.

(b) We have #Vvor(A)≤ 2 · (2n
− 1).

(c) There is an explicit, deterministic algorithm that on input A computes the set Vvor(A) in 22n+o(n)

arithmetic operations over F. For F = Q it has bit complexity 22n+o(n)sO(1) with s the input size
of A.

Proof. Property (ii) of a characteristic vector set for Vvor follows from the geometric definition, fully
independent of the basis. For property (i), note that for any nonzero x ∈ Zn , we have x 6∈ Vor(A), and
thus there is a vector v ∈ Vvor(A) such that x − v lies strictly closer to 0 with respect to A. Repeating
this (a finite amount of time by a packing argument) we eventually end up at 0 and thus x is the sum of
Voronoi-relevant vectors. The remaining statements follow from Micciancio and Voulgaris [30]. �

Although this characteristic vector set has great theoretical bounds, we refrain from using it in practice:
most lattices actually attain the 2 · (2n

− 1) Voronoi bound, whereas constructions based on short and
close vectors often beat the theoretical worst-case bounds and give much smaller vector sets in practice.

3. Construction of a canonical form

Suppose now that we have chosen a characteristic vector set function V , as in Section 2.2 or 2.3. From
this, we will construct a canonical form, depending on V .

3.1. Graph construction. Given a form A, let V(A) = {v1, . . . , vp}. We define G A to be the edge-
and vertex-weighted complete (undirected) graph on p vertices 1, . . . , p such that vertex i has weight
wi,i = A[vi ] and the edge between i and j has weight wi, j = v

T
i Av j = w j,i . In other words, G A is the

weighted complete graph whose adjacency matrix is BTAB, where B ∈Mn,p(R) is the matrix whose
columns are vi . (The graph G A depends on V , but we do not include it in the notation as we consider V
fixed in this section.)

Lemma 3.1.1. For a form A ∈ Sn
>0 and the graph G A constructed from a characteristic vector set V(A)

we have a group isomorphism

Stab(A)' Stab(G A) := {σ ∈ Sp : wi, j = wσ(i),σ ( j) for all 1≤ i, j ≤ p}. (3.1.2)

Proof. We first define the map Stab(A)→ Stab(G A). Let U ∈ Stab(A). Then by property (ii) of a
characteristic vector set, we have UV(A)= V(U−TAU−1)= V(A); therefore, U permutes the set V(A),
giving a permutation σU ∈ Sp characterized by σU (i)= j if and only if Uvi = v j . Accordingly, we have

wi, j = v
T
i Av j = v

T
i UTAUv j = vσU (i)AvσU ( j) (3.1.3)
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so moreover σU ∈Stab(G A). It is then straightforward to see that this map defines a group homomorphism.
To show this map is an isomorphism, we use property (i) that V(A) spans Zn . Indeed, the map is
injective because if σU is the identity, then Uvi = vi for all i so U is the identity. Similarly, it is
surjective: any σ ∈ Stab(G A) fixes pairwise inner products with respect to A, so we obtain a unique
Q-stabilizer U ∈ GLn(Q) such that UTAU = A; however, because V(A) spans Zn , we obtain UZn

= Zn

so U ∈ Stab(A). �

3.2. Graph transformations. The software nauty [28] and bliss [17] allow to test equivalence and
find the automorphism group and a canonical vertex ordering of vertex weighted graphs. Thus, we need
graph transformations that allow to translate our vertex and edge weighted complete graphs into vertex
weighted graphs (see also the nauty manual [28]).

Let G be a complete (undirected) graph on p vertices with vertex weights wi,i and edge weights wi, j .
We construct a complete (undirected) graph T1(G) on p+ 2 vertices which is only edge weighted, as
follows. Let a := 1+maxi, j wi, j and b := a+ 1 be two distinct weights that do not occur as wi, j . We
define the new edge weight w′i, j for i < j to be

w′i, j :=


wi, j if i < j ≤ p,
wi,i if i ≤ p and j = p+ 1,
a if i ≤ p and j = p+ 2,
b if i = p+ 1 and j = p+ 2.

(3.2.1)

We have a natural bijection Isom(G,G ′) ∼
−→ Isom(T1(G), T1(G ′)) of morphisms in the categories

of edge-and-vertex-weighted and edge-weighted graphs, hence taking G ′ = G, we have Aut(G) '
Aut(T1(G)).

The next transformation takes a complete graph G with edge weights wi, j and returns a vertex weighted
graph T2(G). Let S be the list of possible edge weights, ordered from the smallest to the largest, and let
w be the smallest integer such that #S ≤ 2w. For an edge weight s ∈ S, denote lk(s) the k-th value in the
binary expansion of the position of s in S. If G has p vertices then T2(G) will have pw vertices of the
form (i, k) with 1 ≤ i ≤ p and 0 ≤ k ≤ w− 1. The weight of the vertex (i, k) is k. Two vertices (i, k)
and (i ′, k ′) are adjacent in the following cases:

(1) i = i ′.

(2) k = k ′ and lk(wi,i ′)= 1.

Condition (i) implies that vertices of G correspond to cliques in T2(G). Condition (ii) means that each
digit k corresponds to a subgraph of T2(G). We have again have a natural bijection Isom(G,G ′) ∼−→
Isom(T2(G), T2(G ′)).

Combining this we can lift an isomorphism between T2(T1(G A)) and T2(T1(G B)) to an isomorphism
between G A and G B and thus to an isomorphism between A and B by solving an overdetermined linear
system. Similarly, we can compute the group Aut(A) from Aut(T2(T1(G A))).
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3.3. Canonical orderings of characteristic vector sets. The canonical vertex ordering functionality of
nauty and bliss gives an ordering of the vertices of vertex weighted graphs. It is canonical in the
sense that two isomorphic graphs will after this reordering be identical. We do not know a priori what
this ordering is as it depends on the software, its version and the chosen running options. We still call it
canonical, following standard terminology.

We need to lift the ordering of the vertex set of T2(T1(G A)) into an ordering of the vertex set of G A

and so the characteristic vector set. Every vertex i of G corresponds to a set Si of w vertices in T2(G)
with Si ∩ S j = ∅ for i 6= j . For two vertices i, j of G we set i < j if and only if min Si < min S j in
the canonical vertex ordering of T2(G). Similarly every vertex i of G maps to one vertex φ(i) of T1(G)
with φ(i) 6= φ( j) if i 6= j . Thus we set i < j if and only if φ(i) < φ( j) in the canonical ordering.

Combining the above we obtain a canonical ordering of the vertex set of G A and thus of the charac-
teristic vector set of the matrix A.

3.4. Canonical form. We have a canonical ordering of the characteristic vector set V(A), which we
write as v1, . . . , vp. This ordering is only canonical up to Stab(A): for another canonical ordering, there
is an element S ∈ Stab(A) such that wi = Svi for i = 1, . . . , p, and conversely. We will now derive a
canonical form from the vectors vi .

The Hermite normal form (HNF) of a matrix Q ∈Mm,n(Z) is the unique matrix H = (hi j )i, j ∈Mm,n(Z)

for which there exists U ∈ GLm(Z) such that Q =U H and moreover:

(i) The first r rows of H are nonzero and the remaining rows are zero.

(ii) For 1≤ i ≤ r , if hi, ji is the first nonzero entry in row i , then j1 < · · ·< jr .

(iii) hi, ji > 0 for 1≤ i ≤ r .

(iv) If 1≤ k < i ≤ r , then 0≤ hk, ji < hi, ji .

In the cases that interest us, the matrix Q A with columns v1, . . . , vp defined by the characteristic
vector set V(A) is of full rank and so the matrix U , obtained from the Hermite normal form Q A =U H ,
is uniquely defined as well. Note that any other ordering Sv1, . . . , Svp would lead to the matrix SU
for some S ∈ Stab(A). We denote the matrix U by UV(A) and note that its coset representative in
Stab(A)\GLn(Z) is well-defined (determined by V(A)).

We now define

CanGLn(Z)(A) :=UT
V(A)AUV(A) ∈ Sn

>0. (3.4.1)

Then CanGLn(Z)(A) depends only on V(A) and A. Proposition 3.4.2 proves the first statement of our
main result, Theorem 1.3.1 (for any characteristic vector set function V).

Proposition 3.4.2. The matrix CanGLn(Z)(A) is a canonical form for A.

Proof. Property (i) is clear by definition. For (ii), given P ∈ GLn(Z), we have

UV(PTAP) ≡UP−1V(A) ≡ P−1UV(A) ∈ Stab(PTAP)\GLn(Z). (3.4.3)
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Thus CanGLn(Z)(P
TAP)= CanGLn(Z)(A), as desired. �

Remark 3.4.4. An alternative to computing the canonical form would be to keep the canonicalized
version of the graph G A. However, this graph can be quite large, and the positive definite form allows
a more compact representation even taking into account coefficient explosion that might occur with the
Hermite normal form.

4. Analysis

4.1. Theoretical time complexity. We now analyze the algorithmic complexity of computing a canonical
form using the characteristic vector set in Section 2.3.

Theorem 4.1.1. Given as input a positive definite symmetric matrix A ∈ Sn
>0 with entries in a computable

subfield F ⊂ R, and a characteristic vector set V(A), we can compute a canonical form for A in time
exp (O(log(N )c)+ sO(1) where N := #V(A), s is the input size of (A,V(A)), and c > 1 is a constant.

Proof. Given the characteristic vector set V(A) the corresponding graph can be computed in time poly-
nomial in the input size of A and V(A) as this part is mostly dominated by the computation of vTAw for
v,w ∈ V(A). Computing a Hermite normal form can be done in time polynomial in the matrix input size
which is the same as V(A) [19]. Because the initial graph has at most O(N 2) distinct weights the final
constructed vertex-weighted graph T2(T1(G A)) is of polynomial size in N . We can conclude if we have
a quasipolynomial algorithm to find a canonical form of a graph. For this we refer to a recent report by
Babai [14]. �

Corollary 4.1.2. For all n ≥ 1 and A ∈ Sn
>0 with entries in a computable subfield F ⊂R, we can compute

a canonical form in at most 2O(nc) arithmetic operations in F for some constant c > 1. If F =Q, the bit
complexity is at most 2O(nc)

+ sO(1)2O(n) with s the input size of A.

Proof. By Lemma 2.3.3 we have an characteristic vector set function Vvor such that Vvor(A) has cardinality
at most 2(2n

− 1) and can be computed in at most 2O(n) arithmetic operations. For the rational case, the
bit complexity (and output size) is at most sO(1)2O(n), with s the input size of A. We conclude by
Theorem 4.1.1. �

4.2. Practical time complexity. We give a short experimental review of the practial time complexity
of our implementation [1]. We selected a diverse set of test cases to benchmark our implementation:
random forms, more than 500 000 perfect forms [8] and more than 100 special forms from the catalog of
lattices [32]. For the random n-dimensional forms a basis matrix B is constructed with entries uniform
from {−n, . . . , n}, which, if full rank, is turned into a form A = BT B. The set of perfect forms contains
all 10 963 perfect forms of dimension 2 up to 8 and in addition 524 288 perfect forms of dimension 9.
The set of special forms consists of a diverse subset from the catalog up to dimension 16, including all
laminated lattices. Up to dimension 20 we used 32-bit integers and above that (much slower) arbitrary
precision integers to prevent overflow. The implementation currently supports the characteristic vector
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Time (s) #Vms

Type Samples n min avg max min avg max

Perfect 10 963 2–8 0.00041 0.0032 0.086 6 73.74 240
524 288 9 0.0039 0.00594 0.11 90 94.04 272

100 10 0.0015 0.08 2.03 20 100.36 988

Random 100 20 0.016 0.17 4.18 40 114.34 812
100 30 2.43 23.41 511.42 60 93.46 310
100 40 5.18 24.91 251.51 82 107.7 240

Catalog 107 2–16 0.00018 2.12 36.71 4 630.47 4320

Table 1. Timings of our implementation [1].

set function Vms and has not been highly optimized. The main bottleneck seemed to be constructing the
characteristic vector sets and the computation of all pairwise inner products (in arbitrary precision) for
the graph. Perhaps surprisingly, determining the canonical graph itself took negligible time in most cases.
In low dimensions where we can still use basic integer types, computing a canonical form takes a few
milliseconds up to a few seconds. For random lattices we can expect relatively small characteristic sets
even in large dimensions, therefore enumerating the minimal vectors quickly becomes the bottleneck in
high dimensions. For special forms in higher dimensions such as the Leech lattice with 196 560 minimal
vectors one can expect that the main bottleneck is related to the huge graph. Both storing the graph and
computing a canonical representative might barely be in the feasible regime.

5. Extensions and applications

We conclude with an extension and a description of some applications.

5.1. Extension to symplectic groups. Let Jn :=
( 0
−In

In
0

)
represent the standard alternating pairing and

Sp2n(Z) := {Q ∈ GL2n(Z) : QTJn Q = Jn}. (5.1.1)

The group Sp2n(Z) acts on S2n
>0 and we seek a canonical form for this action [27].

Theorem 5.1.2. Given a ordered set of vectors V = (v1, . . . , vm) that generates Z2n as a lattice, there
exists an effectively computable symplectic basis SympBas(V) of Z2n such that for every P ∈ Sp2n(Z) we
have SympBas(VP)= SympBas(V)P.

Proof. Let w1 be the first nonzero vector in V divided by the gcd of its coefficients. Since the family of
vectors spans Zn , the gcd of the symplectic products ω(w1, v j ) is 1. Thus we can find in a deterministic
manner integers αi such thatw2n=

∑m
i=1 αivi satisfies ω(w1, w2n)= 1. We can then replace the vectors vi

of the vector family by v′i = vi−ω(vi , w2n)w1+ω(vi , w1)w2n . They satisfy ω(v′i , w1)=ω(v
′

i , w2n)= 0.
Thus we apply the same construction inductively on them and get our basis. The invariance property
follows from the fact that we never use specific coordinate systems. �
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A canonical representative for a form A ∈ S2n
>0 under the action of Sp2n(Z) can also be computed using

our canonical form, as follows:

(1) Compute a characteristic vector family using e.g., Vcv.

(2) Compute a graph on this characteristic set of vector by assigning to two vectors v, v′ the weight
(vAv′, v Jnv

′).

(3) Apply the canonicalization procedure and get a canonical ordering of Vcv.

(4) Use Theorem 5.1.2 in order to get a symplectic basis which then gives a reduction matrix.

5.2. Lattice databases. Several efforts have sought to enumerate lattice genera of either bounded dis-
criminant or satisfying some arithmetic conditions such as small (spinor) class number. For example, the
Brandt–Intrau tables [9] of reduced ternary forms with discriminant up to 1000, Nipp’s tables [33] of
positive definite primitive quaternary quadratic forms with discriminant up to 1732, and more recently
the complete table of lattices with class number one due to Kirschmer and Lorch [22], to name a few.
A current project of interest in number theory is an extension of the L-functions and modular forms
database (LMFDB) [26] to include lattices.

The general strategy for generating these tables can take several forms. For example, a list of isometry
class candidates can be generated by extending lattices of lower rank in some systematic way [9; 33].
Classes can also be generated by Kneser’s method of neighboring lattices [38] (see Section 5.4 below).
Although the completeness of the list of genus representatives can be verified using the Minkowski–
Siegel mass formula, one critical bottleneck in most of these schemes is eliminating redundancy in the
lists generated, especially for lattices with high rank and class number — it is here where we profit
significantly from a canonical form.

Another current shortcoming of the database has been the lack of a deterministic naming scheme for
lattices. Although lattices up to equivalence can be classified by dimension, determinant, level, and class
number, beyond that point many genera of such lattices can exist, and each genus can potentially contain
multiple classes. Finding a canonical form for lattices provides a way to establish a deterministic labeling.
This has long been known to be a challenge: for example, it is exactly the problem of the boundary of
a fundamental domain in Minkowski reduction (mentioned in the introduction) that is at issue. Ad
hoc enumeration and labeling suffers from the deficiency that a computer failure or other issues in the
database could result in new and different enumeration. A canonical form provides a mechanism for a
canonical label for lattices. Such a scheme would still depend on the graph canonical form being called
in the algorithm; but in the event of a switch a bijective dictionary could easily be stored between the
new naming and the old, giving still a nearly permanent deterministic naming of lattices.

5.3. Application to enumeration of perfect forms. A canonical form really shows its strength compared
to pairwise equivalence checks when the number of forms to be classified becomes very large. This is
certainly the case during the enumeration of perfect forms using Voronoi’s algorithm in dimension 9 or
higher. In dimension 9 already more than 20 million (inequivalent) perfect forms are found and the total
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number could be on the order of half a billion [42]. Even though there are some useful invariants such
as the number of miminal vectors, the determinant and the size of the automorphism group, the number
of remaining candidates for equivalence for each found perfect form can become quite large. Removing
equivalent forms is a large part of the computational cost during the enumeration.

Therefore, efficiently finding a canonical form seems to be a necessity in completing the full enumer-
ation in dimensions 9 or higher. Luckily by the definition of a perfect form we always have that Min(A)
is full dimensional. Furthermore for all perfect forms found so far Min(A) also spans Zn and therefore
the function Vms seems to be an efficient way to obtain a small characteristic vector set. In Section 4.2
we saw that computing a canonical perfect form in dimension 9 takes just a few milliseconds.

5.4. Application to algebraic modular forms. Finally, we present an application to speed up computa-
tions of orthogonal modular forms, a special case of the theory of algebraic modular forms as defined
by Gross [12]. We shift our perspective slightly, varying lattices in a (fixed) quadratic space.

Let L ⊂ V be a (full) lattice, the Z-span of a Q-basis for V . We say L is integral if xTAy ∈ Z for all
x, y ∈ L , and suppose that L is integral. We represent L in bits by a basis {v1, . . . , vn}; letting UL be the
change of basis matrix, we obtain a form

AL := (v
T
i Av j )1≤i, j≤n =UT

L AUL . (5.4.1)

(It is not necessarily the case that AL is arithmetically equivalent to A — the change of basis need only
belong to GLn(Q).)

In order to organize these lattices, we define the orthogonal group

O(V ) := {P ∈ GLn(Q) : PTAP = A}. (5.4.2)

Integral lattices L , L ′ ⊂ V are isometric, written L ' L ′, if there exists P ∈ O(V ) such that P(L)= L ′.
Choosing bases for L , L ′, we see that L ' L ′ if and only if AL and AL ′ are arithmetically equivalent.

We repeat these definitions replacing Q (and Z) by Qp (and Zp) for a prime p, abbreviating L p :=

L ⊗Z Zp. Then the genus of L is

Gen(L) := {L ′ ⊂ V : L p ' L ′p for all primes p}. (5.4.3)

Finally, we define the class set Cls(L) as the set of isometry classes in Gen(L). By the geometry of
numbers, we have # Cls(L) <∞.

The theory of p-neighbors, due originally to Kneser [23], gives an effective method to compute rep-
resentatives of the class set Cls(L), as follows. Let p be prime (allowing p = 2) not dividing det(AL).
We say that a lattice L ′ < V is a p-neighbor of L , and write L ′ ∼p L , if L ′ is integral and

[L : L ∩ L ′] = [L ′ : L ∩ L ′] = p (5.4.4)

(index as abelian groups). If L ∼p L ′, then disc(L) = disc(L ′) and L ′ ∈ Gen(L) [10, Lemma 5.7].
The set of p-neighbors can be computed in time O(pm+εHn(s)), where s is the input size and Hn
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is a polynomial depending on n. Moreover, by strong approximation [10, Theorem 5.8], there is an
effectively computable finite set S of primes such that every [L ′] ∈ Cls(L) is an iterated S-neighbor
L ∼p1 · · · ∼pr Lr ' L ′ with pi ∈ S. Typically, we may take S = {p} for any p - disc(L). In this way, we
may compute a set of representatives for Cls(L) from iterated S-neighbors.

The space of orthogonal modular forms for L (with trivial weight) is

M(O(L)) :=Map(Cls(L),C). (5.4.5)

In the basis of characteristic functions δ[L ′] for [L ′] ∈Cls(L) we have M(O(L))'Ch where h := # Cls(L).
For p - disc(L), define the Hecke operator

Tp : M(O(L))→ M(O(L))

Tp( f )([L ′])=
∑

M ′∼p L ′
f ([M ′]). (5.4.6)

The operators Tp commute and are self-adjoint (with respect to a natural inner product); accordingly,
there exists a basis of simultaneous eigenvectors for the Hecke operators, called eigenforms.

In this way, to compute the matrix representing the Hecke operator Tp, for each [L ′] ∈Cls(L), we need
to identify the isometry classes of the p-neighbors of L ′. Here is where our canonical form algorithm
applies, returning to our original motivation: after computing canonical forms for Cls(L), for each p-
neighbor, we compute their canonical forms and then a hash table look up on Cls(L). This reduces our
computation from O(h2) isometry tests to O(h) hash table lookups. For medium-sized values of n, we
hope that the use of canonical forms will allow us to peer more deeply into the world of automorphic
forms on orthogonal groups.
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Computing Igusa’s local zeta function of univariates in
deterministic polynomial-time

Ashish Dwivedi and Nitin Saxena

Igusa’s local zeta function Z f,p(s) is the generating function that counts the number of integral roots,
Nk( f ), of f (x) mod pk , for all k. It is a famous result, in analytic number theory, that Z f,p is a rational
function in Q(ps). We give an elementary proof of this fact for a univariate polynomial f . Our proof is
constructive as it gives a closed-form expression for the number of roots Nk( f ).

Our proof, when combined with the recent root-counting algorithm of Dwivedi, Mittal and Saxena
(Computational Complexity Conference, 2019), yields the first deterministic poly(| f |, log p)-time algo-
rithm to compute Z f,p(s). Previously, an algorithm was known only in the case when f completely splits
over Qp; it required the rational roots to use the concept of generating function of a tree (Zúñiga-Galindo,
J. Int. Seq., 2003).

1. Introduction

Over the years, the study of zeta functions has played a foundational role in the development of math-
ematics. They have applications in diverse science disciplines; in particular, machine learning [72],
cryptography [2; 3], quantum cryptography [45], statistics [72; 47], theoretical physics [31; 53], string
theory [51], quantum field theory [27; 31] and biology [57; 77]. Basically, a zeta function counts some
mathematical objects. Often zeta functions show special analytic, or algebraic properties, the study of
which can reveal striking information about the encoded object.

A classic example is the famous Riemann zeta function [54] (also known as the Euler–Riemann zeta
function) which encodes the density and distribution of prime numbers [16; 64]. Later many local (i.e.,
associated to a specific prime p) zeta functions were studied; e.g., the Hasse–Weil zeta function [73; 74],
which encodes the count of zeros of a system of polynomial equations over finite fields (of a specific
characteristic p). The study of this function led to the development of modern algebraic geometry (see
[19; 30]).

In this paper we are interested in a different local zeta function known as Igusa’s local zeta function.
It encodes the count of roots modulo prime powers of a given polynomial defined over a local field.

MSC2010: primary 11S40, 68Q01, 68W30; secondary 11Y16, 14G50.
Keywords: Igusa, local, zeta function, discriminant, valuation, deterministic, root, counting, modulo, prime power.
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Formally, Igusa’s local zeta function Z f,p(s), attached to a polynomial over p-adic integers

f (x) ∈ Zp[x1, . . . , xn]

is defined as
Z f,p(s) :=

∫
Zn

p

| f (x)|sp · |dx|,

where s ∈ C with Re(s) > 0, | · |p denotes the absolute value over p-adic numbers Qp, and |dx| denotes
the Haar measure on Qn

p normalized so that Zn
p has measure 1.

Weil [75; 76] defined these zeta functions inspired by those of Riemann. Later they were studied
extensively by Igusa [34; 35; 36]. Using the method of resolution of singularities, Igusa proved that
Z f,p(s) converges to a rational function. Later the convergence was proved by Denef [20] via a different
method (namely, p-adic cell decomposition). The Igusa zeta function is closely related to Poincaré
series P(t), attached to f and p, defined as

P(t) :=
∞∑

i=0

Ni ( f ) · (p−nt)i ,

where t ∈ C with |t |< 1, and Ni ( f ) is the count on roots of f mod pi (also N0( f ) := 1). In fact, it has
been shown in [33] that

P(t)=
1− t · Z f,p(s)

1− t

with t =: p−s. So rationality of Z f,p(s) implies rationality of P(t) and vice versa; thus proving a
conjecture of [52] that P(t) is a rational function. This relation makes the local zeta function interesting
in arithmetic geometry (see [33; 21; 50; 44] for more on the Igusa zeta function).

Many researchers have tried to calculate the expression for the Igusa zeta function for various poly-
nomial families [17; 56; 66; 1; 22; 48; 65; 32; 58; 79; 81] and this has led to the development of
various methodologies; for example, the stationary phase formula (SPF), the Newton polygon method,
resolution of singularities, etc. These methods have been fruitful in various other situations [23; 82;
83; 59; 39; 40; 84; 68; 61; 85]. However, not much has been said about their algorithmic aspect
except in the case of resolution of singularities [6; 9; 8; 67]. These algorithms are impractical [7].
Indeed, the computation of the Igusa zeta function for a general multivariate polynomial seems to be an
intractable problem since root-counting of a multivariate polynomial over a finite field is known to be
#P-hard [28; 26].

In this paper, we focus on the computation of the Igusa zeta function when the associated polynomial is
univariate. The Igusa zeta function for a univariate polynomial f is connected to root-counting of f mod-
ulo prime powers pk, which is itself an interesting problem. It has applications in factoring [13; 14; 10],
coding theory [4; 60], elliptic curve cryptography [43], arithmetic algebraic geometry [80; 22; 21], and
the study of root sets [62; 15; 5; 18; 49]. After a long series of work [70; 71; 38; 60; 4; 63; 12; 42; 25],
this problem was recently resolved in [24].
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In the case of univariate polynomials one naturally expects an elementary proof of convergence, as
well as an efficient algorithm to compute the Igusa zeta function. Our main result is:

We give the first deterministic polynomial time algorithm to compute the rational function form
of the Igusa zeta function associated to a given univariate polynomial f ∈ Z[x] and prime p.

To the best of our knowledge, this result was previously achieved only for the restricted class of
univariate polynomials using methods that were sophisticated and nonexplicit. For example, Zúñiga-
Galindo [80] achieved this for univariate polynomials which completely split over Q (with the factoriza-
tion given in the input), using the stationary phase formula (see Section 1.2). The methods to compute
the Igusa zeta function for a multivariate, e.g., Denef [20], continue to be impractical in the case of
univariate polynomials. On the other hand, our approach is elementary, uses explicit methods, and
completely solves the problem.

1.1. Our results. We will compute the Igusa zeta function Z f,p(s) by finding the related Poincaré series
P(t)=: A(t)/B(t).

Theorem 1. We are given a univariate integral polynomial f (x) ∈ Z[x] of degree d, with coefficients of
magnitude bounded by C ∈N, and a prime p. Then, we compute the Poincaré series P(t)= A(t)/B(t),
associated with f and p, in deterministic poly(d, log C + log p)-time.

The degree of the integral polynomial A(t) is Õ(d2 log C) and that of B(t) is O(d).

Remarks. (1) Our method gives an elementary proof of rationality of Z f,p(s) as a function of t = p−s.

(2) Previously, Zúñiga-Galindo [80] gave a deterministic polynomial time algorithm to compute Z f,p(s),
if f completely splits over Q and the roots are provided. Our Theorem 1 works for any input f ∈ Z[x]
(see Section 1.2 for further discussion).

(3) Cheng et al. [12] could compute Z f,p(s) in deterministic polynomial time, in the special case where
the degree of A(t), B(t) is constant.

(4) Dwivedi et al. [24], using [80], remarked that Z f,p(s) could be computed in deterministic polynomial
time, in the special case when f completely splits over Qp without the roots being provided in the input.
The detailed proof of this claim was not given and the convergence relied on the old method of [80].

We achieve the rational form of Z f,p(s) by getting an explicit formula for the number of zeros Nk( f ),
of f mod pk, which sheds new light on the properties of the function Nk(·). Eventually, it gives an
elementary proof of the rationality of the Poincaré series

∑
∞

i=0 Ni ( f ) · (p−1t)i.

Corollary 2. Let k be large enough, namely, k ≥ k0 := O(d2(log C + log d)). Then, we give a closed
form expression for Nk( f ) (in Theorem 21).

Interestingly, if f has nonzero discriminant, then Nk( f ) is constant (independent of k) for all k ≥ k0.

1.2. Further remarks and comparison. To the best of our knowledge, there have been very few results
on the complexity of computing Igusa’s zeta function for univariate polynomials [80; 12]. Other very
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specialized algorithms are for bivariate polynomials (e.g., hyperelliptic curves) [11], and for the polyno-
mial xq

− a [65]. In a recent related work [78, Appendix A], a different proof of rationality of Igusa’s
zeta function for univariate polynomials based on tree based algorithm of [42] is given.

An old proof technique called the stationary phase formula is the standard method used in the literature
to compute Igusa’s zeta function for various families of polynomials. Our work, on the other hand, uses
elementary techniques and a tree-based root-counting algorithm [24] to compute some fixed parameters
(independent of k) involved in our formula of Nk( f ), for all k ≥ k0.

It is to be noted that just efficiently computing Nk( f ), for “several” k, is not enough to compute the
rational form of Z f,p(s); neither does it imply the rationality of Z f,p(s) directly.

Our algorithm is deterministic and works for general f ∈ Zp[x] (provided f has computable repre-
sentation). For earlier methods to work for f ∈ Zp[x] they may need factoring over p-adics Zp or Qp

(for example [80]), but deterministic algorithms there are unknown. See [13; 14; 10] for randomized
factoring algorithms.

1.3. Proof idea. We will compute the rational form of Igusa’s zeta function via computing the rational
form of corresponding Poincaré series

P(t) :=
∞∑

i=0

Ni ( f ) · (p−1t)i.

In addition, our method proves that the Poincaré series is a rational function of t , in the case of univariate
polynomial f (x), via first principles; instead of using advanced tools like the stationary phase method
or Newton polygon method or resolution of singularity.

To compute the rational form of Poincaré series, the idea is to compute the coefficient sequence

{N0( f ), . . . , Nk( f ), . . .}

in a closed form. That is to say, we wish to get an explicit formula for Nk( f ), the number of roots
of f mod pk, only in terms of k; with the hope that this will help in getting a rational function for the
Poincaré series P(t).

Indeed in Theorem 21, we show that such a formula exists for each Nk( f ) for sufficiently large k. We
achieve this by establishing a connection among roots of f mod pk and Zp-roots of f ∈ Zp[x]. Let f
have n distinct Zp-roots α1, . . . , αn . An important concept we define is that of “neighborhood” of an
αi mod pk (Definition 18); these are basically roots of f mod pk “associated” to αi . In Lemma 15, we
show that each root α of f mod pk is associated to a unique Zp-root αi of f : α closely approximates αi

but is quite far from other α j s, for all j ∈ [n], j 6= i . So, the root-set of f mod pk can be partitioned
into n subsets Sk,i , i ∈ [n], where neighborhood Sk,i is the set of those roots of f mod pk which are
associated to Zp-root αi .

Let the multiplicity of root αi be ei ; then f (x)=: (x −αi )
ei fi (x) over Zp, where fi (αi ) 6= 0. We call

fi the αi -free part of f . Then, for α to be a root of f mod pk we must have

f (α)= (α−αi )
ei · fi (α)≡ 0 mod pk.
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Lemma 16 says that fi possesses equal valuation νi , for all roots of f mod pk associated to αi , i.e,
ones in Sk,i . That is, the maximum power of p dividing fi (α) is the same as that for fi (β), as long as
α, β ∈ Sk,i . Note that vp((α−αi )

ei · fi (α))≥ k if and only if vp((α−αi ))≥ (k− νi )/ei .
Eventually, these two lemmas together give us the size of the neighborhood, |Sk,i | = pk−d(k−νi )/ei e.

Moreover, the neighborhoods disjointly cover all the roots of f mod pk. Hence, Nk( f ) =
∑n

i=1|Sk,i |.
This is a formula for Nk( f ), when k is large. But still the two parameters νi and ei are unknown as,
unlike in [80], we are not provided the factorization of f over Zp (nor could we find it in deterministic
polynomial time).

To compute νi , ei , we use the help of the root-counting algorithm of [24], which gives us the value of
Nk( f ), and the underlying root-set structure that it developed. We show that each representative root αi

of f mod pk is indeed the neighborhood Sk,i (Theorem 19), shedding new light on the root-set mod
prime powers.

Now we can get two equations, for the two unknowns νi , ei , by calling the algorithm of [24] twice:
first for k = ki and second for k = ki + ei , where ki is such that (ki − νi )/ei is an integer (e.g., we
can try all ki in the range [k0, . . . , k0+ deg( f )]). So, we can efficiently compute νi , ei for a particular
representative root αi , i ∈ [n]. So, this calculation also reveals some new parameters of representative
roots which were not mentioned in earlier related works [4; 24].

2. Preliminaries

2.1. Root-set of a univariate polynomial mod prime powers. We recall a structural property (and related
objects) of the root-set of univariate polynomials in the ring Z/〈pk

〉 [24; 25].

Proposition 3. The root-set of an integral univariate polynomial f , over the ring of integers modulo
prime powers, is the disjoint union of at most deg( f ) many efficiently representable subsets.

We call these efficiently representable subsets representative roots, as defined and named in [25, Sec-
tion 2]. This property of root-sets in Z/〈pk

〉 is indeed a generalization of the property of root-sets over
a field: there are at most deg( f ) many roots of f (x) in a field.

To present representative roots formally, we first reiterate some notation from [25, Section 2].

Representatives. An abbreviation ∗ will be used to denote all of the underlying ring R. So for the ring
R=Z/〈pk

〉, ∗ denotes all the pk distinct elements. Perceiving any element of R in base-p representation,
like x0+ px1+ · · ·+ pk−1xk−1 where xi ∈ {0, . . . , p− 1} for all i ∈ {0, . . . , k− 1}, the set

a := a0+ pa1+ · · ·+ pl−1al−1+ pl
∗

“represents” the set of all the elements of R which are congruent to a0+ pa1+ · · · + pl−1al−1 mod pl.
Throughout the paper we call such sets representatives and we denote them using bold small letters,
like a, b etc.

Let us denote the length of a representative a by |a|, so if a := a0+ pa1+ · · ·+ pl−1al−1+ pl
∗ then

its length is |a| = l. Now we formally define representative roots of a univariate polynomial in Z/〈pk
〉.
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Definition 4 (representative roots). A set

a = a0+ pa1+ · · ·+ pl−1al−1+ pl
∗

is called a representative root of f (x) modulo pk if each α ∈ a is a root of f (x) mod pk, but, not all
β ∈ b := a0+ pa1+ · · ·+ pl−2al−2+ pl−1

∗ are roots of f (x) mod pk.

It was first observed in [4] that there are at most deg( f )-many representative roots and they gave an
efficient randomized algorithm to compute all these representative roots (for a simple exposition of the
algorithm, see [25, Section B]).

We need a deterministic algorithm for our purpose (in Section 3.4) to count, if not find, the repre-
sentative roots (as well as count the roots in each representative root). So we use the deterministic
polynomial time algorithm of [24] which returns all these representative roots implicitly in the form of
a data-structure they call maximal split ideals (MSI). The two explicit parameters, length and degree of
an MSI immediately gives the count on the number of representative roots (as well as roots) encoded
by them, which suffices for our purpose. A similar idea to use triangular ideals for encoding roots first
appeared in [12], to count roots deterministically, but for “small” k.

We now define MSI from [24, Section 2].

Definition 5 ([24, Section 2], maximal split ideals). A triangular ideal

I = 〈h0(x0), . . . , hl(x0, . . . , xl)〉,

where 0 ≤ l ≤ k − 1 and each hi (x0, . . . , xi ) ∈ Fp[x0, . . . , xi ], is called a maximal split ideal of f (x)
mod pk if

(1) the number of common zeros of h0, . . . , hl in Fp
l+1 is

∏l
i=0 degxi

(hi ), where degxi
denotes the

individual degree wrt xi , and

(2) for every common zero (a0, . . . , al) ∈ Fp
l+1 of h0, . . . , hl , f (x) vanishes identically modulo pk

with the substitution x→ a0+ pa1+· · ·+ plal+ pl+1x but not with x→ a0+· · ·+ pl−1al−1+ pl x .

For an MSI I given by its generators h0(x0), . . . , hl(x0, . . . , xl) we define its length to be l + 1 and
degree, denoted as deg(I ), to be the number of common zeros of its generators, which is

∏l
i=0 degxi

(hi )

by definition.
Essentially, I is encoding some representative roots of f mod pk in the form of common roots of its

generators. Indeed, condition (2) of the definition is similar to that of representative roots. If (a0, . . . , al)

is a common zero of the generators then by condition (2), a0+ pa1+ · · ·+ plal + pl+1
∗ follows all the

conditions to be a representative root. Then, it is apparent that:

Lemma 6 ([24, Lemmas 6 and 8]). The length of an MSI I is the length of each representative root
encoded by it and the degree of I is the count on these representative roots. Thus, we get the count on
the roots of f mod pk encoded by I as

∏l
i=0 degxi

(hi )× pk−l−1.

We state the result of [24] which returns all the representative roots, in MSI form, in deterministic
polynomial time.
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Theorem 7 (compute Nk( f ) [24]). In deterministic poly(| f |, k log p)-time one gets the maximal split
ideals which collectively contain exactly the representative roots of a univariate polynomial f (x) ∈ Z[x]
modulo prime power pk.

Using Lemma 6 we can count them, and all roots of f mod pk, in deterministic polynomial time.

2.2. Some definitions and notation related to f . We are given an integral univariate polynomial f (x)
in Z[x] of degree d with coefficients of magnitude at most C ∈ N, and a prime p. Then, f can also
be thought of as an element of Zp[x] (as Z ⊆ Zp), where Zp is the ring of integers of p-adic rational
numbers Qp. In such a field Qp (called a nonarchimedean local field) there exists a valuation function
vp :Qp→ Z∪ {∞}. Formally, the valuation vp(a) of a ∈ Zp (Zp is a UFD) is defined to be the highest
power of p dividing a, when a 6= 0, and ∞ when a = 0. This definition extends to the rationals Qp

naturally as vp(a/b) := vp(a)− vp(b), where b 6= 0 and a, b ∈ Zp (see [41]).
Now we define the factors of f in Zp[x] as follows (note: we do not require f to be monic).

Definition 8. Let the p-adic integral factorization of f into coprime irreducible factors be

f (x) =:
∏
i∈[n]

(x −αi )
ei ·

m∏
j=1

g j (x)t j ,

where each αi is a Zp-root of f with multiplicity ei . Each g j (x) ∈ Zp[x] has multiplicity t j ; it is
irreducible over Zp and has no Zp-root.

For example, over Z2, f = 2x2
+ 3x + 1= (x + 1) · (2x + 1) has n = m = 1.

Definition 9. For each i ∈ [n], we define fi (x) ∈ Zp[x], called the αi -free part of f , as fi (x) :=
f (x)/(x −αi )

ei. We denote the valuation vp( fi (αi )) as νi , for all i ∈ [n].

The radical of a univariate polynomial h(x) over a field F is defined to be the univariate polynomial,
denoted by rad(h), which is the product of coprime irreducible factors of h. This gives rise to the
following definition.

Definition 10. Define rad( f ) :=
(∏n

i=1(x−αi )
)
·
(∏m

j=1 g j (x)
)
. Analogously, the radical of fi , for each

i ∈ [n], is defined as rad( fi ) := rad( f )/(x −αi ).

The discriminant of a polynomial h(x) ∈ F[x] is defined as D(h) := h2m−1
m ·

∏
1≤i< j≤m(ri − r j )

2,
where F is a field, the ri ’s are the roots of h(x) over the algebraic closure F, the degree of h is m,
and hm is its leading coefficient.

The discriminant D(h) is an element of F. It is clear by the definition that all the roots of h are distinct
if and only if D(h) 6= 0; i.e., the discriminant of the radical is nonzero.

Definition 11. We denote by 1 the valuation with respect to p of the discriminant of the radical of f ,
i.e, 1 := vp(D(rad( f ))).

We see that 1 must be finite, since roots of rad( f ) are distinct. The following fact is easily established
by the definition of discriminant and the fact that α1, . . . , αn are also roots of rad( f ).
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Fact 12. For i 6= j ∈ [n], we have vp(αi −α j )≤1/2<∞.

For our algorithm, 1 will be crucial in informing us about the behavior of the roots of f mod pk.

Properties of discriminants.

(1) Over Zp, if u(x) |w(x) then D(u) | D(w) and vp(D(u))≤ vp(D(w)).

(2) The discriminant of a linear polynomial is defined to be 1.

(3) If w(x)= (x − a) · u(x) then by the definition of discriminant, it is clear that D(w)= D(u) · u(a)2.

(4) The discriminant D(h) of a degree-l univariate polynomial h(x) := hl x l
+ · · · + h1x + h0, over

Zp, is also a multivariate polynomial over Zp in the coefficients h0, . . . , hl (see [46, Chapter 1]).
Moreover, it is computable in time polynomial in the size of a given h (e.g., using the determinant
of a Sylvester matrix [69, Chapter 11, Section 2]).

3. Proof of main results

3.1. Interplay of Z p-roots and (Z/〈 pk〉)-roots. In this section we will establish a connection between
(Z/〈pk

〉)-roots and Zp-roots of the given f , when k is sufficiently large, i.e, k > d1 (see Section 2.2 for
the related notation).

Recall that α1, . . . , αn are the distinct Zp-roots of f (Definition 8). The following claim establishes a
notion of “closeness” of any α ∈ Zp to an α j . Later we will apply this to a representative root α.

Claim 13 (close to a root). For some j ∈ [n], α ∈ Zp, if vp(α − α j ) > 1/2, then vp(α − αi ) =

vp(α j −αi )≤1/2, for all i 6= j, i ∈ [n].

Proof. The valuation vp(α−αi ) is equal to vp(α−α j+α j−αi ). Since vp(α−α j )>1/2 and vp(α j−αi )≤

1/2 (by Fact 12), we deduce vp(α−αi )= min{vp(α−α j ), vp(α j −αi )} = vp(α j −αi )≤1/2. �

The following lemma says that an irreducible cannot take values with ever-increasing valuation.

Lemma 14 (valuation of an irreducible). Let h(x) ∈ Zp[x] be a polynomial with no Zp-root, and dis-
criminant D(h) 6= 0. Then, for any α ∈ Zp, vp(h(α))≤ vp(D(h)).

Proof. We give the proof by contradiction, i.e, we show that if vp(h(α)) > vp(D(h)), then h(x) has a
root in Zp.

Define vp(D(h)) =: d(h). Let α ∈ Zp such that h(α) ≡ 0 mod pδ, for δ > d(h). Then we write
h(x)= (x −α) · h1(x) + pδ · h2(x). The two things to note here are:

(1). D(h) ≡ D(h mod pδ) mod pδ by discriminants’ property (4) in Section 2.2. Also, D(h) 6= 0 is
given.

(2). Let h′(x) be the first derivative of h(x) and let i := vp(h′(α)). Then, we claim that δ > d(h)≥ 2i .

Consider h′(x) = h1(x) + (x − α)h′1(x) + pδh′2(x). So, h′(α) ≡ h1(α) mod pδ. By property (3)
(Section 2.2) of discriminants, D(h) ≡ D((x − α) · h1(x)) ≡ D(h1) · h1(α)

2
≡ D(h1) · h′(α)2 mod pδ.

Then, since D(h) 6= 0 mod pδ, we deduce 2i ≤ d(h) < δ.
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Now, we show that the root α of h mod pδ lifts to roots of h mod pδ+ j, for all j ∈ Z+. This is due to
Hensel’s lemma (see [69, Chapter 15]); for completeness we give the proof.

By Taylor expansion, we have h(α+ pδ−i x)= h(α)+ h′(α) · pδ−i x + h′′(α) · p2(δ−i)x2/2! + · · · .
Note that there exists a unique solution x0≡ (−h(α)/h′(α)pδ−i ) mod p: h(α+ pδ−i x0)≡ 0 mod pδ+1.

This follows from the Taylor expansion and since 2(δ− i) > δ.
So, α− pδ−i (h(α)/h′(α)pδ−i ) mod pδ+1 is a lift, of α mod pδ. By similar reasoning, it can be lifted

further to arbitrarily high powers pδ+ j. This proves h(x) has a Zp-root, which is a contradiction. �

The following lemma is perhaps the most important one. It associates every root α of f (x) mod pk

to a unique Zp-root of f . Recall the notation from Section 2.2.

Lemma 15 (unique association). Let k > d(1+ 1) and α ∈ Zp be a root of f (x) mod pk. There exists a
unique αi such that vp(α−αi ) > 1+ 1 and thus, vp(α−αi ) > vp(αi −α j ), for all j 6= i, j ∈ [n].

Proof. Let us first prove that there exists some i ∈ [n], given α, such that vp(α−αi ) > 1+ 1. For the
sake of contradiction, assume that vp(α−αi )≤1+ 1 for all i ∈ [n]. Then, by Definition 8, vp( f (α))=∑n

i=1 ei · vp(α−αi )+
∑m

j=1 t j · vp(g j (α))≤ (1+ 1) ·
∑n

i=1 ei +
∑m

j=1 t j · vp(g j (α)).
Since g j has no Zp-root, for all j ∈ [m], by Lemma 14, vp(g j (α)) ≤ vp(D(g j )). By the properties

given in Section 2.2 we get vp(D(g j ))≤ vp(D(rad( f )))=1, proving that vp(g j (α))≤1.
Going back, vp( f (α))≤ (1+1)·

(∑n
i=1 ei+

∑m
j=1 t j

)
≤ d(1+1)<k. It implies that f (α) 6≡0 mod pk ,

which contradicts the hypothesis that α is a root of f mod pk.
Thus, there exists i ∈ [n] such that vp(α−αi ) >1+1. The uniqueness of i follows from Claim 13. �

Having seen that every root α of f mod pk is associated (or close) to a unique Zp-root αi , the following
lemma tells us that the valuation of the αi -free part of f (resp. factors of f with no Zp-root) is the same
on any α close to αi . This unique valuation is important in getting an expression for Nk( f ).

Lemma 16 (unique valuation). Fix i ∈ [n]. Fix α ∈ Zp such that vp(α−αi ) > 1. Recall g j (x), fi from
Section 2.2. Then,

(1) vp(g j (α))= vp(g j (αi )), for all j ∈ [m],

(2) vp( fi (α))= vp( fi (αi )).

In other words, the valuation with respect to p of fi = f (x)/(x −αi )
ei, on x 7→ α, is fixed uniquely

to νi := vp( fi (αi )), for any “close” approximation α ∈ Zp of αi .

Proof. Since g j | rad( fi ) and rad( fi ) | rad( f ), we have by the properties of discriminants (Section 2.2)
that vp(g j (αi ))≤ vp(rad( fi )(αi ))≤1, for all j ∈ [m].

Since vp(α − αi ) > 1, we deduce vp(g j (α)− g j (αi )) > 1. Furthermore, vp(g j (αi )) ≤ 1 implies
vp(g j (α))= vp(g j (αi )). This proves the first part.

By Claim 13, vp(α− αu) = vp(αi − αu), for all u 6= i, u ∈ [n]. Also, by the first part, vp(gw(α)) =
vp(gw(αi )), for allw∈[m]. Consequently, vp( fi (α))=

∑n
u=1,u 6=i eu ·vp(αi−αu)+

∑m
w=1 tw·vp(gw(αi ))=

vp( fi (αi )). This proves the second part. �
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3.2. Representative roots versus neighborhoods. We now connect the Zp-roots of f to the represen-
tative roots (defined in Section 2.1) of f mod pk. Later we characterize each representative root as a
“neighborhood” in Theorem 19.

Lemma 17 (perturb a root). Let k > d(1+1) and let α be a root of f (x) mod pk with l := vp(αi −α) >

1+ 1, for some i ∈ [n] (as in Lemma 15). Then, every β ∈ α+ pl
∗ is also a root of f (x) mod pk.

Proof. Since f (α) ≡ 0 mod pk, we have vp( f (α)) ≥ k. Using Lemma 16 we have vp( fi (α)) =

vp( fi (αi ))= νi . Thus, vp( f (α))= vp(αi −α) · ei + vp( fi (α))= vp(αi −α) · ei + νi ≥ k.
Similarly, vp( f (β)) = vp(αi − β) · ei + vp( fi (β)) = vp(αi − β) · ei + νi ≥ vp(αi − α) · ei + νi . The

last inequality follows from vp(αi −β)≥ l = vp(αi −α).
From the above two paragraphs we get vp( f (β))≥ k. Hence, f (β)≡ 0 mod pk. �

Now we define a notion of “neighborhood” of a Zp-root of f .

Definition 18 (neighborhood). For i ∈ [n], k > d(1+1), we define the neighborhood Sk,i of αi mod pk

to be the set of all those roots of f mod pk which are close to the Zp-root αi of f . Formally,

Sk,i := {α ∈ Z/〈pk
〉 | vp(α−αi ) > 1+ 1, f (α)≡ 0 mod pk

}.

The notion of representative root was first given in [25]. Below we discover its new properties which
will lead us to an understanding of length of a representative root, which in turn will give us the size of
a neighborhood contributing to Nk( f ).

Theorem 19 (representative root is a neighborhood). Let k > d(1+ 1) and let

a := a0+ pa1+ p2a2+ · · ·+ pl−1al−1+ pl
∗

be a representative root of f (x) mod pk. Define the Zp-root reduction αi := αi mod pk, for all i ∈ [n].
Fix an i ∈ [n], then:

(1) The length of a is large. Formally, l >1+ 1.

(2) If αi ∈ a, then α j 6∈ a for all j 6= i, j ∈ [n]. (This means, using Lemma 15, a has a uniquely
associated Zp-root.)

(3) If a contains αi then it also contains the respective neighborhood. In fact, if αi ∈ a, then Sk,i = a.

Proof. (1) Consider α := a0+ pa1+ · · ·+ pl−1al−1. By Lemma 15, there exists a unique s ∈ [n] such
that vp(α−αs) > 1+ 1. Suppose l ≤1+ 1. Then, vp(α+ p1+1

−αs)=1+ 1. As, α′ := (α+ p1+1)

is also in a, it again has to be close to a unique αt , with s 6= t ∈ [n] such that vp(α
′
− αt) > 1+ 1. In

other words, αs + p1+1
≡ α+ p1+1

≡ αt mod p1+2. Thus, vp(αs −αt)=1+ 1>1/2, contradicting
Fact 12. This proves l >1+ 1.

(2) Consider distinct αi , α j ∈ a. Then, by the definition of a, we have vp(αi −α j )≥ l >1+ 1>1/2,
contradicting Fact 12. Thus, there is a unique i .
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(3) Suppose there exists a neighborhood element β 6∈ a, satisfying the conditions vp(αi − β) > 1+ 1
and f (β) ≡ 0 mod pk. Let j be the index of the first coordinate where β and a differ; so, j < l since
β 6∈ a. Clearly, j >1+1; otherwise, since αi ∈ a and β 6∈ a, we deduce vp(αi −β)= j ≤1+1, which
is a contradiction.

By vp(αi − β) = j > 1 + 1 and Lemma 17, we get that every element in β + p j
∗ is a root of

f (x) mod pk, and consequently each element in a0+ pa1+ p2a2+ · · · + p j−1a j−1+ p j
∗ is a root of

f (x) mod pk , which contradicts that a is a representative root (because j < l; see Definition 4). Thus,
β ∈ a, implying Sk,i ⊆ a.

Conversely, consider α ∈ a. Then, as before, vp(αi−α)≥ l >1+1, implying α ∈ Sk,i . So, Sk,i ⊇ a. �

Next, we get the expression for the length of a representative root.

Theorem 20. For k > d(1+ 1), the representative roots of f (x) mod pk are in a one-to-one correspon-
dence with Zp-roots of f . Moreover, the length of the representative root a, corresponding to αi , is
li,k := d(k− νi )/eie.

Proof. By Proposition 3, every root of f mod pk is in exactly one of the representative roots. So
each reduced Zp-root αi := αi mod pk is in a unique representative root. Thus, by parts (2) and (3) of
Theorem 19, we get the one-to-one correspondence as claimed.

Consider a p-adic integer α with vp(α−αi )=: lα >1. We have the following equivalences:

α ∈ a⇐⇒ vp( f (α))≥ k⇐⇒ vp((α−αi )
ei · fi (α))≥ k⇐⇒ ei lα + νi ≥ k (by Lemma 16)

⇐⇒ lα ≥ d(k− νi )/eie = li,k .

Write the representative root corresponding to αi as a =: a0 + pa1 + p2a2 + · · · + pl−1al−1 + pl
∗.

Clearly, l = min{lα | α ∈ a} ≥ li,k . Note that if l > li,k then by the equivalences we could reduce the
length l of the representative root a, which is a contradiction. Thus, l = li,k . �

3.3. Formula for Nk( f ) — Proof of Corollary 2. For large enough k, the previous section gives us an
easy way to count the roots. In fact, we have the following simple formula for Nk( f ).

Theorem 21 (roots mod pk). For k > d(1+ 1), Nk( f ) =
∑

i∈[n] pk−d(k−νi )/ei e, where clearly νi , ei

and n (as in Section 2.2) are independent of k.

Proof. Fix i ∈ [n] and k > d(1+ 1). By Theorem 20 we get that in the unique representative root a,
corresponding to αi mod pk, the (k − d(k − νi )/eie)-many higher-precision coordinates could be set
arbitrarily from [0, . . . , p− 1] (while the rest, the lower-precision ones, are fixed). That gives us the
count via contribution for each i ∈ [n]. Moreover, the sum over neighborhoods, for each i ∈ [n], gives
us exactly Nk( f ).

Also, note that if n = 0 then the count Nk( f ) is equal to 0. �

Proof of Corollary 2. Theorem 21 gives a closed form expression for Nk( f ), when

k ≥ k0 := d(1+ 1)+ 1≤ d(2d − 1)(logp C + logp d)+ 1.



208 ASHISH DWIVEDI AND NITIN SAXENA

For the other part, note the discriminant D( f ) is not equal to 0 if and only if f is squarefree. In the
squarefree case ei = 1, for all i ∈ [n]. By Theorem 21, Nk( f )=

∑
i∈[n] pνi , which is independent of k. �

3.4. Computing Poincaré series — Proof of Theorem 1. Building upon the ideas of the previous sec-
tions, we will show how to deterministically compute Poincaré series P(t)=

∑
∞

k=0 Nk( f )(p−1t)k asso-
ciated to the input f (x) efficiently, thereby proving Theorem 1. Before that, we need some notation:

Set k0 := d(1+ 1)+ 1 so we know by Theorem 21 that for k ≥ k0, Nk( f )=
∑n

i=1 Nk,i ( f ), where
Nk,i ( f ) := pk−d(k−νi )/ei e. For each i ∈ [n], define ki to be the least integer such that ki ≥ k0 and (ki−νi )/ei

is an integer. Then, Poincaré series P(t) can be partitioned into finite and infinite sums as

P(t)= P0(t)+
n∑

i=1

Pi (t),

where

Pi (t) :=
∞∑

k=ki

Nk,i ( f ) · (p−1t)k and P0(t) :=
( k0−1∑

k=0

Nk( f ) · (p−1t)k
)
+

n∑
i=1

ki−1∑
k=k0

Nk,i ( f ) · (p−1t)k .

We now compute the multiplicity ei by viewing it as the step that increments the length of the repre-
sentative root associated to αi as k keeps growing above k0.

Lemma 22 (compute ei ). We can compute the number of Zp-roots n of f as well as ki , νi and ei , for
each i ∈ [n], in deterministic poly(d, log C + log p)-time.

Proof. By Theorem 7, we get all representative roots of f mod pk implicitly in the form of maximal split
ideals (for brevity, we call these split ideals). By Lemma 6, the length of a split ideal is also the length of
all representative roots represented by it and the degree is the number of representative roots represented
by it. Since, by Theorem 20, n is also the number of representative roots of f mod pk for k ≥ k0, we
run the algorithm of Theorem 7 for k = k0 and sum up the degree of all split ideals obtained, to get n.

Suppose the split ideal I we find contains a representative root a of f mod pk corresponding to αi ,
with ki as defined before. How do we compute ki ? By Theorem 20, the length of a, when k = ki , is
li,ki = (ki − νi )/ei . Now, for all k = ki + 1, ki + 2, . . . , ki + ei , the length li,k remains equal to li,ki + 1,
while for the next k = ki + ei + 1, li,k increments by one.

So we run the algorithm of Theorem 7 for several k ≥ k0. When we find the length incrementing by
one, namely, at the two values k = ki + 1 and k = k ′i := ki + 1+ ei , then we have found ei (and ki ). From
the equation, ki − νi = ei · li,ki , we also find νi .

Suppose the split ideal I we find contains two representative roots a and b mod pk, corresponding to
Zp-roots αi and α j respectively, such that ei 6= e j (without loss of generality, say, ei < e j ). In this case,
even if a and b have the same length, when k = ki , they will evolve to different length representative roots
when we go to a “higher-precision” arithmetic mod pki+1+ei (by the formula in Theorem 20). So a, b
must lie in different length split ideals, say, Ia and Ib respectively.

Now, for another representative root c in Ia , say corresponding to αs , we have ei = es and hence
νi = νs . By computing ei and νi as before, now using the length of I and Ia , we compute es and νs
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(and ks) for every c in Ia . Since, by Lemma 6, the degree of Ia is the number of such representative roots
in Ia , we can compute n; moreover, we get ki , νi , ei for all i ∈ [n].

Clearly, we need to run the algorithm of Theorem 7 at most 2 maxi∈[n]{ei } = O(d) times, to study the
evolution of split ideals (implicitly, that of the underlying representative roots). Also 1 is the logarithm
(to base p) of the determinant of a Sylvester matrix which gives 1= O(d · (logp C + logp d)). So, the
algorithm runs in polynomial time as claimed. �

Now we prove that the infinite sums Pi (t) are formally equal to rational functions of t = p−s.

Lemma 23 (infinite sums are rational). For each i ∈ [n], the series Pi (t) is a rational function of t as

Pi (t)=
tki · (p− t (p− 1)− tei )

p(ki−νi )/ei · (1− t) · (p− tei )
.

Proof. Recall that Pi (t)=
∑
∞

k=ki
Nk,i ( f ) · (p−1t)k. For simplicity write T := p−1t and define an integer

δi := ki − (ki − νi )/ei . Now Pi can be rewritten using residues mod ei as

Pi (t)=
ki+ei−1∑

l=ki

∞∑
k=0

Nl+kei ,i ( f ) · T l+kei .

For simplicity take l = ki and consider the sum,
∑
∞

k=0 Nki+kei ,i ( f ) · T ki+kei. We find that Nki ,i ( f )= pδi ,
Nki+ei ,i ( f ) = pδi+ei−1, Nki+2ei ,i ( f ) = pδi+2(ei−1), and so on. Hence,

∑
∞

k=0 Nki+kei ,i ( f ) · T ki+kei =

pδi T ki · [1+ pei−1T ei + (pei−1T ei )2+ · · · ] = pδi · T ki /(1− pei−1T ei ). So

Pi (t)=
pδi T ki

1− pei−1T ei
+

pδi T ki+1

1− pei−1T ei
+

pδi+1T ki+2

1− pei−1T ei
+ · · ·+

pδi+ei−2T ki+ei−1

1− pei−1T ei

=
pδi T ki

1− pei−1T ei
+

pδi T ki+1

1− pei−1T ei
· (1+ pT + (pT )2+ · · ·+ (pT )ei−2)

=
pδi T ki

1− pei−1T ei
·

(
1+ T ·

1− (pT )ei−1

1− pT

)
.

Putting T = t/p and δi = ki − (ki − νi )/ei we get

Pi (t)=
tki (p− t (p− 1)− tei )

p(ki−νi )/ei (1− t)(p− tei )
. �

Now we are in a position to prove our main theorem.

Proof of Theorem 1. Recall P(t)= P0(t)+
∑n

i=1 Pi (t). We first compute P0(t), which is the sum of two
polynomials in t , namely,

Q1(t) :=
k0−1∑
j=0

N j ( f )(p−1t) j and Q2(t)=
n∑

i=1

ki−1∑
l=k0

Nl,i ( f )(p−1t)l,

both of degree O(d1). By a standard determinant or Sylvester matrix calculation one shows d1 ≤
O(d2

· (logp C + logp d)).
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We can compute the polynomial Q1(t) in deterministic poly(d, log C+ log p)-time by calling the root-
counting algorithm of [24] (Theorem 7) k0− 1 times, getting each N j ( f ), for j = 1, . . . , k0− 1 (note:
N0( f ) := 1).

Polynomial Q2(t) is a sum of n ≤ d polynomials, each with ki − k0 ≤ d many simple terms. Us-
ing Lemma 22, we can compute each νi , ei , hence, Nl,i ( f ). So, computation of Q2 again takes time
poly(d, log C + log p).

Lemma 23 gives us the rational form expression for Pi (t), for each i ∈ [n]. So, using Lemma 22 we
can compute the Poincaré series

P(t)= P0(t)+
n∑

i=1

tki (p− t (p− 1)− tei )

p(ki−νi )/ei (1− t)(p− tei )

in deterministic poly(d, log C + log p)-time.
By inspecting the above expression, the degree of the denominator B(t) is 1+

∑n
i=1 ei = O(d). The

degree of the numerator A(t) is ≤ k0+ 2d ≤ O(d2
· (logp C + logp d)). �

4. Conclusion and open questions

We presented the first complete solution to the problem of computing Igusa’s local zeta function for any
given integral univariate polynomial and a prime p. Indeed, our methods work for given f ∈ Zp[x] (with
f having computable representation) as our proof for integral f goes via considering its factorization
over Zp (Section 2.2).

We also found an explicit closed-form expression for Nk( f ) and efficiently computed the explicit
parameters involved therein, which could be used to compute Greenberg’s constants associated with
a univariate f and a prime p. Greenberg’s constants appear in a classical theorem of Greenberg [29,
Theorem 1] which is a generalization of Hensel’s lemma to several n-variate polynomials. We hope that
our methods for the one variable case could be generalized to compute Greenberg’s constants for the n
variable case to give an effective version of Greenberg’s theorem.

We also hope that our methods extend computing Igusa’s local zeta function from characteristic
zero (Zp) to positive characteristic (Fp[[T ]]) at least if some standard restrictions are imposed on the
characteristic, for example, p is “large enough”. This is supported by the fact that the root counting
algorithm of [24] also extends to F[[T ]] for a field F.

The following important open questions need to be addressed:

(1) A natural question to study is whether we could generalize our method to compute Igusa’s local
zeta function for n-variate integral polynomials (say, n = 2?). Note that for growing n this problem
is at least #P-hard [26].

(2) A related problem is of counting roots of n-variate polynomials mod prime power pk. We know an
efficient quantum algorithm mod p for n = 2 due to Kedlaya [37]. Kedlaya further asks, if we can
reduce the problem of counting points mod pk to counting points mod p for fixed k and n = 2. This
question has affirmative answer known only for variable-separated curves due to Robelle et al. [55].
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(3) Following up the problem of point counting on curves for constant k, we ask another important
related open question — how to find a single point on curves mod pk efficiently. It has an application
in factoring a univariate f (x) mod pk [25]. Can we efficiently reduce finding a single point mod
pk to finding a single point mod p, even for fixed k and n = 2?
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Computing endomorphism rings of supersingular elliptic curves
and connections to path-finding in isogeny graphs

Kirsten Eisenträger, Sean Hallgren, Chris Leonardi, Travis Morrison, and Jennifer Park

Computing endomorphism rings of supersingular elliptic curves is an important problem in computa-
tional number theory, and it is also closely connected to the security of some of the recently proposed
isogeny-based cryptosystems. We give a new algorithm for computing the endomorphism ring of a super-
singular elliptic curve E defined over Fp2 that runs, under certain heuristics, in time O((log p)2 p1/2). The
algorithm works by first finding two cycles of a certain form in the supersingular `-isogeny graph G(p, `),
generating an order 3⊆ End(E). Then all maximal orders containing 3 are computed, extending work
of Voight (2013). The final step is to determine which of these maximal orders is the endomorphism
ring. As part of the cycle-finding algorithm, we give a lower bound on the set of all j-invariants j that
are adjacent to j p in G(p, `), answering a question of Arpin et al. (2019).

We also give a polynomial-time reduction from computing End(E) to path-finding in the `-isogeny
graph which is simpler in several ways than previous ones. We show that this reduction leads to another
algorithm for computing endomorphism rings which runs in time Õ(p1/2). This allows us to break the
second preimage resistance of a hash function in the family constructed by Charles, Goren and Lauter.

1. Introduction

Computing the endomorphism ring of an elliptic curve defined over a finite field is a fundamental problem
in computational arithmetic geometry. For ordinary elliptic curves the fastest algorithm is due to Bisson
and Sutherland [5] who gave a subexponential time algorithm to solve this problem. No subexponential
time algorithm is known for general supersingular elliptic curves.

Computing endomorphism rings of supersingular elliptic curves has emerged as a central problem
for isogeny-based cryptography. The first cryptographic application of isogenies between supersingular
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elliptic curves was the hash function in [9]. An efficient algorithm for computing the endomorphism ring
of a supersingular elliptic curve would, under certain assumptions, completely break this hash function
and also SIKE [18; 2]. It would also have a major impact on the security of CSIDH [7].

Computing the endomorphism ring of a supersingular elliptic curve E was first studied by Kohel [20,
Theorem 75], who gave an approach for generating a subring of finite index of the endomorphism ring
End(E). The algorithm was based on finding cycles in the `-isogeny graph of supersingular elliptic
curves in characteristic p, and the running time of the probabilistic algorithm was O(p1+ε). In this
paper we complete Kohel’s approach by showing how to compute End(E) from a suborder when the
order is Bass. In a different direction, in [14] it is argued that heuristically one expects O(log p)
calls to a cycle-finding algorithm until the cycles generate End(E). An algorithm for computing pow-
ersmooth endomorphisms with complexity Õ(p1/2) and polynomial storage is given by Delfs and Gal-
braith [11].

One can also compute End(E) using an isogeny φ : Ẽ→ E , where Ẽ is an elliptic curve with known
endomorphism ring. McMurdy was the first to compute End(E) via such an approach [24], but did not
determine its complexity. In [14] a polynomial-time reduction from computing End(E) to finding an
isogeny φ of powersmooth degree was given assuming some heuristics, while [10] used an isogeny φ of
`-power degree.

In this paper we give a new algorithm for computing the endomorphism ring of a supersingular elliptic
curve E : first we compute two cycles through E in the supersingular `-isogeny graph that generate an
order 3 in End(E). We show that this order will be a Bass order with constant probability, assuming
that the discriminants of the two cycles are random in a certain way. Then we compute all maximal
orders that contain the Bass order 3 by first solving the problem locally, showing how to efficiently
compute all maximal superorders of 3 when 3 is local and Bass. This extends work of Voight [29,
Theorem 7.14]. The main property of local Bass orders used here is that there are at most e+ 1 maximal
orders containing a local Bass order 3⊗Zq , where e = vq(discrd(3)) is the valuation of the reduced
discriminant of 3 (see [6]). To solve the global case, we use the local data and a local-global principle for
quaternionic orders. To bound the running time in this step, we prove that the number of maximal global
orders containing 3 is O(pε) for any ε > 0 when the size of 3 is polynomial in log p and discrd(3)
is square-free. We conjecture that this bound also holds when discrd(3) is not square-free. Finally, as
we compute each global maximal order, we check if it is isomorphic to End(E). As part of the analysis
of the cycle-finding algorithm, we give a lower bound on the size of the set of all j-invariants j that are
adjacent to j p in G(p, `), answering the lower-bound part of Question 3 in [1].

Our overall algorithm is still exponential: the two cycles are found in time O((log p)2 p1/2), and the
overall algorithm has the same running time, assuming several heuristics. This saves at least a factor of
log p versus the previous approach in [14] that finds cycles in G(p, `) until they generate all of End(E).
This is because with that approach one expects to compute O(log p) cycles, while our algorithm for the
endomorphism ring computes just one pair of cycles and succeeds with constant probability, assuming
that the above heuristic about the discriminants of cycles holds. Also, our cycle-finding algorithm requires
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only polynomial storage, while a generic collision-finding algorithm that relies on the birthday paradox
has the same running time as our algorithm but requires exponential storage.

In the last section of the paper we give a new polynomial-time reduction from computing End(E) to
path-finding in the `-isogeny graph which is simpler in several ways than previous ones. For this we
need to assume GRH and the heuristics of [14]. We use this to break the second preimage resistance of
a hash function in the family constructed in [9].

The paper is organized as follows. Section 2 gives some necessary background. In Section 3 we give an
algorithm for computing cycles in the `-isogeny graph G(p, `) so that the corresponding endomorphisms
generate an order in the endomorphism ring of the associated elliptic curve. In Section 4 we show how to
compute all maximal local orders containing a given Zq -order 3. In Section 5 we construct global orders
from these local orders and compute End(E). In Section 6 we give a reduction from the endomorphism
ring problem to the problem of computing `-power isogenies in G(p, `) that is then used to attack the
second preimage resistance of the hash function in [9].

2. Background on elliptic curves and quaternion algebras

For the definition of an elliptic curve, its j-invariant, isogenies of elliptic curves, their degrees, and the
dual isogeny see [26].

2A. Endomorphism rings, supersingular curves, `-power isogenies. Let E be an elliptic curve defined
over a finite field Fq . An isogeny of E to itself is called an endomorphism of E . The set of endomorphisms
of E defined over Fq together with the zero map is called the endomorphism ring of E , and is denoted
by End(E).

If the endomorphism ring of E is noncommutative, E is called a supersingular elliptic curve. Other-
wise we call E ordinary. Every supersingular elliptic curve over a field of characteristic p has a model
that is defined over Fp2 .

Let E, E ′ be two supersingular elliptic curves defined over Fp2 . For each prime ` 6= p, E and E ′ are
connected by a chain of isogenies of degree `. By [20, Theorem 79], E and E ′ can be connected by m
isogenies of degree `, where m = O(log p). For ` a prime different from p, the supersingular `-isogeny
graph in characteristic p is the multigraph G(p, `) whose vertex set is

V = V (G(p, `))= { j ∈ Fp2 : j = j (E) for E supersingular},

and the number of directed edges from j to j ′ is equal to the multiplicity of j ′ as a root of 8`( j, Y ).
Here, given a prime `, 8`(X, Y ) ∈ Z[X, Y ] is the modular polynomial. This polynomial has the property
that 8`( j, j ′)= 0 for j, j ′ ∈ Fq and q = pr if and only if there exist elliptic curves E( j), E( j ′) defined
over Fq with j-invariants j, j ′ such that there is a separable `-isogeny from E( j) to E( j ′).

2B. Quaternion algebras, orders and sizes of orders. For a, b ∈Q×, let H(a, b) denote the quaternion
algebra over Q with basis 1, i, j, i j such that i2

= a, j2
= b and i j = − j i . That is, H(a, b) =

Q+Qi +Q j +Qi j. Any quaternion algebra over Q can be written in this form. There is a canonical
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involution on H(a, b) which sends an element α = a1+ a2i + a3 j + a4i j to α := a1− a2i − a3 j − a4i j.
Define the reduced trace of an element α as above to be Trd(α)= α+α = 2a1, and the reduced norm to
be Nrd(α)= αα = a2

1 − aa2
2 − ba2

3 + aba2
4 .

A subset I ⊆ H(a, b) is a lattice if I is finitely generated as a Z-module and I ⊗Q ' H(a, b). If
I ⊆ H(a, b) is a lattice, the reduced norm of I , denoted Nrd(I ), is the positive generator of the fractional
Z-ideal generated by {Nrd(α) : α ∈ I }. An order O of H(a, b) is a subring of H(a, b) which is also a
lattice, and if O is not properly contained in any other order, we call it a maximal order. We call an order
O ⊆ H(a, b) q-maximal if O⊗Zq is a maximal order in H(a, b)⊗Zq .

We define OR(I ) := {x ∈ H(a, b) : I x ⊆ I } to be the right order of the lattice I , and we similarly
define its left order OL(I ). If O is a maximal order in H(a, b) and I ⊆ O is a left ideal of O, then
OR(I ) is also a maximal order. Here a left ideal of O is an additive subgroup of O that is closed under
scalar multiplication on the left. In our setting, a lattice or an order is always specified by a basis. The
size of a lattice or an order 3 specified by a basis B in a quaternion algebra B is the number of bits
needed to write down the coefficients of the basis B plus the size of B, which is specified by a basis and
a multiplication table. In the following we write size(3) for simplicity even though the size depends on
the basis chosen to represent 3. If {a1, a2, a3, a4} is a basis of 3, the Gram matrix of this basis is the
4× 4 matrix whose i j-th entry is Trd(ai a j ). We denote by Bp,∞ the unique quaternion algebra over Q

that is ramified exactly at p and ∞, and this algebra has a standard basis [25, Proposition 5.1]. The
endomorphism ring of a supersingular elliptic curve is isomorphic to a maximal order in Bp,∞.

2C. Bass, Eichler, and Gorenstein orders in quaternion algebras; discriminants and reduced discrim-
inants. Let B be a quaternion algebra over Q. We define the discriminant of B, denoted disc B, to be the
product of primes that ramify in B; then disc B is a squarefree positive integer. If O ⊂ B is an order, we
define the discriminant of O to be disc(O) := |det(Trd(αiα j ))i, j | ∈ Z> 0, where α1, . . . , α4 is a Z-basis
for O [28, §15.2].

The discriminant of an order is always a square, and the reduced discriminant discrd(O) is the positive
integer square root so that discrd(O)2 = disc(O) [28, §15.4]. The discriminant of an order measures how
far the order is from being a maximal order. The order O is maximal if and only if discrd(O)= disc B [28,
Theorem 23.2.9]. Associated to a quaternion algebra B over Q there is a discriminant form 1 : B→Q,
defined by 1(α)= Trd(α)2−4 Nrd(α), and we refer to 1(α) as the discriminant of α. Now let O⊂ B be
a Z-order. We say that O is an Eichler order if O ⊆ B is the intersection of two (not necessarily distinct)
maximal orders. The codifferent of an order is defined as codiff(O)= {α ∈ B : Trd(αO)⊆ Z}. Following
[28, Definition 24.2.1], we say that O is Gorenstein if the lattice codiff(O) is invertible as a lattice as in
[28, Definition 16.5.1]. An order O is Bass if every superorder O′ ⊇O is Gorenstein. An order is basic
if it contains a commutative, quadratic subalgebra R such that R is integrally closed in QR [28, §24.5].
Given an order 3, its radical idealizer 3\ is defined as 3\ = OR(rad3), where rad3 is the Jacobson
radical of the ring 3. When B is a quaternion algebra over Qp and O is a Zp-order in B, we similarly
define lattices, ideals, and orders in B.
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3. Computing an order in the endomorphism ring of a supersingular elliptic curve

3A. Computing cycles in G( p,`). Fix a supersingular elliptic curve E0 defined over Fp2 with j -invariant j0.
In this section we describe and analyze an algorithm for computing two cycles through j0 in G(p, `)
that generate an order in End(E0).

We will first show how to construct two distinct paths from j0 to j p
0 . Given two such paths P and P ′,

then first traversing through P and then traversing through P ′ in reverse gives a cycle through j0. This
uses the fact that if j is adjacent to j ′, then j p is adjacent to ( j ′)p.

Let P1 be a path of length k from j0 to jk in G(p, `). Denote the not necessarily distinct vertices on
the path by j0, j1, . . . , jk and assume that jk is adjacent to j p

k in G(p, `). Let

P p
1 = [ jk, j p

k , j p
k−1, . . . , j p

1 , j p
0 ].

The concatenation P := P1 P p
1 is a path from j0 to j p

0 . Such paths were also considered in [9, Section 7].
If j0= j p

0 , then P is already a cycle. Otherwise, we repeat this process to find another path P ′ := P2 P p
2

that passes through at least one vertex not in P. Concatenating P and P ′ (in reverse order) gives a cycle
starting and ending at j0; this corresponds to an endomorphism of E . We will need the notion of a
path/cycle with no backtracking and trimming a path/cycle to remove backtracking.

Definition 3.1. Suppose e j , e j ′ are edges in G(p, `) that correspond to `-isogenies

φ j : E( j)→ E( j ′) and φ j ′ : E( j ′)→ E( j)

between curves E( j) and E( j ′) with j -invariants j, j ′. We say that e j is dual to e j ′ if up to isomorphism
φ j ′ equals the dual isogeny φ̂ j of φ j . That is φ j ′ = αφ̂ j , where α ∈Aut(E( j)). We say that a path or cycle
with a specified start vertex j0, following edges (e1, . . . , ek) and ending at vertex jk has no backtracking
if ei+1 is not dual to ei for i = 1, . . . , k− 1.

In our definition, a cycle has a specified start vertex j0. According to our definition, if the first edge e1

and the last edge ek in such a cycle are dual to each other, it is not considered backtracking.

Definition 3.2. Given a path (e1, . . . , ek) from j0 to jk (with j0 6= jk) or a cycle with specified start
vertex j0 = jk , define trimming as the process of iteratively removing pairs of adjacent dual edges until
none are left.

One can show that given a path P from j0 to jk with j0 6= jk , or a cycle C with start vertex j0 = jk ,
the trimmed versions P̃ or C̃ may result in a smaller set of vertices. The vertices j0 and jk will still be
there in P̃, and the only way that j0 and jk may disappear from C̃ is if the whole cycle gets removed.

Definition 3.3. Given a path P in Gp,` from j0 to jk , we define P R to be the path P traversed in reverse
order, from jk to j0, using the dual isogenies.

Let
S p
:= { j ∈ Fp2 : j is supersingular and j is adjacent to j p in G(p, `)}.

We can now give the algorithm to find cycle pairs:
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Algorithm 3.4. Find cycle pairs for prime `.

Input: A prime p 6= ` and a supersingular j-invariant j0 ∈ Fp2 .

Output: Two cycles in G(p, `) through j0.

(1) Perform N =2(
√

p log p log log p) random walks of length k=2(log(p3/4(log log p)1/2)) starting
at j0 and select a walk that hits a vertex jk ∈ S p, i.e., such that jk is `-isogenous to j p

k ; let P1 denote
the path from j0 to jk .

(2) Let P p
1 be the path given by jk, j p

k , j p
k−1, . . . , j p

0 .

(3) Let P denote the path from j0 to j p
0 given as the concatenation of P1 and P p

1 . Remove any self-dual
self-loops and trim P1 P p

1 .

(4) If j0 ∈ Fp then P1 P p
1 is a cycle through j0.

(5) If j0 ∈ Fp2 − Fp repeat Steps (1)–(3) again to find another path P ′ = P2 P p
2 from j0 to j p

0 ; then
P(P ′)R is a cycle. Remove any self-dual self-loops and trim the cycle.

(6) Repeat Steps (1)–(5) a second time to get a second cycle.

Remark 3.5. Instead of searching for a vertex j in Step (1) such that j is adjacent to j p, one could also
search for a vertex j ∈ Fp, i.e., j with j = j p, or a vertex j whose distance from j p in the graph is
bounded by some fixed integer B. Our algorithm that searches for a vertex j such that j is adjacent to j p

was easier to analyze because there were fewer cases to consider.

To analyze the running time of Algorithm 3.4, we will use the mixing properties in the Ramanujan
graph G(p, `). This is captured in the following proposition, which is an extension of [19, Lemma 2.1]
in the case that G(p, `) is not regular or undirected (that is, when p 6≡ 1 (mod 12)).

Proposition 3.6. Let p > 3 be prime, and let ` 6= p also be a prime. Let S be any subset of the vertices
of G(p, `) not containing 0 or 1728. Then a random walk of length at least

t =
log
(

p
6|S|1/2

)
log
(
`+1
2
√
`

)
will land in S with probability at least 6|S|/p.

One can prove this since the eigenvalues for the adjacency matrix of G(p, `) satisfy the Ramanujan
bound. This allows us to prove the following theorem.

Theorem 3.7. Let `, p be primes such that ` < p/4. Under GRH, Algorithm 3.4 computes two cycles in
G(p, `) through j0 that generate an order in the endomorphism ring of E0 in time O(

√
p (log p)2), as

long as the two cycles do not pass through the vertices 0 or 1728, with probability 1− O(log p/p). The
algorithm requires poly(log p) space.
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Remark 3.8. In Section 5 we use this proposition to compute endomorphism rings, and from this point
there is no problem with excluding paths through 0 or 1728. This is because the endomorphism rings
of the curves with j-invariants 0 and 1728 are known, and a path of length log P, starting at j0 going
through 0 or 1728 lets us compute End(E0) via the reduction in Section 6.

Proof. We implement Step (1) by letting ji+1 be a random root of 8`( ji , Y ). To test if j ∈ S p we check
if 8`( j, j p) = 0. Assuming GRH, Theorem 3.9 implies that |S p

| = �(
√

p/ log log p) (treating ` as a
constant). Proposition 3.6 implies that the endpoint jk of a random path found in Step (1) is in S p with
probability �(1/(

√
p log log p)). The probability that none of the N + 1 paths land in S p is at most

(1−C/(
√

p log log p))N+1
≤ (1+C/(

√
p log log p))−(N+1)

≤ e−c log p/C
= O(1/p) if c = C , where C

is from Theorem 3.9 and c is the constant used in the choice of N.
Now we show that with high probability the two cycles C0,C1 returned by the algorithm are linearly

independent. We will use Corollary 4.12 of [3]. This corollary states that two cycles C0 and C1 with no
self-loops generate an order inside End(E0) if they

(1) do not go through 0 or 1728,

(2) have no backtracking, and

(3) have the property that one cycle contains a vertex that the other does not contain.

By construction, the cycles C0 and C1 returned by our algorithm do not have any self-loops or backtrack-
ing. To prove that condition (3) holds, we first claim that with high probability, the end vertex jk ∈ S p in
the path P1 from j0 to jk will not get removed when the path P1 P p

1 is trimmed in Step (3). Then we show
it’s also still there in the trimmed cycle after Step (5). Observe that if the path P1 were to be trimmed to
obtain a path P̃1 with no backtracking, then P̃1 is still a nontrivial path that starts at j0 and ends at jk as
long as j0 and jk are different which occurs with probability 1− O(1/p). After concatenating P̃1 with
its corresponding path P̃ p

1 , the path P̃1 P̃ p
1 has backtracking only if the last edge of P̃1 is dual to the first

edge in P̃ p
1 , i.e., if jk−1 = j p

k . If that is the case, remove the last edge from P̃1 and the first edge from P̃ p
1 ,

and call the remaining path P̂1. The new path P̂1 still has the property that it ends in a vertex j = j p
k that

is `-isogenous to its conjugate ( j p
k )

p
= jk . After concatenating P̂1 with its corresponding P̂ p

1 , this still
gives a path from j0 to j p

0 . Again, the concatenation of these two paths has no backtracking unless the
last edge in P̂1 is the first edge in P̂ p

1 , i.e., if the last edge in P̂1 is an edge from jk to j p
k . But this cannot

happen, because otherwise the trimmed path P̃1 would have backtracking because it would go from jk
to j p

k and back to jk , contradicting the definition of a trimmed cycle. (With negligible probability, the
vertex jk has multiple edges, so we exclude this case here.) Hence the trimmed version of P1 P p

1 is P̂1 P̂ p
1 ,

and this path still contains the vertex jk , since P̂ p
1 contains the vertex jk . Now we can finish the argument

by considering two cases:

Case 1: j0 ∈ Fp. The above argument about trimming shows that if the vertex jk appearing in the second
cycle C1 is different from all the vertices appearing in C0 and their conjugates, which happens with
probability 1− O(log p/p), then that vertex jk will appear in the trimmed cycle C̃1, but not in C̃0. (This
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is because in this case the trimmed path P1 P p
1 is already a cycle.) Hence by [3, Corollary 4.12], C̃0 and

C̃1 are linearly independent.

Case 2: j0 ∈ Fp2 − Fp. Here, with probability 1− O(log(p)/p), the endpoint jk of P2 is a vertex such
that neither it nor its conjugate appear as a vertex in P1. The concatenation of the two paths P = P1 P p

1

and P ′ = P2 P p
2 in reverse is a cycle C0 through j0. When we trim it, it is still a cycle through j0 in

which the endpoint jk from P2 appears because neither that jk nor its conjugate appeared in P1. Similarly,
Algorithm 3.4 finds a second cycle C1 with probability 1− log(p)/p that contains a random vertex that
was not on the first cycle C0. This means that by Corollary 4.12 of [3], C̃0 and C̃1 and hence C0 and C1

are linearly independent.
The running time is O(

√
p (log p)2) because we are considering O(

√
p) paths of length O(log p),

going from one vertex to the next takes time polynomial in ` log p, and we are assuming that ` is fixed.
The storage is polynomial in log p because we only have to store the paths P1, P2 that land in S p. �

3B. Determining the size of S p. We will now determine a lower bound for the size of the set

S p
:= { j ∈ Fp2 : j is supersingular and j is adjacent to j p in G(p, `)}.

In [9, Section 7], an upper bound is given for S p, but in order to estimate the chance that a path lands in
S p we need a lower bound for this set.

Let `, p be primes such that ` < p/4. Let OK be the ring of integers of K :=Q(
√
−`p). We use the

terminology and notation in [13; 4]. Let EmbOK (Fp2) be the collection of pairs (E, f ) such that E is an
elliptic curve over Fp2 and f :OK ↪→ End(E) is a normalized embedding, taken up to isomorphism. We
say f :OK ↪→ End(E) is normalized if each α ∈OK induces multiplication by its image in Fp2 on the
tangent space of E , and (E, f ) is isomorphic to (E ′, f ′) if there exists an isomorphism g : E→ E ′ such
that f (α)′ = g f (α)g−1 for all α ∈OK .

Theorem 3.9. Let ` be a prime and assume that ` < p/4. Let

S p
= { j ∈ Fp2 : j is supersingular and 8`( j, j p)= 0}.

Under GRH there is a constant C > 0 (depending on `) such that |S p
|> C

√
p/log log(p).

Proof. First, if E is a supersingular elliptic curve defined over Fp2 with j-invariant j and E (p) is a curve
with j-invariant j p and ` < p/4 is also a prime, then E is `-isogenous to E (p) if and only if Z[

√
−`p]

embeds into End(E) [9, Lemma 6].
For any element (E, f ) ∈ EmbOK (Fp2), E is supersingular, since p ramifies in Q(

√
−`p). Moreover

j (E) ∈ S p by the above fact. Thus the map ρ : EmbOK (Fp2)→ S p that sends (E, f ) to ρ(E, f )= j (E)
is well-defined.

To get a lower bound for S p we will show that for j ∈ S p, the size of ρ−1( j) is bounded by (`+ 1) · 6
and that |EmbOK (Fp2)| �

√
`p/log log(`p). These two facts imply

|S p
| ≥ |EmbOK (Fp2)|/((`+ 1) · 6) >

1
(`+ 1) · 6

·

√
`p

log log(`p)
.
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To get a lower bound for |EmbOK (Fp2)| we can use [15, Proposition 2.7] to show that EmbOK (Fp2) is in
bijection with EllOK (L̂P), where L̂P is the algebraic closure of the completion of the ring class field HOK

at a prime P above p, and EllOK (L̂P) is the set of isomorphism classes of elliptic curves over L̂P with
endomorphism ring OK . Hence |EmbOK (Fp2)| = |EllOK (L̂P)|, whose order equals |Cl(OK )|. Class group
estimates from [23] give

|Cl(OK )| = h(−`p)�
√
`p/log log(`p).

It remains to bound the size of ρ−1( j). We claim that an equivalence class of pairs (E, f ) determines
an edge in G(p, `). Let [(E, f )] ∈ EmbOK (Fp2) be given by some representative curve E . First assume
that j (E) 6= 0, 1728. Then (E, f ) ' (E, g) implies that f = g, since Aut(E) = ±1. Thus we may
identify [(E, f )] with the edge in G(p, `) corresponding to the kernel of f (

√
−`p). When j (E) = 0

or 1728, we may assume that E is defined over Fp. Then let [(E, f )] ∈ EmbOK (Fp2) and suppose (E, f )
is equivalent to (E, g). We can factor f (

√
−`p)= π ◦φ and g(

√
−`p)= π ◦φ′, where φ, φ′ are degree `

endomorphisms of E and π is the Frobenius endomorphism of E . Additionally, πφ = uπφ′u−1. We
claim that u and φ commute. If not, then they generate an order 3 such that the following formula holds
(see [22]):

discrd(3)= 1
4(1(u)1(φ)− (Trd(u)Trd(φ)− 2 Trd(uφ̂))2)≤ 1

41(u)1(φ). (3-1)

One can show that this contradicts our assumption that p/4> `. Thus u and φ commute, and we see
that f (

√
−`p) and g(

√
−`p) have the same kernel and thus determine the same edge in G(p, `).

We now count how many elements of EmbOK (Fp2) determine the same edge in G(p, `). Suppose that
[(E, f )], [(E, g)] ∈ EmbOK (Fp2) and that ker( f (

√
−`p))= ker(g(

√
−`p)). Writing f (

√
−`p)= φ ◦π

and g(
√
−`p)=φ′◦π we see that φ and φ′ must have the same kernel. Thus φ′=uφ for some u ∈Aut(E).

Because p > 4` > 3, Aut(E)≤ 6 and we conclude that there are at most 6 classes [(E, f )] determining
the same edge emanating from j (E) in G(p, `). Thus

|ρ−1( j)| ≤ (`+ 1) · 6. �

Assuming GRH, this result settles the lower-bound portion of Question 3 in [1]. See Lemma 6 of [9]
for the upper-bound.

4. Enumerating maximal superorders: the local case

Let q be a prime. In this section, we give an algorithm for the following problem:

Problem. Given a Zq -order 3⊆ M2(Qq), find all maximal orders containing 3.

For general 3 there might be an exponential number of maximal orders containing it, so the algorithm
for enumerating them would also be exponential time. However, we will show that the above problem
can be solved efficiently when 3 is Bass. The main property of local Bass orders 3 we use is that there
are at most e+ 1 maximal orders containing 3, where e = vq(discrd(3)) [6, Corollaries 2.5, 3.2, 4.3 and
Proposition 3.1].
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We use the Bruhat–Tits tree T [28, §23.5] to compute the maximal superorders of 3. The vertices
of T are in bijection with maximal orders in M2(Qq).

A homothety class of lattices [L] ⊆Q2
q corresponds to a maximal order via

L 7→ EndZq (L)= {x ∈ M2(Qq) : x L ⊆ L} ⊆ M2(Qq) (4-1)

for every choice of L ∈ [L]. Two maximal orders O and O′ are adjacent in T if there exist lattices
L and L ′ for O and O′ such that q L ( L ′ ( L . Hence the neighbors of O in T correspond to the
one-dimensional subspaces of L/q L ∼= Fq × Fq .

A division quaternion algebra B over Qq has only one maximal order, which can be found using the
algorithm in [29]. The split case is solved by Algorithm 4.1, and also relies on the algorithm in [29].

Algorithm 4.1. Enumerate all maximal orders containing a local order.

Input: A Zq -order 3⊆ M2(Qq), represented by a Zq -basis.

Output: The maximal orders in M2(Qq) containing 3, each specified by a Zq -basis.

(1) Compute a maximal order Õ ⊇3 with [29, Algorithm 7.10] and a lattice L̃ in Qq ×Qq such that
Õ = EndZq (L̃).

(2) Let A = {Õ} and B = {L̃}.

(3) While B 6=∅:

(a) Remove L from B, and label it as discovered. Set O = EndZq (L).
(b) Compute the set of neighbors NO of O that contain 3.
(c) For each O′ ∈NO not labeled as discovered, add O′ to A and its corresponding lattice to B.

(4) Return A.

Now we show that Algorithm 4.1 is efficient when the input lattice 3 is Bass.

Proposition 4.2. Let 3⊆ M2(Qq) be a Bass Zq -order, and e := vq(discrd(3)). Algorithm 4.1 computes
A := {O ⊇3 :O is maximal}, and |A| ≤ e+ 1. The runtime is polynomial in log q · size(3).

Proof. To prove correctness we first show that the maximal orders containing an arbitrary order 3′ in
M2(Qq) form a subtree of T . If O,O′ are two maximal orders containing 3′, then the maximal orders
containing O ∩O′ are precisely the vertices in the path between O and O′ in T [28, §23.5.15]. Each
order on this path also contains 3′, so the maximal orders containing 3′ form a connected subset of T .
The above algorithm explores this subtree.

If 3 is Bass and Eichler, i.e., 3 = O ∩O′ for maximal orders O,O′, then there are e+ 1 maximal
orders containing 3 [6, Corollary 2.5], and they are exactly the vertices on the path from O to O′. If 3 is
Bass but not Eichler, then there are either 1 or 2 maximal orders containing 3 by [6, Proposition 3.1 and
Corollaries 3.2 and 4.3]. Since they form a tree, they must also form a path. In either case, |A| ≤ e+ 1,
and the vertices in A form a path.
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As for the running time, in Step (1) we run [29, Algorithm 7.10], which is polynomial in log q ·size(3).
Let L be a lattice such that O = EndZq (L) contains 3. The neighbors of O containing 3 are in bijection
with the lines in L/q L fixed by the action of the image of 3 in O/qO ' M2(Fq). For each such line,
let v ∈ L/q L be a nonzero vector, and let v be a lift to L . Let w ∈ L be such that {v,w} is a Zq-basis
of L . Then L ′ := span{v, qw} is a Zq -lattice such that O′ := EndZq (L

′) contains 3. So we can efficiently
compute the lattices L ′ corresponding to the neighbors of O which contain 3. Given such an L ′, let
x ∈ M2(Qq) be the base change matrix from L to L ′. If B is a basis for O, then B′ := xBx−1 is a basis
for O′. The size of B′ is c(log q)+ size(O) for some constant c, so each neighbor of O containing 3 can
be computed in time polynomial in log q · size(O).

Since the length of the path explored in the algorithm is at most e, where e = vq(discrd(3)) is poly-
nomial in size(3), and the size of the starting order Õ is polynomial in log q · size(3) we obtain that the
size of any maximal order containing 3 is polynomial in size(3) · log q . Each step takes time polynomial
in log q · size(3), so the whole algorithm is polynomial in log q · size(3). �

Later we will need to enumerate the q-maximal Z-orders containing a Bass Z-order 3. The algorithm
below uses Algorithm 4.1 to accomplish this.

Algorithm 4.3. Enumerate the q-maximal Z-orders O containing 3.

Input: A Z-order 3, specified by a Z-basis, and prime q such that 3⊗Zq is Bass.

Output: All Z-orders O ⊇3 such that O is q-maximal and O⊗Zq ′ =3⊗Zq ′ for all primes q 6= q ′.

(1) Compute an embedding f :3⊗Q ↪→ M2(Qq) such that f (3)⊆ M2(Zq).

(2) Let A be the output of Algorithm 4.1 on input f (3).

(3) Return { f −1(O)+3 :O ∈ A}.

Lemma 4.4. Algorithm 4.3 is correct. The run time is polynomial in log q · size(3).

Proof. Step (1) can be accomplished with Algorithms 3.12, 7.9, and 7.10 in [29], which run in time
polynomial in log q · size3. For each maximal Zq-order O ⊇ f (3), we then compute a corresponding
Z-lattice O′ ⊇3, whose generators are Z[q−1

]-linear combinations of generators of 3. The denominator
of these coefficients is at most qe where e := vq(discrd(3)). By Proposition 4.2, there are at most e+ 1
maximal orders containing f (3) if 3⊗Zq is Bass. It is straightforward to check that the lattice 3+O′

is actually a Z-order and has the desired completions. Moreover, these are all such orders by the local-
global principle for orders, [28, Theorem 9.5.1]. �

Remark 4.5 (global case). Algorithm 4.3 can be used to enumerate all maximal orders O of a quaternion
algebra B over Q that contain a Z-order 3 which is Bass, given 3 and the factorization of discrd(3) as
discrd(3)=

∏m
i=1 qei

i :
We run Algorithm 4.3 m times, namely on (3, q1), . . . , (3, qm). Let {X1, . . . , Xm} be the output,

where X i ={Oi1, . . . ,Oini }. The global orders containing3 are in bijection with
∏

i X i , by associating to
(O1 j1, . . . ,Omjm )∈

∏
X i the order

∑
i Oi ji . In particular, the number of such orders is at most

∏
i (ei+1).
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The correctness of this follows from the local-global principle for maximal orders [28, Lemma 10.4.2].
The above results show that each order in the enumeration can be computed in time polynomial in the size
of 3. However, for an arbitrary order 3, there might be an exponential number of orders containing it.

5. Computing End(E)

Now we describe our algorithm to compute the endomorphism ring of E . By computing End(E) we
mean computing a basis for an order O in Bp,∞ that is isomorphic to End(E), and that we can evaluate
the basis at all points of E via an isomorphism Bp,∞ → End(E) ⊗ Q. First we give an algorithm
that uses Algorithm 3.4 to generate a Bass suborder of End(E). A heuristic about the distribution of
discriminants of cycles is used to show that just one call to Algorithm 3.4 generates a Bass order with
constant probability. Then we give an algorithm which recovers End(E) from a Bass suborder. The
key property used here is that Bass orders 3 (whose basis is of size polynomial in log p and whose
discriminant is O(pk)) only have O(pε) maximal orders containing them for any ε > 0. This is proved
in Proposition 5.5 when the reduced discriminant is square-free. Based on our numerical evidence, we
conjecture that this holds for general Bass orders as well.

5A. Computing a Bass order.

Algorithm 5.1. Compute a Bass suborder 3⊆ End(E).

Input: A supersingular elliptic curve E .

Output: A Bass order 3⊆ End(E) and the factorization of discrd(3), or “false”.

(1) Compute two cycles in G(p, `) through j (E) using Algorithm 3.4.

(2) Let α, β be the endomorphisms corresponding to the cycles from Step (1). Compute the Gram
matrix for {1, α, β, αβ} and from it an abstract representation for 3= 〈1, α, β, αβ〉.

(3) Factor discrd(3)=
∏n

i=1 qei
i .

(4) If 3 is Bass return 3 and the factorization of discrd(3), else return “false”.

To analyze the algorithm we introduce a new heuristic:

Heuristic 5.2. The probability that the discriminants of the two endomorphisms corresponding to the
cycles produced by Algorithm 3.4 are coprime is at least µ for some constant µ > 0 not depending on p.

This heuristic is based on our numerical experiments. Intuitively, we are assuming that the endomor-
phisms we compute with Algorithm 3.4 have discriminants which are distributed like random integers
that satisfy the congruency conditions to be the discriminant of an order in a quadratic imaginary field in
which p is inert and ` splits. Two random integers are coprime with probability 6/π2. We are assuming
that the discriminants of our cycles are coprime with constant probability.

Theorem 5.3. Assume GRH and Heuristic 5.2. Then with probability at least µ, Algorithm 5.1 computes
a Bass order 3⊆ End(E), and the runtime is O(

√
p(log p)2).
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Proof. In Step (2), the Gram matrix for 3, whose entries are the reduced traces of pairwise products
of the basis elements, is computed. This uses a generalization of Schoof’s algorithm (see Theorem A.6
of [3]), which runs in time polynomial in log p and log of the norm of α, β. Since α and β arise from
cycles of length at most cdlog pe, for some constant c which is independent of p, the norms of α and β
are at most pc. From the Gram matrix we can efficiently compute discrd(3).

To check that 3 is Bass, it is enough to check that 3 is Bass at each q dividing discrd(3) [8, Theo-
rem 1.2]. To check that 3 is Bass at q it is enough to check that 3⊗Zq and (3⊗Zq)

\ are Gorenstein
[8, Corollary 1.3]. An order is Gorenstein if and only if its ternary quadratic form is primitive [28,
Corollary 24.2.10], and this can be checked efficiently. Thus, given a factorization of discrd(3), we can
efficiently decide if 3 is Bass.

Finally, we compute the probability that the order returned by Algorithm 3.4 is Bass. By [8, Theo-
rem 1.2], an order is Bass if and only if it is basic, and being basic is a local property. It follows that
the order 3 is Bass whenever the conductors of Z[α] and Z[β] are coprime. A sufficient condition for
this is that the discriminants of α and β are coprime which will happen with probability at least µ by the
above heuristic. This sufficient condition also covers the case when the cycle for α or β goes through 0
or 1728 even though Theorem 3.7 does not apply here. �

5B. Computing End(E) from a Bass order. In this section we compute End(E) from a given Bass sub-
order 3. For this we enumerate the maximal orders containing 3 by taking sums of the q-maximal orders
returned by Algorithm 4.3. As we enumerate the orders, we check each one to see if it is isomorphic to
End(E).

Algorithm 5.4. Compute End(E) from a Bass order.

Input: A Bass order 3⊆ End(E) with factored reduced discriminant
∏n

i=1 qei
i .

Output: A compact representation of End(E), as defined in [12, Section 8.2].

(1) For each i = 1 to n:

(a) Compute all orders {Oi,1, . . . ,Oi,mi } which are maximal at qi and equal to 3 at primes q ′ 6= qi

by running Algorithm 4.3 with input 3 and prime qi .

(2) Compute f :3⊗Q→ Bp,∞.

(3) For each choice of indices (i1, . . . , in) ∈ [m1]× · · · × [mn]:

(a) Set O :=O1,i1 + · · ·+On,in .
(b) Compute E ′/Fp2 such that End(E ′)' f (O) along with a compact representation of End(E ′).
(c) If j (E ′)= j (E) or j (E ′)= j (E)p, return f (O) and the compact representation of End(E ′).

Proposition 5.5. Fix a positive integer k, and let 3 be a Bass order whose size is polynomial in log p
and whose reduced discriminant is square-free and of size O(pk). Assume that the factorization of
the reduced discriminant is given. There are O(pε) maximal orders containing 3 and Algorithm 5.4
terminates in time Õ(pε) for any ε > 0, assuming that the heuristics in [14; 12] hold.
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p orders Bass orders average N (3)

70,001 92 76 122.21
90,001 80 67 322.04

100,003 81 75 337.59

Table 1. Results from computing 100 pairs of cycles in G(p, 2) at random j ∈ Fp2 − Fp .

Proof. Computing the isomorphism f : 3⊗Q ' Bp,∞ requires one call to an algorithm for factoring
integers (and poly(log p) calls to algorithms for factoring polynomials over Fp, see [17]). Let

discrd(3)= p ·
m∏

i=1

qi

with q1, . . . , qm distinct and different from p. By the local-global principle for maximal orders there
is one maximal order corresponding to each collection of qi -maximal orders {Oi } with Oi ⊇ 3⊗Zqi .
We loop through these orders in Step (3). The size of the index set in that loop and hence the number
of distinct maximal orders containing 3 is at most 2ω(discrd(3))−1, where ω(n) denotes the number of
distinct prime factors of an integer n. Fix ε > 0. Since ω(n)= O(log n/log log n) [16, Chapter 22, §10],
for p large enough, the number of maximal orders O ⊇3 is at most

2
c′ log c·pk

log log c·pk
= (c · pk)

c′
log log c·pk

for some c, c′ > 0, which is O(pε).
As we loop through the maximal orders O containing 3, we check each one to see if it is isomorphic

to End(E): after constructing such an order in Step (3)(a), we compute in Step (3)(b) a curve E ′ whose
endomorphism ring is isomorphic to O. This can be solved efficiently with the algorithms in [14]: one
computes a connecting ideal I between O and a special order O′ and then applies Algorithm 2 of [14]
(see also Algorithm 12 of [12]). Then, in Step (3)(c), we compare j-invariants. Checking each order
takes time polynomial in log p (assuming the heuristics in [14; 12]), so the total running time of the
algorithm is Õ(pε) for any ε > 0. �

Our computational data from Section 5C suggests that we will get the same running time when the
reduced discriminant of 3 is not square-free. This motivates the following conjecture:

Conjecture 5.6. Fix an integer k ≥ 0 and assume that 3 ⊆ End(E) is a Bass order of size polynomial
in log p and with discrd(3)= O(pk). Then for any ε > 0, the number of maximal orders containing 3
is O(pε).

Theorem 5.7. Assume GRH, Conjecture 5.6, Heuristic 5.2, and the heuristics in [14]. Let E be a super-
singular elliptic curve. Then the algorithm which combines Algorithm 5.1 and Algorithm 5.4 computes
End(E) with probability at least µ, in time O((log p)2

√
p).

Proof. By the proof of Theorem 5.3, the norms of the endomorphisms α1, α2 computed by Algorithm 3.4
are bounded by pc for some constant c independent of p, so their discriminants satisfy |1(αi )|< 4pc.
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Hence by (3-1), they generate an order 3 whose reduced discriminant satisfies discrd(3)= O(p2c). This
means we can apply Conjecture 5.6, so the theorem follows from Theorem 5.3. �

5C. Computational data. We implemented a cycle-finding algorithm in Sage along with an algorithm
for computing traces of cycles in G(p, `), which is based on the implementation of Schoof’s algorithm
available in [27]. For each p in Table 1, and for 100 iterations, we computed a pair of cycles in G(p, 2).
We then tested whether they generated a Bass order by testing whether the two quadratic orders had
coprime conductors and computed the discriminant of the order that they generated. We also computed
an upper bound on the number of maximal orders containing 3 when 3 was Bass: suppose discrd(3)=
p
∏

i qei
i , then there are at most N (3) :=

∏
i (ei + 1) maximal orders containing 3. We report how often

the two cycles generated an order, how many of those orders were Bass, and the average value of N (3).
The cycle-finding algorithm we implemented is the variant discussed in Remark 3.5: it searches for
j ∈ Fp to construct the cycles using walks of length dlog pe. We also did not avoid a second cycle which
may commute with the first since even without that more than 80% of cases were orders. We also only
computed cycles at j ∈ Fp2 − Fp because this is the case of interest as there are no obvious noninteger
endomorphisms.

6. Computing End(E) via path-finding in the `-isogeny graph

In this section, we give a reduction from the endomorphism ring problem to the problem of computing
`-power isogenies in G(p, `), using ideas from [21], [14], and [12]. This reduction is simpler than the
one in [12], and uses only one call to a path-finding oracle (rather than poly(log p) calls to an oracle
for finding cycles in G(p, `), as in [12]). We apply this reduction in two ways, noting that it gives an
algorithm for computing the endomorphism ring, and that it breaks second preimage resistance of the
variable-length version of the hash function in [9].

6A. Reduction from computing End(E) to path-finding in the `-isogeny graph. We first define the
path-finding problem in G(p, `):

Problem (`-PowerIsogeny). Given a prime p and supersingular elliptic curves E and E ′ over Fp2 , output
a chain of `-isogenies of length O(log p) from E to E ′.

Computing the endomorphism ring of a supersingular elliptic curve via an oracle for `-PowerIsogeny
proceeds as follows. On input p, Algorithm 3 of [12] returns a supersingular elliptic curve Ẽ defined
over Fp2 and a maximal order Õ⊆ Bp,∞ with an explicit Z-basis {x1, . . . , x4}. Proposition 3 of [12] gives
an isomorphism g : Õ→ End(Ẽ) such that we can efficiently evaluate g(xi ) at points of E0. From this,
the endomorphism ring of any supersingular elliptic curve E defined over Fp2 can be computed, given a
path in G(p, `) from Ẽ to E , with ` 6= p a small fixed prime, for example `= 2 or 3.

The following algorithm gives a polynomial time reduction from computing endomorphism rings to
the path-finding problem, which uses only one call to the path-finding oracle. It assumes the heuristics
of [14] and GRH (to compute Ẽ). A similar algorithm appeared in [10].
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Algorithm 6.1. Reduction from computing End(E) to `-PowerIsogeny.

Input: A prime p, and E/Fp2 supersingular.

Output: A maximal order O ' End(E), whose elements can be evaluated at any point of E , and a
powersmooth isogeny ψe : Ẽ→ E , with Ẽ as above.

(1) Compute Ẽ, Õ with Algorithm 3 in [12].

(2) Run the oracle for path-finding on Ẽ, E to obtain an `-power isogeny φ = φe ◦ · · · ◦φ1 : Ẽ→ E of
degree `e.

(3) Let J0 := Õ, P0 := Õ, O0 := Õ.

(4) For k := 1, . . . , e:

(a) Compute Ik ⊆Ok−1, the kernel ideal of φk .
(b) Compute Jk := Jk−1 Ik .
(c) Compute Pk , an ideal equivalent to Jk of powersmooth norm.
(d) Compute an isogeny ψk : Ẽ→ Ek corresponding to Pk .
(e) Set Ok :=OR(Pk).

(5) Return OR(Pe), ψe.

Orders and ideals appearing in the above algorithm are represented by a Z-basis, and we can compute
right orders of ideals using linear algebra over Z, as in [12]. The ideal Ik , which is the ideal of Ok−1

of norm ` corresponding to φk , can be computed efficiently because we can evaluate endomorphisms
efficiently using Proposition 3 of [12]. The algorithm is correct because OR(Pe)=OR(Je)= End(Ee)=

End(E).

6B. Using Algorithm 6.1 to compute endomorphism rings and break the second preimage of the CGL
hash. Algorithm 6.1 can be used to give an algorithm for computing the endomorphism ring of a super-
singular elliptic curve E by combining it with algorithms from [11; 14; 12]. This yields a O((log p)2 p1/2)

time algorithm with polynomial storage, assuming the relevant heuristics in [14; 12].
We now consider the hash function in [9] constructed from Pizer’s graphs G(p, 2). For each super-

singular elliptic curve Ẽ , there is an associated hash function. An input s ∈ {0, 1}∗ to the hash function
determines a walk in G(p, 2) from Ẽ to another curve E , and the output of the hash function is j (E).
The following is an improvement over [12], which gave a collision attack for this specific hash function.

Proposition 6.2. Let Ẽ be the elliptic curve computed in Step (1) of Algorithm 6.1. For the hash function
associated to Ẽ , Algorithm 6.1 gives a second preimage attack (and hence, also a collision attack) that
runs in time polynomial in log p.

Proof. The attack works as follows: Given a path from Ẽ to E , use Algorithm 6.1 to compute End(E).
Then use Algorithm 7 of [12] to compute new paths from Ẽ to E . �
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New rank records for elliptic curves having rational torsion

Noam D. Elkies and Zev Klagsbrun

We present rank-record breaking elliptic curves having torsion subgroups Z/nZ for n = 2,3,4,5,6, and 7.

1. Introduction

Given an elliptic curve E/Q, the Mordell–Weil theorem states that the group of rational points E(Q)

is isomorphic to Zr
× T, where r is the rank of E and T is a finite group called the torsion subgroup

of E [21]. While the groups that can appear as T were fully characterized by Mazur [16], which ranks
occur is a question that goes back to Poincaré [26] and has been the subject of competing folklore
conjectures.

One side, claiming ranks are bounded, was recently bolstered by several different models [30; 31; 25]
that predict that all but finitely many elliptic curves have rank at most 21, with stronger conjectured
bounds on which ranks occur infinitely often for each possible torsion group T. (For example, if T =
Z/nZ for n = 2, 3, . . . , 8 then the bound 21 is replaced by 13, 9, 7, 5, 5, 3, 3.) The other side, arguing
that ranks are unbounded, has relied on periodically exhibiting curves of larger and larger rank.

Our work continues that tradition, exhibiting rank-record breaking curves for the torsion subgroups
Z/nZ for each n = 2, 3, 4, 5, 6, 7, which constitute two-fifths of the 15 groups that Mazur showed can
appear as the torsion subgroup of an elliptic curve over Q.

At the same time, our work provides, at best, limited evidence that ranks are unbounded. We broke
six different records, and found numerous new curves whose ranks tie the old records (and many more
whose ranks exceed the heuristically conjectured asymptotic upper bounds). But the scale of this search
was vastly larger than any previously attempted, and yet we could not break any of the previous records
by more than 1, and in each case found only a handful of curves (in most cases, a single curve) with the
new record rank. This suggests that the growth of ranks of elliptic curves might indeed peter out at some
point.

Elkies was supported by NSF grants DMS-0501029, DMS-1100511, and DMS-1502161, a Radcliffe Fellowship, and the
Simons Collaboration on Arithmetic Geometry, Number Theory, and Computation.
MSC2020: 11G05.
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1.1. Organization. This paper largely splits into three parts. The first consists of Sections 2–6, which
describe the methods that we used to search for curves of high rank, as well as Section 7, which presents
some open questions about our methods. The second, Sections 8–14, describes our results, including
details of our searches in each of the torsion families considered. Section 9 also includes a previously
unpublished family of elliptic K3 surfaces Eu/Q(t) that have Mordell–Weil group Z/2Z×Z9 for each
u 6= ±1,±2 for which 5− u2 is a square. We exhibit generators for Eu(Q(t)) in Appendix A. The third
and final part of this paper is Appendix B, which presents models for the record-breaking curves we
discovered and points that generate their Mordell–Weil groups.

2. The method of Mestre and Nagao

The core ingredient in our search was a well-known method, originally from Mestre, to find elliptic curves
having large Mordell–Weil rank. We start with an elliptic fibration E/Q(t) having Mordell–Weil rank r ,
and then attempt to find good values of t for which the specialization Et has particularly large rank [20].

A theorem of Silverman [27] states that all but finitely many specializations Et of E have rank at
least r , so this approach effectively gives us r independent rational points on each specialization for free.

The method for finding values of t for which the rank of Et is significantly larger than r has its roots
in the observation of Birch and Swinnerton-Dyer that curves that have unusually many points modulo p
for most p should have many rational points as well [3], and in Mestre’s work on Weil’s explicit formula
for elliptic curves [18]. The idea is to construct a score S(t, B) that incorporates the number of points
Np(Et) on Et(Fp) for all primes p ≤ B where Et has good reduction, and then to search for rational
points on Et for those values of t in a search region for which S(t, B) is above some threshold. While
this basic method was first used by Mestre to find the first curves over Q having rank 12 [17], its first
use in a family E/Q(t) appears to be due to Nagao [23].

Nagao considered the scores

S1(t, B)=
∑
p<B,

Et has good reduction at p

−ap(Et)+ 2
Np(Et)

log p and S2(t, B)=
1
B

∑
p<B,

Et has good reduction at p

−ap(Et) log p,

which, when large, suggest via Weil’s explicit formula for elliptic curves [18] that the order of the
vanishing of the L-function L Et (s) at s = 1 should be large as well.

We choose to evaluate a different sum,

S(t, B)=
∑
p<B,

Et has good reduction at p

log
(

Np(Et)

p

)
, (1)

as in [8], so that exp(−S(t, B)) is the partial product∏
p<B,

Et has good reduction at p

(1− ap(Et)p−s
+ p1−2s)−1 (2)

of the Euler product for L Et (s) evaluated at s = 1 (ignoring the finitely many factors at primes of bad
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reduction). The conjecture of Birch and Swinnerton-Dyer suggests that when Et has large rank such
partial products should rapidly approach zero, and thus that S(t, B) should be large.

3. Computational techniques

Computing any of the sums in Section 2 would be computationally infeasible for a large range of t if one
needed to individually compute ap(Et) for each p < B and each value of t . To scale Mestre’s method
to extremely large search regions, we took advantage of three computational tricks.

First, as observed by Nagao [24], ap(t) depends only on t (mod p). As a result, one can first compute
ap(t) for all p≤ B and for all t ∈ Fp for which 1Et 6= 0, and then use the precomputed values to calculate
S(t, B) for each t in the search region.

The second trick, also due to Nagao [24], lets us concentrate our computation on the most promising
values of t . Rather than compute S(t, B) for all t in the search region, we choose an increasing series of
bounds B0 ≤ B1 ≤ · · · ≤ Bm = B and cutoffs C0 ≤ C1 ≤ · · · ≤ Cm = C , and only compute S(t, Bi ) for
i ≥ 1 for those values of t for which S(t, B j )≥ C j for all 0≤ j < i .

These first two tricks appear to be well known (see [12], for example). The third trick, which is
apparently due to Elkies [8], seems to be less widely known, and we describe it in detail below.

3.1. Sieving. Rather than computing S(t, B) for each value of t by looking up the values of Np(t) (or
more likely, log(Np(t)/p)) for each prime p < B, sieving computes S(t, B) for a large number of values
of t = a/b at once. The algorithm works as follows:

Fix a value of b and an interval [a0, a0+ N ). We allocate a counter array C of length N initialized
to zero. For each prime p - b, we initialize an update array P of length p such that the i-th entry of P
is equal to log(Np(b−1(a0 + i))/p). We then repeatedly add the update array P into C, starting with
position zero in C and shifting the starting position by p with each iteration. Doing this for each prime
p ≤ B tallies the sum S(t, B) into the counter array C for all t = a/b with a0 ≤ a < a0+ N.

By loading P nonsequentially, we can read the values of log(Np(b−1(a0+ i))/p) sequentially from
memory, while requiring only a single inversion modulo p and no additional multiplications, divisions,
or modular reductions.

To avoid the cost of floating point operations, we do not store log(Np(t)/p) as a floating-point number,
but round it to a rational number with fixed denominator D and store the numerator

⌊
D log(Np(t)/p)+ 1

2

⌋
.

The sieve then tallies these numerators for each t using integer addition, which is faster than floating-point
arithmetic. The common denominator D should be large enough that rounding errors do not appreciably
degrade the score, but small enough that we can keep a large counter array in the high-speed cache. We
found that by taking D = 1024, we were able to fit all of our scores into 16-bit integers.

We further took advantage of a feature of modern processors known as vector instructions. These
are processor level instructions that can be used to perform the same operation on multiple consecutive
elements of an array simultaneously. This allowed us to add 16 elements from the update array P into
the counter array C at once, rather than one at a time.
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Compared with computing each S(t, B) individually, sieving is extremely fast. For example, for a
fixed value of b, we are able to compute S(a/b, 216) for 220 values of a in 3.2 seconds on a single thread
of a hyperthreaded 2.3 GHz Intel Skylake Xeon processor. Smaller values of B take even less time; for
example, computing S(a/b, 213) for 220 values of a takes only 0.19 seconds on the same processor.

The large speed-up offered by this sieve-like technique is available only in the first step of Nagao’s
second trick described above: we can use it to quickly compute S(t, B0) for all t in the search region,
but not to compute S(t, Bi ) for i ≥ 1 on a restricted set of t . For i ≥ 1 we must look up individual values
of log(Np(t)/p). However, because the sieve-like technique is so efficient, we can set B0 large enough
that computing S(t, B0) is the dominant portion of the work — see Section 6.

4. Choosing fibrations

Perhaps the most important ingredient in searching for high-rank elliptic curves is choosing a good
fibration to search on. We’ll describe the factors that guided our choices, while leaving the specific
choices of fibrations to Sections 9 — 14.

In the past, the largest rank elliptic curves having torsion subgroups Z/2Z, Z/3Z, and Z/4Z have
come from specializations of K3 surfaces having relatively large rank (9 for Z/2Z, 5 for Z/3Z, and 4
for Z/4Z). Our search was no different, focusing on the same families in which the previous records
were found.

By contrast, high-rank K3 surfaces are not known to exist for the other torsion groups we considered.
The largest known rank of a K3 surface having torsion subgroup Z/5Z or Z/6Z is 1, and the universal
elliptic curve having a point of order 7 is already a K3 surface, of generic rank zero. As a result, previous
searches have focused on high-degree elliptic surfaces of larger rank [15; 6].

We initially attempted to do the same for the group Z/6Z using a degree 4 elliptic surface of Kihara
having rank 3 [14] considered in [6]. We found that while this surface has a relatively large number of
low-height rank 8 specializations, we could not find any such specializations of parameter height larger
than ≈ 213.5. This suggested that as the height of t grew, either the number of high-rank specializations
in this family decayed rapidly or our scores quickly became less meaningful.

While [6] considered other degree 4 elliptic surfaces having Mordell–Weil group Z/6Z× Z3, we
concluded that the low-hanging fruit on these had already been discovered, and that our best hope
of finding a rank 9 curve having torsion subgroup Z/6Z was to search on the universal elliptic curve
with a point of order 6, which is a rational surface. We made a similar decision regarding the groups
Z/nZ for n = 5 and n = 7, for which the universal elliptic curve over X1(N ) is respectively rational
and K3.

Remark. Subsequent to ANTS-XIV but prior to publication, Maksym Voznyy discovered a rank 9 curve
with torsion subgroup Z/6Z as a low-height specialization of an elliptic surface of degree 4 having
Mordell–Weil group Z/6Z×Z2 [29]. This curve is somewhat larger than the one we present in Section 13,
and appears in [5].
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5. Computing ranks

After finding a set of values of t such that S(t, B) is sufficiently large, we are left with the problem of
identifying those that actually have large rank. We approach this problem in two stages. First, we use
descent methods to obtain an upper bound on the rank. For those specializations where the upper bound
is sufficiently large, we then search for points on whichever coverings we can efficiently compute.

5.1. Descent computations. For half of the families we considered, the torsion subgroup contains a
point of order 2, so we could use Fisher’s machinery for computing rank bounds using 2-power isogeny
Selmer groups, available in Magma via the command TwoPowerIsogenyDescentRankBound [13]. For
all of the specializations we considered where this upper bound was at least as large as the previous
record in the family, the upper bound was in fact equal to the rank (though of course we did not know
this until after we searched for points).

For the specializations with torsion subgroup Z/3Z, there is no 2-isogeny over Q, and a full 2-descent
was out of reach. This forced us to consider a different approach.

As a first attempt, we ran all of the high scorers through a slightly modified version of Magma’s
ThreeIsogenySelmerGroups command to obtain a coarse rank bound. While the rank bound coming
from 3-descent via isogeny tends to be reasonably tight for small curves, many of the specializations we
considered had a large number of places of split multiplicative reduction, which boosted this bound for
structural reasons unconnected to rank. To deal with this, we then used our own implementation of the
algorithm for computing the Cassels–Tate pairing developed by Fisher and van Beek [1; 2] to compute
the 3-Selmer rank of each specialization for which the rank bound coming from 3-isogeny descent was
at least 14.

For the curves with Z/5Z torsion, we were able to use a modified version of the pIsogenyDescent
command in Magma to compute a rank bound coming from 5-descent via isogeny, which allowed us to
eliminate close to 99% of the candidate specializations. Since the fibration with Z/5Z torsion that we
searched is a rational surface over Q(t), the remaining specializations were sufficiently small that we
could use Magma’s built-in implementations for computing both the 2-Selmer group and the Cassels–Tate
pairings for each one.

The curves with Z/7Z torsion posed a unique challenge. While we were able to use our modified
version of Magma’s pIsogenyDescent command to compute a rank bound coming from 7-descent via
isogeny, this bound tended to be insufficiently sharp for our candidate specializations.

In addition, because the Z/7Z fibration we considered is a K3 surface over Q(t), we expected that the
size of our specializations would overwhelm Magma’s 2-descent machinery. However, we discovered
that while the discriminant of this surface has degree 24, the discriminant of the cubic subfield of its
2-division field has degree only 6. As a result, although the curves in question were quite large, it was
still possible to perform 2-descent and the Cassels–Tate pairings on them.

5.2. Searching for points. Once we had candidate curves that our Selmer computations suggested had
large rank, we needed to find enough independent points on them to verify that they had the expected rank.
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Our main method for finding these points was by searching for points on 2-coverings of each curve
using Magma’s built-in functionality. For most of the groups — Z/4Z, Z/5Z, Z/6Z, and Z/7Z — we
were able to compute the complete 2-Selmer group for each of the curves in question.

For the group Z/2Z, we did the next best thing, computing the coverings corresponding to the elements
of the Selmer group of a 2-isogeny and its dual, and searching on those.

In principle, we could have done something similar with the 3-isogeny coverings for the curves hav-
ing torsion subgroup Z/3Z using Elkies’s lattice-based method of searching for points on cubic curves
in P2 [7]. However, due to a memory leak we discovered1 in Magma’s implementation of Elkies’s method,
doing so would have required additional effort. Instead, we searched the 2-coverings corresponding to
the known points on each curve coming from the rational points on the surface E , adding new 2-coverings
to the mix whenever we discovered an additional point.

Somewhat surprisingly, this method worked extremely well. We suspect that because each of the
curves in question has a large number of points of low height, we likely would have found them using
nearly any method we attempted.

6. Choosing parameters

There is an art to choosing proper values for Bi and Ci . The goal, of course, is to minimize the total
time spent searching, while not missing any of the top candidates. How to do this is unclear. We chose
our values experimentally, and we suspect that our choices were far from optimal; see Section 7. Some
tradeoffs however are straightforward.

If C0 is too small, then too many values of t pass the initial cutoff, so the cost of computing S(t, Bi )

for i ≥ 1 dominates, because looking up the values of log(Np(t)/p) individually is far more expensive
than sieving. Conversely, if C0 is too large then we risk eliminating promising values of t .

We compromised by choosing C0 rather aggressively, targeting a cutdown on the order of 103, but
using a large enough value of B0 (between 213 and 216) to limit the risk of losing any good candidate t .
(Previous searches have tended to take B < 103, so this seemed sufficiently conservative.)

The values of Bi for i ≥ 1 are less important. We chose the Bi to be successive powers of 2 up to
B = 218. We also chose our Ci less aggressively for i ≥ 1, since these have a smaller effect on the
runtime.

6.1. Skewed search regions. For some of the fibrations we considered, the polynomials defining the
nontrivial coefficients of E were skew in the sense of [22]. Very roughly, this means that the higher
degree coefficients tend to have larger magnitude than the smaller ones or vice versa.

As a result, the average magnitude of the coefficients of an integral model for Et on a skewed search
region (that is, t = a/b with Max(|a|) = sMax(|b|) for some s ∈ Q) will be smaller than the average
magnitude of the coefficients of an integral model for Et on a square search region having the same
size. While we don’t have a firm grasp on how the existence of high-rank specializations is related to the

1While we discovered the presence of this memory leak, we did not attempt to identify its source.
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coefficient size of Et , it seems sensible to search for smaller curves, so we skewed our search regions
accordingly.

7. Open questions

Although our search was largely successful, we are left with some open questions regarding the method
of Mestre and Nagao.

(1) How large a prime bound should we be using relative to the search region/degree of the family?
Our experience indicates that the score S(t, B) tends to be a poorer indicator of rank as the size

of the search region grows, and that the rate at which it becomes less useful depends on the degree
of the surface and on its torsion subgroup.

This is unsurprising, since we expect the convergence rate of the Euler product for L Et (s) to
depend on the conductor, which in turn grows roughly as a power of the height H(t) depending
on the degree and fiber types of the surface. (More precisely, the conductor is bounded above by
a multiple of that power of H(t), and for typical t this is the correct growth order.) We should
therefore expect that we need to allow our prime bound B to grow as a function of E and H(t) in
order for S(t, B) to remain useful. Is it possible to make this relationship precise?

(2) How can we incorporate the Tamagawa factors at the places where Et has bad reduction?
It has been observed that the known curves of high rank tend to have split multiplicative reduction

and large Tamagawa numbers at many small primes. While the L-function includes terms for the
bad primes and these can be incorporated into S(t, B), these terms don’t incorporate the Tamagawa
numbers.

One idea would be to include these primes into the score via the term log(cp(Et)(p − 1)/p).
However, this seems odd, because for surfaces with an isogeny, the Tamagawa numbers of Et and
its isogenous curves will generally not be the same, and any score that hopes to predict the rank
should be isogeny-invariant.

In our searches, we found that including the term log(c(p− 1)/p) with various c between 1 and
2 in S(t, B) at each prime of split multiplicative reduction (effectively giving the specialization a
fixed bonus for each such prime) tended to work reasonably well. At the same time, this is clearly
a hack, and it would be nice to understand what the correct thing to do is.

(3) How closely should the rank be expected to correlate with S(t, B)?
One problem that we struggled with was understanding exactly how the score S(t, B) should

relate to the rank of Et . For now, we are forced to choose our bounds conservatively to avoid missing
any high-rank curves, which results in an increased amount of work, particularly at the descent steps.

Ideally, we would have a Bayesian score Prob(Et has rank at least r | S(t, B) > C) that would
let us set the bounds Bi and Ci optimally, and inform our decision about how many curves to apply
descent methods to. (The use of a Bayesian score was suggested to us by Joel Rosenberg.) Such a
score would also let us estimate the likelihood that we missed a curve of high rank.
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torsion subgroup previous record current record
Z/2Z 19 20
Z/3Z 14 15
Z/4Z 12 13
Z/5Z 8 9
Z/6Z 8 9
Z/7Z 5 6

Table 1. Rank records for various torsion subgroups.

8. Main results

We obtained new rank records for elliptic curves with torsion subgroups Z/nZ for n = 2,3,4,5,6, and 7.
The current and previous records (as given by [5]) for each of these torsion subgroups are given in

Table 1. We note that for the torsion subgroups Z/nZ with n = 2, 3, 4, 5, 6, the ranks of both our curves
and the previous record-holding curves are known unconditionally. While the ranks of some of the
previous record-holding curves for the torsion subgroup Z/7Z are known unconditionally, the ranks of
our record holding curve as well as some of the previous record-holding curves are known only subject
to the generalized Riemann hypothesis (GRH) for L-functions of number fields.

The next sections describe in greater detail the searches we carried out in pursuit of these records.

9. Curves with torsion subgroup Z/2Z

For torsion groups T =Z/2Z, Z/3Z, Z/4Z we proceeded as in [8], computing an elliptic fibration E(Qt)

of a K3 surface X whose Néron–Severi group NS(X) is defined over Q and has high rank and large
discriminant. For T = Z/3Z and T = Z/4Z we used the surface with NS(X) of rank 20 and discrim-
inant −163. But for T = Z/2Z this discriminant is not large enough; it turns out [10] that the highest
rank attained by an elliptic fibration of X with a 2-torsion point is 8. Instead we use X with NS(X) of
rank 19 but larger discriminant, which can attain Mordell–Weil rank 9.

Such X are parametrized by elliptic or Shimura modular curves, call them C , of level 1
2 |disc NS(X)|.

When |disc NS(X)| is large enough to allow Mordell–Weil rank 9, the curve C usually has genus at
least 2, with few if any rational points (other than cusps and CM points, at which X or the elliptic
fibration degenerates). In [8, pp. 8–9] Elkies reports using the sporadic rational point on the genus-2
curve X0(191)/w to find such an X. A few years later he found a genus-zero Shimura curve of level 230
that could be used instead, giving a family of elliptic surfaces with Mordell–Weil group Z/2Z×Z9. Here
C = X/w230, with X associated to the congruence subgroup 00(23) of the quaternion algebra ramified
at {2, 5}. The family of surfaces with their elliptic fibrations was computed as in [9; 11]. The elliptic
fibration is of the form Eu/Q(t) : y2

= x3
+ 2Ax2

+ Bx , where

A = (u8
− 18u6

+ 163u4
− 1152u2

+ 4096)t4
+ (3u7

− 35u5
− 120u3

+ 1536u)t3

+ (u8
− 13u6

+ 32u4
− 152u2

+ 1536)t2
+ (u7

+ 3u5
− 156u3

+ 672u)t

+ (3u6
− 33u4

+ 112u2
− 80), (3)
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and B =
∏8

i=1 Bi (t, u) where

B1(t, u)= (u2
+ u− 8)t + (−u+ 2), B3(t, u)= (u2

− u− 8)t + (u2
+ u− 10),

B5(t, u)= (u2
− 7u+ 8)t + (−u2

+ u+ 2), B7(t, u)= (u2
+ 5u+ 8)t + (u2

+ 3u+ 2),
(4)

and Bi (t, u)=−Bi−1(−t,−u) for i = 2, 4, 6, 8. Thus Eu ∼= E−u . If 5− u2 is a square, and u 6= ±1,±2
(to exclude CM points), then Eu has Mordell–Weil group Z/2Z×Z9 over Q(t). Generators are exhibited
in Appendix A.

We searched for high-rank specializations of Eu for several values of u.
For u = 2/5, we searched the region t = a/b with 0 < a < 221 and −223 < b < 223, finding 17 curves

of rank 19, including the previous record-holding curve of Elkies that appears in [5], which occurs at
t = 11860/97527.

For u = 11/5, we first applied the linear fractional transformation t 7→ (2− t)/(t − 6) to Eu and then
searched the region t = a/b with 0 < a < 3 · 221 and −221 < b < 221. We found one specialization of
rank 20 at t =−68559/32629 (t =−721141/2026305 on the original model of Eu), as well as another
20 specializations of rank 19, including one at t = 100782/104143 (t =−26876/131019 on the original
model of Eu) with smaller discriminant than the rank 19 curve of Elkies appearing in [5].

Minimal models and x-coordinates of a set of generators for the rank 20 specialization and the smallest
discriminant rank 19 specialization appear in Appendix B.2. We note that this curve of rank 20 is the
elliptic curve of largest rank for which the rank is known unconditionally.

We also searched regions of size roughly 244 on each of the fibrations coming from u = 2/13 and
u = 22/13, but did not find any specializations of rank greater than 18.

10. Curves with torsion subgroup Z/3Z

The singular K3 surface of discriminant −163 has (up to isomorphism) 159 elliptic fibrations with torsion
group Z/3Z; their Mordell–Weil ranks range from 1 to 5. Rank 5 is attained by 13 of those fibrations,
each giving rise to a family of elliptic curves whose Mordell–Weil group contains Z/3Z×Z5; the explicit
formula will appear in [10].

We searched an appropriately skewed region of size 243 on each of the 13 fibrations, finding 34
specializations of rank 14 (at least one on 11 of the 13 fibrations) as well as a single specialization of
rank 15, given by

E : y2
+ 490738465519xy− 432802729180188878035670522423557875y = x3.

Among the specializations having rank 14, the one with smallest conductor and discriminant is given by

E : y2
+ 6244332976xy+ 2204421250641922174556630375y = x3,

which has smaller conductor and discriminant than the previously known curve of rank 14 appearing
in [5]. The x-coordinates of a set of generators for each of these curves is given in Appendix B.3.
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11. Curves with torsion subgroup Z/4Z

We searched a pair of families each having Mordell–Weil group Z4
×Z/4Z, both of which are elliptic

fibrations of the singular K3 surface of discriminant −163. The first fibration is given by the equation

E1 : y2
+ (8t − 1)(32t + 7)xy+ 8(8t − 1)(32t + 7)(t + 1)(15t − 8)(31t − 7)y

= x3
+ 8(t + 1)(15t − 8)(31t − 7)x2 (5)

and appears (with a typo) in [8]. A choice of x-coordinates defining four independent sections is given by

(−15/4)(t + 1)(31t − 7)(32t + 7), (8t − 1)(15t − 8)(31t − 7)(32t + 7),

−(t + 1)(8t − 1)(15t − 8)(32t + 7), −4(t + 1)(2t + 5)(15t − 8)(32t + 7).

The second fibration is given by the equation

E2 : y2
− 8(80t + 9)xy− 16(80t + 9)(t − 2)(2t − 1)(18t − 1)(2t − 81)y

= x3
+ 2(t − 2)(2t − 1)(18t − 1)(2t − 81)x2 (6)

and will appear in [10]. A choice of x-coordinates defining four independent sections is given by

154(t − 2)(2t − 1)(18t − 1), −1456(t − 2)(2t − 1)(2t − 81),

16(t − 2)(2t − 81)(22t + 21), 6(2t − 5)(t − 2)(2t − 81)(18t − 1).

The previous rank record for torsion group Z/4Z was 12, attained by two curves in the family E1,
found by Elkies in 2006 (t = 18745/6321) and Dujella and Peral in 2014 (t = −13083/72895). We
searched up to height 222 on E1 and found three rank 13 specializations at t = −1086829/638219,
t = −2856967/190447, and t = 973215/3135431, as well as 76 rank 12 specializations. Of the rank 12
specializations, the one with smallest conductor occurs at t =−447577/2601952 (NEt ≈ 2153.41) and
the one with smallest discriminant occurs at t = 83497/251378 (|1Et | ≈ 2392.96). Respectively, these
have smaller conductor and discriminant than the previously known rank 12 curves.

We searched up to height 222 on E2 and were unable to find any specializations of rank 13, though we
did find 32 having rank 12. Among these, the specialization with smallest conductor and discriminant
appears at t =−16307/121584 (NEt ≈ 2161.21 and |1Et | ≈ 2433.71).

Minimal models and x-coordinates of a set of generators for each of the rank 13 specializations are
given in Appendix B.4.

12. Curves with torsion subgroup Z/5Z

As noted in Section 4, for the group Z/5Z, we chose to search for good specializations on the universal
elliptic curve having a point of order 5, which is a rational elliptic surface. One particularly nice model
for this surface is given by

y2
+ (t + 1)xy+ t y = x3

+ t x2,

which has the feature that the nontrivial automorphism of X1(5) as a cover of X0(5) is given by t 7→−1/t .
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Changing t to −1/t yields the same curve with a different choice of generator of its torsion group. This
allowed us to limit our search to t > 0. We searched for t up to height 229 on this surface, finding a single
rank 9 curve at t = 266165145/442317512.

We also found 392 rank 8 specializations, three of which were previously known. Of these, the curve
we found with smallest conductor appears at t = 1809535/5292661 (NEt ≈ 285.86) and the curve we
found with smallest discriminant appears at t = 5167107/723695 (|1Et | ≈ 2254.77). Each of these has
both smaller conductor and discriminant than all of the previously known rank 8 curves.

Minimal models and x-coordinates of a set of generators for the rank 9 specialization and the smallest
conductor and discriminant rank 8 specializations appear in Appendix B.5.

13. Curves with torsion subgroup Z/6Z

As was the case for Z/5Z, we chose to search for good specializations on the universal elliptic curve
having a point of order 6, which is a rational elliptic surface. A model for this surface is given by

y2
+ t xy+ (t + 2)y = x3,

with torsion points of order 2, 3, 6 at (x, y)= (−1,−1), (0, 0), (t + 2, t + 2), respectively.
We searched for good specializations of this model in the region t = a/b with 0 < a < 225 and
−226 < b < 226. In this case, the skewed search region was a fortuitous accident, rather than a deliberate
choice. We found a single rank 9 curve at t =−22029701/37178488 as well as 71 rank 8 specializations,
all but one of which appear to be previously unknown. The rank 8 curve with the smallest conductor and
smallest discriminant appears at t = 6308333/1000939 (NEt ≈ 281.96 and |1Et | ≈ 2253.07). Its 2-isogenous
curve that appears at t =−24627934/8310211 shares the same conductor, but has larger discriminant.

Minimal models and x-coordinates of a set of generators for the rank 9 specialization and the smallest
conductor/discriminant rank 8 specialization appear in Appendix B.6.

Remark. In retrospect, we could have taken advantage of the involution w2 : t 7→ −(2t + 12)/(t + 2),
for which Ew2(t) is the curve E ′t which is 2-isogenous with Et , and thus also has torsion subgroup Z/6Z.
This would let us restrict our search area to −4 < t < 2. In partial compensation, we could compare the
scores of t and w2(t) to corroborate that we are computing these scores correctly.

14. Curves with torsion subgroup Z/7Z

As noted in Section 4, for the group Z/7Z, we chose to search for good specializations of the universal
elliptic curve having a point of order 7. Unlike the groups Z/5Z and Z/6Z, the universal elliptic curve
having a point of order 7 is a K3 surface rather than a rational one.

A model for this curve is given by

y2
+ (−t2

+ t + 1)xy+ (−t3
+ t2)y = x3

+ (−t3
+ t2)x2

(see, e.g., [28, p. 195]).
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The modular curve X1(7) has two nontrivial automorphisms as a cover of X0(7). These correspond
to the transformations t 7→ 1− 1/t and t 7→ −1/(t − 1) on this surface which allowed us to restrict
ourselves to considering 0 < t < 1.

We searched up to height 220 on this model and found a single specialization of rank 6 at t =
−748328/820369. A minimal model and the set of x-coordinates of a set of generators of this spe-
cialization are given in Appendix B.7.

Remark. In addition to the group Z/7Z, there are two other groups G, namely, G = Z/8Z and G =
Z/2Z×Z/6Z, for which the universal elliptic curve E with a copy of G in E(Q) is a K3 surface. The
rank record for each of these two G is 6, and [5] lists several curves attaining this record in each case.
We looked for curves of larger rank for each of these torsion subgroups by searching on a model of the
corresponding universal elliptic curve, but failed to find any specialization having rank greater than 6.
We suspect that the reason we found a record-breaking curve for Z/7Z but not for Z/8Z or Z/2Z×Z/6Z

is simply that the previous record was lower for Z/7Z.

Appendix A: Points on Eu/Q(t)

Recall that in (3) and (4) we exhibit A and B1, . . . , B8 in Q[t, u] such that Eu/Q(t) has Weierstrass
equation y2

= x3
+ 2Ax2

+ Bx where B =
∏8

i=1 Bi . The minimal height of a nontorsion section
is 2, attained by 70 pairs (x,±y) with x, y ∈ Q(u,

√
5− u2)[t]. We find that 58 of the 70 pairs have

x, y ∈Q(u)[t]; these generate a Mordell–Weil subgroup of rank 8. One simple choice of generators of
this subgroup consists of points with x-coordinates

− B1 B2 B3 B6, −B1 B2 B4 B5, 4B1 B2 B5 B6, B1 B3 B4 B6,

− B1 B3 B4 B7, B1 B3 B4 B8, B1 B3 B5 B6, −B1 B5 B6 B7.
(7)

Extending Q(u) by
√

5− u2 yields Q(m) where m is a rational coordinate on the parametrizing Shimura
curve, with

u = 2
m2
−m− 1

m2+ 1
, (5− u2)1/2

=±
m2
+ 4m− 1
m2+ 1

; (8)

then adding −(m−1)2 B1 B2 B3 B8 to the list (7) gives x-coordinates of 9 Mordell–Weil generators modulo
torsion. The Gram matrix of canonical height pairings is

1
2



4 0 1 −1 0 2 −1 0 1
0 4 −1 −2 0 2 −2 0 0
1 −1 4 0 −1 1 −1 1 2
−1 −2 0 4 −1 −1 1 0 0

0 0 −1 −1 4 1 0 −2 0
2 2 1 −1 1 4 −2 −1 1
−1 −2 −1 1 0 −2 4 1 0

0 0 1 0 −2 −1 1 4 1
1 0 2 0 0 1 0 1 4


, (9)

with determinant 115/16.
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Appendix B: Models for record breaking curves

B.1. Overview. This section gives minimal integral models for each of the record breaking curves we
discovered, along with the x-coordinates of a set of points that, at a minimum, generates the torsion-free
part of each of them. We expect that this set of points generates the full torsion-free part of each curve
given, but have not tried to prove this rigorously.

By common convention we use a vector (a1, a2, a3, a4, a6) to mean the extended Weierstrass model

y2
+ a1xy+ a3x = x3

+ a2x + a4x + a6

whose coefficients are the vector’s entries. We usually depart from another common convention that
chooses the model with a1, a3 ∈ {0, 1} and a2 ∈ {−1, 0, 1}. Such models have the advantage of being
unique, but for curves with nontrivial torsion there may be one or more other choices that put a torsion
point at (x, y)= (0, 0) and have a coefficient vector with noticeably fewer digits (for starters a6 = 0 if
(0, 0) is on the curve).

When possible we give a generating set of E(Q) mod E(Q)tors consisting of integral points of small
height. For most of our curves there are plenty of such points to choose from, even though there can be
other curves with the same torsion group and somewhat lower rank that have even more integral points.

B.2. Z/2Z. A minimal model for the rank 20 curve having Z/2Z torsion has coefficients

(1,−1, 1,−244537673336319601463803487168961769270757573821859853707,

961710182053183034546222979258806817743270682028964434238957830989898438151121499931).

Here we reluctantly give a model with small a1, a2, a3 and huge a4, a6, because the torsion point has
x =−69288588686111702678625616725/4 and thus cannot be put at the origin on a minimal model.2

One choice of 20 points that generate its Mordell–Weil group modulo torsion has x-coordinates

−5976635286513806621064126789, 595416388787490259443766591,

2434562872293108275107029075, 3513074027344435171140978981,

399682145249051758133327419, −10714754038296881855524018251,

−16034220456847626275437501599, 1185828672355214392425799131,

−11190697582885409770718510409, 2634316446310680332042122261,

64222149978369055569434725591, 23945425437351916471937562579,

13094114400583295432756346651, 2689776334541089917424552236511,

−2627014038979941829331861469, 113605800622499112413124359631,

−7364938748841807757773625709, −14298222927159284914180072349,

785686589410787916270883192839, −2250170491079839258934900709.

Here and later we list generators in increasing order by canonical height.

2The coefficients (2,−207865766058335108035876850179,0,10490122792958386322093670444427223877319227761081795217921,0)

give a model with smaller coefficients that puts the torsion point at (0, 0) but is not minimal at 2.
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A minimal model for the rank 19 curve with Z/2Z torsion having smallest known discriminant has
coefficients

(1, 4040549489437705068551042, 0, 39096673111815206065773237234587256582331296000, 0).

One choice of 19 points that generate its Mordell–Weil group modulo torsion has x-coordinates

−3613294426098135199878600, 284077053735716552925900,

−69786343891815820666800, 6409078899434870587500,

4711243262341394854929360, −200862034480295787990300,

49746704013683926431600, 1283007628272047952000,

601243680664306184613420, 1681679070386109358006014,

−178674347439204200162150, −140058466067600728971180,

4490592251930741573760, −1245418009246864352006250,

239435938047242410050720, −2615926042511102882808000,

−3662820474106418641536000, 308679854892675472378120,

−12130119373140047385600.

B.3. Z/3Z. The rank 15 elliptic curve with coefficient vector

(490738465519, 0,−432802729180188878035670522423557875, 0, 0)

has a 3-torsion point at (x, y) = (0, 0). One choice of 15 points that generate its Mordell–Weil group
modulo torsion has x-coordinates

414082294873186000299147, −461076037958619691375950, 136016697778663191410466,

579811074194569447550775, 4156065765459153070875350, −379256436856490083222605,

−480257266200757201099125, 626879349686994759271350, 319402198167922579675875,

9987762741068630814895872, 1025559076978453798187316, 17710047123788181654048375,

236426830570889446065942, −162860681446721622110565, 1093411474853808475876875.

The rank 14 elliptic curve with coefficient vector

(6244332976, 0,−2204421250641922174556630375, 0, 0)

has a 3-torsion point at (x, y) = (0, 0). One choice of 14 points that generate its Mordell–Weil group
modulo torsion has x-coordinates

2907919170263662, −65199074165293250, 71604990115331040, 77567806466944000,

108999498650081840, 169617569990697350, −171009947870163008, −204167066230390100,

−240427032442334750, 243676691791782250, −256142889038646510, −276580713950955750,

368313341140417750, −449841531945448000.

B.4. Z/4Z. The first rank 13 curve with Z/4Z torsion has a minimal model with coefficient vector

(282887999996745,−1871148179781457712818452480,

−529325366275926422138597740307015937177600, 0, 0)

and a 4-torsion point at (x, y)= (0, 0). One choice of 13 points that generate its Mordell–Weil group
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modulo torsion has x-coordinates

37563104221873287230436120000, 1241851783771179145432296000,

1992140999686088390294877150, 30921042737991542683359263880,

−21195532433936174709304166400, −1464098167733086800531916800,

1670745991840921221771294750, 1252355926117744178967180450,

−1960920553671074388872220170, 1375293185347275499663130572800,

2549902537861429590505036800, 3272919221738028252106303872714,

102225511700163143939329914880.

The second rank 13 curve with Z/4Z torsion has a minimal model with coefficient vector

(230691818102905,−200100346570723590045845120,

−46161512753421616727023025112895852073600, 0, 0)

and a 4-torsion point at (x, y)= (0, 0). One choice of 13 points that generate its Mordell–Weil group
modulo torsion has x-coordinates

190412869629748629206788500, −11655521125151390350616252280,

−10482658909728296079200226100, −205253870232797421109008000,

193230556828647163522857600, 2390337099874364874239977850,

−10561431236301791011714683300, −1195165694989063921020955200,

876665740401972718169616600, −99112055810721390011710344,

−65566000913948267196883584, 166949951644450209072942720,

−26328612670314620364001050.

The third rank 13 curve with Z/4Z torsion has a minimal model with coefficient vector

(246888014319233,−8884285566590219865500325632,

−2193423622180481268696018169961040300480256, 0, 0)

and a 4-torsion point at (x, y)= (0, 0). One choice of 13 points that generate its Mordell–Weil group
modulo torsion has x-coordinates

−968516084234641058709370232, −1333726837303108113451614080,

1792794868671671366043266816, 2362595876319902581142656768,

−2746004168634841009972934984, 3469325866293712913010729024,

3644805279133239447459855232, 4449372053406414078540323280,

−4537829698895530474950049368, 5156996081584183666047796032,

5789474008645490085082165824, 5912795841516183863849831680,

10555676267250916670215460568.

B.5. Z/5Z. The rank 9 curve with Z/5Z torsion has a minimal model with coefficient vector

(708482657, 117729504717519240, 52073821615645373048930880, 0, 0).

The torsion group is generated by (x, y)= (0, 0). One choice of 9 points that generate the Mordell–Weil
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group modulo torsion has x-coordinates

−95393153480017302, 172086875265878580, −12976225316716116,

53638875373006560, −147039491421732240, 46489325594722920,

−148084847397297720, 21510303761449208160, 79310646743033160.

The rank 8 curve with Z/5Z torsion having smallest known conductor has a minimal model with
coefficient vector

(7102196, 9577255322635, 50689165733152681735, 0, 0).

The torsion group is generated by (x, y)= (0, 0). One choice of 8 points that generate the Mordell–Weil
group modulo torsion has x-coordinates

−11217531799903, −10836503720185, −4357099419673, 1401549559410,

256939125827615, −10247328030940, −6060818514894, −6697297034428.

The rank 8 curve with Z/5Z torsion having smallest known discriminant has a minimal model with
coefficient vector

(5890802, 3739409500365, 2706191958366648675, 0, 0).

The torsion group is generated by (x, y)= (0, 0). One choice of 8 points that generate the Mordell–Weil
group modulo torsion has x-coordinates

−21207376737, 37660080920, −89104376475, 100531079550,

117291419735, −120660570135, 148808336985, −214614453600.

B.6. Z/6Z. The rank 9 curve with Z/6Z torsion has a minimal model with coefficient vector

(−22029701, 0, 72328851024410157777600, 0, 0).

The torsion group is generated by (x, y)= (1945448965660200, 72328851024410157777600); multiply-
ing this point by 2 yields the 3-torsion point (0, 0). One choice of 9 points that generate the Mordell–Weil
group modulo torsion has x-coordinates

749629491053742, 6092756193428190, −1380249411088240,

−1067429532233440, 174532909579773030, 949536320242950,

1079473135677300, 24157188371048640, 3112751229126000.

The rank 8 curve with Z/6Z torsion and smallest known conductor and discriminant has a minimal
model with coefficient vector

(6308333, 0, 8325824903545553131, 0, 0).

The torsion group is generated by (x, y)= (8318014288129, 8325824903545553131); multiplying this
point by 2 yields the 3-torsion point (0, 0). One choice of 8 points that generate the Mordell–Weil group
modulo torsion has x-coordinates

−204062889121, 211687889245, −403788801990, −410295468023,

−733395115518, −823562706096, −859172099915, −2828410292799.



NEW RANK RECORDS FOR ELLIPTIC CURVES HAVING RATIONAL TORSION 249

B.7. Z/7Z. The rank 6 curve with Z/7Z torsion has a minimal model with coefficient vector

(−500894592455, 720663120331059917723712, 485010096730715360294683087532269632, 0, 0).

The torsion group is generated by (x, y)= (0, 0). One choice of 6 points that generate the Mordell–Weil
group modulo torsion has x-coordinates

−863240219455759708343872, 147841500613888155442368,

−655405721270483784258504, 227328163133810400709740,

17758591139156733971281176, 4457894404162347392127765558505920/795192.

The large final generator is inevitable: the first five generators have canonical heights between 15.434
and 19.431, but the last generator must have height at least 42.058 (we have made the minimal choice,
and with the smallest possible denominator among its seven torsion translates).
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The nearest-colattice algorithm:
Time-approximation tradeoff for approx-CVP

Thomas Espitau and Paul Kirchner

We exhibit a hierarchy of polynomial time algorithms solving approximate variants of the closest vector
problem (CVP). Our first contribution is a heuristic algorithm achieving the same distance tradeoff as
HSVP algorithms, namely ≈ βn/(2β)covol(3)1/n for a random lattice 3 of rank n. Compared to the so-
called Kannan’s embedding technique, our algorithm allows the use of precomputations and can be used
for efficient batch CVP instances. This implies that some attacks on lattice-based signatures lead to very
cheap forgeries, after a precomputation. Our second contribution is a proven reduction from approximating
the closest vector with a factor ≈ n3/2β3n/(2β) to the shortest vector problem (SVP) in dimension β.

1. Introduction

Lattices, CVP, SVP. In a general setting, a real lattice 3 is a finitely generated free Z-module, endowed
with a positive-definite quadratic form on its ambient space 3⊗Z R, or equivalently is a discrete subgroup
of a Euclidean space.

A fundamental lattice problem is the closest vector problem, or CVP for short. The goal of this
problem is to find a lattice point that is closest to a given point in its ambient space. This problem is
provably difficult to solve, being actually an NP-hard problem. It is known to be harder than the shortest
vector problem (SVP) [19], which asks for the shortest nonzero lattice point. SVP is the cornerstone of
lattice reduction algorithms (see, for instance, [33; 20; 29]). These algorithms are at the heart of lattice-
based cryptography [31], and are invaluable in plenty of computational problems, including Diophantine
approximation, algebraic number theory or optimization (see [30] for a survey on the applications of the
LLL algorithm).

On CVP-solving algorithms. There are three families of algorithms solving CVP:

Enumeration algorithms. These consist in recursively exploring all vectors in a set containing a closest
vector. Kannan’s algorithm takes time nO(n) and polynomial space [24]. This estimate was later refined
to nn/2+o(n) by Hanrot and Stehlé [21].
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Voronoi cell computation. Micciancio and Voulgaris’ Voronoi cell algorithm solves CVP in (4+ o(1))n

time but uses a space of (2+ o(1))n [28].

Sieving algorithms. Here, vectors are combined in order to get closer and closer to the target vector.
Heuristic variants take as little as

( 4
3 + o(1)

)n/2 time [7], but proven variants of classical sieves [3; 8; 15]
could only solve CVP with approximation factor 1+ ε at a cost in the exponent. In 2015, a (2+ o(1))n

sieve for exact CVP was finally proven by Aggarwal, Dadush and Stephen-Davidowitz [1] thanks to the
properties of discrete Gaussians.

Many algorithms for solving the relaxed variant, APPROX-CVP, have been proposed. However, they
come with caveats. For example, Dadush, Regev and Stephens-Davidowitz [10] give algorithms for this
problem, but only with exponential time precomputations. Babai [5, Theorem 3.1] showed that one can
reach a 2n/2-approximation factor for CVP in polynomial time. To the authors’ knowledge, this has never
been improved (while keeping the polynomial-time requirement), though the approximation factor for
SVP has been significantly reduced [33; 20; 29].

We aim to solve the relaxed version of CVP for relatively large approximation factors, and study the
tradeoff between the quality of the approximation of the solution found and the time required to actually
find it. In particular, we exhibit a hierarchy of polynomial-time algorithms solving APPROX-CVP, ranging
from Babai’s nearest plane algorithm to an actual CVP oracle.

Contributions and summary of the techniques. We introduce our so-called Nearest-Colattice al-
gorithm in Section 3. Inspired by Babai’s algorithm, it shows that in practice, we can achieve the
performance of Kannan’s embedding but with a basis which is independent of the target vector. Denote
by T (β) (resp. TCVP(β)) the time required to solve

√
β-Hermite-SVP (resp. exactly solve CVP) in rank β).

Quantitatively, we show:

Theorem 1.1 (informal). Let β > 0 be a positive integer and B be a basis of a lattice 3 of rank n > 2β.
After precomputations using a time bounded by T (β)(n+ log ‖B‖)O(1), given a target t ∈3R and under
a heuristic on the covering radius of a random lattice, the algorithm Nearest-Colattice finds a vector
x ∈3 such that

‖x − t‖ ≤2(β)
n

2β covol(3)
1
n

in time TCVP(β)(n+ log ‖t‖+ log ‖B‖)O(1).

Furthermore, the structure of the algorithms allows time-memory tradeoff and batch CVP oracle to be
used.

We believe that this algorithm has been in the folklore for some time, and it is somehow hinted at in
ModFalcon’s security analysis [9, Subsection 4.2], but without analysis of the heuristics introduced.

Our second contribution is an APPROX-CVP algorithm, which gives a time-quality tradeoff similar to
the one given by the BKZ algorithm [33; 21], or variants of it [17; 2]. Note however that the approximation
factor is significantly higher than the corresponding theorems for APPROX-SVP. Written as a reduction,
we prove that, for a γ -HSVP oracle O:
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Theorem 1.2 (APPROX-CVPP oracle from APPROX-SVP oracle). Let 3 be a lattice of rank n. Then one
can solve the (n3/2γ 3)-closest vector problem in 3, using 2n2 calls to the oracle O during precomputa-
tion, and polynomial-time computations.

Babai’s algorithm requires that the Gram-Schmidt norms do not decrease by too much in the reduced
basis. While this is true for an LLL reduced basis [26], we do not know a way to guarantee this in the
general case. To overcome this difficulty, the proof technique goes as follows: first we show that it is
possible to find a vector within distance 1

2(
√

nγ )λn(3) of the target vector, with the help of a highly-
reduced basis. This is not enough, as the target can be very closed compared to λn(3). We treat this
peculiar case by finding a short vector in the dual lattice and then directly computing the inner product
of the close vectors with our short dual vector. In the other case, Banaszczyk’s transference theorem [6]
guarantees that λn(3) is comparable to the distance to the lattice, so that we can use our first algorithm
directly.

Remark 1.3. Based on a result due to Kannan (see for instance [12]) that
√

nγ 2 CVP reduces to γ -SVP.
Combined with the reduction from γ 2-SVP to γ -HSVP of [27], we get a polynomial time reduction from
√

nγ 4-CVP to γ -HSVP. Hence, our result is better when n3/2γ 3 is at most
√

nγ 4, i.e., when n < γ .

2. Algebraic and computational background

In this preliminary section, we recall the notions of geometry of numbers used throughout this paper,
the computational problems related to SVP and CVP, and a brief presentation of some lattice reduction
algorithms solving these problems.

Notation and conventions.

General notations. Z, Q and R refer as usual to the ring of integers and the fields of rational and real
numbers. Given a real number x , the integral roundings floor, ceil and round to the nearest integer
are denoted respectively by bxc, dxe, bxe. All logarithms are taken in base 2, unless explicitly stated
otherwise.

Computational setting. The generic complexity model used in this work is the random-access machine
(RAM) model and the computational cost is measured in operations.

2.1. Euclidean lattices and their geometric invariants.

2.1.1. Lattices.

Definition 2.1 (lattice). A (real) lattice 3 is a finitely generated free Z-module, endowed with a Eu-
clidean norm ‖ · ‖ on the real vector space 3R =3⊗Z R.

We may omit to write down the norm to refer to a lattice 3 when any ambiguity is removed by the
context. By definition of a finitely-generated free module, there exists a finite family (v1, . . . , vn) ∈3

n

such that 3=
⊕n

i=1 vi Z, called a basis of 3. Every basis has the same number of elements rk(3), called
the rank of the lattice.
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2.1.2. Sublattices and quotient lattice. Let (3, ‖ · ‖) be a lattice, and let 3′ be a submodule of 3. Then
the restriction of ‖ · ‖ to 3′ endows 3 with a lattice structure. The pair (3′, ‖ · ‖) is called a sublattice
of 3. In the remainder of this paper, we restrict ourselves to so-called pure sublattices, that is, those
such that the quotient 3/3′ is torsion-free. In this case, the quotient can be endowed with a canonical
lattice structure by defining

‖v+3′‖3/3′ = inf
v′∈3′R

‖v− v′‖3.

This lattice is isometric to the projection of 3 orthogonally to the subspace of 3R spanned by 3′.

2.1.3. On effective lifting. Given a coset v+3′ of the quotient 3/3′, we might need to find a repre-
sentative of this class in 3. While any element could be theoretically taken, from an algorithmic point
of view, we shall take an element of norm somewhat small, so that its coefficients remain polynomial
in the input representation of the lattice. An effective solution to do so consists in using, for instance,
the Babai’s rounding or Babai’s nearest plane algorithms. For completeness purposes we recast here the
pseudo-code of such a Lift function using the nearest-plane procedure.

Algorithm 1: Lift (by Babai’s nearest plane)

Input: A lattice basis B = (v1, . . . , vk) of 3′ in 3, a vector t ∈3R.
Result: A vector of the class t̃ +3′ ∈3.

1 Compute the Gram-Schmidt orthogonalization (v∗1 , . . . , v
∗

k ) of B
2 s←−t
3 for i = k downto 1 do

4 s← s−
⌊
〈s,v∗i 〉
‖v∗i ‖

2

⌉
vi

5 return t + s

2.1.4. Orthogonality and algebraic duality. The dual lattice 3∨ of a lattice 3 is defined as the module
Hom(3,Z) of integral linear forms, endowed with the derived norm defined by

‖ϕ‖ = inf
v∈3R\{0}

|ϕ(v)|

‖v‖3

for ϕ ∈ 3∨. By Riesz’s representation theorem, it is isometric to {x ∈ 3R | 〈x, v〉 ∈ Z for all v ∈ 3}
endowed with the dual of ‖ · ‖3.

Let 3′ ⊂3 be a sublattice. Define its orthogonal in 3 to be the sublattice 3′
⊥
= {x ∈3∨ : 〈x,3′〉 = 0}

of 3∨. It is isometric to (3/3′)∨, and by biduality 3′ ∨
⊥

shall be identified with 3/3′.

2.1.5. Filtrations. A filtration (or flag) of a lattice 3 is an increasing sequence of submodules of 3, i.e.,
each submodule is a proper submodule of the next: {0} =30 ⊂31 ⊂32 ⊂ · · · ⊂3k =3. If we write
rk(3i )= di , then we have 0= d0 < d1 < d2 < · · ·< dk = rk(3). A filtration is called complete if di = i
for all i.
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uv
µ(3)

Figure 1. Covering radius µ(3) of a two-dimensional lattice 3.

2.1.6. Successive minima, covering radius and transference. Let 3 be a lattice of rank n. By discreteness
in 3R, there exists a vector of minimal norm in 3. This parameter is called the first minimum of the
lattice and is denoted by λ1(3). An equivalent way to define this invariant is to see it as the smallest
positive real r such that the lattice points inside a ball of radius r span a space of dimension 1. This
definition leads to the following generalization, known as successive minima.

Definition 2.2 (successive minima). Let 3 be a lattice of rank n. For 1≤ i ≤ n, define the i-th minimum
of 3 as λi (3)= inf{r ∈ R| dim(span(3∩ B(0, r)))≥ i}.

Definition 2.3. The covering radius of a lattice 3 or rank n is defined as

µ(3)= max
x∈3R

dist(x,3).

It means that for any vector of the ambient space x ∈3R there exists a lattice point v ∈3 at distance
at most µ(3).

We now recall Banaszczyk’s transference theorem, relating the extremal minima of a lattice and its
dual:

Theorem 2.4 (Banaszczyk’s transference theorem [6]). For any lattice 3 of dimension n, we have

1≤ 2λ1(3
∨)µ(3)≤ n,

implying
1≤ λ1(3

∨)λn(3)≤ n.

2.2. Computational problems in geometry of numbers.

2.2.1. The shortest vector problem. In this section, we introduce formally the SVP problem and its vari-
ants and discuss their computational hardness.

Definition 2.5 (γ -SVP). Let γ = γ (n)≥ 1. The γ -shortest vector problem (γ -SVP) is defined as follows.

Input: A basis (v1, . . . , vn) of a lattice 3 and a target vector t ∈3R.

Output: A lattice vector v ∈3 \ {0} satisfying ‖v‖ ≤ γ λ1(3).
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In the case where γ = 1, the corresponding problem is simply called SVP.

Theorem 2.6 (Haviv and Regev [22]). APPROX-SVP is NP-hard under randomized reductions for every
constant approximation factor.

A variant of the problem consists of finding vectors in Hermite-like inequalities.

Definition 2.7 (γ -HSVP). Let γ = γ (n)≥ 1. The γ -Hermite shortest vector problem (γ -HSVP) is defined
as follows.

Input: A basis (v1, . . . , vn) of a lattice 3.

Output: A lattice vector v ∈3 \ {0} satisfying ‖v‖ ≤ γ covol(3)1/n .

There exists a simple polynomial-time dimension-preserving reduction between these two problems,
as stated by Lovász in [27, 1.2.20]:

Theorem 2.8. One can solve γ 2-SVP using 2n calls to a γ -HSVP oracle and polynomial time.

This can be slightly improved where the HSVP oracle is built from an HSVP oracle in lower dimension [2].

2.2.2. An oracle for γ -HSVP. We note a function T (β) such that we can solve O(
√
β)-HSVP in time at

most T (β) times the input size. We have the following bounds on T , depending on if we are looking at
an algorithm which is:

deterministic: T (β)= (4+ o(1))β/2, proven by Micciancio and Voulgaris in[28];

randomized: T (β)= (4/3+ o(1))β/2 , introduced by Wei, Liu and Wang in [36];

heuristic: T (β)= (3/2+ o(1))β/2, given in [7] by Becker, Ducas, Gama, Laarhoven.

There also exist variants for quantum computers [25], and time-memory tradeoffs, such as [23]. By
providing a back-and-forth strategy coupled with enumeration in the dual lattice, the self dual block
Korkine-Zolotarev (DBKZ) algorithm provides an algorithm better than the famous BKZ algorithm.

Theorem 2.9 (Micciancio and Walter [29]). There exists an algorithm outputting a vector v of a lattice 3
satisfying

‖v‖ ≤ β
n−1

2(β−1) · covol(3)
1
n .

Such a bound can be achieved in time (n+ log ‖B‖)O(1)T (β), where B is the integer input basis repre-
senting 3.

Proof. The bound we get is a direct consequence of [29, Theorem 1]. We only replaced the Hermite
constant γβ by an upper bound in O(β). �

A stronger variant of this estimate is heuristically true, at least for “random” lattices, as it is suggested
by the Gaussian heuristic in [29, Corollary 2]. Under this assumption, one can bound not only the length
of the first vector but also the gap between the covolumes of the filtration induced by the outputted basis.
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Theorem 2.10. There exists an algorithm outputting a complete filtration of a lattice 3 satisfying:

covol(3i/3i−1)≈2(β)
n+1−2i
2(β−1) covol(3)

1
n .

Such a bound can be achieved in time (n+ log ‖B‖)O(1)T (β), where B is the integer-valued input basis.
Further, we have

2(
√
β) covol

1
β (3n/3n−β)≈ covol (3n−β+1/3n−β).

2.3. The closest vector problem. In this section we introduce formally the CVP problem and its variants
and discuss their computational hardness.

Definition 2.11 (γ -CVP). Let γ = γ (n)≥ 1. The γ -closest vector problem (γ -CVP) is defined as follows.

Input: A basis (v1, . . . , vn) of a lattice 3 and a target vector t ∈3⊗R.

Output: A lattice vector v ∈3 satisfying ‖x − t‖ ≤ γ minv∈3 ‖v− t‖.

In the case where γ = 1, the corresponding problem is called CVP.

Theorem 2.12 (Dinur, Kindler and Shafra [11]). nc/(log log n)-APPROX-CVP is NP-hard for any c > 0.

We let TCVP(β) be such that we can solve CVP in dimension β in running time bounded by TCVP(β)

times the size of the input. Hanrot and Stehlé proved ββ/2+o(β) with polynomial memory [21]. Sieves
can provably reach (2+ o(1))β with exponential memory [1]. More importantly for this paper, heuristic
sieves can reach (4/3+ o(1))β/2 for solving an entire batch of 20.058β instances [13].

3. The nearest colattice algorithm

We aim to solve the γ -APPROX-CVP by recursively exploiting the datum of a filtration

30 ⊂31 ⊂ · · · ⊂3k =3

via recursive approximations. The central object used during this reduction is the nearest colattice relative
to a target vector.

In this section, and the next one, we assume that the size of the bases is always small, essentially as
small as the input basis. This is classic, and can be easily proven.

3.1. Nearest colattice to a vector.

Definition 3.1. Let 0→3′→3→3/3′→ 0 be a short exact sequence of lattices, and set t ∈3R to
be a target vector. A nearest 3′-colattice to t is a coset v = v+3′ ∈3/3′ which is the closest to the
projection of t in 3R/3

′

R, i.e., such that v = argminv∈3 ‖(t − v)+3
′
‖3R/3

′

R
.

This definition makes sense thanks to the discreteness of the quotient lattice 3/3′ in the real vector
space 3R/3

′

R.
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3/32

t

v+32

32

t +32

0

π2(v)
π2(t)

31
t

π1(t)

t +31v+31

3/31
π1(v)0

Figure 2. The 32-nearest colattice v+32 relative to t , in green (left). The 31-nearest colattice
v+31 relative to t (right).

Example. To illustrate this definition, we give two examples in dimension 3, of rank 1 and 2 nearest
colattices. Set 3 to be a rank 3 lattice, and fix 31 and 32 to be two pure sublattices of respective
ranks 1 and 2. Denote by πi the canonical projection onto the quotient 3/3i , which is of dimension
3− i for i ∈ {1, 2}. The 3i -closest colattice to t , denoted by vi +3i , is such that πi (vi ) is a closest
vector to πi (t) in the corresponding quotient lattice. Figure 2 (left) and (right), respectively, depict these
situations.

Remark 3.2. A computational insight into Definition 3.1 is given by viewing a nearest colattice as a
solution to an instance of exact-CVP in the quotient lattice 3/3′.

Taking the same notation as in Definition 3.1, let us project t orthogonally onto the affine space v+3′R,
and take w to be a closest vector to this projection. The vector w is then relatively close to t . Let us
quantify its defect of closeness towards an actual closest vector to t :

Proposition 3.3. With the same notation as above: ‖t −w‖2 ≤ µ(3/3′)2+µ(3′)2.

Proof. This is clear by Pythagoras’ theorem. �

By definition of the covering radius, we then have:

Corollary 3.4 (subadditivity of the covering radius over short exact sequences). Let

0→3′→3→3/3′→ 0

be a short exact sequence of lattices. Then we have µ(3)2 ≤ µ(3/3′)2+µ(3′)2.

This inequality is tight, and is an equality when there exists a sublattice 3′′ such that 3′⊕3′′ =3
and 3′′ ⊆3′

⊥
.
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3.2. Recursion along a filtration. Let us now consider a filtration 30 ⊂ 31 ⊂ · · · ⊂ 3k = 3 and a
target vector t ∈3R. Repeatedly applying Corollary 3.4 along the subfiltrations 0⊂3i ⊂3i+1, yields a
sequence of inequalities µ(3i+1)

2
−µ(3i )

2
≤µ(3i+1/3i )

2. The telescoping sum now gives the relation
µ(3)2 ≤

∑k
i=1 µ(3i+1/3i )

2. This formula has a very natural algorithmic interpretation as a recursive
oracle for approx-CVP:

(1) Starting from the target vector t , we solve the CVP instance corresponding to π(t) in the quotient
3k/3k−1 with π the canonical projection onto this quotient to find v +3k−1, the nearest 3k−1-
colattice to t .

(2) We then project t orthogonally onto v+ (3k−1⊗Z R). Call this vector t ′.

(3) A recursive call to the algorithm on the instance (t ′− v,30 ⊂ · · · ⊂3k−1)) yields a vector w ∈32.

(4) Return w+ v.

Its translation in pseudo-code is given in an iterative manner in the algorithm Nearest-Colattice.

Algorithm 2: Nearest-Colattice

Input: A filtration {0} =30 ⊂31 ⊂ · · · ⊂3k =3, a target t ∈3R.
Result: A vector in 3 close to t .

1 s←−t
2 for i = k downto 1 do
3 s← s− Lift(argminh∈3i/3i−1

‖v− h‖)
4 return t + s

Proposition 3.5. Let B be a basis of a lattice 3 of rank n. Given a target t ∈ 3R, the algorithm
Nearest-Colattice finds a vector x ∈3 such that ‖x − t‖2 ≤

∑k
i=1 µ(3i+1/3i )

2 in time

TCVP(β)(n+ log ‖t‖+ log ‖B‖)O(1),

where β is the largest gap of rank in the filtration β =maxi (rk(3i+1)− rk(3i )).

Proof. The bound on the quality of the approximation is a direct consequence of the previous discussion.
The running time bound derives from the definition of TCVP and the fact that the Lift operations can be
conducted in polynomial time. �

Remark 3.6 (retrieving Babai’s algorithm). In the specific case where the filtration is complete, that is to
say that rk(3i )= i for each 1≤ i ≤ n, the Nearest-Colattice algorithm coincides with the so-called
Babai’s nearest plane algorithm. In particular, it recovers a vector at distance√∑n

i=1
µ(3i/3i−1)2 =

1
2

√∑n

i=1
covol(3i/3i−1)2,

since for each index i , we have µ(3i/3i−1)=
1
2 covol(3i/3i−1) as these quotients are one-dimensional.
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The bound given in Proposition 3.5 is not easily instantiable as it requires having access to the covering
radius of the successive quotients of the filtration. However, under a mild heuristic on random lattices,
we now exhibit a bound which only depends on the parameter β and the covolume of 3.

3.3. On the covering radius of a random lattice. In this section we prove that the covering radius of a
random lattice behaves essentially in

√
rk(3).

In 1945, Siegel [34] proved that the projection of the Haar measure of SLn(R) over the quotient
SLn(R)/SLn(Z) is of finite mass, yielding a natural probability distribution νn over the moduli space Ln of
unit-volume lattices. By construction this distribution is translation-invariant, that is, for any measurable
set S ⊆ Ln and all U ∈ SLn(Z), we have νn(S) = νn(SU ). A random lattice is then defined as a
unit-covolume lattice in Rn drawn under the probability distribution νn .

We first recall an estimate due to Rogers [32], giving the expectation1 of the number of lattice points
in a fixed set.

Theorem 3.7 (Rogers’ average). Let n ≤ 4 be an integer and ρ be the characteristic function of a Borel
set C of Rn whose volume is V , centered at 0. Then:

0≤
∫
Ln

ρ(3 \ {0}) dνn(3)− 2e−V/2
∞∑

r=0

r
r !
(V/2)r ≤ (V + 1)

(
6
(√

3
4

)n
+ 105 · 2−n

)
.

This allows us to prove that the first minimum of a random lattice is greater than a multiple of
√

n.

Lemma 4. Let 3 be a random lattice of rank n. Then, with probability 1− 2−�(n), λ1(3) > c
√

n for a
universal constant c > 0.

Proof. Consider the ball C of volume V = 0.99n . Its radius is equal to 0.99π−1/20
( n

2 + 1
)1/n , which is

lower bounded by c
√

n for a constant c > 0, using for instance Stirling’s estimate. By Theorem 3.7, the
expectation of the number of lattice points in C is at most

128
( 3

4

) n
2 (V + 1)+ V ∈ (1+ o(1))V .

This estimate upper bounds the probability that there exists a nonzero lattice vector in C by 2−�(n), using
Markov’s inequality on the positive random variable |3∩C |. �

Using the transference theorem, we then derive the following estimate on the covering radius of a
random lattice:

Theorem 4.1. Let 3 be a random lattice of rank n. Then, with probability 1− 2−�(n), µ(3) < d
√

n for
a universal constant d.

Proof. First note that the dual lattice 3∨ follows the same distribution as 3. Hence, using the estimate
of Lemma 4, we know that with probability 1− 2−�(n), λ1(3

∨) > c
√

n. Banaszczyk’s transference

1The result proved by Rogers is actually more general and bounds all the moments of the enumerator of lattice points. For
the purpose of this work, only the first moment is actually required.
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theorem indicates that in this case,

µ(3)≤
n

λ1(3∨)
≤

√
n

c
,

concluding the proof. �

This justifies the following heuristic:

Heuristic 4.2. In algorithm Nearest-Colattice, for any index i , we haveµ(3i+1/3i )≤cλ1(3i+1/3i )

for some universal constant c.

The Gaussian heuristic suggests that “almost all” targets t are at distance (1+ o(1))λ1(3), so that for
practical purposes in the analysis we can take c = 1 in Heuristic 4.2.

4.1. Quality of the algorithm on random lattices.

Theorem 4.3. Let β > 0 be a positive integer and B be a basis of a lattice 3 of rank n > 2β. After
precomputations using a time bounded by T (β)(n + log ‖B‖)O(1), given a target t ∈ 3R and under
Heuristic 4.2, the algorithm Nearest-Colattice finds a vector x ∈3 such that

‖x − t‖ ≤2(β)
n

2β covol(3)
1
n

in time TCVP(β)Poly(n, log ‖t‖, log ‖B‖).

Proof. We start by reducing the basis B of 3 using the DBKZ algorithm, and collect the vectors in blocks
of size β, giving a filtration

{0} =30 ⊂31 ⊂ · · · ⊂3k =3,

for k =
⌈ n
β

⌉
and rk(3i+1/3i )= β for each index i except the penultimate one, of rank n−β

⌊ n
β

⌋
. We

define li as rk(3i+1/3i ). By Theorem 2.10 and finite induction in each block using the multiplicativity
of the covolume over short exact sequences, we have for i < k− 1,

covol(3i+1/3i )
1
li ≈ covol(3)

1
n

( iβ+li−1∏
j=iβ

2(β)
n+1−2 j
2(β−1)

) 1
li

=2(β)
n+2−2iβ−li

2(β−1) covol(3)
1
n .

We also have

2(
√
β) covol(3k/3k−1)

1/β
≈2(β)

n+1−2(n−β)
2(β−1) covol

1
n 3

so that the previous approximation is also true for i = k− 1. Using Heuristic 4.2 and Minkowski’s first
theorem, we can estimate the covering radius of this quotient as

µ(3i+1/3i )≤2(
√

li )2(β)
n+2−2iβ−li

2(β−1) covol
1
n 3.
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Proposition 3.5 now asserts that Nearest-Colattice returns a vector at distance from t bounded by

covol(3)
1
n

k∑
i=0

2(
√

li )2(β)
n+2−2iβ−li

2(β−1) =2(β)
n

2β−2 covol(3)
1
n

where the last equality stems from the condition n ≥ 2β, so that only the first term is significant. �

Note that in the algorithm, all lattices depend only on 3, not on the targets. Therefore, it is possible
to use CVP algorithms after precomputations. These algorithms are significantly faster; we refer to [13]
for heuristic ones and to [10; 35] for proven approximation algorithms.

5. Proven APPROX-CVP algorithm with precomputation

In all of this section, let us fix an oracle O, solving the γ -HSVP. We solve APPROX-CVP with prepro-
cessing from the oracle O.

Theorem 5.1 (APPROX-CVPP oracle from HSVP oracle). Let 3 be a lattice of rank n. Then one can solve
the (n3/2γ 3)-closest vector problem in 3, using 2n2 calls to the oracle O during precomputation, and
polynomial time computations.

The first step of this reduction consists in proving that we can find a lattice point at a distance
roughly λn(3).

Theorem 5.2. Let 3 be a lattice of rank n and t ∈ 3⊗R a target vector; then one can find a lattice
vector c ∈3 satisfying ‖c− t‖ ≤ 1

2
√

nγ λn(3), using n calls to the oracle O during precomputation, and
polynomial time computations.

Proof. We aim to construct a complete filtration {0} ⊂31 ⊂ · · · ⊂3n =3 of the input lattice 3 such
that for any index 1≤ i ≤ n− 1, we have covol(3i/3i−1)≤ γ λn(3). We proceed inductively:

• By a call to the oracle O on the lattice 3, we find a vector b1. Set 31 = b1Z to be the corresponding
sublattice.

• Suppose that the filtration is constructed up to index i . Then we call the oracle O on the quotient
sublattice 3/3i (or equivalently on the projection of 3 orthogonally to 3i ), and lift the returned
vector using the Lift function in v ∈3. Eventually we set 3i+1 =3i ⊕ vZ.

At each index, we have by construction λn−i+1(3/3i )≤ λn(3). As such, covol(3/3i )≤ λn(3)
n−i+1,

and, eventually, we have, for each index i ,

covol(3i/3i−1)≤ γ · λn(3).

As stated in Remark 3.6, Babai’s algorithm on the point t returns a lattice vector c ∈ 3 such that

‖c− t‖ ≤
√∑n

i=1 µ(3i/3i−1)2 ≤
1
2(
√

nγ λn(3)). �
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Remark 5.3 (on the quality of this decoding). For a random lattice, we expect λn(3)≈
√

n covol(3)1/n ,
so that the distance between the decoded vector and the target is only a factor γ times larger than the
guaranteed output of the oracle.

We can now complete the reduction:

Proof of Theorem 5.1. Let 3 be a rank n lattice. Without loss of generality, we might assume that the
norm ‖ · ‖ of 3 coincides with its dual norm, so that the dual 3∨ can be isometrically embedded in 3R.
We first find a nonzero vector in the dual lattice c ∈3∨, where ‖c‖ ≤ γ 2λ1(3

∨) using Lovász’s reduction
stated in Theorem 2.8 on the oracle O. Define v ∈3 and e ∈3⊗R to satisfy t = v+e with ‖e‖ minimal.
We now have two cases, depending on how large the error term e is:

Case ‖c‖‖e‖ ≥ 1
2 (large case): Then, by plugging Banaszczyk’s transference inequality to the bound on

‖c‖, we get

‖e‖ ≥
1

2γ 2λ1(3∨)
≥
λn(3)

2nγ 2 .

Thus, we can use Theorem 5.2 to solve APPROX-CVP with approximation factor equal to
√

nγ
2

(
1

2nγ 2

)−1

= n
3
2 γ 3.

Case ‖c‖‖e‖ < 1
2 (small case): Then, we have by linearity, 〈c, t〉 = 〈c, v〉 + 〈c, e〉. Hence, by the

Cauchy–Schwarz inequality and the assumption on ‖c‖‖e‖ we can assert that

b〈c, t〉e = 〈c, v〉.

Let3′ be the projection of3 over the orthogonal space to c and denote by π the corresponding orthogonal
projection.

Let us prove that π(v) is a closest vector of π(t) in3′. To do so, let us take p̃ a shortest vector π(t) in3.
We now look at the fiber (in3) above p̃ and take the closest element p to t in this set. Then by Pythagoras’
theorem, p is an element of the intersection of π−1( p̃) with the convex body D =

{
x | |〈c, x〉|< 1

2

}
. As

the vector c belongs to the dual of 3, we have that for any p1, p2 ∈ π
−1( p̃), 〈p1− p2, c〉 ∈ Z, so that

π−1( p̃)∩D is of cardinality one. Write p for this point. Then, 〈p, c〉 = 〈v, c〉, as |〈p− v, c〉|< 1
2 and

is an integer. Now remark that by minimality of ‖v− t‖, we have by Pythagoras’ theorem that v = p,
implying that π(v)= p̃.

By induction, we find w ∈3 such that ‖π(w−t)‖≤ n3/2γ 3
‖π(v−t)‖ and since 〈c, w− t〉= 〈c, v− t〉

we obtain ‖w− t‖ ≤ n3/2γ 3
‖v− t‖. �

Overall, we get the following corollary by using the Micciancio-Voulgaris algorithm for the oracle O:

Corollary 5.4. We can solve βO(n/β)-APPROX-CVP deterministically in time bounded by 2β times the
size of the input.

Remark 5.5. Using exactly the same proof scheme, we can refine the approximation factor to an n3/2γSγ

by using a separate γS-SVP oracle instead of using γ -HSVP as a γ 2-SVP oracle.
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〉
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〉
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1

p̃ π−1( p̃)

Figure 3. Illustration of the situation depicted in the proof, in the two-dimensional case.

6. Cryptographic perspectives

In cryptography, the bounded distance decoding (BDD) problem2 has a lot of importance, as it directly
relates to the celebrated learning with error (LWE) problem [31]. This latter problem can be reduced to
APPROX-CVP, but our theoretical reduction with HSVP has a loss which is too large to be competitive.

In the so-called GPV framework [18], instantiated in the DLP cryptosystem [14] and its follow-ups
FALCON [16], MODFALCON [9], a valid signature is a point close to a target, which is the hash of the
message. Hence, forging a signature boils down to finding a close vector to a random target. Our first
(heuristic) result implies that, once a reduced basis has been found, forging a message is relatively easy.
Previous methods such as in [16] used Kannan’s embedding [24] so that the cost given only applies for
one forgery, whereas a batch forgery is possible for roughly the same cost.

The same remark applies for practically solving the BDD problem, and indeed the LWE problem. Once
a highly reduced basis is found, it is enough to compute a CVP on the tail of the basis, and finish with
Babai’s algorithm. More precisely, by using the same notation and exploiting the proof of Theorem 4.3,
a sufficient condition for decoding will be

‖π(e)‖ ≤ θ(β)
2β−n

2β covol(3)
1
n ,

where, π is the orthogonal projection onto 3/3k and β is the rank of this latter lattice.
This trick seems to have been in the folklore for some time, and is the reason given by NEWHOPE [4]

designers for selecting a random “a”, which corresponds to a random lattice (where the authors of [4]
claim that Babai’s algorithm is enough, but it seems to be practically true in general for an extremely
well reduced basis, i.e., with more precomputations performed).

2This problem being defined as finding the closest lattice vector of a target, provided it is within a fraction of λ1(3).
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Cryptanalysis of the
generalised Legendre pseudorandom function

Novak Kalud̄erović, Thorsten Kleinjung, and Dušan Kostić

Linear Legendre pseudorandom functions were introduced in 1988 by Damgård, and higher degree gen-
eralisations were introduced by Russell and Shparlinski in 2004. We present new key recovery methods
that improve the state of the art for both cases. For degree r ≥ 3 we give an attack that runs in time
O(pr−3) after O(p3) precomputation for the most relevant high degree case; it is based on the action
of the group of Möbius transformations on degree r polynomials. For r < 3 we give an O(pr/2) attack
with O(pr/4) oracle queries. In the linear case we recovered the keys for the 64, 74 and 84-bit prime
Ethereum challenges, being the first to solve the 84-bit case.

1. Introduction

The usage of Legendre symbols in a pseudorandom function (PRF) is an idea originally proposed by
Damgård [3]. Further generalisations with higher degree polynomials were proposed by Russell and
Shparlinski [9]. In both cases a prime p is given and the Legendre PRF is modelled as an oracle O that on
input x outputs the Legendre symbol

( f (x)
p

)
, where f (x)∈ Fp[x] is a secret key. Damgård conjectured that

when f is linear, given a sequence of Legendre symbols of consecutive elements it is hard to predict the
next one. Similar problems conjectured to be hard were also proposed [7], such as finding the secret poly-
nomial while being given access to O and distinguishing O from a random function. So far no polynomial
time algorithms have been found for either of these problems and it is believed that they are hard. Until
recently, practical applications have been limited, primarily due to availability of much faster alternatives.

A recent result by Grassi et al. [7] sparked an interest in the linear Legendre PRF because it was found
suitable as a multiparty computation (MPC) friendly pseudorandom generator. This is mainly due to
the homomorphic property of the Legendre symbol and the possibility of evaluating it with only three
modular multiplications in arithmetic circuit multiparty computations, which makes it a very efficient
MPC friendly PRF candidate.

There are plans to use this construction as a PRF for a proof of custody scheme in the Ethereum
blockchain [6]. The proof of custody scheme requires a mix function, i.e., a pseudorandom function
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268 NOVAK KALUÐEROVIĆ, THORSTEN KLEINJUNG, AND DUŠAN KOSTIĆ

that produces one bit of output. The Legendre PRF was shown to be a great candidate for this purpose
because of its efficiency. In comparison, SHA256 requires tens of thousands of multiplications while
AES needs 290 in the MPC setting [6].

In order to raise interest in this construction, a number of Ethereum research challenges have been
posted [6]. The goal is to recover the secret key given 220 consecutive Legendre symbols, for primes of
size varying from 64 to 148 bits.

1A. Contribution. In this paper we analyse the action of the group of Möbius transformations on monic
polynomials of degree r , and we use it to give an improved attack on the Legendre pseudorandom
function. For polynomials of degree r ≥ 3 modulo a prime p we distinguish three types of polynomials
and for the most relevant case we give an O(pr−3) attack after an O(p3) precomputation with p oracle
queries. For degree r < 3 an O(pr/2) attack is given with pr/4 queries. If the number of queries M
is limited, we give an O(pr log p/M2) attack. These are improvements with respect to the previous
algorithms [2; 8] of factor from p up to p3 in the general case, and even higher for a new family of
bad keys. In the linear and limited query case a factor of log p fewer trials in the search phase are
needed.

We also give the solutions to challenges 0, 1 and 2 of the Ethereum research linear Legendre PRF for
64, 74 and 84-bit primes. In all cases we were given access to 220 Legendre symbols.

2. Background

Let p be an odd prime. Throughout the paper we suppose that the prime is public.1 We denote with Fp

the field of cardinality p.

2A. Notation.

Definition 2.1 (pseudorandom functions). A pseudorandom function family {Ok}k is a set of functions
with the same domain and codomain indexed by a set of keys k such that a function Ok chosen randomly
over the set of k-values cannot be distinguished from a random function.

Definition 2.2 (Legendre symbol). We define the Legendre symbol by setting(
x
p

)
= x

p−1
2 =

{
1 if x ∈ Fp is a square mod p,

−1 if x ∈ Fp is not a square mod p.

In general the Legendre symbol is defined by setting
(0

p

)
= 0, which makes the symbol multiplicative.

However this comes at a cost of increasing the size of the codomain. In practice
(0

p

)
= 1 is used.

We will assume that the multiplicative property of the Legendre symbol stands. This is a nonproblem
and the reader should be easily convinced that the algorithms we give terminate in the same expected
time and with the same probability.

1Originally, as proposed by Damgård, the prime was considered secret. We chose only to pursue the case of a public prime,
as in the MPC use case.
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Definition 2.3 (Legendre sequence). We define a Legendre sequence with starting point a and length L
to be the sequence of Legendre symbols evaluated at L consecutive elements starting from a. We denote
it with {a}L :

{a}L :=
(

a
p

)
,

(
a+ 1

p

)
,

(
a+ 2

p

)
, . . . ,

(
a+ L − 1

p

)
.

Every a fully determines its sequence of length L , but not vice versa — that property depends on L . In
general, these sequences are as well distributed as one can hope them to be. We know already that when
L = 1 half of the a-values give 1, and the other half give −1. Similar properties are true for larger L ,
and in general, following a theorem of Davenport, around one in 2L elements of Fp is a starting point of
a given sequence of length L .

Theorem 2.4 (Davenport, 1933 [4]). Let S be a finite sequence of ±1’s of length L. Then the number of
elements of Fp whose sequence is equal to S satisfies

#
{

a ∈ Fp

∣∣∣ {a}L = S
}
=

p
2L + O(pε)

where 0< ε < 1 is a constant depending only on L.

Throughout the paper we assume that L is such that {a}L uniquely defines a, i.e., that

{a}L = {b}L if and only if a = b. (2-1)

It is easy to see that if we want this property to hold, we need L =�(log2 p). The only provable upper
bound we have comes from the Weil bound [10] and is L = O(

√
p log p) which is exponential.

Our computational results, together with other statistical data on the distribution of Legendre se-
quences [3], indicate that on average over all sequences S of length L , there are p/2L

+ O(1) elements
whose Legendre sequences are equal to S. In other words, for a random S and a random j we have
{ j}L = S with probability 1/2L . A good estimate of L in terms of p is L = [2 log2 p].

2B. The Legendre pseudorandom function. In this section we define the Legendre pseudorandom func-
tion and its higher degree generalisation.

Definition 2.5 (Legendre PRF). The Legendre pseudorandom functions are functions Ok from Fp to
{−1, 1} indexed by k ∈ Fp and defined as

Ok(x)=
(

x + k
p

)
.

Definition 2.6 (higher degree Legendre PRF). The Legendre pseudorandom functions of degree r are a
family of functions O f from Fp to {−1, 1} indexed by f = kr xr

+ · · ·+ k1x + k0 ∈ Fp[x] and defined as

O f (x)=
(

f (x)
p

)
.

The degree r is assumed to be polylogarithmic in p.
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Two oracles O f (x) and O f/kr (x) are the same up to multiplication by
(kr

p

)
and therefore we can assume

the polynomial f to be monic. The case of linear f (x) reduces to the standard Legendre PRF which we
thus from now on refer to as the linear Legendre PRF.

The polynomial f (x) is considered up to multiplication by a square since the Legendre symbol is
invariant under square factors of f (x). This is not entirely true as a square linear factor introduces a zero
and may change the output of the oracle at one point, but the reader should be convinced that this can be
safely ignored.

The secret key space, i.e., the space from which we choose f (x) is the space of monic polynomials
modulo squares. The number of such polynomials equals pr

− pr−1 for r > 1 (see [1], problem 3.3) and
p for r = 1.

Definition 2.7 (generalised Legendre sequence). The length L Legendre sequence of a polynomial f (x)
is denoted by { f }L and defined as

{ f }L :=
(

f (0)
p

)
,

(
f (1)

p

)
,

(
f (2)

p

)
, . . . ,

(
f (L − 1)

p

)
.

As a generalisation to Theorem 2.4 and property (2-1) we assume that L is such that { f }L uniquely
defines f , i.e., that

{ f }L = {g}L if and only if f = g. (2-2)

With r the degree of f we have L =�(r log p). We assume that property (2-2) holds for L =2(r log p).
A reasonable estimate is L = [2r log p]. Throughout the paper we include the dependence on L in the
complexity of our algorithms.

2C. Hard problems. There are three main problems conjectured to be hard, and on which the security
of the Legendre PRF is based.

Definition 2.8 (generalised Legendre symbol problem – GLSP). Let f be a uniformly random monic
square-free polynomial. Given access to an oracle O that on input x ∈ Fp computes O(x)=

( f (x)
p

)
, find f .

Definition 2.9 (decisional generalised Legendre symbol problem – DGLSP). Let f be a uniformly ran-
dom monic square-free polynomial. Let O0 be an oracle that on input x ∈ Fp computes O0(x)=

( f (x)
p

)
,

and let O1 be an oracle that on input x outputs a random value in {−1,+1}. Given access to Ob where
b is an unknown random bit, find b.

Definition 2.10 (next symbol problem – NSP). Given a Legendre sequence { f }M of M = polylog(p)
symbols, find

( f (M)
p

)
, or equivalently find { f }M+1.

It is easy to see that the GLSP and NSP are at least as hard as DGLSP. In the other direction, following
a theorem of Yao [11] on general pseudorandom functions, predicting the next bit of a pseudorandom
function is as hard as distinguishing it from a truly random one. Therefore NSP = DGLSP ≤ GLSP,
under polynomial time reductions.
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3. Group action on polynomials

Möbius transformations act naturally on rational functions of P1, changing the argument and preserving
their degrees. We show how this action can be exploited in order to connect oracles of monic polynomials
that are in the same orbit.

3A. Möbius transformations. Let M be the group of Fp-rational automorphisms of P1. It is known that
M is isomorphic to PGL2(Fp) and that this group has order p3

− p. The elements of M are Möbius
transformations. Given a matrix m =

(a
c

b
d

)
∈ PGL2(Fp) there is a unique Möbius transformation ϕm

given by

ϕm : P
1
→ P1, [x : y] 7→ [ax + by : cx + dy],

and function composition satisfies ϕm1 ◦ϕm2 = ϕm1m2 . We drop the notation of ϕm and only use m from
now on.

3B. Action of M on monic polynomials. The action of a Möbius transformation m =
(a

c
b
d

)
∈M on a

polynomial f is denoted by m · f = fm and defined as

m · f = fm(x) := f
(

ax + b
cx + d

)
(cx + d)r

f
(a

c

)
cr
. (3-1)

The corrective factors (cx + d)r and f
(a

c

)
cr are introduced in order to make fm a polynomial and to

make it monic correspondingly.
There is another way to look at this action — if α is a root of f then m−1(α) is a root of fm , where

m−1
=
( d
−c
−b
a

)
is the inverse of the Möbius transformation m. Thus, if f (x)=

∏r
i=1(x −αi ) then

fm(x)=
r∏

i=1

(x −m−1αi )=

r∏
i=1

(
x −

dαi − b
−cαi + a

)
. (3-2)

Therefore the group M of Möbius transformations has left (covariant) action on the roots of polynomials
in Fp[x] and right (contravariant) action on polynomials.

3C. Obtaining oracles of polynomials in the orbit. Suppose we are given access to O, the oracle of f .
Following (3-1) we can mimic the oracle of fm with(

fm(x)
p

)
=O

(
ax + b
cx + d

)(
cx + d

p

)r

O
(

a
c

)(
c
p

)r

.

Therefore we can obtain { fm}L by computing L + 1 Legendre symbols and querying the oracle L + 1
times. If c = 0 then O

(a
c

)( c
p

)r is substituted with
( a

p

)r. If cx + d = 0 for some x ∈ [0, L), then we
substitute O

(ax+b
cx+d

)( cx+d
p

)r
by
(ax+b

p

)r
.

3D. Polynomial types. We divide the key space into three sets based on reducibility of the polynomials
and the size of their orbit given by the action of M. The following lemma helps characterise these sets.
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Lemma 3.1. Let M= PGL2(Fp) and f ∈ Fp[x] be an irreducible polynomial of degree r with 3≤ r < p.
Then, the stabiliser of f is a cyclic group of order r ′ for some r ′ | r . Furthermore r ′ | p2

− 1.

Proof. Let Stab( f )= {m ∈M | f = fm} be the stabiliser of f , and let m ∈ Stab( f ). By property (3-2) the
roots of fm are m−1αi implying that m permutes the roots of f . Let Gal( f )= {Fi := x 7→ x pi

| i ∈ Z/r}
be the Galois group of f , and let α be any root of f . Then mα = Fi (α) for some i ∈ Z/r . Furthermore
m(F j (α))= F j (mα)= F j (Fi (α))= Fi (F j (α)) since m is rational and it commutes with the Frobenius.
Therefore each element of the stabiliser acts on the roots as an element of Gal( f ). This gives rise to a
homomorphism from Stab( f ) to Gal( f ) which is injective since two Möbius transformations with the
same action on a set of r ≥ 3 points have to be equal. Therefore Stab( f ) is a subgroup of Gal( f )∼= Z/r ,
so it is isomorphic to Z/r ′ for some r ′ | r . The stabiliser is naturally a subgroup of M, so its order divides
#M= p(p2

− 1). Since r ′ < p we have r ′ | p2
− 1. �

Definition 3.2. We call irreducible polynomials with a trivial stabiliser good, irreducible polynomials
with a stabiliser of size r ′ > 1 are called bad, and reducible polynomials are called ugly.

4. Algorithm

We give an algorithm for solving the generalised Legendre symbol problem. We start by querying the
oracle O(x) at all x ∈ Fp, and computing

(x
p

)
for all x ∈ Fp. These results are then saved in a table

and whenever we need an oracle query or a Legendre symbol we read them instead of computing an
expensive symbol or querying the oracle multiple times.

The general idea is to do a table-based collision search. We make a table containing { fm}L for some
m ∈M, and we try random g until {g}L = { fm}L for some m. This gives us f = gm−1 . The tables and
the trials differ for different polynomial types, so we give three separate algorithms for good, bad and
ugly polynomials. The comparisons with previous algorithms are given in Table 1.

4A. Good polynomials algorithm. We recall that f is good if it is an irreducible polynomial of degree
r ≥ 3 and the stabiliser of f is trivial.

4A1. Precomputation. In the precomputation stage we generate a table T containing { fm}L and a de-
scription of m for all Möbius transformations m as described in Section 3C. Since f is good, the table T
contains p3

− p different sequences.

4A2. Search. The search is done by trying random g(x) of degree r and computing {g}L until we find
a hit, which we expect to find after O(pr−3) trials. For each trial, g is evaluated at L points, and L
Legendre symbols are extracted, so the run time can be measured in the number of Legendre symbols
extracted, which is O(pr−3L).

4B. Bad polynomials algorithm. We recall that f is bad if it is an irreducible polynomial of degree
r ≥ 3 and the stabiliser of f is nontrivial. It follows from Lemma 3.1 that Stab( f ) is isomorphic to Z/r ′.
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4B1. Precomputation. We start by finding Stab( f ), the stabiliser of f . A straightforward way to find it
in O(p3) is by enumerating M and isolating the matrices that fix f . The Appendix describes a nontrivial
way to find it in O(p2 log r) steps.

Call m any generator of Stab( f ). The matrix m is rational so it has a Jordan canonical form of one of
the following three types: (

a 0
0 b

) (
λ 0
0 µ

) (
a 1
0 a

)
Type 1 Type 2 Type 3

where a, b ∈ Fp \ {0} and λ,µ ∈ Fp2 \ Fp are conjugates of each other. We can exclude Type 3 matrices
since they have order p, while m has order r ′ < p.

Let D be a diagonal matrix of order r ′ and P a change of basis matrix (these can be chosen uniquely
from a set of representatives given in the Appendix) such that

m = P D P−1.

Following from D · fP = (P D) · f = (m P) · f = P · fm = P · f = fP , the polynomial fP is stabilised
by D. Therefore fP satisfies fP

( r
s x
)( s

r

)r
= fP

( r
s x
)
= fP(x) where (r, s)= (a, b) or (λ, µ). This sets

the following constraints on the coefficients of fP :

fP(x)= xr
+ kr−1xr−1

+ · · ·+ k2x2
+ k1x + k0 = xr

+

r−1∑
i=0

ki x i ,

(D · fP)(x)= xr
+ kr−1

(
r
s

)r−1
xr−1
+ · · ·+ k1

(
r
s

)
x + k0 = xr

+

r−1∑
i=0

ki

(
r
s

)i
x i

from which it follows that

ki = ki

(
r
s

)i
for i = 0, 1, . . . , r − 1. (4-1)

Since r
s has order r ′ we have ki = 0 for all i that are not multiples of r ′.

We create a table T of size O(p) containing polynomials t in the orbit of f with tP satisfying (4-1).
The process differs for the two types of matrices so we treat them separately.

Type 1. When D is rational, P is rational too, so the polynomial fP is in the orbit of f . If C is a rational
diagonal matrix, C · fP is another polynomial in the orbit of f satisfying (4-1). The total number of such
polynomials is (p− 1)/r ′ since matrices C can be chosen up to stabiliser of fP which is 〈D〉. A set of
representatives is

C1 =

{(
gi 0
0 1

) ∣∣∣∣ g a generator of F∗p, 0≤ i <
p− 1

r ′

}
.

The table T contains {PC P−1
· f }L together with a description of C for all C in C1. It has (p− 1)/r ′

elements, and for all polynomials t in the table, tP satisfies (4-1).
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Type 2. When D is irrational, P is too, so fP is not in the orbit of f . There are additional constraints
on fP following from the rationality of m:

m = P
(
λ 0
0 µ

)
P−1
= m = P

(
λ 0
0 µ

)
P−1
= P

(
µ 0
0 λ

)
P−1.

Let AP := P−1 P. From the definition of AP and the above formulas it follows that

A−1
P = AP ,(

λ 0
0 µ

)
AP = AP

(
µ 0
0 λ

)
.

These constraints imply that AP =
( 0

1/α
α
0

)
for some α ∈ Fp2 . The action of AP is the same as the action

of
( 0

1
s
0

)
where s = αα ∈ Fp. Note that s can be computed and, up to choosing a different representative

for P, can be set to be equal to 1. We further have

AP · fP(x)= fP AP (x)= fP(x)= P · f (x)= P · f (x)= P · f (x)= fP(x),

which gives new constraints on the coefficients of fP(x):

fP(x)= xr
+ kr−1xr−1

+ · · ·+ k2x2
+ k1x + k0 = xr

+

r−1∑
i=0

ki x i ,

(AP · fP)(x)= xr
+

k1s
k0

xr−1
+ · · ·+

kr−1sr−1

k0
x +

sr

k0
= xr
+

r−1∑
i=0

kr−i sr−i

k0
x i .

This translates to

k p+1
0 = sr , kr−i=

k0ki

sr−i , k p−1
r/2 =

sr/2

k0
if r is even. (4-2)

The polynomial fP is not the only polynomial satisfying (4-1) and (4-2). Certainly (4-1) is satisfied
for every C · fP where C is a diagonal matrix. In order for C · fP to satisfy (4-2) we need AP · fPC = fPC ,
which implies

(C APC
−1
) · fP(x)= fP(x).

This condition, together with C being diagonal implies that C is contained in{(
c 0
0 c

) ∣∣∣∣ c ∈ F∗p2

}
.

Multiplying C on the right by a rational scalar matrix or by an element of Stab( fP) = 〈D〉 does not
change the polynomial C · fP . Therefore C can be chosen from a reduced set of representatives, for
example,

C2 =

{(
gi 0
0 g i

) ∣∣∣∣ g a generator of F∗p2 , 0≤ i <
p+ 1

r ′′

}
,

where (p+ 1)/r ′′ = gcd(p+ 1, (p2
− 1)/r ′), in other words r ′′ = r ′/(gcd(r ′, p− 1)). The choice of r ′′
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follows from the exponents of g being chosen modulo p + 1 (action of F∗p) and modulo (p2
− 1)/r ′

(action of r ′-th roots of unity).
The table T contains {PC P−1

· f }L together with a description of C for all C in C2 (note that PC P−1

is rational). It has (p+ 1)/r ′′ elements, and for all polynomials t in the table, tP satisfies (4-1) and (4-2).

4B2. Search. In the search phase we go over g(x)= xr
+
∑r/r ′−1

i=0 gi x i that satisfy (4-1) and compute
{gP−1}L until we find a hit in T. In that case, f = g(PC)−1 .

For Type 1, the coefficients gi are in Fp. The total number of polynomials g is pr/r ′ and we expect to
find a hit after O(pr/r ′−1r ′) trials.

For Type 2, the coefficients gi are in Fp2 and they satisfy (4-2). Therefore there are p+ 1 choices
for g0, the gi with 1≤ i < r/2 can be chosen freely, giving p2 choices each, and the g j for r/2< j are
constrained to one value for each choice of the previous coefficients. If r is even, gr/2 has p− 1 choices.
The total number of polynomials g is O(pr/r ′) and we expect to find a hit after O(pr/r ′−1r ′′) trials.

4C. Ugly polynomials algorithm. We recall that f is ugly if it is a reducible polynomial of degree r ≥ 3.
Write f (x)= l(x)h(x) where rh = deg(h(x))≥ r/2.

The Legendre symbol is multiplicative, and Möbius transformations are homomorphic with respect
to polynomial multiplication, so we have { fm}L = {lm}L{hm}L , where the multiplication is element-wise.
It follows that { fm}L{lm}L = {hm}L .

4C1. Precomputation. We create two tables, T1 containing { fm}L for all m ∈M, and T2 containing
sequences of all polynomials g(x) of degree r − rh (the candidates for lm(x)). The main table T is a
product of T1 and T2, i.e., a table of size O(pr−rh+3) containing { fm}L{g}L for all m ∈M and all g.

4C2. Search. The search phase consists of trying random polynomials t (x) of degree rh until we find
a hit in T. This gives {t}L = { fm}L{g}L , and implies that t (x) = hm(x), g(x) = lm(x), and finally
f (x)= gm−1(x)tm−1(x). We expect to find a solution in O(prh−3) trials.

The above description glosses over a number of minor details that one needs to be careful about. The
run time is actually prh divided by the size of the orbit of h(x).

If h is good, then its orbit is maximal and we are done.
If h is bad, we can test all bad h in time O(prh/r ′h L) for each r ′h | rh , so in total O(prh/2L). For

both Type 1 and Type 2 we can enumerate all polynomials h in time O(prh/r ′h−1r ′′h L) with r ′′h defined as
in Section 4B.

If h is ugly, we analyse two cases:

(1) h has an irreducible factor of degree at least 3: Suppose h = h1h2 of degrees r1 and r2. We select a
set of O(pr1−3) representatives for h1, multiply them with polynomials of degree r2 and search for
{h}L = {h1}L{h2}L in T, achieving an O(prh−3) run time.

(2) h has all factors of degree ≤ 2: There are three subcases to consider:

• h is divisible by a product of three linear polynomials. Then at least one hm is divisible by
x(x − 1)(x − 2), so we test for h = x(x − 1)(x − 2)h2 where h2 are of degree rh − 3.
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• h is divisible by a linear and quadratic polynomial. Then one of hm is divisible by x(x2
− u)

where u is a chosen nonsquare, so we test for h = x(x2
− u)h2 where h2 are of degree rh − 3.

• h is divisible by two quadratic polynomials. Then one of them can be considered to be x2
− u

where u is a nonsquare, and the other one has only 1 degree of freedom. We test for h =
(x2
− u)h1h2 where h1 is selected from O(p) quadratic polynomials and h2 is of degree rh − 4.

Therefore if f is ugly we can find it in O(prh−3) trials irrespective of the type of h.

good polynomials search precomputation memory

Khovratovich [8] pr−1r log p r log p r log p
Beullens et al. [2] pr−2r2 log2 p p2 p2

Our algorithm pr−3r log p p3r log p p3r log p

bad polynomials search precomputation memory

Khovratovich [8] pr−1r log p r log p r log p
Beullens et al. [2] pr−2r2 log2 p p2 pr−rh r log p
Our algorithm pr/r ′−1r ′′r log p p2r log p (p/r ′′)r log p

ugly polynomials search precomputation memory

Khovratovich [8] pr−1r log p r log p r log p
Beullens et al. [2] prh r log p pr−rh r log p pr−rh r log p
Our algorithm prh−3r log p pr−rh+3r log p pr−rh+3r log p

Table 1. Comparison of the best known algorithms for solving the degree r ≥ 3 Legendre PRF,
in big-O’s. The size of the stabiliser of f is denoted with r ′, and r ′′ = r ′ if r ′ | p − 1 and
r ′′ = r ′/ gcd(r ′, p− 1) otherwise. We denote with rh the degree of a factor of f which is at
least r/2. Complexity is given in the number of Legendre symbols computed/extracted. In all
cases we need p queries.

4D. Time-memory tradeoff for low degrees. The run time of the algorithm depends mainly on the search
stage. However for some low degree polynomials, the precomputation may take longer than the search
stage. In some cases a time-memory tradeoff allows us to reduce the complexity further.

4D1. Good polynomials. For r ≥ 6, the table-based collision search with an O(p3) table and O(pr−3)

trials is optimal. For 3≤ r ≤ 5, a tradeoff with an O(pr/2) table and O(pr/2) trials is better.

4D2. Bad polynomials. If r/r ′ − 1 < 2 then the bottleneck is the precomputation phase that takes
O(p2 log r) steps. This can happen when r ′ = r/c for c = 1, 2. Not much can be done to reduce
the precomputation cost since testing badness costs O(p2 log r). For r = 3 we can lower the attack
complexity to O(p1.5) with a table-based collision search for good polynomials.

4D3. Ugly polynomials. We test if f is ugly by trying to find it using the ugly polynomials algorithm
for each rh = dr/2e, . . . , r − 1. The precomputation cost is O(pr−rh+3) and the search cost is O(prh−3).

If r−rh+3> rh−3, i.e., rh < r/2+3, then we can do a tradeoff. Call ε := rh−r/2< 3. We compute
only the action of pε matrices on f , and after multiplying with the table T2 of pr−rh sequences, obtain
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a table of size pr/2. We expect to finish the search phase in O(prh−ε) = O(pr/2) if a collision exists.
Otherwise we assume that f does not have a factor of degree rh and move to rh + 1.

4E. Security recommendations. Following our argumentation, the most secure PRFs are the ones com-
ing from good polynomials. While we can test for irreducibility in polynomial time, the only way to
distinguish good and bad polynomials is by means of the O(p2 log r) algorithm from the Appendix. The
number of bad polynomials is small, and can be shown to be bounded from above by∑

r ′|gcd(r,p2
−1)

r ′>1

−µ(r ′)pr/r ′+1r ′ = O(pr/2+1r).

The easiest way to assure our secret polynomial is not bad is to choose p and r such that gcd(r, p2
−1)= 1.

4F. Degree r = 2. If r = 2 all polynomials are bad or ugly. There is a deterministic O(p) algorithm for
finding f in this case — we first precompute the action of

{( 1
0

a
1

) ∣∣ a ∈ Fp
}

on the polynomial f , which
ensures that the precomputed table contains the Legendre sequence of a polynomial of the form x2

− c:(
1 a
0 1

)
· (x2
− t x + n)= x2

− (t − 2a)x + (n+ a2
− ta).

Then we test all p such polynomials until we find f .

5. Limited query case and the linear Legendre PRF

In Section 4 we query the oracle at all elements of Fp and then extract up to p3
− p sequences. The

reader should be convinced that the same argumentation works with p− o(p/L) queries, as we still have
access to �(p3) sequences. When the secret polynomial is linear doing more than O(p1/2L) queries is
wasteful. Indeed creating a table with O(p1/2) sequences by doing L queries per sequence allows us to
find the secret polynomial after O(p1/2) trials. This is essentially the algorithm in [8], where the author
further provides a memoryless approach.

The main difference in the linear case with respect to the higher degree case is that we are allowed
M ≤
√

pL queries to the oracle. How many different group actions can we obtain from only M queries?
The same question can be asked in the higher degree case, and the algorithm we provide can be directly
applied in that scenario. One would expect a cubic increase, as with full access to the oracle, but this
seems to be out of reach.

5A. Linear shifts subgroup. Let G be the subgroup of M consisting only of linear Möbius transforma-
tions,

G =
{(

d i
0 1

) ∣∣∣∣ d ∈ F∗p, i ∈ Fp

}
6 PGL2(Fp).

An element (i, d) :=
( d

0
i
1

)
sends f (x) to fi,d(x). In order to extract { fi,d(x)}L from the oracle O of f ,
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we compute (
fi,d(x)

p

)
=O

(
dx + i
0x + 1

)(
0x + 1

p

)r(d
p

)r

=O(dx + i)
(

d
p

)r

for all x ∈ [0, L). If O is queried in [0,M), then we can extract all fi,d such that dx + i ∈ [0,M) for
all x ∈ [0, L). This creates the following constraints on i, d:{

d = 1, 2, . . . ,
⌊M−1

L−1

⌋
,

i = 0, 1, . . . ,M − 1− (L − 1)d,
or

{
d =−1,−2, . . . ,−

⌊M−1
L−1

⌋
,

i = (L − 1)(−d), . . . ,M − 1.

The total number of eligible (i, d) ∈ G is⌊M−1
L−1

⌋∑
d=1

2(M − (L − 1)d)=
M2

L − 1
−M + O(L)

with the constant in O(L) being at most 2.
The limited query algorithm works as follows:

5A1. Precomputation. Query O at [0,M). Extract O
(M2

L

)
Legendre sequences { fi,d}L and save them

in a table T together with descriptions of (i, d).

5A2. Search. The search is done by trying random polynomials until we find a hit in the table, which
is expected after O

( pr L
M2

)
trials, in particular O

( pL
M2

)
for the linear PRF.

5A3. Further improvements. The cost of the precomputation is M queries and O
(M2

L

)
sequence extrac-

tions. The cost of the search is O
( pL

M2

)
trials. A straightforward way to do a sequence extraction is to

read the presaved queries L times. Due to the nature of the sequences, this cost can be amortised to O(1)
per sequence. Doing a trial consists of evaluating the polynomial in L places and computing L Legendre
symbols. Again, this cost can be amortised to O(log L) per trial. These implementational improvements
are not within the scope of this paper, and they are explained in detail in [5].

5B. Algorithm comparison. The first algorithm by Khovratovich [8] computes sequences with on-the-
go queries, and directly computes Legendre symbols. The main benefit of this approach is that it is
memoryless. This was improved on in [2] by extracting sequences rather than querying/computing sym-
bols, and increasing the sequence yield to M2/L2. In our terminology, the authors of [2] use the same
group G but only elements (i, d) such that i < d, leading them to a table which is a factor of L smaller
with respect to ours. Using the full group G as in Section 5A comes with cheaper sequence extraction
in the precomputation stage, but more expensive sequence extraction in the search stage and thus the
log log p factor in Table 2. A more detailed analysis is given in [5].

5C. Experiments. A number of Ethereum research challenges [6] were posted for breaking the linear
Legendre PRF. In each challenge we are given a prime p of size varying from 64 to 148 bits, and M = 220

bits of the sequence {k}M as defined in Definition 2.3. The challenge is to recover the key k. Our results
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algorithm search precomputation memory optimal run time

Khovratovich [8] pt log2 p
M M log p

√
pt log p

Beullens et al. [2] p log2 p
M2 M2 M2

log p
√

p log p

our algorithm p log p log log p
M2

M2

log p M2
√

p log log p

Table 2. Comparison of the best known algorithms for the linear Legendre PRF challenge,
in big-O’s and 2(log p)-bit word operations. We denote with t the time to compute a
Legendre symbol.

are shown in Table 3. For each challenge, we were able to precompute a table with ∼ 234 sequences. The
most interesting is of course challenge #2 since it had not been solved before. The actual number of trials
performed in challenge #2 is 246.97

= 1.38e14 which is far less than expected. This can be explained by
large variance and by sheer luck. The two most difficult challenges (#3 and #4) are out of reach with the
proposed attack and its implementation. An in-depth explanation of the experiments is given in [5]. The
code and the keys of the first three challenges can be found at https://github.com/nKolja/LegendrePRF.

challenge prime expected observed expected observed
bit size # trials # trials core-hours core-hours

0 64 230 230.78 290 sec 490 sec
1 74 240 239.53 82 59
2 84 250 246.97 1.4e5 1.72e4
3 100 266 - 9.1e9 -
4 148 2114 - 2.5e24 -

Table 3. Results and estimates for solving the Legendre PRF challenges [6].

Appendix: Computing the stabiliser Stab( f ) of f

Let m ∈ Stab( f ) be a matrix of order r ′. Following the same argumentation from Section 4B there
exists a change of coordinate matrix P such that D = P−1m P is a diagonal matrix. We give a set of
representatives for matrices D and P such that for each m there is a single pair D, P in that set satisfying

m = P D P−1.

This property can be used to argue that we need only to find one mr of order pr for any prime divisor pr | r ′.
Given mr , an element mi of order pi

r is simply P D1/pi−1
r P−1, and an element mq of order qr for some

other divisor qr | r ′ is P Dq P−1 for the corresponding matrix Dq of order qr . Furthermore, an element
of order pr qr can be found by computing mu

r mv
q with upr + vqr = 1. Therefore in order to find the full

stabiliser group we need only to find one element of prime order. This is done by searching for elements
of order q in the stabiliser, for each prime q | r , so we assume that we know r ′.

The search for m is done by going through the conjugacy class of a matrix D of order r ′, until we find
a matrix that stabilises f . The conjugacy class has size 2(p2) so we expect to find m in p2 steps, but
we have to be careful and go through the whole class without repetitions.

https://github.com/nKolja/LegendrePRF
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The process is explained separately for Type 1 and Type 2 matrices.

Matrices of Type 1. If m is of Type 1 then for some P ∈ GL2(Fp),

m = P
(

a 0
0 b

)
P−1

with a, b ∈ Fp nonzero such that ξ := a/b has order r ′. Since m is defined up to scalar multiplication in F∗p,
we may suppose that a = ξ and b = 1, so D =

(
ξ
0

0
1

)
for some ξ primitive r ′-th root of unity in Fp. There

are in total ϕ(r ′) different ξ values to consider, however each one will give rise to a different generator
of the stabiliser of f , so the choice of ξ does not matter.

The search for m is done by enumerating P D P−1, where matrices P are chosen from GL2(Fp) up to
right multiplication by an element of Z(D)=

{(a
0

0
b

) ∣∣ ab 6= 0
}
, the centraliser of D. In total there are

p2
+ p elements in GL2(Fp)/Z(D). One set of representatives can be chosen to be{(

0 1
1 d

)
,

(
1 0
c 1

)
,

(
1 1
c d

) ∣∣∣∣ c, d ∈ Fp such that the determinants are nonzero
}
.

When r ′ = 2, so D =
(
−1
0

0
1

)
, the set of representatives is halved because

( 0
1

1
0

)
∈ Z(D) after projecting

on PGL2(Fp). In that case we give the following (p2
+ p)/2 representatives for the matrices P:{(

0 1
1 d

)
,

(
1 1
c d

) ∣∣∣∣ c < d ∈ Fp

}
where the ordering of elements of Fp is induced from the lift to {0, 1, . . . , p− 1}.

Matrices of Type 2. If m is of Type 2 then for some P ∈ GL2(Fp2),

m = P
(
λ 0
0 µ

)
P−1

where λ,µ ∈ Fp2 are conjugate roots of an irreducible second degree polynomial such that ξ := λ/µ is
a primitive r ′-th root of unity.

Lemma A.1. The diagonal matrix D defined above is unique in GL2(Fp2)/F∗p.

Proof. Since ξ = µ/µ= µp−1 we have ξ p+1
= 1. Due to the primitivity of ξ it follows that r ′ | p+ 1.

If ξ ∈ Fp then ξ 2
= 1 so ξ =−1 and r ′ = 2. In that case λ=−µ, so the minimal polynomial of λ is

x2
− c for some nonsquare c. Up to multiplying D by a constant in F∗p, we may suppose λ=

√
u for a

fixed nonsquare u, and therefore there is only one such matrix.
If ξ is not rational, then ξ = ξ p

= 1/ξ , so ξξ = 1. From λ= ξµ we have D =
(
ξµ
0

0
µ

)
. The determinant

and the trace of D are the same as those of m, so in particular they are rational. This means that

µ(ξ + 1) ∈ Fp, ξµ2
∈ Fp

from which it follows that µ= a/(ξ + 1) and λ= ξa/(ξ + 1) for some a ∈ Fp. For any choice of a, the
second condition follows from ξξ = 1. Multiplying λ and µ by any nonzero rational constant does not
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change the property of D being conjugate to m ∈ PGL2(Fp), to them being irrational conjugates of each
other or to their quotient being equal to ξ . Therefore we may suppose λ= ξ/(ξ+1) and µ= 1/(ξ+1). �

We start by computing a primitive root of unity ξ of order r ′, and set D as above. As before, the choice
of ξ does not matter.

The search for m follows by going through P D P−1 where the matrices P are chosen such that P D P−1

is rational and up to right multiplication by Z(D), the centraliser of D.

Rational P D P−1. If P D P−1 is rational we have P D P−1
= P D P

−1
, so

(P−1 P)
(
µ 0
0 λ

)
=

(
λ 0
0 µ

)
(P−1 P).

Define AP := P−1 P. The matrix AP satisfies A−1
P = AP , so it has to satisfy

AP =

(
0 α

1/α 0

)
for some nonzero α in Fp2 . From P = P AP we have some constraints on P:

P ∈
{(

q qα
r rα

) ∣∣∣∣ q, r ∈ Fp2, qr 6= 0, q p−1
6= r p−1

}
.

The centraliser Z(D). The matrix D is diagonal with different eigenvalues, so

Z(D)=
{(

x 0
0 y

) ∣∣∣∣ x, y ∈ Fp2, xy 6= 0
}
.

Multiplying a P on the right by an element of the centraliser gives(
q q α
r r α

)(
x 0
0 y

)
=

(
qx q α y
r x r α y

)
=

(
qx qx

(
αy
x

)
r x r x

(
αy
x

)
)
,

which sends (q, r) to (qx, r x) and α to α y/x , so we may assume that q = α = 1. A set of p2
− p

representatives for matrices P is {(
1 1
r r

) ∣∣∣∣ r ∈ Fp2 \ Fp

}
.

When r ′ = 2, so D =
(√u

0
0
−
√

u

)
for some rational nonsquare u, the set of representatives is halved

because
( 0

1
1
0

)
∈ Z(D) after projecting on GL2(F

2
p)/F

∗
p. In that case we give the following (p2

− p)/2
representatives for matrices P:{(

1 1
r r

) ∣∣∣∣ r = a
√

u+ b , 1≤ a ≤
p− 1

2
, 0≤ b < p

}
.
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Counting Richelot isogenies between
superspecial abelian surfaces

Toshiyuki Katsura and Katsuyuki Takashima

Castryck, Decru, and Smith used superspecial genus-2 curves and their Richelot isogeny graph for basing
genus-2 isogeny cryptography, and recently, Costello and Smith devised an improved isogeny path-finding
algorithm in the genus-2 setting. In order to establish a firm ground for the cryptographic construction
and analysis, we give a new characterization of decomposed Richelot isogenies in terms of involutive
reduced automorphisms of genus-2 curves over a finite field, and explicitly count such decomposed (and
nondecomposed) Richelot isogenies between superspecial principally polarized abelian surfaces. As a
corollary, we give another algebraic geometric proof of Theorem 2 in the paper of Castryck et al.

1. Introduction

Isogenies of supersingular elliptic curves are widely studied as one candidate for postquantum cryptog-
raphy, e.g., [3; 5; 10; 2]. Recently, several authors have extended the cryptosystems to higher genus
isogenies, especially the genus-2 case [17; 6; 1; 4].

Castryck, Decru, and Smith [1] showed that superspecial genus-2 curves and their isogeny graphs give
a correct foundation for constructing genus-2 isogeny cryptography. The recent cryptanalysis by Costello
and Smith [4] employed the subgraph whose vertices consist of decomposed principally polarized abelian
varieties, hence it is important to study the subgraph in cryptography.

Castryck et al. also presented concrete algebraic formulas for computing (2, 2)-isogenies by using the
Richelot construction. In the genus-2 case, the isogenies may have decomposed principally polarized
abelian surfaces as codomain, and we call them decomposed isogenies. In [1], the authors gave explicit
formulas for the decomposed isogenies and a theorem stating that the number of decomposed Richelot
isogenies outgoing from the Jacobian J (C) of a superspecial curve C of genus 2 is at most six [1,
Theorem 2], but they do not precisely determine this number. Moreover, their proof is computer-aided,
that is, using the Gröbner basis computation.

Therefore, we revisit the isogeny counting based on an intrinsic algebraic geometric characteriza-
tion. In 1960, Igusa [9] classified the curves of genus 2 with given reduced groups of automorphisms,
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and in 1986, Ibukiyama, Katsura, and Oort [7] explicitly counted such superspecial curves according
to the classification. Based on the classical results, we first count the number of Richelot isogenies
from a superspecial Jacobian to decomposed surfaces (Cases (0)–(6) in Section 5) in terms of invo-
lutive (i.e., of order 2) reduced automorphisms which are called long elements. As a corollary, we
give an algebraic geometric proof of Theorem 2 in [1] together with a precise count of decomposed
Richelot isogenies (Remark 5.1). Moreover, by extending the method, we also count the total number
of (decomposed) Richelot isogenies up to isomorphism outgoing from irreducible superspecial curves
of genus 2 (resp. decomposed principally polarized superspecial abelian surfaces) in Theorem 6.2 (resp.
Theorem 6.4).

Our paper is organized as follows: Section 2 gives mathematical preliminaries including the Igusa
classification and the Ibukiyama–Katsura–Oort curve counting. Section 3 presents an abstract description
of Richelot isogenies and Section 4 gives the main characterization of decomposed Richelot isogenies
in terms of reduced groups of automorphisms. Section 5 counts the number of long elements of order 2
in reduced groups of automorphisms based on the results in Section 4. Section 6 gives the total numbers
of (decomposed) Richelot isogenies outgoing from the irreducible superspecial curves of genus 2 and
products of two elliptic curves, respectively. Section 7 gives some examples in small characteristic.
Finally, Section 8 gives a concluding remark.

We use the following notation: For an abelian surface A, A[n] denotes the group of n-torsion points
of A, At the dual of A, NS(A) the Néron–Severi group of A, and Tv the translation by an element v
of A. For a nonsingular projective variety X , D ∼ D′ (resp. D ≈ D′) denotes linear equivalence (resp.
numerical equivalence) for divisors D and D′ on X , and idX the identity morphism of X .

2. Preliminaries

Let k be an algebraically closed field of characteristic p > 5. An abelian surface A defined over k is said
to be superspecial if A is isomorphic to E1× E2 with Ei supersingular elliptic curves (i = 1, 2). Since
for any supersingular elliptic curves Ei (i = 1, 2, 3, 4) we have an isomorphism E1 × E2 ∼= E3 × E4

(see Shioda [15, Theorem 3.5], for instance), this notion does not depend on the choice of supersingular
elliptic curves. For a nonsingular projective curve C of genus 2, we denote by (J (C),C) the canonically
polarized Jacobian variety of C . The curve C is said to be superspecial if J (C) is superspecial as an
abelian surface. We denote by Aut(C) the group of automorphisms of C . Since C is hyperelliptic, C has
the hyperelliptic involution ι such that the quotient curve C/〈ι〉 is isomorphic to the projective line P1:

ψ : C→ P1.

There exist 6 ramification points on C . We denote them by Pi (1≤ i ≤ 6). Then, the Qi = ψ(Pi ) are the
branch points of ψ on P1. The group 〈ι〉 is a normal subgroup of Aut(C). We put RA(C)∼= Aut(C)/〈ι〉
and we call it the reduced group of automorphisms of C . We call an element of RA(C) a reduced
automorphism of C . For σ ∈ RA(C), σ̃ is an element of Aut(C) such that σ̃ mod 〈ι〉 = σ .
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Definition 2.1. An element σ ∈ RA(C) of order 2 is said to be long if σ̃ is of order 2. Otherwise, an
element σ ∈ RA(C) of order 2 is said to be short (see [12, Definition 7.15]).

This definition does not depend on the choice of σ̃ .

Lemma 2.2. If an element σ ∈ RA(C) of order 2 acts freely on 6 branch points, then σ is long.

Proof. By a suitable choice of coordinate x of A1
⊂ P1, taking 0 as a fixed point of σ , we may assume

σ(x)=−x , and Q1= 1, Q2=−1, Q3= a, Q4=−a, Q5= b, Q6=−b (a 6= 0,±1; b 6= 0,±1; a 6=±b).
Then, the curve is defined by

y2
= (x2

− 1)(x2
− a2)(x2

− b2),

and σ̃ is given by x 7→ −x, y 7→ ±y. Therefore, σ̃ is of order 2. �

Lemma 2.3. If RA(C) has an element σ of order 2, then there exists a long element τ ∈ RA(C) of
order 2.

Proof. If σ acts freely on 6 branch points, then by Lemma 2.2, σ itself is a long element of order 2. We
assume that the branch point Q1 = ψ(P1) is a fixed point of σ . Since σ is of order 2, it must have one
more fixed point among the branch points, say Q2 = ψ(P2). By a suitable choice of coordinate x of
A1
⊂ P1, we may assume Q1 = 0 and Q2 = ∞. We may also assume Q3 = 1. Then, σ is given by

x 7→ −x and the six branch points are 0, 1, −1, a, −a,∞ (a 6= ±1). The curve C is given by

y2
= x(x2

− 1)(x2
− a2) (a 6= 0,±1).

We consider an element τ ∈ Aut(P1) defined by x 7→ a/x . Then, we have an automorphisms τ̃ of C
defined by x 7→ a/x, y 7→ a

√
ay/x3. Therefore, we see τ ∈ RA(C). Since τ̃ is of order 2, τ is long. �

RA(C) acts on the projective line P1 as a subgroup of PGL2(k). The structure of RA(C) is classified
as follows (see [9, page 644] and [7, page 130]):

(0) 0, (1)Z/2Z, (2) S3, (3)Z/2Z×Z/2Z, (4) D12, (5) S4, (6)Z/5Z.

We denote by ni the number of superspecial curves of genus 2 whose reduced group of automorphisms
is isomorphic to the group (i). Then, the ni are given as follows (see [7, Theorem 3.3]):

(0) n0=
(p− 1)(p2

− 35p+ 346)
2880

−

{
1−

(
−1
p

)}
32

−

{
1−

(
−2
p

)}
8

−

{
1−

(
−3
p

)}
9

+

{
0 if p ≡ 1, 2 or 3 (mod 5),
−

1
5 if p ≡ 4 (mod 5).

(1) n1 =
(p− 1)(p− 17)

48
+

{
1−

(
−1
p

)}
8

+

{
1−

(
−2
p

)}
2

+

{
1−

(
−3
p

)}
2

.

(2) n2 =
(p− 1)

6
−

{
1−

(
−2
p

)}
2

−

{
1−

(
−3
p

)}
3

.

(3) n3 =
(p− 1)

8
−

{
1−

(
−1
p

)}
8

−

{
1−

(
−2
p

)}
4

−

{
1−

(
−3
p

)}
2

.

(4) n4 =

{
1−

(
−3
p

)}
2

.
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(5) n5 =

{
1−

(
−2
p

)}
2

.

(6) n6 =

{
0 if p ≡ 1, 2 or 3 (mod 5),
1 if p ≡ 4 (mod 5).

Here, for a prime number q and an integer a,
( a

q

)
is the Legendre symbol. The total number n of

superspecial curves of genus 2 is given by

n = n0+n1+n2+n3+n4+n5+n6

=
(p−1)(p2

+25p+166)
2880

−

{
1−

(
−1
p

)}
32

+

{
1−

(
−2
p

)}
8

+

{
1−

(
−3
p

)}
18

+

{
0 if p ≡ 1, 2 or 3 (mod 5),
4
5 if p ≡ 4 (mod 5).

For an abelian surface A, we have At
= Pic0(A) (Picard variety of A), and for a divisor D on A, there

exists a homomorphism
ϕD : A→ At

v 7→ T ∗v D− D.

If D is ample, then ϕD is surjective, i.e., an isogeny. We know (D · D)2 = 4 degϕD. We set K (D) =
KerϕD . If D is ample, then K (D) is finite and there is a nondegenerate alternating bilinear form eD(v,w)

on K (D) (see Mumford [14, Section 23]). Let G be an isotropic subgroup scheme of K (D) with respect
to eD(v,w). In case D is ample, G is finite and we have an isogeny

π : A→ A/G.

The following theorem is due to Mumford [14, Section 23, Theorem 2, Corollary]:

Theorem 2.4. Let G be an isotropic subgroup scheme of K (D). Then, there exists a divisor D′ on A/G
such that π∗D′ ∼ D.

Let n be a positive integer which is prime to p. Then, we have the Weil pairing en : A[n]× At
[n]→µn .

Here, µn is the multiplicative group of order n. By Mumford [14, Section 23 “Functorial properties of
eL (5)”], we have the following.

Lemma 2.5. For v ∈ A[n] and w ∈ ϕ−1
D (At

[n]), we have

en(v, ϕD(w))= enD(v,w).

If D is a principal polarization, the homomorphism ϕD : A→ At is an isomorphism. Therefore, by
this identification we can identify the pairing enD with the Weil pairing en .

3. Richelot isogenies

We recall the abstract description of Richelot isogenies. (For the concrete construction of Richelot iso-
genies, see Smith [16] or Castryck, Decru and Smith [1, Section 3], for instance.)
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Let A be an abelian surface with a principal polarization C . Then, we may assume that C is effective,
and we have the self-intersection number C2

= 2. It is easy to show (or as was shown by A. Weil) that
there are two cases for effective divisors with self-intersection 2 on an abelian surface A:

(1) There exists a nonsingular curve C of genus 2 such that A is isomorphic to the Jacobian variety
J (C) of C and that C is the divisor with self-intersection 2. In this case, (J (C),C) is said to be
nondecomposed.

(2) There exist two elliptic curves E1, E2 with (E1 ·E2)= 1 such that E1×{0}+{0}×E2 is a divisor with
self-intersection 2 and that A∼= E1× E2. In this case, (A, E1×{0}+ {0}× E2) is said to be decomposed.

Since ϕC is an isomorphism by the fact that C is a principal polarization, we have K (2C)=Kerϕ2C =

Ker 2ϕC = A[2]. Let G be a maximal isotropic subgroup of K (2C)= A[2] with respect to the pairing e2C .
Since we have |G|2 = |A[2]| = 24 (see Mumford [14, Section 23, Theorem 4]), we have |G| = 4 and
G ∼= Z/2Z×Z/2Z. We have a quotient homomorphism

π : A→ A/G.

By Theorem 2.4, there exists a divisor C ′ on A/G such that 2C ∼ π∗C ′. Since π is a finite morphism
and 2C is ample, we see that C ′ is also ample. We have the self-intersection number (2C · 2C)= 8, and
we have

8= (2C · 2C)= (π∗C ′ ·π∗C ′)= degπ(C ′ ·C ′)= 4(C ′ ·C ′).

Therefore, we have (C ′ ·C ′)= 2, that is, C ′ is a principal polarization on A/G. By the Riemann–Roch
theorem of an abelian surface for ample divisors, we have

dim H0(A/G,OA/G(C ′))= (C ′ ·C ′)/2= 1.

Therefore, we may assume C ′ is an effective divisor.
Using these facts, we see that C ′ is either a nonsingular curve of genus 2 or E1 ∪ E2 with elliptic

curves Ei (i = 1, 2) which intersect each other transversely. In this situation, the correspondence from
(A,C) to (A/G,C ′) is called a Richelot isogeny. We consider a triple (A,C,G) with maximal isotropic
subgroup G ⊂ A[2] with respect to the pairing e2C , and the corresponding Richelot isogeny π from
(A,C,G) to (A/G,C ′,G ′) with maximal isotropic subgroup G ′ = π(A[2]). Then, it is easy to see that
for the Richelot isogeny π ′ : (A/G,C ′)→ ((A/G)/G ′,C ′′), the principally polarized abelian surface
((A/G)/G ′,C ′′,G ′′) with maximal isotropic subgroup G ′′ = π ′((A/G)[2]) is isomorphic to the original
(A,C,G).

Now, we consider the case where A is a superspecial abelian surface. Then, since π is separable, A/G
is also a superspecial abelian surface. We will use this fact freely.

From here on, for abelian surface E1× E2 with elliptic curves Ei (i = 1, 2) we denote by E1+ E2 the
divisor E1×{0}+ {0}× E2, if no confusion occurs. We sometimes call E1× E2 a principally polarized
abelian surface. In this case, the principal polarization on E1× E2 is given by E1+ E2.
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Definition 3.1. Let (A,C), (A′,C ′) and (A′′,C ′′) be principally polarized abelian surfaces with principal
polarizations C , C ′, C ′′, respectively. The Richelot isogeny π : A→ A′ is said to be isomorphic to the
Richelot isogeny $ : A→ A′′ if there exist an automorphism σ ∈ A with σ ∗C ≈ C and an isomorphism
g : A′→ A′′ with g∗C ′′ ≈ C ′ such that the following diagram commutes:

A

π
��

σ
// A

$
��

A
′ g

// A
′′

4. Decomposed Richelot isogenies

In this section, we use the same notation as in Section 3.

Definition 4.1. Let A and A′ be abelian surfaces with principal polarizations C , C ′, respectively. A
Richelot isogeny A→ A′ is said to be decomposed if C ′ consists of two elliptic curves. Otherwise, the
Richelot isogeny is said to be nondecomposed.

Example 4.2. Let Ca,b be a nonsingular projective model of the curve of genus 2 defined by the equation

y2
= (x2

− 1)(x2
− a)(x2

− b) (a 6= 0, 1; b 6= 0, 1; a 6= b).

Let ι be the hyperelliptic involution defined by x 7→ x, y 7→ −y. RA(Ca,b) has an element of order 2
defined by

σ : x 7→ −x, y 7→ y.

We put τ = ι ◦ σ . We have two elliptic curves Eσ = Ca,b/〈σ 〉 and Eτ = Ca,b/〈τ 〉. The elliptic curve Eσ
is isomorphic to an elliptic curve Eλ : y2

= x(x − 1)(x − λ) with

λ= (b− a)/(1− a) (4-1)

and the elliptic curve Eτ is isomorphic to an elliptic curve Eµ : y2
= x(x − 1)(x −µ) with

µ= (b− a)/b(1− a). (4-2)

The map given by (4-1) and (4-2) yields a bijection

{(a, b) | a, b ∈ k; a 6= 0, 1; b 6= 0, 1; a 6= b, and J (Ca,b) is superspecial}

→ {(λ, µ) | λ,µ ∈ k; λ 6= µ; Eλ, Eµ are supersingular}

(for the details, see Katsura and Oort [13, page 259]). We have a natural morphism Ca,b→ Eσ × Eτ and
this morphism induces an isogeny

π : J (Ca,b)→ Eσ × Eτ .



COUNTING RICHELOT ISOGENIES BETWEEN SUPERSPECIAL ABELIAN SURFACES 289

By [9, page 648], we know Kerπ ∼= Z/2Z × Z/2Z and Kerπ consists of P1 − σ(P1), P3 − σ(P3),
P5− σ(P5) and the zero point. Here, P1 = (1, 0), P3 = (a, 0), P5 = (b, 0). Since Pi − σ(Pi ) is a divisor
of order 2, we have Pi − σ(Pi )∼ σ(Pi )− Pi .

Comparing the calculation in [1, Proposition 1(2)] with the one in [13, Lemma 2.4], we see that
π : J (Ca,b)→ Eσ × Eτ is a decomposed Richelot isogeny with C ′a,b = Eσ + Eτ (also see [12, Proof of
Proposition 7.18 (iii)]). We will use the bijection above to calculate decomposed Richelot isogenies.

Proposition 4.3. Let C be a nonsingular projective curve of genus 2. Then, the following three conditions
are equivalent:

(i) C has a decomposed Richelot isogeny outgoing from J (C).

(ii) RA(C) has an element of order 2.

(iii) RA(C) has a long element of order 2.

Proof. (i)⇒ (ii). By assumption, we have a Richelot isogeny

π : J (C)→ J (C)/G (4-3)

such that G is an isotropic subgroup of J (C)[2] with respect to 2C , and that C ′ is a principal polarization
consisting of two elliptic curves Ei (i = 1, 2) on J (C)/G with 2C ∼ π∗(E1+ E2). Since C is a principal
polarization, we have an isomorphism ϕC : J (C) ∼= J (C)t . In a similar way, we have J (C)/G ∼=
(J (C)/G)t . Dualizing (4-3), we have

η = π t
: J (C)/G→ J (C)

with J (C)/G ∼= E1 × E2, C ′ = E1 + E2 and η∗(C) ∼ 2(E1 + E2). The kernel Ker η is an isotropic
subgroup of (E1× E2)[2] with respect to the divisor 2(E1+ E2).

Denoting by ιE1 the inversion of E1, we set

τ = ιE1 × idE2 .

Then, τ is an automorphism of order 2 which is not the inversion of E1× E2. By the definition, we have

τ ∗(E1+ E2)= E1+ E2.

Moreover, since Ker η consists of elements of order 2 and τ fixes the elements of order 2, τ preserves
Ker η. Therefore, τ induces an automorphism τ of J (C)∼= (J (C)/G)/Ker η∼= (E1× E2)/Ker η. There-
fore, we have the following diagram:

E1× E2

η

��

τ
// E1× E2

η

��

J (C) τ
// J (C)
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We have
η∗τ ∗C = τ ∗η∗C ∼ τ ∗(2(E1+ E2))= 2(E1+ E2).

On the other hand, we have
η∗C ∼ 2(E1+ E2).

Since η∗ is an injective homomorphism from NS(J (C)) to NS(E1× E2), we have C ≈ τ ∗C . Therefore,
τ ∗C −C is an element of Pic0(J (C))= J (C)t . Since C is ample, the homomorphism

ϕC : J (C)→ J (C)t

v 7→ T ∗v C −C

is surjective. Therefore, there exists an element v ∈ J (C) such that

T ∗v C −C ∼ τ ∗C −C,

that is, T ∗v C ∼ τ ∗C . Since T ∗v C is a principal polarization, we see

dim H0(J (C),OJ (C)(T ∗v C))= 1.

Therefore, we have T ∗v C = τ ∗C , that is, T ∗
−vτ
∗C =C . Since τ is of order 2, we have (τ ◦T−v)2= T−v−τ(v),

a translation. Therefore, we have T ∗
−v−τ(v)C = C . However, since C is a principal polarization, we have

KerϕC = {0}. Therefore, we have T−v−τ(v) = id. This means τ ◦ T−v is an automorphism of order 2 of C .
By definition, this is not the inversion ι. Hence, this gives an element of order 2 in RA(C).

(ii)⇒ (iii) This follows from Lemma 2.3.

(iii)⇒ (i) This follows from Lemma 2.2 and Example 4.2. �

Remark 4.4. In the proof of the proposition, the automorphism τ ◦ T−v really gives a long element of
order 2 in RA(C).

By [1, Section 3.3], if the curve C of genus 2 is obtained from a decomposed principally polarized
abelian surface by a Richelot isogeny, then the curve C has a long reduced automorphism of order 2.
As is well-known, for a curve C of genus 2, the Jacobian variety J (C) has 15 Richelot isogenies (see
[1, Section 3.2], for instance). If we have a Richelot isogeny (A,C)→ (A′,C ′), then we also have a
Richelot isogeny (A′,C ′)→ (A,C). Therefore, we have the following proposition.

Proposition 4.5. Let C be a nonsingular projective curve of genus 2. Among the 15 Richelot isoge-
nies outgoing from J (C), the number of decomposed Richelot isogenies is equal to the number of long
elements of order 2 in RA(C).

In this proposition, we consider that a different isotropic subgroup gives a different Richelot isogeny.
However, two different Richelot isogenies may be isomorphic to each other by a suitable automorphism
(see Definition 3.1). From the next section, we will compute the number of Richelot isogenies up to
isomorphism.
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5. The number of long elements of order 2

In this section, we count the number of long elements of order 2 in RA(C). For an element f ∈ RA(C),
we express the reduced automorphism by

f : x 7→ f (x)

with a suitable coordinate x of A1
⊂ P1. We will give the list of f (x) corresponding to elements of

order 2. Here, we denote by ω a primitive cube root of unity, by i a primitive fourth root of unity, and
by ζ a primitive sixth root of unity:

Case 0: RA(C)∼= {0}.

• There exist no long elements of order 2.

Case 1: RA(C)∼= Z/2Z.

• The curve C is given by y2
= (x2

− 1)(x2
− a2)(x2

− b2).

• There exists only one long element of order 2 given by f (x)=−x .

Case 2: RA(C)∼= S3.

• The curve C is given by y2
= (x3

− 1)(x3
− a3).

• There exist three long elements of order 2 given by f (x)= a/x , ωa/x , ω2a/x .

Case 3: RA(C)∼= Z/2Z×Z/2Z.

• The curve C is given by y2
= x(x2

− 1)(x2
− a2).

• There exist two long elements of order 2 given by f (x)= a/x , −a/x .

• There exists one short element of order 2 given by f (x)=−x .

Case 4: RA(C)∼= D12.

• The curve is given by y2
= x6
− 1.

• There exist four long elements of order 2 given by f (x)=−x , ζ/x , ζ 3/x , ζ 5/x .

• There exist three short elements of order 2 given by f (x)= 1/x , ζ 2/x , ζ 4/x .

Case 5: RA(C)∼= S4.

• The curve C is given by y2
= x(x4

− 1).

• There exist six long elements of order 2 given by f (x)=(x + 1)/(x − 1), −(x − 1)/(x + 1),
i(x + i)/(x − i), i/x , −i/x , −i(x − i)/(x + i).

• There exist three short elements of order 2 given by f (x)=−x , 1/x , −1/x .

Case 6: RA(C)∼= Z/5Z.

• The curve is given by y2
= x5
− 1.

• There exist no long elements of order 2.



292 TOSHIYUKI KATSURA AND KATSUYUKI TAKASHIMA

Remark 5.1. By Proposition 4.5 and the calculation above, we see that for a curve C of genus 2, the
number of outgoing decomposed Richelot isogenies from J (C) is at most six. This result coincides with
the one given in [1, Theorem 2].

6. Counting Richelot isogenies

6A. Richelot isogenies from Jacobians of irreducible genus-2 curves. Let C be a nonsingular pro-
jective curve of genus 2, and let J (C) be the Jacobian variety of C . For a fixed C , we consider the set
{(J (C),G)} of pairs of J (C) and an isotropic subgroup G for the polarization 2C . The group Aut(C) acts
on the ramification points of C→P1. Using this action, Aut(C) induces the action on the set {(J (C),G)}.
Since the inversion ι of C acts on J (C)[2] trivially, the reduced group RA(C) of automorphisms acts on
the set {(J (C),G)} which consists of 15 elements.

Let Pi (i = 1, 2, . . . , 6) be the ramification points of ψ : C→ P1. A division into the sets of 3 pairs
of these 6 points gives an isotropic subgroup G, that is,

{Pi1 − Pi2, Pi3 − Pi4, Pi5 − Pi6, the identity}

gives an isotropic subgroup of J (C)[2]. The action of RA(C) on the set {(J (C),G)} is given by the
action of RA(C) on the set

{〈(Pi1, Pi2), (Pi3, Pi4), (Pi5, Pi6)〉},

which contains 15 sets. Here, the pair (Pi , Pj ) is unordered. In this section, we count the number of
orbits of this action for each case.

Let C be a curve of genus 2 with RA(C)∼= Z/2Z. Such a curve is given by the equation

y2
= (x2

− 1)(x2
− a)(x2

− b)

with suitable conditions for a and b. The branch points Qi = ψ(Pi ) are given by

Q1 = 1, Q2 =−1, Q3 =
√

a, Q4 =−
√

a, Q5 =
√

b, Q6 =−
√

b.

The generator of the reduced group RA(C) of automorphisms is given by

σ : x 7→ −x .

Since the inversion ι acts trivially on the ramification points, RA(C) acts on the set of the ramification
points {P1, P2, P3, P4, P5, P6}, and the action of σ on the ramification points is given by

P2i−1 7→ P2i , P2i 7→ P2i−1 (i = 1, 2, 3).

The isotropic subgroup which corresponds to 〈(P1, P2), (P3, P4), (P5, P6)〉 gives a decomposed Richelot
isogeny and the other isotropic subgroups give nondecomposed isogenies. Moreover, 〈(σ (Pi1), σ (Pi2)),

(σ (Pi3), σ (Pi4)), (σ (Pi5), σ (Pi6))〉 gives the Richelot isogeny isomorphic to the one given by 〈(Pi1, Pi2),

(Pi3, Pi4), (Pi5, Pi6)〉. We denote Pi by i for the sake of simplicity. Then, the action σ is given by the
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permutation (1, 2)(3, 4)(5, 6), and by the action of RA(C), the set {〈(Pi1, Pi2), (Pi3, Pi4), (Pi5, Pi6)〉} of
15 elements is divided into the following 11 loci:

{[(1, 2), (3, 4), (5, 6)]}, {[(1, 2), (3, 5), (4, 6)]}, {[(1, 2), (3, 6), (4, 5)]},

{[(1, 3), (2, 4), (5, 6)]}, {[(1, 3), (2, 5), (4, 6)], [(1, 6), (2, 4), (3, 5)]},

{[(1, 3), (2, 6), (4, 5)], [(1, 5), (2, 4), (3, 6)]}, {[(1, 4), (2, 3), (5, 6)]},

{[(1, 4), (2, 5), (3, 6)], [(1, 6), (2, 3), (4, 5)]}, {[(1, 4), (2, 6), (3, 5)], [(1, 5), (2, 3), (4, 6)]},

{[(1, 5), (2, 6), (3, 4)]}, {[(1, 6), (2, 5), (3, 4)]}.

The reduced automorphism σ is a long one of order 2 and the element [(1, 2), (3, 4), (5, 6)] is fixed
by σ . Therefore, the element [(1, 2), (3, 4), (5, 6)] gives a decomposed isogeny. The other 10 loci give
nondecomposed isogenies. In the same way, we have the following proposition.

Proposition 6.1. Under the notation above, the number of Richelot isogenies up to isomorphism in each
case and the number of elements in each orbit are listed as follows. Here, in the list, for example,
(1× 6, 2× 4)(1× 1) means that there exist 6 orbits which contain 1 element and 4 orbits which contain
2 elements for nondecomposed Richelot isogenies, and there exists 1 orbit which contains 1 element for
decomposed Richelot isogenies:

(0) RA(C)∼= {0} 15 Richelot isogenies, no decomposed ones: (1× 15)(0).

(1) RA(C)∼= Z/2Z 11 Richelot isogenies, 1 decomposed one: (1× 6, 2× 4)(1× 1).

(2) RA(C)∼= S3 7 Richelot isogenies, 1 decomposed one: (1× 3, 3× 3)(3× 1).

(3) RA(C)∼= Z/2Z×Z/2Z 8 Richelot isogenies, 2 decomposed ones: (1× 1, 2× 4, 4× 1)(1× 2).

(4) RA(C)∼= D12 5 Richelot isogenies, 2 decomposed ones: (2× 1, 3× 1, 6× 1)(1× 1, 3× 1).

(5) RA(C)∼= S4 4 Richelot isogenies, 1 decomposed one: (1× 1, 4× 2)(6× 1).

(6) RA(C)∼= Z/5Z 3 Richelot isogenies, no decomposed ones: (5× 3)(0).

Theorem 6.2. The total number of Richelot isogenies up to isomorphism outgoing from the irreducible
superspecial curves of genus 2 is equal to

(p− 1)(p+ 2)(p+ 7)
192

−

3
{
1−

(
−1
p

)}
32

+

{
1−

(
−2
p

)}
8

.

The total number of decomposed Richelot isogenies up to isomorphism outgoing from the irreducible
superspecial curves of genus 2 is equal to

(p− 1)(p+ 3)
48

−

{
1−

(
−1
p

)}
8

+

{
1−

(
−3
p

)}
6

. (6-1)

Proof. The total number of Richelot isogenies up to isomorphism outgoing from the irreducible super-
special curves of genus 2 is equal to

15n0+ 11n1+ 7n2+ 8n3+ 5n4+ 4n5+ 3n6
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and the total number of decomposed Richelot isogenies up to isomorphism outgoing from the irreducible
superspecial curves of genus 2 is equal to

n1+ n2+ 2n3+ 2n4+ n5.

The results follow from these facts. �

6B. Richelot isogenies from elliptic curve products. Let E , E ′ be supersingular elliptic curves, and
we consider a decomposed principal polarization E + E ′ and a Richelot isogeny (E × E ′, E + E ′)→
(J (C),C). For a principally polarized abelian surface (E × E ′, E + E ′), we denote by Aut(E × E ′)
the group of automorphisms of E × E ′ which preserve the polarization E + E ′. Let {P1, P2, P3} (resp.
{P4, P5, P6}) be the 2-torsion points of E ′ (resp. E). Then, the six points Pi (1 ≤ i ≤ 6) on E ×
E ′ play the role of ramification points of irreducible curves of genus 2, and Aut(E × E ′) acts on the
set {P1, P2, P3, P4, P5, P6}. The subgroup 〈ιE × idE ′, idE ×ιE ′〉 acts on the set {P1, P2, P3, P4, P5, P6}

trivially. In this section, let E2 be the elliptic curve defined by y2
= x3
−x and E3 the elliptic curve defined

by y2
= x3
− 1. We know Aut E2 ∼= Z/4Z and Aut E3 ∼= Z/6Z. The elliptic curve E2 is supersingular

if and only if p ≡ 3 (mod 4) and E3 is supersingular if and only if p ≡ 2 (mod 3). In this section, the
abelian surface E × E ′ means an abelian surface E × E ′ with principal polarization E + E ′.

Now, let E , E ′ be supersingular elliptic curves which are neither isomorphic to E2 nor to E3. We
also assume E is not isomorphic to E ′. Using these notations, we have the following list of orders of the
groups of automorphisms:

|Aut(E × E ′)| = 4, |Aut(E × E)= 8, |Aut(E × E2)| = 8, |Aut(E × E3)| = 12,

|Aut(E2× E2)| = 32, |Aut(E3× E3)| = 72, |Aut(E2× E3)| = 24.

The isotropic subgroups for the polarization 2(E + E ′) are determined in [1, Section 3.3]. Using their
results and the same method as in Section 6A, we have the following proposition.

Proposition 6.3. Let E , E ′ be supersingular elliptic curves which are neither isomorphic to E2 nor to
E3 with E2 and E3 defined as above. We also assume that E is not isomorphic to E ′. The number of
Richelot isogenies up to isomorphism outgoing from a decomposed principally polarized superspecial
abelian surface in each case and the number of elements in each orbit are listed as follows. Here, in the
list, for example, (1× 3, 2× 1)(1× 4, 2× 3) means that there exist 3 orbits which contain 1 element and
1 orbit which contains 2 elements for nondecomposed Richelot isogenies, and there exist 4 orbits which
contain 1 element and 3 orbits which contain 2 elements for decomposed Richelot isogenies:

(i) E × E ′ 15 Richelot isogenies, 6 nondecomposed ones: (1× 6)(1× 9).

(ii) E × E 11 Richelot isogenies, 4 nondecomposed ones: (1× 3, 2× 1)(1× 4, 2× 3).

(iii) E × E2 9 Richelot isogenies, 3 nondecomposed ones (p ≡ 3 (mod 4)): (2× 3)(1× 3, 2× 3).

(iv) E × E3 5 Richelot isogenies, 2 nondecomposed ones (p ≡ 2 (mod 3)): (3× 2)(3× 3).

(v) E2× E2 5 Richelot isogenies, 1 nondecomposed one (p≡ 3 (mod 4)): (4×1)(1×1, 2×1, 4×2).
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(vi) E3× E3 3 Richelot isogenies, 1 nondecomposed one (p ≡ 2 (mod 3)): (3× 1)(3× 1, 9× 1).

(vii) E2× E3 3 Richelot isogenies, 1 nondecomposed one (p ≡ 11 (mod 12)): (6× 1)(3× 1, 6× 1).

Proof. We give a proof for the case (iv). For the other cases, the arguments are quite similar. Since the
elliptic curve E3 is defined by y2

= x3
− 1, the 2-torsion points (x, y) of E3 are given by P1 = (1, 0),

P2 = (ω, 0) and P3 = (ω
2, 0). Here, ω is a primitive cube root of unity. We denote by P4, P5 and P6

the 2-torsion points of E . We have an automorphism σ of order 3 of E3 defined by σ : x 7→ ωx, y 7→ y.
As in the case of Section 6A, we describe the isotropic subgroups G. We know that a division into
the sets of 3 pairs of these 6 points Pi (1 ≤ i ≤ 6) on E × E3 gives an isotropic subgroup G, that is,
{Pi1−Pi2, Pi3−Pi4, Pi5−Pi6, the identity} gives an isotropic subgroup of (E×E3)[2]. Here, we consider
Pi (1 ≤ i ≤ 3) as the point (0, Pi ) on E × E3, and Pi (4 ≤ i ≤ 6) as the point (Pi , 0) on E × E3. This
set contains 15 elements. In the case (iv), we have E 6∼= E3. Therefore, by [1, Section 3.3], among the
15 isotropic subgroups the 9 cases such that Pi1, Pi2, Pi3 ∈ E and Pi4, Pi5, Pi6 ∈ E3 give the decomposed
Richelot isogenies and the rest gives the nondecomposed Richelot isogenies. For the abbreviation, we
denote by Pi by i . Then, on the set {1, 2, 3, 4, 5, 6}, idE ×σ acts as the cyclic permutation (1, 2, 3). The
isotropic subgroup G is determined by the set of 3 pairs of 2-torsion points:

{(i1, i2), (i3, i4), (i5, i6)},

and the group Aut(E × E3) induces the action on the set of the 15 isotropic subgroups. Since the action
of the subgroup 〈ιE × idE3, idE ×ιE3〉 is trivial on the set of the 15 isotropic subgroups, we see that the
action is given by the group Aut(E × E3)/〈ιE × idE3, idE ×ιE3〉

∼= 〈idE ×σ 〉. By this action, the set of
the 15 isotropic subgroups is divided into the following 5 orbits:

{[(1, 2), (3, 4), (5, 6)], [(2, 3), (1, 4), (5, 6)], [(1, 3), (2, 4), (5, 6)]},

{[(1, 2), (3, 5), (4, 6)], [(2, 3), (1, 5), (4, 6)], [(1, 3), (2, 5), (4, 6)]},

{[(1, 2), (3, 6), (4, 5)], [(2, 3), (1, 6), (4, 5)], [(1, 3), (2, 6), (4, 5)]},

{[(1, 4), (2, 5), (3, 6)], [(1, 6), (2, 4), (3, 5)], [(1, 5), (2, 6), (3, 5)]},

{[(1, 4), (2, 6), (3, 5)], [(1, 5), (2, 4), (3, 6)], [(1, 6), (2, 5), (3, 4)]}.

By the criterion above, the first 3 sets correspond with the decomposed Richelot isogenies, and the last
2 sets correspond with the nondecomposed Richelot isogenies. �

We denote by h the number of supersingular elliptic curves defined over k. Then, we know

h =
p− 1

12
+

{
1−

(
−3
p

)}
3

+

{
1−

(
−1
p

)}
4

(see Igusa [8], for instance). We denote by h1 the number of supersingular elliptic curves E with
Aut(E)∼= Z/2Z, h2 the number of supersingular elliptic curves E2 with Aut(E2)∼= Z/4Z, h3 the number
of supersingular elliptic curves E3 with Aut(E3)∼=Z/6Z. We have h=h1+h2+h3 and h2=

{
1−
(
−1
p

)}
/2

and h3 =
{
1−

(
−3
p

)}
/2.
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Theorem 6.4. The total number of nondecomposed Richelot isogenies up to isomorphism outgoing from
decomposed principally polarized superspecial abelian surfaces is equal to

(p− 1)(p+ 3)
48

−

{
1−

(
−1
p

)}
8

+

{
1−

(
−3
p

)}
6

. (6-2)

The total number of decomposed Richelot isogenies up to isomorphism outgoing from decomposed prin-
cipally polarized superspecial abelian surfaces is equal to

(p− 1)(3p+ 17)
96

+

(p+ 6)
{
1−

(
−1
p

)}
16

+

{
1−

(
−3
p

)}
3

.

Proof. The total number of nondecomposed Richelot isogenies up to isomorphism outgoing from decom-
posed principally polarized superspecial abelian surfaces is equal to

6
{

h1(h1− 1)
2

}
+ 4h1+ 3h2h1+ 2h3h1+ h2+ h3+ h2h3.

The total number of decomposed Richelot isogenies up to isomorphism outgoing from decomposed
principally polarized superspecial abelian surfaces is equal to

9
{

h1(h1− 1)
2

}
+ 7h1+ 6h2h1+ 3h3h1+ 4h2+ 2h3+ 2h2h3.

Since
{
1−

(
−1
p

)}2
= 2

{
1−

(
−1
p

)}
and

{
1−

(
−3
p

)}2
= 2

{
1−

(
−3
p

)}
, the result follows from these facts. �

Remark 6.5. Since the total number of decomposed Richelot isogenies up to isomorphism outgoing
from the irreducible superspecial curves of genus 2 is equal to the total number of nondecomposed
Richelot isogenies up to isomorphism outgoing from decomposed principally polarized superspecial
abelian surfaces, (6-1) and (6-2) give the same number.

7. Examples

By [7, Section 1.3], we have the following normal forms of curves C of genus 2 with given reduced
group RA(C) of automorphisms:

(1) For S3 ⊂ RA(C), the normal form is y2
= (x3

− 1)(x3
−α). This curve is superspecial if and only

if α is a zero of the polynomial

g(z)=
[p/3]∑
l=0

(
(p−1)/2

((p+1)/6)+l

)(
(p−1)/2

l

)
zl .

(2) For Z/2Z×Z/2Z⊂ RA(C), the normal form is y2
= x(x2

− 1)(x2
−β). This curve is superspecial

if and only if β is a zero of the polynomial

h(z)=
[p/4]∑
l=0

(
(p−1)/2

((p+1)/4)+l

)(
(p−1)/2

l

)
zl .
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(3) For RA(C) ∼= D12, the normal form is y2
= x6

− 1. This curve is superspecial if and only if
p ≡ 5 (mod 6) (see [7, Proposition 1.11]).

(4) For RA(C) ∼= S4, the normal form is y2
= x(x4

− 1). This is superspecial if and only if p ≡
5 or 7 (mod 8) (see [7, Proposition 1.12]).

Finally, the elliptic curve E defined by y2
= x(x − 1)(x − λ) is supersingular if and only if λ is a zero

of the Legendre polynomial

8(z)=
(p−1)/2∑

l=0

(
(p−1)/2

l

)2
zl .

Using these results, we construct some examples.

7A. Examples in characteristic 13. Assume the characteristic is p = 13. Over k we have only one
supersingular elliptic curve E , and three superspecial curves C1, C2 and C3 of genus 2 with RA(C1)∼= S3,
RA(C2) ∼= Z/2Z× Z/2Z and RA(C3) = S4, respectively (see [7, Remark 3.4]). In characteristic 13,
we know h(z) = 7z3

+ 12z2
+ 12z + 7, and the zeros are −1 and −5±

√
6. We also know g(z) =

2z4
+ 3z3

+ 4z2
+ 3z + 2, and one of the zeros is −4+

√
2. The Legendre polynomial is given by

8(z)= z6
+ 10z5

+ 4z4
+ 10z3

+ 4z2
+ 10z+ 1, and one of the zeros is 3− 2

√
2. Using these facts, we

know that the curves above are given by the following equations:

(1) E : y2
= x(x − 1)(x − 3+ 2

√
2) (RA(E)= Aut(E)/〈ιE 〉 ∼= {0}).

(2) C1: y2
= (x3

− 1)(x3
+ 4−

√
2) (RA(C1)∼= S3).

(3) C2: y2
= x(x2

− 1)(x2
+ 5+ 2

√
6) (RA(C2)∼= Z/2Z×Z/2Z).

(4) C3: y2
= x(x4

− 1) (RA(C3)∼= S4).

C3

C1

C2

E×E

4
1

3

2

3

2

3

2

6

1

1
11

1

2

2
2

11
1

1

1

4

1

1 3
4

1 2

2

Therefore, outgoing from superspecial curves of genus 2,
we have, in total, 1+ 2+ 1 = 4 decomposed Richelot
isogenies up to isomorphism by Proposition 6.1. On
the other hand, outgoing from the unique decomposed
principally polarized abelian surface (E × E, E + E), we
have 5 nondecomposed Richelot isogenies (not up to iso-
morphism) (see [8] and [1, Figure 1]). Using the method in
[1, Section 3.3], as the images of 5 nondecomposed Richelot
isogenies, we have the following superspecial curves of genus 2:

(a) Ca: y2
= (x2

− 1)(x2
− 4+ 7

√
2)(x2

− 6+ 6
√

2) (RA (Ca)∼= Z/2Z×Z/2Z).

(b) Cb: y2
= (x2

− 1)(x2
+ 3− 2

√
2)(x2

− 4−
√

2) (RA (Cb)∼= S4).

(c) Cc: y2
= (x2

− 1)(x2
+ 3− 4

√
2)(x2

+ 1+ 3
√

2) (RA (Cc)∼= S3).

(d) Cd : y2
= (x2

− 1)(x2
− 3)(x2

+ 3− 4
√

2) (RA (Cd)∼= S3).

(e) Ce: y2
= (x2

− 1)(x2
− 6− 6

√
2)(x2

− 2+ 2
√

2) (RA (Ce)∼= Z/2Z×Z/2Z).
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We see that Ca ∼= Ce ∼= C2, Cc ∼= Cd ∼= C1 and Cb ∼= C3. As Richelot isogenies, (E × E, E + E)→
(J (Cc),Cc) is isomorphic to (E× E, E+ E)→ (J (Cd),Cd), but (E× E, E+ E)→ (J (Ca),Ca) is not
isomorphic to (E × E, E + E)→ (J (Ce),Ce). Compare our graph with Figure 1 of [1]. In the graph
the numbers along the edges are the multiplicities of Richelot isogenies outgoing from the nodes.

7B. Examples in characteristic 11. Assume the characteristic is p= 11. Over k we have two supersingu-
lar elliptic curves E2,E3 and two superspecial curves C1, C2 of genus 2 with RA(C1)∼= S3, RA(C2)∼= D12,
respectively (see [7, Remark 3.4]). In characteristic 11, we know

g(z)= 10(z3
+ 5z2

+ 5z+ 1),

and the roots are −1, 3 and 4. Using this fact, we
know that the curves above are given by the follow-
ing equations:

(1) E2: y2
= x3
− x (RA(E2)∼= Z/2Z).

(2) E3: y2
= x3
− 1 (RA(E3)∼= Z/3Z).

(3) C1: y2
= (x3

− 1)(x3
− 3) (RA(C1)∼= S3).

(4) C2: y2
= x6
− 1 (RA(C2)∼= D12).

C1 C2

E2×E2 E3×E3 E2×E3

1 2
3 6

3

4

3

3

13

6

4
9

4 3

3
3

1

1
1

2

3

6

We have three decomposed principally polarized abelian surfaces: E2× E2, E3× E3, E2× E3. There-
fore, from the superspecial curves of genus 2 we have, in total, 1+ 2= 3 decomposed Richelot isogenies
up to isomorphism by Proposition 6.1. On the other hand, from the decomposed principally polarized
abelian surfaces, we have 1 + 1 + 1 = 3 nondecomposed Richelot isogenies up to isomorphism by
Proposition 6.3. For the decomposed principally polarized abelian surface E2× E2 the image of the only
one nondecomposed Richelot isogeny is given by C2. For the decomposed principally polarized abelian
surface E3× E3 the image of the only one nondecomposed Richelot isogeny is also given by C2. For the
decomposed principally polarized abelian surface E2× E3 the image of the only one nondecomposed
Richelot isogeny is given by C1. See also Jordan and Zaytman [11, Section 5.1].

C

E2×E2

6

4

4

1 4

1
24

4

7C. Examples in characteristic 7. Assume the characteristic is p = 7. Over k we
have only one supersingular elliptic curve E2 and only one superspecial curves C
of genus 2, which has RA(C) ∼= S4 (see [7, Remark 3.4]). They are given by the
following equations:

(1) E2: y2
= x3
− x (RA(E2)∼= Z/2Z).

(2) C : y2
= x(x4

− 1) (RA(C)∼= S4).

We have only one decomposed principally polarized abelian surface E2 × E2.

Therefore, outgoing from the superspecial curves of genus 2 we have only one de-
composed Richelot isogeny up to isomorphism. From the decomposed principally
polarized abelian surface, we also have only one nondecomposed Richelot isogeny up to isomorphism
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(see [1, Sections 3.2 and 3.3]). For the decomposed principally polarized abelian surface E2× E2 the
image of the only one nondecomposed Richelot isogeny is given by C .

8. Concluding remark

Our results answered a question about the number of decomposed Richelot isogenies and improved our
understanding of the isogeny graph for genus-2 isogeny cryptography. Further applications (or implica-
tions) of our results to cryptography are left as an open problem.

For example, a very recent cryptanalytic algorithm by Costello and Smith [4] is considered as an
interesting target. They reduced the isogeny path-finding algorithm in the superspecial Richelot isogeny
graph to the elliptic curve path-finding problem, thus improving the complexity. A key ingredient of
the reduction is a subalgorithm for finding a path connecting a given irreducible genus-2 curve and the
(connected) subgraph consisting of elliptic curve products.

Proposition 4.3 showed the equivalence of existence of a decomposed Richelot isogeny outgoing from
J (C) and that of a (long) element of order 2 in the reduced group of automorphisms of C . It implies
that the subgraph of elliptic curve products are adjacent to genus-2 curves having involutive reduced
automorphisms in the superspecial graph. We hope that this new characterization can be applied to
analyzing and/or improving the Costello–Smith attack.
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Algorithms to enumerate superspecial Howe curves of genus 4

Momonari Kudo, Shushi Harashita, and Everett W. Howe

A Howe curve is a curve of genus 4 obtained as the fiber product of two genus-1 double covers of P1.
We present a simple algorithm for testing isomorphism of Howe curves, and we propose two main
algorithms for finding and enumerating superspecial Howe curves: One involves solving multivariate
systems coming from Cartier–Manin matrices, while the other uses Richelot isogenies of curves of
genus 2. Comparing the two algorithms by implementation and by complexity analyses, we conclude
that the latter enumerates superspecial Howe curves more efficiently. Using these algorithms, we show
that there exist superspecial curves of genus 4 in characteristic p for every prime p with 7< p < 20000.

1. Introduction

1A. Background and motivation. Let K be an algebraically closed field of characteristic p > 0. A
nonsingular curve over K is called superspecial (resp. supersingular) if its Jacobian variety is isomor-
phic (resp. isogenous) to a product of supersingular elliptic curves. Superspecial curves are not only
theoretically interesting in algebraic geometry and number theory but also have many applications in
coding theory, cryptology, and so on, because they tend to have many rational points and their Jacobian
varieties have large endomorphism rings. However, it is not always easy to find such curves, and there are
only finitely many superspecial curves for a given genus and characteristic. One method of constructing
superspecial curves is to consider fiber products of superspecial curves of lower genera. In this paper, we
demonstrate that this method can be efficient by considering the simplest example in which the genus is
at least 4: the case of Howe curves. A Howe curve (so named by Kudo, Harashita and Senda in [23]) is
a curve of genus 4 obtained as the fiber product of two genus-1 double covers E1→ P1 and E2→ P1.
In [11], Howe studied these curves in order to quickly construct genus-4 curves with many rational points.

1B. Related works. The reason that we consider the case of genus g ≥ 4 is that the enumeration of the
isomorphism classes of superspecial curves with g ≤ 3 has already been done, by Deuring [4] for g = 1,
by Ibukiyama, Katsura, and Oort [14] for g = 2, and by Brock [3] for g = 3; see also Ibukiyama [13]
and Oort [25] for the existence of such curves for g = 3. In contrast to the case g ≤ 3, the existence or
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Keywords: algebraic curves, superspeciality.
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nonexistence of a superspecial curve of genus 4 in general characteristic is an open problem, although
some results for specific small p are known; see [5, Theorem 1.1] for the nonexistence for p ≤ 3 and
[22, Theorem B] for the nonexistence for p = 7. As for enumeration, computational approaches have
been proposed recently in [21], [22], and [20] in the case of genus 4. The main strategy common to
these papers is to parametrize a family of curves (canonical curves in the first two papers, hyperelliptic
curves in the third), and then to find the superspecial curves X in these families by computing the zeros
of a multivariate system derived from the condition that the Cartier–Manin matrix of X is zero. With
computer algebra techniques such as Gröbner bases, the authors of these papers enumerated superspecial
canonical curves for p ≤ 11 in [21] and [22] and superspecial hyperelliptic curves for p ≤ 23 in [20].
However, results for larger p have not been obtained yet due to the cost of solving multivariate systems,
and no complexity analysis is given in [21], [22], or [20].

Now we turn our attention to Howe curves. Recently, it was proven in [23] that there exists a supersin-
gular Howe curve in every positive characteristic. In particular, the authors of [23] reduce the existence
of such a curve to the existence of a zero of a certain multivariate system, as follows: They study a
family of Howe curves realized as E1 : z2

= f1(x) and E2 : w
2
= f2(x) for cubic polynomials f1 and f2

parametrized by elements (λ : µ : ν) of P2. Let C be the genus-2 curve y2
= f1 f2. The supersingularity

of H is equivalent to that of E1, E2 and C , because there exists an isogeny of 2-power degree from the
Jacobian J (H) to E1×E2× J (C) [11, Theorem 2.1]. Thus, once supersingular isomorphism classes of E1

and E2 are given, finding supersingular curves H is reduced to finding values of the parameter (λ : µ : ν)
that satisfy a multivariate system derived from the supersingularity of C . The authors of [23] deduced
the existence of such a zero (λ : µ : ν) from various algebraic properties of the defining polynomials of
the system.

The above reduction is applicable also for the superspecial case, but the method used in [23] to prove
the existence of solutions does not carry over well. For this reason, the superspecial case is still open,
and we are left to ask: For which primes p > 7 are there superspecial Howe curves in characteristic p?

1C. Our contribution. We study the existence of superspecial Howe curves by creating efficient algo-
rithms to produce and enumerate them. The following theorems summarize some of what we have
found.

Theorem 1.1. For every prime p with 7< p < 20000 or with p ≡ 5 mod 6, there exists a superspecial
Howe curve in characteristic p.

Theorem 1.2. For every prime p with 7< p ≤ 199, the number of isomorphism classes of superspecial
Howe curves in characteristic p is given in Table 1.

The upper bounds on p in these two theorems can easily be increased. For example, on a 2.8 GHz quad-
core Intel Core i7 with 16GB RAM, computing the 8351 superspecial Howe curves in characteristic 199
using method (B) below took 124 seconds in Magma. Finding examples of superspecial Howe curves
for every p between 7 and 20000 took 680 minutes on the same machine.
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p n(p) ratio p n(p) ratio p n(p) ratio

11 4 3.462 67 260 0.996 137 2430 1.089
13 3 1.573 71 742 2.388 139 2447 1.050
17 10 2.345 73 316 0.936 149 3082 1.073
19 4 0.672 79 595 1.390 151 3553 1.189
23 33 3.125 83 655 1.320 157 3427 1.020
29 45 2.126 89 863 1.410 163 3518 0.936
31 59 2.281 97 802 1.012 167 6268 1.550
37 41 0.932 101 1207 1.350 173 4780 1.064
41 105 1.755 103 1151 1.213 179 5771 1.159
43 79 1.145 107 1237 1.163 181 5419 1.053
47 235 2.608 109 1193 1.061 191 9610 1.589
53 167 1.292 113 1323 1.056 193 6298 1.009
59 259 1.453 127 2013 1.132 197 6839 1.030
61 243 1.233 131 2606 1.335 199 8351 1.221

Table 1. For each prime p from 11 to 199, we give the number n(p) of superspecial Howe curves
over Fp and the ratio of n(p) to the heuristic prediction p3/1152 (see Section 5).

In this paper we discuss two strategies, (A) and (B) below, to find superspecial Howe curves. We also
show how isomorphisms between Howe curves can be easily detected from the data that defines them,
in (C).

(A) (E1, E2)-first, using Cartier–Manin matrices. In this strategy, we use the same realization of Howe
curves as in [23], that is, the fiber product of

E1 : z2 y = x3
+ A1µ

2xy2
+ B1µ

3 y3 and E2 : w
2 y = (x − λ)3+ A2µ

2(x − λ)y2
+ B2µ

3 y3

over P1
= Proj K [x, y]. We enumerate pairs (E1, E2) of supersingular elliptic curves so that C is

superspecial. We first discuss the field of definition of superspecial Howe curves (see Proposition 4.1),
which enables us to reduce the size of our search space drastically. Specifically, the coordinates A1, B1,
A2, B2, λ, µ, ν belong to Fp2 , whereas in the supersingular case [23] these coordinates can generate
larger subfields of Fp. For the test of superspeciality, we use the criterion that the Cartier–Manin matrix
of C must be zero [14, Lemma 1.1(i)]. This reduces the enumeration problem to solving a system of
algebraic equations. See Section 4 for the details of this strategy, including a complexity analysis.

(B) C-first, using Richelot isogenies. The second strategy first enumerates superspecial curves C :
y2
= f (x) of genus 2 with f (x) of degree 6 and then enumerates decompositions f (x) = f1(x) f2(x)

with fi (x) of degree 3 so that there is a b that makes both curves Ei : y2
= (x−b) fi (x) supersingular. The

moduli space of curves of genus 2 is of dimension 3. As this dimension is bigger than the space of (λ :
µ : ν) ∈ P2 considered in (A), this strategy, a priori, looks inefficient. But, surprisingly, we conclude that
strategy (B) enumerates superspecial Howe curves much more efficiently than does (A). The advantage
of (B) comes from making use of Richelot isogenies. Specifically, we construct some superspecial
curves of genus 2 by gluing supersingular elliptic curves together along their 2-torsion [12, §3], and then
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produce more such curves by applying Richelot isogenies to the curves already produced. This procedure
terminates because there are only finitely many superspecial curves of genus 2, and a recent result of
Jordan and Zaytman [16, Corollary 18] shows that we obtain all isomorphism classes of superspecial
curves of genus 2 in this way.1

(C) A new isomorphism test for Howe curves. Strategy (A) above produces many not-necessarily-
distinct Howe curves, so to prevent overcounting we are left with the task of producing a unique represen-
tative for each isomorphism class. As every Howe curve is canonical (see Lemma 2.1), one may check
whether two Howe curves are isomorphic by using the isomorphism test for canonical curves given in
[22, §6.1], whose implementation is found in [21, §4.3]. This turns out to be very costly, because it uses
many Gröbner basis computations. Our Corollary 3.3 gives a much simpler isomorphism test, based on
the observation that a Howe curve is completely determined (up to isomorphism) by the degree-2 map
to a genus-2 curve it is provided with by virtue of its definition as a fiber product. This isomorphism test
is added on as a separate step in strategy (A), but is baked into the algorithm we use for strategy (B).

2. Howe curves and their superspeciality

In this section, we recall the definition of Howe curves, show that they are canonical, and give a compu-
tational criterion for their superspeciality.

Let K be an algebraically closed field of characteristic p 6= 2. A Howe curve over K is a curve which
is isomorphic to the desingularization of the fiber product E1 ×P1 E2 of two genus-1 double covers
Ei → P1 ramified over Si , where each Si consists of four points and where |S1 ∩ S2| = 1.

Given a Howe curve, there is an automorphism of P1 that takes the common ramification point of
the two genus-1 double covers to infinity. Then the curves Ei can be written w2

= f1 and z2
= f2 for

separable monic cubic polynomials fi ∈ K [x] that are coprime to one another, where x generates the
function field of P1.

Lemma 2.1. Every Howe curve is a canonical curve of genus 4.

Proof. Let H be a Howe curve, normalized as above so that it is given as the fiber product of w2
= f1 and

z2
= f2 for coprime separable monic cubic polynomials f1 and f2. For each i , let f (h)i =y3 fi (x/y)∈K [x, y]

be the homogenous cubic obtained from fi and let H ′ be the curve defined in P3
= Proj K [x, y, z, w] by

z2
−w2

= q(x, y), z2 y= f (h)1 (x, y),

where q(x, y) is the quadratic form

q(x, y)= ( f (h)1 (x, y)− f (h)2 (x, y))/y.

Note that H ′ and E1×P1 E2 are isomorphic if the locus y = 0 is excluded. It is straightforward to see
that H ′ is nonsingular, since f1 and f2 are separable and are coprime. Hence H and H ′ are isomorphic
to one another (see [26, Proposition II.2.1]).

1 As this paper was in press, Jordan and Zaytman updated their preprint to indicate that an equivalent result was proven
earlier by Ekedahl and Oort.
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It is well known that any nonsingular curve defined by a quadratic form and a cubic form in P3 is a
canonical curve of genus 4 [7, Example IV.5.2.2]. �

To study the superspeciality of Howe curves, we first look at the decomposition of their Jacobians.
Let f1 and f2 be coprime separable monic cubic polynomials, as above. Let f = f1 f2 and consider the
hyperelliptic curve C of genus 2 defined by u2

= f . By [11, Theorem 2.1], there exist two isogenies

ϕ : J (H)→ E1× E2× J (C),

ψ : E1× E2× J (C)→ J (H),

such that ϕ ◦ψ and ψ ◦ϕ are both multiplication by 2.
Suppose now that the characteristic p of K is an odd prime. Then ψ ◦ ϕ is an automorphism of

the p-kernel of J (H) and ϕ ◦ψ is an automorphism of the p-kernel of E1× E2× J (C), so J (H)[p]
and E1[p] × E2[p] × J (C)[p] are isomorphic. Hence H is superspecial if and only if E1 and E2 are
supersingular and C is superspecial.

Now we recall a criterion for the superspeciality of C . Let γi be the coefficient of x i in f (p−1)/2, and set

a = γp−1, b = γ2p−1, c = γp−2 and d = γ2p−2.

Let M be the matrix

M =
(

a p cp

bp d p

)
. (2-1)

Then M is a Cartier–Manin matrix for C , that is, there is a basis for H 0(C, �1
C) so that left multiplication

by M represents the (semilinear) action of the Cartier operator; here �1
C is the sheaf of differential 1-

forms on C . (For information about Cartier–Manin matrices, see [1], which addresses issues with earlier
literature, including the standard reference [27, §2].)

Lemma 2.2. Let H be a Howe curve as above. Then H is superspecial if and only if E1 and E2 are
supersingular and a = b = c = d = 0.

Proof. We already noted that H is superspecial if and only if E1 and E2 are supersingular and C is
superspecial. But C is superspecial if and only if the Cartier operator acts trivially on H 0(C, �1

C) [24,
Theorem 4.1]. �

3. Detecting isomorphisms of Howe curves

In this section, we give an efficient criterion for determining whether two Howe curves are isomorphic
or not. This criterion will be used in both the first and the second approach to enumerating superspecial
Howe curves over a finite field.

We continue to work over an algebraically closed field of characteristic p 6= 2. Recall from Section 2
that a Howe curve is the desingularization of the fiber product of two genus-1 double covers of P1, where
the ramification loci of the two covers overlap in exactly one point. This means that a Howe curve is
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precisely a genus-4 curve H that fits into a V4-diagram of the following form, where C is a curve of
genus 2 and E1 and E2 are curves of genus 1:

H

ww ''��
E1

&&

C

��

E2

xx
P1

If E1→ P1 ramifies at points P, Q1, Q2, and Q3, and if E2→ P1 ramifies at P, R1, R2, and R3, then
the Weierstrass points of C are the points lying over Q1, Q2, Q3, R1, R2, and R3. On the other hand,
the point P splits in the cover C→ P1, and we let P1 and P2 be the points of C lying over P.

Thus, to specify a Howe curve, it is enough to provide three pieces of information:

(1) A genus-2 curve C .

(2) An unordered pair of disjoint sets {W1,W2}, each consisting of three Weierstrass points of C .

(3) An unordered pair of distinct points {P1, P2} on C that are mapped to one another by the hyperelliptic
involution.

This data determines the V4-diagram above, and hence also determines the double cover η : H → C ,
which we call the structure map for the given data. Of course, if α is an automorphism of C then
{α(W1), α(W2)} and {α(P1), α(P2)}will give us a double cover H→C that is isomorphic to η, namely, αη.

Lemma 3.1. The data specifying a Howe curve is recoverable (up to automorphisms of C) just from the
structure map η : H → C.

Proof. The map C→ P1 is unique (up to automorphism of P1), so we recover the entire map H→C→ P1

from η. This map is a Galois extension with group V4, so we recover the genus-1 curves in the extension,
and hence the division of the Weierstrass points of C . The pair of points {P1, P2} is simply the set of
ramification points of η. �

Theorem 3.2. Two structure maps η1 : H → C1 and η2 : H → C2 starting from the same Howe curve H
are isomorphic to one another. That is, there is an isomorphism γ : C1 → C2 and an automorphism
δ : H → H such that the following diagram commutes:

H δ //

η1

��

H
η2

��
C1

γ // C2

Proof. Let U1 and U2 be the V4-subgroups of Aut H specified by η1 and η2, and let S be the 2-Sylow
subgroup of Aut H that contains U1. By conjugating U2 by an automorphism δ (and thereby replacing
η2 with η2δ) we may assume that U2 is also contained in S. Let α1 and α2 be the involutions of H corre-
sponding to the double covers η1 and η2, and for each i , let βi and γi be the other nonzero elements of Ui .
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If α1 and α2 are conjugate to one another in S (or even in Aut H ), we are done. So assume, to get a
contradiction, that α1 and α2 lie in different conjugacy classes of S.

We know that the quotient of H by the subgroup 〈αi 〉 has genus 2, while the quotients of H by 〈βi 〉

and by 〈γi 〉 have genus 1. The same is true for all of the conjugates of αi , βi , and γi in S. More generally,
if we have two commuting involutions in S that generate a V4-subgroup, we obtain a diagram

H

xx &&��
Y1

&&

Y2

��

Y3

xx
X

(3-1)

We know that none of the curves Yi can have genus 0 (by Lemma 2.1), so the only possibilities are that
either all of the Yi have genus 2 and X has genus 1, or one of the Yi has genus 2, the other two have
genus 1, and X has genus 0. (This follows from the fact that in any diagram such as (3-1), the genus of H
is the sum of the genera of the Yi minus twice the genus of X ; see [17, Theorem B].) Thus, given two
commuting involutions in S, if we know the genera of the quotients of H they produce, we can deduce
the genus of the quotient of H by their product.

Our strategy, then, will be to enumerate all possible 2-groups S that occur as the 2-Sylow subgroup of
the automorphism group of a nonhyperelliptic curve H of genus 4, along with all possible pairs U1 and U2

of V4-subgroups of S that contain elements α1 and α2 that are not conjugate in S. We will assume that α1

and α2 generate genus-2 curves, while the other involutions in U1 and U2 generate genus-1 curves. Given
these assumptions, we deduce, for as many involutions as we can, the genera of the curves associated to
these involutions.

Suppose δ is an involution in S for which we know that the quotient Y = H/〈δ〉 has genus 2. Let T be
the centralizer of δ in S. Then the quotient T/〈δ〉 is contained in the automorphism group of the genus-2
curve Y. Using Igusa’s classification of the automorphism groups of genus-2 curves [15, §8], we can
show that there are only eight 2-groups that appear as subgroups of the automorphism groups of genus-2
curves. If T/〈δ〉 is not one of these groups, then we have shown that the values of U1, U2, α1, and α2

cannot correspond to two different realizations of H as a Howe curve.
In order to use this strategy, we need a good bound on the sizes of automorphism groups of nonhy-

perelliptic curves of genus 4 in characteristic not 2. A result of Henn [10, Satz 1] (see also [6]) shows
that in characteristic p > 2, the order of the automorphism group of a curve of genus g is strictly less
than 8g3, except possibly when the curve is of one of the following types:

(1) xn
+ ym

= 1, where n = 1+ pa for some a > 0 and m | n.

(2) y p
− y = xn, where n = 1+ pa for some a > 0.

The first type of curve has genus (n− 2)(m− 1)/2, and if this is equal to 4 then either we have n = 10
and m = 2 (and p= 3) or we have n= 6 and m = 3 (and p= 5). In the first case the curve is hyperelliptic;
in the second case, as Henn notes, the automorphism group has order 360, which is less than 8g3. The
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second type of curve has genus pa(p− 1)/2, which is never equal to 4, because p is odd. Thus, it will
suffice for us to look at every 2-group S of order less than 8 · 43

= 512.
We implemented this computation in Magma; the code is available in the online supplement. We ran

our code on all 2-groups of order less than 512, and the only group not eliminated was S ∼= (Z/2Z)3.
For this S, our computation shows that of the seven involutions in S, three give genus-2 quotients

and four give genus-1 quotients, and the three elements that give genus-2 quotients sum to zero. Now
consider the seven V4-subgroups T of S. Each such T gives us a diagram like (3-1) above. For the T that
contains the three genus-2 involutions, the genus of H/T is 1, while for the other six V4-subgroups T,
the genus of H/T is 0.

Let us consider the diagram of subextensions between H and its quotient H/S ∼= P1. We label the
elements of S by vectors in F3

2, and we label the V4-subgroups in the same way, with the convention that
a V4-subgroup labeled by v contains the elements with labels g such that the dot product of v and g is 0.
Then the diagram of subextensions, with their genera, is as follows:

H
genus 4

001
genus 2

010
genus 2

011
genus 2

100
genus 1

101
genus 1

110
genus 1

111
genus 1

001
genus 0

010
genus 0

011
genus 0

100
genus 1

101
genus 0

110
genus 0

111
genus 0

P1

genus 0

(For visual clarity, we have left off the heads of the arrows, and omitted the 21 arrows between the middle
layers.) But this configuration of genera is not possible; consider for example the following subdiagram:

100
genus 1

001
genus 0

010
genus 0

011
genus 0

P1

genus 0

This diagram violates the genus property we mentioned below diagram (3-1).
This contradiction shows that the involutions α1 and α2 corresponding to the structure maps η1 and η2

lie in the same conjugacy class of Aut H, so that η1 = η2δ for an automorphism δ of H. �

Corollary 3.3. Two triples (C, {W1,W2}, {P1, P2}) and (C ′, {W ′1,W ′2}, {P
′

1, P ′2}) give isomorphic Howe
curves if and only if there is an isomorphism C→ C ′ that takes {W1,W2} to {W ′1,W ′2} and {P1, P2} to
{P ′1, P ′2}.

http://msp.org/obs/2020/4-1/obs-v4-n1-x01-EnumeratingSuperspecialHoweCurves.zip
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This isomorphism test is very fast; it simply requires determining whether there are any automorphisms
of P1 that respect the sets of Weierstrass points and their divisions, and that take the x-coordinate of P1

and P2 to that of P ′1 and P ′2.

4. First approach: reduction to solving multivariate systems

In this section and the next, we present two approaches to solving the problem of enumerating superspe-
cial Howe curves. As we mentioned in Section 1, the first approach, described in this section, enumerates
pairs of supersingular elliptic curves E1 :w

2
= f1 and E2 : z2

= f2 such that C : y2
= f1 f2 is superspecial.

For this, we shall apply a construction of Howe curves given in [23]. While this construction is different
from the original one of [11], it can easily reduce our problem to finding roots of polynomial systems.

4A. Reduction to solving multivariate systems over finite fields. Let K be an algebraically closed field
in characteristic p > 3. In [23], the authors parametrize the space of all Howe curves by the projective
plane P2. We here briefly recall the parametrization; see [23, §2] for more details. Let y2

= x3
+ Ai x+Bi

(i = 1, 2) be two (nonsingular) elliptic curves, where A1, B1, A2, B2 ∈ K. Let λ,µ, ν be elements of K
such that µ 6= 0 and ν 6= 0, and such that f1 and f2 are coprime, where

f1(x)= x3
+ A1µ

2x + B1µ
3, (4-1)

f2(x)= (x − λ)3+ A2ν
2(x − λ)+ B2ν

3. (4-2)

A point (λ : µ : ν) ∈ P2(K ) satisfying these conditions is said to be of Howe type in [23]. Note that the
isomorphism classes of E1 and E2 are independent of the choice of (λ, µ, ν) provided µ 6= 0 and ν 6= 0.
Then the desingularization H of the fiber product E1×P1 E2 is a Howe curve, and vice versa.

This parametrization, together with the criterion of superspeciality in Section 2, enables us to reduce
the search for superspecial Howe curves into solving multivariate systems over K ; it suffices to compute
the solutions (λ : µ : ν) ∈ P2(K ) (of Howe type) to a = b = c = d = 0, where a, b, c and d are
the entries of the Cartier–Manin matrix of the hyperelliptic curve C : y2

= f1 f2. Note that a, b, c
and d are homogeneous as polynomials in λ, µ and ν, and that ord∗(−)= O(p) for ∗ = λ,µ, ν and for
−= a, b, c, d.

Note that the multivariate systems above are zero-dimensional, since there are only finitely many
points (λ : µ : ν) parametrizing supersingular Howe curves (see [23]), whence the same thing holds for
superspecial cases. In fact, we may assume that the coordinates A1, B1, A2, B2, λ, µ and ν belong to Fp2 :

Proposition 4.1. Any superspecial Howe curve is K -isomorphic to H obtained as above for A1, B1, A2,
B2, µ, ν and λ belonging to Fp2 .

Proof. It suffices to consider the case of K = Fp2 , since every supersingular elliptic curve can be defined
over Fp2 and (λ, µ, ν) is a solution of a = b = c = d = 0. Let H ′ be a superspecial Howe curve over
K = Fp2 . Choose E ′1 and E ′2 over K so that H ′ is the normalization of E ′1 ×P1 E ′2. It is well known
that H ′ descends to a curve H over Fp2 such that the Frobenius map F (the p2-power map) on Jac(H)
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is p or −p and all automorphisms of H are defined over Fp2 (see the proof of [5, Theorem 1.1]). Let
E1 and E2 be the quotients of H corresponding to E ′1 and E ′2. The quotient Ei of H is obtained by an
involution ιi ∈ Aut(H), and therefore is defined over Fp2 . The quotient of H by the group generated by
ι1 and ι2 is isomorphic to P1 over Fp2 . Let Si be the set of the ramified points of Ei → P1. Since S1∩ S2

consists of a single point, this point is invariant under the action of the absolute Galois group of Fp2 and
therefore is an Fp2-rational point. An element of PGL2(Fp2) sends this point to the infinite point of P1.
Since the Frobenius map F on Ei is also ±p, the other elements P of Si (which are 2-torsion points
on Ei ) are also Fp2-rational by F(P)=±pP = P. This implies the desired result. �

4B. Concrete algorithm. Based on the reduction described in the previous subsection, we present a
concrete algorithm:

Algorithm 4.2. Calculating superspecial Howe curves by reduction to solving multivariate systems.

Input: A rational prime p > 3.

Output: A list H(p) of superspecial Howe curves, each of which is represented by a pair ( f1, f2) of
polynomials f1, f2 ∈ Fp2[x].

(1) Compute the set S(p) of representatives of the Fp-isomorphism classes of supersingular ellip-
tic curves in characteristic p such that each representative is given in Weierstrass form E A,B :

y2
= f A,B(x) = x3

+ Ax + B by a pair (A, B) of elements in Fp2 .

(2) Set H0(p)←∅. For each pair of E A1,B1 and E A2,B2 in S(p), possibly choosing (A1, B1)= (A2, B2),
conduct Steps (a)–(c) below to compute all (λ, µ, ν) ∈ (Fp2)3 of Howe type such that the desingu-
larization H of E1 ×P1 E2 is superspecial, where E1 : w

2
= f1 (resp. E2 : z2

= f2) is an elliptic
curve Fp2-isomorphic to E A1,B1 (resp. E A2,B2).

(a) Compute the Cartier–Manin matrix M given in (2-1).
(b) Compute the set V(A1, B1, A2, B2) of elements (λ, µ, ν) ∈ (Fp2)3 (with ν = 1) such that M = 0.
(c) For each (λ, µ, ν) ∈ V(A1, B1, A2, B2), if µ 6= 0 and ν 6= 0, set H0(p)← H0(p)∪ {( f1, f2)},

where f1 and f2 are as in (4-1) and (4-2).

Note: By Lemma 4.4 and Proposition 4.6 of [23], for each root (λ, µ, ν) computed in Step (b), the
cubics f1 and f2 are coprime if µ 6= 0 and ν 6= 0. Moreover, it suffices to compute elements (λ, µ, ν)
with ν = 1; see Remark 4.2 of [19] for more details.

(3) Set H(p)← ∅. For each ( f1, f2) ∈ H0(p), if the Howe curve H represented by ( f1, f2) is not
isomorphic to any Howe curve of H(p), set H(p)← H(p)∪ {H}.

The complexity of this algorithm is estimated as Õ(p6), as long as #H0(p)= O(p3); see Section 4C
for more details.

Remark 4.3. If one would like to search for a single example of a superspecial Howe curve (or determine
the nonexistence of such a curve), it suffices to decide the (non-)existence of a root in Step (b). In this
case, it will be estimated in the next subsection that the complexity is Õ(p5).
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4C. Complexity of the first approach. We here briefly discuss the complexity of Algorithm 4.2 together
with several variants of computing the roots of a multivariate system in Step (b). For reasons of space, we
give only a summary of the estimation of the complexity, and refer to [19, §5.1] for most of the details.
In the following, all time complexity bounds refer to arithmetic complexity, which is the number of oper-
ations in Fp2 . We denote by M(n) the time to multiply two univariate polynomials over Fp2 of degree n.

For Step (1), one can check that its complexity is dominated by the cost of computing all supersingular
j-invariants in characteristic p. This cost is bounded by O(log2(p)M(p))= Õ(p); see [19, §5.1.1] for
details.

For Step (2), clearly the complexities of Steps (a) and (b) are larger than that of Step (c). In Step (a),
we compute the Cartier–Manin matrix M from f = f1 f2 with indeterminates λ and µ. The cost of
computing M is bounded by Õ(p3); see Remark 4.4 below. In Step (b), there are three variants (i)–(iii)
to compute all (λ, µ, ν) ∈ (Fp2)3 with ν = 1 such that M = 0, where M is the Cartier–Manin matrix as
in (2-1) with entries a, b, c and d:

(i) Use brute force to enumerate all (λ, µ) ∈ (Fp2)2 to check whether M is equal to 0 or not.

(ii) Regard one of λ and µ, say λ, as a variable. For each µ ∈ Fp2 , compute the roots in Fp2 of
G = gcd(a, b, c, d) ∈ Fp2[λ].

(iii) Regarding both λ and µ as variables, use an approach based on resultants.

It is estimated that the complexity of (i) is O(p5), and that those of (ii) and (iii) are bounded by the
same bound Õ(p4); more precisely, the upper-bound of the complexity of (ii) is less than that of (iii) if
we consider logarithmic factors; see [19, §5.1.2].

From this, we adopt the fastest variant (ii) with complexity Õ(p4) in our implementation. The number
of (λ, µ, ν) with ν = 1 computed in Step (b) is ≤ p2

× deg(G)= O(p3). Since the number of possible
choices of (E A1,B1, E A2,B2) is #S(p)= O(p2), computing (λ, µ, ν) with ν = 1 for all (E A1,B1, E A2,B2)

is done in #S(p)× Õ(p4)= Õ(p6) operations in Fp2 .
The complexity of Step (3) depends heavily on the number of superspecial Howe curves obtained in

Step (2), that is, #H0(p). Since each isomorphism test is done in O(1), the complexity of Step (3) is
O((#H0(p))2). As of this writing, we have not succeeded in finding any sharp bound on #H0(p). We
can naively estimate #H0(p) = O(p5) from the complexity analysis of Step (2), whereas we expect
#H0(p) = O(p3) from the practical behavior [19, §4.2, Table 1]. Thus, the complexity of Step (3) is
naively O(p10), but in practice O(p6) which does not exceed the complexity of Steps (1)–(2).

Note that to determine the (non-)existence of a superspecial Howe curve, it is not necessary to compute
a root in Step (b), but it suffices to compute the gcd G only. Since each gcd can be computed in time
Õ(p) by fast gcd algorithms, one can verify that the total complexity of this variant of Algorithm 4.2
is Õ(p5).

Remark 4.4. In Step (a), we compute a Cartier–Manin matrix over Fp2[λ,µ]. Bostan, Gaudry, and
Schost showed that in general, computing the Cartier–Manin matrix M of a hyperelliptic curve y2

= f (x)



312 MOMONARI KUDO, SHUSHI HARASHITA, AND EVERETT W. HOWE

defined over a field K can be accomplished by multiplying matrices obtained from recurrences for the
coefficients of f (x)n; see [2, §8] or [9, §2] for details. The algorithm of Harvey and Sutherland [9], which
is an improvement of their earlier algorithm [8] presented at ANTS XI, is also based on this reduction,
and it is the fastest algorithm to compute M for the case of K = Fp. From this, we suspect that one of the
best ways to compute M in Step (a) would be to extend the Harvey–Sutherland algorithm [9] to the case
of Fp2(λ, µ). However, since we have not yet succeeded in making this extension, we compute M using
the reduction mentioned above, or by using formulæ given in [23, §4] for M specific to Howe curves. It
is estimated (to appear in a revised version of [19]) that the complexity of the latter method is bounded
by Õ(p3), which is less than or equal to that of Step (b).

5. Second approach: use of Richelot isogenies of genus-2 curves

In this section we propose another approach to enumerating superspecial Howe curves. As opposed to
the approach in Section 4, this second approach starts with a superspecial genus-2 curve C , and then
looks to see whether it will fit into a V4-diagram with supersingular elliptic curves. While this is precisely
the structure of Algorithm 5.7 of [11], the problem remains: How can we quickly produce a list of all of
the superspecial genus-2 curves? We begin by addressing this question.

5A. Computing superspecial curves of genus 2. To produce a list L of all superspecial genus-2 curves,
we use a variant of [11, Algorithm 5.7]. Each superspecial genus-2 curve has a unique model defined
over Fp2 that is maximal over Fp2 . Given one such curve, all of the curves that are Richelot isogenous
to it are also maximal superspecial curves. Thus, given a not-necessarily-complete list of maximal
superspecial curves, we can add curves to the list as follows: We go through the list one curve at a time.
For each C we compute the curves that are Richelot isogenous to it, and we add each such curve to
the list if it is not already on it. To seed our list, we can use the curves that are (2, 2)-isogenous to a
product of maximal elliptic curves. Then a result of Jordan and Zaytman [16, Corollary 18] shows that
this procedure will generate a complete list L of all superspecial genus-2 curves.

The exact number of curves on the list L is given by a result of Ibukiyama, Katsura, and Oort [14,
Theorem 3.3]. The exact answer depends on the congruence class of p modulo 120, but it follows from
their result that for p > 3 we have

#L=
(p− 1)(p2

+ 25p+ 166)
2800

+ c, where −1
16
≤ c ≤ 209

180
.

5B. Testing whether a genus-2 curve fits into a V4-diagram. For each C ∈ L, given by an equation

y2
= (x − a1)(x − a2)(x − a3)(x − a4)(x − a5)(x − a6),

we would like to try to fit C into a Howe curve diagram. For each of the ten ways of splitting the
Weierstrass points into two groups of three (for example, into {{a1, a2, a3}, {a4, a5, a6}}), we could then
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ask for the values of b such that the two genus-1 curves

y2
= (x − b)(x − a1)(x − a2)(x − a3) (5-1)

and
y2
= (x − b)(x − a4)(x − a5)(x − a6) (5-2)

are both supersingular. (We also consider “b=∞”, corresponding to the curves y2
=(x−a1)(x−a2)(x−a3)

and y2
= (x − a4)(x − a5)(x − a6).) Since there are about p/12 supersingular j-invariants and hence

about p/2 supersingular λ-invariants, there are about p/2 values of b that will make the first curve (5-1)
supersingular, and we can compute these values in time Õ(p). For each b, we then check whether the
second curve (5-2) is supersingular. If we were to model this as choosing a random λ-invariant in Fp2

and asking whether it is supersingular, we would expect success with probability around 1/(2p).
It is easy to incorporate isomorphism testing into this algorithm so that it produces each superspecial

Howe curve exactly once: All we have to do is keep track of how the automorphism group of C acts on
the divisions of its Weierstrass points and on the good values of b.

Thus, in time Õ(p4), we can produce unique representatives for each superspecial Howe curve. Heuris-
tically, the number of superspecial Howe curves we find should be the number of superspecial genus-2
curves (≈ p3/2880), times the number of Weierstrass point divisions (10), times the number of values
of b that make the first elliptic curve supersingular (≈ p/2), times the probability that the second curve
is supersingular (≈ 1/(2p)). Heuristically, then, we expect to find about p3/1152 superspecial Howe
curves.

5C. Concrete algorithm.

Algorithm 5.1. Calculating superspecial Howe curves using Richelot isogenies of genus-2 curves.

Input: A rational prime p > 3.

Output: A list H(p) of superspecial Howe curves, each of which is represented by a pair ( f1, f2) of
polynomials f1, f2 ∈ Fp2[x], corresponding to the curve y2

= f1, z2
= f 2.

(1) Compute the set MaxEll(p2) of Fp2-isomorphism classes of Fp2-maximal elliptic curves over Fp2 .
Since every supersingular curve has a unique maximal twist, this can be done as in Step (1) of
Algorithm 4.2.

(2) Set L← ∅. For each pair (E, E ′) of elements in MaxEll(p2), compute the (at most 6) curves C
whose Jacobians are (2, 2)-isogenous to E × E ′ (see [12, §3]). Adjoin each of these to L if it is not
isomorphic to an element of L.

(3) Write L= {C1, . . . ,Cn}. Set i = 1.

(a) For each nonsingular curve C ′ which is Richelot isogenous to Ci , if C ′ is not isomorphic to any
element of L, set N ← |L| and put CN+1 = C ′ and L← L∪ {CN+1}.

(b) If i < |L|, set i← i + 1 and go to (a).
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(4) Set H(p)←∅.

(5) For each C ∈ L, check whether C fits into a Howe curve diagram with supersingular double covers
Ei → P1.

(a) For each splitting of the Weierstrass point of C into two disjoint three-element sets, compute
the j-invariants of the genus-1 curves (5-1) and (5-2), as functions of the indeterminate b. Find
the values of b that make the first curve supersingular, and for each such value, check to see
whether the second curve is supersingular. Record each value of b for which both curves are
supersingular.

(b) Using Corollary 3.3, find unique representatives y2
= f1, z2

= f2 for the curves produced in the
previous step, and adjoin ( f1, f2) to H(p).

We noted in the previous subsection that Step (5) takes Õ(p4) arithmetic operations over Fp2 , and the
other steps clearly take fewer operations than this.

6. Implementations and proofs

In this section, we describe our implementations of the algorithms in the previous sections and our proofs
of the main results stated in the Introduction. As we have seen, there are two approaches to enumerating
superspecial Howe curves: (A) (E1, E2)-first and (B) C-first. The arguments in the previous sections
show that (B) has an advantage in the complexity analysis. Here we see that (B) is far superior to (A)
also when we execute their implementations. Indeed, Theorems 1.1 and 1.2 in the Introduction were
obtained by Magma implementations based on (B) that were run on a PC with Ubuntu 16.04 LTS OS at
3.40GHz CPU (Intel Core i7-6700) and 15.6 GB memory. The same result for p ≤ 53 was obtained by
implementing the method (A) over Magma with an execution by the same PC. Although it took 11871
seconds to obtain Theorem 1.2 for p ≤ 53 by (A), the second strategy (B) finishes the enumeration for
p ≤ 199 in only 924 seconds; see Table 2 for benchmark timing data for small p.

The code for our implementations is available in the online supplement. In case (A), it is very costly
to find Cartier–Manin matrices, and in addition to that there are many pairs (E1, E2) of supersingular
elliptic curves. This fact is consistent with the complexity analysis in Section 4C. On the other hand, the
method (B) contains few intensive computations and it enables us to find and enumerate superspecial
Howe curves very efficiently.

The preceding remarks prove the computational results in Theorems 1.1 and 1.2, and we are left to
prove the statement in Theorem 1.1 concerning primes p ≡ 5 mod 6. This fact is shown by using the
Howe curve defined by E1 : z2 y = x3

+ y3 and E2 : w
2 y = x3

+ ay3 with a ∈ {−1, 1/4}. Indeed,
if p ≡ 5 mod 6, then these two elliptic curves are supersingular and moreover y2

= (x3
+ 1)(x3

+ a)
is superspecial. This can be checked by observing that the curve has two nonhyperelliptic involutions,
given by (x, y) 7→ (a1/3/x,±a1/2 y/x3), so that its Jacobian is (2, 2)-isogenous to a product of elliptic
curves. For a =−1 we find that these two curves are both isomorphic to the j = 0 curve with CM by −3,

http://msp.org/obs/2020/4-1/obs-v4-n1-x01-EnumeratingSuperspecialHoweCurves.zip
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p (A) (B) p (A) (B) p (A) (B)

5 0.02 0.08 19 6.14 0.12 41 1118.63 0.71
7 0.01 0.01 23 27.59 0.21 43 1423.26 0.80

11 0.17 0.04 29 114.70 0.31 47 2686.17 1.03
13 0.76 0.05 31 193.82 0.34 53 5678.32 1.46
17 3.92 0.09 37 617.23 0.54

Table 2. Benchmark timing data for (A) Algorithm 4.2 and (B) Algorithm 5.1. All times shown
are in seconds.

and for a = 1/4 we find that they are both isomorphic to the j =−12288000 curve with CM by −27. In
both cases, these elliptic curves are supersingular for primes p ≡ 5 mod 6.

We remark that this curve for a = 1/4 is isomorphic to the curve X3
+ Y 3

+W 3
= 2Y W + Z2

= 0
in P3 studied by the Kudo in [18], by the correspondence x = X, y = Y + W, z =

√
−3/2Z and

w =
√
−3/4(Y −W ).
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Divisor class group arithmetic on C3,4 curves

Evan MacNeil, Michael J. Jacobson Jr., and Renate Scheidler

We present novel explicit formulas for arithmetic in the divisor class group of a C3,4 curve. Our formulas
handle all cases of inputs and outputs without having to fall back on a generic method. We also improve
on the most commonly occurring case by reducing the number of required field inversions to one at the
cost of a small number of additional field operations, resulting in running times that are between 11 and
21% faster than the prior state of the art depending on the field size, and even more for small field sizes
when nontypical cases frequently arise.

1. Introduction

Computing in the divisor class group of an algebraic curve is a nontrivial component in computing L-
series. L-series in turn are at the heart of the Sato–Tate conjecture and related conjectures. The Sato–Tate
conjecture has been proved for elliptic curves with complex multiplication, but its analogues for other
classes of algebraic curves remains open [14]. In order to test these conjectures for other curve families,
it is desirable to have efficient algorithms to perform divisor class group arithmetic; see, for example, [7;
6; 13].

The C3,4 curves are a family of genus 3 plane curves. While they are rare among genus 3 curves,
such special families of curves make interesting settings in which to study Sato–Tate-related conjectures.
Fast explicit formulas exist to perform divisor class group arithmetic for genus 1 and genus 2 curves.
However, the picture for genus 3 curves, and C3,4 curves in particular, is incomplete. Existing formulas
for arithmetic on C3,4 curves were developed with cryptographic applications in mind, where the curves
are defined over very large finite fields of characteristic greater than 3. A C3,4 curve over such a field is
isomorphic to one given by a short-form equation (see Section 2), yielding faster arithmetic. Moreover,
with very high probability, one will only encounter “typical” divisors (see Section 2) and many degenerate
cases need not be considered. When these assumptions are violated, one may fall back on slower divisor
addition algorithms that work on any algebraic curve.
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nonhyperelliptic curves.
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In [2], Arita specialized the algorithm for addition in the class group of a general Ca,b curve in [1] to
the C3,4 case. He classified divisors of C3,4 curves into 19 types based on the forms of their Gröbner basis
representations. The method allows addition of divisors of any type, although it handles this in a recursive
manner that does not terminate for some curves over very small finite fields; Arita was predominantly
interested in the cryptographic setting over a large finite field where this does not present a problem.
However, number theoretic applications require extensive curve arithmetic over far smaller finite fields.

Other algorithms are less general but much faster. In [8], the most recent of these, Khuri-Makdisi,
building upon the work of Flon et al. [4] and Abu Salem and Khuri-Makdisi [11] assumed a C3,4 curve
defined by a short-form polynomial equation. In addition to restricting to disjoint divisors without mul-
tiple points, they assume that divisors being added or doubled are typical. They represent divisors by
a pair of polynomials of minimal degree and obtain sums of divisors by computing kernels of maps
between vector spaces. This yields the most efficient explicit formulas, describing the operation as an
optimized sequence of field operations instead of via polynomial arithmetic or linear algebra, for the
typical case. Thus, prior to our work herein, the state of the art for C3,4 curves was the addition and
doubling procedures of [11] and the reduction method of [8]. Both of these are limited to typical divisors,
and one had to resort to general arithmetic for all other cases.

Our contribution is to marry the methods of Salem and Khuri-Makdisi — who have the fastest explicit
formulas to date — with the methods of Arita — whose formulas are the most general — in order to pro-
duce fast and fully general explicit formulas that cover all cases of C3,4 curve arithmetic. This approach
is facilitated by the fact that Salem and Khuri-Makdisi’s representation of typical divisors resembles
type 31 divisors from Arita’s classification. Our algorithms work in full generality: the curve may be
defined over a field of any size and any characteristic, including 0, 2, and 3 (though our implementation
only extends to finite fields), the curve equation may be in long or short form (see Section 2), divisors may
be typical or atypical, nondisjoint, and have multiple points, and all our algorithms provably terminate.

We extend the approach of [11] for finding the kernel of the aforementioned map to computing its
image as well and are thus able to handle atypical and nondisjoint divisors. We also improve on the state
of the art of [8; 11] for typical divisors. Fully general algorithms for adding, doubling, and reducing
divisors are presented in Sections 3, 4 and 5, respectively. These algorithms are used to develop fast
explicit formulas in Section 6 that handle the most typical cases arising in C3,4 curve divisor arithmetic;
specifically, adding/doubling disjoint typical divisors on a curve in short form over a field of characteristic
greater than 3. The operation counts of these formulas are summarized in Table 1.1, where I, M, S, A
refer to the number of field inversions, multiplications, squarings, and additions in the base field of the
curve.1 Our formulas improve on the prior state of the art by requiring only a single field inversion at
the cost of a sufficiently small number of other field operations. Experiments confirm an overall running
time speed-up by approximately 11–21% depending on the size of the field. Our algorithms are also
used to produce explicit formulas for all atypical cases, including nondisjoint or atypical divisors and

1Arita did not distinguish between field multiplications and squarings, and neither Arita nor Flon et al. counted field additions
in their work.
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Add Double

I M S A I M S A

Arita [2] 5 204 – – 5 284 – –
Flon et al [4] 2 148 15 – 2 165 20 –
Khuri-Makdisi and Salem [8; 11] 2 97 1 132 2 107 3 155
This work 1 111 3 99 1 127 4 112

Table 1.1. Comparison of operation counts in prior work.

curves of arbitrary form and in any characteristic. These cases are so numerous that we choose instead
to publish them in the form of Sage code on GitHub [9] and present their operation counts in Section 7.

By improving upon the typical case and completing the picture for the atypical cases, our results
will have a significant impact on number theoretic computations heavy on arithmetic in the divisor class
group of a C3,4 curve. As in [14] for example, one may wish to take a curve over Q, reduce it modulo
all primes up to some bound, and compute the order of the divisor class group of that reduced curve.
The improvement in the typical case remains significant over all the computations, while the completion
of the atypical cases becomes more significant over the smaller fields, where one frequently encounters
these cases.

2. Preliminaries

Let K be a perfect field. A C3,4 curve is a nonsingular nonhyperelliptic projective curve C of genus 3
whose affine model is given by F(x, y)= 0 where F ∈ K [x, y] is of the form

F(x, y)= y3
+ x4
+ c8xy2

+ c7x2 y+ c6x3
+ c5 y2

+ c4xy+ c3x2
+ c2 y+ c1x + c0.

We denote the unique point at infinity on C by P∞. When K has characteristic 0 or at least 5, the curve
isomorphism (x, y) 7→ (x − a/4, y − (c8/3)x + (ac8− 4c5)/3), a = (27c6− 9c7c8+ 2c3

8)/27, over K
transforms the polynomial F to the short form

F(x, y)= y3
+ x4
+ c7x2 y+ c4xy+ c3x2

+ c2 y+ c1x + c0.

Let Div0
K (C) denote the group of degree zero divisors on C defined over K . Elements of Div0

K (C) are
of the form

D =
∑

P∈C(K )−{P∞}

ordP(D)P − n P∞, n =
∑

P∈C(K )−{P∞}

ordP(D),

where the sum defining D is fixed under Galois automorphisms on K . For brevity, we identify D with
its finite part and refer to n = deg(D) as its degree. A divisor D is effective if ordP(D) ≥ 0 for all
P ∈ C(K )−{P∞} and reduced if in addition n is minimal among the degrees of all the divisors in the
linear equivalence class of D. If D is reduced, then deg(D)≤ 3. Every element of Div0

K (C) is linearly
equivalent to an effective divisor and to a unique reduced divisor in Div0

K (C).
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For any two effective divisors D, D′ ∈ Div0
K (C), define

lcm(D, D′)=
∑

P∈C(K )−{P∞}

max{ordP(D), ordP(D′)}(P − P∞),

gcd(D, D′)=
∑

P∈C(K )−{P∞}

min{ordP(D), ordP(D′)}(P − P∞).

Then D+ D′ = gcd(D, D′)+ lcm(D, D′).
There is a canonical isomorphism from Div0

K (C) to the group of fractional K [C]-ideals, written as
D 7→ ID , with inverse I 7→ div(I ). D is effective if and only if ID is integral. If g1, g2, . . . ∈ K [C] are
polynomials, then we write div(g1, g2, . . .) in place of div(〈g1, g2, . . .〉).

In [2], Arita described a monomial order on K [C] induced by the pole orders ordP∞(x) = −3 and
ordP∞(y)=−4. Every ideal I of K [C] has a unique reduced Gröbner basis with respect to this ordering
that contains the minimum polynomial of I , i.e., the unique polynomial f I in any Gröbner basis of I with
the smallest leading monomial and leading coefficient 1. Under this isomorphism, we have the following
correspondence between effective divisors and their associated K [C]-ideals:

Divisors D+ D′ lcm(D, D′) gcd(D, D′) D D ≤ D′

Ideals ID ID′ ID ∩ ID′ ID + ID′ f ID : ID ID ⊇ ID′

Here, f ID : ID is the unique K [C]-ideal satisfying ID( f ID : ID)= 〈 f ID 〉, the principal ideal generated
by f ID . The corresponding divisor D= div( f ID : ID) is the flip of D; it is equivalent to−D and is reduced.
It follows that D is reduced if and only if D = D, and D is the reduction of D, i.e., the unique reduced
divisor linearly equivalent to D. This gives rise to the following high-level algorithm for addition in the
degree zero divisor class group of a C3,4 curve, found also in [2]. Given two reduced divisors D and D′,
represented by the reduced Gröbner bases of their respective ideals ID and ID′ , perform the following:

(1) Compute the reduced Gröbner basis of J := ID ID′ .

(2) Compute the reduced Gröbner basis of J ∗ := f J : J .

(3) Compute the reduced Gröbner basis of J ∗∗ := f J ∗ : J ∗.

Then div(J ∗∗) is the unique reduced divisor equivalent to D+ D′. In [8], Khuri-Makdisi showed how to
combine the last two steps into a single efficient step.

Following [8], an effective divisor D is said to be semitypical if the reduced Gröbner basis of ID

consists of three polynomials, i.e., ID = 〈 f, g, h〉. A divisor is typical if it is semitypical with h ∈ 〈 f, g〉,
where h is the generator with the largest pole order at infinity. A divisor that is not typical is called
atypical. All typical divisors are semitypical, but atypical divisors may or may not be semitypical.

In [2], Arita classified all divisors of degree ≤ 6 into 19 types according to the leading monomials
of their reduced Gröbner bases. Table 2.1 reproduces Arita’s classification, along with a 20-th type
corresponding to the zero divisor. Note that a divisor of degree d ≤ 6 is semitypical if and only if it
is of type 31, 41, 51, or 61, and a type 31 divisor D is typical if and only if f2, the coefficient of y in
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Deg Type Gröbner Basis

0 0 1

1 11 x + f0, y+ g0

2
21 y+ f1x + f0, x2

+ g1x + g0

22 x + f0, y2
+ g2 y+ g0

31 x2
+ f2 y+ f1x + f0, xy+ g2 y+ g1x + g0, y2

+ h2 y+ h1x + h0

3 32 y+ f1x + f0, x3
+ g3x2

+ g1x + g0

33 x + f0

41 xy+ f3x2
+ f2 y+ f1x + f0, y2

+ g3x2
+ g2 y+ g1x + g0, x3

+ h3x2
+ h2 y+ h1x + h0

4
42 x2

+ f1x + f0, xy+ g2 y+ g1x + g0

43 x2
+ f2 y+ f1x + f0, y2

+ g4xy+ g2 y+ g1x + g0

44 y+ f1x + f0

51
y2
+ f4xy+ f3x2

+ f2 y+ f1x + f0, x3
+ g4xy+ g3x2

+ g2 y+ g1x + g0,
x2 y+ h4xy+ h3x2

+ h2 y+ h1x + h0

5
52 xy+ f3x2

+ f2 y+ f1x + f0, y2
+ g3x2

+ g2 y+ g1x + g0

53 xy+ f3x2
+ f2 y+ f1x + f0, x3

+ g5 y2
+ g3x2

+ g2 y+ g1x + g0

54 x2
+ f2 y+ f1x + f0, xy2

+ g5 y2
+ g4xy+ g2 y+ g1x + g0

x3
+ f5 y2

+ f4xy+ f3x2
+ f2 y+ f1x + f0,

61 x2 y+ g5 y2
+ g4xy+ g3x2

+ g2 y+ g1x + g0,
xy2
+ h5 y2

+ h4xy+ h3x2
+ h2 y+ h1x + h0

6
62 y2

+ f4xy+ f3x2
+ f2 y+ f1x + f0, x3

+ g4xy+ g3x2
+ g2 y+ g1x + g0

63 y2
+ f4xy+ f3x2

+ f2 y+ f1x + f0, x2 y+ g6x3
+ g4xy+ g3x2

+ g2 y+ g1x + g0

64 xy+ f3x2
+ f2 y+ f1x + f0, x4

+ g6x3
+ g5 y2

+ g3x2
+ g2 y+ g1x + g0

65 x2
+ f2 y+ f1x + f0

Table 2.1. Arita’s classification of divisors into types.

f ID , is nonzero (see [8, Proposition 2.12]). The types of D and D are determined by the type of D as
summarized in Table 2.2. Examples of computing the type of D are found in Section 7.3 of [10]. A
divisor is reduced if and only if it is of type 0, 11, 21, 22 or 31; in particular, all divisors of degree d ≤ 2
are reduced.

Divisor Type

D 0 11 21 22 31 32 33 41 42 43 44 51 52 53 54 61 62 63 64 65
D 0 22 21 11 31 11 0 31 22 21 0 31 22 21 11 31 22 21 11 0
D 0 11 21 22 31 22 0 31 11 21 0 31 11 21 22 31 11 21 22 0

Table 2.2. Divisor types and the type of their flip and double flip.
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3. Addition

In this section, we describe how to add two distinct reduced divisors. Analogous to [11], we make
use of certain Riemann–Roch spaces. For any nonzero function f ∈ K [C], denote by LM( f ) the
leading monomial of f . Let m ∈ K [C] be a monomial and D an effective divisor in Div0

K (C). De-
fine

W m
= L(− ordP∞(m)P∞)= { f ∈ K [C] | LM( f )≤ m},

W m
D = L(− ordP∞(m)P∞− D)= { f ∈ ID | LM( f )≤ m} =W m

∩ ID.

Given a reduced Gröbner basis for ID , it is easy to construct an echelon basis for W m
D by taking monomial

multiples of the basis elements and removing all those that result in duplicate leading monomials. Given
an echelon basis for W m

D with m sufficiently large, a reduced Gröbner basis for ID can be obtained
by removing any basis element whose leading monomial is divisible by that of another basis element.

Now let D, D′ be distinct reduced divisors of respective degrees d = deg(D) and d ′ = deg(D′), with
d ≥ d ′. Let m be the largest monomial appearing in the reduced Gröbner basis of any ideal I such that
div(I ) has degree d+d ′. For example, if d+d ′ = 6, then the reduced Gröbner basis of an ideal of a type
64 divisor contains a polynomial with leading monomial m = x4, and no other degree 6 divisor type has
a larger monomial.

Put L = lcm(D, D′) and G = gcd(D, D′). The divisors L and G arise from the kernel and image,
respectively, of the matrix M in the diagram below. Here, ι denotes inclusion and π is the natural
projection:

W m
L W m

D W m W m

W m
D′

W m
G

W m
D′

ker M ι

M

π im M

A proof of this crucial result can be found in [10, Theorem 8.7]. This is a generalization of the addition
procedure of [11], where the authors compute ker M for m = x2 y only. This is sufficient when D and D′

are disjoint (or equivalently, G = 0) and typical, but their approach fails otherwise. A larger bounding
monomial m can handle atypical divisor sums, and computing the image im M allows nondisjoint input
divisors D, D′.

The kernel and image of M are obtained by first computing the reduced row echelon form of M ,
denoted RREF(M), which in particular reveals the rank of M as well as the dimensions of its kernel
and image. If M has full rank, which is typically the case, then G = 0 and ker M produces a reduced
Gröbner basis for IL = ID+D′ . If M has rank 0, then D′ < D, in which case we find the divisor A such
that D = D′+ A and return 2D′+ A via a call to the doubling algorithm in Section 4. Otherwise, we
recursively compute the sum L +G. In this recursive call, one of the input divisors has degree strictly
less than d ′, so this recursion terminates. Details of the algorithm and toy examples can be found in [10,
Chapter 8].
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4. Doubling

Doubling a reduced divisor D is similar to adding two distinct reduced divisors. Here, we find a (not
necessarily reduced) divisor A 6= D equivalent to D and compute the reduction A+ D = 2D using the
addition algorithm from Section 3. We describe an optimized approach for finding A that represents a
significant improvement over the doubling method presented in [10, Chapter 9].

We begin with the most common case when D is a type 31 divisor. Let { f, g, h} be a reduced Gröbner
basis of its associated ideal ID .

Lemma 4.1. Let D be of type 31. Then there exist polynomials

r = y+ r0, s =−(x + s0), t = t0,

r ′ = x2
+ r ′2 y+ r ′1x + r ′0, s ′ = s ′0, t ′ = y+ t ′0,

r ′′ = r ′′0 , s ′′ = y+ s ′′0 , t ′′ = x + t ′′0

in K [C] such that r f + sg+ th = 0, r ′ f + s ′g+ t ′h = F and r ′′ f + s ′′g+ t ′′h = 0.

Proof. Explicit formulas for r, s, t, r ′, s ′, t ′ are given in Table 6.2. The polynomials r ′′ = h1, s ′′ =
y− g1+ h2 and t ′′ =−x − g2, with g1, g2, h1, h2 as given in (6-1), are easily verified to satisfy the third
identity. �

The quantities r ′′, s ′′, t ′′ are only auxiliary to the proof of Proposition 4.2. Put

A = div( f̃ , g̃, h̃) with f̃ = st ′− ts ′, g̃ = tr ′− r t ′, h̃ = rs ′− sr ′. (4-1)

Then the leading monomials of f̃ , g̃, h̃ are xy, y2, x3, respectively, so A is of type 41 by Table 2.1. It is
easy to verify that f g̃ = g f̃ and f h̃ = h f̃ in K [C]. It follows that f̃ ID = f IA and hence div f + A =
div f̃ + D, so A is equivalent to D.

The following proposition shows that A and D are typically disjoint. If not, we have D 6≤ A. Either
way, we may add D and A using the addition algorithm from the previous section.

Proposition 4.2. Let D be of type 31 and put G = gcd(D, A). If D is typical, then G = 0, otherwise G
has degree 1.

Proof. We have deg(G) ≤ deg(D) = 3. Suppose deg(G) ≥ 2. Then D−G and A−G are equivalent
divisors of degree ≤ 2. So these two divisors are reduced and hence equal, which is impossible since
deg(D) 6= deg(A). It follows that deg(G)≤ 1.

Suppose deg(G)= 1. Then deg(D−G)= 2, deg(A−G)= 3 and D−G = A−G, which by Table 2.2
forces D−G to be of type 22 and A−G to be of type 32. Let x+a and x+b be the minimum polynomials
of IG and ID−G , respectively. Then f = (x + a)(x + b) ∈ ID . Appealing to the form of ID characterized
in Table 2.1, f is the minimum polynomial of ID and has a vanishing y-coefficient, so D is atypical.

Conversely, suppose that D is atypical. Referring to the quantities of Lemma 4.1, we have t =− f2= 0.
Put I = 〈r, s〉. Then I is a prime ideal of degree 1. From (4-1), we see that IA ⊆ I . A simple symbolic
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computation yields f = st ′′, g = r t ′′ and h = r ′′s− s ′′r , so ID ⊆ I . It follows that IG = IA+ ID ⊆ I , so
div(I )≤ G, which in turn implies deg(G)≥ 1, and hence deg(G)= 1. �

An optimization is possible when computing the kernel of M in

W m
L W m

A W m W m

W m
D

W m
G

W m
D
.

ker M ι

M

π im M

The kernel consists of K [C]-linear combinations of { f̃ , g̃, h̃} that belong to W m
L . However, the following

theorem shows that when D is typical, we may instead perform our computations on f, g, h. The latter
have fewer monomials, so the resulting linear combinations are faster to generate.

Theorem 4.3. Let D be of type 31, L = lcm(D, A) and G = gcd(D, A). Let a, b, c ∈ K [C]. Then
a f + bg+ ch ∈ I2D−G if and only if a f̃ + bg̃+ ch̃ ∈ IL .

Proof. We have 2D−G+ div( f̃ )= L + D− A+ div( f̃ )= L + div( f ). Since f g̃ = g f̃ and f h̃ = h f̃ ,
the claim follows. �

If D is typical, then I2D−G = I2D by Proposition 4.2.
Next, we provide analogous results for divisors D of types 11, 21, and 22. Here, ID = 〈 f, g〉.

Theorem 4.4. Let D be of type 11, 21, or 22, and write ID = 〈 f, g〉. Then there exist nonzero polynomials
f̃ , g̃ ∈ K [C] such that f g̃+ g f̃ = F and f̃ 〈 f, g〉 = f 〈 f̃ , g̃〉. The divisor A = div( f̃ , g̃) is equivalent to
D and gcd(A, D)= 0. Finally, for any a, b ∈ K [C], we have a f +bg ∈ I2D if and only if a f̃ +bg̃ ∈ IA+D .

Proof. The first assertion follows from F ∈ 〈 f, g〉. Since f g̃ = −g f̃ in K [C], we have f̃ 〈 f, g〉 =
〈 f f̃ , g f̃ 〉 = 〈 f f̃ , f g̃〉 = f 〈 f̃ , g̃〉, so div( f̃ ) + D = div( f ) + A. This identity also yields the last
assertion, provided that gcd(A, D)= 0.

Suppose first that D is of type 11. Then the leading monomials of f and g are x and y, respectively. A
solution to f g̃+ g f̃ = F then requires that the leading monomials of f̃ and g̃ are y2 and x3, respectively.
Therefore A = div( f̃ , g̃) is a type 62 divisor. Suppose gcd(A, D) 6= 0. Then A− D would be a principal
divisor of degree 5 which is impossible by Table 2.1.

Likewise, suppose D is of type 21. Then A = div( f̃ , g̃) is of type 43. Suppose G = gcd(A, D) 6= 0.
Since A−G ≡ D−G, we either have a degree 3 divisor that is equivalent to a degree 1 divisor, or a
degree 2 divisor that is equivalent to 0, depending on the degree of G. Appealing to Table 2.1, we see
that both cases are impossible. The case when D is of type 22 is similar. �

Our addition and doubling routines call one another, but this process terminates. The doubling routine
terminates on all inputs except atypical type 31 divisors (Proposition 4.2), in which case we must add
L+G where deg G = 1 and there is no need to subsequently double another type 31 divisor. Furthermore,
the addition routine may call itself, but the degree of the smaller divisor strictly decreases, forcing it to
eventually terminate.
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5. Reduction

Reducing a divisor may be accomplished by flipping it twice, as was done in [2; 11]. However, in
[8], it was shown that for typical degree 6 divisors, both flips can be combined into a single operation
that is more efficient than even just the first flip. Below, we generalize this result to all typical and
nonsemitypical divisors (of any degree). The remaining divisors, those that are semitypical but atypical,
are addressed in Theorem 5.2.

Theorem 5.1. Let D be an effective divisor on C and let {u, v} be any generating set for ID such that u
is the minimum polynomial of ID . Then there exist polynomials f, g ∈ K [C] such that f v = gu in K [C]
and D = div( f, g).

Proof. Let f be the minimum polynomial of the colon ideal u : v. Then there exists g ∈ K [C] such that
f v= gu in K [C]. The divisor A= div( f, g) is equivalent to D since uIA = 〈 f u, gu〉 = 〈 f u, f v〉 = f ID .
The minimality of u and f implies that A is reduced and is hence the reduction of D. �

In particular, Theorem 5.1 makes efficient reduction of all divisors listed in Table 2.1 straightforward,
except for atypical semitypical divisors, where ID might be generated by no two of its Gröbner basis
elements. Given ID = 〈u, v〉, the type of D is first read from Table 2.2. Then the leading monomials of
f, g, with ID = 〈 f, g〉, are obtained from Table 2.1. The coefficients of f, g are now easily computed
by equating coefficients in the relation f v ≡ gu (mod F) and solving the resulting system of linear
equations.

Reduction of atypical semitypical divisors is done via Theorem 5.2 which represents an improvement
for type 41 and 51 divisors over the method presented in [10, Section 10.1].

Theorem 5.2. Let D be an atypical semitypical divisor, and write ID = 〈 f, g, h〉. Put I = 〈 f, g〉. Then
there exist K -rational points P , Q on C such that div(I )= D+ (P − P∞) and div(I )= Q− P∞.

Proof. We have deg div(I ) = dimK (K [C]/I ) and deg D = dimK (K [C]/ID). Computing these dimen-
sions for each atypical case using Table 2.1 (the dimensions are determined by the leading coefficients
of f and g) yields deg div(I )= deg D+ 1 which establishes the existence of P .

Analogous to Lemma 4.1, there exist polynomials r = x + r0, s = y + s1x + s0 ∈ K [C] such that
f s + gr = F when D is of type 51 and f s = gr otherwise. Since div(r, s) has degree 1, it is reduced
and of the form Q− P∞. As in the proof of Theorem 5.1, we see that I is equivalent to 〈r, s〉, which is
hence the reduction of div(I ). �

Corollary 5.3. D = (Q− P∞)+ P − P∞.

Proof. By Theorem 5.2, D = div(I )− (P − P∞) and div(I )= Q− P∞. The reduced divisor equivalent
to −(P − P∞) is P − P∞. It follows that D is equivalent to (Q− P∞)+ P − P∞. Since D is reduced
and both D and (Q − P∞)+ P − P∞ have the same degree, they must both be reduced and therefore
equal. �
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Obtaining P amounts to finding polynomials p = x + p0 and q = y+ q1x + q0 such that hp, hq ∈ I .
The polynomials r and s of Theorem 5.2 determine Q.

6. Explicit formulas for typical divisors

Here, we derive explicit formulas handling the most typical cases in C3,4 arithmetic: adding disjoint type
31 divisors whose sum is typical, and doubling a typical type 31 divisor whose double is typical. If ever
we detect that we are outside these cases, we may fall back on another series of explicit formulas.

Let D and D′ be typical type 31 divisors, with respective associated ideals and Gröbner bases ID =

〈 f, g, h〉 and 〈 f ′, g′, h′〉, where

f = x2
+ f2 y+ f1x + f0, f ′ = x2

+ f ′2 y+ f ′1x + f ′0,

g = xy+ g2 y+ g1x + g0, g′ = xy+ g′2 y+ g′1x + g′0,

h = y2
+ h2 y+ h1x + h0, h′ = y2

+ h′2 y+ h′1x + h′0.

(6-1)

The optimal choice of monomial in the addition and doubling algorithms of Section 3 and Section 4
is m = x2 y. Bases for the vector spaces W x2 y

D and W x2 y
D′ are { f, g, h, x f, xg} and { f ′, g′, h′, x f ′, xg′},

respectively. The matrix

M =

 a1 a2 a3 a4 a5

a6 a7 a8 a9 a10

a11 a12 a13 a14 a15


for adding D and D′ is constructed by reducing the former basis modulo the latter; e.g., the reduction of
f modulo { f ′, g′, h′, x f ′, xg′} is ( f2− f ′2)y+ ( f1− f ′1)x + ( f0− f ′0), so a1 = f0− f ′0, a6 = ( f1− f ′1),
etc. Computing the first three columns requires only subtractions (counted as additions). The last two
columns are given in terms of the first two by a4 a5

a9 a10

a14 a15

=
0 − f ′0 −g′0

1 − f ′1 −g′1
0 − f ′2 −g′2

  a1 a2

a6 a7

a11 a12

 .

For doubling D, we construct the divisor A defined in Section 4 using the polynomials defined in (4-1)
and Lemma 4.1. Then the left three columns of the matrix M used in the computation of D+ A are the
reductions of f̃ , g̃, h̃ modulo f, g, h. Let e1 =−( f1+ g2) and e2 = r ′2− f2. Then the left three columns
of M are t ′0s0+ s ′0t0− g0 t ′0r0+ t0( f0− r ′0)− h0 f0e1+ g0e2− s ′0r0− r ′0s0

t ′0− g1 t0( f1+ f1)− h1 f1(e1+ s0)+ g1e2− r ′0+ f0

s0− g2 t ′0− h2+ r0− t0e2 f2(e1− g2)+ r ′2(g2− s0)− s ′0

 .

The right two columns relate to the first three as above, with D in place of D′.
If the first column is zero, then D+ D′ (or D+ A) is atypical and we must fall back on other formulas.

Otherwise, we assume a1 6= 0 by swapping rows if necessary. Then elementary row operations convert
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M into row echelon form: a1 a2 a3 a4 a5

a6 a7 a8 a9 a10

a11 a12 a13 a14 a15

−→
a1 a2 a3 a4 a5

0 b1 b2 b3 b4

0 0 b5 b6 b7

 .

If b1 or b5 are zero, then D + D′ (or D + A) either contains points of multiplicity exceeding 1 or is
atypical. To avoid an expensive inversion operation, we compute a scalar multiple of the reduced row
echelon form RREF(M) and defer the necessary inversion until later:a1 a2 a3 a4 a5

0 b1 b2 b3 b4

0 0 b5 b6 b7

−→
Z 0 0 A1 A2

0 Z 0 B1 B2

0 0 Z C1 C2

 .

Now ker(M)= SpanK {U, V }, where

U = Z x f −C1h− B1g− A1 f, V = Z xg−C2h− B2g− A2 f.

Let

U = Z x3
+U5 y2

+ · · ·+U0 and V = Z x2 y+ V5x2 y+ · · ·+ V0.

Formulas for the coefficients Ui , Vi are found in Table 6.3, although note that the constant coefficients
U0 and V0 are not needed and therefore not computed. Let u0, . . . , u5, v0, . . . v5 be the coefficients of
u :=U/Z and v := V/Z . To compute ui , vi , we will need the inverse of Z . However, we will also need
the inverse of f ′′2 = u2

5+ u4− v5 later on. We compute both inverses at once with only a single inversion
using a variation of Montgomery’s Trick. Formulas for ζ := Z−1 and τ := ( f ′′2 )

−1 are found in Table 6.3.
We note that the intermediate value z0 is equal to Z2 f ′′2 . If this is zero, then the sum is atypical and we
fall back on other formulas. Once ζ is known, we compute ui = ζUi and vi = ζVi for i = 1, . . . , 5.

Now ID+D′ (or I2D) is generated by {u, v}. We apply Theorem 5.1 and find polynomials

f ′′ = x2
+ f ′′2 y+ f ′′1 x + f ′′0 and g′′ = xy+ g′′3 x2

+ g′′2 y+ g′′1 x + g′′0

satisfying

f ′′v ≡ g′′u (mod F).

We would then have to reduce g′′ modulo f ′′ to eliminate the x2 term in g′′. Since g′′3 = u5, this means
subtracting u5 times f ′′ from g′′. We avoid this by instead finding g′′ = xy+ g′′2 y+ g′′1 x + g′′0 such that
f ′′v ≡ (g′′+ u5 f ′′)u (mod F), thereby saving a multiplication and a few additions.

The third polynomial in the Gröbner basis of ID+D′ (or I2D) is

h′′ = τ((y+ g′′1 ) f ′′− (x + f ′′1 − g′′2 )g
′′).

Explicit formulas and operation counts for all the quantities above are given in Tables 6.1, 6.2, and 6.3.
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Addition 12M+17A

Input: ID = 〈 f, g, h〉, ID′ = 〈 f ′, g′, h′〉
f = x2

+ f2 y+ f1x + f0 f ′ = x2
+ f ′2 y+ f ′1x + f ′0

g = xy+ g2 y+ g1x + g0 g′ = xy+ g′2 y+ g′1x + g′0
h = y2

+ h2 y+ h1x + h0 h′ = y2
+ h′2 y+ h′1x + h′0

Output: Madd =

 a1 a2 a3 a4 a5

a6 a7 a8 a9 a10

a11 a12 a13 a14 a15


Compute elements ai of Madd 12M+17A

a1 = f0− f ′0 a2 = g0− g′0 a3 = h0− h′0 a4 =− f ′0a6− g′0a11

a5 =− f ′0a7− g′0a12 a6 = f1− f ′1 a7 = g1− g′1 a8 = h1− h′1
a9 = a1− f ′1a6− g′1a11 a10 = a2− f ′1a7− g′1a12 a11 = f2− f ′2 a12 = g2− g′

a13 = h2− h′2 a14 =− f ′2a6− g′2a11 a15 =− f ′2a7− g′2a12

If a1 = a6 = a11 = 0, then abort.
If a1 = 0 is zero but a6 6= 0 or a11 6= 0, then swap rows so a1 6= 0.

Table 6.1. Construction of matrix M — typical addition.

7. Implementation and testing

A Sage implementation of C3,4 curve arithmetic based on the algorithms in this paper is available
at [9]. This implementation includes optimized addition and doubling subroutines fast_add_31_31,
fast_add_31_31_high_char, fast_double_31, and fast_double_31_ high_char. The high char-
acteristic versions assume that the curve equation is given in short form and implement the formulas in
Tables 6.1, 6.2, and 6.3. The other versions implement similar formulas with no assumptions on the
coefficients c5, c6, and c8. The optimized subroutines assume the typical cases described in Section 6.
When any of these assumptions are violated, an exception is thrown, and a less-optimized subroutine is
called instead.

The less-optimized subroutines are nonetheless implemented via explicit formulas. These include
addition subroutines for every pair of reduced divisor types (e.g., add_31_21), a doubling subroutine for
every reduced divisor type (e.g., double_31), and a reduction subroutine for every unreduced divisor
type (e.g., reduce_61).

Addition subroutines, given input divisors D and D′, compute L = lcm(D, D′) and G = gcd(D, D′)
by computing the kernel and image of a matrix as described in Section 3. If G = 0, then the reduction
of L is computed via the appropriate subroutine and L is returned. Otherwise L and G are added by
calling another addition subroutine. The cost of evaluating D + D′ depends on the type of L . Costs
are given in Table 7.1(A) for the cases when G = 0. When G > 0, one or more recursive calls must be
made. A full analysis of the cost in these cases was not done, due to the large number of subcases that
can occur.
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Doubling 28M+1S+41A

Input: ID = 〈 f, g, h〉
f = x2

+ f2 y+ f1x + f0, g = xy+ g2 y+ g1x + g0, h = y2
+ h2 y+ h1x + h0

Output: Mdoub =

 a1 a2 a3 a4 a5

a6 a7 a8 a9 a10

a11 a12 a13 a14 a15


Compute polynomials r = y+ r0, s =−(x + s0), t = t0 such that r f + sg+ th = 0 1A

r0 = g1 s0 = f1− g2 t0 =− f2

Compute polynomials r ′ = x2
+ r ′2 y+ r ′1x + r ′0, s ′ = s ′0, t ′ = y+ t ′0 2M+1S+7A

such that r ′ f + s ′g+ t ′h = F

r ′2 = c7− f2 r ′1 =− f1 t ′0 =−h2− f2r ′2
s ′0 = c4− h1+ f1( f2− r ′2) r ′0 = c3+ f 2

1 − f0

Compute reductions 14M+25A

f̃ = f̃2 y+ f̃1x + f̃0, g̃ = g̃2 y+ g̃1x + g̃0, h̃ = h̃2 y+ h̃1x + h̃0

e1 =− f1− g2 e2 = r ′2− f2

f̃2 = s0− g2 f̃1 = t ′0− g1

f̃0 = t ′0s0+ s ′0t0− g0 g̃2 = t ′0− h2+ r0− t0e2

g̃1 = t0( f1+ f1)− h1 g̃0 = t ′0r0+ t0( f0− r ′0)− h0

h̃2 = f2(e1− g2)+ r ′2(g2− s0)− s ′0
h̃1 = f1(e1+ s0)+ g1e2− r ′0+ f0

h̃0 = f0e1+ g0e2− s ′0r0− r ′0s0

Compute matrix Mdoub 12M+8A

a1 = f̃0 a2 = g̃0 a3 = h̃0

a4 =− f0a6− g0a11 a5 =− f0a7− g0a12 a6 = f̃1

a7 = g̃1 a8 = h̃1 a9 = a1− f1a6− g1a11

a10 = a2− f1a7− g1a12 a11 = f̃2 a12 = g̃2

a13 = h̃2 a14 =− f2a6− g2a11 a15 =− f2a7− g2a12

If a1 = a6 = a11, then abort.
If a1 = 0 but a6 6= 0 or a11 6=, then swap rows so a1 6= 0.

Table 6.2. Construction of matrix M — typical doubling.

Doubling subroutines, given an input divisor D, find generators for a divisor A equivalent to D, and
compute G = gcd(A, D) and 2D−G as outlined in Section 4. We recursively compute 2D−G +G.
The cost depends on the type of 2D−G, if G = 0, and if a recursive call must be made. Table 7.1(B)



330 EVAN MACNEIL, MICHAEL J. JACOBSON JR., AND RENATE SCHEIDLER

Computing ker M 1I+99M+3S+72A

Input: ID = 〈 f, g, h〉, M
f = x2

+ f2 y+ f1x + f0, g = xy+ g2 y+ g1x + g0, h = y2
+ h2 y+ h1x + h0

M =

 a1 a2 a3 a4 a5

a6 a7 a8 a9 a10

a11 a12 a13 a14 a15


Output: ID+D′ = 〈 f ′′, g′′, h′′〉 (or I2D = 〈 f ′′, g′′, h′′〉)
f ′′ = x2

+ f ′′2 y+ f ′′1 x + f ′′0 , g′′ = xy+ g′′2 y+ g′′1 x + g′′0 , h′′ = y2
+ h′′2 y+ h′′1x + h′′0

Compute row echelon form of M 21M+12A

d1 = a1a12− a2a11 d2 = a6a12− a7a11

b1 = a1a7− a2a6 b2 = a1a8− a3a6 b3 = a1a9− a4a6

b4 = a1a10− a5a6 b5 = b1a13− d1a8+ d2a3 b6 = b1a14− d1a9+ d2a4

b7 = b1a15− d1a10+ d2a5

Compute Z ·RREF(M) 18M+6A

Y = a1b1 Z = Y b5

e1 = b3b5− b2b6 e2 = b4b5− b2b7

A1 = b1(a4b5− b6a3)− a2e1 B1 = a1e1 C1 = Y b6

A2 = b1(a5b5− b7a3)− a2e2 B2 = a1e2 C2 = Y b7

Compute ker(M) 18M+14A

U1 = Z f0−C1h1− B1g1− A1 f1 U2 =−C1h2− B1g2− A1 f2

U3 = Z f1− A1 U4 = Z f2− B1 U5 =−C1

V1 = Zg0−C2h1− B2g1− A2 f1 V2 =−C2h2− B2g2− A2 f2

V3 = Zg1− A2 V4 = Zg2− B2 V5 =−C2

Compute ζ = Z−1, τ = ( f ′′2 )
−1 1I+5M+2S+3A

z0 =U 2
5 + Z(U4− V5) z1 = Zz0 z2 = z−1

1 z3 = Zz2 ζ = z0z2 τ = Z2z3

Compute u1, . . . , u5, v1, . . . , v5 10M

u1 = ζU1 u2 = ζU2 u3 = ζU3 u4 = ζU4 u5 = ζU5

v1 = ζV1 v2 = ζV2 v3 = ζV3 v4 = ζV4 v5 = ζV5

Compute f ′′, g′′, h′′ 27M+1S+37A

r0 = u5( f ′′2 + u4− c7)+ u3− v4 r1 = f ′′2 ( f ′′2 − u4)

g′′0 = u5(c3− f ′′0 − u1− f ′′1 u3)− g′′1 u3+ f ′′1 v3+ v1

g′′1 = r1− u5(u3+ r0)+ v3 g′′2 =−u4u5+ v4− r0+ τ(u4r0− u5g′′1 − u2)

f ′′0 =−c7(r1+g′′2 u5)+u5( f ′′2 u3+ f ′′1 u4−c4+u2)+g′′2 u3+g′′1 u4− f ′′2 v3− f ′′1 v4+u1−v2

f ′′1 = r0+ g′′2 f ′′2 = u2
5+ u4− v5

h′′0 = τ( f ′′0 g′′1 − g′′0r0) h′′1 = τ(g
′′

1 g′′2 − g′′0 ) h′′2 = g′′1 + τ( f ′′0 − g′′2r0)

Table 6.3. Computing ker M .
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contains the costs for the cases where G = 0. Here, “t” and “a” under the type column refer to typical
and atypical divisors, respectively.

Our operation counts for the high characteristic formulas compare to the previous state of the art in
[8] as follows:

Addition Doubling

Khuri-Makdisi [8] 2I+97M+1S+132A 2I+107M+3S+155A
This work 1I+111M+3S+99A 1I+127M+4S+112A

These counts include a trade-off of one inversion for several multiplications. An inversion is generally
considered to be as expensive as 80 multiplications, depending on implementation and environment
details [3; 5]. Our formulas also significantly decrease the number of additions required, and the total
number of field operations in both of our formulas is less than that of [8]. Over large fields such as those
considered in [8], additions are generally considered to have negligible cost compared to multiplications
and inversions, but in number theoretic computations such as [13] over smaller (typically word-sized)
primes, this has been observed not to be the case.

To verify that our results represent an improvement over the previous state-of-the-art, we implemented
the formulas from [11] and [8] in Sage and ran benchmark tests as follows. Given a prime p, choose
a random C3,4 curve C over Fp (with defining polynomial in short form) and two random divisors D1

and D2 on C . Details on random divisor generation are given in Section 12.2 of [10]. We counted how
many terms in the Fibonacci-like sequence Di+2 = Di+1 + Di , i ≥ 1 (for addition) and the sequence
Di+1 = 2Di , i ≥ 1 (for doubling) each algorithm is able to compute in 10 minutes. We chose to run these
tests over the first 23 primes greater than 228, as primes on this order are of interest in number theoretic
applications (see [14], for example), and because degenerate cases are so rare that we can strictly compare
our formulas to those of [11] and [8]. Our algorithm computed 126,310,162 additions as compared to
112,041,012 using the algorithm from [8], for a speedup of 12.74%. Similarly, our algorithm computed
120,827,482 doublings as compared to 108,489,487 for a speedup of 11.37%.

This benchmark was repeated over the first 11 primes larger than 2255, where we found a more signifi-
cant speed-up, likely due to the increasing cost of inverting in large finite fields. Our algorithm computed
63,151,623 additions versus 52,185,141 using the algorithm from [8], for a speedup of 21.01%. Similarly,
our algorithm computed 56,795,783 doublings as compared to 48,395,712 for a speedup of 17.36%.

We found the most significant speed-up over very small primes, where atypical cases are frequently
encountered and our explicit formulas are much faster than generic arithmetic. Over the ten largest
primes below 28, we compared our formulas against those of [11] and [8], falling back on Sage’s generic
ideal arithmetic for cases not handled by those papers. Our algorithm computed 53,670,222 additions
as compared to 31,685,426 using the algorithm from [8], for a speedup of 69.38%, and 48,156,514
doublings as compared to 39,152,564 for a speedup of 23.00%.

It is important to acknowledge the role that the implementation environment plays in these results.
The benchmarks were run in the Sage interpreter, which adds significant overhead to the calculations.
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Op count Type
Subroutine I M S A of L

add_11_11 1 3 0 4 21
add_11_11 0 1 0 3 22

add_21_11 1 13 0 14 31
add_21_11 0 12 0 17 32

add_21_21 2 68 1 58 41-t
add_21_21 2 67 0 58 41-a
add_21_21 1 27 0 19 42
add_21_21 1 39 0 32 43
add_21_21 0 12 0 9 44

add_21_22 2 40 1 41 41-t
add_21_22 2 39 0 41 41-a
add_21_22 0 2 0 2 42

add_22_11 1 5 0 5 31-a
add_22_11 0 1 0 3 33

add_22_22 1 11 0 17 43

add_31_11 2 43 1 49 41-t
add_31_11 2 22 0 49 41-a
add_31_11 0 6 0 10 42
add_31_11 1 16 0 32 43

add_31_21 2 80 1 77 51-t
add_31_21 2 78 1 74 51-a
add_31_21 1 35 1 33 52
add_31_21 1 57 1 51 53
add_31_21 1 43 1 41 54

add_31_22 2 69 0 64 51-t
add_31_22 2 67 0 61 51-a
add_31_22 1 24 0 20 52
add_31_22 1 46 0 38 53
add_31_22 1 36 0 29 54

fast_add_31_31 1 111 3 99 61-t
_high_char

fast_add_31_31 1 114 2 102 61-t
add_31_31 2 127 0 110 61-a
add_31_31 1 69 0 54 62
add_31_31 1 85 0 67 63
add_31_31 1 94 0 75 64
add_31_31 0 32 0 28 65

(A) Addition

Op count Type of
Subroutine I M S A 2D−G

double_11 1 15 1 20 21
double_11 0 8 1 13 22

double_21 2 86 1 85 41-t
double_21 2 85 0 85 41-a
double_21 1 50 0 47 42
double_21 1 60 0 60 43
double_21 0 7 0 12 44

double_22 1 22 0 22 42
double_22 1 25 0 29 43

fast_double_31_high_char 1 127 4 112 61
fast_double_31 1 138 2 130 61
double_31 2 159 0 156 61-t
double_31 2 152 0 149 61-a
double_31 1 94 0 90 62
double_31 1 110 0 103 63
double_31 1 119 0 111 64
double_31 0 57 0 64 65

(B) Doubling

Op count
Subroutine I M S A

reduce_32 0 8 0 11
reduce_33 0 0 0 0
reduce_41t 1 23 1 28
reduce_41a 1 22 0 28
reduce_42 0 0 0 1
reduce_43 0 6 0 11
reduce_44 0 0 0 0
reduce_51t 1 24 0 32
reduce_51a 1 22 0 29
reduce_52 0 1 0 3
reduce_53 0 12 0 14
reduce_54 0 7 0 10
reduce_61t 1 35 0 46
reduce_61a 1 28 0 39
reduce_62 0 2 0 5
reduce_63 0 8 0 13
reduce_64 0 12 0 21
reduce_65 0 0 0 0

(C) Reduction

Table 7.1. Operation counts for C3,4 arithmetic.
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If implemented in a low level language, such as C/PARI, our improvements over [11; 8] may be more
dramatic.

Correctness testing was accomplished by a combination of unit testing and random testing. Unit tests
were constructed testing every branch of code in the addition, doubling, and reduction subroutines. These
subroutines were also tested via hundreds of thousands of random inputs and the results were compared
against Sage’s vetted ideal arithmetic.

8. Conclusion

By generalizing the techniques of Abu Salem and Khuri-Makdisi [11] to atypical divisors as classified by
Arita [2], we provided a fully general framework for efficient divisor arithmetic on C3,4 curves. Taken
together with our additional improvements to the setting of typical divisors, we obtain speedups of
between 11 and 21% depending on the field size, and even more for small fields were atypical cases
arise more frequently.

There is room for further speed advances in C3,4 curve arithmetic, and work on this topic is ongoing.
In our formulas for atypical divisors, addition/doubling and reduction are performed separately. Savings
could be effected by combining these into a single optimized subroutine, as was done in Section 6 for the
typical case. It is also possible to eliminate all inversions using an analogue of projective coordinates, but
this would likely not help with number-theoretic computations where frequent equality tests of divisors
are required.

Arithmetic on C3,4 curves continues to be significantly more expensive than arithmetic on genus 3
hyperelliptic curves. Preliminary results indicate that Shanks’ NUCOMP algorithm [12] achieves signifi-
cant savings in the latter setting, which raises the question whether a NUCOMP-like idea may be applied
to C3,4 curve arithmetic as well.
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Reductions between short vector problems and
simultaneous approximation

Daniel E. Martin

In 1982, Lagarias showed that solving the approximate shortest vector problem also solves the problem of
finding good simultaneous Diophantine approximations (SIAM J. Comput., 14(1):196–209, 1985)). Here
we provide a deterministic, dimension-preserving reduction in the reverse direction. It has polynomial
time and space complexity, and it is gap-preserving under the appropriate norms. We also give an
alternative to the Lagarias algorithm by first reducing his version of simultaneous approximation to
one with no explicit range in which a solution is sought.

1. Introduction

Our primary result is to show that a short vector problem reduces deterministically and with polynomial
complexity to a single simultaneous approximation problem as presented in the definitions below. We
use min× to denote the nonzero minimum, {x} ∈

(
−

1
2 ,

1
2

]n to denote the fractional part of x ∈ Rn, and
[x] to denote the set {1, . . . , bxc} for x ∈ R.

Definition 1.1. A short vector problem takes input α ∈ [1,∞) and nonsingular M ∈ Mn(Z). A valid
output is q0 ∈ Zn with 0< ‖Mq0‖ ≤ αmin×q∈Zn‖Mq‖. Let SVP denote an oracle for such a problem.

Definition 1.2. A good Diophantine approximation problem takes input α, N ∈ [1,∞) and x ∈Qn. A
valid output is q0 ∈ [αN ] with ‖{q0x}‖ ≤ αminq∈[N ]‖{qx}‖. Let GDA denote an oracle for such a
problem.

Our reduction asserts that if we can find short vectors in a very restricted family of lattices then we can
find them in general, since behind a good Diophantine approximation problem is the lattice generated
by Zn and one additional vector, x.

Literature more commonly refers to a short vector problem as a shortest vector problem when α = 1
and an approximate shortest vector problem otherwise (often unrestricted to sublattices of Zn, though
we have lost no generality). A brief exposition can be found in [26]. See [14] or [24] for a more
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comprehensive overview, [27] for a focus on cryptographic applications, [19] for a summary of hardness
results, and [6] for relevance and potential applications to post-quantum cryptography.

Regarding simultaneous approximation, Brentjes highlights several algorithms in [7]. For a sample
of applications to attacking clique and knapsack-type problems see [13], [20], and [31]. Examples of
cryptosystems built on the hardness of simultaneous approximation are [2], [4], and [16]. This version
is taken from [9] and [29].

The reduction, given in Algorithm 3, preserves the gap α when the `∞-norm is used for both problems.
This means the short vector problem defined by α and M is solved by calling GDA(α, x, N ) for some
x ∈Qn and N ∈R. It reverses a 1982 result of Lagarias, which reduces a good Diophantine approximation
problem to SVP. (See Theorem B in [21], which refers to the problem as good simultaneous approxima-
tion. We borrow its name from [9] and [29].) Though there is an important contextual distinction: [21]
relates simultaneous approximation under the `∞-norm to lattice reduction under the `2-norm, whereas
all reductions in this paper assume a consistent norm.

Under Lagarias’ (and the most common) setup — the `∞-norm for GDA and the `2-norm for SVP —
we are not the first to go in this other direction. In a seminar posted online from July 1, 2019, Agrawal
presented an algorithm achieving this reduction which was complete apart from some minor details [1].
Tersely stated, he takes an upper triangular basis for a sublattice of Zn and transforms it inductively, using
integer combinations and rigid rotations with two basis vectors at time, into a lattice (a rotated copy of the
original) whose short vectors can be found via simultaneous approximation. The short vector problem
defined by α and M gets reduced to GDA(α/

√
2n, x, N ), called multiple times in order to account for

the unknown minimal vector length which is used to determine x.
In contrast, the reduction here takes a completely different approach. It finds a sublattice which is

nearly scaled orthonormal, so that only one additional vector is needed to generate the original lattice.
This extra vector is the input for GDA. We note that when switching between norms, our reduction is
also not gap-preserving. To use Algorithm 3 to solve a short vector problem with respect to the `2-norm
via GDA with respect to the `∞-norm, the latter must be executed with the parameter α/

√
n to account

for the maximum ratio of nonzero norms ‖q‖2/‖q‖∞.
The relationship between the two problems in Definitions 1.1 and 1.2 will be studied through the

following intermediary.

Definition 1.3. A simultaneous approximation problem takes input α ∈ [1,∞) and x ∈ Qn. A valid
output is q0 ∈ Z with 0< ‖{q0x}‖ ≤ αmin×q∈Z‖{qx}‖. Let SAP denote an oracle for such a problem.

This problem prohibits only the trivial solution, the least common denominator of x’s entries, while
“N” in a good Diophantine approximation problem is generally more restrictive.

Section 2 explores the relationship between the two versions of simultaneous approximation given in
Definitions 1.2 and 1.3. Among the results, only Proposition 2.1 in Section 2A is required to verify the
final reduction of a short vector problem to either version of simultaneous approximation. Section 2B
contains Algorithm 1. It reduces a good Diophantine approximation problem to polynomially many
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SAP

GDA

SVPAlg. 3
§4B

Alg. 3
§4B

§3B
Alg. 2
§3A

Alg. 1
§2B

§2A

Figure 1. Algorithm and subsection numbers for reductions.

SAP calls, each executed with the parameter α/3.06. So while this reduction is not gap-preserving, the
inflation is independent of the input.

Section 3 reduces both versions of simultaneous approximation to SVP. It begins with Algorithm 2,
which solves Definition 1.3’s version. We remark at the end of Section 3A how this reduction adapts
to the inhomogeneous forms of these problems, meaning the search for q0 ∈ Z or q0 ∈ Zn that makes
q0x− y or Mq0− y small for some y ∈Qn. (In this case the latter is known as the approximate closest
vector problem, exposited in Chapter 18 of [14], for example.) Then Section 3B combines Algorithms 1
and 2 to solve Definition 1.2’s version of simultaneous approximation using SVP. This is our alternative
to the Lagarias reduction.

Finally, Algorithm 3 in Section 4 reduces a short vector problem to GDA or SAP. It also adapts
to the inhomogeneous versions of SVP and SAP (not GDA, as mentioned at the end of Section 4C).
In Corollary 4.9 we observe that Algorithm 3 facilitates a simpler proof that GDA is NP-hard under an
appropriate bound on α, a result first obtained in [9]. Then we combine Algorithms 2 and 3 in Section 4B
to solve a simultaneous approximation problem with GDA. In particular, we give all six reductions among
the defined problems, as shown in Figure 1.

The two reductions in Figure 1 without algorithm numbers are achieved by following the two arrows
that combine to give the same source and target. Dashed arrows indicate a norm restriction. Each must be
executed under either the `1, `2, or `∞-norm. However, we show in Section 4C how the restriction can be
alleviated to any `p-norm provided we accept additional gap inflation by a constant arbitrarily close to 1.

The results are summarized in Table 1. It uses m and d to denote the maximal magnitude among
input integers and the least common denominator of the input vector, respectively. The matrix or vector
dimension is n, and p defines the norm. Trivial cases that cause logarithms to equal 0 are ignored. The
column descriptions are as follows:

operations: Big-O bound on the number of arithmetic operations per oracle call.

integers: Big-O bound on the length of integers used throughout the reduction.

inflation: Maximum gap inflation. For example, to solve a good Diophantine approximation problem
with some α using Algorithm 1, SAP is called with α/3.06.

calls: Upper bound on the number of required calls to the oracle.
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reduction operations integers inflation calls

GDA→ SAP n log m n log m 3.06 dlog2 d/αNe
SAP→ SVP (n+ log m)2 n log m 1 1
GDA→ SVP (n+ log m)2 n log m 3.06 dlog2 d/αNe
SVP→ GDA n4 log mn n4 log mn n1/p 1
SVP→ SAP n4 log mn n4 log mn 1 1
SAP→ GDA n5 log m n5 log m n1/p 1

Table 1. Summary of reduction complexities and gap inflations.

2. Versions of simultaneous approximation

2A. SAP to GDA. Rather than give a complete reduction from a simultaneous approximation problem
to GDA, which is postponed until the end of Section 4B, the purpose of this subsection is to observe a
condition on the input that makes these two versions of simultaneous approximation nearly equivalent.

Proposition 2.1. Suppose the i-th coordinate of x is of the form xi = 1/d, where d ∈ N makes dx ∈ Zn.
Under an `p-norm, GDA(α, x, N ) solves the simultaneous approximation problem defined by αn1/p and
x with N = d/2α.

Proof. Let qmin ∈ [d/2] be such that ‖{qminx}‖ is the nonzero minimum. A vector’s fractional part is in(
−

1
2 ,

1
2

]n, making its length at most n1/p/2. So we may assume that ‖{qminx}‖ < 1
2α, since otherwise

every integer in [N ] = [d/2α] solves the simultaneous approximation problem defined by αn1/p and x.
Under an `p-norm, ‖{qminx}‖ is an upper bound for its i-th coordinate, qmin/d. Combined with

the assumption ‖{qminx}‖ < 1
2α, this gives qmin ∈ [d/2α] = [N ], which implies minq∈[N ]‖{qx}‖ ≤

min×q∈Z‖{qx}‖. And because αN < d , it is guaranteed that GDA(α, x, N ) is not a multiple of d . �

Note that without an assumption on x like the one used in this proposition, there is no natural choice
for N that makes GDA solve a simultaneous approximation problem. If we set it too small, say with
N < d/2, then minq∈[N ]‖{qx}‖ may be unacceptably larger than min×q∈Z‖{qx}‖, potentially making
GDA’s approximation poor. If we set it too large, say with N ≥ d/α, then GDA may return d, which is
not a valid output for the initial simultaneous approximation problem.

To get around this, our strategy is to first reduce a simultaneous approximation problem to SVP with
Algorithm 2. Then in Algorithm 3, which reduces a short vector problem to SAP, we are careful to produce
an input vector for the oracle that satisfies the hypothesis of Proposition 2.1 in order to admit GDA.

2B. GDA to SAP. Let d continue to denote the least common denominator of x. The problem faced in
this reduction is that outputs for a good Diophantine approximation problem are bounded by αN, which
may be smaller than d/2. This leaves no guarantee that SAP(α, x), call this integer d1 ∈ [d/2], is a
solution. But knowing that x is very near a rational vector x1 with least common denominator d1 allows
us to call SAP again, now on x1 to get d2 ∈ [d1/2]. This is the least common denominator of some x2

near x1, and we continue in this fashion until the output is at most αN. To get di ∈ [di−1/2], we adopt
the convention that modular reduction returns an integer with magnitude at most half the modulus.
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Algorithm 1: A reduction from a good Diophantine approximation problem to multiple calls to SAP

under a consistent norm.

input: α, N ∈ [1,∞), x = (x1, . . . , xn) ∈Qn

output: q0 ∈ [αN ] with ‖{q0x}‖ ≤ αminq∈[N ]‖{qx}‖
1 d← lcd(x1, . . . , xn) > 0
2 while d > αN do
3 d← |SAP(α/3.06, x) mod d| F good, but large denominator
4 x← x−{dx}/d F now lcd(x)= d , at most half of the previous iteration’s lcd
5 return d

Proposition 2.2. The output of Algorithm 1 solves the initial good Diophantine approximation problem.

Proof. Let di and xi denote the values of d and x after i while loop iterations have been completed. In
particular, d0 and x0 are defined by the input. Also let I + 1 be the total number of iterations executed,
so the output is dI+1.

The triangle inequality gives

‖{dI+1x}‖ ≤ ‖{dI+1xI }‖+ dI+1

I∑
i=1

‖xi − xi−1‖. (2-1)

With λi =minq∈[N ]‖{qxi }‖, the choice of dI+1 bounds the first summand by αλI /c, where c = 3.06 in
the algorithm but is left undetermined for now. Similarly, the choice of di = SAP(α/c, xi−1) and the fact
that di−1 > αN ≥ N give

‖xi − xi−1‖ =
‖{di xi−1}‖

di
≤
αmin×q∈Z‖{qxi−1}‖

cdi
≤
αλi−1

cdi
. (2-2)

So to bound (2-1) it must be checked that the λi ’s are not too large. To this end, fix some i ≤ I and
let qmin ∈ [N ] satisfy ‖{qminxi−1}‖ = λi−1. Then we have the following upper bound on λi , where the
three inequalities are due to the triangle inequality, inequality (2-2), and qmin ≤ N < dI /α ≤ di/2I−iα,
respectively:

‖{qminxi }‖ ≤ λi−1+ qmin‖xi − xi−1‖ ≤ λi−1

(
1+

αqmin

cdi

)
< λi−1

(
1+

1
2I−i c

)
.

Inductively, this gives

λi < λ0

i∏
j=1

(
1+

1
2I− j c

)
. (2-3)

Now (2-1), (2-2), and (2-3) can be combined to get

‖{dI+1x}‖ ≤
αdI+1

c

I∑
i=0

λi

di+1
≤
α

c

I∑
i=0

λi

2I−i ≤
αλ0

c

I∑
i=0

1
2I−i

i∏
j=1

(
1+

1
2I− j c

)
.
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Thus the output approximation quality, ‖{dI+1x}‖, is at most αminq∈[N ]‖{qx}‖ = αλ0 provided c satis-
fies

1≥
1
c

∞∑
i=0

1
2i

∞∏
j=i

(
1+

1
2 j c

)
.

This justifies our choice of c = 3.06 in line 3. �

Proposition 2.3. Let m > 1 be the maximum magnitude among integers defining x, and let d > 1 be its
least common denominator. The reduction in Algorithm 1 requires an initial O(n log m) operations plus
O(n) operations for each call to SAP, of which there are at most dlog2(d/αN )e, on integers of length
O(n log m).

Proof. Repeatedly applying the Euclidean algorithm computes d with O(n log m) operations on integers
of length O(n log m). Modular reduction in line 3 decreases each successive least common denominator
by at least a factor of 1

2 . This bounds the number of while loop iterations by dlog2(d/αN )e. �

3. Reducing to SVP

First we restrict attention to Definition 1.3’s version of simultaneous approximation (SAP) in Algo-
rithm 2. Then we will compare the combination with Algorithm 1 to Lagarias’ reduction in [21] from
Definition 1.2’s version (GDA).

3A. SAP to SVP. Here we replace the n+1 vectors associated to simultaneous approximation, namely x
and a basis for Zn, with n vectors generating the same lattice. There are algorithms for which this
is a byproduct, like Pohst’s modified (to account for linearly dependent vector inputs) LLL algorithm
[23] or Kannan and Bachem’s Hermite normal form algorithm [18]. But as a consequence of achiev-
ing additional basis properties, they are more complicated and require more operations than neces-
sary. We briefly present an alternative because the improved time complexity is relevant to the next
subsection.

Algorithm 2: A gap-preserving reduction from a simultaneous approximation problem to one call to SVP

under a consistent norm.

input: α ∈ [1,∞), x = (x1, . . . , xn) ∈Qn

output: q0 ∈ Z with 0< ‖{q0x}‖ ≤ αmin×q∈Z‖{qx}‖
1 d← lcd(x1, . . . , xn)

2 xn← xn + a with a an integer that makes
gcd(dx1, . . . , dxn−1, d(xn + a))= 1 F make sure dx extends to a basis for Zn

3 M← matrix in SLn(Z) with first column dx
4 M← M with last n− 1 columns scaled by d F generates scaled original lattice
5 return SVP(α,M)1 F first coordinate is a solution
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Proposition 3.1. The output of Algorithm 2 solves the initial simultaneous approximation problem.

Proof. First note that a in line 2 exists. As d is the least common denominator, gcd(dx1, . . . , dxn) and d
are coprime. So take a to be divisible by those primes which divide gcd(dx1, . . . , dxn−1) but not dxn .
Also, since a is an integer, the new value of x defines the same simultaneous approximation problem as
the input.

Coprime entries means dx extends to some M ∈ SLn(Z). (One method is mentioned in the next proof.)
The columns of d M generate dZn, so the same is true if we only scale the last n− 1 columns by d. In
particular, the columns of the new M in line 4 generate dx and dZn, which in turn generate each column.
Thus M defines a basis for the original simultaneous approximation lattice scaled by d .

Finally, the last n−1 columns of M are vectors in dZn, so that M SVP(α,M)≡SVP(α,M)1dx mod dZn.
This verifies that SVP(α,M)1 is the integer we seek. �

Proposition 3.2. Let m > 1 be the maximum magnitude among integers defining x. The reduction in
Algorithm 2 requires O((n+ log m)2) operations on integers of length O(n log m).

Proof. As with Algorithm 1, line 1 requires O(n log m) operations on integers of length O(n log m). The
integer outputs of these operations also have length O(n log m).

Skipping line 2 for now, the i-th column (for i ≥ 2) of M in line 3 can be set to(
b1dx1

gcd(dx1, . . . , dxi−1)
, . . . ,

b1dxi−1

gcd(dx1, . . . , dxi−1)
, b2, 0, . . . , 0

)
(transposed), where b2gcd(dx1, . . . , dxi−1)− b1dxi = gcd(dx1, . . . , dxi ). The determinant of the top-
left i × i minor is then gcd(dx1, . . . , dxi ) by induction. To find b1 and b2 we execute the Euclidean
algorithm on gcd(di x1, . . . , di xi−1) and di xi , where di = lcd(x1, . . . , xi ). But gcd(di x1, . . . , di xi−1) is
at most m times gcd(di−1x1, . . . , di−1xi−1), which divides the greatest common divisor of the numerators
of x1, . . . , xi−1. So for each i the Euclidean algorithm needs O(log m) operations.

Before computing the last column of M, we find a in line 2 to ensure a determinant of 1. As discussed
in the last proof, we can start with a = gcd(dx1, . . . , dxn−1) and replace it with a/gcd(a, dxn) until
nothing changes. This requires O(log a)= O(log m) executions of the Euclidean algorithm, each taking
O(log m) operations.

Scaling all but the first column by d in line 4 takes O(n2) operations. �

We remark that this algorithm adapts to inhomogeneous forms of these problems. To find q0 ∈ Z

with ‖{q0x− y}‖ ≤ αmin×q∈Z‖{qx− y}‖ when qx− y ∈ Zn has no solution, we can perform the same
reduction and finish by calling an oracle which solves the approximate closest vector problem defined
by α, M, and d y.

3B. GDA to SVP. Combining Algorithms 1 and 2 gives an alternative to the Lagarias reduction from
good Diophantine approximation to SVP in [21]. We execute Algorithm 1, but use Algorithm 2 to com-
pute SAP(α/3.06, x) in line 3. By Proposition 2.3, this requires at most dlog2(d/αN )e calls to SVP. And
Proposition 3.2 states that each call requires O((n+ log m)2) operations on integers of length O(n log m).
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Recall that switching from `2 to `∞ decreases a nonzero norm by at most a factor of 1/
√

n. In
particular, by executing this combination of Algorithms 1 and 2 with respect to the `2-norm, we get an
`∞ solution to the initial good Diophantine approximation problem provided we use α/3.06

√
n for SVP.

Lagarias achieves this reduction with the now well-known trick from [22] of reducing the lattice
generated by Zn and x, bumped up a dimension by putting 0 in every (n+1)-th coordinate but x’s.
The ideal value for the last coordinate of x, which is guessed at using bn+ log2 d Nc calls of the form
SVP(α/

√
5n,M) for varying M, is minq∈[N ]‖{qx}‖/N. (The gap inflation approaches

√
n as our guesses

get better.) The Lagarias reduction requires an initial O(n log m) arithmetic operations to compute the
least common denominator, then only one additional operation per call. The integers involved have input
length O(log mn N ).

Whether the benefit of fewer calls to SVP outweighs the increased operations per call depends on the
complexity of the oracle. Ours is an asymptotic improvement when the number of operations performed
by SVP exceeds O((n+ log m)2).

4. Reducing to GDA or SAP

We focus first on the reduction to SAP.

4A. Intuition. Consider an input matrix M ∈Mn(Z) for a short vector problem. Let d = det M, and let
e1, . . . , en denote the standard basis vectors for Zn. If there were one vector, call it b ∈ Zn, for which the
set {Mb, de1, . . . , den} generated the columns of M, our reduction would just amount to finding it. This
is exactly the setup for simultaneous approximation: n+ 1 vectors, n of which are scaled orthonormal.
A solution could be obtained by doing simultaneous approximation on Mb/d , scaling the resulting short
vector by d , and applying M−1 (to comply with Definition 1.1). Unfortunately, unless n ≤ 2 or d =±1,
such a b does not exist. Indeed, the adjugate matrix, adj M = d M−1, has at most rank 1 over Z/pZ

for a prime p dividing d. So at least n− 1 additional vectors are required to have full rank modulo p,
a prerequisite to having full rank over Q. But asking that Mb generate the columns of M alongside
de1, . . . , den is equivalent to asking that b generate Zn alongside the columns of adj M.

What matters is the matrix with columns de1, . . . , den being scaled orthonormal. As such, multiplying
by it or its inverse has no effect on a vector’s relative length. So we plan to find a different set of n
column vectors—a set for which just one additional Mb is needed to generate the original lattice —
which is nearly scaled orthonormal, making the effect of its corresponding matrix multiplication on α
negligible. The initial short vector problem becomes a search for an integer combination of Mb and
these columns, say c1, . . . , cn . We can then solve the simultaneous approximation problem defined by
α and [c1 · · · cn]

−1 Mb. This works as long as multiplying by [c1 · · · cn] changes the ratio between the
lengths of the shortest vector and our output by less than whatever is afforded by the fact that lattice
norms form a discrete set.

An arbitrary lattice may have all of its scaled orthonormal sublattices contained in dZn. So as candi-
dates for the matrix [c1 · · · cn], we look for something of the form cd Id+M A = M(c adj M + A) for
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some c ∈ Z and A ∈Mn(Z). If the entries of A are sufficiently small, then multiplication by cd Id+M A
has a similar effect on relative vector norms as multiplying by cd Id, which has no effect.

We will tailor our choice of c and A so that a coordinate of the simultaneous approximation vector,
(c adj M + A)−1b, is 1/ det(c adj M + A). This admits Proposition 2.1 and hence GDA.

4B. SVP to GDA or SAP. Algorithm 3 uses the following.

Notation 4.1. For polynomials f1=
∑

i f1,i x i and f2=
∑

i f2,i x i with maximum degree d , let C( f1, f2)

denote the matrix of their coefficients,

f1,d 0 f2,d 0
...

. . .
...

. . .

f1,1 · · · f1,d f2,1 · · · f2,d

f1,0 · · · f1,d−1 f2,0 · · · f2,d−1
. . .

...
. . .

...

0 f1,0 0 f2,0


.

The matrix above can determine when f1 and f2 are coprime over Q(x) in lieu of polynomial long divi-
sion, where coefficient growth is exponential without complicated mitigations as in [8]. We demonstrate
this now to give some clarity to the meaning behind lines 5 and 6 of Algorithm 3.

Lemma 4.2. Let f1, f2 ∈ Z[x], not both constant. As an ideal in Z[x], ( f1, f2) contains det C( f1, f2),
which is nonzero if and only if f1 and f2 have no common root in the algebraic closure of Q.

Proof. Let d =max(deg f1, deg f2). Consider the vector in Z2d whose only (perhaps) nonzero entry is
det C( f1, f2) in the last coordinate. This is the image under C( f1, f2) of some nonzero integer vector.
We can split the entries of this vector down the middle to get coefficients for g1, g2 ∈ Z[x] that have
degree at most d − 1 and satisfy det C( f1, f2)= f1g1+ f2g2 ∈ ( f1, f2).

Plugging a common root of f1 and f2 into this last equation, should one exist, shows det C( f1, f2)= 0.
Conversely, suppose f1g1+ f2g2 = 0 and that deg f1 = d ≥ 1. Then g2 must be nonzero to avoid the
same being true of g1, contradicting our choice of nonzero coefficient vector. But g2 has degree at most
d − 1. So f1g1 =− f2g2 implies that at least one of f1’s d roots must be shared by f2. �

Notation 4.3. For a matrix M, let Mi, j denote the entry in its i-th row and j-th column, and let M̌ i

denote its top-left i × i minor.

Line 1 of Algorithm 3 requires knowing the position of a nonzero entry in the input matrix, and line 8
requires knowing the maximum magnitude among entries. For notational convenience, we assume that
Mn,1 is the nonzero maximum.

Let us turn to the for loop, which builds the matrix Section 4A called A.

Lemma 4.4. For i = 2, . . . , n, there is some j ≤ 2i − 2 satisfying the criterion of line 5 in the for loop
iteration corresponding to i .
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Algorithm 3: A reduction from a short vector problem with n ≥ 2 to one call to SAP (gap-preserving) or
GDA under a consistent `p-norm with p ∈ {1, 2,∞}.

input: a ≥ b ∈ N (α = a/b), M ∈Mn(Z) with 0 6= det M and Mn,1 =maxi, j |Mi, j |

output: q0 ∈ Zn with 0< ‖Mq0‖ ≤ αmin×q∈Zn‖Mq‖
1 p← least prime not dividing Mn,1 det M
2 M← x adj M + p Id FM = M(x) has linear polynomial entries
3 for i← 2 to n do
4 Mi,1← Mi,1+ p
5 Mi,i−1← Mi,i−1+ p j with j > 0 minimal F need not compute determinant

so det C((adj M̌ i )i,1, (adj M̌ i )i,2) 6= 0 to test each j ; see Theorem 4.8
6 c← det C((adj M)n,1, (adj M)n,2)
7 c← c/p j with j maximal or p+ 1 if |c| = p j

F make c coprime to p
8 M← M(c j ) with j =

⌈
log|c| a

2(2Mn,1n)3n
⌉

F substitute for x so M ∈Mn(Z)

9 b1, b2← integers with |b1| minimal F that these exist guarantees
so 1= b1(adj M)n,1+ b2(adj M)n,2 M x (line 10) and M generate Zn

10 x← M−1(b1, b2, 0, . . . , 0)
11 q0← SAP(α, x) or GDA(α/n1/p, x, N ) F GDA works since xn = 1/ det M ;

with N = n1/p det M/2α recall Proposition 2.1
12 return M{q0x}

Proof. When i = 2 we are asked to find j for which the linear polynomials M1,1 and M2,1+ p j do not
share a root (by Lemma 4.2). The constant term of M1,1 is p by line 2, meaning it has at most one root.
So asking that j ≤ 2i − 2 = 2 gives enough space to avoid the at-most-one value of j that fails. Now
suppose i ≥ 3 and that the claim holds for i − 1. Let M be its value after line 4 in the for loop iteration
corresponding to i , and let

f1 = (adj M̌ i−1)i−1,1 and f2 = (adj M̌ i−1)i−1,2.

By assumption there are g1, g2 ∈ Z[x] with g1 f1+ g2 f2 = det C( f1, f2) 6= 0. Fix an integer j, and let
h1 = (adj M̌ i )i,1− p j f1 and h2 = (adj M̌ i )i,2− p j f2, the polynomials we hope to make coprime with
the appropriate choice of j. We have[

f2 − f1

g1 g2

] [
h1

h2

]
=

[
f2(adj M̌ i )i,1− f1(adj M̌ i )i,2

g1(adj M̌ i )i,1+ g2(adj M̌ i )i,2− p j det C( f1, f2)

]
.

In the column on the right, where we now focus our attention, p j has been isolated.
For each root of the top polynomial, there is at most one value of j that makes it a root of the bottom.

Thus it suffices to show that f2(adj M̌ i )i,1− f1(adj M̌ i )i,2 is not the zero polynomial. Then its degree,
which is at most 2i − 3, bounds how many values of j can make the right-side polynomials share a root.
As this occurs whenever h1 and h2 share a root, Lemma 4.2 would complete the proof.
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To show that f2(adj M̌ i )i,1− f1(adj M̌ i )i,2 is nonzero, we compute its constant term from the matrix

p 0 · · · 0 0 0
p+ p j2 p 0 0

p p j3 0
...

. . .
...

p 0 p ji−1 p 0
p 0 · · · 0 p j p


. (4-1)

These are the constants in M̌ i after adding p j in the i, i − 1 position — the main diagonal comes from
line 2, the first column comes from line 4, and the second diagonal comes from line 5. To compute h1

or h2, we use cofactor expansion along the bottom row after deleting the last column and the first or
second row. The (i − 2)× (i − 2) minor determinants that are multiplied by the bottom row constant p j

are exactly f1 and f2 up to a sign. What remains sums to (adj M̌ i )i,1 or (adj M̌ i )i,2. So the constant
terms of (adj M̌ i )i,1, (adj M̌ i )i,2, and f2 are pi−1, 0, and p to the power 1+ j3+ · · · ji−1, respectively.
This makes p to the power i + j3+ · · ·+ ji−1 the constant term of f2(adj M̌ i )i,1− f1(adj M̌ i )i,2. �

We remark that by using a large integer instead of x in line 2, the for loop could successively make
pairs of integers coprime rather than polynomials. Then the Euclidean algorithm could test j in line 5;
determinants involving polynomial entries need not be computed. We might expect such an algorithm
to require O(n3 log Mn,1n) operations (this uses that the average ratio with Euler’s phi function, ϕ(n)/n,
is a positive constant), but the provable worst case is bad. The best current asymptotic upper bound on
the size of the interval that must be sieved or otherwise searched to find j is due to Iwaniec [17]. It only
limits the algorithm to O(n7 log Mn,1n) operations. We favored the polynomial approach because of an
easier bound on j (Lemma 4.4) and a better provable worst case (Theorem 4.8).

The next lemma allows the vector in line 10 to pass as b from Section 4A.

Lemma 4.5. With M denoting its value in line 9, gcd((adj M)n,1, (adj M)n,2)= 1.

Proof. By Lemma 4.2, it suffices to prove gcd((adj M)n,1, (adj M)n,2, c)= 1 with c as in line 6. Now let
c′ be c/p j or p+ 1 as in line 7. Recall the constant terms displayed in (4-1), which show that (adj M)n,2
is a power of p modulo c′. This implies gcd((adj M)n,1, (adj M)n,2, c) is a power of p since p - c′. But
the constants added throughout the for loop are multiples of p. So before substituting for x , only the
leading coefficient of (adj M)n,1 might have been nonzero modulo p. With M now the original input
matrix, the leading term is Mn,1 det Mn−2xn−1. By line 1 this is coprime to p whenever the same is true
of the integer substituted for x . �

Lemma 4.6. Let M be the input matrix, let c j be as in line 8, and let A be such that c j adj M + A is
Algorithm 3’s value of M in line 9. Then ‖M A‖op < (2nMn,1)

3n/5n under any `p-norm.

Proof. The operator norm is max‖u‖=1‖M Au‖. Using ‖u‖∞ ≤ 1 gives

‖M Au‖ ≤ n‖M Au‖∞ ≤ n2 max
i, j∈[n]

|(M A)i, j |. (4-2)
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We refer back to (4-1), which displays the entries of A when i = n. Lemma 4.4 says ji ≤ 2i − 2, so
the entries of M A are bounded in magnitude by

max
i, j∈[n]

|Mi, j |max(np+ p2, p+ p2n−2)≤ 2Mn,1 p2n−2
≤ 2M3

n,1 p2n−2. (4-3)

(Recall that n ≥ 2 for this inequality.) Here np+ p2 comes from the first column of A, and p+ p2n−2

comes from the (n−1)-th column.
Now we turn to the size of p. If x ∈ R is such that x#, the product of primes not exceeding x , is larger

than Mn,1|det M |, then it must be that p < x . Rosser and Schoenfeld’s lower bound on Chebyshev’s
theta function, ϑ(x)=

∑
p≤x log p, gives ϑ(x) > 0.231x when x ≥ 2 [28]. For the determinant we use

Hadamard’s bound: |det M | ≤ (Mn,1
√

n)n [15]. So take x = (log M3n
n,1nn)/0.462 (note that x ≥ 2 even

when n = 2 and Mn,1 = 1, allowing for the Rosser–Schoenfeld bound) to get

log x#= ϑ(x) > 0.231x = 1
2 log M3n

n,1nn
≥ log Mn+1

n,1 nn/2
≥ log Mn,1|det M |.

Combining p < x with (4-2) and (4-3) gives ‖M A‖op < 2M3
n,1n2x2n−2. We must show that this is

less than the stated bound of (2nMn,1)
3n/5n. To do this, raise both expressions to the power 1/(n− 1)

and use
( 5

4

)1/(n−1)
≤

5
4 . This simplifies the desired inequality to (log M3

n,1n)2 < 1.366M3
n,1n, which is

true. �

Theorem 4.7. Under the `1, `2, or `∞-norm, the output of Algorithm 3 solves the initial short vector
problem.

Proof. There are two parts to the proof: (1) showing that the algorithm replaces the columns of M with
n+1 vectors that define the same lattice, n of them being nearly scaled orthonormal, and (2) showing that
nearly scaled orthonormal is as good as being scaled orthonormal. Throughout the proof, let M be the
input matrix, let c j be as in line 8, let M ′ be Algorithm 3’s value of M in line 9, and let A=M ′−c j adj M
be the matrix of constants added throughout the for loop (as used in Lemma 4.6 and as shown in (4-1)
when i = n).

For part (1), with b= (b1, b2, 0, . . . , 0) from line 10, Lemma 4.5 gives

x = M ′−1b=
(x1, x2, . . . , 1)

det M ′
. (4-4)

By Cramer’s rule [10], the 1 in the last coordinate is the determinant after replacing the last column
of M ′ by b, so that these n columns generate Zn. This in turn shows that the columns of M M ′ and Mb
generate the input lattice. Also note by Proposition 2.1, that a coordinate of det M ′x being 1 allows for
GDA in place of SAP with N set to n1/p det M ′/2α and α scaled by 1/n1/p.

Instead of finding a short integer combination of Mb and the columns of

M M ′ = c j det M Id+M A, (4-5)

Algorithm 3 uses (M M ′)−1(Mb) = x and the columns of (M M ′)−1(M M ′) = Id. Then M M ′{q0x}
is proposed as a short vector. It is indeed an element of the original lattice since the coordinates
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of M ′{q0x} ≡ q0b mod Zn are all integers. But it must be checked is that M M ′{q0x} is short whenever
{q0x} is. Part (2) of the proof is to make precise the insignificance of the second matrix summand, M A,
in (4-5). We begin by computing how much multiplication by the full matrix in (4-5) is allowed to inflate
the gap without invalidating the output of GDA or SAP.

By Minkowski’s theorem [25], the magnitude of the shortest vector in the original lattice with respect
to the `∞-norm is not more than |det M |1/n. So under an `p-norm with p ∈ N, the shortest vector has
some magnitude, say λ, with (n1/p

|det M |1/n)p
≥ λp

∈ Z. In particular, n|det M |2/n
≥ λ2

∈ Z when
p ∈ {1, 2,∞}. Now, if q ∈ Zn is such that ‖Mq‖2 < (a2λ2

+ 1)/b2, then it must be that ‖Mq‖ ≤ aλ/b
since there are no integers strictly between (aλ/b)2 and (a2λ2

+ 1)/b2. Thus multiplication by M M ′

may harmlessly inflate the gap between the norms of our output vector and shortest vector by anything
less than

√
a2λ2+ 1

bαλ
=

√
a2λ2+ 1

aλ
≥

√
a2n|det M |2/n + 1
a
√

n|det M |1/n
. (4-6)

Scaling does not affect the ratio of vector norms, so to determine the effect of multiplication by (4-5)
it suffices to consider the matrix

Id+M A/c j det M (4-7)

instead. If qmin is a shortest nonzero vector in the simultaneous approximation lattice generated by Zn

and x, a shortest vector after applying (4-7) to this lattice has norm at least (1−‖M A‖op/|c j det M |)‖qmin‖.
Similarly, the vector {q0x} obtained using q0 from line 11 increases in norm by at most a factor of
(1+‖M A‖op/|c j det M |). Combining this with our conclusion regarding (4-6) shows that it suffices to
verify the following inequality holds:

1+‖M A‖op/|c j det M |
1−‖M A‖op/|c j det M |

≤

√
a2n|det M |2/n + 1
a
√

n|det M |1/n
. (4-8)

Now solve for |c j
| to get a lower bound of√

a2n|det M |2/n + 1+ a
√

n|det M |1/n√
a2n|det M |2/n + 1− a

√
n|det M |1/n

·
‖M A‖op

|det M |
<
(5a2n|det M |2/n)‖M A‖op

|det M |
.

Ignoring the powers of |det M | on the right-hand side since 2/n ≤ 1, we see that j in line 8 is chosen
to make the bound above agree exactly with Lemma 4.6. �

Theorem 4.8. Let m = max(a1/n3
,Mn,1). The reduction in Algorithm 3 requires O(n4 log mn) opera-

tions on integers of length O(n4 log mn).

Proof. We will use that finding determinants, adjugates, inverses, or characteristic polynomials of
n × n matrices with entry magnitudes bounded by m requires O(n3) operations on integers of length
O(n log mn). For example, see Danilevsky’s method for the characteristic polynomial [11] and the
Bareiss algorithm for the others [5]. Note that we may then compute determinants of matrices with linear
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polynomial entries in O(n3) operations provided the matrix of linear terms or the matrix of constant terms
is invertible.

In the proof of Lemma 4.6 we showed that the prime p from line 1 is less than (log M3n
n,1nn)/0.462.

So finding it does not contribute to asymptotic complexity.
Now consider the for loop, where we must avoid recomputing the determinant in line 5 for each value

of j in order to meet the prescribed bound on operations.
Let i≥3 and fix some notation: M is its value after line 4, f1=(adj M̌ i−1)i−1,1 and f2=(adj M̌ i−1)i−1,2,

g1 and g2 have degree at most i − 3 and f1g1 + f2g2 = det C( f1, f2) 6= 0, and for some j, h1 =

(adj M̌ i )i,1− p j f1 and h2 = (adj M̌ i )i,2− p j f2. Note for computing (adj M̌ i )i,2 that the constant term
matrix is not invertible (see (4-1)), which may also be true of the linear term matrix. Because this
complicates combining the Bareiss and Danilevsky algorithms, we could find (adj M̌ i )i,2 indirectly by
computing h2 for two values of j that produce an invertible constant term matrix (recall from (4-1) that
f2 has nonzero constant term), and then solving for it.

Call the polynomials in the resulting column vector below h′1 and h′2:[
f2+ p j g1x2i−3

− f1+ p j g2x2i−3

g1 g2

] [
h1

h2

]
=

[
f2(adj M̌ i )i,1− f1(adj M̌ i )i,2− p j det C( f1, f2)x2i−3

g1(adj M̌ i )i,1+ g2(adj M̌ i )i,2− p j det C( f1, f2)

]
. (4-9)

Remark that if j makes h′1 and h′2 avoid a common root, it does so for h1 and h2.
View C(h′1, h′2) as a matrix with linear polynomial entries where p j is the variable. This variable only

appears in the leading term of h′1 and the constant term of h′2. So p j only occurs on the main diagonal
of C(h′1, h′2), where its coefficient is nonzero. In particular, the polynomial det C(h′1, h′2) can be found
in O(n3) operations. Substituting different values of p j into this polynomial until one is nonzero avoids
repeatedly finding determinants. And note that we still need only test up to j = 2i − 2 as stated in
Lemma 4.4 because the determinant of the matrix in (4-9) is a constant (a unit in Q(x)). Thus each for
loop iteration requires O(n3) operations.

The integers composing the linear polynomial matrix entries that begin each for loop iteration are
small powers of p = O(n log Mn,1n) and entries in the adjugate of the input matrix, M. By Hadamard’s
bound they are thus O(n log Mn,1n) in length. Hadamard’s bound also applies to the coefficients of
(adj M̌ i )i,1 and (adj M̌ i )i,2, making their lengths O(n2 log Mn,1n). And it then applies again to make
det C((adj M̌ i )i,1, (adj M̌ i )i,2)) have length O(n3 log Mn,1n). This is our bound on the length of c in line 6
and hence the length of c in line 7. The length of c j in line 8 is then O(max(log a2(2Mn,1n)3n, log|c|))=
O(n3 log mn), with the maximum accommodating the ceiling function. Then a final application of
Hadamard’s bound for lines 9 and 10 makes integer lengths O(n4 log mn). This is therefore a bound
on the number of operations required by the Euclidean algorithm in line 9. �

In [12], Dinur proves the NP-hardness of short vector problems under the `∞-norm when α =
nc/ log log n for some c > 0 by giving a direct reduction from the Boolean satisfiability problem (SAT).
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As a consequence, Theorems 4.7 and 4.8 prove the same for both good Diophantine approximation and
simultaneous approximation problems. (There is no gap inflation for GDA in line 11 under the `∞-norm.)

Corollary 4.9. Good Diophantine approximation and simultaneous approximation problems are NP-
hard under the `∞-norm with α = nc/ log log n for some c > 0. �

This result is known for good Diophantine approximation [9], though the reduction SAT→ SVP→ GDA

completed here is simpler. Chen and Meng adapt the work of Dinur as well as Rössner and Seifert [30] to
reduce SAT to finding short integer vectors that solve a homogeneous system of linear equations (HLS) via
an algorithm from [3], which changes the problem to finding pseudo-labels for a regular bipartite graph
(PSL). The number of equations in the HLS system is then decreased to one (now called SIR), wherefrom
a reduction to GDA is known [29]. Each link, SAT→ PSL→ HLS→ SIR→ GDA, is gap-preserving
under the `∞-norm.

Short vector problems are only known to be NP-hard under the `∞-norm. But there are other hardness
results under a general `p-norm for which Theorems 4.7 and 4.8 can be considered complementary. See
[19] for an exposition.

Another corollary is the reduction from a simultaneous approximation problem to GDA, giving the
final row of Table 1. By Proposition 3.2, Algorithm 2 results in one call to SVP with integers of length
O(n log m), where we can take m to be the maximum magnitude among a1/n4

(still α = a/b) and
the integers defining x. Then Theorem 4.8 implies the reduction to GDA requires O(n4 log mnn) =
O(n5 log m) (absorbing the operations required by Algorithm 2) on integers of length O(n5 log m).

4C. Further discussion. The last algorithm was restricted to an `p-norm for p ∈ {1, 2,∞}. So we will
discuss what happens with a more general approach.

Multiplication by M M ′, shown in (4-7), may change the gap between the length of the shortest vector in
the simultaneous approximation lattice and that of the vector output by GDA or SAP. That this potential
inflation does not invalidate our output relies on the set of vector norms being discrete and α being
rational — facts that were exploited to produce the expression in (4-6). The idea behind the paragraph
preceding (4-6) is to find a nonempty interval (αλ, α′λ), where λ = min×q∈Zn‖Mq‖, that contains no
norms from the lattice defined by M (or even Zn for the interval tacitly given in the proof). This creates
admissible inflation, α′/α, which equals (4-6).

The purpose of restricting to `1, `2, or `∞ is to facilitate finding this interval. Knowing that (bαλ)2 ∈Z

for some b ∈ Z simplifies the search for α′. The same is true for any `p-norm with p ∈ N. But the
immediate analogs of (4-6), (4-7), and (4-8) lead to a replacement for the very last bound used in the
proof of the form

(5pa pn|det M |p/n)‖M A‖op

2|det M |
.

This makes the number of operations needed to execute line 9 depend exponentially on the input length
log p (though it is still polynomial for any fixed p). We have not taken into account, however, the
possibility of a nontrivial lower bound for the difference between large consecutive integers which are
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sums of n perfect p-th powers. Such a bound would allow for a longer interval, (αλ, α′λ), that provably
contains no lattice norms.

These arguments are all in effort to perfectly preserve the gap when reducing to SAP or, when p =∞,
GDA. The situation clarifies if a small amount of inflation is allowed. To solve a short vector problem
with gap α using SAP with gap α′ < α, inequality (4-8) becomes

1+‖M A‖op/|c j det M |
1−‖M A‖op/|c j det M |

≤
α

α′
.

We still need to substitute a power of c for x in line 8 for the purpose of Lemma 4.5. Given these two
constraints, it is sufficient to take M← M(c j ) for

j =
⌈

log|c|
(α+α′)‖M A‖op

(α−α′)|det M |

⌉
,

which can be made more explicit with Lemma 4.6. There is no need to insist that α is rational or impose
a restriction on p ∈ [1,∞] defining the norm.

As a final note, the reduction to SAP again adapts to inhomogeneous forms of these problems while the
reduction to GDA does not. If y ∈Qn, then the algorithm (which now reduces the closest vector problem)
can end by solving the simultaneous approximation problem of finding q0∈Z with ‖{q0x−(M M ′)−1 y}‖≤
αmin×q∈Z‖{qx − (M M ′)−1 y}‖, using the matrix from (4-7). But unless we know that the last coor-
dinate (where the 1 is located in (4-4)) of (M M ′)−1 y is an integer, there is no clear modification to
Proposition 2.1 that permits the use of GDA.
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Computation of paramodular forms

Gustavo Rama and Gonzalo Tornaría

We develop an algorithm to compute paramodular forms of weight 3 as orthogonal modular forms at-
tached to positive definite quinary quadratic forms. For square-free levels we expect that every paramod-
ular form of weight 3 arises in this way.

Introduction

There are many efficient algorithms to compute classical (elliptic) modular forms (the Eichler–Selberg
trace formula [Wad71], the method of modular symbols [Cre97], quaternion algebras and Brandt matrices
[Piz80; Koh01], ternary quadratic forms [Bir91; Tor05; Ram14; HTV20], etc.) These have been used to
compute extensive tables of modular forms [BK75; Cre97; Ste12; Cre19; LMF20].

Paramodular forms are Siegel modular forms for the paramodular group K (N ) (see [PY15]). They
have gained attention in recent years due to the paramodular conjecture of Brumer and Kramer [BK14;
BK19] which relates them to abelian surfaces (see [BPP+19; BK17; BCGP18; CCG19] for recent
progress on this conjecture). Poor and Yuen computed in [PY15] paramodular forms of weight 2 for K (p)
for primes p < 600, and for square-free levels in [PSY17]. These methods compute Fourier coefficients
of paramodular forms; from those one can recover the Hecke eigenvalues, although a large number of
Fourier coefficients are needed. It is possible to compute Hecke eigenvalues without computing Fourier
coefficients by the method of specialization as done in [BPP+19] but this is still expensive.

In this paper we develop an alternative algorithm to compute (Hecke eigenvalues of) paramodular
forms of weight 3 using positive definite quinary quadratic forms. This is a generalization of a method
of Birch to compute classical modular forms using ternary quadratic forms [Bir91; Hei16; HTV20].
Our method is based on a conjecture of Ibukiyama [Ibu07] which generalizes Eichler correspondence to
paramodular forms. In principle it should be possible to extend this method for arbitrary weights ≥ 3.

For prime levels, Ladd shows in his thesis [Lad18] that Ibukiyama conjecture implies that every orthog-
onal modular form corresponds to a paramodular form, in the sense that computing orthogonal modular
forms of level O(3) for a well chosen lattice 3 recovers the Hecke eigenvalues of paramodular forms.
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However, not every paramodular form of prime level comes from an orthogonal modular form with
trivial representation, as we show in Example 13. In fact only the forms with sign +1 in the functional
equation seem to arise in this way. We overcome this limitation in Section 3 by using orthogonal modular
forms with a nontrivial character for the spinor norm (this idea has been proposed for ternary quadratic
forms in [Tor05; Ram14], and completed in [HTV20]). Based on the dimension formulas of Ibukiyama
[Ibu07] and on our computations of spaces of orthogonal modular forms we are led to conjecture that
every paramodular form of prime level corresponds to some orthogonal modular form (see Theorem 14
and Conjecture 15). We expect the same holds for composite square-free levels although we do not have
as much evidence for composite levels as we do for prime levels.

An interesting feature of the space M(O(3̂)) of orthogonal modular forms with trivial character is
the existence of a map 2 from M(O(3̂)) to the space of elliptic modular forms of weight 5

2 . Because of
properties of this map with respect to Hecke operators, when f is an eigenform in the cuspidal subspace
S(O(3̂)) with 2( f ) 6= 0, the Shimura lift of 2( f ) is a modular form of weight 4 whose Gritsenko lift
corresponds to f , as in the following diagram:

S(O(3̂))
OO

Ibukiyama
��

2
// S5/2(4N )

Shimura
��

S3(K (N )) S4(N )Gritsenko
oo

For prime level Hein, Ladd and Tornaría conjectured that, conversely, if 2( f )= 0 then f corresponds
to a paramodular form which is not a Gritsenko lift (see [Hei16, Conjecture 3.5.6]). The analogue of
this conjecture for composite levels fails as shown in Example 10, due to the occurrence of eigenforms
of Yoshida type. We propose Conjecture 12 as an alternative.

With respect to computations, Hein [Hei16] computed, in the case of trivial representation, the orthog-
onal modular forms with rational eigenvalues for quinary lattices of prime discriminant with p < 200,
which (conjecturally) correspond to paramodular forms with +1 in the functional equation. This was
extended by Ladd [Lad18] for p < 400. Using our proposed algorithm we computed the orthogonal
modular forms, with the different characters of the spinor norm, for quinary lattices of square-free
discriminant D < 1000. We expect to have a complete list of all paramodular forms for those levels.
This computations can be found in [RT20].

This article is organized as follows. In Section 1 we recall the basic notions of neighbor lattices and
orthogonal modular forms over Q. In Section 2 we consider quinary orthogonal modular forms over
Q and define the L-functions associated to a Hecke-eigenform in M(O(3̂)). We also generalize the
conjecture of Hein, Ladd and Tornaría to square-free levels.

In Section 3 we introduce a family of nontrivial representations for O(5) using characters of the spinor
norm. We conjecture that with this representation we can obtain all paramodular form of prime level. In
Section 4 we study the orthogonal modular forms of discriminant 5 ·61, classify all the irreducible Hecke-
submodules and conjecture that S3(K (5 · 61)) is spanned by orthogonal modular forms. In Section 5 we
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consider the standard representation and compare the dimensions of spaces of orthogonal modular forms
with this representation and the dimension of spaces of paramodular forms of weight 4.

In Section 6 we match some hypergeometric motives with spaces of orthogonal modular forms with
not square-free discriminant. In Section 7 we mention the algorithms used to carry out our computations.
Finally, in Section 8 we include tables of orthogonal modular forms for prime levels p, with p < 500.

1. Neighbor lattices and orthogonal modular forms

In this section we follow the article of Greenberg and Voight [GV14] and the Ph.D. thesis of Hein [Hei16].

1.1. Neighbor lattices. We fix (V, Q), a positive definite Q-quadratic space.

Definition. Let 3⊂ V be a Z-lattice, and k ≥ 1 an integer. We say that the Z-lattice 5 is a pk-neighbor
of 3 if 3q =5q for all primes q 6= p and there exist Z-module isomorphisms

3/(3∩5)∼=5/(3∩5)∼= (Z/pZ)k .

Remark 1. For k = 1 the previous definition agrees with the classical definition of p-neighbors; see for
example [Bir91].

Lemma 2. Let 3,5 ⊂ V be two Z-lattices both locally unimodular at a prime p. Then, 3 and 5 are
pk-neighbors if and only if 3q =5q for all primes q 6= p and there exists a basis of Vp

e1, . . . , ek, g1, . . . , gn−2k, f1, . . . , fk,

such that

(1) 〈ei , e j 〉 = 〈 fi , f j 〉 = 0,

(2) 〈ei , f j 〉 = δi j ,

(3) 〈ei , g j 〉 = 〈 fi , g j 〉 = 0,

(4) e1, . . . , ek, g1, . . . , gn−2k, f1, . . . , fk is a Zp-basis of 3p, and

(5) pe1, . . . , pek, g1, . . . , gn−2k, p−1 f1, . . . , p−1 fk is a Zp-basis of 5p.

If 3 is unimodular at p, we say that a basis that satisfies conditions (1)–(4) of the previous lemma is
a pk-standard basis for 3p. Consider a hyperbolic lattice Hp = Zpe⊕Zp f with 〈e, e〉 = 〈 f, f 〉 = 0, and
〈e, f 〉 = 1. With respect to this basis, we consider ω =

( p
0

0
p−1

)
∈ O(Hp⊗Qp). We extend ω to

ω⊕k
= ω⊕ · · ·⊕ω︸ ︷︷ ︸

k

∈ O(Vp),

where the i-th entry in the direct sum acts upon the hyperbolic component {ei , fi } given by a pk-standard
basis of 3p. We have that 5 is a pk-neighbor of 3 if and only if there exists σ̂ in O(3̂) such that
5̂= σ̂ ω̂⊕k3̂. Also we have the following double coset decomposition

O(3̂)ω̂⊕k O(3̂)=
⊔
m

p̂m O(3̂), (3)

where each p̂m corresponds to a pk-neighbor of 3.
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Lemma 4. Lattices (locally unimodular at p) in the same genus have the same number of pk-neighbors.

The lemma allows us to define the integers N (3; p, k) = #Neighbors(3; p, k), which are genus
invariants. By [Hei16, Equation 5.3.8] we have N (3; p, k) = O(pk(n−k−1)). When n = 5 we have a
more precise formula, N (3; p, k)= pk−1(p3

+ p2
+ p+ 1) for k = 1, 2 and 3 unimodular at p. When

3 is not unimodular at p, and p ‖ disc(3), then N (3; p, 1)= (p3
+ p2
+ p)± p2.

1.2. Orthogonal modular forms. Let3⊂ V be a Z-lattice with disc(3)= D, let W a finite-dimensional
Q-vector space, and let ρ : O(V )→ GL(W ) a finite-dimensional representation. We define the space of
orthogonal modular forms with level O(3̂) and weight W to be the finite dimensional Q-vector space

M(O(3̂),W )= { f : O(V̂ )→W | f (σ ĝk̂)= ρ(σ) f (ĝ) for all σ ∈ O(V ), ĝ ∈ O(V̂ ), k̂ ∈ O(3̂) }.

The class set of 3 is in bijection with O(V )\O(V̂ )/O(3̂) and we have the double coset decomposition

O(V̂ )=
h⊔

i=1

O(V )x̂i O(3̂),

where h is the class number of 3, so the values of a modular form f ∈M(O(3̂),W ) are determined by
the values f (x̂i ), for i = 1, . . . , h, and the representation ρ. We also have the following isomorphism

M(O(3̂),W ) ∼−→

h⊕
i=1

W O(3i )

f 7−→ ( f (x̂1), f (x̂2), . . . , f (x̂h))

where 3i = x̂i3̂∩ V , for i = 1, 2, . . . , h, are representatives of the class set of 3.
If p is a prime such that 3 is unimodular at p, and k ≥ 1, we define the pk-Hecke operator on

M(O(3̂),W ) given by

(Tp,k f )(ĝ)=
∑

m

f (ĝ p̂m),

where the p̂m are given by the coset decomposition in (3). The Hecke operators Tp,k and Tq,k′ commute
for all p 6= q primes.

We can define an inner product in M(O(3̂),W ) by

〈〈 f, g〉〉 =
h∑

i=1

f (x̂i )g(x̂i )

# O(3i )
,

note that # O(3i ) is finite because V is positive definite. The Hecke operators Tp,k on M(O(3̂),W ) are
self-adjoint with respect to 〈〈− ,−〉〉.

We define the Eisenstein subspace, denoted by E(O(3̂),W )⊂M(O(3̂),W ), to be the subspace of
constant functions of M(O(3̂),W ). The cuspidal subspace, denoted by S(O(3̂),W )⊂M(O(3̂),W ),
is the subspace orthogonal to E(O(3̂),W ). The following lemma is clear.
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Lemma 5. If ρ : O(V ) → GL(W ) is a nontrivial irreducible representation, then M(O(3̂),W ) =

S(O(3̂),W ).

We denote by M(O(3̂)) the space of orthogonal modular forms when W = Q and ρ the trivial
representation, and the cuspidal subspace by S(O(3̂)). Let f1, . . . , fh be the indicator basis of M(O(3̂)),
so that f j (x̂i )= δi j . We have

(Tp,k f j )(x̂i )=
∑

m

f j (x̂i p̂m)=
∑

m

f j (x̂m∗)=
∑

m

δ jm∗,

where x̂i p̂m3̂= σ x̂m∗3̂ for some σ ∈ O(V ) and some m∗. Let Ni j (3; p, k)= (Tp,k f j )(x̂i ), the number
of pk-neighbors of 3i which are isomorphic to 3 j . Then, we can compute Tp,k in the basis f1, . . . , fh

by the formula

Tp,k f j =

h∑
i=1

Ni j (3; p, k) fi .

By Lemma 4 we have

N (3; p, k)=
h∑

j=1

Ni j (3; p, k),

for all i = 1, . . . , h, and f1+ · · ·+ fh is an eigenvector of M(O(3̂)) with eigenvalue N (3; p, k). Also,
f1+ · · ·+ fh is a generator of E(O(3̂)), and we conclude that dimM(O(3̂))= dimS(O(3̂))+ 1.

We want to define Tp,1 for M(O(3̂)) when p ‖ D. Since 3 is not unimodular at p, we cannot use
Lemma 2, so we define it in the indicator basis

Tp,1 f j = f j +

h∑
i=1

Ni j (3; p, 1) fi .

This operator is well defined because Ni j (3; p, 1) is well defined in all cases; see [Tor05, Theorem 3.5].
Sometimes it will be convenient to use the dual basis of M(O(3̂)), such that e j = (1/# O(3i )) f j . We

define the theta series map as the linear map

2 :M(O(3̂))→ M5/2(4D),

given in the dual basis by
2(ei )=2(3i )=

∑
v∈3i

q Q(v).

2. Orthogonal modular forms for O(5)

We consider now positive definite Q-quadratic spaces (V, Q) with dim V = 5. In 2014 Hein, Ladd,
and Tornaría conjectured that, if f ∈M(O(3̂)) is a Hecke-eigenform, with disc(3)= p a prime, and
2( f )= 0, then the L-function associated to f is attached to a paramodular form of weight 3 which is
not a Gritsenko lift. This can be found in [Hei16, Conjecture 3.5.6]. Also, Hein [Hei16] computed the
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good Euler factors for primes less than 100 for all the forms with rational eigenvalues for prime levels
up to 200, and Ladd [Lad18] computed the good Euler factors for odd primes up to 31 for all the forms
with rational eigenvalues for prime levels up to 400.

As dim V = 5 we only have pk-neighbors for k = 1, 2. Given f ∈M(O(3̂)) a Hecke-eigenform and
p prime, let λp,1 and λp,2 be the eigenvalues of Tp,1 and Tp,2 for f . We define its (spin) L-function by
the Euler product

L( f, s) :=
∏

p prime

L p( f, p−s)−1,

where the local Euler factors are given by

L p( f, X) := 1− λp,1 X + (λp,2+ 1+ p2)pX2
− λp,1 p3 X3

+ p6 X4, if p -D. (6)

This is obtained by considering the Satake polynomial on SO(5), found in Murphy [Mur13, page 76],
with a suitable change of variable. And

L p( f, X) := (1+ εp pX)(1− (λp,1+ εp p)X + p3 X2), if p ‖ D, (7)

where the local root number εp = c(Vp). Here c(Vp) is the Witt invariant of V at p as defined by Lam
in [Lam05, page 117]. Note that for dim V = 5 it coincides for all odd p with the Hasse invariant as
defined in Cassels [Cas78, Chapter 4], but is the opposite for p = 2 (see [Lam05, Proposition 3.20]).
The last polynomial is similar to the one found in [Ibu07, Theorem 4.1]. We define it this way, along
Tp,1 for p ‖ D so that the analogue formula for L p in the next section, in which we use a nontrivial one
dimensional representation, is symmetrical to this one.

When D is square-free it is conjectured that the L-functions satisfy the functional equation

L̃( f, s)= L̃( f, 4− s),

where

L̃( f, s)=
(

D
π2

)s/2

0

(
s− 1

2

)
0

(
s
2

)2

0

(
s+ 1

2

)
L( f, s). (8)

Example 9 (D=61). Let the quadratic space V =Q5, and Q= x2
+xy−xt+y2

−yt+z2
+2w2

−wt+3t2

a quadratic form of discriminant 61, and let 3= Z5. This is the first example of prime discriminant in
O(5) for which the theta series map on the genus has a nontrivial kernel, of dimension 1. As noted in
[Hei16], there exists a Hecke-eigenform f ∈M(O(3̂)) such that 2( f ) = 0. Also the L factors of f
for 2, 3, 5 match those of the nonlift paramodular form of level 61 as computed by Ash, Gunnels and
McConnell in [AGM08, Section 4] (see also Poor and Yuen [PY15, Section 8]).

By the formulas of Ibukiyama [Ibu07] we have

dim S3(K (61))= dimS(O(3̂))= dim S−4 (61)+ dim ker2.

Therefore we expect the correspondence from S(O(3̂)) to S3(K (61)) is a bijection.
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Example 10 (D = 55). We consider the quadratic space V =Q5, Q = x2
+ xy+ y2

+ z2
+ 2t2

+ yw+
zw+ tw+ 3w2, and 3=31 = Z5. The Hasse invariant of the genus at 5 is +1, and at 11 is −1. There
are 3 other Z-lattices in the genus of 3, namely 32,33,34. The quadratic forms associated to the bases
of 3i , for i = 2, 3, 4, are

Q2 = x2
+ xy+ y2

+ xz+ z2
+ 3t2

+ zw+ 2tw+ 3w2,

Q3 = x2
+ xy+ y2

+ xz+ z2
+ yt + 3t2

+ zw+ 3w2,

Q4 = x2
+ y2
+ 2z2

+ yt + 2zt + 2t2
+ xw+ yw+ zw+ tw+ 2w2.

Let f = 2e1− 2e2+ e3− e4 ∈M(O(3̂)), which is a Hecke-eigenform, where {e1, e2, e3, e4} is the
dual basis of M(O(3̂)). It is easy to see that 2( f )= 22(31)− 22(32)+2(33)−2(34)= 0. This
is because the Sturm bound for the space M5/2(4 · 55) is 90 (note that the Sturm bound of half-integral
weight is the same as the integral case; see for example [GK13, Lemma 3.1]), and the first 90 coefficients
of 2( f ) are 0.

By [IK17] we know that dim S3(K (55)) = 3. On the other hand the space of classical cusp forms
of weight 4, level 55 and sign −1 has dimension 3, this can be found in [LMF20]. There are two such
forms, one of dimension 1, and one of dimension 2. We conclude that the space S3(K (55)) is spanned by
Gritsenko lifts. We verified that f is not a Gritsenko lift by looking at its eigenvalues, and we conclude
that the conjecture mentioned is no longer valid when D is not prime.

We computed the eigenvalues of Tp,1 of f for p < 300, also the eigenvalues of Tp,2 for p < 50, and
we conclude.

Theorem 11. For p < 50, p 6= 5, 11

L p( f, X)= (1− pap X + p3 X2)(1− bp X + p3 X2),

where ap is the p-th Fourier coefficient of the Hecke-eigenform of weight 2 and level 11, g11, and bp is
the p-th Fourier coefficient of the Hecke-eigenform of weight 4 and level 5, g5.

Also, for p < 300

L p( f, X)= 1− (pap + bp)X + O(X2).

The above theorem leads us to conjecture that L( f, s) = L(g11, s − 1)L(g5, s), so that f should
correspond to some Siegel modular form of Yoshida type. By the previous reasoning f cannot correspond
to a form in S3(K (55)).

Conjecture 12. Let f ∈M(O(3̂)) be a Hecke-eigenform, with D square-free and 2( f ) = 0. Then f
corresponds either to a paramodular form of weight 3 which is not a Gritsenko lift or to a modular form
of Yoshida type as in the example above.

Example 13. (D = 167) Let V =Q5 and

Q167 = x2
+ xy+ y2

+ z2
+ xt + zt + t2

+ tw+ 34w2,
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a quinary quadratic form with discriminant 167. The genus of 3= Z5 has 19 isometry classes, so we
have that dimS(O(3̂)) = 18. On the other hand we have dim S3(K (167)) = 19, and we see that the
correspondence from S(O(3̂)) into S3(K (167)) is not surjective. According to [GPY19, Table 1] this is
the first known case of a paramodular newform of weight 3 with sign −1 in the functional equation. See
also [AGM10, Table 4].

3. The missing forms

As seen in the previous example, for a prime p, not all forms in S3(K (p)) correspond to forms in
S(O(3̂)), with disc(3) = p. Moreover, the forms in S(O(3̂)) have sign +1 in their associated L-
function. To find the remaining paramodular forms we introduce a representation using the spinor norm.
With this representation, we can obtain orthogonal modular forms with sign −1 in their associated L-
function. See [HTV20] for a more detailed presentation of this idea in the case of ternary quadratic
forms.

If d | D, we define the character νd :Q
×

>0/Q
×2
>0→ {±1}, defined in primes by

νd(p)=
{
−1 if p | d,

1 otherwise.

We define the representation ρd : O(V )→ {±1} ⊂Q× ∼= GL(Q) by

ρd(σ )= νd(θ(±σ)) if σ ∈ O±(V ),

where θ : O+(V )→Q×/(Q×)2 is the spinor norm. We denote the space of orthogonal modular forms
for this representation Md(O(3̂)), and the cuspidal subspace by Sd(O(3̂)). In this case

Md(O(3̂))∼=
h⊕

i=1

QO(3i ),

where QO(3i ) =Q if and only if νd(σ )= 1 for all σ ∈ O+(3i ).
Let {t1 < · · ·< thd } = {t :Q

O(3t ) =Q}, and ft j ∈Md(O(3̂)) such that ft j (x̂i )= δt j i , so { ft1, . . . , fthd
}

is a basis of Md(O(3̂)).
If p is a prime such that 3 is unimodular at p, and k ≥ 1, by definition of the Hecke operator we have

(Tp,k ft j )(x̂i )=
∑

m

ft j (x̂i p̂m)=
∑

m

ρd(σ ) ft j (x̂m∗)=
∑

m

ρd(σ )δt j m∗,

where x̂i p̂m3̂= σ x̂m∗3̂. Henceforth, to compute (Tp,k ft j )(x̂i ), we sum ρd(σ ) over σ ∈ O(V ) such that
σ5m =3t j , where the 5m are the pk-neighbors of 3i , and we define that sum as N d

i t j
(3; p, k). We get

the formula

Tp,k ft j =

hd∑
i=1

N d
ti t j
(3; p, k) fti .
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We define Tp,1 for Md(O(3̂)) when p ‖ D by

Tp,1 ft j = νd(p)
(

ft j +

hd∑
s=1

N d
ti t j
(3; p, 1) fti

)
.

Given a Hecke-eigenform f ∈ Sd(O(3̂)) we want to define its (spin) L-function. As before, we define
it by the Euler product

L( f, s)=
∏

p

L p( f, p−s)−1

where L p is defined with the same equation as (6), if p -D. When p ‖ D we use (7), where the local
root number is εp = νd(p) c(Vp). When D is square-free we conjecture that the L-function satisfy the
functional equation

L̃( f, s)= νd(D) L̃( f, 4− s),

where L̃ is defined as (8).

Example 13 (D = 167, continued). For d = p we have dimS167(O(3̂))= 1, and

dim S3(K (167))= dimS(O(3̂))+ dimS167(O(3̂)).

Let f ∈ S167(O(3̂)), f 6= 0. It is a Hecke-eigenform because the dimension of the space is 1. In Table 1
we show the Hecke-eigenvalues of Tp,1 for f with p < 500. And in Table 2 the Hecke-eigenvalues of
Tp,2 for f with p < 50. With the previous data we constructed an L-function in PARI/GP [PAR18] using
the routine lfuncreate providing the first 502 Dirichlet coefficients, and verified by the lfuncheckfeq
routine, returning a verification accuracy of 90 bits of precision.

3.1. A conjecture for prime level. Let p prime, and 3p be a lattice in the unique genus of quinary
quadratic forms of discriminant p. We verified computationally the following theorem.

Theorem 14. For p < 7000

dim S3(K (p))= dimS(O(3̂p))+ dimSp(O(3̂p)).

Which leads us to the following conjecture.

Conjecture 15. For prime p there is a Hecke-equivariant isomorphism

S3(K (p))∼= S(O(3̂p))⊕Sp(O(3̂p)).

Also, S(O(3̂p)) correspond to the forms of S3(K (p)) such that their associated L-function has sign +1
in its functional equation, and Sp(O(3̂p)) correspond to the forms such that their associated L-function
has sign −1 in its functional equation.
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p λp,1 p λp,1 p λp,1 p λp,1 p λp,1

2 −8 71 −481 167 −2707 271 2954 389 5316
3 −10 73 −744 173 −182 277 −8334 397 4324
5 −4 79 927 179 2568 281 −2942 401 −4679
7 −14 83 −632 181 −2804 283 6360 409 −3476

11 −22 89 −297 191 −3035 293 −856 419 −910
13 −4 97 2 193 583 307 3548 421 3552
17 −47 101 −992 197 2276 311 −6322 431 −4878
19 −12 103 −1222 199 6754 313 −9443 433 15213
23 41 107 1436 211 360 317 108 439 −6909
29 50 109 −954 223 3569 331 1596 443 −7130
31 −504 113 19 227 −3346 337 −2129 449 12908
37 −102 127 516 229 2220 347 1856 457 −4005
41 174 131 −258 233 −2780 349 480 461 −7334
43 30 137 1080 239 −3878 353 1704 463 −77
47 42 139 1030 241 −819 359 4601 467 12248
53 156 149 −974 251 6112 367 6298 479 6447
59 −252 151 −1119 257 −5343 373 −4998 487 −14197
61 472 157 1152 263 −808 379 7706 491 1960
67 106 163 108 269 3592 383 −18293 499 3288

Table 1. Hecke-eigenvalues of Tp,1 for f ∈ S167(O(3̂)), p < 500.

4. Composite levels

When D is composite, as already seen in Example 10, the space of orthogonal modular forms includes
Yoshida lifts, which do not correspond to paramodular forms.

In this section we investigate orthogonal modular forms for D = 305= 5 · 61. We have two genera
of quintic positive definite quadratic forms, namely, let 31 and 32 be lattices of dimension 5 such that
disc(3i )= 5 · 61 and

ε5(31)=−1

ε61(31)=+1
,

ε5(32)=+1

ε61(32)=−1
.

We computed Sd(O(3̂i )), for d ∈ {1, 5, 61, 5 · 61}, i = 1, 2, as well as Tp,1 and Tp,2 for p prime
p < 20, with the convention that

S1(O(3̂i )) := S(O(3̂i )).

p λp,2 p λp,2 p λp,2 p λp,2 p λp,2

2 10 7 −9 17 260 29 −187 41 800
3 11 11 −67 19 41 31 2744 43 442
5 −44 13 −158 23 −198 37 −730 47 −5052

Table 2. Hecke-eigenvalues of Tp,2 for f ∈ S167(O(3̂)), p < 50.
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A-L Traces

ε5 ε61 Dim ⊂ ker2 λ2,1 λ3,1 λ5,1 λ7,1 λ11,1

A1 − + 8 Yes 1 −21 12 −28 −10
S1(O(3̂1)) A2 − + 9 No 57 119 69 505 1338

A3 − + 13 No 73 129 455 647 1660

S61(O(3̂1)) B1 − − 1 −4 −12 −4 9 −13

C1 + − 1 −2 2 −2 −19 21

S5·61(O(3̂1))
C2 + − 1 2 −6 10 −3 29
C3 + − 8 3 −27 −6 −58 −54
C4 + − 13 81 157 325 669 1652

D1 + − 1 No 2 14 25 62 164
D2 + − 1 Yes −7 −3 28 −9 −4
D3 + − 1 Yes −2 2 −2 −19 21

S1(O(3̂2))
D4 + − 1 Yes 2 −6 10 −3 29
D5 + − 3 Yes −10 12 −20 −3 239
D6 + − 6 No 29 59 314 309 612
D7 + − 8 Yes 3 −27 −6 −58 −54
D8 + − 13 No 81 157 325 669 1652

S5(O(3̂2))
E1 − − 1 −7 −3 −22 −9 −4
E2 − − 1 −4 −12 −4 9 −13

S61(O(3̂2)) F1 + + 1 −6 −4 −20 13 −23

S5·61(O(3̂2))
G1 − + 8 1 −21 12 −28 −10
G2 − + 13 73 129 455 647 1660

Table 3. Decomposition of Sd (O(3̂i )), with disc(3i )= 5 · 61.

The decomposition of these spaces is shown in Table 3. We show the dimensions of the subspaces, the
local root numbers, for d = 1 whether they are in the kernel of the theta map, and the traces of the
eigenvalues λp,1 for p ≤ 11.

The subspaces A2 and D1 correspond to the classical modular forms of weight 4 and sign + of levels
61 and 5 respectively ( 61.4.a.b and 5.4.a.a in [LMF20]). By this we mean that λp,1 = ap+ p+ p2

where ap is the eigenvalue of the classical modular form, just as for Gritsenko lifts, but since the sign is
+ they do not lift to S3(K (D)).

The subspaces D5 and F1 are of Yoshida type as in Example 10 (D5 corresponds to the pair 61.2.a.b
and 5.4.a.a , and F1 corresponds to the pair 61.2.a.a and 5.4.a.a ). By [Sch18] they also do not
lift to S3(K (D)).

The subspaces A3, C4, D6, D8 and G2 correspond to classical modular forms of weight 4 and sign −
of level 61 (for D6) and 305 (for the other four), so they appear as Gritsenko lifts in S3(K (D)). Also A3

and G2, C4 and D8 lift from the same space.

http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/61.4.a.b
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/5.4.a.a
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/61.2.a.b
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/5.4.a.a
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/61.2.a.a
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/5.4.a.a


364 GUSTAVO RAMA AND GONZALO TORNARÍA

The subspaces D2 and E1 come from the nonlift orthogonal modular form in S(O(3̂61)) (see Example 9).
The subspace D2 has sign −, and E1 has sign +, and the eigenvalues λ5,1 are different, and they have
the same eigenvalues otherwise. The subspaces A1, B1, C1, C2, C3, D3, D4, D7, E2 and G1 are nonlifts.
Also, we conjecture that A1 and G1, B1 and E2, C1 and D3, C2 and D4, and C3 and D7 are isomorphic
as Hecke-modules.

By the formulas found in [IK17] dim S3(5 · 61) = 53. By counting dimensions and the previous
descriptions, we conjecture

S3(K (5 · 61))∼= A1⊕ B1⊕C1⊕C2⊕C3⊕ D2⊕ E1⊕ A3⊕C4⊕ D6

We expect that, for square-free D, the space S3(K (D)) is always spanned, as Hecke module, by
orthogonal modular forms corresponding to quinary lattices of discriminant D as in this example, which
would give a nice algorithm to compute (the eigenvalues of) all paramodular forms of square-free level.

5. Paramodular forms of higher dimension

Prompted by a question of Eran Assaf we consider the proper standard representation of O(5)

std+ : O(V )→ GL(V )

σ 7→ det(σ )σ

If disc(V )= p, for a prime p, we also consider the representation std+p := std+⊗ρp. We computed the
dimensions of S(O(3̂p), std+p ) and S(O(3̂p), std+), for primes p < 100, as seen in Table 4. We can see
that

dim S4(K (p))= S(O(3̂p), std+p )+S(O(3̂p), std+).

As before we have the Gritenko lift from S−6 (p) to S4(K (p)). We note that the first prime such that
the difference of the dimensions of the mentioned spaces is 1 is p = 31. We conjecture that there is an
eigenform in S(O(3̂31), std+31) corresponding to a nonlift paramodular form in S4(K (31)), with sign +
in the functional equation of its spin L-function.

We also note that the first p where dimS(O(3̂p), std+) > 0 is 83. We conjecture that the eigenform in
S(O(3̂83), std+) correspond to a nonlift paramodular form in S4(K (83)), with sign − in the functional
equation of its spin L-function.

In future work we plan to compute the decomposition of these spaces for weights higher than 4.

6. Hypergeometric motives

Hypergeometric motives with Hodge vector (1, 1, 1, 1) are geometric objects which are (conjecturally)
expected to correspond to Siegel modular forms of weight 3. For an introduction to hypergeometric
motives see [Rob15]. David Roberts (personal communication, 2018) has computed a list of some such
hypergeometric motives with conductors at most 400. David Yuen and Chris Poor have found matching
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p 2 3 5 7 11 13 17 19 23 29 31 37

dim(S(3̂p), std+p ) 0 0 0 1 1 2 2 3 3 3 6 8
dim(S(3̂p), std+) 0 0 0 0 0 0 0 0 0 0 0 0

dim S4(K (p)) 0 0 0 1 1 2 2 3 3 3 6 8
dim S−6 (p) 0 0 0 1 1 2 2 3 3 3 5 7

p 43 47 53 59 61 67 71 73 79 83 89 97

dim(S(3̂p), std+p ) 9 8 10 11 16 17 15 21 22 18 23 32
dim(S(3̂p), std+) 0 0 0 0 0 0 0 0 0 1 0 0

dim S4(K (p)) 9 8 10 11 16 17 15 21 22 19 23 32
dim S−6 (p) 8 7 9 9 11 13 11 14 14 14 15 19

Table 4. Dimensions of spaces of orthogonal modular forms for std+p and std+, paramodular forms
S4(K (p)) and modular forms S−6 (p) for p < 100

Siegel modular forms for four cases with square-free conductor: 182, 205, 255, and 257. Also, Ladd
[Lad18, page 24] found an orthogonal modular form such that the odd Euler factors of its L-function
coincides with the Euler factors of the L-series of the hypergeometric motive of conductor 257.

The remaining four cases provided by Roberts have not square-free conductors 128, 378, 384 and 256.
For the first three we have found Hecke-eigenvectors f in S(O(3̂)), such that the first 50 coefficients
of the L-function of f coincide with the coefficients of the L-function of H . The coefficients of the
L-function of H were computed using MAGMA [BCP97] as in [Rob15]. For the local Euler factors
with p2

| disc(Q) we used the one given by the L-function of the hypergeometric motive.

(1) For the hypergeometric motive H of conductor 128, with data A = [2, 2, 8], B = [1, 1, 4, 4], t = 1,
and L2(x)= 1+ 2x + 8x2. The quadratic space is Q5 with

Q = x2
+ xy+ y2

+ z2
+ xt + zt + t2

+ zw+ 26w2, disc(Q)= 128= 27, and 3= Z5.

(2) For the hypergeometric motive H of conductor 378, with data A = [3, 2, 2], B = [1, 1, 6], t = 64,
and L3 = 1+ 3x . The quadratic space is Q5 with

Q = x2
+ xy+ y2

+ z2
+ xt + zt + t2

+ zw+ 76w2, disc(Q)= 378= 2 · 33
· 7, and 3= Z5.

(3) For the hypergeometric motive H of conductor 384, with data A = [2, 2, 2, 2] B = [1, 1, 1, 1],
t = 1/4, and L2 = 1. The quadratic space is Q5 with

Q = x2
+ xy+ y2

+ xz+ 2z2
+ xt + 2t2

+ 12w2, disc(Q)= 384= 27
· 3, and 3= Z5.

We have not been able to find matching Hecke-eigenvectors in S(O(3̂)) for the hypergeometric motive
of conductor 256, with data

A = [2, 2, 2, 2, 4], B = [1, 1, 8], t = 1, and L2 = 1− 2x .
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The Euler factors for this motive can be computed from the given data using MAGMA:

> R<x> := PolynomialRing(Integers());
> L:=LSeries(HypergeometricData([2, 2, 2, 2, 4], [1, 1, 8]), 1:
> BadPrimes:=[<2, 8,1-2*x>]);
> EulerFactor(L, 3);
729*x^4 - 54*x^3 - 2*x^2 - 2*x + 1

As a reference, the first Euler factors are

L2 = 1− 2x,

L3 = 1− 2x − 2x2
− 54x3

+ 729x4,

L5 = 1+ 12x + 142x2
+ 1500x3

+ 15625x4.

7. Algorithms

To carry out the computations mentioned throughout the article we relied on [Hei16], and Greenberg and
Voight [GV14]. Hein gives a very detailed description to compute spaces of orthogonal modular forms
over totally real number fields, as well as their Hecke-operators for good primes.

We implemented the algorithms to compute M(O(3̂)) and Md(O(3̂)), as well as Tp,k for k = 1, 2,
in Sage [Sag19]. One of the most important parts of the algorithm to compute Tp,k relies on isomor-
phism testing of quadratic forms, for which Sage uses PARI [PAR18], which implements an algorithm
of Plesken and Souvignier [PS97]. To compute the representation given in Section 3, we implemented a
function to compute the spinor norm based in Example 8 in [Cas78, page 30]. Cassels give an algorithm
to decompose an autometry A of a positive definite quadratic space V of dimension n as a product of at
most n transpositions τvi , vi ∈ V . The spinor norm is computed as the product of the norm of vi modulo
squares. In our case, any proper autometry is a product of at most 4 transpositions. The implemented
code can be found in [Ram20].

To do the computations of Theorem 14, we did a random search of quinary positive definite quadratic
forms of prime discriminant. For each prime p < 7000 we found a representative of the unique genus of
discriminant p. To find the matches of hypergeometric motives of Section 6, we used tables of Nipp of
reduced regular primitive positive-definite quinary quadratic forms over Z [Nip].

8. Tables

In Tables 5 and 6 we show the orthogonal modular forms from S(O(3̂p)), Sp(O(3̂p)) for p < 300 that
are not Gritsenko lifts. These tables can be found in [RT20], as well as for squarefree D < 1000. We
include the dimension and the traces of λp,1 for p ≤ 13 and λp,2 for p ≤ 5. The rational ones for d = 1
and p < 200 were first computed by Hein [Hei16], and for p < 400 by Ladd [Lad18].
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p d label dim λ2,1 λ3,1 λ5,1 λ7,1 λ11,1 λ13,1 λ2,2 λ3,2 λ5,2

61 1 61a 1 −7 −3 3 −9 −4 −3 7 −9 −9

73 1 73a 1 −6 −2 0 7 −66 16 6 −9 0

79 1 79a 1 −5 −5 3 15 26 −15 2 4 −10

89 1 89a 1 −4 −6 16 −17 −2 −46 2 −6 27

97 1 97a 2 −9 −4 −4 16 −64 24 6 −14 4

101 1 101a 2 −7 −11 22 −32 46 −54 2 0 −21

103 1 103a 2 −9 −2 −15 26 −9 29 5 −10 −30

109 1 109a 3 −10 −15 −7 37 27 20 −3 7 −20

113 1 113a 1 −3 −4 8 4 −4 −40 2 −4 −4

127 1 127a 3 −9 −9 −12 45 18 69 0 6 −12

131 1 131a 2 −6 −4 8 −10 64 −84 4 −8 −4

137 1 137a 2 −4 −10 12 0 16 −8 0 8 12

139 1 139a 4 −14 −4 −22 14 −6 76 4 −10 −26

149 1 149a 4 −6 −23 16 −17 77 −9 −6 12 −15

151 1 151a 5 −12 −17 −33 57 81 75 −9 12 −28

157 1 157a 2 6 2 −14 8 −36 46 2 −22 −12
1 157b 5 −15 −12 0 −11 9 217 3 16 −78

163 1 163a 4 −10 −4 −16 38 4 84 2 −8 −12

167 167a 1 −8 −10 −4 −14 −22 −4 10 11 −44
167 1 167b 1 −2 0 −2 2 −14 −34 2 −17 16

1 167c 2 −3 −9 2 3 92 −41 −3 12 −28

173 173a 1 −8 −9 −10 −4 −4 −72 10 7 −3
173 1 173b 1 −2 −1 0 −16 −24 2 0 −23 −9

1 173c 4 −7 −15 14 −27 92 43 −2 22 −90

179 1 179a 4 −6 −10 −6 2 134 −134 −2 −8 −32

181 1 181a 10 −27 −16 −14 −38 59 249 0 −24 −91

191 1 191a 2 −3 −6 −7 −23 93 −19 −5 12 −10
1 191b 4 −6 −10 8 10 126 −136 2 −12 −52

193 1 193a 10 −15 −26 −38 56 −78 200 −11 −2 26

197 197a 1 −7 −10 −8 5 2 −66 7 14 −2

197 1 197b 1 1 −8 9 23 −12 −38 1 6 −24
1 197c 2 −4 −4 0 −20 78 −10 −4 −6 −42
1 197d 3 −2 −13 0 −19 25 101 −5 14 −6

199 1 199a 10 −27 −8 −43 41 33 170 1 −22 −120

Table 5. Forms in Sd (O(3̂p)) for d = 1, p and p < 200.
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p d label dim λ2,1 λ3,1 λ5,1 λ7,1 λ11,1 λ13,1 λ2,2 λ3,2 λ5,2

211 1 211a 10 −18 −16 −48 38 24 118 −12 −8 16

223 223a 1 −6 −11 6 −28 8 −42 6 13 −33
223 1 223b 1 −2 1 −8 −6 −30 36 −2 −17 5

1 223c 10 −22 −4 −47 72 40 175 2 −6 −74

227 227 227a 2 −13 −18 −14 −22 −56 −15 13 12 16
1 227b 6 −7 −8 −6 −14 92 −85 −3 −12 −46

1 229a 1 −2 −1 −9 −2 −13 24 −5 −12 −18
229 1 229b 1 0 −5 17 −40 57 10 −1 −4 30

1 229c 14 −33 −18 −17 7 −64 316 2 −20 −136

233 233a 1 −6 −10 −7 4 −22 −40 5 10 22

233 1 233b 1 0 −2 8 −6 −38 32 2 −14 −6
1 233c 4 −4 −12 −4 −28 24 −96 0 0 −8
1 233d 5 −2 −16 −9 −10 72 76 −6 14 −18

239 239 239a 1 −6 −9 −8 10 −49 7 6 13 −13
1 239b 10 −5 −30 −14 −9 266 −164 −14 1 −75

241 1 241a 18 −31 −32 −38 −14 −146 302 −14 −54 −88

251 251a 1 −6 −8 −11 6 −63 2 6 3 −15
251 1 251b 1 −2 −2 9 −20 39 18 −4 3 17

1 251c 10 −14 −4 −4 −36 222 −202 6 −28 −62
1 257a 1 −1 0 −4 −8 24 12 −2 −8 −52

257 257 257b 2 −13 −13 −26 −16 −9 −51 14 0 18
1 257c 12 −13 −23 24 −82 1 −23 −5 −28 −6

263 263 263a 2 −11 −20 −15 −3 −10 −23 7 26 −2
1 263b 11 −7 −25 −8 −10 206 −78 −10 6 −14

269 269a 1 −7 −4 −20 −4 4 49 8 0 23

269 269 269b 1 −5 −10 −8 20 −60 −75 4 12 −25
1 269c 1 −1 2 −1 8 21 30 1 6 −10
1 269d 15 −20 −28 67 −145 114 14 −3 −52 −77

271 271 271a 1 −5 −10 2 −10 −27 −25 5 13 −25
1 271b 19 −35 −19 −70 81 −20 245 −13 −25 −83

277 277 277a 1 −5 −10 −1 −10 38 −94 4 13 0
1 277b 22 −25 −35 −44 48 −104 438 −19 −7 −56

281 281 281a 1 −6 −6 −16 6 −26 14 6 2 29
1 281b 18 −4 −50 8 −116 142 −96 −23 −20 −42

283 283a 1 −6 −6 −6 −29 15 −47 7 −4 −24

283 283 283b 1 −4 −14 8 −17 −15 −33 1 22 8
1 283c 1 −2 −2 6 −7 −11 33 −5 0 −24
1 283d 17 −26 2 −74 85 −95 213 1 −36 −82

293 293 293a 4 −24 −27 −57 −14 −7 −94 21 13 36
1 293b 17 −13 −36 49 −117 37 99 −14 −11 −80

Table 6. Forms in Sd (O(3̂p)) for d = 1, p and 200< p < 300.
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An algorithm and estimates for the Erdős–Selfridge function

Brianna Sorenson, Jonathan Sorenson, and Jonathan Webster

Let p(n) denote the smallest prime divisor of the integer n. Define the function g(k) to be the smallest
integer > k+ 1 such that p

((g(k)
k

))
> k. We present a new algorithm to compute the value of g(k), and

use it to both verify previous work and compute new values of g(k), with our current limit being

g(375)= 12 86399 96537 88432 18438 16804 13559.

We prove that our algorithm runs in time sublinear in g(k), and under the assumption of a reasonable
heuristic, its running time is

g(k) exp[−c(k log log k)/(log k)2(1+ o(1))] for c > 0.

1. Introduction

Let p(n) denote the smallest prime divisor of the integer n, and define the function g(k) to be the smallest
integer > k+ 1 such that p

((g(k)
k

))
> k. So we have g(2)= 6 and g(3)= g(4)= 7.

We begin with a discussion of previous work on g(k), then state our new results, and finally outline
the rest of this paper.

1.1. Previous work. Paul Erdős introduced the problem of estimating the function g(k) in 1969 [4].
He, along with Ecklund and Selfridge [2] showed that g(k) > k1+c for a small constant c, showed that
g(k) < ek(1+o(1)), and tabulated g(k) up to k = 40, plus g(42), g(46), and g(52).

Scheidler and Williams [15] described how to use Kummer’s theorem to construct a sieving problem
to compute g(k), and they proceeded to find g(k) for all k ≤ 140. Five years later, Lukes, Scheidler, and
Williams [11] improved their sieve, used special-purpose hardware, and computed g(k) for all k ≤ 200.

Successive analytic improvements on lower bounds of g(k) have been proved by [3; 6; 10], where the
strongest result known, due to Konyagin, is

g(k) > kc log k for c > 0.

We are aware of no further results on g(k) that postdate 1999.
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Keywords: Erdos–Selfridge function, elementary number theory, analytic number theory, binomial coefficients.
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1.2. Definitions and new results. In computing g(k) for k ≤ 200, the authors of [15; 11] used Kummer’s
theorem to construct a sieving problem.

Theorem 1.1 (Kummer). Let k < n be positive integers, and let p be a prime ≤ k. Let t be a positive
integer with t ≥ blogp nc. Write

k =
t∑

i=0

ai pi and n =
t∑

i=0

bi pi

as the base-p representations of k and n, respectively. Then p does not divide
(n

k

)
if and only if bi ≥ ai

for i = 0, . . . , t .

For each prime p ≤ k, this theorem gives congruences g(k) must satisfy. Our approach is similar
to [15; 11], but we selectively choose enough prime power moduli so that we expect g(k) to be among
the residues. This approach is a search for a least residue and avoids explicit sieving. We accomplish
this by using the space-saving wheel which was described in [16]. This wheel data structure has been
successfully used in other sieving problems [17; 18; 19] but we omit the “sieving” part that occurs after
the residue is constructed. Our resulting algorithm has, so far, verified all previous computations for g(k),
and extended them for all k ≤ 375. A complete table of all currently computed g(k) values can be found
in the Online Encyclopedia of Integer Sequences entry A003458.

Let Mk :=
∏

p≤k pblogp kc+1 and let Rk denote the number of acceptable residues, under Kummer’s
theorem, modulo Mk . Then g(k) is the least residue (greater than k + 1) among the Rk residues. Our
uniform distribution heuristic (UDH) states that the Rk residues are, in a sense, uniformly distributed.
Under this assumption, we expect g(k) to be roughly Mk/Rk . In fact, we define ĝ(k) := Mk/Rk . The
authors of [11] studied this approximating function; it plays a central role in the analysis of our algorithm,
but not in its correctness.

Assuming the UDH implies that with high probability, we have

log g(k)= log ĝ(k)+ O(log k).

Let G(x, k) count the number of n≤ x such that p
(( n

k

))
> k. We show unconditionally that, for x > x0(k),

G(x, k)= (x/ĝ(k))(1+ o(1)).

These results imply that ĝ(k) should approximate g(k) reasonably well. We then show that

0.530684+ o(1)≤
log ĝ(k)
k/ log k

≤ 1+ o(1).

We prove a running time for our algorithm of

g(k) exp
[
−c

k log log k
(log k)2

]
for a constant c > 0. We also sketch a more general argument showing our algorithm’s running time is
sublinear in g(k), unconditionally.
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1.3. Outline. Our paper is organized as follows. In Section 2 we present our algorithm, including a
description of the space-saving wheel data structure. In Section 3 we discuss the knapsack subproblem
and techniques for splitting prime rings when deciding the sieving modulus for the algorithm. In Section 4
we demonstrate each of the above steps to compute g(10)= 46. In Section 5 we provide some statistical
evidence for the credibility of the UDH, show that g(k) is roughly ĝ(k) with high probability, and we
give an easy proof of our estimate for G(x, k). In Section 6, we show log ĝ(k) is proportional to k/ log k
and bound the running time of our algorithm. In Section 7, we conclude with some computational notes.

2. The algorithm

The naive approach is to search through all the Rk admissible residues modulo Mk to find the smallest
residue greater than k+ 1. However, Rk is typically too large for this, making this algorithm practical
only for very small k.

Instead, we enumerate residues that satisfy the requirements of Kummer’s theorem modulo N, where N
is a divisor of Mk that is larger than, but near to ĝ(k), as follows:

(1) Compute Mk , Rk , and kĝ(k)= k Mk/Rk .

(2) Choose a divisor N of Mk just above our estimate kĝ(k) with the property that there is a minimal
number of residues to check. Details of how to do this are discussed in Section 3.

(3) Build a ring data structure for each prime power dividing N, which is a list of admissible residues
as defined by Kummer’s theorem.

(4) Construct a wheel data structure1 with jump tables to generate the residues modulo N ; see [16]. A
jump entry is the minimum amount to add that preserves the residue class modulo earlier rings, and
jumps to an admissible residue for the current ring.2

(5) Rings for the remaining prime powers are also created, but not a wheel (the jumps are not needed).
We refer to these rings as filters.2 A residue passes the filter if, when reduced modulo the ring size,
the corresponding admissible bit is set to one. The smallest residue generated from the wheel that
also passes all the filters is g(k).

Any prime power ring that is part of the wheel, where that prime power also fully divides Mk , is
not needed as a filter. Or in other words, if a prime divides N but not Mk/N, its prime power is not
needed as a filter.

(6) Now that our data structures are initialized, we generate each residue modulo N from the wheel to
see if it passes the filters. As we go, we maintain the value of the minimum residue, so far, that
passed all the filters. Once every residue from the wheel is generated, this minimum is g(k).

1Any data structure that can access residues in constant time will suffice. An anonymous referee kindly pointed out that
doubly-focused enumeration [1] will work here as well. It will require more space and the early abort strategy described in
Section 4 is a little harder to implement.

2 The ordering of the rings does not matter for correctness. For speed, it is best to put the ring with the most jump entries
last, and to put the best filters first.
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If we run the whole algorithm and fail to find a residue that passes the filters, this means g(k) > N. In
this case, we simply multiply our previous estimate for g(k) by k, choose a new, larger N, and try again.

Note that the problem of finding a solution below a given bound to a system of pairwise coprime
modular congruences is known to be NP-complete; see [5; 12].

3. Prime splitting and knapsack

The purpose of this section is to look at how to choose N, a divisor of Mk that is just larger than kĝ(k).
The analysis in Section 6 shows that it is sufficient, for asymptotic purposes, to choose N to be a product
of consecutive primes greater than k/2 until the product exceeds kĝ(k). In practice we can do much
better than what the asymptotic argument shows. We discuss a few ways we do this in the context of a
knapsack problem.

3.1. Knapsack problem setup. We want to choose N so that the prime powers dividing N give a very
low filter rate, thereby giving fewer residues to enumerate, which makes the algorithm faster. Note that
selecting prime power moduli based on filter rate alone is not optimal. The size of the modulus matters
as well; a smaller modulus with a higher but still good filter rate can be preferable to a large modulus
with a better filter rate.

Let tp := blogp kc+ 1 be the number of digits required to write k in base p, with the ai p representing
these digits, so that k =

∑tp−1
i=0 ai p pi. We have tp ≥ 2, and for most primes tp = 2. Define Tp to be the

maximum exponent of p so that pTp | N. This implies 0≤ Tp ≤ tp, and N =
∏

p≤k pTp.
Let ri p := p − ai p, and let Rxp :=

∏
i<x ri p. Then the number of acceptable residues modulo pTp

is RTp p. The running time of the algorithm is proportional to the number of residues modulo N, which,
by the Chinese remainder theorem, is∏

p≤k

RTp p =
∏
p≤k

pTp
RTp p

pTp
= N ·

∏
p≤k

RTp p

pTp
.

We want to minimize the product of the filtering rates for primes included in N, which is equivalent to
maximizing the reciprocal, which we write as∏

p≤k

pTp

RTp p
= exp

∑
p≤k

log
pTp

RTp p
.

This allows us to set up a knapsack problem [9] for choosing prime powers to include in N by setting
the overall capacity of the knapsack to log N, and the size and value of prime powers are set as follows:

size(pT ) := log pT
= T log p,

value(pT ) := log(modulus/# residues)= log(pT /RT )= T log p− log RT .

The question, then, is how to set T for each prime p to give a good selection of items to include in the
knapsack. Also, we must ensure that the same prime p is not chosen more than once, with different T
values, for inclusion in the knapsack.
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3.2. Prime splitting. In practice, we can often get better results by including prime powers. So our
approach is, for each prime p ≤ k, to compute an optimal value for T based on filter rate, and then use a
greedy algorithm to fill our knapsack. We call computing this value for T splitting the prime power, and
label this split point sp. We then allow for up to three possible choices in the knapsack for each prime p:
set T = 0 (that is, omit p from N entirely), use T = sp (use the optimal split point), or use T = tp, the
maximum (note that sp = tp is possible).

Maximizing the value-to-size ratio, we get

value
size
=

T log p− log RT p

T log p
= 1−

log RT p

T log p
.

So, in time linear in tp, we can try all possible T values and quickly find the optimum, sp. Since 1 and
log p do not change, it suffices to compute (1/T ) log RT p for each T to find the optimum.

3.3. The greedy knapsack algorithm. After splitting, we have a list of candidate prime powers to include
in N. We sort the list based on value-to-size ratio, and choose enough to include in N based on the value
of ĝ(k). In practice, this simple and fast algorithm to construct N worked very well.

3.4. A dynamic programming approach. An anonymous referee pointed out an elegant way to find N.
Start with (N = 1, R= 1), where N is the modulus, and R the number of admissible residues. For each

prime power pt appearing in Mk , and for each (N , R) value found so far, form new values (N · pi , R ·Ri p)

for 0≤ i ≤ t , where Ri p is the number of admissible residues modulo pi. Sort the new (N , R) values by
increasing value of R. For each (N , R), (N ′, R′) with R < R′, discard (N ′, R′) if N ′ < N, since (N , R)
is always better. Also discard values (N ′, R′) if N ′ ≥ N ≥ kĝ(k).

This clever algorithm will produce an optimal solution for N. Although we have not implemented
it (yet), it seems likely to be fast enough that in practice it is a better choice that our own approach.
Indeed, informal timing results from the aforementioned referee bear this out.

4. Example for g(10)

As an example computation, we present each of the steps described above to compute g(10)= 46.
We write 10= 10102 = 1013 = 205 = 137. Kummer’s theorem then says that

g(10)≡ 10102, 10112, 11102, 11112 mod 16.

Similarly, there are 12 residues modulo 33, 15 residues modulo 52, and 24 residues modulo 72. In total,
there are R10 = 4 · 12 · 15 · 24= 17280 admissible residues modulo M10 = 16 · 27 · 25 · 49= 529200. We
compute 10 · ĝ(10)= 306.25 for use in our knapsack problem.

Considering the powers of 2 first, we compute r02 = 2, r12 = 1, r22 = 2, and r32 = 1. This gives
R12 = 2, R22 = 2, R32 = 4, and R42 = 4. We get value-to-size ratios of 0, 1/2, 1/3, and 1/2. This implies
s2 = 2 or 4. In practice, we normally use the largest value for sp when several values give the same ratio,
since it implies a better filter rate.
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p T value size ratio

2 4 log(24/4) log(24) 0.5
3 1 log(3/2) log 3 0.4009. . .
7 1 log(7/4) log 7 0.287. . .
3 3 log(33/12) log(33) 0.246. . .
7 2 log(72/24) log(72) 0.183. . .
5 2 log(52/20) log(52) 0.069. . .

Table 1. Knapsack items for g(10).

For p= 3, we have k = 1013. We have r03= 2, r13= 3, and r23= 2. This gives R13= 2, R23= 6, and
R33 = 12. The successive (1/T ) log R values are log 2, (1/2) log 6, and (1/3) log 12. Of these, log 2 is
the smallest, giving s3 = 1. In a similar fashion, we obtain s5 = 2 and s7 = 1.

Table 1 shows the resulting knapsack items (using the natural log), ordered by value-to-size ratio.
We greedily choose items to include in our knapsack of size log 306. We first choose 24

= 16, leaving
306/16 ≈ 20 “room” in our knapsack; then 3 is chosen next. This leaves about 20/3 ≈ 7 room. The
choice of 7 fills all remaining room, and gives N = 24

· 3 · 7.
Using N, we set up the space-saving wheel with rings that encode g(10)≡ 10, 11, 14, 15 (mod 16),

g(10)≡ 1, 2 (mod 3), and g(10)≡ 3, 4, 5, 6 (mod 7). If N is large enough, we expect g(10) to be among
these 32 residues.

The jump tables are:

Ring 16:
residue 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
admissible 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
jump +10 +9 +8 +7 +6 +5 +4 +3 +2 +1 +1 +3 +2 +1 +1 +11

Ring 3:
residue 0 1 2
admissible 0 1 1
jump +16 +16 +32

Ring 7:
residue 0 1 2 3 4 5 6
admissible 0 0 0 1 1 1 1
jump +48 +96 +144 +192 +48 +48 +48

We also build filters for the prime power congruences not used in the jump tables (9, 25, 49), but omit
their explicit construction for the sake of brevity.

The smallest possible starting point is k+2, or 12 in our example. Since 12 is not admissible modulo 16,
we apply the jump (+2) to get 14. We pass up to the next ring. We find 14 mod 3≡ 2 is admissible. We
pass to the next ring. Since 14 mod 7≡ 0 is not admissible, we jump (+48) to get 62. There are 4 total
residues in the 7 ring, so we also generate 62+ 48 = 110, 110+ 48 = 158, and 158+ 48 = 206. All
residues produced by the 7 ring are filtered:

62 mod 27≡ 8= 223 : fail, 110 mod 27≡ 23 : fail,

158 mod 25≡ 8= 135 : fail, 206 mod 25≡ 6= 115 : fail.

We then backtrack to ring 3 at 14, and generate 14+ 32 = 46. We pass to ring 7. The initial value
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in this ring, 46 mod 7≡ 4, is already admissible and is generated first. These get filtered and 46 passes
all filters. We record this value as a candidate for g(10) and continue the computation to see if a smaller
value exists. Since, g(10) = 46, no such value will be found. From this point on, the wheel will not
generate a residue for filtering if it exceeds 46. And nothing larger than N can ever be generated.

After 4 residues in the 7 ring, we drop down to the 3 ring, where we have already done 2 residues, so
we drop back to the 16 ring. At the 16 ring, we generate the next residue 14+ 1= 15, which is passed
up to the 3 ring.

This implies that, at each ring, we need to keep track of the next residue to generate, and how many
have been generated so far so that we know when to back up to a previous ring.

And so it goes. The amortized cost is a constant number of arithmetic operations per residue generated
by the outermost ring where they are filtered. If we apply the filters in decreasing order of filter rate, on
average, a residue is only tested against a constant number of filters, and so again, the cost is a constant
number of arithmetic operations per residue modulo N.

By keeping track of the minimum residue that passes the filters, we do not have to generate any residues
larger than this minimum. In our example, once 46 passes the filters, we don’t even generate the rest of
ring 7 — an “early abort” strategy, if you will. This optimization can make a big difference in practice.

5. Uniform distribution heuristic

The uniform distribution heuristic (UDH) states that the admissible residues modulo Mk behave as if they
are chosen at random from a uniform distribution over the interval [1,Mk−1]. It is not entirely dissimilar
to Cramér’s random model; the heuristic that integers near x are prime with probability 1/ log x , and our
intention is that these two models be treated similarly, in that we know they are not, strictly speaking,
true, yet seem to have good predictive behavior under the right circumstances.

With the help of Rasitha Jayasekare, a statistician at Butler University, we ran statistical tests on the
residues for 5≤ k ≤ 15. For each k, we generated all Rk admissible residues and applied the Anderson–
Darling and Kolmogorov–Smirnov tests to measure uniformity. Both tests confirm with a high probability
that the data comes from a uniform distribution.

Theorem 5.1. The UDH implies that, with probability 1− o(1), we have

ĝ(k)/k ≤ g(k)≤ kĝ(k).

Proof. Without loss of generality, we ignore residues ≤ k + 1 because k is asymptotically negligible
compared to Mk and Rk . We have

Pr(g(k)≤ x)= 1−Pr(all residues are greater than x)= 1−
(

Mk − x
Mk

)Rk

= 1−
(

1−
x

Mk

)Rk

.

For an upper bound, set x = (k Mk)/Rk , to obtain

Pr(g(k)≤ (k Mk)/Rk)= 1−
(

1−
k
Rk

)Rk

∼ 1− e−k
= 1− o(1)
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Figure 1. Comparing g(k) to M/R with error k.

for large Rk (and Rk does get quite large). For a lower bound, set x = Mk/(k Rk) to obtain

Pr(g(k)≤ Mk/(k Rk))= 1−
(

1−
1

k Rk

)Rk

∼ 1− e−1/k
= o(1).

This completes the proof. �

So we have that, with high probability,

log g(k)= log ĝ(k)+ O(log k)

if we assume the uniform distribution heuristic. This has worked well in practice; the inequality in
Theorem 5.1 is satisfied by all computed g(k) (excepting k = 99).

In Figure 1, we have empirical data comparing actual values of g(k) (the black dots) to ĝ(k) plotted
as intervals from ĝ(k)/k up to kĝ(k) as red error bars. The plot uses a logarithmic scale.

Recall that G(x, k) counts the integers n ≤ x such that p
(( n

k

))
> k. We conclude this section with the

following.

Theorem 5.2. If x is sufficiently large, then G(x, k)= (x/ĝ(k))(1+ o(1)).

Proof. Write x = q ·Mk+r using the division algorithm, with integers q, r > 0 and r < Mk . A contiguous
interval of length Mk will have exactly Rk admissible residues, so G(q Mk, k) = q Rk . The remaining
interval of length r has at most Rk residues, so G(x, k) = G(q Mk, k)+ O(Rk) = q Rk + O(Rk) but
q = bx/Mkc, so

G(x, k)= bx/MkcRk + O(Rk)= (x/ĝ(k))(1+ o(1)). �
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6. Analysis

The running time of our algorithm is linear in the number of residues modulo N. Since we choose N
based on ĝ(k), we need to estimate ĝ(k).

Theorem 6.1. 0.530684+ o(1)≤
log ĝ(k)
k/ log k

≤ 1+ o(1).

Applying the definitions for Mk and Rk above, we have

ĝ(k)=
Mk

Rk
=

∏
p≤k pblogp kc+1∏

p≤k
∏blogp kc

i=0 (p− ai p)
=

∏
p≤k

blogp kc∏
i=0

p
p− ai p

=

∏
p≤
√

k

blogp kc∏
i=0

p
p− ai p

·

∏
√

k<p≤k

blogp kc∏
i=0

p
p− ai p

=

∏
p≤
√

k

blogp kc∏
i=0

p
p− ai p

·

∏
√

k<p≤k

p
p− a1p

p
p− a0p

.

Here we observed that blogp kc+ 1= 2 when p >
√

k.
We will show that the product on the factor involving a0p is exponential in k/ log k, and is therefore

significant; and the other two factors, the product on primes up to
√

k, and the factor with a1p, are both
only exponential in

√
k.

We bound the first product, on p ≤
√

k, with the following lemma.

Lemma 6.2.
∏

p≤
√

k

blogp kc∏
i=0

p
p− ai p

� e3
√

k(1+o(1)).

Proof. We note that ai p ≤ p− 1, giving

∏
p≤
√

k

blogp kc∏
i=0

p
p− ai p

≤

∏
p≤
√

k

pblogp kc+1
≤

∏
p≤
√

k

p3blogp
√

kc.

From [7, Chapter 22] we have the bound
∑

p≤xblogp xc log p = x(1+ o(1)). Exponentiating and substi-
tuting

√
k for x gives the desired result. �

Next, we show that the product involving a1p is small.

Lemma 6.3.
∏

√
k<p≤k

p
p− a1p

≤ eO(
√

k).

Proof. We split the product at 2
√

k. For the lower portion, we have∏
√

k<p≤2
√

k

p
p− a1p

≤ (2
√

k)π(2
√

k)
≤ eO(

√
k).
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For the upper portion, since a1p ≤ k/p ≤
√

k, we have∏
2
√

k<p≤k

p
p− a1p

≤

∏
2
√

k<p≤k

p

p−
√

k
≤

∏
2
√

k<p≤k

(
1+

2
√

k
p

)
≤

∏
2
√

k<p≤k

(
1+

1
p

)2
√

k+1

using the fact that (1+ x/p)≤ (1+ 1/p)x if x > 1, p > 0. Mertens’s theorem then gives the bound(
eγ (log k)

eγ (log(2
√

k))
(1+ o(1))

)2
√

k+1

≤ eO(
√

k). �

We now have
log ĝ(k)= log

( ∏
√

k<p<k

p
p− a0p

)
+ O(
√

k).

The following lemma wraps up the proof of our theorem.

Lemma 6.4. 0.530684 ·
k

log k
(1+ o(1))≤ log

( ∏
√

k<p≤k

p
p− a0p

)
≤

k
log k

(1+ o(1)).

Proof. Fix a1p= a. Then k/(a+1)< p≤ k/a, and a0p= k mod p= k−ap and p−a0p= p−(k−ap)=
(a+ 1)p− k. We have

log
( ∏
√

k<p≤k

p
p− a0p

)
= log

(√k∏
a=1

∏
k/(a+1)<p≤k/a

p
(a+ 1)p− k

)

=

√
k∑

a=1

∑
k/(a+1)<p≤k/a

(log p− log((a+ 1)p− k)).

The reader should be aware that transforming between simple and double products/sums can introduce
error, but this is bounded by at most one term, and we absorb this in our error term.

We split this sum into three pieces to start with:

(1) The outer sum for (log k)2 ≤ a <
√

k, which we show to be o(k/ log k).

(2) The log p term only, for a < (log k)2, which we show to be k+ o(k/ log k).

(3) The − log((a+ 1)p− k) term, again for a < (log k)2, which we show to be −k+ O(k/ log k).

For (1), we have
√

k∑
a=(log k)2

∑
k/(a+1)<p≤k/a

(log p− log((a+ 1)p− k))≤

√
k∑

a=(log k)2

∑
k/(a+1)<p≤k/a

log p ≤
∑

√
k<p≤k/(log k)2

log p

which is O(k/(log k)2) using
∑

p<x log p = x + o(x/ log x). For (2), we have

(log k)2∑
a=1

∑
k/(a+1)<p≤k/a

log p =
∑

k/(log k)2<p≤k

log p
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which is k+ o(k/ log k). For (3), we have

−

(log k)2∑
a=1

∑
k/(a+1)<p≤k/a

log((a+ 1)p− k). (6-1)

Rewriting the inner sum as an integral, using a strong version of the prime number theorem, we get

−

∑
k/(a+1)<p≤k/a

log((a+ 1)p− k)=−
∫ k/a

k/(a+1)

log((a+ 1)t − k)
log t

dt + o(k/(log k)3)

=−
1

log(k/(a+α))

∫ k/a

k/(a+1)
log((a+ 1)t − k) dt + o(k/(log k)3).

Here α is between 0 and 1, determined implicitly by the mean value theorem. The precise value of α
may depend on both k and a. We will use either α = 0 or α = 1, depending on whether we want an upper
or lower bound, respectively.

Using substitution, we can readily show that∫ k/a

k/(a+1)
log((a+ 1)t − k) dt =

k(log(k/a)− 1)
a(a+ 1)

.

We have for (3), then, a term which equals

(log k)2∑
a=1

(
−

k(log(k/a)− 1)
a(a+ 1) log(k/(a+α))

)
=−k+

k
log k

·

(log k)2∑
a=1

1− log
(

1+ α
a

)
a(a+ 1)

·

(
1+ O

(
log log k

log k

))
.

The last step requires a bit of algebra, and the observation that 1/(u− v)= 1/u+ v/(u(u− v)).
To obtain the upper bound, set α= 0, and note that

∑
1/(a(a+1)) converges to 1. To obtain the lower

bound, set α = 1, and note that
∑
(1− log(1+ 1/a))/(a(a+ 1)) converges to a constant ≥ 0.530684. �

Algorithm running time.

Theorem 6.5. If the UDH is true, then with probability 1− o(1), our algorithm has a running time
bounded by

g(k) · exp
[
−ck log log k
(log k)2

(1+ o(1))
]
,

where c > 2 is constant.

Proof. Without loss of generality, we assume that g(k)≤ N < k · g(k), as we can guess a smaller N, run
the algorithm, and if it fails to find g(k), include another prime p with k/2 < p < k in N, and repeat.
Since N at least doubles each time we do this, the cost of running the algorithm on all N < g(k), and
failing, is bounded by a factor of log g(k) times the cost of the final run with a value of N > g(k) that
succeeds. We absorb this multiplicative factor of log g(k) in the o(1) error term in the exponent of the
running time bound above as log g(k) = 2(k/ log k) with high probability. In particular, this gives us
log N = (1+ o(1)) log g(k) with high probability.
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For the purposes of this proof, we choose N to be a product of some primes between k/2 and k. This
is conservative, as the choice of primes or prime powers for inclusion in N, using the methods discussed
earlier, will result in a faster algorithm in practice. So we have∏

p|N

p = N ≈ g(k)

and thus ∑
p|N

log p = log N ∼ log g(k)� k/ log k.

Since
∑

k/2<p≤k log p = (k/2)(1+ o(1)), we have more primes in this range than we need for N by a
factor of roughly (1/2) log k. Thus, we can choose the best k/(log k)2 primes (roughly) below k of the
k/ log k that are available. As a result, we expect to get a filtering factor of 1/ log k for the primes we
choose. Indeed, if we choose all primes p with k/2< p < k/2+ c1k/ log k, with c1 > 0 an appropriate
constant we fix later, this is the case.

Let’s check that this gives us a good value for N. We have

log N =
∑

k/2<p<k/2+c1k/ log k

log p

=
c1k

(log k)2
log(k/2)(1+ o(1))=

c1k
log k

(1+ o(1)),

which is larger than log g(k) with high probability if we choose c1 near 1. (See also [13, (2.29)].) Ideally,
we want g(k)≤ N ≤ kg(k) here.

Now we address the filter rate, and hence the running time. For each prime p, k+2c1k/log k> 2p> k,
which implies k− p > p− 2c1k/log k so that

a0p = k mod p = k− p

> p−
2c1k
log k

> p−
4c1 p
log k

= p
(

1−
4c1

log k

)
.

Our running time, then, is proportional to the number of acceptable residues modulo N, which is∏
k/2<p<k/2+c1k/ log k

(p− a0p)=
∏

p

(
p− p

(
1−

4c1

log k

))
=

∏
p

p ·
4c1

log k
= N

∏
p

4c1

log k

≤ kg(k)
(

4c1

log k

)c1k/(log k)2(1+o(1))

= g(k) exp
[
−c1

k log log k
(log k)2

(1+ o(1))
]
. �

The UDH is stronger than what we need to prove a running time sublinear in g(k). The central issue
is finding enough primes p with k/2< p≤ k/2+1 such that the product of these primes is roughly g(k).
If the number of primes in this interval is 1/ log k, then we can set 1≈ log g(k). Pushing this through
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our argument above, we obtain a running time of the form

g(k) · exp
[
−c1
log k

log
(

k
41

)
(1+ o(1))

]
where c > 0 is constant (and likely we can take c near 1). Observe that plugging in log g(k)≈ k/ log k
gives our theorem, but this form is valid so long as we can find enough primes. In fact, if log g(k)� kθ,
with 7/12< θ ≤ 1, we can use a result due to Heath–Brown [8] on primes in short intervals to guarantee
this is true.

If g(k) is smaller than this, we would choose 1= (log g(k)/ log k)E(k), where E(k) is the error term
for the prime number theorem for π(k), to give us the needed log g(k)/ log k primes above k/2. (If we
assumed the Riemann hypothesis, this would let us use a smaller E(k) term.) Pushing this through, we
obtain a weaker, but still sublinear, running time.

We were also able to show that

lim sup
k→∞

ĝ(k+ 1)
ĝ(k)

=∞.

We omit the proof due to a lack of space, but the interesting case is when k+ 1 is prime. It is conjectured
that the same holds true for g(k) itself, but that remains an open problem [2].

7. Computations

We conclude with a brief discussion of the timing results. Our source code and timing results are available
as an online supplement.

7.1. Timing results. We implemented our algorithm from Section 2 in C++. We started with a sequential
program, which we used to compute g(k) for all k ≤ 272, thereby verifying all previous computations
along the way [2; 14; 11]. None of these smaller k values took more than a couple of hours on a standard
desktop computer.

We then parallelized our algorithm, using MPI, by having each core generate a share of the residues.
However, if a particular core found a new, smaller residue that passed all filters, that new upper bound
would not be communicated to all the other cores for some time. This resulted in a fair amount of wasted
work. On the other hand, too-frequent inter-core communication would also slow down the computation,
since finding new upper bounds is a rare event. We found that our computation distributed over 192 cores
only performed about 40-50 times faster than the single-core version.

Our parallel code took anywhere from under an hour to over 1300 hours to compute each g(k) value.
The timing results, in hours of wall time, are shown in Figure 2. Here the y-axis on the left is in hours,
and the y-axis on the right is used for g(k) values, which are plotted on the same graph for comparison.
In total, the cluster was exclusively computing g(k) values for about 9 months. The cluster is composed
of Intel Xeon E5-2630 v2 processors, with 15MB cache, running at 2.3 GHz. Our algorithm uses very
little memory, and so RAM is not an issue.

http://msp.org/obs/2020/4-1/obs-v4-n1-x01-ErdosSelfridgeAlgorithm.zip
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7.2. Verification is faster. It is easy to verify that our claimed g(k) values all satisfy Kummer’s theorem
and are near ĝ(k). However, we know of no way to independently verify our computations except by
repeating the search. Knowing a small admissible candidate gives two significant practical advantages
in our algorithm. First, you can work with a modulus N just larger than the candidate g(k) value,
which is usually smaller than the suggested kĝ(k) value. Second, you can input the claimed g(k) value
as the starting upper bound for residues. Take the computation of g(225) as an example. The initial
search worked modulo N = 1012 44299 87665 22178 24000 and went through at most 64 66521 60000
residues. The candidate for g(225) was updated three times and the computation took about 26 minutes.
A verification computation was done working modulo N = 2 95172 88593 77615 68000, and had at
most 1 19750 40000 residues to check, with g(225) as an input for the initial upper bound. This second
computation completed in just 24 seconds. We note that a parallel version of a verification computation
can also avoid some of the communication overhead.
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Comp., 66(220):1709–1717, 1997.
[12] Kenneth L. Manders and Leonard Adleman. NP-complete decision problems for binary quadratics. Journal of Computer

and System Sciences, 16(2):168 – 184, 1978.
[13] J. B. Rosser and L. Schoenfeld. Approximate formulas for some functions of prime numbers. Illinois Journal of Mathe-

matics, 6:64–94, 1962.
[14] R. Scheidler and H. C. Williams. A public-key cryptosystem utilizing cyclotomic fields. Technical Report 15/92, Univer-

sity of Manitoba, Department of Computer Science, November 1992.
[15] Renate Scheidler and Hugh C. Williams. A method of tabulating the number-theoretic function g(k). Math. Comp.,

59(199):251–257, 1992.
[16] Jonathan P. Sorenson. The pseudosquares prime sieve. In Florian Hess, Sebastian Pauli, and Michael Pohst, editors,

Proceedings of the 7th International Symposium on Algorithmic Number Theory (ANTS-VII), pages 193–207, Berlin,
Germany, July 2006. Springer. LNCS 4076, ISBN 3-540-36075-1.

[17] Jonathan P. Sorenson. Sieving for pseudosquares and pseudocubes in parallel using doubly-focused enumeration and
wheel datastructures. In Guillaume Hanrot, Francois Morain, and Emmanuel Thomé, editors, Proceedings of the 9th
International Symposium on Algorithmic Number Theory (ANTS-IX), pages 331–339, Nancy, France, July 2010. Springer.
LNCS 6197, ISBN 978-3-642-14517-9.

[18] Jonathan P. Sorenson and Jonathan Webster. Strong pseudoprimes to twelve prime bases. Math. Comp., 86(304):985–1003,
2017.

[19] Jonathan P. Sorenson and Jonathan Webster. Two algorithms to find primes in patterns. Math. Comp., 89(324):1953–1968,
2020.

Received 20 Feb 2020. Revised 7 Sep 2020.

BRIANNA SORENSON: bsorenso@butler.edu
Mathematics, Statistics and Actuarial Science, Butler University, Indianapolis, IN, United States

JONATHAN SORENSON: jsorenso@butler.edu
Computer Science and Software Engineering, Butler University, Indianapolis, IN, United States

JONATHAN WEBSTER: jewebste@butler.edu
Mathematics, Statistics and Actuarial Science, Butler University, Indianapolis, IN, United States

msp

mailto:bsorenso@butler.edu
mailto:jsorenso@butler.edu
mailto:jewebste@butler.edu
http://msp.org




THE OPEN BOOK SERIES 4 (2020)

Fourteenth Algorithmic Number Theory Symposium
https://doi.org/10.2140/obs.2020.4.387

msp

Totally p-adic numbers of degree 3

Emerald Stacy

The height of an algebraic number α is a measure of how arithmetically complicated α is. We say α
is totally p-adic if the minimal polynomial of α splits completely over the field Qp of p-adic numbers.
We investigate what can be said about the smallest nonzero height of a degree 3 totally p-adic number.

1. Introduction

Recall that an algebraic number α is totally p-adic (respectively, totally real) if the minimal polynomial
of α, fα ∈Q[x], splits completely over Qp (respectively, R). We will denote by h(α) the logarithmic
Weil height of α [BG06].

In 1975, Schinzel used the arithmetic-geometric mean inequality to prove that if α is a totally real
algebraic integer, with α 6= 0,±1, then

h(α)≥ 1
2 log

(
1+
√

5
2

)
with equality if α = 1

2(1+
√

5) [Sch75]. In 1993, Höhn & Skoruppa used an auxiliary function to provide
an alternate proof of Schinzel’s bound [HS93]. Bombieri & Zannier [BZ01] proved that an analogue to
Schinzel’s theorem holds in Qp for each prime p, although the analogous best possible lower bound is
unknown.

Additionally, there have been some results constructing totally p-adic (or totally real) algebraic num-
bers of small height. In particular, these results provide an upper bound on the smallest height attained
by α under certain splitting conditions. The degree of a totally p-adic number is the degree of its minimal
polynomial with coefficients in Z. Petsche [Pet] proved that for odd primes p, there exists some totally
p-adic α ∈Q of degree d ≤ p− 1, and

0< h(α)≤ 1
p−1 log

(
p+

√
p2+ 4

2

)
.
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Recently, Pottmeyer [Pot18] has improved upon Petsche’s upper bound, and obtained the existence of
totally p-adic α such that

0< h(α)≤
log p

p
.

In 1980, Smyth created a set of totally real numbers of small height by taking all preimages of 1 under
the map φ(x) = x − 1

x . The heights of the points in this set have a limit point ` ≈ 0.27328 [Smy80].
In [PS19], Petsche and Stacy use an argument inspired by this result of Smyth to provide an upper bound
on the smallest limit point of heights of totally p-adic numbers of degree d .

In this paper, we fix the degree d to be 3 and let the prime p vary. In particular, we define τd,p to be
the smallest height attained by a totally p-adic, nonzero, nonroot of unity, algebraic number of degree d .
For any pair d and p, we know τd,p <∞ since we can construct a Newton polygon for an irreducible
polynomial of degree d that splits completely over Qp [Cas86].

In this paper, we develop tools to determine τ3,p for all p ≥ 5. In Section 2, we develop and prove
an algorithm to determine τ3,p for a given prime p, which we implement in Section 2.5. All code was
written for SageMath, version 8.2, and is included within Section 2.5. A table of results can be found in
Section 3, and Section 4 describes future areas of interest.

2. The algorithm

In Section 2.1, we prove that τ3,p ≤ 0.70376 for all p ≥ 5. To do so, we establish that for every prime p,
there is a cubic polynomial with an abelian Galois group that splits completely over Qp. By the height-
length bound [BG06, Proposition 1.6.7], a list of all cubic polynomials with length less than 68 will
contain all irreducible, noncyclotomic, cubic polynomials with roots of height less than 0.70376. By the
Northcott property there are only finitely many such polynomials, and thus we have a finite list to check
for τ3,p and our algorithm will terminate.

In Section 2.2, we use the method of Cardano to determine the roots of a cubic polynomial. In
Sections 2.3 and 2.4, we establish criteria to determine if those roots are in Qp. The criteria are different
depending if p ≡ 1 (mod 3) or p ≡ 2 (mod 3), since Qp contains a primitive cube root of unity if and
only if p ≡ 1 (mod 3). In Section 2.5, we implement the algorithm, the results of which can be found in
Section 3.

2.1. Establishing termination. To establish that our algorithm will terminate, we create a finite list
of polynomials, and verify that for each prime, there must be a polynomial in our list that will split
completely over Qp.

Let fα denote the minimal polynomial of α. Then h(α)= 1
3 log M( fα), where M( fα) is the Mahler

measure of fα. Thus, if M( fα) ≤ 8.5, then h(α) ≤ 0.71335. The function mahler_measure_cubic
calculates the Mahler measure of the cubic polynomial

f (x)= ax3
+ bx2

+ cx + d :
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def mahler_measure_cubic(a,b,c,d):
M = a
Poly = a*x^3 + b*x^2 + c*x + d
Roots = Poly.roots(CC)
for i in [0..len(Roots)-1]:

M = M * max(1,abs(Roots[i][0]))
return M.n(digits=10)

For f (x)=
∑d

i=0 ai x i, the length of f is L( f )=
∑d

i=0|ai |. The length will be useful to us since for
any polynomial f ,

L( f )≤ 2d M( f ),

where d = deg f [BG06, Proposition 1.6.7]. Thus, the following program generates a list of all cubic
polynomials with

L( f )≤ 23(8.5)= 68

and removes any polynomial that is either reducible or has Mahler measure greater than 8.5. We use the
built-in Sage function is_irreducible() to determine if a polynomial is irreducible over Q.

In addition to the polynomial and Mahler measure, the list also stores the coefficients of the cubic in
its so-called depressed form (x3

+ Ax + B), the discriminant of the polynomial, and the height of the
roots. For more information on depressing a cubic, please see Section 2.2.

The command sorted() will reorganize the array in ascending order of the first value — in this case
it will sort by Mahler measure, which is equivalent to sorting by height. The output of this program is
26796 polynomials that are saved as the file irred_polynomials_L68. Runtime was 124 minutes.

R.<x> = QQ[]
Polynomials=[]
L=68
for a in [1..L]:

for b in [-L+abs(a)..L-abs(a)]:
for c in [-L+abs(a)+abs(b)..L-abs(a)-abs(b)]:

for d in [-L+abs(a)+abs(b)+abs(c)..L-abs(a)-abs(b)-abs(c)]:
Poly = a*x^3 + b*x^2 + c*x + d
if Poly.is_irreducible()==True:

MM = mahler_measure_cubic(a,b,c,d)
A = (3*a*c - b^2 ) / (3*a^2 )
B = (27*a^2*d - 9*a*b*c + 2*b^3 ) / (27*a^3 )
Delta = B^2 + 4 * A^3 / 27
h = 1/3 * log(MM);
if MM <= L/8:

Polynomials.append([MM,a,b,c,d,A,B,Delta,h])
Polynomials=sorted(Polynomials)

Next, we remove from this list all polynomials with nonabelian Galois group. In general, the Galois
group of a polynomial f (x) ∈ Z[x] of degree d is isomorphic to a subgroup of Ad if and only if the
discriminant of f is a square in Q [Con18, Theorem 1.3]. In the case of f cubic, the Galois group of f
is A3, and thus abelian, if and only if the discriminant of f is a square in Q.

Let K be the number field created by adjoining the roots of f to Q and let 1 be the discriminant of K.
By the Kronecker–Weber theorem, K must be contained within a cyclotomic extension of Q. Let m be the
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conductor of K, meaning the smallest m such that K is a subfield of Q(ζm), where ζm is a primitive m-th
root of unity. To calculate the conductor, we turn to a special case of the Hasse conductor-discriminant
formula, as follows.

Theorem 1 [Has30, Theorem 6]. Let K be an abelian extension of Q, with [K : Q] = 3 and discrim-
inant 1. Let p1, p2, . . . , pn be all the primes (aside from 3) that divide 1. If 3 divides 1, then the
conductor of K is 9p1 p2 · · · pn . If 3 not does divide 1, then the conductor of K is p1 p2 · · · pn .

The following program begins by identifying if each cubic polynomial has an abelian Galois group. If
so, then the program calculates the discriminant of K (the number field obtained by adjoining the roots
of f to Q) by applying the built-in function absolute_discriminant(). It then applies Theorem 1
and uses the built-in Sage command factor() to determine the conductor of K. All of this output is
stored in the array AbelianCubics, which contains the information for 156 polynomials.

Polynomials=load(’irred_polynomials_L68’)
L=len(Polynomials)
AbelianCubics=[]
for i in [0..L-1]:

Poly = Polynomials[i];
a = Poly[1];
b = Poly[2];
c = Poly[3];
d = Poly[4];
D = b^2*c^2 - 4*a*c^3 - 4*b^3*d - 27*a^2*d^2 + 18*a*b*c*d;
if D.is_square()==True:

K.<j> = NumberField(a*x^3 + b*x^2 + c*x + d)
DD = K.absolute_discriminant()
MM = Poly[0];
h = Poly[8];
Factors = DD.factor()
list_of_factors = list(Factors)
L = len(list_of_factors)
Cond = 1
for i in [0..L-1]:

Cond = Cond*list_of_factors[i][0]
if list_of_factors[i][0]==3:

Cond = Cond*3
C = Cond
AbelianCubics.append([h, a*x^3 + b*x^2 + c*x + d ,DD,C]);

The following lemma is well known, but for lack of a convenient reference, we provide a proof.

Lemma 2. Let α ∈Q(ζn) have minimal polynomial fα ∈ Z[x], and let

Gα = {[i] ∈ (Z/nZ)× | σi (α)= α},

where σi (ζn) = ζ
i
n . Thus Gα is the subgroup of (Z/nZ)× corresponding to Gal(Q(ζn)/Q(α)) via the

isomorphism (Z/nZ)× ∼= Gal(Q(ζn)/Q). Let p - n be a prime. Then fα splits completely in Qp if and
only if [p] ∈ Gα.

Proof. The automorphism σp ∈ Gal(Q(ζn)/Q) satisfies σp(x) ≡ x (mod p) for all x ∈ Z[ζn] [Bak06,
Lemma 4.51]. Since Q(ζn)/Q is an abelian extension, Q(α)/Q is a Galois extension and therefore σp
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restricts to an automorphism σp ∈ Gal(Q(α)/Q); the above congruence implies that σp is the Frobenius
element of Gal(Q(α)/Q) associated to the prime p.

If [p] ∈ Gα, then σp is the identity element of Gal(Q(α)/Q), which implies that p splits completely
in Q(α) [Bak06, Proposition 4.36]; that is pOQ(α) = p1 · · · pd , where d = [Q(α) : Q]. It follows that
each local degree e(pi/p) f (pi/p)= [Q(α)pi :Qp] is equal to 1 [Bak06, Theorem 5.25], which means
that Q(α)pi =Qp for i = 1, 2, . . . , d . In particular, Q(α)⊆Qp, and therefore as Q(α)/Q is Galois, all d
of the Galois conjugates of α are in Qp as well. Hence fα(x) splits completely in Qp. The converse
follows from a straightforward reversal of this argument. �

For each polynomial fα in AbelianCubics, we want to determine the congruence classes modulo m
of a prime p for fα to split completely in Qp, where m is the conductor of the splitting field of fα . The
following code goes through each line in the array AbelianCubics, and for each polynomial fα in the
list, computes the set Bα ⊆ (Z/m Z)× so that fα splits completely in Qp if and only if [p] ∈ Bα, where
[p] denotes the residue of p (mod m).

Note that if (Z/mZ)× has a unique index 3 subgroup, then this group must be Gα. In the case that
(Z/mZ)× does not have a unique index 3 subgroup, we check the first 50 primes to determine if there
is a root in Qp via Hensel’s lemma. When a root of fα is determined to be in Qp, we know that for all
primes q with q ≡ p (mod m), fα must split completely in Qp, by Lemma 2. Further, we know there
are |(Z/mZ)×|/3 congruence classes for which fα splits completely in Qp. Thus, after testing the first
50 primes, the code checks the cardinality of the set of congruences to ensure all were found. For this
particular list of polynomials, 50 is sufficient to identify the index 3 subgroup.

AbelianCubics=load(’AbelianCubics’)
L=len(AbelianCubics);
P = Primes();
for i in [0..L-1]:

Poly = AbelianCubics[i][1]
PolyList = Poly.list()
a = PolyList[3]
b = PolyList[2]
c = PolyList[1]
d = PolyList[0]
Cond = AbelianCubics[i][3]
v = [1];
for j in [0..50]:

for k in [1..P[j]-1]:
M = Integer( a*k^3 + b*k^2 + c*k + d )
M = M%P[j]
N = Integer( 3*a*k^2 + 2*b*k + c )
N = N%P[j]
if M==0 and N>0:

v.append(P[j]%Cond)
V = sorted(v)
V = set(V)

The results of this code are included as an online supplement to this paper. A sampling of the data is
included in Table 1 for reference.

http://msp.org/obs/2020/4-1/obs-v4-n1-x01-Degree3Table.pdf
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h(α) fα α is totally p-adic if and only if

0.26986 x3
− x2
− 2x + 1 p ≡ 1, 6 (mod 7)

0.35252 x3
− 3x2

+ 1 p ≡ 1, 8 (mod 9)

0.60981 3x3
− 4x2

− 5x + 3 p ≡ 1, 3, 8, 9, 11, 20, 23, 24, 27, 28, 33, 34, 37, 38,
41, 50, 52, 53, 58, 60 (mod 61)

0.69106 3x3
− x2
− 8x + 3 p ≡ 1, 3, 7, 8, 9, 10, 17, 21, 22, 24, 27, 30, 43,

46, 49, 51, 52, 56, 63, 64, 65, 66, 70, 72 (mod 73)

0.69903 2x3
− 9x2

+ 3x + 2 p ≡ 1, 2, 4, 8, 16, 31, 32, 47, 55, 59, 61, 62 (mod 63)

0.70376 x3
− 9x2

+ 6x + 1 p ≡ 1, 5, 8, 11, 23, 25, 38, 40, 52, 55, 58, 62 (mod 63)

Table 1. A sample of the data included in the online supplement.

Theorem 3. Let p be a prime. Then τ3,p ≤ 0.70376.

Proof. For a prime p, denote by τ ab
3,p the smallest nontrivial height of an abelian, cubic, totally p-adic

number. Note that τ3,p ≤ τ
ab
3,p. Thus, if we show that τ ab

3,p ≤ 0.70376, we have proven the theorem.
Based on the results from Table 1, we know

τ ab
3,3 ≤ 0.609817669 and τ ab

3,7 ≤ 0.501878627.

All primes p 6= 3, 7, when reduced modulo 63, are contained in (Z/63Z)×. Observe that

(Z/63Z)× = {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20, 22, 23, 25, 26, 29,
31, 32, 34, 37, 38, 40, 41, 43, 44, 46, 47, 50, 52, 53, 55, 58, 59, 61, 62}.

Further, we observe that

τ ab
3,p ≤

{
0.269862305 if p ≡ 1, 6 (mod 7),
0.352525605 if p ≡ 1, 8 (mod 9).

Thus
τ ab

3,p ≤ 0.269862305 for p ≡ 1, 8, 13, 20, 22, 29, 34, 41, 43, 50, 55, 62 (mod 63),

τ ab
3,p ≤ 0.352525605 for p ≡ 10, 17, 19, 26, 37, 44, 46, 53 (mod 63).

It remains to determine an upper bound on τ ab
3,p for

p ≡ 2, 4, 5, 11, 16, 23, 25, 31, 32, 38, 40, 47, 52, 58, 59, 61 (mod 63).

Note that each of the above numbers falls into one of the following two sets:

p ≡ 1, 2, 4, 8, 16, 31, 32, 47, 55, 59, 61, 62 (mod 63),

p ≡ 1, 5, 8, 11, 23, 25, 38, 40, 52, 55, 58, 62 (mod 63).

Further, we observe that by the last two lines of Table 1, given any prime p, one of the polynomials in
the table must split completely over Qp. �



TOTALLY p-ADIC NUMBERS OF DEGREE 3 393

2.2. Determining roots of cubic polynomials. In Ars Magna, Cardano describes a method to find the
roots of a cubic polynomial f as elements of C [CS68]. This method is analogous to completing the
square for a quadratic polynomial. We use Cardano’s method to determine if a cubic polynomial in K [y]
splits completely over K, where K is an arbitrary field of characteristic not equal to 2 or 3. Beginning
with an arbitrary cubic polynomial in K [y],

g(y)= ay3
+ by2

+ cy+ d,

we divide through by the leading coefficient and perform a change of variables y = x − b/3 to eliminate
the quadratic term, yielding a monic depressed cubic polynomial with coefficients in K,

f (x)= x3
+ Ax + B.

Note that since the transformations to depress the cubic simply shift the roots by b/(3a), so g splits
over K if and only if f splits over K.

Lemma 4 (Cardano [CS68]). Let L be an algebraically closed field of characteristic not equal to 2 or 3,
and let ζ be a primitive cube root of unity in L. Let f (x)= x3

+ Ax+B ∈ L[x], and let1= B2
+4A3/27.

If A = 0, let C = −B, and if A 6= 0, let C be either square root of 1 in L. Let u be a cube root of
(−B+C)/2 and let v =−A/(3u). Then the roots of f are u+ v, ζu+ ζ 2v, and ζ 2u+ ζv.

To determine when a cubic polynomial f (x) ∈ Qp[x] splits completely over Qp, the method will
depend on whether Qp contains a primitive cube root of unity, which happens exactly when p≡ 1 (mod 3).
Thus, we consider two cases: p ≡ 1 (mod 3) and p ≡ 2 (mod 3).

2.3. Case 1. Suppose p ≡ 1 (mod 3).

Theorem 5. Let K be a field of characteristic not equal to 2 or 3, let L be an algebraic closure of K,
and assume that K contains a primitive cube root of unity, ζ . Let f (x) = x3

+ Ax + B ∈ K [x], and
1 = B2

+ 4A3/27. If A = 0, let C = −B, and if A 6= 0, let C be either square root of 1 in L. Then f
splits completely over K if and only if

(a) 1 is a square in K, and

(b) (−B+C)/2 is a cube in K.

Proof. Suppose A = 0. Then 1 = B2 is a square in K, so (a) is true. Additionally, C = −B and
f (x)= x3

+ B, which splits completely over K if and only if −B is a cube in K, which happens exactly
when (b) holds.

Now suppose A 6= 0. Let u be a cube root of (−B+C)/2 and let v =−A/(3u). Let F be a Galois
extension of K containing C and u.

Suppose the conditions (a) and (b) are met. By Lemma 4, the roots of f are u + v, ζu + ζ 2v, and
ζ 2u+ ζv and thus f splits completely over K.
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Conversely, suppose that f splits completely over K. Let σ ∈ Gal(L/K ). Since σ fixes u + v and
ζu+ ζ 2v,

u+ v = σ(u)+ σ(v) and ζu+ ζ 2v = ζσ (u)+ ζ 2σ(v). (1)

Note that
( 1
ζ

1
ζ 2

)
has a nonzero determinant and thus(

1 1
ζ ζ 2

)(
x
y

)
=

(
σ(u)+ σ(v)

ζσ (u)+ ζ 2σ(v)

)
(2)

has a unique solution. By (1), x = u, y = v is a solution to (2) and x = σ(u), y = σ(v) is a solution
to (2) as well. Therefore u = σ(u). By the Galois correspondence, u ∈ K, and thus (b) holds. Thus
u3
= (−B+C)/2 ∈ K. Since C = 2u3

+ B, C ∈ K and therefore

1= B2
+ 4A3/27= C2

is a square in K, and (a) is true. �

Lemma 6. Let p be a prime, p 6= 3, and let a ∈ Zp with |a|p = 1. Then a is a cube in Qp if and only if
a (mod p) is a cube in Zp/pZp.

Proof. Suppose that a is a cube in Zp. Then a is a cube in Zp/pZp by the nature of quotient rings.
Conversely, suppose a0 is a cube in Z/pZ where a0 ≡ a (mod p), and let b0 ∈ Z/pZ satisfy b3

0 ≡

a0 (mod p). Let f (x)= x3
− a. Note that p does not divide 3 or b0. By the strong triangle inequality,

| f (b0)|p = |b3
0− a|p ≤max{|b3

0− a0|p, |a0− a|p} ≤ 1
p .

Further,

| f ′(b0)|p = |3b2
0|p = 1.

By Hensel’s lemma, a is a cube in Qp. �

Theorem 7. Let p be a prime, with p ≡ 1 (mod 3). Then the following algorithm yields τ3,p.

(1) Create a list, in ascending order of Mahler measure, of all irreducible, noncyclotomic cubic poly-
nomials in Z[x] with Mahler measure bounded above by 8.5. Let f (x) be the first polynomial on
the list.

(2) Convert f (x) into depressed form g(x)= x3
+ Ax + B and let 1= B2

+ 4A3/27.

(3) If 1 is not a square in Qp, return to step (2) with the next polynomial on the list.

(4) If A = 0, let C = −B, and otherwise let C be a square root of 1 in Qp. If (−B + C)/2 is
not a cube in Qp, return to step (2) with the next polynomial on the list. Otherwise, terminate,
giving τ3,p =

1
3 log M( f ).

Proof. Since τ3,p ≤ τ
ab
3,p, by Theorem 3 we know that τ3,p ≤ 0.70376. By [BG06, Proposition 1.6.7], a list

of all polynomials with length less than 68 will contain all irreducible, noncyclotomic, cubic polynomials
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with Mahler measure bounded above by 8.5. Any degree 3 algebraic number of height less than or equal to
0.70376 will be a root of a polynomial in the list. Thus, this algorithm will always terminate successfully.

Let f be the polynomial being considered. By Theorem 5, steps (3) and (4) will detect exactly when
f splits completely over Qp. �

2.4. Case 2. Suppose p ≡ 2 (mod 3).

Theorem 8. Let K be a field of characteristic not equal to 2 or 3, K ′ be an algebraic closure of K, ζ be
a primitive cube root of unity in K ′, and assume that ζ /∈ K. Let f (x)= x3

+ Ax + B ∈ K [x] with B 6= 0
and let 1 = B2

+ 4A3/27. If A = 0, let C = −B, and if A 6= 0, let C be either square root of 1 in K ′.
Then f splits completely over K if and only if

(a) 1 is a square in K (ζ ) and not a square in K, and

(b) (−B+C)/2 is a cube in K (ζ ) and not a cube in K.

Proof. Let u be a cube root of (−B+C)/2 and let v =−A/(3u). By Lemma 4, the roots of f are u+ v,
ζu+ ζ 2v, and ζ 2u+ ζv.

We first suppose f splits completely in K. Let L be a Galois extension of K that contains u and ζ . Let
σ ∈ Gal(L/K (ζ )). We want to show that σ must fix u. Since we are assuming that f splits completely
over K, σ must fix u+ v, ζu+ ζ 2v, and ζ 2u+ ζv,

u+ v = σ(u)+ σ(v), (3)

ζ 2u+ ζv = ζ 2σ(u)+ ζσ (v). (4)

By multiplying (3) by ζ and subtracting (4), we obtain

(ζ − ζ 2)u = (ζ − ζ 2)σ (u), (5)

so σ(u)= u because ζ 6= ζ 2. Thus, since all elements in Gal(L/K (ζ )) fix u, u must be in K (ζ ).
It remains to show u /∈ K. Let τ ∈ Gal(L/K ) be such that τ interchanges ζ and ζ 2. We now show that

τ does not fix u. Since the roots of f must all be fixed by τ ,

ζu+ ζ 2v = ζ 2τ(u)+ ζ τ(v), (6)

ζ 2u+ ζv = ζ τ(u)+ ζ 2τ(v). (7)

By multiplying (7) by ζ , and subtracting (6), we obtain

(1− ζ )u = (1− ζ )τ (v) (8)

and note that τ(v)= u, so τ does not fix u. Thus u /∈ K and (b) holds.
Further, u ∈ K (ζ ), so u3

= (−B+C)/2∈ K (ζ ), and thus1 is a square in K (ζ ) since C ∈ K (ζ ). Since
K (u) is contained within K (ζ ), a quadratic extension of K, and u /∈ K, it follows that [K (u) : K ] = 2.
For sake of contradiction, suppose 1 is a square in K. Then u3

∈ K, so [K (u) : K ] = 3 which is not true.
Thus 1 is not a square in K, and (a) holds.
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Conversely, suppose that (a) and (b) are true. Note that if A = 0, then 1 is a square in K, contradict-
ing (a). Thus, A 6= 0. Let σ denote the nontrivial element of Gal(K (ζ )/K ). Since ζ and ζ 2 share a
degree 2 minimal polynomial, σ must permute ζ and ζ 2.

By (a) and (b), u, u3 /∈ K and u, u3
∈ K (ζ ). Since u3 and v3 are the roots of r(z)= z2

+ Bz− A3/27,
we have σ(u)3 = σ(u3)= v3. Therefore, either σ(u)= v, σ(u)= ζv, or σ(u)= ζ 2v.

We will now show that σ(u)= v by eliminating the other two options by way of contradiction. We
rely on the fact that elements of the Galois group send roots of f to roots of f , and that σ 2(u)= u. If
σ(u)= ζv, then u = ζ 2σ(v), and σ(u+ v)= σ(u)+ σ(v)= ζv+ ζu. Since ζv+ ζu is not a root of f ,
σ(u) 6= ζv. If σ(u) = ζ 2v, then u = ζσ (v), and σ(u + v) = ζ 2u + ζ 2v. Since ζ 2u + ζ 2v is not a root
of f , σ(u) 6= ζ 2v.

Therefore, σ(u)= v and σ(v)= u. Thus

σ(u+ v)= σ(u)+ σ(v)= v+ u,

σ (ζu+ ζ 2v)= σ(ζu)+ σ(ζ 2v)= ζ 2v+ ζu,

σ (ζ 2u+ ζv)= σ(ζ 2u)+ σ(ζv)= ζv+ ζ 2v.

Since σ fixes the roots of f , f splits completely in K. �

Let p ≡ 2 (mod 3). The third cyclotomic polynomial, 83(x)= x2
+ x + 1, has discriminant −3 and is

the minimal polynomial for ζ . Since −3 is not a square in Qp, 83(x) is irreducible over Qp, and thus
Qp does not contain a primitive cube root of unity. There are exactly three quadratic extensions of Qp:
Qp(
√

p),Qp(
√
−3), and Qp(

√
−3p). Let K = Qp(

√
−3) = Qp(ζ ), the unique unramified quadratic

extension of Qp. The p-adic absolute value on Qp extends uniquely to Qp(
√
−3) by

|a+ b
√
−3|p = |NK/Qp(a+ b

√
−3)|1/2p = |a

2
+ 3b2

|
1/2
p .

The following three lemmas summarize some basic facts about this field.

Lemma 9. Let p ≡ 2 (mod 3), and K =Qp(
√
−3). For x ∈ K×, |x |p ∈ pZ.

Proof. Let x = a+ b
√
−3, with a, b ∈Qp and x 6= 0. Suppose |a|p 6= |b|p. Then

|x |p = |a2
+ 3b2

|
1/2
p =max{|a|p, |b|p} ∈ pZ.

Suppose instead that |a|p = |b|p = p`. Set a0 = p`a and b0 = p`b. Note that since |a0|p = |b0|p = 1,
we have |a0|p, |b0|p ∈ pZ. Thus,

|a2
0 + 3b2

0|p ≤max{1, |3|p} ≤ 1.

Suppose, for the sake of contradiction, that |a2
0 + 3b2

0|p < 1. Then we have that a2
0 + 3b2

0 ≡ 0 (mod p),
which is a contradiction since −3 is not a quadratic residue modulo p. Thus

|x |p = |a2
+ 3b2

|
1/2
p = |p

−2`(a2
0 + 3b2

0)|
1/2
p = p`|a2

0 + 3b2
0|

1/2
p = p` ∈ pZ. �
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Lemma 10. Let p be a prime with p ≡ 2 (mod 3), K =Qp(
√
−3), and C ∈ K. Let k ∈ N, p - k. Then

f (x)= xk
−C has a root in K if and only if

(a) |C |p = pk` for some l ∈ Z, and

(b) pk`C (mod p) is a k-th power in Zp[
√
−3]/(p).

Proof. First we assume the existence of r ∈ K so that f (r) = 0, and verify that (a) and (b) hold. By
Lemma 9, |r |p = p` for some ` ∈ Z. Since

|C |p = |r k
|p = pk`,

(a) is true. Further,
pklC = pklr k

= (plr)k

and thus pklC is the k-th power of plr (mod p) in Z[
√
−3], and therefore also holds after reduction

modulo (p).
Conversely, we suppose C ∈Qp(

√
−3) satisfies conditions (a) and (b), and show that C is a k-th power

in K. Replacing C with pklC , without loss of generality we may assume |C |p = 1. By condition (b),
there exists a+b

√
−3∈Zp[

√
−3]/(p), where a, b ∈ {0, 1, 2, . . . , p−1} and C ≡ (a+b

√
−3)k (mod p).

Then
| f (a+ b

√
−3)|p = |(a+ b

√
−3)k −C |p ≤ 1

p ,

| f ′(a+ b
√
−3)|p = |k(a+ b

√
−3)k−1

|p = 1.

Thus, by Hensel’s lemma f has a root in K. �

Lemma 11. Let p be a prime with p ≡ 2 (mod 3), and K =Qp(
√
−3). Let x ∈Qp be nonzero and the

square of an element in K. Then exactly one of the following two cases is true:

(a) x = a2 for some a ∈Qp.

(b) x =−3b2 for some b ∈Qp.

Proof. Suppose x = (a+ b
√
−3)2 for a, b ∈Qp. Then

x = a2
− 3b2

+ 2ab
√
−3.

Since
√
−3 /∈Qp, we have ab = 0. If a = 0, then x =−3b2 and (b) holds. If b = 0, then x = a2 and (a)

holds. �

The previous lemma gives us the machinery to detect and solve for a square root in K, since x is a
square in K and not in Qp if and only if x/(−3)= b2 for some b ∈Qp.

Theorem 12. Let p be an odd prime, with p ≡ 2 (mod 3). Then the following algorithm yields τ3,p.

(1) Create a list, in ascending order of Mahler measure, of all irreducible, noncyclotomic cubic polyno-
mials in Z[x] with Mahler measure less than 8.5. Let f (x) be the first polynomial on the list.

(2) Convert f (x) into depressed form g(x)= x3
+ Ax + B and let 1= B2

+ 4A3/27.



398 EMERALD STACY

(3) If 1 is a square in Qp or is not a square in Qp(
√
−3), return to step (2) with the next polynomial

on the list.

(4) If A = 0, let C =−B, and otherwise let C be a square root of 1 in Qp(
√
−3). If (−B+C)/2 is not

a cube in Qp(
√
−3), return to step (2) with the next polynomial on the list.

(5) If (−B +C)/2 is a cube in Qp, return to step (2) with the next polynomial on the list. Otherwise,
terminate, giving τ3,p =

1
3 log M( f ).

Proof. Since τ3,p ≤ τ
ab
3,p, by Theorem 3 we know that τ3,p ≤ 0.70376. By [BG06, Proposition 1.6.7], a list

of all polynomials with length less than 68 will contain all irreducible, noncyclotomic, cubic polynomials
with Mahler measure bounded above by 8.5. Any degree 3 algebraic number of height less than or equal to
0.70376 will be a root of a polynomial in the list. Thus, this algorithm will always terminate successfully.

Let f be the polynomial being considered. By Theorem 8, steps (3), (4), and (5) will detect exactly
when f splits completely over Qp. �

2.5. Implementation. The function is_cube_in_k checks to see whether A+ B
√
−3 is a cube in K =

Qp(
√
−3) by applying Lemma 10.

def is_cube_in_k(A,B,p):
A = K(A);
B = K(B);
AA = A.list();
BB = B.list();
A0 = AA[0];
B0 = BB[0];
if A.abs()<1:

A0 = 0
if B.abs()<1:

B0 = 0
for c in [0..p-1]:

for d in [0..p-1]:
if (c*c*c - 9*c*d*d)%p==A0:

if (3*c*c*d - 3*d*d*d)%p==B0:
return True

return False

The function is_cube_in_Qp checks to see if A is a cube in Qp by applying Lemma 6.

def is_cube_in_Qp(A,p):
val = A.ordp();
if 3.divides(val)==True:

L = A.expansion();
a = L[0];
if IsCubeInFp(a,p)==True:

return True;
return False

The function tau_dp_1mod3 determines τ3,p for the prime p where p ≡ 1 (mod 3), by implementing
the algorithm described in Theorem 7. Recall the array Polynomials contains the contents of the file
irred_polynomials_L68, which has L entries. These were calculated in Section 2.1.
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def tau_dp_1mod3(p):
i = 0;
while i < L-1:

A = Polynomials[i][5];
B = Polynomials[i][6];
D = Polynomials[i][7];
A = K(A);
B = K(B);
D = K(D);
if QQ(D).is_padic_square(p)==True:

if A==0:
C = -B;

if A!=0:
C = D.square_root();

Check = (C - B) / 2;
if is_cube_in_Qp(Check,p)==True:

return Polynomials[i]
i = i + 1;

return False

The function tau_dp_2mod3 determines τ3,p for the prime p where p ≡ 2 (mod 3), by implementing
the algorithm described in Theorem 12.

def tau_dp_2mod3(p):
i = 0;
while i < L-1:

D = Polynomials[i][7];
if D.is_padic_square(p)==False:

b = D / (-3);
if b.is_padic_square(p)==True:

a = - Polynomials[i][6] / 2;
b = K(b);
b = sqrt(b) / 2;
if is_cube_in_k(a,b,p)==True:

return Polynomials[i]
i=i+1;

return False

The following code determines τ3,p for all primes p greater than 5, up to and including the N -th prime.
Polynomials=load(’irred_polynomials_L68’)
L=len(Polynomials)
P=Primes(); # P is now a list of all primes
N=25
rows = [[’P’, ’$\tau_{3,p}$’, ’Polynomial’]]
for i in[2..N]:

p = P.unrank(i);
K = Qp(p, prec = 6, type = ’capped-rel’, print_mode = ’series’);
if p%3==1:

tdp = tau_dp_1mod3(p)
Poly = tdp[1]*x^3 + tdp[2]*x^2 + tdp[3]*x + tdp[4];
h = tdp[8].n(digits=5);
rows.append([p,h,Poly])

if p%3==2:
tdp = tau_dp_2mod3(p)
Poly = tdp[1]*x^3 + tdp[2]*x^2 + tdp[3]*x +tdp[4];
h = tdp[8].n(digits=5);
rows.append([p,h,Poly])
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3. Results

Table 2 contains some values for τ3,p.

p τ3,p fα p τ3,p fα p τ3,p fα

5 0.36620 x3
− 2x2

− x − 3 127 0.23105 x3
− x2
− 2 277 0.23105 x3

− x2
− 2

7 0.30387 2x3
− 2x2

+ x − 2 131 0.12741 x3
− x2
− 1 281 0.26986 x3

− 2x2
− x + 1

11 0.36620 x3
− x2
− 2x − 3 137 0.30697 x3

− x2
− 3x − 2 283 0.12741 x3

− x2
− 1

13 0.26986 x3
− 2x2

− x + 1 139 0.23105 x3
− x2
− x + 2 293 0.12741 x3

− x2
− 1

17 0.23105 x3
− x2
− x + 2 149 0.12741 x3

− x2
− 1 307 0.093733 x3

− x2
+ 1

19 0.23105 x3
− x2
− 2 151 0.28206 2x3

− x2
+ 2 311 0.20313 x3

− x2
− x − 1

23 0.23105 x3
− x2
+ x − 2 157 0.23105 x3

− 2x − 2 313 0.23105 x3
− 2x − 2

29 0.26986 x3
− 2x2

− x + 1 163 0.20313 x3
− x2
− x − 1 317 0.093733 x3

− x2
+ 1

31 0.23105 x3
− x − 2 167 0.093733 x3

− x2
+ 1 331 0.28206 2x3

− x2
+ 2

37 0.27319 x3
− x2
− 2x − 2 173 0.093733 x3

− x2
+ 1 337 0.26986 x3

− 2x2
− x + 1

41 0.23105 x3
− x2
+ x − 2 179 0.27319 x3

− x2
− 2x − 2 347 0.093733 x3

− x2
+ 1

43 0.23105 x3
− 2 181 0.26986 x3

− 2x2
− x + 1 349 0.12741 x3

− x2
− 1

47 0.12741 x3
− x2
− 1 191 0.23105 x3

− x2
− 2 353 0.23105 x3

− x2
− 2

53 0.20313 x3
− x2
− x − 1 193 0.23105 x3

− x2
+ x − 2 359 0.23105 x3

− x − 2
59 0.093733 x3

− x2
+ 1 197 0.23105 x3

− x2
− x + 2 367 0.23105 x3

− x2
− 2

61 0.28206 2x3
− x2
+ 2 199 0.20313 x3

− x2
− x − 1 373 0.23105 x3

− x2
− x + 2

67 0.12741 x3
− x2
− 1 211 0.093733 x3

− x2
+ 1 379 0.12741 x3

− x2
− 1

71 0.23105 x3
− x2
− x + 2 223 0.093733 x3

− x2
+ 1 383 0.23105 x3

− x2
− x + 2

73 0.29111 2x3
− x2
− 2 227 0.12741 x3

− x2
− 1 389 0.23105 x3

− x2
− x + 2

79 0.28612 x3
− 2x2

− 2 229 0.23105 x3
− x2
+ x − 2 397 0.20313 x3

− x2
− x − 1

83 0.23105 x3
− 2x − 2 233 0.27319 x3

− x2
− 2x − 2 401 0.20313 x3

− x2
− x − 1

89 0.27535 2x3
− 2x2

− x + 2 239 0.26986 x3
− 2x2

− x + 1 409 0.30387 2x3
− 2x2

+ x − 2
97 0.26986 x3

− 2x2
− x + 1 241 0.30697 x3

− x2
− 3x − 2 419 0.20313 x3

− x2
− x − 1

101 0.093733 x3
− x2
+ 1 251 0.23105 x3

− x − 2 421 0.20313 x3
− x2
− x − 1

103 0.20313 x3
− x2
− x − 1 257 0.20313 x3

− x2
− x − 1 431 0.12741 x3

− x2
− 1

107 0.23105 x3
− x − 2 263 0.27319 x3

− x2
− 2x − 2 433 0.23105 x3

− 2
109 0.23105 x3

− 2 269 0.20313 x3
− x2
− x − 1 439 0.23105 x3

− x2
− x + 2

113 0.23105 x3
− x − 2 271 0.093733 x3

− x2
+ 1 443 0.23105 x3

− x2
− 2

Table 2. Some values for τ3,p.

4. Conclusion and future work

In this paper we relied on the fact that we can determine that a finite list of polynomials is guaranteed to
contain one that splits over Qp for any prime p. We restricted our search to cubic numbers that exist in
abelian extensions of Q to prove this. Moving forward, we will determine that we can guarantee that for
any degree d, there is some Nd ∈ Z such that τ ab

d,p depends only on p (mod Nd). For example, N2 = 5
and N3 = 228979643050431.

When we look at the small nonzero values attained by the height function on cubic numbers, we see
that the smallest value is 0.093733. It would be interesting to classify all primes such that τ3,p = 0.093733.
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Counting points on superelliptic curves
in average polynomial time

Andrew V. Sutherland

In memory of Peter L. Montgomery.

We describe the practical implementation of an average polynomial-time algorithm for counting points
on superelliptic curves defined over Q that is substantially faster than previous approaches. Our algo-
rithm takes as input a superelliptic curve ym

= f (x) with m ≥ 2 and f ∈ Z[x] any squarefree polynomial
of degree d ≥ 3, along with a positive integer N . It can compute #X (Fp) for all p ≤ N not divid-
ing mlc( f )disc( f ) in time O(md3 N log3 N log log N ). It achieves this by computing the trace of the
Cartier–Manin matrix of reductions of X . We can also compute the Cartier–Manin matrix itself, which
determines the p-rank of the Jacobian of X and the numerator of its zeta function modulo p.

1. Introduction

Let X/k by a smooth projective curve of genus g > 0 whose function field is defined by an equation of
the form

ym
= f (x)

with m > 1 prime to the characteristic p of k and f ∈ k[x] a squarefree polynomial of degree d ≥ 3. We
shall call such a curve X a superelliptic curve. We note that not all authors require f to be squarefree
or p - m, while others require d and m to be coprime; our definition follows the convention in [21; 27]
and is equivalent to the class of cyclic covers of P1 considered in [2; 13]. One can compute the genus
of X as

g =
(d − 2)(m− 1)+m− gcd(m, d)

2
(1)

via the Riemann–Hurwitz formula. Well-known examples of superelliptic curves include elliptic curves,
hyperelliptic curves, Picard curves, and Fermat curves.

The author was supported by Simons Foundation grant 550033.
MSC2010: primary 11G20; secondary 11M38, 11Y16, 14G10.
Keywords: superelliptic curve, Cartier–Manin matrix, Hasse–Witt matrix, average polynomial-time.

403

https://doi.org/10.2140/obs.2020.4-1
https://doi.org/10.2140/obs.2020.4-1
https://doi.org/10.2140/obs.2020.4.403
http://msp.org
https://en.wikipedia.org/wiki/Peter_Montgomery_(mathematician)


404 ANDREW V. SUTHERLAND

We are primarily interested in k =Q where X has an associated L-function L(X, s)=
∑

ann−s that
we would like to “compute”. For us this means computing the integers an for all n up to a bound N that
is large enough for us to approximate special values of L(X, s) to high precision, and to compute upper
bounds on its analytic rank that we can reasonably expect to be sharp. This requires N to be on the order
of the square root of the conductor of the Jacobian of X, and in practice we typically take N to be about
30 times this value.

The fact that L(X, s) is defined by an Euler product implies that it suffices to compute an for prime
powers n ≤ N. Nearly all of the prime powers n ≤ N are in fact primes p, so this task is overwhelmingly
dominated by the time to compute ap for primes p ≤ N. Indeed, even if we spend O(pe log2 p) time
computing each ape ≤ N with e > 1 (which for primes of good reduction can be achieved by naïve
point-counting), we will have spent only O(N log N ) time, which is roughly the time it takes just to
write down all the an for n ≤ N. For primes of good reduction for X, including all p - m lc( f ) disc( f ),1

we may compute ap as

ap = p+ 1− #X (Fp);

in other words, by counting points on the reduction of X modulo p. See [6] for a discussion of how
primes of bad reduction may be treated. Alternatively, if one is willing to assume that the Hasse–Weil
conjecture for L(X, s) holds, one can use the knowledge of an at powers of good primes to determine the
an at powers of bad primes (and in particular, the primes p|m not treated by [6]) by using the functional
equation to rule out all but one possibility; see [3, §5] for a discussion of this approach when g = 2.

Another motivation for computing ap for good primes p≤ N is to compute the sequence of normalized
Frobenius traces ap/

√
p that appear in generalizations of the Sato–Tate conjecture. The moments of this

distribution encode certain arithmetic invariants of X, including, for example, the rank of the endomor-
phism ring of its Jacobian [9, Proposition 1], as well as information about its Sato–Tate group [11; 22].
Indeed, the initial motivation for this work (and its first application) was to compute Sato–Tate distribu-
tions for the genus 3 superelliptic curves with (m, d) ∈ {(3, 4), (4, 3), (4, 4)} that arise as smooth plane
quartics in the database described in [25] and played a role in the recent classification of Sato–Tate groups
of abelian threefolds [12]. The sequence of normalized Frobenius traces can also be used to numerically
investigate the error term in the Sato–Tate conjecture, and in particular, predictions regarding its leading
constant [7]. The ability to efficiently compute many integer values of ap also supports investigations of
generalizations of the Lang–Trotter conjecture, as well as a recent question of Serre regarding the density
of “record” primes, those with −ap > 2g

√
p− 1 (personal communication, 2019).

The algorithm we present here does more than just compute ap. Following the approach of [15; 16; 17],
which treated the case of hyperelliptic curves, for each good prime p we compute a g× g matrix Ap

giving the action of the Cartier–Manin operator on a basis for the space of regular differentials of the
reduction of X modulo p; see Section 2 for details. The matrix Ap is the transpose of the Hasse–Witt

1For m|d some good primes may divide lc( f ), but to simplify the presentation we exclude them here.
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matrix. Like the Hasse–Witt matrix, it satisfies

det(I − T Ap)≡ Lp(T ) mod p,

where Lp(T ) is the integer polynomial that appears in both the Euler product L(X, s)=
∏

p Lp(p−s)−1

and the numerator of the zeta function of the reduction of X modulo p:

Zp(T ) := exp
(∑

n≥1

#X (Fpn )
T n

n

)
=

Lp(T )
(1− T )(1− pT )

.

In particular, we have ap ≡ tr Ap mod p, and for p > 16g2 this uniquely determines ap ∈ Z, since
|ap| ≤ 2g

√
p, by the Weil bounds. The matrix Ap is also of independent interest, since it can be used

to compute the p-rank of the reduction of X modulo p, something that cannot be deduced solely from
Lp(T ).

Our main result is the following theorem, in which ‖ f ‖ = log maxi | fi | denotes the logarithmic height
of a nonzero integer polynomial f (x)=

∑
i fi x i.

Theorem 1. Given a superelliptic curve X : ym
= f (x) with f ∈ Z[x] of degree d and N ∈ Z>0, the

algorithm COMPUTECARTIERMANINMATRICES outputs the Cartier–Manin matrices Ap of the reduc-
tions of X modulo all primes p ≤ N not dividing m lc( f ) disc( f ). If we assume m, d, ‖ f ‖ are bounded
by O(log N ) the algorithm runs in O(m2d3 N log3 N ) time using O(md2 N ) space; it can alternatively
compute Frobenius traces ap ∈ Z for p ≤ N in time O(md3 N log3 N ).

Remark 2. The assumption m, d, ‖ f ‖= O(log N ) ensures that the complexity of multiplying the integer
matrices used in the algorithm is dominated by the cost of computing FFT transforms of the matrix
entries, which eliminates any dependence on the exponent ω of matrix multiplication; one can replace
d3 with dω+1 and then remove this assumption. We note that our complexity bound relies on the recently
improved M(n)= n log n bound on integer multiplication [18]. While the algorithm that achieves this
bound is not practical, many FFT-based implementations effectively achieve this growth rate within the
feasible range of computation, which for our purposes, is certainly limited to integers that fit in random
access memory; see [26, Algorithm 8.25], for example.

We also obtain an algorithm that can be used to compute Ap for a single superelliptic curve X/Fp. The
asymptotic complexity is comparable to that achieved in [2] which describes the algorithm that is now
implemented in version 9 of Sage. We include this result because it contains several components that
are used by the average polynomial-time algorithm we present. We should emphasize that the algorithm
in [2] can compute Lp(T ) mod pn for any n≥ 1, and taking n sufficiently large yields Lp ∈Z[T ], whereas
we focus solely on the case n = 1 (we gain a small but not particularly significant performance advantage
in this case).

Theorem 3. Given a superelliptic curve X : ym
= f (x) with f ∈ Fp[x] of degree d, the algorithm COM-

PUTECARTIERMANINMATRIX is able to compute the Cartier–Manin matrix of X using O(p1/2md2log p)
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space in O(p1/2m(dω+1
+ d3 log p) log p(log log p)) time, and also using O((md + d2) log p) space in

O((p+ d)md2 log p log log p) time.

In the article [2] noted above the authors consider a particular curve

X : y7
= x3
+ 4x2

+ 3x − 1

for which they estimate that it would take approximately six months (on a single core) for their algorithm
to compute the L-polynomials Lp(T ) for all primes p ≤ 224 of good reduction. This is an improvement
over an estimated three years for an earlier algorithm due to Minzlaff [20] that is implemented in Magma.
Computing Lp(T ) mod p is an easier problem that would likely take about a week or so using the
algorithm in [2], based on timings taken using a representative sample of p ≤ 224. The algorithm we
present here can accomplish this task in half an hour, and less than ten minutes if we only compute
Frobenius traces.

See Tables 1 and 2 in Section 7 for detailed performance comparisons for various shapes of superel-
liptic curves.

2. The Cartier operator

For background on differentials of algebraic function fields we refer the reader to [8, §2] and [23, §4].
Let K be a function field of one variable over a perfect field k of characteristic p > 0 that we assume
is the full field of constants of K. Let �K denote its module of differentials, which we identify with its
module of Weil differentials via [23, Definition 4.17] and [23, Remark 4.3.7]. Let x ∈ K be a separating
element, so that K/k(x) is a finite separable extension, and let K p denote the subfield of p-th powers.
Then (1, x, . . . , x p−1) is a basis for K as a K p-vector space, and every z ∈ K has a unique representation
of the form

z = z p
0 + z p

1 x + · · ·+ z p
p−1x p−1,

with z0, . . . , z p−1 ∈ K p, and every rational differential form ω= zdx can be uniquely written in the form

ω = (z p
0 + z p

1 x + · · · z p
p−1x p−1)dx .

The (modified) Cartier operator C :�K →�K is then defined by

C(ω) = z p−1dx .

The Cartier operator is uniquely characterized by the following properties:

(1) C(ω1+ω2)= C(ω1)+ C(ω2) for all ω1, ω2 ∈�K .

(2) C(z pω)= z C(ω) for all z ∈ K and ω ∈�K .

(3) C(dz)= 0 for all z ∈ K .

(4) C(dz/z)= dz/z for all z ∈ K×.
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In particular, it does not depend on our choice of a separating element x . Moreover, it maps regular
differentials to regular differentials and thus restricts to an operator on the space

�K (0) = {ω ∈�K : ω = 0 or div(ω)≥ 0},

which we recall is a k-vector space whose dimension g is equal to (and often used as the definition of)
the genus of K ; see [23, Example 4.12-17] for these and other standard facts about the Cartier operator.

Definition 4. Let ω = (ω1, . . . , ωg) be a basis for �K (0) and define ai j ∈ k via

C(ω j )=

g∑
i=1

ai jωi .

The Cartier–Manin matrix of K (with respect to ω) is the matrix A = [ai j ] ∈ kg×g.

If X/k is a smooth projective curve with function field k(X)= K, we also call A the Cartier–Manin
matrix of X. This matrix is closely related to the Hasse–Witt matrix B of X, which is defined as the
matrix of the p-power Frobenius operator acting on H 1(X,OX ) with respect to some basis. As carefully
explained in [1], the matrices A and B can be related via Serre duality, and for a suitable choice of
basis one finds that B = [a p

i j ]
T. In the case of interest to us k = Fp is a prime field and the Cartier–

Manin and Hasse–Witt matrices are simply transposes of each other, and hence have the same rank and
characteristic polynomials, but we shall follow the warning/request of [1] and call A the Cartier–Manin
matrix, although one can find examples in the literature where A is called the Hasse–Witt matrix (see [1]
for a list).

We shall apply the method of Stöhr–Voloch [24] to compute the Cartier–Manin matrix of a smooth
projective curve X with function field K = k(X). Let us write K as k(x)[y]/(F), where x ∈ X is a
separating element and y is an integral generator for the finite separable extension K/k(x) with minimal
polynomial F ∈ k[x][y]. We now define the differential operator

∇ =
∂2p−2

∂x p−1∂y p−1

which maps x (i+1)p−1 y( j+1)p−1 to x i p y j p and annihilates monomials not of this form; it thus defines a
semilinear map ∇ : K → K p. Writing Fy for ∂

∂y F ∈ k[x, y], for any h ∈ K we have the identity

C
(

h
dx
Fy

)
= (∇(F p−1h))1/p dx

Fy
, (2)

given by [24, Theorem 1.1]. If we choose a basis for �X (0) using regular differentials of the form
hdx/Fy , we can compute the action of the Cartier operator on this basis via (2). To construct such a
basis we shall use differentials of the form

ωk` = xk−1 y`−1 dx
Fy
, (k, `≥ 1, k+ `≤ deg(F)− 1). (3)
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Writing F(x, y)p−1
=
∑

i, j F p−1
i j x i y j (defining F p−1

i, j ∈ k for all i, j ∈ Z), for k, `≥ 1 one finds that

∇

(∑
i, j≥0

F p−1
i j x i+k−1 y j+`−1

)
=

∑
i, j≥1

F p−1
i p−k, j p−`x

(i−1)p y( j−1)p. (4)

Now F p−1
i p−k, j p−` is nonzero only if we have (i+ j)p− (k+`)≤ (p−1) deg(F), and k+`≤ deg(F)−1,

so we can restrict the sum on the RHS to i + j ≤ deg(F)− 1. From (2) and (4) we obtain

C(ωk`)=
∑

i, j≥1

(F p−1
i p−k, j p−`)

1/pωi j . (5)

When X is a smooth plane curve the complete set of ωi j defined in (3) is a basis for �K (0) and we can
read off the entries of the Cartier–Manin matrix for X directly from (5). In general not all of the ωi j

necessarily lie in �K (0), some of them might not be regular, but the subset that do (those corresponding
to adjoint polynomials) form a basis for �K (0); see [14; 24]. In the case of superelliptic curves this
subset is given explicitly by Lemma 6.

Definition 5. For a, b ∈ Z with b> 0, let a rem b = a− bba/bc denote the unique integer in the interval
[0, b− 1] ∩ (a+ bZ).

Lemma 6. Let k be a perfect field of positive characteristic p, let X/k be a superelliptic curve defined
by F(x, y) = ym

− f (x) = 0, let d = deg f , and for i, j ≥ 1 let ωi j = x i−1 y j−1dx/Fy ∈ �K , where
K = k(x)[y]/(F) is the function field of X. Then the set

ω = {ωi j : mi + d j < md}

is a k-basis for �K (0), with 1≤ i < d −bd/mc and 1≤ j < m−bm/dc. Moreover, if we define

d j = d −bd j/mc− 1 and mi = m−bmi/dc− 1, (6)

then the ωi j ∈ ω are precisely those for which 1≤ i ≤ d j and 1≤ j ≤ mi .

Proof. Note that ωi j =
1
m x i−1 y j−mdx , with p - m. It follows from [21, Proposition 3.8] (which treats

X/C but whose proof also works for X/k and can be independently derived using the methods of [14])
that the set

{x i−1 y−kdx : 1≤ i < d, 1≤ k ≤ m− 1, dk−mi ≥ gcd(m, d)}

is a basis for �K (0). Taking k = m− j and rearranging yields the basis

ω = {ωi j : mi + d j ≤ md − gcd(m, d)} = {ωi j : mi + d j < md},

and the bounds on i and j immediately follow. �

For X/k defined by F(x, y)= f (x)− ym
= 0, if we let f n

a denote the coefficient of xa in f (x)n then

F p−1
ab =

{
f p−1−b/m
a if m | b and b ≤ m(p− 1),

0 otherwise,
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(here we have used
(p−1

e

)
(−1)e ≡ 1 mod p), thus for all 1≤ i, k < d and 1≤ j, ` < m we have

F p−1
i p−k, j p−` =

{
f p−1−( j p−`)/m
ip−k if m | ( j p− `),

0 otherwise.

Now 1≤ j, ` < m and p - m, so whenever

F p−1
i p−k, j p−` 6= 0,

we must have `= j p rem m > 0 and

n j = p− 1− ( j p− `)/m =
(m− j)p− (m− `)

m
= p− 1−b j p/mc. (7)

Let us order the basis for �K (0) given by Lemma 6 as ω = (ω11, ω21, . . . , ω12, . . .) with the ωi j

ordered first by j and then by i . The Cartier–Manin matrix of X can then be described in block form
with blocks indexed by j and ` containing entries indexed by i and k:

Ap = [B j`
] j` 1≤ j, `≤ µ = m1 = m−bm/dc− 1,

B j`
= [(b j`

ik )
1/p
]ik 1≤ i ≤ d j and 1≤ k ≤ d`,

b j`
ik =

{
f n j
i p−k if ( j p− `)/m ∈ Z≥0,

0 otherwise.

(8)

The diagonal blocks B j, j are square but the others typically will not be square, since the bound on i
depends on j while the bound on k depends on `. We also note that there is at most one nonzero B j`

in each row j, and in each column ` of [B j`
] j`, since any nonzero B j` must have `≡ j p mod m (there

will be no nonzero B j` for j if no `≤ µ satisfies `≡ j p mod m; this happens, for example, when j = 1
and d = m = 5 with p ≡ 4 mod 5).

Example 7. For m = 5 and d = 3 we have g = 4, and the 4× 4 matrix Ap consists of 3× 3= 9 blocks:
one 2× 2, two 2× 1, two 1× 2, and four 1× 1. For k = Fp, the matrices Ap for p ≡ 1, 2, 3, 4 mod 5 are

f (4p−4)/5
p−1 f (4p−4)/5

p−2 0 0

f (4p−4)/5
2p−1 f (4p−4)/5

2p−2 0 0

0 0 f (3p−3)/5
p−1 0

0 0 0 f (2p−2)/5
p−1

,


0 0 f (4p−3)/5
p−1 0

0 0 f (4p−3)/5
2p−1 0

0 0 0 0

f (2p−4)/5
p−1 f (2p−4)/5

p−2 0 0

,


0 0 0 f (4p−2)/5

p−1

0 0 0 f (4p−2)/5
2p−1

f (3p−4)/5
p−1 f (3p−4)/5

p−2 0 0

0 0 0 0

,


0 0 0 0

0 0 0 0

0 0 0 f (3p−2)/5
p−1

0 0 f (2p−3)/5
p−1 0

.

For m = 3 and d = 5 we also have g = 4 but now the 4× 4 matrix Ap consists of 2× 2 = 4 blocks:
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one 3× 3, one 3× 1, one 1× 3, and one 1× 1. For k = Fp the matrices Ap for p ≡ 1, 2 mod 3 are

f (2p−2)/3
p−1 f (2p−2)/3

p−2 f (2p−2)/3
p−3 0

f (2p−2)/3
2p−1 f (2p−2)/3

2p−2 f (2p−2)/3
2p−3 0

f (2p−2)/3
3p−1 f (2p−2)/3

3p−2 f (2p−2)/3
3p−3 0

0 0 0 f (p−1)/3
p−1


,



0 0 0 f (2p−1)/3
p−1

0 0 0 f (2p−1)/3
2p−1

0 0 0 f (2p−1)/3
3p−1

f (p−2)/3
p−1 f (p−2)/3

p−2 f (p−2)/3
p−3 0


.

In both cases tr Ap = 0 for p 6≡ 1 mod m, but this is not true in general (consider m = 4 and d = 3, for
example).

The block form of the Cartier–Manin matrix Ap given by (8) implies the following theorem, which
plays a key role in our algorithm for computing Ap and may also be of independent interest.

Theorem 8. Let X : ym
= f (x) be a superelliptic curve over a perfect field of characteristic p > 0 with

d = deg( f ). Let ω be the basis of �k(X)(0) given by Lemma 6, and for 1≤ j ≤m1 =m−bm/dc− 1, let
ω j = {ωi j ′ ∈ ω : j ′ = j}. For 1≤ j ≤ m1 the Cartier operator maps the subspace spanned by ω j to the
subspace spanned by ω`, with `≡ j p mod m, and this action is given by the matrix B j` defined in (8).
In particular, when p ≡ 1 mod m the Cartier operator fixes each of the subspaces spanned by ω j .

Proof. This is an immediate consequence of (8). �

Remark 9. In [5, Lemma 5.1] Bouw gives formulas for the coefficients of the Hasse–Witt matrix of a
general cyclic cover Y : ym

= f (x) of P1 in terms of the (possibly repeated) roots of the polynomial
f ∈ k[x], where k is an algebraically close field of characteristic p. When f is squarefree, Bouw’s
formulas agree with (8), after taking into account the transposition needed to get the Cartier–Manin
matrix and a possible change of basis (I’m grateful to Wanlin Li and John Voight for bringing this to my
attention). One can compute analogs of the formulas in (8) to handle f that are not squarefree that take
into account the multiplicities of its root, but we do not consider this case here. Note that the genus of Y
and therefore the dimensions of Ap will be less than that given by (1) when f is not squarefree, so while
the formulas may be more involved, the problem is computationally easier.

3. Linear recurrences

The results of the previous section imply that to compute the Cartier–Manin matrix Ap of a superelliptic
curve X : ym

= f (x) over Fp it suffices to compute certain coefficients of certain powers of f (x). In this
section we derive linear recurrences that allow us to do this efficiently, both when f ∈ Fp[x] and when
f ∈ Z[x] and we wish to compute certain coefficients of certain powers of the reduction of f modulo
many primes p. In this section we generalize [17, §2], which treated the case m = 2, in which case
Ap = B consists of a single block B11 (so j = ` = 1), the powers f n that appear in the matrix entries
are always the same (n = (p− 1)/2), and every prime p - m is congruent to 1 modulo m. Here we allow
all of these parameters to vary.
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Let f ∈ Z[x] be a squarefree polynomial of degree d ≥ 3, which we shall write as f (x) = xch(x)
with c = 0, 1 and h(0) 6= 0 (note that x2 - f ).2 Let h(x) =

∑r
i=0 hi x i, and for n ≥ 1 let hn

i denote the
coefficient of x i in h(x)n. As shown in [17, §2], the identities hn+1

= h · hn and (hn+1)′ = (n + 1)hn

yield the linear relation
r∑

i=0

((n+ 1)i − k)hi hn
k−i = 0, (9)

which is valid for all k ∈ Z and n ∈ Z≥0. Observing that n j = ((m− j)p− (m− `))/m is the exponent
on f in every entry of the nonzero block B j` defined in (8), let us set n = n j and rewrite (9) as

0=
r∑

i=0

((m− j)p+ `)i −mk)hi h
n j
k−i ≡

r∑
i=0

(`i −mk)hi h
n j
k−i mod p, (10)

which is valid for all k ∈ Z. We now define

v
n j
k := [h

n j
k−r+1, . . . , hn j

k ] ∈ Zr ,

and put s = p−1−cn j . The entries of vn
s mod p suffice to compute the first row of block B j` in Ap; note

that n (and potentially s) depend on j and will vary from block to block. We have vn j
0 = [0, . . . , 0, hn j

0 ] =

hn j
0 v

0
0 , where v0

0 = [0, . . . , 0, 1]. Noting that s < p and p - m and p - h0 (since f is squarefree), solving
for hn

k in (10) yields

v
n j
s ≡

v
n j
0

(mh0)ss!

s−1∏
i=0

M`
i ≡ mcn j h(c+1)n j

0 (−1)cn j+1(cn j )!v
0
0

s−1∏
i=0

M`
i mod p, (11)

where

M`
i−1 :=


0 · · · 0 (`r −mi)hr

mih0 · · · 0 (`(r − 1)−mi)hr−1
...

. . .
...

...

0 · · · mih0 (`−mi)h1

 (12)

is an integer matrix that depends on the integers i, `,m and the polynomial h of degree r , but is indepen-
dent of p. This independence is the key to obtaining an average polynomial-time algorithm.

Remark 10. Alternatively, if we define wn
k = [h

n j
k+r−1, hn j

k+r−2, . . . , hn j
k ] and t = d j p− d`− cn j , the

entries of wn
t suffice to compute the last row of block B j` in Ap. Equivalently, if we put h̃(x) =

xr h(1/x) (in other words, reverse the coefficients of h) and define ṽn
k in terms of h̃n as above, it suffices

to compute ṽn
s̃ where

s̃ = rn j − t = dn j − d j p+ d` = p− 1−b(d j rem m)p/mc. (13)

When m - d j we will have s̃ < s if c = 0 (and possibly even if c = 1), in which case we can compute the
last row more efficiently than the first.

2The reader may wish to assume c = 0 and f = h on a first reading.
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We have shown how to compute the first (or last) row of each of the blocks B j` that appear in the
Cartier–Manin matrix of the superelliptic curve X (either for X/Fp or for the reductions of X/Q modulo
varying primes p) by computing reductions of products of integer matrices modulo primes. To compute
the remaining rows in the same fashion would require working modulo powers of primes, which is
something we wish to avoid. In the next section we show how to efficiently reduce the computation of
the remaining rows to the computation of the first row using translated curves, which allows us to always
work modulo primes.

4. Translation tricks

Let X : ym
= f (x) be a superelliptic curve over Fp of genus g, with d = deg( f ). Let Ap be the

Cartier–Manin matrix Ap, and for a ∈ Fp, let Ap(a) be the Cartier–Manin matrix of the translated curve
Xa : ym

= f (x + a), whose blocks we denote B j`(a) with entries b j`
ik (a). We omit the exponent 1/p

that appears in (8) because we are now working over Fp. The curve Xa is isomorphic to X, which forces
Ap and Ap(a) to be conjugate, but these matrices are typically not equal. Our objective in this section
is to show that we can compute B j` by solving a linear system that involves the entries that appear in
just the first rows of B j`(a), where a ranges over d j = d −bd j/mc− 1 distinct values of a ∈ Fp. Note
that B j` has d j rows and d` columns, and we recall from (8) that the g× g matrix Ap is made up of µ2

blocks B j`, where µ = m1 = m−bm/dc− 1, and we have d1+ · · ·+ dµ = g. We shall assume p ≥ d,
so that d j < d distinct values of a exist in Fp; for p < d we can easily compute Ap directly from (8).

The results in this section generalize [17, §5], which treated the case m = 2, where µ= 1 and A= B11.
In our current setting Ap consists of µ×µ rectangular blocks B j` that need not be square.

For a ∈ Fp and 1≤ j ≤ µ we define the upper triangular d j × d j matrix

T j (a) = [t j
ik(a)]ik, t j

ik(a) =
(

k− 1
i − 1

)
ak−i , 1≤ i, k ≤ d j .

We also define T (a) to be the g× g block diagonal matrix with the matrices T j (a) on the diagonal, for
1≤ j ≤ µ. We note that

T j (a)−1
= T j (−a)

and T (a)−1
= T (−a), as the reader may verify (or see the proof below).

Lemma 11. For a∈Fp we have B j`(a)T `(a)=T j (a)B j` for all 1≤ j, `≤µ, and Ap(a)=T(a)ApT(−a).

Proof. From the block structure of Ap given by (8) it is clear that the first statement implies the second.
Let ω(a)= {ωi j (a)} be the basis given by Lemma 6 for Xa and define ω j (a) = {ωi j ′(a) ∈ω : j ′ = j}. By
Theorem 8, the Cartier operator of X maps the subspace spanned by ω j to the subspace spanned by ω`

via the matrix B j`, and the Cartier operator of Xa maps the subspace spanned by ω j (a) to the subspace
spanned by ω`(a) via the matrix B j`(a). We just need to check that the matrices T `(a) and T j (a)
correspond to the change of basis that occurs when we replace x with x + a. Noting that d(x + a)= dx
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and F(x + a)y = F(x)y , we have

ωk j (a)= (x + a)k−1 y j−1dx/Fy =

k∑
i=1

(
k− 1
i − 1

)
ak−i x i−1 y j−1dx/Fy

=

k∑
i=1

t j
ik(a)ωi j =

d j∑
i=1

t j
ik(a)ωi j ,

and it follows that ω j (a)= T j (a)ω j (here we are viewing ω j and ω j (a) as column vectors). This holds
for any j , including `, and the lemma follows. �

Let us now consider the computation of the d j × d` block B j`. Computing the k-th entry in the first
row of both sides of the identity B j`(a)T `(a)= T j (a)B j` given by Lemma 11 yields

d∑̀
s=1

b j`
1s (a)t

`
sk(a)=

d j∑
t=1

t j
1t(a)b

j`
tk ,

which defines a linear equation with d j unknowns b j`
tk in terms of the b j`

1s (a) and matrices T j (a) and T `(a)
we assume are known. Taking d j distinct values of a, say (a1, . . . , ad j ), yields a linear system with d j

equations and d j unknowns that we can solve because the d j × d j matrix [t j
1t(ai )]i t = [at−1

i ]i t is an
invertible Vandermonde matrix V (a1, . . . , ad j ). If we now define the d j × d` matrix

B j`
1 (a1, . . . , ad j ) = [b

j`
1s (ai )]is (14)

and let W j`
1 be the d j × d` matrix whose i-th row is the i-th row of B j`

1 times T `(ai ), we can compute
B j` as

B j`
= V (a1, . . . , ad j )

−1W j`
1 . (15)

Remark 12. If we use Remark 10 to compute the last row of B j` we can compute the first row of
B j`(ai ) for a1, . . . , ad j−1 and use (15) to deduce the last row of W j`

1 from the last row of B j`. One
might suppose that we could instead compute the last rows of the B j`(ai ) instead of their first rows, but
this is not enough to deduce B j`.

Lemma 13. Let X : ym
= f (x) be a superelliptic curve over Fp with d = deg( f ), and let a1, . . . , ad1 be

distinct elements of Fp, where d1 = d−bd/mc− 1. Given the matrices B j`
1 (a1, . . . , ad j ) for 1≤ j ≤ µ=

m1 = m − bm/dc − 1 with ` ≡ j p mod m, we can compute the Cartier–Manin matrix Ap of X using
O(md3) ring operations in Fp and space for O(md + d2) elements of Fp.

Proof. We can compute V (a1, . . . , ad j )
−1 using O(d2

j ) ring operations in Fp [10], and we can compute
T `(ai ) in O(d2

j ) ring operations (using
(k

i

)
=
(k−1

i−1

)
+
(k−1

i

)
). The computation of W j` requires O(d j d2

` )

Fp-operations, and the matrix product in (14) uses O(d2
j dl) ring operations, so it takes O(d2

j d`+d`d2
j )=

O(d3) ring operations to compute each B j`. There are at most µ < m nonzero B j` to compute, so the
total cost of computing Ap given the matrices B j`

1 (a1, . . . , ad j ) is O(md3) ring operations in Fp while
storing O(md + d2) elements of Fp. �
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Remark 14. In terms of the genus g ∼ md/2, the bound O(md3) is equivalent to O(gd2), which is
always bounded by O(g3) but can be as small as O(g) if d = O(1) (this assumes we use a sparse
representation of Ap).

Remark 15. In addition to playing a key role in our strategy for computing Ap, using translated curves
can improve performance, as noted in the case of hyperelliptic curves in [17, §6.1]. In particular, if f (x)
has a rational root a then the translated curve Xa : ym

= f (x + a) = xh(x) will have r = d − 1 and
c = d − r = 1, reducing both the dimension r and number t = p− 1− cn of matrices M`

k that appear in
the product in (11). It thus makes sense to choose our distinct translation points a to be roots of f (x)
whenever possible. Additionally, if d is divisible by m and f (x) has a rational root a, we can replace X
with X ′ : ym

= xd f (1/x + a)= g(x), where g(x) has degree d − 1, and this also applies to all translated
curves X ′a′ . This applies both locally (over Fp) and globally (over Q).

5. Accumulating remainder trees and forests

In this section we briefly recall some background on accumulating remainder trees and related complex-
ity bounds. Given a sequence of r × r matrices M0, . . . ,MN−1 and a sequence of coprime integers
m1, . . . ,m N we wish to compute the sequence of reduced partial products

Ak = M0 · · ·Mk−1 mod mk

for 1≤ k ≤ N. For 0≤ k ≤ N/2 let Bk = M2k M2k+1 and bk =m2km2k+1, where MN = MN+1 = I and
m0 = m N+1 = 1. Then A1 = M0 mod m1, and if we recursively compute Ck = B0 · · · Bk−1 mod bk =

M0 · · ·M2k−1 mod m2km2k+1 for 1≤ k ≤ N/2, we can then compute

A2k = Ck mod m2k and A2k+1 = Ck M2k mod m2k+1,

omitting C2k+1 when k = N/2. This is the REMAINDERTREE algorithm given in [16]. In our setting
we actually want to compute products of the form V

∏
k Mk that involve a row vector V, and for this

problem the REMAINDERFOREST algorithm in [16] achieves an improved time (and especially) space
complexity by splitting the remainder tree into 2κ -subtrees, for a suitable choice of κ . We record the
following result from [17], in which ‖x‖ denotes the logarithm of the largest absolute value appearing
in nonzero integer matrix or integer vector x , including the case where x is a single nonzero integer.

Theorem 16 [17]. Given V ∈ Zr, M1, . . . ,MN ∈ Zr×r, and m1, . . . ,m N ∈ Z, let n = dlog2 Ne, let B
be an upper bound on ‖

∏N
j=1 m j‖ such that B/2κ is an upper bound on ‖

∏st+t−1
j=st m j‖ for 1≤ s ≤ N/t ,

where t := 2n−κ. Let B ′ be an upper bound on ‖V ‖, and let H be an upper bound on ‖mk‖, ‖Ak‖ for
1 ≤ k ≤ N, such that log r ≤ H, and assume that r = O(log N ). The REMAINDERFOREST algorithm
computes the vectors Vk = V M1 · · ·Mk mod mk ∈ (Z/mkZ)r for 1≤ k ≤ N in

O(r2 M(B+ N H)(n− κ)+ 2κr2 M(B)+ r M(B ′))

time using space bounded by

O(2−κr2(B+ N H)(n− κ)+ r(B+ B ′)).
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This theorem implies the following corollary, which is all we shall use.

Corollary 17. Fix an absolute constant c> 0. Let N be a positive integer, let m1, . . . ,m N be a sequence
of positive coprime integers with log mk ≤ c log N, let M0, . . . ,MN−1 ∈ Zr×r be integer matrices with
r, ‖Mk‖ ≤ c log N, and let v0 ∈ Zr be a row vector with ‖v0‖ = cN log N. We can compute the vectors

vk = v0

k−1∏
i=0

Mi mod mk

for 1≤ k ≤ N in O(r2 N log3 N ) time using O(r2 N ) space.

Proof. Applying Theorem 16 with κ = 2 log log N, B = cN log N, B ′ = c log N, and H = c log N,
yields an O(r2 M(N log N ) log N ) time bound using O(r2 N ) space. Now apply M(N ) = O(N log N )
from [18]. �

6. Algorithms

We now give our algorithms for computing the Cartier–Manin matrix Ap of a superelliptic curve X/Fp

and for the reductions of a superelliptic curve X/Q modulo good primes p ≤ N. In the descriptions
below, expressions of the form “a rem m” denote the least nonnegative remainder in Euclidean division
of a by m. As above we assume X is defined by ym

= f (x) with f (x) squarefree of degree d ≥ 3. We
define µ = m−bm/dc− 1, and for 1 ≤ j ≤ µ we put d j = d −bd j/mc− 1, with d1 ≥ d2 ≥ · · · dµ as
in (6). Recall that the genus of X is g = ((d − 2)(m− 1)+m− gcd(m, d))/2, as in (1).

Algorithm (COMPUTECARTIERMANINMATRIX). Given m ≥ 2 and squarefree f ∈ Fp[x] of degree
3≤ d ≤ p with p - m, compute the Cartier–Manin matrix Ap ∈ F

g×g
p of X : ym

= f (x) as follows:

(1) Fix distinct a1, . . . , ad1 ∈ Fp that include as many roots of f (x) as possible.

(2) For j from 1 to µ such that ` = j p rem m ≤ µ:

(a) For i from 1 to d j :

(i) Let f (x + ai )= xch(x) ∈ Fp[x] with c ∈ {0, 1} and put r = deg(h).

(ii) Set n = ((m− j)p− (m− `))/m ∈ Z and s = p− 1− cn.

(iii) Compute ws = v
0
0
∏s−1

i=0 M`
i ∈ Fr

p, with M`
i ∈ Fr×r

p as in (12), and us = s! ∈ Fp.

(iv) Compute α = vn
s = m−shn−s

0 u−1
s ws ∈ Fr

p via (11).

(v) Let b j`
1 (ai ) = [αr , αr−1, . . . αr−d`+1] ∈ F

d`
p .

(b) Let B j`
1 ∈ F

d j×d`
p be the matrix with i-th row b j`

1 (ai ) as in (14) and use B j`
1 to compute

B j`
∈ F

d j×d`
p via (15).

(3) Output Ap = [B j`
] j` ∈ F

g×g
p defined as in (8), with B j`

= 0 for ` 6≡ j p mod m.

There are two ways to compute ws in step (iii). One is to compute s vector-matrix products wi+1 =

wi M`
i starting with w0 = [0, . . . , 0, 1] ∈ Fr

p, which can be accomplished using O(pr) ring operations



416 ANDREW V. SUTHERLAND

in Fp using O(r log p) space (note that M`
i has only 2r − 1 nonzero entries). Alternatively one can use

the Bostan–Gaudry–Schost algorithm [4], which uses an optimized interpolation/evaluation approach to
compute products of matrices over polynomial rings evaluated along an arithmetic progression; in our
setting we view the M`

i as matrices of linear polynomials in i evaluated along the arithmetic progression
i = 0, 1, 2, . . . , s− 1. This involves O(p1/2(rω+ r2 log p) ring operations in Fp using O(r2 p1/2) space,
via [4, Theorem 8] and [19], and we can similarly compute us = s! (but note that us =−1 in the typical
case where c = 0).

We now prove Theorem 3, which we restate here for convenience.

Theorem 3. Given a superelliptic curve X : ym
= f (x) with f ∈ Fp[x] of degree d, the algorithm COM-

PUTECARTIERMANINMATRIX is able to compute the Cartier–Manin matrix of X using O(p1/2md2log p)
space in O(p1/2m(dω+1

+ d3 log p) log p(log log p)) time, and also using O((md + d2) log p) space in
O((p+ d)md2 log p log log p) time.

Proof. The theorem follows from Lemma 13, provided that we can compute the matrices B j`
1 (a1, . . . , ad j )

within the stated complexity bounds. This computation is dominated by the cost of step (iii), which is
executed O(md) times. The cost of a ring operation in Fp can be bounded by O(M(log p)) via [26,
Theorem 9.9], which is O(log p log log p), by [18]. The Bostan–Gaudry–Schost approach yields a bit-
complexity of

O(p1/2(dω+ d2 log p) log p log log p)

time and O(d2 p1/2 log p) space per iteration, and the vector-matrix multiplication approach yields a
bit-complexity of O(pd log p log log p) and O(d log p) space per iteration; the theorem follows. �

We now present our main result, an average polynomial-time algorithm to compute the Cartier–Manin
matrices of the reductions of a superelliptic curve X/Q at all good primes p ≤ N.

Algorithm (COMPUTECARTIERMANINMATRICES). Given m ≥ 2 and squarefree f ∈ Z[x] of degree
d ≥ 3, compute the Cartier–Manin matrices Ap of the reductions of X : ym

= f (x) modulo primes p ≤ N
with p - m lc( f ) disc( f ) as follows:

(1) For primes p ≤ N with p - m lc( f ) disc( f ) initialize Ap ∈ F
g×g
p to the zero matrix.

(2) Fix distinct a1, . . . , ad1 ∈ Z that include as many roots of f as possible.

(3) For each pair of integers j, ` ∈ [1, µ]:

(a) Compute the set P = {p1, p2, · · · } of primes p ≤ N with j p ≡ ` mod m
such that p - m lc( f ) disc( f ) and a1, . . . , ad1 are distinct modulo p.

(b) If the set P is empty proceed to the next pair j, `.

(c) For i from 1 to d j :

(i) Let f (x + ai )= xch(x) ∈ Z[x] with c ∈ {0, 1} and put r = deg(h).
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(ii) Let N ′ = N if c = 0 and N ′ = b( j N − `)/m)c otherwise.

(iii) Define coprime moduli m1, . . . ,m N ′ as follows:

If c = 0 then mk = k+ 1 for k+ 1 ∈ P.

If c = 1 then mk = (mk+ `)/j for (mk+ `)/j ∈ P.

For any mk not defined above, let mk = 1.

For p ∈ P let k(p) denote the index k of the mk for which mk = p.

(iv) Compute wk = v
0
0
∏k−1

i=0 M`
i mod mk and uk = k! mod mk for 1≤ k ≤ N ′ as in Corollary 17.

(v) For p ∈ P use wk(p), uk(p) to compute b j`
1 (ai )∈ F

d`
p as in COMPUTECARTIERMANINMATRIX.

(d) For p ∈ P, let B j`
1 ∈ F

d j×d`
p have rows b j`

1 (ai ) ∈ F
d`
p as in (14), use B j`

1 to compute B j`
∈ F

d j×d`
p

via (15), and set the j, ` block of Ap to B j` as in (8).

(4) Let S be the set of primes p ≤ N satisfying p - m lc( f ) disc( f ) for which the a1, . . . ad1 are not
distinct modulo p. For p ∈ S compute Ap using algorithm COMPUTECARTIERMANINMATRIX if
p ≥ d and otherwise compute Ap directly from (8) by extracting coefficients of powers of f ∈ Fp[x].

(5) Output Ap ∈ F
g×g
p for all primes p ≤ N such that p - m lc( f ) disc( f ).

Remark 18. To compute Frobenius traces ap ∈ Z, we modify step (3) to loop over integers j = ` ∈ [1, µ]
and output just the traces of the Ap in step (5). This gives the traces of Frobenius ap mod p. For p> 16g2

these determine ap ∈ Z, by the Weil bounds, and for p ≤ 16g2 we can compute

ap = p+ 1− #X (Fp)

by enumerating values of f (x) and looking them up in a precomputed table of m-th powers.

Remark 19. The loop in step (c) is executed (up to) µg times. Each of these computations is completely
independent of the others, which makes it easy to efficiently distribute the work across µg threads. In
principal one can also parallelize the integer matrix multiplications performed by the REMAINDERFOR-
EST algorithm in step (iv), but in practice it is extremely difficult to do this efficiently.

We now prove Theorem 1, which we restate for convenience.

Theorem 1. Given a superelliptic curve X : ym
= f (x) with f ∈ Z[x] of degree d and N ∈ Z>0, the

algorithm COMPUTECARTIERMANINMATRICES outputs the Cartier–Manin matrices Ap of the reduc-
tions of X modulo all primes p ≤ N not dividing m lc( f ) disc( f ). If we assume m, d, ‖ f ‖ are bounded
by O(log N ) the algorithm runs in O(m2d3 N log3 N ) time using O(md2 N ) space; it can alternatively
compute Frobenius traces ap ∈ Z for p ≤ N in time O(md3 N log3 N ).

Proof. The total time to compute all the sets P using a sieve is bounded by O(N log N ) time using O(N )
space, and this also bounds the total time and space for steps (i), (ii), (iii), under our assumption that
m, d, ‖ f ‖ = O(log N ). Corollary 17 yields an O(d2 N log3 N ) bound on each of the O(m2d) iterations
of step (iv). This yields the claimed time bound of O(m2d3 N log3 N ) for step (c), which we claim
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dominates. Lemma 13 implies that the total cost of step (d) is bounded by O(π(N )m2d3 log N ), which
is negligible, as is the cost of the rest of the algorithm. Note that the cardinality of the set S in step (4) is
at worst quadratic in d and log(N ) under our assumption ‖ f ‖ = O(log N ), so we can easily afford the
calls to COMPUTECARTIERMANINMATRIX and use a brute force approach to compute Ap for primes
p < d of good reduction.

The space bound follows from the bound in Corollary 17, which covers step (iv) (it is easy to see that
all of the other steps fit within the claimed bound).

To compute Frobenius traces ap ∈ Z we apply Remark 18 and note that restricting to j = ` in step (3)
reduces the number of iterations of the main loop by a factor of m. The cost of computing #X (Fp) by
looking up values of f (x) in a table of m-th powers is O(pd) ring operations in Fp. The total time to
compute ap = p+ 1− #X (Fp) for good p ≤ 16g2 is then

O(dg2π(g2) log g log log g)= O(d(log N )4 log log N ),

which is negligible. �

7. Supplementary material

Tables 1 and 2 compare the performance of the average polynomial-time algorithm COMPUTECARTIER-
MANINMATRICES with the Õ(p1/2) algorithm for computing zeta functions of cyclic covers imple-
mented in Sage version 9.0. The Sage implementation provides the function CYCLICCOVER which takes
an integer m and a squarefree polynomial f ∈ Fp[x] and returns an object that represents a superelliptic
curve ym

= f (x) over Fp. Invoking the FROBENIUS_MATRIX method of this object with the p-adic
precision set to 1 yields a matrix that encodes essentially the same information as the Cartier–Manin
matrix Ap; in particular it determines the p-rank of X and its zeta function modulo p.

Each table lists the genus g and invariants m and d of a superelliptic curve X : ym
= f (x) defined over Q

with f ∈ Z[x] of degree d. There is a row for every pair m ≥ 2 and d ≥ 3 for which m2d3
≤ 65, which

includes all superelliptic curves of genus g ≤ 5 as well as plane quintics and sextics, and other curves
of genus up to 15. The times listed are average times in milliseconds for primes p ≤ N for increasing
values of N. For each N three times are listed: one to compute Frobenius matrices using Sage, one to
compute Cartier–Manin matrices using the algorithm COMPUTECARTIERMANINMATRICES, and one
to compute Frobenius traces via Remark 18. For the Sage timings we only computed Frobenius matrices
for every n-th good prime p ≤ N with n chosen so that the computation would complete in less than a
day (many of the computations would have taken months otherwise).

In Table 1 we show timings with f ∈ Z[x] having coefficients fd+1−n = pn for 1 ≤ n ≤ d, where
pn is the n-th prime. These polynomials are all irreducible, so our algorithm was unable to choose
any ai to be roots of f ; this is the generic situation, and the worst case for our algorithm. In Table 2
we show timings with f ∈ Z[x] a product of linear factors, which represents the best case for our
algorithm.
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N = 220 N = 224 N = 228

g m d sage matrix trace sage matrix trace sage matrix trace

1 2 3 27 0.05 0.05 67 0.13 0.13 230 0.30 0.30
1 2 4 41 0.17 0.16 120 0.42 0.42 454 0.95 0.93
1 3 3 46 0.08 0.08 141 0.20 0.20 499 0.48 0.49
2 2 5 55 0.38 0.38 163 0.92 0.92 580 2.02 2.01
2 2 6 83 0.73 0.74 280 1.77 1.77 1070 3.89 3.92
3 2 7 112 1.30 1.29 307 3.19 3.12 1217 6.47 6.71
3 2 8 169 2.15 2.07 528 5.02 4.94 2106 10.20 10.57
3 3 4 61 0.53 0.26 178 1.38 0.70 702 3.14 1.63
3 4 3 58 0.14 0.15 165 0.37 0.37 601 0.89 0.89
3 4 4 101 0.44 0.44 343 1.14 1.14 1283 2.55 2.63
4 2 9 194 3.22 3.24 576 7.65 7.70 2214 16.12 15.90
4 2 10 319 4.78 4.65 974 11.10 10.98 3693 22.13 22.79
4 3 5 93 1.29 0.65 287 3.37 1.67 1105 7.64 3.68
4 3 6 152 2.59 1.28 535 6.34 3.20 2121 14.04 7.07
4 5 3 68 0.40 0.13 200 1.19 0.40 778 2.96 0.99
4 6 3 112 0.24 0.24 313 0.64 0.64 1184 1.53 1.53
5 2 11 361 7.04 7.06 1024 16.57 16.30 3695 33.61 33.32
5 2 12 555 9.56 9.54 1537 21.84 22.23 5820 45.98 45.65
6 3 7 200 4.61 2.32 632 11.53 5.52 2360 24.18 12.18
6 4 5 130 1.71 1.08 424 4.37 2.73 1658 9.86 5.88
6 5 4 113 1.29 0.42 344 3.76 1.25 1358 9.08 3.03
6 5 5 201 3.06 1.02 671 8.98 2.92 2749 19.39 6.64
6 7 3 94 0.68 0.17 290 2.24 0.56 1146 5.57 1.39
7 3 8 294 8.17 4.05 835 19.07 9.38 3279 40.32 20.49
7 3 9 437 12.77 6.32 1462 28.54 14.50 5567 61.82 29.67
7 4 6 232 3.42 2.12 806 8.58 5.21 3160 18.99 11.54
7 6 4 153 1.08 0.77 524 2.79 2.00 2112 6.46 4.55
7 8 3 111 0.60 0.29 366 1.72 0.83 1333 4.32 2.00
7 9 3 140 0.82 0.26 479 2.64 0.82 1870 6.77 2.03
9 4 7 302 6.49 3.94 941 15.10 9.42 3566 32.97 20.43
9 7 4 156 2.77 0.56 510 9.14 1.78 2012 20.90 4.21
9 8 4 231 1.85 0.92 720 5.43 2.57 2941 12.58 6.12
9 10 3 137 0.76 0.34 429 2.29 1.01 1694 5.82 2.50

10 5 6 265 8.08 2.02 840 22.89 5.62 3256 51.62 12.42
10 6 5 206 2.51 1.83 701 6.28 4.61 2700 14.07 9.88
10 6 6 379 5.05 3.49 1278 11.95 8.59 5202 26.43 18.72
10 11 3 158 1.77 0.25 501 6.11 0.88 1878 15.32 2.12
10 12 3 187 0.80 0.49 636 2.35 1.39 2558 5.87 3.45
12 7 5 246 6.75 1.33 840 20.80 4.13 3228 48.09 9.23
12 9 4 199 2.88 0.87 657 8.87 2.64 2655 21.75 6.24
12 13 3 175 2.43 0.29 616 8.24 1.03 2244 20.02 2.49
13 10 4 264 2.90 1.09 1008 8.62 3.17 3762 20.08 7.47
13 14 3 193 1.58 0.43 619 5.01 1.36 2430 12.79 3.40
13 15 3 235 1.69 0.46 811 5.54 1.45 3238 13.99 3.72
15 11 4 252 6.29 0.79 839 22.76 2.84 3334 52.85 6.59
15 16 3 223 1.79 0.53 733 5.66 1.63 2805 14.16 4.13

Table 1. Comparison with Õ(p1/2) Sage 9.0 implementation [2] for superelliptic curves ym
=

f (x) where f ∈ Z[x] is irreducible of degree d . Times are millisecond averages per prime p ≤ N
for a single thread running on a 2.8GHz Cascade Lake Intel CPU. The sage column lists the
average time to execute CyclicCover(m,f.change_ring(GF(p)).frobenius_matrix(1)
in Sage 9.0, the matrix column lists the average time to compute the Cartier–Manin matrix
modulo p using algorithm COMPUTECARTIERMANINMATRICES, and the trace column is the
average time to compute the trace of Frobenius via Remark 18.
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N = 220 N = 224 N = 228

g m d sage matrix trace sage matrix trace sage matrix trace

1 2 3 28 0.01 0.01 73 0.04 0.04 230 0.09 0.08
1 2 4 43 0.04 0.05 119 0.12 0.12 456 0.28 0.27
1 3 3 45 0.01 0.01 131 0.02 0.02 500 0.05 0.05
2 2 5 53 0.11 0.12 151 0.31 0.30 583 0.72 0.72
2 2 6 84 0.26 0.28 267 0.66 0.64 1071 1.40 1.40
3 2 7 116 0.55 0.54 311 1.22 1.20 1219 2.58 2.59
3 2 8 164 0.94 0.92 532 2.06 2.04 2094 4.19 4.23
3 3 4 62 0.14 0.07 184 0.41 0.20 701 0.96 0.47
3 4 3 55 0.03 0.03 157 0.08 0.08 605 0.20 0.20
3 4 4 103 0.08 0.09 334 0.23 0.23 1286 0.55 0.54
4 2 9 199 1.50 1.47 586 3.48 3.41 2232 7.10 7.12
4 2 10 295 2.30 2.29 942 5.37 5.24 3816 10.53 10.37
4 3 5 92 0.38 0.19 283 1.06 0.51 1111 2.40 1.21
4 3 6 153 0.79 0.41 529 1.85 0.91 2098 3.96 1.99
4 5 3 68 0.05 0.02 202 0.16 0.05 780 0.39 0.13
4 6 3 95 0.03 0.03 301 0.09 0.09 1186 0.22 0.21
5 2 11 354 3.45 3.46 977 7.85 7.87 3682 15.94 15.85
5 2 12 530 5.11 5.12 1543 11.30 11.17 5857 22.61 22.62
6 3 7 192 1.47 0.72 605 3.57 1.78 2361 7.67 3.79
6 4 5 136 0.32 0.25 416 0.94 0.61 1660 2.17 1.43
6 5 4 108 0.30 0.10 348 1.00 0.32 1369 2.43 0.81
6 5 5 196 0.52 0.15 710 1.48 0.48 2755 3.49 1.16
6 7 3 96 0.06 0.02 296 0.23 0.06 1146 0.63 0.15
7 3 8 276 3.05 1.54 836 7.04 3.49 3234 15.09 7.64
7 3 9 427 4.09 2.16 1409 9.28 4.74 5551 21.20 10.35
7 4 6 227 0.98 0.65 774 2.30 1.48 3143 5.26 3.33
7 6 4 155 0.23 0.17 525 0.66 0.44 2108 1.53 1.04
7 8 3 111 0.06 0.04 343 0.20 0.12 1333 0.51 0.30
7 9 3 141 0.08 0.03 476 0.28 0.09 1876 0.76 0.23
9 4 7 289 1.85 1.23 917 4.56 2.88 3555 10.28 6.23
9 7 4 156 0.61 0.10 509 1.78 0.35 2007 4.47 0.88
9 8 4 211 0.33 0.18 752 1.05 0.50 2946 2.64 1.23
9 10 3 139 0.08 0.04 430 0.26 0.12 1694 0.66 0.31

10 5 6 253 2.08 0.52 825 5.96 1.49 3265 13.97 3.37
10 6 5 213 0.68 0.42 676 1.61 1.06 2693 3.83 2.43
10 6 6 365 1.23 0.86 1276 2.94 2.00 5195 6.46 4.34
10 11 3 154 0.14 0.02 477 0.52 0.08 1878 1.48 0.21
10 12 3 189 0.08 0.07 640 0.26 0.17 2552 0.63 0.42
12 7 5 242 1.22 0.24 879 3.99 0.77 3227 9.89 1.93
12 9 4 204 0.60 0.17 672 1.66 0.52 2663 4.30 1.26
12 13 3 175 0.19 0.02 569 0.71 0.09 2245 2.06 0.25
13 10 4 267 0.64 0.22 942 1.69 0.65 3779 4.32 1.56
13 14 3 191 0.14 0.05 617 0.47 0.15 2429 1.23 0.37
13 15 3 240 0.14 0.04 806 0.50 0.14 3246 1.35 0.36
15 11 4 251 1.15 0.14 836 3.92 0.49 3314 9.89 1.26
15 16 3 218 0.15 0.06 728 0.52 0.19 2797 1.37 0.48

Table 2. Timings for superelliptic curves X : ym
= f (x) when f ∈ Z[x] splits into d distinct

linear factors. Times are millisecond averages per prime p ≤ N for a single thread running
on a 2.8GHz Cascade Lake Intel CPU. The sage column lists the average time to execute
CyclicCover(m,f.change_ring(GF(p)).frobenius_matrix(1) in Sage 9.0, the matrix
column lists the average time to compute the Cartier–Manin matrix modulo p using algorithm
COMPUTECARTIERMANINMATRICES, and the trace column is the average time to compute the
trace of Frobenius via Remark 18.
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