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R. İnanç Baykur

223Khovanov homology and strong inversions
Artem Kotelskiy, Liam Watson and Claudius Zibrowius

245Lecture notes on trisections and cohomology
Peter Lambert-Cole

265A remark on quantum Hochschild homology
Robert Lipshitz

269On uniqueness of symplectic fillings of links of some surface singularities
Olga Plamenevskaya

vii

http://dx.doi.org/10.2140/obs.2022.5.ix
http://dx.doi.org/10.2140/obs.2022.5.1
http://dx.doi.org/10.2140/obs.2022.5.31
http://dx.doi.org/10.2140/obs.2022.5.43
http://dx.doi.org/10.2140/obs.2022.5.81
http://dx.doi.org/10.2140/obs.2022.5.95
http://dx.doi.org/10.2140/obs.2022.5.123
http://dx.doi.org/10.2140/obs.2022.5.145
http://dx.doi.org/10.2140/obs.2022.5.155
http://dx.doi.org/10.2140/obs.2022.5.185
http://dx.doi.org/10.2140/obs.2022.5.223
http://dx.doi.org/10.2140/obs.2022.5.245
http://dx.doi.org/10.2140/obs.2022.5.265
http://dx.doi.org/10.2140/obs.2022.5.269


viii

285On the spectral sets of Inoue surfaces
Daniel Ruberman and Nikolai Saveliev

299A note on thickness of knots
András I. Stipsicz and Zoltán Szabó

309Morse foliated open books and right-veering monodromies
Vera Vértesi and Joan E. Licata

http://dx.doi.org/10.2140/obs.2022.5.285
http://dx.doi.org/10.2140/obs.2022.5.299
http://dx.doi.org/10.2140/obs.2022.5.309


THE OPEN BOOK SERIES 5 (2022)

Gauge theory and low-dimensional topology: progress and interaction
https://doi.org/10.2140/obs.2022.5.9

msp

Preface

This volume is a proceedings of the 2020 Banff International Research Station
(BIRS) workshop “Interactions of gauge theory with contact and symplectic topol-
ogy in dimensions 3 and 4”. This was the sixth iteration of a recurring workshop
held in Banff. Regrettably, the workshop was not held onsite but was instead an
online gathering over Zoom, as a result of the Covid-19 pandemic. However, one
benefit of the online format was that the participant list could be expanded beyond
the usual strict limit of 42 individuals. It seemed to be also fitting, given the altered
circumstances and larger than usual list of participants, to take the opportunity to
put together a conference proceedings.

The result is this volume, which features papers showcasing research from
participants at the sixth Interactions workshop (or earlier ones). As the title suggests,
the emphasis is on research in gauge theory, contact and symplectic topology, and
low-dimensional topology. The volume contains sixteen refereed papers, and it is
representative of the many excellent talks and fascinating results presented at the
Interactions workshops over the years since its inception in 2007.
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Interactions workshops. Partial funding was provided by NSF grant DMS1454865
and the Georgia Institute of Technology’s Elaine M. Hubbard Distinguished Faculty
Award. We thank Conall Hegarty and Fintan Hegarty for their rapid and professional
copy-editing services. We also thank Alex Scorpan and Silvio Levy, our contacts
at Mathematical Sciences Publishers, for all their help and support throughout the
publication process.
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A friendly introduction to
the bordered contact invariant

Akram Alishahi, Joan E. Licata, Ina Petkova and Vera Vértesi

We give a short introduction to the contact invariant in bordered Floer homology
defined by Földvári, Hendricks, and the authors. We survey the contact geom-
etry required to understand the new invariant but assume some familiarity with
bordered Heegaard Floer invariants. The input for the construction is a special
class of foliated open books, which are introduced carefully and with multiple
examples. We discuss how a foliated open book may be constructed from an open
book for a closed manifold, and how it may be modified to ensure compatibility
with the contact bordered invariant. As an application of these techniques, we
give a “local proof” of the vanishing of the contact invariant for overtwisted
structures in the form of an explicit bordered computation.

1. Introduction

Contact geometry, often pitched as the odd-dimensional complement to symplectic
geometry, considers a (2k+1)-dimensional manifold equipped with some additional
structure. In dimension three — where we reside henceforth — this extra data is
a nowhere-integrable plane field called a contact structure. Adding this extra
data prompts interesting new questions, but one of the most intriguing features of
the subject is that this “extra” data also offers insight into topological structure
apparently unrelated to plane fields at all. Two notable examples are the role of
contact geometry in the proof of the property P conjecture [11] and the proofs that
knot Floer homology detects knot genus [17] and fiberedness [3; 16].

Contact structures themselves split into two mutually exclusive types, known
as tight and overtwisted. Overtwisted structures are determined by homotopical

Alishahi was supported by NSF Grant DMS-2019396. Vértesi was supported by the ANR grant
“Quantum topology and contact geometry”.
MSC2020: 57K33, 57R58.
Keywords: Heegaard Floer homology, open book, TQFT, contact topology.
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data, and so are easy to understand. In contrast, tight contact structures are more
mysterious: some, but not all, tight contact structures arise naturally as the boundary
of symplectic manifolds, and tight contact structures do not satisfy an h-principle.
Many existence and classification questions for tight contact structures remain
open, but significant progress has been made since the advent of Heegaard Floer
homology in the early 2000s and the subsequent development of Floer-theoretic
contact invariants.

Like other Heegaard Floer invariants, the input data for these constructions
is a Heegaard diagram for the three-manifold, but in this setting, the Heegaard
diagram is induced from an open book decomposition, a topological decomposition
of a three-manifold that captures the additional data of an equivalence class of
contact structure. Ozsváth and Szabó defined the first Heegaard Floer invariant of
closed contact three-manifolds in [18]. Given a closed, contact manifold (M, ξ),
this invariant is a class c(ξ) in the Heegaard Floer homology ĤF(−M). In [8],
Honda, Kazez, and Matić gave an alternative description of c(ξ), again using
open books. This “contact class” gives information about overtwistedness: if ξ

is overtwisted, then c(ξ) = 0, whereas if ξ is Stein fillable, then c(ξ) ̸= 0 [18].
The contact class was used in the knot Floer homology proofs noted above, and
also to distinguish notions of fillability: Ghiggini used it to construct examples of
strongly symplectically fillable contact three-manifolds which do not have Stein
fillings [2].

In this paper, we discuss a recent extension of the contact class to three-manifolds
with boundary. Namely, in [1], a contact invariant was defined in the bordered
sutured Floer homology of a foliated contact three-manifold (M, ξ,F), which
is a contact manifold with a certain type of singular foliation on the boundary.
We associate to a foliated contact three-manifold a bordered sutured manifold
(M, 0,Z). The resulting sutures are particularly simple, so one can think of
(M, 0,Z) as a bordered manifold (M,Z) of a type slightly more general than
in [14]. Below, we rephrase the main results of [1], translating from “bordered
sutured” to “multipointed” language. Section 4 explores the correspondence between
these two viewpoints in more detail.

Using a special decomposition of (M, ξ,F) called a sorted foliated open book,
one can construct an admissible multipointed bordered Heegaard diagram for the
manifold (M,Z) and identify a preferred generator. This preferred generator is an
invariant of the contact structure.

Theorem 1.1 [1, Theorem 1]. Let (M, ξ,F) be a foliated contact three-manifold
with associated bordered manifold (M,Z). Then there are invariants cD(M, ξ,F)

and cA(M, ξ,F) of the contact structure which are well defined homotopy equiv-
alence classes in the multipointed bordered Floer homologies C̃FD(−M,Z) and
C̃FA(−M,Z), respectively.
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Furthermore, this generator vanishes for overtwisted manifolds, in the following
sense.

Theorem 1.2 [1, Corollary 4]. If (M, ξ,F) is overtwisted, the classes cD(M, ξ,F)

and cA(M, ξ,F) are zero in H∗(C̃FD(−M,Z)) and H∗(C̃FA(−M,Z)), respec-
tively.

Given a pair of foliated contact three-manifolds (M L , ξ L ,F L) and (M R, ξ R,F R)

whose boundaries agree in an appropriate sense, there is a natural way to glue them
to obtain a closed contact three-manifold (M, ξ). The contact invariants of the two
foliated contact three-manifolds pair to recover the contact invariant of (M, ξ).

Theorem 1.3 [1, Theorem 2]. The tensor product

cA(M L , ξ L ,F L)⊠ cD(M R, ξ R,F R)

recovers the contact invariant c(M, ξ).

This paper offers a hands-on introduction to the bordered contact invariant,
favoring geometric intuition over the formal proofs that may be found in [12]
and [1]. We assume minimal background in contact geometry, so Section 2 focuses
on understanding contact structures via characteristic foliations. Section 4 introduces
multipointed bordered Floer homology as a special case of bordered sutured Floer
homology, laying the groundwork for a simplified description of the construction
of the bordered contact invariant. Section 3 discusses open books, reviewing the
classical case for closed manifolds before introducing foliated open books for
manifolds with boundary. After exploring some topological examples we define the
contact structure supported by a foliated open book. We also define the technical
condition “sorted” for a foliated open book and explain how it may be achieved
by stabilization preserving the supported contact structure. We illustrate this in
a carefully chosen example of a foliated open book for a neighborhood of an
overtwisted disk. In Section 5 we describe how to construct a Heegaard diagram
from a sorted foliated open book and define an associated generator that represents
the contact invariant. Finally, in Section 6 we extend the earlier example to construct
a Heegaard diagram for an overtwisted ball. A local computation, in conjunction
with Theorem 1.3, then recovers the following vanishing result:

Corollary 1.4 [18]. Let (M, ξ) be a closed contact three-manifold. If ξ is over-
twisted, then c(ξ) = 0.

Note that [7] establishes the vanishing of the sutured contact class for a neigh-
borhood of an overtwisted disk. The TQFT gluing map from [6] then yields a
sutured argument that c(ξ) vanishes for overtwisted closed manifolds. Our local
construction explicitly constructs the “contact compatible” layer needed in the
sutured setting, giving a bordered counterpart to the argument.
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2. Contact manifolds and surfaces

A key aim of this paper is to render more accessible a new invariant in bordered
sutured Floer homology, but we’d like to start with a discussion of what this is an
invariant of. Since its inception in the early 2000s, Heegaard Floer theory has given
rise to invariants for a large range of mathematical objects; this one is distinguished
not simply by its input, but also by the fact that the algebraic invariant behaves well
under a natural topological operation.

2A. Contact structures. Recall from the introduction that a contact structure is
a nowhere-integrable two-plane field. We will consider contact structures only
on orientable three-manifolds, and we further require that contact structures be
cooriented. That is, each contact plane is oriented, so there is a consistent choice
of positive normal vector. It will be useful to reference a coordinate model, so we
introduce the standard contact structure on R3, where the contact plane at each
point is the kernel of the one-form dz − ydx . (A cooriented contact structure may
always be described as the kernel of such a contact form.) In this case, the vector
field ∂z coorients the contact planes. We are primarily interested in studying contact
manifolds up to contactomorphism, that is, up to diffeomorphism preserving the
plane fields.

Like topological manifolds, contact manifolds are locally simple but globally
complicated. The contact Darboux theorem states that every point in a contact
three-manifold has a neighborhood contactomorphic to a neighborhood of the origin
in the standard contact R3. In fact, some higher-dimensional substructures also have
well-behaved neighborhoods. For example, a curve segment everywhere transverse
to the contact planes has a neighborhood contactomorphic to a neighborhood of
the z-axis in the standard R3. In this paper, we will focus on the kind of two-
dimensional submanifolds with particularly nice neighborhoods: convex surfaces.
We will characterize convex surfaces by considering certain foliations they carry,
but since codimension-one foliations are so central to the rest of the paper, we
briefly detour into some general discussion before returning specifically to foliations
on convex surfaces.

2B. Foliations on surfaces. Throughout this article we will consider only oriented
singular foliations whose singularities are isolated and are either elliptic (see bottom-
right picture of Figure 2) or hyperbolic (see bottom-left picture of Figure 2). We
denote the set of elliptic singularities by E , and the set of hyperbolic singularities
by H. Unless explicitly noted, we assume that all regular leaves of the foliation
compactify to oriented intervals. Elliptic points are either sources, in which case
they are also called positive elliptic points, or sinks, which are also called negative
elliptic points. At a four-pronged hyperbolic singularity, the two opposite prongs
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oriented towards the hyperbolic point form the stable separatrix, while the two
prongs oriented away from the hyperbolic point form the unstable separatrix.
The topological type of these foliations can be described combinatorially by the
embedded graph formed by the stable and unstable separatrices of the hyperbolic
points.

The foliations appearing in this paper will have additional structure given by
assigning a sign to each singular point. The signs of elliptic points have already been
introduced, but the signs of hyperbolic points are not visible from the combinatorics
of the foliation. (The sign of a hyperbolic point comes from the orientation of the
surface and additional local data that depends on the source of the foliation; see
Sections 2C and 3A.) A foliation with the properties above, together with the extra
partition of H = H+ ⊔ H−, is called a signed singular foliation; in the following
we refer to oriented signed singular foliations simply as foliations.

Given a foliation F on a surface F satisfying the hypotheses imposed above, we
say that a multicurve 0 ⊂ F is a dividing set if 0 is everywhere transverse to the
leaves of F and separates F into two subsurfaces, each of which contains all the
singularities of a fixed sign. With this structure in hand, we are ready to introduce
the characteristic foliation on a surface in a contact manifold, which is the key to
the local neighborhood theorem mentioned above. We introduce the aspects of
this theory that we will need, and we recommend [15] for further reading on the
topic.

2C. Convex surfaces. An oriented surface F embedded in a contact three-manifold
(M, ξ) inherits a characteristic foliation from ξ . Intersecting the contact plane with
the tangent plane at each point in the surface defines a line field, and the leaves of the
characteristic foliation are the integral curves of these intersections. Characteristic
foliations may be more general than the foliations described above, admitting
leaves that are circles or even nonmanifolds. However, we will not consider any
cases where these phenomena arise. The orientation of the leaves follows from the
coorientation of the contact structure, while the signs of the singular points depend
on whether the coorientation of the contact structure is a positive or negative normal
for F.

A surface in a contact structure is convex if the contact structure is I -invariant
in some product neighborhood; a key result states that a surface is convex if and
only if its characteristic foliation admits a dividing curve 0 [4]. Remarkably, the
local neighborhood of a convex surface is determined by the dividing set alone.
The property of admitting a dividing curve (and hence, convexity) can be checked
combinatorially, and in fact, convex surfaces are C∞-generic [4]. Another important
aspect of this equivalence is Giroux’s flexibility, it describes the sense in which
0 captures the essential data of the contact structure in a neighborhood of F.
Specifically, if 0 is a dividing set on F ⊂ (M, ξ), then any foliation divided by 0
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Figure 1. Local pictures of two characteristic foliations divided
by the same curve 0, shown in green. Circles are elliptic points
and the squares are hyperbolic points.

can be realized as the characteristic foliation of some isotopic surface F ′ in a
neighborhood of F. Thus, given a separating multicurve 0 on a surface F, one
may choose any foliation divided by 0 and construct a compatible contact structure
on F × I. If we choose another foliation, then Giroux’s flexibility implies this is the
characteristic foliation on some surface inside this neighborhood, so our original
neighborhood in fact contains the contact structure determined by this new foliation.

Characteristic foliations may exhibit many leaf types, but we will restrict attention
to the cases where the hypotheses of Section 2B are satisfied; this is also a generic
property. In addition, we will require that each signed singular foliation has no
closed leaves or leaves connecting two hyperbolic points, and any such foliation
will admit a dividing set, thus ensuring convexity. To see this, we introduce two
graphs G± embedded into F and associated to F . The vertices of G+ are the
positive elliptic points, and the edges between them are the stable separatrices of
positive hyperbolic points. The graph G− is analogously defined using the negative
elliptic points and unstable separatrices. Observe that G+ and G− are disjoint and
that the complement of their neighborhoods N (G+) and N (G−) has no singularities
and is thus foliated by intervals. The dividing curve 0 of such a foliation is given
by the oriented boundary of N (G+), which is isotopic through curves transverse to
the foliation to −∂ N (G−). When a foliation admits a dividing set, it is unique up
to isotopy, so we will often refer to “the” dividing set.

With the given restrictions on leaf types (i.e., only intervals and leaves containing
a single hyperbolic point), the complement of the union of the separatrices is a
collection of disks, each with one positive and one negative elliptic point on its
boundary. The interior of each disk is foliated by an I -family of leaves from the
positive to the negative elliptic point; this can be seen in Figure 1.

3. Foliated open books

We saw in Section 2 that the dividing set on a convex surface suffices to deter-
mine the contact structure in a neighborhood of the surface. Although the precise
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information about the characteristic foliation is lost, enough data is retained to
identify the relevant equivalence class. This theme is pervasive throughout contact
geometry, with open books being one of the most notable illustrations. An open
book decomposition of a contact manifold loses information about the specific
contact structure, but with the benefit that the isotopy class of the contact structure is
determined by a minimal amount of data. This economical encoding of the isotopy
class was first studied in the contact setting by Thurston and Winkelnkemper and
rose in prominence with the work of Giroux [5; 20]. After recalling the classical
construction, we will describe the foliated open books first introduced in [12] as a
new version of open books for contact manifolds with convex boundary. Although
the definition of a foliated open book will require us to keep track of more data on
the boundary than simply the dividing set, the payoff will be a more user-friendly
set of gluing theorems than seen with previous types of open books.

An abstract open book for a closed three-manifold is a pair (S, h), where S is
a surface with boundary and h an element of its mapping class group. This data
suffices to construct an S-bundle over S1, and after collapsing the boundary in a
controlled way, yields a closed three-manifold. A foliated open book adapts this
approach to the setting of a manifold with boundary. This time, the data consist of a
sequence of 2k topologically distinct surfaces and the maps identifying one surface
with the next. Analogously, this determines a manifold with foliated boundary.

3A. Classical open books. This section reviews the definition of an open book
decomposition of a closed three-manifold, along with the notion of an open book
foliation developed in [9].

Definition 3.1. An abstract open book is a pair (S, h) where S is a surface with
boundary ∂S = B and h : S → S is a diffeomorphism that preserves B pointwise.

An abstract open book determines a closed three-manifold M as follows. First,
consider the product S × I and identify the points (h(x), 0) ∼ (x, 1) to form the
mapping torus of h. Then collapse each component of the boundary ∂S × S1 to a
circle via (x, t) ∼ (x, t ′) whenever x ∈ ∂S. The image of ∂S × S1 is an oriented
link called the binding and again denoted by B, while the surfaces S ×{t} become
the pages. We will also make use of the function π : M \ B → S1 that sends each
point on S × {t} to t .

The simplest example of an open book is given by setting S = D2, so that h
is necessarily isotopic to the identity. The pair (D2, id) determines S3; to see
this, observe that N (B) and M \ N (B) give a genus-one Heegaard splitting with
meridional curves on the two solid tori intersecting once. In fact, an open book
determines not only a topological three-manifold, but actually a contact three-
manifold, but this will be explored in the next section. For now, we consider further
topological structure associated to an open book.
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•
• •

Figure 2. The intersection of F with the pages and binding (above)
induces the singularity of Fπ (below). Left: the foliation on a disk
transverse to the binding has an elliptic point. Center: the foliation
on a cup with one point tangent to a page has a center. Right:
the foliation on a saddle with one point tangent to a page has a
hyperbolic point.

Suppose that M is the closed three-manifold built from (S, h). Then the pages of
S induce a foliation on a generic surface embedded in M. Assume that a surface F
is transverse to the binding B, so that E = B ∩ F is finite. Additionally, assume
that the restriction π̃ = π |F : F \ E → S1 is an S1-valued Morse function with
only one critical point for any critical value. Then the open book foliation Fπ on F
is the foliation induced by the level sets of π̃ together with the elliptic points E .
Equivalently, the leaves of the foliation are the intersections of F with the pages
of the open book. As seen in Figure 2, such a foliation may have three types of
singularities: the points in E are elliptic points; the index 0 and 2 critical points
of π̃ are centers; and the index 1 critical points are hyperbolic points. Each level set
of π̃ has at most one critical point, and there are no leaves connecting hyperbolic
points. Although closed leaves may arise, one may eliminate them via a bigger
isotopy of the surface [9].

As above, we can associate signs to the elliptic points depending on whether the
binding coorients F or not, whereas the sign of a critical point of π̃ is given by the
sign of dπ evaluated on the normal to F. Just as characteristic foliations on convex
surfaces determine the nearby contact structure, open book foliations determine the
open book decomposition near the surface.

3B. Foliated open books. Intuitively, a foliated open book is the structure on a
manifold with boundary formed by cutting a classical open book along a surface
with an open book foliation. We consider two examples of this sort before carefully
stating a definition in parallel to Definition 3.1.
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Figure 3. Cutting the open book (D2, id) for S3 (left) along a
pair of parallel spheres yields a (pair of) foliated book(s) for the
three-ball(s) (center) and a foliated open book for the thickened
sphere (right, selected pages shown). On the boundary spheres
of the resulting foliated open books, each leaf of the open book
foliation is a line of longitude, and the only singularities are the
two elliptic points at the poles.

Example 3.2. Consider the open book for S3 described above with connected
binding and disk pages. Choose a neighborhood of a point on the binding and
cut S3 along the boundary of this ball as shown in the center of Figure 3. Discarding
the complement of this ball, one sees that it inherits a binding and pages from
the original open book, and that the new boundary is naturally equipped with the
foliation whose leaves are boundary intervals of the pages. This is the simplest
possible foliated open book.

For an example that is one step more interesting, cut S3 along a pair of parallel
spheres to get a thickened sphere that intersects the binding in two intervals. The
complement of these binding intervals is a union of rectangles.

We will see more interesting examples after the formal definition.

Definition 3.3 [12, Definition 3.12]. An abstract foliated open book is a tuple
({Si }

2k
i=0, h) where Si is a surface with boundary ∂Si = B ∪ Ai

1 and corners at
E = B ∩ Ai such that

(1) for all i , Ai is a finite union of intervals and B is a union of intervals or circles;

(2) the surface Si is obtained from Si−1 by either
• attaching a 1-handle along two points on Ai−1, or
• cutting Si−1 along a properly embedded arc γi with endpoints in Ai−1 and

then smoothing.2

1By a slight abuse of notation we denote the “constant” part of the boundary of Si by B for all i .
2The indices of γi in this paper are shifted compared to [12], where the cutting arcs were denoted

by γi−1.
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Figure 4. A different foliated open book for a ball cut from S3.

Furthermore, h : S2k → S0 is a diffeomorphism between cornered surfaces that
preserves B pointwise.

We invite the reader to pause and compare Definitions 3.1 and 3.3. The latter
has two levels of complexity not seen in the classical definition: first, the definition
replaces a single surface S with a family of surfaces Si of distinct topological
type, and second, the boundary of each surface is partitioned into Ai -intervals
and B-intervals or -circles. This second feature was seen already in Example 3.2:
cutting each page in the open book for S3 along its intersection with the sphere
resulted in two new bigon pages each bounded by an Ai -interval and a B-interval.

Example 3.4. To illustrate the differences between classical and foliated open
books, we consider a further example built by cutting the standard open book for S3

along a separating S2; see Figure 4. Here, the intersections between the indicated
ball and the pages of the original open book are not all homeomorphic. The points
on the embedded S2 where the changes in topological type occur are labeled by
squares on the figure; the right-hand side of the figure shows the distinct subsurfaces
(the pages of the resulting abstract open book), labeled to match the (embedded)
pages in the original open book.

We now take on the full complexity of Definition 3.3 and describe how to build
a manifold from a sequence of pages of distinct topological types. Throughout, we
will use subscript indices to distinguish topologically distinct page types, referring
to these as “abstract pages” for convenience.

Any pair of consecutively indexed abstract pages Si and Si+1 defines an elemen-
tary cobordism. We build an analogue of the mapping torus by concatenating these
elementary cobordisms and gluing S2k to S0 by the map h. More precisely, each
abstract page Si yields a product Si ×

( i
2k , i+1

2k

)
, for 0 ≤ i ≤ 2k −1, and consecutive

products join smoothly along a singular page which is a surface with two points
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on its boundary identified. (Since h : S2k → S0 is a diffeomorphism, we need not
assign a separate product to S2k). After collapsing B × S1 to a multicurve called
the binding and still denoted by B, the remaining boundary is decorated by the
nonbinding boundaries of the pages. With the above decomposition in mind, define
a function π : M \ B → S1 so that on each piece Si ×

( i
2k , i+1

2k

)
, the function is

projection to the second coordinate; here S1 is identified with [0, 1]/(0 ∼ 1). Below,
we abuse notation a couple of times and write St for π−1(t).

This construction induces a singular foliation F on ∂ M whose regular leaves are
copies of Ai , oriented as the boundary of the pages, and whose singular leaves each
contain a single four-pronged hyperbolic point. Equivalently, leaves are level sets
of the restriction of the function π to ∂S. The elliptic points E and the hyperbolic
points H each come with signs: each interval component of Ai is oriented from
a positive elliptic point towards a negative one. Hyperbolic points associated to
attaching a one-handle are negative, while hyperbolic points associated to cutting
along an arc are positive; for an illustration of the latter, refer to Figure 10.

We denote the resulting smooth object by the triple (M, ∂M,F) and call it a man-
ifold with foliated boundary. We remember the identification of leaves with intervals
on the boundary of abstract pages, and, in particular, the foliation has a distinguished
union of 0-leaves, which are always regular. Because there are no closed leaves or
saddle-saddle connections, we may use the signs of the singular points to associate a
dividing set to the foliation: as seen in Section 2C, the boundary of a neighborhood
of the positive separatrices of positive hyperbolic points is a dividing set, and this
is unique up to isotopy transverse to the leaves. Note that a manifold with foliated
boundary does not have an associated foliated open book structure; rather, it has
a boundary foliation that is compatible with the existence of a foliated open book.

We conclude with one more topological example before turning attention to the
relationship between open books and contact structures.

Example 3.5. For a final example in this section, we describe a process for promot-
ing a nicely foliated surface F to a foliated open book F × I with the property that
the open book foliation on each F ×{s} is isotopic to the original foliation. This
procedure is described in detail in [12, Section 4.2], but we summarize it here for
later use in this article.

The open book decomposition near a surface F is completely determined by the
open book foliation Fπ on F [12, Corollary 4.6]. In the following, we describe this
local structure by constructing a foliated open book for F ×[−1, 1] that embeds
into any other (foliated) open book inducing Fπ . Naively, one might try to cross the
original surface with [−1, 1] and take the pages to be the products of leaves with
the interval. This works in the case of a foliation with only elliptic singularities, as
in Example 3.2, but the process is more subtle in the case that the original foliation
has hyperbolic points.
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We first briefly describe the open book determined by Fπ near F before using the
foliation to construct its abstract pages. The binding of the open book is transverse
to F, so we can assume it embeds as E × I in F × I, oriented by ∂/∂s (respectively,
−∂/∂s) for positive (negative) elliptic points. Recall that 0 denotes the dividing
set for a signed foliation. Away from a neighborhood of 0 × I, each page St is
the union of the leaves π̃−1(t ± ϵs) × {s} ⊂ F × {s}, where the sign depends on
whether we are in F+ or F−, and ϵ is sufficiently small so that no page contains
more than one hyperbolic point. We connect these across 0 × I by bands which
twist to compensate for the shearing of leaves in opposite directions as |s| increases.
(Figure 8 in [12] provides local models for this construction near 0 and E .)

As noted above, when t is not near a singular point, this yields pages which are
simply thickened copies of the original interval leaves; when F is closed, these are
rectangular pages with two binding intervals separating a pair of leaves, one on
each of F × {±1}. This is illustrated by the thickened sphere in Example 3.2.

To see what happens near a singular value t0 for the original foliation, consider
the page which contains the corresponding hyperbolic point on F × {0}. The
boundary of this page on F × {−1} is a copy of the π̃−1(t0 − ϵ) leaf in which
the saddle resolution has not yet happened, while the boundary of this page on
F ×{1} is a copy of the π̃−1(t0 + ϵ) leaf where the saddle resolution has already
occurred. This gives a recipe for writing down abstract pages: starting from the
regular value 0, set S0 = π̃−1(0)× I. To form S1, perform the first cut/add operation
on the corresponding F × {1} edges of S0; to form S2, perform the corresponding
add/cut operation on the F × {−1} edges of S1. Note that S2 can be thought of as
π̃−1(t0 + ϵ) × I, where t0 is the first singular value encountered after 0. We can
continue to obtain a pair of pages for each hyperbolic point in the same way. If the
original foliation had n hyperbolic points, the new foliated open book will therefore
have 2n + 1 pages. Each even-indexed page is a thickened regular leaf, while
odd-indexed pages interpolate between these. Finally, note that the monodromy h
will always be trivial, as the first and last pages are simply unions of disks.

3C. Foliated open books and contact structures. With the topological construc-
tions well in hand, we are ready to recall the compatibility between foliated open
books and contact structures.

Definition 3.6. [12, Definition 3.7] The abstract foliated open book ({Si }, h) sup-
ports the contact structure ξ on (M, ∂M,F) if
(1) TB is positively transverse to ξ ;

(2) there exists a nowhere zero vector field everywhere transverse to the interior
of each page and to ξ whose flow preserves ξ ;

(3) there is a topological isotopy of ∂ M taking F to the characteristic foliation Fξ

such that some 0 is a dividing set for each foliation throughout the isotopy.
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We will often want to consider a manifold with foliated boundary (M, ∂M,F)

together with a contact structure ξ supported by a foliated open book inducing the
boundary foliation; we call this a foliated contact three-manifold and denote it by
the triple (M, ξ,F).

As above, we may ignore the third condition to recover the classical definition of
a contact structure supported by an open book decomposition of a closed manifold.
If a three-manifold M has both an open book decomposition (B, π) and a contact
structure ξ supported by this open book, then a sufficiently generic surface will
carry both a characteristic foliation Fπ and an open book foliation Fξ . A priori
these foliations are unrelated, but if the open book foliation has no circle leaves,
then the contact structure can be isotoped so that the characteristic foliation and
the open book foliation have the same combinatorics and further, that the singular
points agree [9]. This is the key observation that gives the boundary criteria for
foliated open books.

In the examples produced by cutting an honest open book along a separating
surface, observe that the open book foliations on the two new boundaries match,
but with the signs of all singular points reversed. Conversely, any two foliated open
books with matching, sign-reversed boundary foliations may be glued to produce
a closed manifold with an open book structure. In fact, these cutting and gluing
results respect the contact structures supported by each of the open books in the
sense of Definition 3.6 [12, Theorems 6.1 and 6.2].

In the remainder of this section, we construct several additional foliated open
books for specific contact manifolds. Example 3.7 constructs foliated open books
for a pair of distinct contact structures on the three-ball. In this case, as in the
examples above, the foliated open books are identified as submanifolds of an open
book for a closed three-manifold. Finally, Example 3.8 is a specific instance of
the procedure described in Example 3.5 above; we endeavor to provide a plausible
construction here while referring the reader to [12] for the technical details.

Example 3.7. Different open book decompositions of a fixed topological manifold
may determine different contact structures, and the same holds true in the case of
foliated open books. In this example we consider a pair of open books for S3, one
of which supports the unique tight contact structure and the other of which supports
an overtwisted contact structure. Cutting each of these along a separating S2 yields
foliated open books for tight and overtwisted balls.

Let (A, h±) denote the open book for S3 with annular pages and monodromy a
single Dehn twist of the indicated sign. The binding of the associated open book
decomposition is a positive (resp. negative) Hopf link, denoted by H+ (resp. H−).
To picture this, consider the genus one Heegaard splitting of S3

= H1 ∪∂ (−H2)

into two solid tori where H+ (resp. H−) is embedded on the Heegaard torus as
in Figure 5. Here π−1([0, 1

2 ]) = H1 and π−1([1
2 , 1]) = H2. The positive twist
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Figure 5. Left: H+ embedded in ∂ H1 in a tight S3. Center: H−

embedded in ∂ H1 in an overtwisted S3. Right: the open book
foliation on the boundary of a neighborhood of the spanning arc
in the shaded annulus; as in Figure 1, elliptic points are drawn as
circles, and hyperbolic ones as squares.

monodromy induces the tight contact structure on S3, while the negative twist
monodromy induces an overtwisted structure.

In each of these open books, consider the embedded S2 bounding a neighborhood
of the orange arc in π−1

( 1
2

)
shown in Figure 5. Discard this ball, leaving a pair of

foliated open books for the complementary tight and overtwisted balls. The open
book foliation on the boundary sphere has four elliptic points and two hyperbolic
points as in the right-hand picture of Figure 5. The pages of these foliated open
books are shown as the shaded subsurfaces in Figure 6. The Dehn twists from the
original open book restrict to Dehn twists on the annular pages of the foliated open
books.

S0 S1 S2
Figure 6. Removing a neighborhood of the orange arc from S3

yields the shaded pages for a foliated open book for the three-ball.
Each abstract page is shown embedded into an annular page for the
open book (A, h±), where h± is a positive (resp. negative) Dehn
twist around the core of the annulus. These twists restrict to the
cornered annulus S2 as the monodromy for the foliated open books
({S0, S1, S2}, h+) for a tight three-ball and ({S0, S1, S2}, h−) for an
overtwisted three-ball. The light and dark blue curves are sorting
arcs, which are introduced in Section 3D.
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Figure 7. The left-hand picture shows the top of an overtwisted
disk with transverse boundary; elliptic and hyperbolic points are
again drawn as circles and squares, respectively. The right-hand
picture labels the singularities of the characteristic foliation on the
underside of the disk; the two points in the pairs (A, D), (B, E),
and (C, F) coincide, but the sign of each singular point is reversed
when viewed from the opposite side.

Example 3.8. In this example we construct a foliated open book for a ball supporting
an overtwisted contact structure. This example is borrowed from [13], following
the procedure summarized in Example 3.5. The motivation for including this
initially opaque construction is that it will allow us to characterise any foliated
open book for an overtwisted contact manifold in terms of a particular embedded
foliated open book. To begin this process, we introduce a nonstandard definition of
overtwistedness:

Definition 3.9. A contact manifold (M, ξ) is overtwisted if it contains an embedded
disk whose boundary is everywhere transverse to ξ and whose characteristic foliation
is as shown in Figure 7.

Overtwistedness is more commonly characterized in terms of the existence of an
embedded disk with a different characteristic foliation, but it’s a consequence of
Giroux flexibility that the existence of a disk with this foliation is equivalent to the
existence of disks with related characteristic foliations. We choose Definition 3.9
with a later application in mind. We now apply the construction sketched in
Example 3.5 to build a foliated open book for a neighborhood of this disk; it follows
that inside any overtwisted contact manifold, we may find an overtwisted ball that
admits this foliated open book.

The existence of a transverse boundary requires us to slightly modify the con-
struction, smoothing the boundary of pages associated to leaves that terminate
on ∂ F. Thus a regular leaf connecting an elliptic point e to ∂ F will give rise to a
bigon with one e ×[−1, 1] component and one Ai component connecting e ×{±1}.

We now apply this construction to the overtwisted disk shown in Figure 7,
yielding an abstract foliated open book with five abstract pages. We set t = 0 to
consist of the leaves where intervals connect (1) elliptic points A and B, and (2) the
elliptic point C to the boundary. The first leaf becomes a rectangular page with two
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Figure 8. The pages of a foliated open book for a neighborhood of
the disk in Figure 7. Each hyperbolic point in the original foliation
induces a pair of hyperbolic points of opposite sign in the foliated
open book. (The labeled arcs are explained in Example 3.11.)

boundary intervals, one connecting A ×{1} and B ×{1} and the other connecting
D ×{−1} with E ×{−1}. The leaf connecting C to the boundary becomes a bigon
whose boundary interval connects C × {1} with F × {−1}. See Figure 8. Around a
positive elliptic point, t increases in the positive direction; following the procedure
outlined in Example 3.5, the first hyperbolic singularity corresponds to adding a
handle to connect these two pages. Figure 8 shows all the abstract pages of the
resulting foliated open book.

Since each component of each page is a disk, there is a unique (up to isotopy) way
to identify successive pages, and the foliated open book is completely determined
by this data. One may also reconstruct the dividing set on the ball. One component
encircles B on the “top” of the ball, while two further components bound an annulus
containing D, F, and the two positive hyperbolic points on the “bottom” of the
ball. In contrast, the foliated open book for the overtwisted ball constructed in
Example 3.8 has a connected dividing set.

To illustrate how this ball might embed in an overtwisted contact manifold, we
consider the open book for an overtwisted S3 from Example 3.7. Recall that the
pages are annuli and the monodromy is a left-handed Dehn twist. The top half
of Figure 9 shows a ball intersecting two representative pages of this open book.
The elliptic points are labeled to identify these subsurfaces with the first and third
abstract pages from Figure 8; although we find it difficult to visualize further pages
embedded in S3, it is not difficult to embed the foliated open book pages in abstract
pages, as shown below.

3D. Sorted foliated open books. Foliated open books will be our means to associat-
ing a Floer-theoretic invariant to a three-manifold with foliated boundary. However,
in order to generate a multipointed Heegaard diagram, we will need to require the
further technical condition that our foliated open book is sorted. Since the notation
to verify this condition is somewhat involved, we pause to motivate it first.

The definition of a foliated open book requires successive pages to evolve by
cutting or by gluing, but we may equivalently think of this as the condition that
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Figure 9. The foliated open book for the minimal overtwisted
ball embeds in the simplest open book for an overtwisted S3. The
monodromy is a left-handed Dehn twist.

evolution is always by addition, but in either direction: either Si is obtained from
Si−1 by a one-handle addition or else Si is obtained from Si+1 by a one-handle
addition. One-handles associated to negative hyperbolic points are those already
described in Definition 3.3 as “adds”, while positive hyperbolic points correspond to
adding a handle as the page index decreases. We will call a foliated open book sorted
if a one-handle, after being added with respect to some direction (i.e., increasing or
decreasing indices), persists for all subsequent pages with respect to that direction.
See Figure 10.

Recall that the elliptic points E = Ai ∩ B partition as E = E+ ⊔ E−, where
each interval is oriented from a point e+ ∈ E+ to a point e− ∈ E−. We impose the

+

i
S

i-1
S

Figure 10. Here Si−1 is obtained from Si by adding the shaded
one-handle, inducing a positive hyperbolic singularity at the saddle
point. The sorted condition requires that this handle persist for all
S j with 0 ≤ j < i . Note that the binding has been blown up as
B × I for ease of viewing.
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following conventions on the cutting and gluing arcs that govern how the pages
evolve:

• If Si → Si+1 cuts Si along a properly embedded arc, the endpoints of the arc
lie near the e+ end of the intervals of Ai . We decorate Si and all prior pages
with a copy of the cutting arc and label these arcs as γ +

i . If S j is decorated
with multiple cutting arcs near the same point e+, the indices decrease with
the orientation of A j .

• If Si → Si+1 adds a one-handle to Si , the points of the attaching sphere separate
any γ + endpoints from the e− on the intervals of Ai . We decorate Si+1 and
all subsequent pages with a copy of the cocore of the attached one-handle and
label these arcs as γ −

i . If S j is decorated with multiple cocores near the same
point e−, the indices decrease with the orientation of A j .

If we take the perspective that gluing is simply cutting in with the order of the
indices reversed, then the second bullet point can be phrased in identical language
to the first. Figure 11 illustrates these conventions in an example.

Definition 3.10. A foliated open book is sorted if the arcs γ −
∪ γ + are mutually

disjoint on all the pages where they appear. We denote a sorted foliated open book
by ({Si }

2k
i=0, h, {γ ±

i }).

A foliated open book which is sorted has a ghost page: a minimal surface formed
by cutting along all of the arcs. Although this surface may not actually coincide with
any Si in the foliated open book, it embeds as a subsurface in each abstract page. Re-
membering this may help in understanding the following notation-heavy definition.

Suppose ({Si }
2k
i=0, h, {γ ±

i }) is a sorted foliated open book for foliated contact
three-manifold (M, ξ,F). On each page Si , let Pi be the complement of a “cornered”
neighborhood of Ai ∪

(⋃
i< j γ +

j

)
∪

(⋃
i≥ j γ −

j

)
, with corners at E . This Pi is the

ghost page and exists as a subsurface of each Si . The copies of Pi may be identified
via the flow of a vector field transverse to the pages, and we denote the composition
of these identifications from P0 ⊂ S0 onto P2k ⊂ S2k by ι.

Figure 11. An indicative interval of An . Here i > j ≥ n > m. The
arcs γ +

i and γ +

j show arcs that will be cut along on higher-index
pages. The bold dot indicates where a one-handle could be attached
on some later page, while the arc γ −

m is the cocore of a handle
already attached.



A FRIENDLY INTRODUCTION TO THE BORDERED CONTACT INVARIANT 19

3E. Sorting by stabilization. In this subsection we examine the operation of posi-
tive stabilization on a foliated open book and show how it can be used to render a
nonsorted foliated open book sorted. The idea is straightforward: each stabilization
adds a one-handle to every page of the foliated open book by taking a connect sum
with a foliated open book for the standard tight S3. For a simple example, we note
that the foliated open book for a tight three-ball constructed in Example 3.7 is a
positive stabilization of the foliated open book from Example 3.2.

The number of sorting arcs γ ± is controlled by the foliation, and hence un-
changed by stabilization. Repeating the process sufficiently many times gives the
sorting arcs more space in the enlarged page to avoid each other. Of course, the
arcs that guide the stabilization must be chosen carefully, and we explain how
to do this below. The formal proof that this is always possible may be found
in [12].

As shown in [12], stabilization may be understood as a concrete example of
gluing two foliated open books. Choose an arc (γ, ∂γ ) embedded in a fixed
page (St , B) of a foliated open book. A regular neighborhood of this arc may be
chosen so that its boundary is a sphere whose signed singular foliation has two
hyperbolic singularities. Choosing such neighborhoods in two separate foliated
open books yields manifolds with matching foliated boundaries. Since we can only
glue foliations where the singularities match, but with opposite signs, shifting the t
coordinate by 1

2 allows us to glue the two spheres to construct a foliated open book
for the connect sum of the two original manifolds; the new pages are the Murasugi
sum of the pages of the original foliated open books. If one of the manifolds was an
open book with annular pages supporting the tight contact structure on S3, then the
contactomorphism type of the manifold is unchanged and we say that the foliated
open book has been positively stabilized. The open book in Example 3.7 with
positive Hopf twist binding is a stabilization of the elementary open book for S3

from Example 3.2.
The description above applies with minor modification to all versions of open

books, but a distinguishing feature of foliated open books is the nonhomogeneity
of the pages. An arc on St may not persist to some later page St ′ , or St ′ may have
a nontrivial mapping class group even though St was a collection of disks. This
highlights that there are two choices to be made when defining a stabilization of a
foliated open book: which page, and which arc?

With a goal of removing intersections of the form γ +

i ∩ γ −

j , choose a regular
page between the hyperbolic points h+

i and h−

j . We will stabilize along an arc in
this page so that as γ +

i rises up through the manifold, the subinterval that would
collide with the descending γ −

j picks of the monodromy of the foliated open book
for S3 and instead undergoes a Dehn twist around the core of the annular Murasugi
summand of the page.
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Figure 12. The stabilization of the foliated open book from Figure 8. Note that
γ +

3 and γ −

4 intersect on the new page S3, so the foliated open book remains unsorted.

Example 3.11. Example 3.8 introduced a foliated open book for an overtwisted
ball which embeds into any overtwisted contact manifold. Examining Figure 8 will
show that it is not sorted, and this example will perform the sorting stabilizations.

The first hyperbolic singularity is negative and corresponds to adding a one-
handle to S0 as shown; on the second page S1, the cocore of the one-handle is
recorded as an arc γ −

1 . However, the second hyperbolic singularity is positive and
corresponds to cutting the second page along the arc labeled γ +

2 to get the third
page. As shown in the figure, γ −

1 and γ +

2 intersect.
To remove this obstruction to sortedness, choose a copy of S1 and stabilize along

an arc that crosses γ +

2 and γ −

1 once. The result is shown in Figure 12. One can
think of γ −

1 as undergoing a right-handed twist as it ascends or γ +

2 as undergoing
a left-handed twist as it descends, and since the two curves now avoid each other,
we may proceed with increasing t until γ −

3 and γ +

4 intersect on the new S3 page.
To remove the intersection γ −

3 ∩ γ +

4 , we analogously stabilize along an arc
intersecting each of these curves once. Finally, a sorted foliated open book is seen
in Figure 13. Since the gluing map is inherited from the original foliated open book,
it remains translation in the page as drawn.

For any i , cutting along all the sorting arcs on Si yields a pair of disks, the “ghost
page” described in the previous section.

Figure 13. A sorted foliated open book for a neighborhood of an overtwisted disk,
obtained from the foliated open book in Figure 8 by a sequence of two stabilizations.
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4. Multipointed bordered Floer homology

As a stepping stone for defining link Floer homology, Ozsváth and Szabó defined
a multipointed version of ĤF denoted by H̃F [19]. This version is defined using
Heegaard diagrams with multiple basepoints, and, given a closed, oriented three-
manifold M, it is related to ĤF(M) by the isomorphism

H̃F(M, n) ∼= ĤF(M) ⊗ V n−1.

Here, n is the number of basepoints and V is a 2-dimensional graded Z/2Z-vector
space with generators in gradings 1 and 0; i.e., V ∼= H∗(S1).

In [10], Juhász defines an extension of ĤF for nonclosed three-manifolds whose
boundary is sutured, called sutured Floer homology. Note that both ĤF(M) and
H̃F(M, n) are sutured Floer homologies of specific sutured manifolds corresponding
to M. Specifically, let M(n) be the sutured manifold obtained from M by removing
n pairwise disjoint balls and adding as a suture one oriented simple closed curve
on each resulting sphere boundary component. Then, we have

ĤF(M) ∼= SFH(M(1))

while H̃F(M, n) ∼= SFH(M(n)).
Lipshitz, Ozsváth, and Thurston define bordered Floer homology as an extension

of ĤF for three-manifolds with parametrized boundary [14]. First, they associate
a differential graded algebra A(∂ M) to the parametrization. Then, they define an
A∞-module, or type A structure, ĈFA(M) over A(∂ M), or equivalently, a type D
structure (roughly, a dg module) ĈFD(M) over A(−∂ M). These invariants are
constructed to satisfy a nice gluing formula which recovers ĤF. Specifically, if M
is a closed three-manifold obtained by a gluing M1 ∪∂ M2, then the derived tensor
product ĈFA(M1)⊗̃A(∂ M1)ĈFD(M2) (which often has a smaller model denoted ⊠)
is homotopy equivalent to ĈF(M).

A generalization of bordered Floer homology, called bordered sutured Floer
homology, was defined by Zarev [21]. It is an invariant of three-manifolds whose
boundary is “part sutured, part parametrized”. This invariant satisfies a gluing
formula which recovers sutured Floer homology.

In this section, we introduce a multipointed theory for bordered Floer homology
as a special case of bordered sutured Floer homology. First, we recall the definition
of the boundary parametrization in bordered Floer homology. Let M be a three-
manifold with boundary of genus k. A parametrization for ∂ M consists of a
disk D ⊂ ∂ M ; a basepoint z ∈ ∂ D; and 2k pairwise disjoint properly embedded
arcs ⨿

2k
i=1δi in ∂ M \ Int(D) such that M \

(
D ∪ ⨿

2k
i=1δi

)
is an open disk. The

parametrization data is recorded by a pointed matched circle Z = (Z , a, m), where
Z = ∂ D with z ∈ Z , a = ∂(⨿2k

i=1δi ) is a union of 4k points on Z , and M is a
matching on a that pairs endpoints of the same arc δi .
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Definition 4.1. A pointed matched multicircle is a triple Z = (Z , a, m) where
Z = ⨿

n
i=1 Zi is a union of n circles with a basepoint zi on each Zi , a ⊂ Z is a set of

an even number of points, and m : a → a is a matching. Given a three-manifold M
with boundary of genus k, a (multipointed) parametrization of ∂ M is a pointed
matched multicircle Z with |a| = 4n + 4k − 4, along with an embedding of Z and
of pairwise disjoint arcs δ = ⨿

2n+2k−2
i=1 δi into M, satisfying the following:

(1) the image of each Zi bounds a disk Di in ∂ M whose interior is disjoint from
the arcs δi for all i ;

(2) ∂δ = a and each ∂δi is a pair of points matched by m;

(3) ∂ M \
((

⨿
n
i=1 Di

)
∪

(
⨿

2n+2k−2
i=1 δi

))
is the union of n open disks such that each

disk contains exactly one of the marked points zi for i = 1, . . . , n.

We call the three-manifold with multipointed parametrized boundary a bordered
manifold, as in [14], and denote it by (M,Z), omitting from the notation the implicit
data of how the arcs δi are embedded on ∂ M.

A three-manifold with multipointed parametrized boundary (M,Z) can be rein-
terpreted as a bordered sutured manifold (M, 0,Z◦) where ⨿

n
i=1 Di is the sutured

part while its complement is the parametrized part, and Z◦ is the arc diagram
obtained from Z by removing neighborhoods of the basepoints. Thus, Zarev’s
construction associates a type A structure B̂SA(M, 0,Z◦) over A(Z) := A(Z◦),
or equivalently a type D structure B̂SD(M, 0,Z◦) over A(−Z). The construction
uses a Heegaard diagram presentation H = (6, α, β,Z◦) for the bordered sutured
manifold. The arc diagram Z◦ is embedded on ∂H so that there is one interval on
each component of ∂H. The structures B̂SA and B̂SD are generated by certain sets
of intersection points in α ∩ β on the Heegaard diagram and they have structure
maps defined by counting certain holomorphic curves in 6× I ×R whose projection
onto 6 avoids the regions of 6 \ (α ∪ β) containing ∂H \Z◦.

The embedding of Z◦ on ∂H can be extended to an identification of Z with
∂H, by reinserting the basepoints, one in each component of ∂H \Z◦. The result
is a multipointed bordered Heegaard diagram for (M,Z). Since there is no loss
of information when moving from one perspective to the other, we denote Z◦

simply by Z in this paper. We will denote the structures B̂SA(M, 0,Z◦) and
B̂SD(M, 0,Z◦) by C̃FA(M,Z) and C̃FD(M,Z), respectively. Explicitly, given a
multipointed bordered Heegaard diagram, these structures are defined by counting
the “usual” holomorphic curves; the condition of “avoiding the basepoints” is
equivalent to “avoiding ∂H \Z◦”. The gluing formula for bordered sutured Floer
homology implies that if the closed three-manifold M with multiple basepoints
is obtained by gluing multipointed bordered three-manifolds M1 ∪∂ M2, with M1

parametrized by Z and M2 by −Z, then C̃FA(M1)⊠A(Z) C̃FD(M2) is homotopy
equivalent to C̃F(M, n).
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δ1

δ2

Figure 14. The bordered three-manifold associated to the foliated ball
that is the neighborhood of the orange arc from Example 3.7. The two
grey disks make up D, their boundary is Z , the two arcs δi are drawn
in blue and labeled on the figure, and the basepoints are drawn in green.

5. The bordered contact invariant

Let (M, ξ,F) be a foliated contact three-manifold. In [1], a sorted foliated open
book for (M, ξ,F) was used to construct a Heegaard diagram for an associated bor-
dered sutured manifold (M, 0,Z), along with a preferred generator of the diagram.
The homotopy equivalence class of this generator in the resulting bordered sutured
Floer homology is an invariant of the foliated contact three-manifold [1, Theorem 1].
In particular, the class is independent of the choice of open book. We recall the
construction next, slightly rephrasing to use multipointed bordered Floer homology,
and we work out a small example.

As explained in Section 4, we can convert the data of a bordered sutured manifold
(M, 0,Z) to multipointed bordered data for a simpler perspective. We describe the
parametrization on the boundary of the resulting bordered manifold (M,Z) directly
below.

We use the foliation to define a natural parametrization of ∂ M via a pointed
matched multicircle Z = (Z , a, m). Recall that the data of the foliation remembers
the page index associated to each leaf, and in particular, that there is a distinguished
union of regular leaves denoted by A0. Let D ⊂ ∂ M be a closed neighborhood
of A0, and let Z = ∂ D. Note that D is a union of n disks, where 2n is the number
of elliptic points in the foliation. Let δi be a subarc of the positive (resp. negative)
separatrix for h+

i (resp. h−

i ) that lies in ∂ M \ (intD). Define a ⊂ Z to be the set
of points that are the boundaries of δi and let m be the matching induced on the
points in a by δi . For each component of Z , mark a basepoint with a smallest
possible (0, 2π)-coordinate. See Figure 14 for an example. It is easy to check that
Z = (Z , a, m) together with the embedding of the arcs δi parametrizes ∂ M.

Now, fix an abstract sorted foliated open book ({Si }
2k
i=0, h, {γ ±

i }) for the foliated
contact three-manifold (M, ξ,F). The sortedness condition ensures that the first
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page of the open book together with its (indexed) γ +

i arcs, the last page together
with its (indexed) γ −

j arcs, and the monodromy h fully describe the manifold.
In fact, the union of the first and last page naturally describes a (cornered) han-
dlebody decomposition for M. Using the data of ({Si }, h, {γ ±

i }), we describe a
multipointed bordered Heegaard diagram H = (6, α, β,Z) for this handlebody
decomposition, along with a preferred generator. We outline the construction below;
see [1, Section 3].

Let gi be the genus of Si and let ni be the number of boundary components of Si .
Recall that the boundary of the cornered surface Si is B ∪ Ai , where B is a union
of circles and arcs, and Ai is a union of intervals only.

We let 6 = S0 ∪B −S0. In order to distinguish the two copies, we will write

6 = Sϵ ∪B −S0,

but we emphasize that Sϵ can be identified with S0. The surface 6 has genus
2g0 + n0 − 1 and |A0| boundary components.

For i ∈ H−, consider the S2k copies of the sorting arcs γ −

i , and let β−

i equal
−h(γ −

i ) on −S0. For i ∈ H+, consider the Sϵ copies of the sorting arcs γ +

i . The
endpoints of γ +

i lie near the E+ end of intervals of Aϵ . Isotope the arcs {γ +

i }

(simultaneously, to preserve disjointness) near the endpoints along −∂6 until they
all lie in I+ ⊂ A0; the isotopy stops after crossing E+ and before encountering
∪ j∈H−

− h(γ −

j ) ⊂ −S0. Call the resulting arcs β+

i . Define a set of arcs βa
=

{βa
1 , . . . , βa

2k} by

βa
i =

{
β+

i if i ∈ H+,

β−

i if i ∈ H−.

As in [1], we use the notation βa
i or β±

i if i ∈ H± interchangeably.
Let b = {b1, . . . , b2g0+n0+|A0|−k−2} be a set of cutting arcs for Pϵ ⊂ Sϵ disjoint

from βa and with endpoints on B, so that each connected component of Sϵ \(b∪βa)

is a disk with exactly one interval of Aϵ on its boundary. (In [1], we show this
can always be achieved.) In other words, b is a basis for H1(Pϵ, B). Recalling
the identification Sϵ = S0, we may push bi ⊂ S0 through M to lie on S0 again and
define

βi = bi ∪ −h ◦ ι(bi ) ⊂ Sϵ ∪B −S0,

where ι is the identification of P0 with P2k from Section 3D. Write

βc
= {β1, . . . , β2g0+n0+|A0|−k−2}.

For each cutting arc bi ∈ b on Sϵ , let ai be an isotopic curve formed by pushing the
endpoints negatively along the boundary so that ai and bi intersect once transversely.
Similarly, for each arc b+

i := Sϵ ∩ β+

j , let ã j be an isotopic curve formed by pushing
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the endpoints negatively along the boundary so that ã j and b+

i (and equivalently ã j

and β+

j ) intersect once transversely. We “double” each of these arcs to form the
α-circles which define the handlebody S0 × [0, ϵ]. Namely, define

αi = ai ∪ −ai ⊂ Sϵ ∪B −S0, α̃ j = ã j ∪ −ã j ⊂ Sϵ ∪B −S0,

and write αc
= {̃αi }i∈H+

∪ {α1, . . . , α2g0+n0+|A0|−k−2}. Place a basepoint on each
interval of Aϵ ⊂ Sϵ ⊂ 6. Write

z = {z1, . . . , z|Aϵ |}

for the set of basepoints.
We say that a multipointed bordered Heegaard diagram H = (6, α, β,Z) con-

structed as above is adapted to the sorted abstract foliated open book ({Si }, h, {γ ±

i })

and to the corresponding foliated contact three-manifold (M, ξ,F).
Let H be a multipointed bordered Heegaard diagram adapted to ({Si }, h, {γ ±

i }).
In [1], we show that any such diagram is admissible. (In fact, in [1], neighborhoods
of basepoints are drilled out to obtain a bordered sutured diagram for a certain
bordered sutured manifold naturally associated to (M, ξ,F), but we suppress this
discussion here.) Using the notation introduced above, define

x = {x1, . . . , x2g0+n0+|A0|−k−2} ∪ {x+

i | i ∈ H+}

to be the set of unique intersection points

xi = ai ∩ bi ∈ Sϵ ⊂ 6,

x+

i = ãi ∩ b+

i ∈ Sϵ if i ∈ H+.

We will use x to define two contact invariants in multipointed bordered Floer
homology.

By [1, Proposition 3.4] and [22, Section 3.4], the diagram H = (6, β, α,Z)

obtained by exchanging the roles of the two sets of curves and formally replacing
the arc diagram Z of β-type (which is to say, parametrized by arcs which are part of
the second set of curves) with the identical arc diagram Z of α-type (parametrized
by arcs which are part of the first set of curves) is a multipointed bordered diagram
for (−M,Z). Write Z = (Z , a, m). We have the following proposition.

Proposition 5.1 [1, Proposition 3.5]. The above x gives a well-defined generator

xD := x ∈ C̃FD(H)

with ID(x) = I (H−) and δ1(xD) = 0, and a well-defined generator

xA := x ∈ C̃FA(H)

with IA(xA) = I (H+) and mi+1(xA, a(ρ1), . . . , a(ρi )) = 0 for all i ≥ 0 and all sets
of Reeb chords ρ j in (Z , a).
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Sϵ −S0

∪Bx1

y1

x2

y2

Figure 15. The Heegaard diagram for the sorted foliated open
book ({S0, S1, S2}, h+) from Figure 6. The monodromy h+ is a
positive Dehn twist, so the images β−

2 =−h+(γ −

2 ) and −h+
◦ι(b1)

are the dark and medium-dark blue curves on −S0, respectively.
Intersection points are labeled differently from the above definition,
for convenience. The contact generator x is the pair {x1, y1}, or
x1 y1 for short.

Example 5.2. We illustrate the construction outlined above using the (sorted)
foliated open book in Figure 6. Recall that the three pages depicted in Figure 6 in
fact can be used to construct different foliated open books, depending on the choice
of monodromy τ n, for n ∈ Z, where τ is a positive Dehn twist along the core of the
annular page S2.

First, consider the foliated open book with pages depicted in Figure 6 and
monodromy τ (this was denoted by h+ in Figure 6). Figure 15 shows the associated
Heegaard diagram H+. We label the intersection points in the Heegaard diagram H+

by x1, x2, y1, and y2 as in Figure 15. The diagram has two generators, x1 y1 and
x2 y2, where x1 y1 is the special generator x defined above. Let ρ1 and ρ2 be the
algebra elements in A(∂H+) corresponding to the Reeb chords on the inside and
outside boundary components of the Heegaard diagram, respectively, as seen on
Figure 6. The type D structure C̃FD(H+) is generated by x1 y1 and x2 y2, and has
structure maps

δ1(x1 y1) = 0,

δ1(x2 y2) = (ρ1 + ρ2) ⊗ x1 y1.

The contact class cD(B3, ξ,F) is the homotopy equivalence class of x1 y1.
Next, consider the foliated open book with pages depicted in Figure 6 and mon-

odromy τ−1 (which was denoted h− in Figure 6). Figure 16 shows the associated
Heegaard diagram H−. We label the intersection points in H− by x ′

1, x ′

2, x ′

3, x ′

4, y′

1,
y′

2, y′

3, and y′

4 as in Figure 16. Let ρ1, ρ2 ∈ A(∂H−) be as in the previous example.
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Sϵ

∪B

−S0

x ′

1

y′

1

x ′

2

x ′

3 x ′

4

y′

2

y′

3
y′

4

Figure 16. The Heegaard diagram for the sorted foliated open
book ({S0, S1, S2}, h−) from Figure 6. The monodromy h− is a
negative Dehn twist, so the images β−

2 =−h−(γ −

2 ) and −h−
◦ι(b1)

are the dark and medium-dark blue curves on −S0, respectively.
The contact generator x is x ′

1 y′

1.

The type D structure C̃FD(H−) is generated by x ′

1 y′

1, x ′

1 y′

2, x ′

1 y′

4, x ′

2 y′

1, x ′

2 y′

2, x ′

2 y′

4,
x ′

3 y′

3, x ′

4 y′

1, x ′

4 y′

2, and x ′

4 y′

4, and has structure maps

δ1(x ′

1 y′

1) = 0,

δ1(x ′

1 y′

2) = ρ1 ⊗ x ′

1 y′

1,

δ1(x ′

1 y′

4) = ρ2 ⊗ x ′

1 y′

1,

δ1(x ′

2 y′

1) = I ⊗ x ′

1 y′

1,

δ1(x ′

2 y′

2) = ρ1 ⊗ x ′

2 y′

1 + I ⊗ x ′

1 y′

2,

δ1(x ′

2 y′

4) = I ⊗ x ′

1 y′

4 + ρ2 ⊗ x ′

2 y′

1,

δ1(x ′

3 y′

3) = 0,

δ1(x ′

4 y′

1) = I ⊗ x ′

1 y′

1,

δ1(x ′

4 y′

2) = I ⊗ x ′

1 y′

2 + I ⊗ x ′

3 y′

3,

δ1(x ′

4 y′

4) = I ⊗ x ′

1 y′

4 + ρ2 ⊗ x ′

4 y′

1.

In particular, δ1(x ′

2 y′

1) = I ⊗ x ′

1 y′

1 implies that there is a type D homotopy equiva-
lence from C̃FD(H−) to an equivalent structure, carrying x ′

1 y′

1 to zero.

6. Vanishing of the contact class for overtwisted structures: a local argument

In this section, we illustrate the power of invariants compatible with cut-and-paste
constructions by providing a local argument that the contact class c(ξ) for closed
contact manifolds vanishes if the contact structure is overtwisted.
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Figure 17. The first page (to the left) and the mirror of the last
page (to the right) of the sorted foliated open book in Figure 13.

We begin by showing that the bordered contact invariant vanishes for a neigh-
borhood of an overtwisted disk. Specifically, we consider the foliated open book
constructed in [13] for a three-ball neighborhood (B3, ξOT,FOT). In Example 3.8,
we stabilized the foliated open book from [13] to a sorted one. We now construct
the Heegaard diagram H associated to the resulting sorted foliated open book from
Figure 13. For convenience, in Figure 17 we display again the pages S0 and −S4,
along with the sorting arcs decorations.

Figure 18 shows the associated Heegaard diagram H.
The generator x1 y1w1 ∈ C̃FD(H) represents the contact class. We claim that

there is a unique holomorphic curve that avoids the basepoints and is asymptotic to
x1 y1w4 at −∞, and this curve ends at x1 y1w1.

Indeed, x1 and y1 cannot be starting moving coordinates for a holomorphic
curve; the only nonbasepointed regions at these intersection points are the thin
strips supported on the Sϵ part of the diagram, but the orientation on these strips is
into x1 and y1. So any holomorphic curve starting from x1 y1w4 must only have w4

as a moving coordinate. A curve that hits the boundary of the Heegaard diagram
would need to have a moving coordinate on a β-arc. Since w4 is on a β-circle,
all holomorphic curves starting from x1 y1w4 project to the interior of the diagram.
Thus, any such curve with a single moving coordinate projects to an immersed
bigon. By counting local coefficients, the yellow bigon from x1 y1w4 to x1 y1w1 in
Figure 18 represents the unique such curve.

x1 y1

w1

w4

w3 w2

x2x3

x4
y2

y3

x5

x6x7

Figure 18. The Heegaard diagram for the sorted foliated open
book in Figure 13. The monodromy h is the identity, so the
images β−

i = −h(γ −

i ) are simply the sorting arcs γ −

i on −S0.
Intersection points are labeled differently from the above definition,
for convenience. The contact generator x is the triple {x1, y1, w1},
or x1 y1w1 for short.
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Thus, considering C̃FD(H), we have δ1(x1 y1w4)= I ⊗x1 y1w1. Or, if one prefers
to consider C̃FA(H), we have m1(x1 y1w4) = x1 y1w1, whereas higher products mi

vanish on x1 y1w4. It follows that there is a type D (resp. type A) homotopy
equivalence from C̃FD(H) (resp. C̃FA(H)) to an equivalent structure, carrying
x1 y1w1 to zero.

Recall from the introduction that we claimed the Ozsváth–Szabó vanishing result
for overtwisted contact manifolds can be recovered from gluing properties of the
bordered contact invariant. In fact, the necessary technical results have already been
established, and we conclude by assembling them into the promised proof.

Proof of Corollary 1.4. Suppose (M, ξ) is a closed overtwisted three-manifold. As
discussed in Section 3C, (M, ξ) contains an overtwisted disk whose neighborhood
is contactomorphic to the contact three-ball (B3, ξOT,FOT) studied in Example 3.8.
Thus, (M, ξ) decomposes as the union of two foliated contact three-manifolds, one
of which is (B3, ξOT,FOT).The computation, above, together with Theorem 1.3
and functoriality for ⊠, implies that c(ξ) = 0. □
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[7] K. Honda, W. H. Kazez, and G. Matić, “The contact invariant in sutured Floer homology”, Invent.
Math. 176:3 (2009), 637–676. MR Zbl
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Branched covering simply connected 4-manifolds

David Auckly, R. İnanç Baykur, Roger Casals,
Sudipta Kolay, Tye Lidman and Daniele Zuddas

We prove that any closed simply connected smooth 4-manifold is 16-fold branched
covered by a product of an orientable surface with the 2-torus, where the con-
struction is natural with respect to spin structures. In particular this solves
Problem 4.113(C) in Kirby’s list. We also discuss analogous results for other
families of 4-manifolds with infinite fundamental groups.

1. Introduction

The work in this note was prompted by the following natural question:

Does every closed 4-manifold admit a branched covering by a symplectic
4-manifold?

Problem 4.113(C) in Kirby’s list [15] is the instance of this question for simply
connected, irreducible manifolds. This question was studied by the authors at the
2018 American Institute of Mathematics Workshop on “Symplectic four-manifolds
through branched coverings”, motivated by a conjecture of Eliashberg [9, Conjec-
ture 6.2]. We provide the following fairly strong answer to the above question in
the case of simply connected 4-manifolds.

Theorem 1. Let X be a closed oriented simply connected smooth 4-manifold. Then
there exist g ∈ N and a degree 16 branched covering f : X ′

→ X such that X ′ is the
smooth 4-manifold T 2

× 6g. In addition, if the 4-manifold X is spin, the branched
covering f is natural with respect to a spin structure on T 2

× 6g.

Note that the smooth 4-manifold T 2
×6g admits a symplectic structure. It follows

from Theorem 1 that if instead X is a closed (possibly nonorientable) connected
smooth 4-manifold with finite π1(X), then there is a branched covering T 2

×6g → X
of degree 16|π1(X)|, which factors through the universal covering X̃ → X.

MSC2020: 57K40, 57M12.
Keywords: branched cover, 4-manifold, symplectic.
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32 D. AUCKLY, R. İNANÇ BAYKUR, R. CASALS, S. KOLAY, T. LIDMAN AND D. ZUDDAS

The above do not generalize to 4-manifolds with arbitrary fundamental groups;
for instance, no 6g-bundle over 6h with g, h ≥ 2 and infinite monodromy group
(e.g., any surface bundle with nonzero signature) can be dominated by a product
4-manifold by [16, Theorem 1.4]. Nonetheless, there are comparable results for
many other 4-manifolds with infinite fundamental groups. For example, X =

#g(S1
× S3), with π1(X) ∼= ∗ Z g, is degree 4 branched covered by X ′

= S2
×6g by

[25, Theorem 1.2]. In addition, the branched virtual fibering theorem of Sakuma
[29, Addendum 1] implies the following:

Proposition 2. Let X = S1
× Y be a smooth 4-manifold which is the product of

S1 and a closed connected oriented 3-manifold Y. Then there exist g ∈ N and a
double branched covering X ′

→ X, where X ′ is a symplectic 4-manifold which is a
6g-bundle over T 2.

Indeed, [29] shows that any closed oriented 3-manifold Y is double branched
covered by a surface bundle over a circle (see also [21] for a different proof), from
which Proposition 2 is immediately deduced; this provides yet another class of 4-
manifolds with infinite fundamental group for which a (symplectic) branched cover
can be readily described. Here, we recall that the product of a fibered 3-manifold
and the circle is symplectic [30].

It is worth noting that with a little more information on the smooth topology
of X, one can easily determine the topology of the branched coverings X ′

→ X
in Theorem 1 and Proposition 2. For the former, one only needs to know the
number of stabilizations by taking the connected sum with S2

× S2 that are required
before the simply connected 4-manifold X completely decomposes into a connected
sum of copies of CP2, S2

× S2 and the K3 surface, taken with either orientation.
This of course can always be achieved by a classical result of Wall [31], and
for vast families of simply connected 4-manifolds, one stabilization is known to
be enough [2]. Similarly, for Proposition 2, one just needs to know a Heegaard
decomposition of the 3-manifold factor Y [29], or any open book on it [21]. See
Remark 6 for some explicit examples.

In all the results we have discussed above, the covering symplectic 4-manifold
X ′ is not of general type, in contrast with the symplectic domination results of Fine
and Panov [10]; see Remark 7 below. It would be interesting to find more general
families of nonsymplectic 4-manifolds branched covered (with universally fixed
degree) by specific families of symplectic 4-manifolds like ours, say by 6g-bundles
over 6h , for arbitrary h.

2. Proof of Theorem 1
Henceforth all the manifolds and maps we consider are assumed to be smooth.
We denote by X the oriented 4-manifold X with the reversed orientation, and
by #a X #b Y the smooth connected sum of a copies of X and b copies of Y. We
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denote by 6b
g a closed connected oriented surface of genus g with b boundary

components, and we drop b from the notation when there is no boundary.

2.1. Preliminaries. Let us briefly recall the definition of a branched covering.

Definition 3. Let X and X ′ be compact connected smooth manifolds (possibly
with boundary) of the same dimension, and let f : X ′

→ X be a smooth proper
surjective map. We say that f is a branched covering if it is finite-to-one and open,
and moreover the (open) subset of X ′ where f is locally injective coincides with
the subset of X ′ where f is a local diffeomorphism. □

The subset B ′

f ⊂ X ′ where f fails to be locally injective is called the branch set
of f , and its image B f = f (B ′

f ) ⊂ X is called the branch locus of f . By a result
of Church [7, Corollary 2.3], either B ′

f = ∅ or dim B ′

f = dim B f = dim X − 2,
and then the restriction of f over the complement of B f is an ordinary connected
covering space X ′

\ f −1(B f ) → X \ B f .
Moreover, for every smooth point of B ′

f at which f |B ′

f
: B ′

f → X is a local
smooth embedding, the map f is topologically locally equivalent to the map
pd : C × Rn−2

→ C × Rn−2 defined by pd(z, x) = (zd , x), for some d ≥ 2, where
n = dim X ′

= dim X. However, the branched coverings fi that we consider below
turn out to be smoothly locally equivalent to p2, while their composition, which will
be indicated by f , has this property away from the singular points of B ′

f . Notice
that every finite composition of branched coverings is a branched covering, and the
restriction to the boundary of a branched covering is a branched covering as well.
Throughout, we assume that branched coverings between oriented manifolds are
orientation-preserving.

2.2. The argument. Let X be a closed oriented simply connected smooth 4-
manifold. We will describe the branched covering in the statement of Theorem 1,
that is f : T 2

× 6g → X, as a composition of four simpler double branched
coverings f1, f2, f3, f4. While all the latter will be branched over embedded
orientable surfaces, the branch locus of the composition will typically be singular.

For clarity of exposition, we will not explicitly keep track of how the topology is
growing at each step, but instead, we will illustrate with some examples in Remark 6
how one can deduce this information.

Step 1: By Wall [31], the connected sum of X with a certain number m of copies of
S2

× S2 is diffeomorphic to a connected sum of copies of the standard 4-manifolds
CP2, S2

× S2 and the K3 surface, taken with either orientation. Note that when X
is spin, the decomposition has only spin connected summands, and also that the
resulting 4-manifold does satisfy 11/8 when m is large enough.

Moreover, since we have K3 # K3 ∼= #22(S2
× S2) and CP2 # (S2

× S2) ∼=

#2CP2 # CP2 [12, page 344], the complete decomposition as above can be written
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as #aK3#b (S2
× S2) or #aK3#b (S2

× S2) when X is spin (depending on the sign of
the signature σ(X)), and as #aCP2 #b CP2 when X is nonspin, for some nonnegative
integers a and b which are not both zero. In the spin case, we can guarantee that
b ≥ 2a by taking sufficiently many stabilizations.

The conjugation map (z1, z2) 7→ (z̄1, z̄2), which is an antiholomorphic involution
on CP1

×CP1 ∼= S2
× S2, induces a double branched covering S2

× S2
→ S4, where

the branch locus is the unknotted T 2
⊂ S4 (bounding a handlebody). Taking the

equivariant connected sum of m copies of it, we get an involution on #m(S2
× S2),

which induces a double covering #m(S2
×S2)→ S4 branched along an unknotted 6m ,

for every m ≥ 1.
We can now take a double covering of X branched along an unknotted 6m in X

(viewing X ∼= X # S4, take an unknotted 6m in S4), which we denote by f1 : X1 → X,
where clearly X1 ∼= X # X #m (S2

× S2). We choose m ≥ 1 such that X #m (S2
× S2)

completely decomposes, and so does X1 (as one gets at least m copies of S2
× S2

after decomposing X #m (S2
×S2)). Then X1 is diffeomorphic to one of the standard

connected sums we listed above.

Step 2: We would like to obtain a double branched covering of X1 by some
#g(S2

× S2). We will describe this covering in essentially two different ways,
depending on whether X (and thus X1) is spin or not.

The K3 surface can be obtained as a holomorphic double covering of S2
× S2

branched along a curve of bidegree (4, 4) in CP1
× CP1 ∼= S2

× S2 [12, page 262].
Reversing the orientations, we see that K3 is also a double branched covering of
S2

× S2 (recall that S2
× S2 admits an orientation-reversing diffeomorphism). By

taking equivariant connected sums, we can then express both #nK3 and #nK3 as
branched double coverings of #n(S2

× S2). Taking n = 2a, we then conclude that
#aK3 #b (S2

× S2) admits a double branched covering by #2aK3 #2a K3 #2(b−2a)

(S2
× S2). Since K3 # K3 ∼= #22(S2

× S2), we have obtained the desired double
branched cover #g(S2

× S2), for g = 40a + 2b. Mirroring the same argument, we
see that #aK3 #b (S2

× S2) is also double branched covered by some #g(S2
× S2).

This concludes the construction in the spin case.
The following variation can be run for both spin and nonspin manifolds. Switch-

ing the two factors (z1, z2) 7→ (z2, z1), which is a holomorphic involution on
CP1

×CP1 ∼= S2
× S2, induces a double branched covering S2

× S2
→ CP2, where

the branch locus is the quadric (this may be interpreted as the map taking a pair of
numbers to the quadratic equation having those roots). Reversing the orientations,
we obtain a double branched covering over CP2. Taking equivariant connected
sums once again, we then deduce that #a(S2

× S2)#b (S2
× S2) is a double branched

covering of #aCP2 #b CP2. So in the nonspin case, we arrive at the desired double
covering #g(S2

× S2) as well.
We let f2:X2→X1 denote the double branched covering we described in either case.
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Step 3: We next show that S1
× #g(S1

× S2) is a double branched covering of
#g(S2

× S2), which will prescribe our next covering f3 : X3 → X2. A similar
double branched covering over #g(CP2 # CP2) was described by Neofytidis in [23,
Theorem 1]. (Also see [24] for similar constructions in other dimensions.)

The hyperelliptic involution on T 2 induces a double branched covering p :

T 2
→ S2 with four simple branch points x1, x2, x3, x4 ∈ S2. Taking its product with

the identity map on S2 yields a double branched covering p×idS2 :T 2
×S2

→ S2
×S2

with branch locus {x1, x2, x3, x4} × S2. Note that if g = 1, we can stop here and
skip Step 4.

Let D ⊂ S2 be a 2-disk containing exactly two branch points of p. So A =

p−1(D) ⊂ T 2 is an equivariant annulus that contains two fixed points of the hyper-
elliptic involution. Moreover, D can be chosen such that A is a union of fibers of
the trivial S1-bundle T 2

= S1
× S1

→ S1 given by the canonical projection onto
the second factor.

Let S2 ∼= S2
×{y} ⊂ S2

× S2 be a fiber sphere, for a certain y ∈ S2. Let D′
⊂ S2

be a disk centered at y. Then, U = D × D′
⊂ S2

× S2 is a fibered bidisk, whose
preimage V = (p × idS2)−1(U ) ∼= A × D′ is a fibered neighborhood of a fiber of
the trivial S1-bundle

T 2
× S2

= S1
× (S1

× S2) → S1
× S2.

By taking two copies of the branched covering T 2
× S2

→ S2
× S2, and performing

an equivariant fiber sum upstairs along V and connected sum downstairs along
U ∼= D4, and repeating the construction for every g ≥ 2, we finally get a branched
double covering S1

× #g(S1
× S2) → #g(S2

× S2).
We can also describe this branched covering as follows: start with a double

covering q : S1
× D1

→ D2 branched over two points in Int D2 (this is the above
branched covering A → D), so the product q × idD1 : S1

× D1
× D1

→ D2
× D1

yields a double covering q ′
: S1

× D2
→ D3 branched over the union of two parallel

proper trivial arcs in D3 (this fills the above branched covering p : T 2
→ S2), up

to the identifications S1
× D1

× D1 ∼= S1
× D2 and D2

× D1 ∼= D3. Then, we
get a double branched covering q ′′

= q ′
× idS2 : S1

× D2
× S2

→ D3
× S2. Let

D ⊂ S2 be a 2-disk. Up to the identification D2
× D1

× S2 ∼= D3
× S2, we consider

the bidisks C−
= D2

× {−1} × D and C+
= D2

× {1} × D ⊂ ∂(D3
× S2), each of

which intersects the branch locus of q ′′ along the union of two parallel proper trivial
2-disks. Consider g copies of q ′′, say q ′′

i : (S1
× D2

× S2)i → (D3
× S2)i , and let

C−

i , C+

i ⊂ ∂(D3
× S2)i be the corresponding bidisks. Thus, we obtain a double

branched covering

q ′′′
= q ′′

1 ∪ · · · ∪ q ′′

g : ∪i (S1
× D2

× S2)i → ∪i (D3
× S2)i ,

where (D3
× S2)i is attached to (D3

× S2)i+1 by identifying C+

i with C−

i+1 and
(S1

× D2
× S2)i is attached to (S1

× D2
× S2)i+1 by identifying (q ′′

i )−1(C+

i ) with
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(q ′′

i+1)
−1(C−

i+1) in the obvious way, for all i = 1, . . . , g −1. This in turn is a double
branched covering

q ′′′
: S1

× ♯g(D2
× S2) → ♯g(D3

× S2),

as it can be easily realized by looking at the attaching maps, where ♯ denotes the
boundary connected sum. Finally, the desired branched covering S1

×#g(S1
×S2)→

#g(S2
× S2) can be obtained by restricting q ′′′ to the boundary.

Step 4: Our final double branched covering f4 : T 2
×6g → S1

× #g(S1
× S2) is a

special case of Proposition 2 and can be obtained by taking the product of the identity
map on the S1 factor with a double branched covering S1

×6g → #g(S1
× S2). The

latter can be derived from the work of Sakuma [29] we mentioned in the introduction,
or from Montesinos’ alternative construction [21], which is quicker to describe
here: the involution (z, t) → (z̄, −t) on the annulus A = S1

× [−1, 1] ⊂ C × R

induces a double covering q : A → D2 branched at two points (this is same as the
double branched cover described in Step 3), so we get a double branched covering
q × idS1 : A × S1

→ D2
× S1. Then, for any open book decomposition of a closed

connected oriented 3-manifold Y with pages 6m
k and monodromy φ, we can get

a double covering h : Y ′
→ Y branched over two parallel copies of the binding,

where Y ′ is now a surface bundle whose fiber and the monodromy are the doubles
of 6m

k and φ. Indeed, by lifting the usual splitting Y = (D2
× ∂6m

k ) ∪∂ T (φ)

that gives the open book decomposition of Y, with the branch link contained in
D2

×∂6m
k , and where T (φ) denotes the mapping torus of φ, one obtains a splitting

Y ′
= (A × ∂6m

k ) ∪∂ (T (φ)1 ∪ T (φ)2), with the annulus A instead of D2, where
T (φ)1 and T (φ)2 are two disjoint copies of T (φ) (the branched covering h : Y ′

→ Y
is trivial over T (φ)). By looking at the attaching maps, it is immediate to get the
bundle structure on Y ′ as above.

In our case, since #g(S1
× S2) admits a planar open book with pages 6

g+1
0 and

φ = id, we obtain the desired covering. (The covering produced by the arguments
of both Sakuma and Montesinos in this simple setting is equivalent to the one given
in [17, Proposition 4].)

The composition f = f1 ◦ f2 ◦ f3 ◦ f4 : T 2
×6g → X gives the desired covering.

The spin case: Let us conclude by observing that our construction is natural with
respect to the spin structures, when X is spin, and then briefly discuss the topology
of the branch locus of f .

Recall that a spin structure on a 4-manifold is the same as a trivialization of the
tangent bundle over the 1-skeleton that extends over the 2-skeleton [20; 14]. We
may use a handlebody decomposition in this definition. Given an unramified cover
over a spin 4-manifold, the trivialization will lift to the tangent bundle of the cover
restricted to the 1-skeleton and any extension to the 2-skeleton, so there is a natural
lift of a spin structure to a covering space.
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Now consider a 2-fold branched covering with branch locus B. We may build
a handle decomposition of the base in the following way. Start with a handle
decomposition of B. This extends to a handle decomposition of a tubular neigh-
borhood of B with only zero, one and two handles. Now extend this to a handle
decomposition of the rest of the base X. Finally turn the entire handle decomposition
over. Notice that all of the 1-handles of this new handle decomposition are in the
exterior of B. Each of these handles lifts to the cover of the exterior and the
restriction of the spin structure to the exterior lifts to the cover. We now complete
the handle decomposition of the total space of the branched cover as follows. Use
the identification of the inverse image B̃ with B to construct a decomposition of B̃
which is then extended to a decomposition of the normal bundle of B̃. Turn this
upside down and add it the to decomposition of the inverse image of the exterior.
This only adds 2-, 3- and 4-handles to the decomposition. It is not necessarily
true that the trivialization of the tangent bundle over the 1-skeleton will extend
over the 2-skeleton. It will extend precisely when the mod two reduction of the
integral homology class [B]/2 is zero in the second homology of the base with
Z2 coefficients [4; 22]. Note that the class of [B] is necessarily divisible by 2 due
to the existence of the double branched cover. So, a spin structure does not have
to lift to the total space of a 2-fold branched covering, but if it does, there is a
natural lift.

It is now straightforward to check that each double cover fi that we employed
in our construction when X is spin satisfies the above criterion, so for the initial
spin structure s on X, there is a spin structure s′ on X ′ ∼= T 2

× 6g constructed this
way. (Note that there are 22(g+1) different spin structures on X ′.) Thus the branched
covering X ′

→ X is compatible with the spin structures s on X and s′ on X ′.

The branch locus: The branch locus B f ⊂ X of f is given by

B f = B f1 ∪ f1(B f2 ∪ f2(B f3 ∪ f3(B f4))),

where B fi ⊂ X i−1 denotes the branch locus of fi , for i = 1, 2, 3, 4, with X0 = X.
Each B fi is a smooth embedded closed orientable surface in X i−1. By taking into
account that each covering fi is two-to-one and its tangent map has a 2-dimensional
kernel along the branch set, an easy transversality argument based on perturbing
the fi ’s up to isotopy, shows that the branch locus B f ⊂ X can be assumed to be a
smooth orientable surface away from at most finitely many singular points, which
are transversal or tangential double points (at the latter the local link has two trivial
components with linking number ±2). □

3. Ancillary remarks

Let us list a few comments in relation to Theorem 1, its proof and related works.
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Remark 4 (variations). In Step 1 above we could have stabilized by taking con-
nected sums with copies of CP2 and CP2 so that we got a double covering
g1 : #aCP2 #b CP2

→ X branched over a genus m nonorientable surface, which is
trivially embedded in X, for certain integers a, b and m (once again by Wall [31]).
The complex conjugation on CP2 induces this double covering CP2

→ S4 branched
over the standard smooth RP2

⊂ S4 [18; 19]. Now, we can invoke Theorem 1.2
in [25] to conclude that there exists a 4-fold simple branched covering

g2 : 6h × 6g → #aCP2 #b CP2

for every given a, b ≥ 0 and h ≥ 1, and for some g large enough. Thus, the
composition g1 ◦ g2 : 6g × 6h → X is a degree 8 branched covering.

Again by Theorem 1.2 in [25] (see also Remark 2 therein), there exist degree 4
branched coverings T 4

= T 2
× T 2

→ X, with X = #mCP2 #n CP2 and X =

#n(S2
× S2), for every m, n ≤ 3. Note that the case X = S2

× S2 is straightforward
by taking the product p× p : T 2

×T 2
→ S2

× S2, and the case X = #2(S2
× S2) was

previously obtained by Rickman [28]. Branched coverings from the n-dimensional
torus are relevant in connection with the theory of quasiregularly elliptic manifolds;
see Bonk and Heinonen [3]. In this direction, a result by Prywes [26, Theorem 1.1]
implies that if there is a branched covering T 4

→ X, then b1(X) ≤ 4 and b2(X) ≤ 6,
so in Theorem 1 we cannot take g ≤ 1 if b2(X) ≥ 7.

However, unlike in our construction above, the results in [25] do not give explicit
branched coverings, and there is not much control on the topology of the branch
locus.

Remark 5 (branched cover geometries). Theorem 1 and our subsequent remark
in the introduction imply that any X with finite π1(X) is branched covered by
T 2

×6g, where it is easy to see from our proof that we can always assume g ≥ 2. In
terms of 4-dimensional geometries [13], this shows that all such X can be branched
covered by a 4-manifold with E2

×H2 geometry. However, if we replace the double
branched covering h : Y ′

→ #g(S1
×S2) we used in the construction of f4 = idS1 ×h

with the one built by Brooks in [5], we can also get Y ′ to be a 6g-bundle over
S1 with hyperbolic total space. Therefore, any X with finite π1(X) can also be
branched covered by a 4-manifold with E×H3 geometry. Similarly, one can modify
the construction in Proposition 2 to get a double branched cover of any product
4-manifold S1

× Y by a 4-manifold with E × H3 geometry.

Remark 6 (topology of the branched coverings). Here we will try to demonstrate
by way of example how one can control the topology of the branched coverings in
Theorem 1. For some variety, we will run our construction for two infinite families
of irreducible 4-manifolds which are not completely decomposable: Dolgachev
surfaces, which are nonspin complex surfaces of general type, and knot surgered K3
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surfaces of Fintushel and Stern, which include spin 4-manifolds that do not admit
any symplectic structures [11]. The members of either one of these two families of
simply connected 4-manifolds completely decompose after a single stabilization
by S2

× S2; see, e.g., [1]. Now, if X is a Dolgachev surface, we can take the
branch locus of f1 as an unknotted T 2, and get X1 = #3CP2 #19 CP2. The branched
covering f2 performed along the connected sum of 22 quadrics (each coming from
distinct copies of CP2 and CP2) then gives X2 = #22(S2

× S2), and the last two
coverings yield X ′

= T 2
× 622. If we take X to be a knot surgered K3 surface

instead, thinking ahead of the second step, we take the branch locus of f1 this
time as 64, so X1 = #2K3 #4 (S2

× S2). The next double cover f2 is taken along a
connected sum of four bidegree (4, 4) curves (each coming from distinct copies of
S2

× S2, with noncomplex orientation), and we get X2 = #4K3#4 K3 ∼= #88(S2
× S2).

The last two coverings this time yield X ′
= T 2

× 688.

Remark 7 (symplectic domination). A recent article of Fine and Panov provides a
symplectic domination result [10, Theorem 1] which is worth mentioning here. Their
beautiful construction is very general: for any closed oriented even-dimensional
smooth manifold M, they build a closed symplectic manifold S of the same di-
mension with a positive degree map f : S → M. In dimension 4, where we
can compare their result with ours in Theorem 1, their symplectic manifold S is
constructed as a Donaldson hypersurface in the 6-dimensional symplectic twistor
space Z of a negatively pinched manifold N, where the latter admits a degree one
map g : N → M. The construction of N, with sectional curvature arbitrarily close
to −1, is implicit, and relies on the recent works of Ontaneda involving rather
intricate new techniques in Riemannian geometry. (The condition on the sectional
curvature is to guarantee that the twistor space Z of N is a symplectic 6-manifold.)
Secondly, the construction of a symplectic hypersurface S in N, which is built
through asymptotically holomorphic techniques of [8], is also implicit and the
smooth topology of S is effectively impossible to control. Hence, one does not have
any information on the smooth topology of the dominating symplectic 4-manifold S,
other than that it is of general type, i.e., of Kodaira dimension 2 [10]. Besides the
very implicit nature of this construction, since the map f : S → M factors through the
degree one map g above, Fine and Panov’s domination is essentially never a branched
covering. Moreover, because the symplectic twistor space Z is in fact known to
be non-Kähler [27], the dominating symplectic 4-manifold S has a priori no reason
to be a Kähler surface. On the other hand, the dominating symplectic 4-manifold
X ′

= T 2
×6g of Theorem 1 is obviously a Kähler surface, and X ′ in both Theorem 1

and Proposition 2 is of Kodaira dimension −∞, 0 or 1, depending on whether this
(possibly trivial) 6g-bundle over T 2, has fiber genus g = 0, 1 or ≥ 2, respectively.

Domination is certainly distinct from branched covering as the following example
shows. There is a degree one map from 64 ×62 to 63 ×62 given by the extension
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of the natural collapse of a copy of 61
1 × 62 to 61

0 × 62. However there can be no
branched covering from 64 ×62 to 63 ×62 since the Gromov norm of the former
is 24(4 − 1)(2 − 1) = 72, the Gromov norm of the latter is 24(3 − 1)(2 − 1) = 48
and the Gromov norm is super multiplicative with respect to degree [6].
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Lagrangian cones in Cn

Scott Baldridge, Ben McCarty and David Vela-Vick

We show how to lift Lagrangian immersions in CPn−1 to produce Lagrangian
cones in Cn , and use this process to produce several families of examples of
Lagrangian cones and special Lagrangian cones. As an application of this theorem,
for n = 3 we show how to produce Lagrangian cones that are isotopic to the
Harvey–Lawson special Lagrangian cone and the trivial cone. The projections
of the Legendrian links of both of these cones to CP2 are immersions with four
and seven transverse double points. We expect that these double points represent
the chord generators of the 0-filtration level of a suitably defined version of
Legendrian contact homology of the links.

1. Introduction

This paper focuses on creating models for Lagrangian cones. The motivation for
this paper arises from the string theory model in physics. According to the theory,
our universe consists of the standard Minkowski space-time, R4, together with a
complex Calabi–Yau 3-fold, X. Based upon physical grounds, the SYZ-conjecture
of Strominger, Yau, and Zaslow [32] expects that this Calabi–Yau manifold can be
viewed as a fibration by 3-tori with some singular fibers. These singular fibers are
not well understood. The standard approach is to model them locally as special
Lagrangian cones C ⊂ C3 (by cone, we mean a subset C ⊂ C3 such that r · C = C
for any real number r > 0). Such a cone can be characterized by its link, C ∩ S5,
which is a Legendrian surface.

Special Lagrangian cones in C3 are solutions to nonlinear degree 2 and 3 partial
differential equations. Many papers on the subject to date have used this perspective,
often by using examples from algebraic geometry. However, given that the cone
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can be characterized by the Legendrian link, this topic is very closely related to the
study of knotted Legendrian submanifolds. This relationship connects it to a great
deal of work in the area of contact topology. In this area much progress has been
made, at least in part, due to the fact that there are topological and combinatorial
representations of such submanifolds. In dimension 3, where the problem of
understanding Legendrian submanifolds amounts to classifying Legendrian knots
up to isotopy, such diagrammatic representations are easy to generate. For instance,
grid diagrams can be used to obtain combinatorial representations of both front
and Lagrangian projections of Legendrian knots (see [4; 5; 7; 19; 28]). In higher
dimensions, there are fewer such constructions. In [9], Ekholm, Etnyre, and Sullivan
present front spinning as a way of constructing one class of knotted Legendrian
tori, showing that the theory of Legendrian submanifolds of R2n+1 is at least as
rich in higher dimensions as it is in dimension 3. To accomplish this, they extend
the definition of Legendrian contact homology to R2n+1. In [4], it was shown that
knotted Legendrian tori could be constructed from Lagrangian hypercube diagrams,
and it was shown how to compute several invariants from such a diagram. In [16],
Lambert-Cole showed how to generalize that construction to produce a product
operation on Legendrian submanifolds.

1A. Lifts of Lagrangian immersions in CPn−1 to S2n−1. With the appropriate
setup, it is possible to construct models of Legendrian surfaces in S5 so that the
resulting cone in C3 is Lagrangian, and in some cases, special Lagrangian. The
lifting theorem describes precisely the conditions under which an immersion into
CPn−1 lifts to an embedded Legendrian submanifold of S2n−1 that gives rise to a
Lagrangian cone.

Lifting theorem. Let 6 be a closed, connected, smooth (n−1)-manifold, and
f : 6 → CPn−1 be a Lagrangian immersion with respect to the integral Fubini–
Study symplectic form 1

π
ωF S . Let π : S2n−1

→ CPn−1 be the principle Hopf
S1-bundle with connection 1-form i

π
α where α = i∗

0

( 1
2

∑n
i=1 xi dyi − yi dxi

)
for

the identity map i0 : S2n−1
→ Cn. For each chart 9 j : B j × S1

→ S2n−1 (see
Section 4), there exists a 1-form τ j such that 9∗

j (α)=
1
2(dt − τ j ) where τ j =

−
∑n

i=1, i ̸= j (xi dyi − yi dxi ).
If

(1) 0
∫
γ
τ = 0 mod 2π for all [γ ] ∈ H1(6; Z), and

(2) for all distinct points x1, . . . , xk ∈ 6 such that f (x1) = f (x j ) for all j ≤ k,
and a choice of path γ j from x1 to x j in 6 for 2 ≤ j ≤ k, the set{(

0
∫

f (γ j )
τ
)

mod 2π
∣∣∣ 2 ≤ j ≤ k

}
has k − 1 distinct values, none of which are equal to 0,
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then f : 6 → CPn−1 lifts to an embedding f̃ : 6 → S2n−1 such that the im-
age (the lift) 6̃ is a Legendrian submanifold of (S2n−1, α). In turn, the cone
c6̃ is Lagrangian in Cn with respect to the standard symplectic structure ω0 =∑n

i=1 dxi ∧ dyi .

Remark 1.1. The 1-form τ j may be thought of as a multiple of a contact form on
S2n−1 as observed in Section 4.

Remark 1.2. The integral 0
∫
γ

refers to a lifting integral (see Definition 4.8).

Remark 1.3. The second condition of the lifting theorem is stated for multiple
points in general, but in most examples, we will only be working with double points
or S1-families of double points.

1B. Legendrian contact homology and Lagrangian cones. While the lifting the-
orem is quite general, it is often possible (and simpler) to work within a single
chart of CPn−1. To construct a local model for special Lagrangian cones, we
work in the symplectic manifold (Cn, ω,�) where Cn has complex coordinates
(z1, . . . , zn), ω0 =

i
2(dz1 ∧dz1 +· · ·+dzn ∧dzn) is the standard Kähler form, and

�= dz1 ∧ · · · ∧ dzn is the holomorphic volume form (see [14]).

Definition 1.4. A cone C ⊂ Cn is special Lagrangian if it is Lagrangian and
Im�|C ≡ 0 or, equivalently, if C is calibrated (in the sense of [13]) with respect to
Re�.

As a first step, we will focus first on the construction of Lagrangian cones.
Observe that the kernel of the 1-form

α =
1
2(x1dy1 − y1dx1 + · · · + xndyn − yndxn),

where z j = x j + iy j , restricted to the unit sphere, generates the standard contact
structure for S2n−1 and that α= ιRω, where R = 2

(∑n
i=1 xi

∂
∂xi

+ yi
∂
∂yi

)
. This means

that, given a Legendrian submanifold 6 ⊂ S2n−1, the associated cone c6, obtained
by scaling 6 by positive real numbers, is automatically Lagrangian. Moreover, any
Lagrangian cone with vertex at the origin, must intersect S2n−1 in a Legendrian
surface. Hence, with respect to the standard contact structure on S2n−1 and the
standard symplectic form on Cn, a given submanifold of S2n−1

⊂ Cn is Legendrian
if and only the associated cone in Cn is Lagrangian.

In knot theory, the trivial knot and the trefoil are the two simplest types of knots.
Analogously, we use the lifting theorem in this paper to study the two simplest
Lagrangian cones: the trivial cone and the Harvey–Lawson special Lagrangian
cones. We begin by recalling the construction of the Harvey–Lawson special
Lagrangian cone.

Example 1.5. Example III.3.A in [13] introduced one of the first nontrivial families
of examples of special Lagrangian cones, collectively known as the Harvey–Lawson
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cone. In particular, they proved that the cone on the (n−1)-tori defined by the
following two sets is a special Lagrangian cone:

T +
= {(eiθ1, . . . , eiθn ) ∈ Cn

| θ1 + · · · + θn = 0},

T −
= {(eiθ1, . . . , eiθn ) ∈ Cn

| θ1 + · · · + θn = π}.

Observe that we may rewrite T + as

T +
= {(eiθ1, . . . , eiθn−1, e−i(θ1+···+θn−1)) | θ1, . . . , θn−1 ∈ S1

}, (1-1)

and we will call the cone on T + the Harvey–Lawson cone.

In [30], Sabloff used combinatorial methods to define a version of Legendrian
contact homology for Legendrian knots in circle bundles over Riemann surfaces. We
expect that similar methods give rise to a version of Legendrian contact homology in
the present context as well. Sabloff’s Legendrian contact homology is filtered by the
“winding number” of the Reeb chord around the fiber. As such, the short Reeb chords
in the 0-filtration level (i.e., those that do not wrap around the fiber) are crucial to any
calculation of the homology. In this context, as an application of the lifting theorem
we calculate the expected generators of the 0-filtration level of the Legendrian
contact homology of the torus given by the intersection of the Harvey–Lawson
special Lagrangian cone with S5 using the standard contact structure α.

Theorem 3.16. Let T 2
⊂ S5 be the torus constructed in Example 3.1, which is

Legendrian isotopic to T +
⊂ S5. Then the 0-filtration level of the Legendrian

contact homology of T 2 is generated by four pairs of short Reeb chords, two each
in gradings 4, 6, 7, and 9. These Reeb chords correspond to the double points of T 2

via the projection of T 2 under π : S5
→ CP2 (as described in Example 3.1).

Many of the technical calculations in this paper are devoted to proving this
theorem (and Theorem 5.3). The Harvey–Lawson special Lagrangian cone has an
associated Legendrian torus in S5 that is a 3-fold cover of a (standard) Lagrangian
torus in CP2. The isotopies that are used to place this Legendrian torus in general
position are delicate and have to be done in steps: first we find projections with
double point circles, and then we perturb the resulting surface to obtain one whose
projection to CPn−1 has isolated transverse double points. It is only in this carefully
orchestrated setup that we can count the double points, and hence the filtration level 0
generators of contact homology. We use a similar approach in Sections 3C and 3D
to construct examples of Lagrangian cones arising from products of Legendrian
knots.

Example 1.6. The trivial cone is simply a Lagrangian copy of Rn
⊂Cn. In particular,

the following is well known and easy to check:
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Theorem 1.7. If f : Rn
→ Cn is given by (x1, . . . , xn) 7→ (x1η1, . . . , xnηn), where

η = (η1, . . . , ηn) is a complex vector with η j ̸= 0 for all j, then the image of f is
Lagrangian with respect to the standard symplectic form ω.

For some choices of η the trivial cone is special Lagrangian. For example, when
n = 3 a direct calculation shows that for η = (a1 + ib1, a2 + ib2, a3 + ib3), if

a2a3b1 + a1a3b2 + a1a2b3 − b1b2b3 = 0

then the map f : R3
→ C3 given by

(x1, . . . , xn) 7→ (x1(a1 + ib1), x2(a2 + ib2), x3(a3 + ib3))

is a special Lagrangian cone.
While the cone is just a copy of R3

⊂ C3, its intersection with S5
⊂ C3 is a copy

of S2 that double covers a copy of RP2 under the projection π : S5
→ CP2. For

computations of Legendrian contact homology, it is desirable to perturb the cone so
that, in the projection, we see only isolated transverse double points. Unlike with the
Harvey–Lawson cone, whose link embeds in a single chart (see Section 2), the lift
of RP2 used to study the trivial cone requires the full strength of the lifting theorem.

As with the Harvey–Lawson cone, we use the lifting theorem to obtain a similar
theorem about the expected generators of the trivial cone’s Legendrian contact
homology.

Theorem 5.3. Let S ⊂ S5 be the Legendrian 2-sphere obtained from intersecting
the trivial cone with S5 and then perturbing it via Legendrian isotopy to one with
transverse double points (see Section 5). Then the 0-filtration level of the Legendrian
contact homology of S is generated by 7 pairs of short Reeb chords. These Reeb
chords correspond to the double points of the projection of S under π : S5

→ CP2.

1C. Lagrangian cones given by knot diagrams. In [4], pairs of grid diagrams for
knots were used to construct immersed Lagrangian tori in R4, whose lifts to R5

equipped with the standard contact structure are embedded Legendrian tori. In
Sections 3C and 3D, we show how to adapt this construction to produce Legen-
drian tori in S5 whose associated cones in C3 are Lagrangian. This allows us to
construct infinite families of Lagrangian cones, some of which may be isotopic to
special Lagrangian cones. Future research will explore the question of under what
conditions this happens.

1D. Outline. The remainder of the paper is organized as follows. In Section 2, we
discuss the background information leading to the statement of a useful simplifica-
tion of the lifting theorem (cf. Theorem 2.2), and various examples we can construct
using it. In Section 4, we prove the lifting theorem, and in Section 5 we give an
example of a lift using it. Section 6 explores the implications of the lifting theorem
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for the study of Legendrian submanifolds of S2n−1. Finally, Section 7 introduces
some questions regarding the study of Hamiltonian minimal submanifolds using
the theorems and examples in this paper.

2. Lifting theorem in a single chart

In this section we develop a special case of the lifting theorem that we use for
constructing examples of embedded Legendrian submanifolds of S2n−1 as lifts of
Lagrangian immersions in CPn−1.

The local theory for lifting Lagrangian immersions into a symplectic manifold
to some S1-bundle over that manifold comes out of the theory of fiber bundles.
Given a 2n-dimensional symplectic manifold (X2n, ω) with an integral symplectic
form, let π : L → Xn be the complex line bundle such that c1(L) = [ω]. By the
theory of line bundles (see [12]), we know that there is a 1-form η on the unit
circle bundle P = U (L) such that dη = π∗(ω). In this case, iη ∈ �1(P; iR) is
called the connection 1-form. If f : 6n

→ X2n is a Lagrangian immersion of a
connected n-dimensional manifold 6, then [ f (6n)] ∩ [ω] = 0 and the pull-back of
the S1-bundle P over 6 is trivial. Given

f ∗(P) P

6 X2n

F

π

f

then f ∗(P)∼=6× S1. In turn, there exists a section σ :6 → f ∗(P) which gives
an immersed submanifold F(σ (6)) of P (see [34]).

In this setup, η is a contact form for P. In general, F(σ (6)) will not be Legen-
drian with respect to η. However, we can always use η to lift a neighborhood U of
x0 ∈ 6 to a Legendrian submanifold of P as follows: using the diffeomorphism
f ∗(P)∼=6× S1 along with the section σ(x)= (x, 1), we can define a trivialization
of P|U by (x, ei t) for x ∈U and t ∈R. For x ∈U, let γ be a path in U from γ (0)= x0

to γ (1) = x1. This path gives rise to a path 0 in P|U using the holonomy of the
connection 1-form F∗(η). That is, 0 is the unique path such that 0(0) = (x0, 1),
π(0(s))= γ (s), and F∗(η)(0′(s))= 0 for all s ∈ (0, 1). Define the lift f̃ : U → P
by f̃ (x)= F(0(1)).

This map is independent of the path chosen in the contractible neighborhood U
because f is a Lagrangian immersion (the restricted holonomy group at x0 is trivial).

We can write this holonomy map down explicitly in terms of 6 × S1 and the
section σ given by coordinates (x, ei t) where x ∈6 and t ∈ R. Suppose

F∗(η)= k(dt − τ),

where k ∈ R is a constant, and τ ∈ �1(6). The solution 0 is equivalent to a
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path (γ (x), ei t (x)) ∈6× S1 where

t (x)=

∫
γ

τ

is obtained by integrating dt −τ along γ , setting the result equal to 0, and choosing
t (0)= 0.

This solution defines a local Legendrian lift, f̃ of U into P. We get a global lift if∫
γ

τ ∈ 2πZ for all [γ ] ∈ H1(6).

In this case, f :6 → X lifts to a Legendrian immersion f̃ :6 → P (i.e., the local
lift extends to all of 6).

If integrating τ along any path joining a pair of double points results in a nonzero
answer (mod 2π), then the lift f̃ is an embedding. We summarize the discussion
above as follows:

Theorem 2.1. Let 6n be a connected n-manifold, X2n be a 2n-dimensional sym-
plectic manifold with integral symplectic form ω, and f :6 → X be a Lagrangian
immersion. Let π : P → X be the principle S1-bundle with connection 1-form iη
determined by dη=π∗(ω). Suppose the section σ :6→ f ∗(P) defines coordinates
(x, ei t) of the trivial bundle F : f ∗(P)→ P such that F∗(η) = k(dt − τ) where
k ∈ R is a constant and τ ∈�1(6). If

(1)
∫
γ
τ ∈ 2πZ for all [γ ] ∈ H1(6; Z), and

(2) for all points x0, x1 ∈ 6 such that f (x0) = f (x1) and any path γ from x0 to
x1 in 6,

∫
γ
τ ̸= 0 mod 2π ,

then f : 6 → X lifts to f̃ : 6 → P and the image (the lift) 6̃ is a Legendrian
submanifold of P.

Theorem 2.1 is general in that it describes exactly when immersions can be lifted,
but it is far from helpful in describing how to construct such lifts by hand (or with
the help of a computer). For example, given a symplectic manifold X, like CPn (or
T n, E(n), Symn(6g), etc), what chart system should we use to make the calculation
easiest? (Note the standard chart system Ui ={[z1 : · · · : 1 : · · · : zn]|zi ∈ C}⊂ CPn−1

is not convenient for constructing lifts.)
Can a chart system of X be chosen in such a way that the symplectic form ω is

standard in each chart? Can a chart system be chosen so that the principal S1-bundle
trivializes over each chart in such a way that η has a nice (simple) form in each
trivialization, and there is an obvious choice of sections so that τ also has a nice
representation? None of these questions are answered by Theorem 2.1 (because
they are specific to X ), but all of them are important to being able to generate
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explicit examples of lifts that satisfy the restrictive requirements needed to be able
to compute invariants like the Legendrian contact homology of the lifts.

For these reasons, the following theorem is useful to us in computing the invariants
of Lagrangian cones in Cn in this paper.

Theorem 2.2. Let Bn−1
⊂ Cn−1 be a ball, 6 be a closed, connected, smooth

(n−1)-manifold, and f :6→ Bn−1 be a Lagrangian immersion with respect to the
standard symplectic form ω0 of Cn−1. Let τ = −

∑n−1
i=1 (xi dyi − yi dxi ) be a 1-form

on Bn−1. If

(1)
∫

f (γ ) τ ∈ 2πZ for all γ ∈ H1(6; Z), and

(2) for all distinct points x1, . . . , xk ∈6 such that f (x1)= f (x j ) for all j ≤ k, and
a choice of path γ j from x1 to x j in6 for 2≤ j ≤k, the set

{(∫
f (γ j )

τ
)

mod 2π |

2 ≤ j ≤ k
}

has k − 1 distinct values, none of which are equal to 0,

then 6 lifts to an embedded Legendrian submanifold 6̃ ⊂ S2n−1 whose associated
cone c6̃ is Lagrangian in Cn.

The lift, f̃ :6 → S2n−1
⊂ Cn, is given by

f̃ (x)= ei t (x)( f1(x), . . . , fn−1(x),
√

1 − | f (x)|2)

where
t (x)=

∫
f (γ )

τ

for some path γ from an initial point x0 ∈6 to x.

Careful comparison of the calculations in Theorem 2.2 with those of Theorem 2.1
shows that Theorem 2.2 is the realization of Theorem 2.1 in the case where 6n−1

is an immersion into an open unit ball, thought of as a single chart of CPn−1

(and where we do the calculations in the chart, instead of in 6). For a proof of
Theorem 2.2, see Section 4, where we prove the lifting theorem, which is a more
general version of this theorem.

3. Examples of lifts using Theorem 2.2

3A. Legendrian contact homology generators for the Harvey–Lawson cone.

Example 3.1. Theorem 2.2 allows us to construct a family of isotopies of the famous
special Lagrangian cone given by Harvey and Lawson (see Example 1.5). Choose ϵ
so that 0 ≤ ϵ <

√
2/n and define δ =

√
1/n − ϵ2/2. Parametrize the torus T n−1

in the usual way with coordinates (θ1, . . . , θn−1) ∈ Rn−1. Let rϵ(θ1, . . . , θn−1) =

δ+ ϵ sin(θ1 + · · · + θn−1), and define fϵ : T n−1
→ Bn−1 by

fϵ(θ1, . . . , θn−1)=(
rϵ(θ1, . . . , θn−1)ei(2θ1+θ2+···+θn−1), . . . , rϵ(θ1, . . . , θn−1)ei(θ1+···+θn−2+2θn−1)

)
.
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Observe that the first condition of Theorem 2.2 is satisfied. Thus, defining t (x)
as in Theorem 2.2, we obtain a family of Legendrian tori in S2n−1

⊂ Cn, each of
whose associated cones are Lagrangian, given by the maps

f̃ϵ(θ1, . . . , θn−1)=

ei tϵ(θ1,...,θn−1)

×

(
rϵ(θ1, . . . ,θn−1)ei(2θ1+θ2+···+θn−1), . . . ,rϵ(θ1, . . . , θn−1)ei(θ1+···+θn−2+2θn−1),√

1−(n−1)r2
ϵ

)
,

where
tϵ(θ1, . . . , θn−1)=

∫
fϵ(γ )

τ,

as in Theorem 2.2.

Remark 3.2. The cone on the image of the lift f̃ϵ is Lagrangian for all ϵ ≥ 0, but
is also special Lagrangian when ϵ = 0. In fact, when ϵ = 0, the associated cone is
the Harvey–Lawson cone (see Example 1.5).

Theorem 3.3. The parameter tϵ is given by

tϵ(θ1, . . . , θn−1)

= −(θ1+·· ·+θn−1)−2nδϵ(1−cos(θ1+·· ·+θn−1))+
n
4
ϵ2 sin(2(θ1+·· ·+θn−1)).

Proof. For simplicity, we work in polar coordinates and integrate the pull-back
fϵ∗(τ )= −n

∑n−1
i=1 r2

i dθi over a path in the torus T n−1 for the computation below.
Taking γi to be a path from (θ1, . . . , θi−1, 0, . . . , 0) to (θ1, . . . , θi−1, θi , 0, . . . , 0),
and γ to be the concatenation of these paths from i = 1, . . . , n, then we may solve
for tϵ as follows:

tϵ(θ1, . . . , θn−1)= −n
n−1∑
i=1

∫ θi

0
rϵ(θ1, . . . , θi−1, αi , 0, . . . , 0)2dαi

= −n
n−1∑
i=1

[(1
2(2δ

2
+ ϵ2)αi − 2δϵ cos(θ1 + · · · + θi−1 +αi )

−
1
4ϵ

2 sin(2(θ1 + · · · + θi−1 +αi ))
)∣∣θi

0

]
Observe that the sum above telescopes, and hence, we may write

tϵ(θ1, . . . , θn−1)= −n
( 1

2(2δ
2
+ϵ2)(θ1+·· ·+θn−1)−2δϵ(1−cos(θ1+·· ·+θn−1))

−
1
4ϵ

2 sin(2(θ1+·· ·+θn−1))
)

= −(θ1+·· ·+θn−1)−2nδϵ(1−cos(θ1+·· ·+θn−1))

+
n
4
ϵ2 sin(2(θ1+·· ·+θn−1)). □

In light of Theorem 3.3, we get the following corollary.
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Corollary 3.4. As ϵ → 0, δ → 1/
√

n, tϵ(θ1, . . . , θn−1) → t0(θ1, . . . , θn−1) =

−θ1 − · · · − θn−1, and

f̃ϵ(θ1, . . . , θn−1)→ f̃0(θ1, . . . , θn−1)=
1

√
n
(eiθ1, . . . , eiθn−1, e−i(θ1+···+θn−1)).

In order to verify that the second condition of Theorem 2.2 is satisfied, and
consequently that the lift is embedded, we will be interested in locating the double
points of fϵ .

Because we are mainly interested in cones of C3 via the SYZ conjecture, we
assume n = 3 in the following calculation. Lemma 3.5 specifies precisely when
the arguments of the exponential maps in the definition of fϵ all agree, a necessary
condition for a double point.

Lemma 3.5. For n = 3, if fϵ(θ1, θ2) = fϵ(γ1, γ2) then θ1 = γ1 and θ2 = γ2, or
θ1 − γ1 = θ2 − γ2 =

2π
3 (mod 2π) or θ1 − γ1 = θ2 − γ2 =

4π
3 (mod 2π).

Proof. If fϵ(θ1, θ2)= fϵ(γ1, γ2) then since the arguments of the exponential maps
differ by a multiple of 2π , (θ1, θ2) and (γ1, γ2) must satisfy the equations

2θ1 + θ2 = 2γ1 + γ2 + n2π, (3-1)

θ1 + 2θ2 = γ1 + 2γ2 + m2π, (3-2)

for some m, n ∈ Z.
Solving (3-1) and (3-2), we obtain the following:

θ1 − γ1 =
2n − m

3
2π, (3-3)

θ2 − γ2 =
2m − n

2
π. (3-4)

Since the torus T 2 is parametrized by (θ1, θ2) ∈ [0, 2π)×[0, 2π), it must be that
θi − γi < 2π for i = 1, 2, and hence

∣∣ 2m−n
3

∣∣< 1 and
∣∣2n−m

3

∣∣< 1.
Since n,m ∈ Z, we find that the possibilities for (n,m) are ±(1, 0), ±(0, 1),

±(1, 1) and (0, 0). Evaluating (3-3) and (3-4), we find that either θ1 =γ1 and θ2 =γ2,
or θ1 − γ1 = θ2 − γ2 =

2π
3 (mod 2π) or θ1 − γ1 = θ2 − γ2 =

4π
3 (mod 2π). □

In the proof above we also showed, after taking limits, that:

Scholium 3.6. The image of f̃0 is a 3-fold cover of the image of f0 via the projection
given by the Hopf map.

Lemma 3.5 specifies when the arguments of the exponential maps will agree,
but for a double point, the radii, determined by rϵ must also agree. In the following
lemma, we calculate where this occurs.

Lemma 3.7. If fϵ(θ1, θ2)= fϵ(γ1, γ2) and either θ1 − γ1 = θ2 − γ2 =
2π
3 (mod 2π)

or θ1 − γ1 = θ2 − γ2 =
4π
3 (mod 2π), then one of the following must be true:
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• θ1 + θ2 = γ1 + γ2.

• θ1 + θ2 =
7π
6 and γ1 + γ2 =

11π
6 .

• θ1 + θ2 =
5π
6 and γ1 + γ2 =

π
6 .

Proof. Since fϵ(θ1, θ2)= fϵ(γ1, γ2), not only must the arguments of the exponential
maps differ by a multiple of 2π , but the radii in each complex factor must match,
that is rϵ(θ1, θ2)= rϵ(γ1, γ2). Hence one of the following equations must hold:

θ1 + θ2 = γ1 + γ2, (3-5)

θ1 + θ2 + γ1 + γ2 = π + 2πk. (3-6)

There are several cases. If θ1 + θ2 = γ1 + γ2, then using (3-3) and (3-4), one
can show that n = −m which can only happen if n = m = 0. Furthermore, if
θ1 + θ2 + γ1 + γ2 = π + k2π , combining this with (3-3) and (3-4), we may solve
the system to obtain that θ1 + θ2 =

7π
6 and γ1 + γ2 =

11π
6 or θ1 + θ2 =

5π
6 and

γ1 + γ2 =
π
6 . □

Remark 3.8. Lemma 3.5 rules out the possibility of multiple points of fϵ of
multiplicity greater than 3, and Lemma 3.7 shows that for ϵ > 0 there are no triple
points. Hence, immersion fϵ has only double points when ϵ > 0.

The families of double points identified in Lemma 3.7 form copies of S1, and
will show up not only in this example, but in others as well. Hence the following
definition will be useful in some of the discussion that follows.

Definition 3.9. Let f :6 → M be an immersion of a surface. Suppose C1 and C2

are disjoint copies of S1 in 6 such that f (C1)= f (C2) and f |C1∪C2 is a 2-to-1 map.
Suppose further that A1 and A2 are disjoint annular neighborhoods of C1 and C2

and that f (A1)∩ f (A2)= f (C1)= f (C2). If, for any pair consisting of x1 ∈ C1

and x2 ∈ C2 such that f (x1)= f (x2), we have that d fx1(T A1) ̸= d fx2(T A2), then
we call the image of C1 and C2 a double point circle.

Theorem 3.10. The double points of fϵ , of the form fϵ(θ1, θ2)= fϵ(γ1, γ2), consist
of two double point circles such that θ1 − γ1 = θ2 − γ2 =

2π
3 (mod 2π) or θ1 −γ1 =

θ2 − γ2 =
4π
3 (mod 2π) and one of the following holds:

(1) θ1 + θ2 =
7π
6 and γ1 + γ2 =

11π
6 .

(2) θ1 + θ2 =
5π
6 and γ1 + γ2 =

π
6 .

Proof. Lemmas 3.5 and 3.7 demonstrate that systems of this type yield double
points. All that remains is the observation that if (θ1, θ2) and (γ1, γ2) satisfy
θ1 − γ1 = θ2 − γ2 =

2π
3 (mod 2π) or θ1 − γ1 = θ2 − γ2 =

4π
3 (mod 2π) but do

not satisfy either (1) or (2), then sin(θ1 + θ2) ̸= sin(γ1 + γ2). For such cases,
rϵ(θ1, θ2) ̸= rϵ(γ1, γ2) and hence fϵ(θ1, θ2) ̸= fϵ(γ1, γ2). □

Theorem 3.11. The lift f̃ϵ is an embedding.
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Proof. We already know the lift is well defined. All that remains is to check that
the second condition of Theorem 2.2 is satisfied, which means that the double
points of the projection are separated in the lift. This amounts to computing∫

f (γ ) τ for some path γ joining a pair of double points of a double point circle.
Using Theorem 3.10, suppose we have a double point such that fϵ(θ1,

5π
6 − θ1)=

fϵ
(
θ1 +

2π
3 ,

13π
6 −

(
θ1 +

2π
3

))
. Then the integral in question is given by:

tϵ

(
θ1 +

2π
3
,

13π
6

−

(
θ1 +

2π
3

))
− tϵ

(
θ1,

5π
6

− θ1

)
.

Using the expression for tϵ given in Theorem 3.3, and simplifying, we obtain

tϵ

(
θ1 +

2π
3
,

13π
6

−

(
θ1 +

2π
3

))
− tϵ

(
θ1,

5π
6

− θ1

)
= −

8π
6

− 4nδϵ cos
(

5π
6

)
+

nϵ2

2
sin

(
π

3

)
.

Noting that n = 3, 0 ≤ ϵ <
√

2/3, and δ =
√

1/3 − ϵ2/2, we have that

−
4π
3

≤ tϵ

(
θ1 +

2π
3
,

13π
6

−

(
θ1 +

2π
3

))
− tϵ

(
θ1,

5π
6

− θ1

)
<−

4π
3

+

√
3

2
.

The other double points are handled in a similar manner. □

Let Lϵ be the image of fϵ and let L̃ϵ be the Legendrian torus given by the lift f̃ϵ .
We wish to identify the generators of the 0-filtration level of the Legendrian contact
homology of L̃ϵ , which are determined by the double points of the Lagrangian
projection. Recall that in this case, the double points are actually double point
circles, hence we need to perturb the map so that it is chord-generic. We will
demonstrate the perturbation for n = 3, but the general solution is similar.

Lemma 3.12. Let f̃ϵ : T 2
→ S5 be the Legendrian torus given by the map

f̃ϵ(θ1, θ2)= ei tϵ(θ1,θ2)
(

rϵ(θ1, θ2)ei(2θ1+θ2), rϵ(θ1, θ2)ei(θ1+2θ2),
√

1 − 2rϵ(θ1, θ2)2
)
.

Choose a perturbation in the direction of the Reeb fiber, sϵ : T 2
→ S1, two pertur-

bations in the radial directions, si,ϵ : T 2
→ R, for i = 1, 2, and define

g̃ϵ(θ1,θ2)

= ei(tϵ(θ1,θ2)+sϵ(θ1,θ2))
(

r1,ϵ(θ1,θ2)ei(2θ1+θ2),r2,ϵ(θ1,θ2)ei(θ1+2θ2),

√
1−r2

1,ϵ−r2
2,ϵ

)
,

where ri,ϵ(θ1, θ2)= rϵ(θ1, θ2)+ si,ϵ(θ1, θ2) for i = 1, 2. If

(1) ∂sϵ
∂θ1

+2rϵ(θ1, θ2)(2s1,ϵ(θ1, θ2)+s2,ϵ(θ1, θ2))+2s1,ϵ(θ1, θ2)
2
+s2,ϵ(θ1, θ2)

2
= 0

and

(2) ∂sϵ
∂θ2

+2rϵ(θ1, θ2)(s1,ϵ1(θ1, θ2)+2s2,ϵ(θ1, θ2))+s1,ϵ(θ1, θ2)
2
+2s2,ϵ(θ1, θ2)

2
=0
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then the perturbation g̃ϵ is a Legendrian torus having only transverse double points
that is Legendrian isotopic to f̃ϵ .

Moreover, for a given choice of sϵ the system is solved by

s1,ϵ(θ1, θ2)= −rϵ(θ1, θ2)+ σ

√
rϵ(θ1, θ2)2 +

1
3

(
∂sϵ
∂θ2

− 2
∂sϵ
∂θ1

)
and

s2,ϵ(θ1, θ2)= −rϵ(θ1, θ2)+ σ

√
rϵ(θ1, θ2)2 +

1
3

(
∂sϵ
∂θ1

− 2
∂sϵ
∂θ2

)
,

where σ is ±1.

Proof. The calculation is easiest if we work in polar coordinates and identify a
neighborhood of the f̃ϵ with B2 × S1 (cf. the lifting theorem). Note that we may
write

f̃ϵ(θ1, θ2)=
(
rϵ(θ1, θ2), 2θ1 + θ2, rϵ(θ1, θ2), θ1 + 2θ2, tϵ(θ1, θ2)

)
,

and we work with the perturbation in polar coordinates as well:

g̃ϵ(θ1, θ2)=
(
r1,ϵ(θ1, θ2), 2θ1 + θ2, r2,ϵ(θ1, θ2), θ1 + 2θ2, tϵ(θ1, θ2)+ sϵ(θ1, θ2)

)
,

In these coordinates, we may identify the contact form α on S5 with 1
2(dt − τ)

(for details of this calculation see the lifting theorem). Pulling back α to T 2 via f̃ϵ
we obtain the form

f̃ ∗

ϵ (α)=

(
∂tϵ
∂θ1

+ 3rϵ(θ1, θ2)
2
)

dθ1 +

(
∂tϵ
∂θ2

+ 3rϵ(θ1, θ2)
2
)

dθ2.

Since f̃ϵ is Legendrian, this is 0, and hence(
∂tϵ
∂θ1

+ 3rϵ(θ1, θ2)
2
)

=

(
∂tϵ
∂θ2

+ 3rϵ(θ1, θ2)
2
)

= 0.

Pulling back α using the perturbation g̃ϵ we obtain

g̃∗

ϵ (α)=

[(
∂tϵ
∂θ1

+3rϵ(θ1,θ2)
2
)

+
∂sϵ
∂θ1

+2rϵ(θ1,θ2)(2s1,ϵ+s2,ϵ)+2s2
1,ϵ+s2

2,ϵ

]
dθ1

+

[(
∂tϵ
∂θ2

+3rϵ(θ1,θ2)
2
)
∂sϵ
∂θ2

+2rϵ(θ1,θ2)(s1,ϵ+2s2,ϵ)+s2
1,ϵ+2s2

2,ϵ

]
dθ2.

Noting that
(
∂tϵ
∂θ1

+ 3rϵ(θ1, θ2)
2
)

=
(
∂tϵ
∂θ2

+ 3rϵ(θ1, θ2)
2
)

= 0, we have justified (1)
and (2). The last part is routine, and obtained by solving this system of equations,
(1) and (2), for s1,ϵ and s2,ϵ . □

Theorem 3.13. The map gϵ : T 2
→ B2,

gϵ(θ1, θ2)= (r1,ϵ(θ1, θ2)ei(2θ1+θ2), r2,ϵ(θ1, θ2)ei(θ1+2θ2)),
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where

r1,ϵ(θ1,θ2)=

√
rϵ(θ1,θ2)2−

2
3ϵ cos(θ1) and r2,ϵ(θ1,θ2)=

√
rϵ(θ1,θ2)2+

1
3ϵ cos(θ1)

is a perturbation of fϵ having exactly two transverse double points. Moreover, the
lift g̃ϵ ,

g̃ϵ(θ1, θ2)

= ei(tϵ(θ1,θ2)+sϵ(θ1,θ2))
(

r1,ϵ(θ1, θ2)ei(2θ1+θ2), r2,ϵ(θ1, θ2)ei(θ1+2θ2),
√

1 − r2
1,ϵ − r2

2,ϵ

)
,

is Legendrian isotopic to f̃ϵ .

Proof. Choose sϵ(θ1, θ2)= ϵ sin(θ1). Direct calculation shows that the conditions of
Lemma 3.12 are satisfied. Moreover, the two maps s1,ϵ and s2,ϵ from Lemma 3.12
satisfy the following:

(1) r1,ϵ(θ1, θ2)= rϵ(θ1, θ2)+ s1,ϵ(θ1, θ2)=

√
rϵ(θ1, θ2)2 −

2
3ϵ cos(θ1).

(2) r2,ϵ(θ1, θ2)= rϵ(θ1, θ2)+ s2,ϵ(θ1, θ2)=

√
rϵ(θ1, θ2)2 +

1
3ϵ cos(θ1).

The remainder follows from Lemma 3.12. □

The following corollary is obvious:

Corollary 3.14. Taking the limit as ϵ → 0, we have the following:

(1) tϵ(θ1, θ2)→ t0(θ1, θ2)= −θ1 − θ2.

(2) g̃ϵ(θ1, θ2)→ g̃0(θ1, θ2)= f̃0(θ1, θ2)=
1

√
2
(eiθ1, eiθ2, e−i(θ1+θ2)).

Corollary 3.14 shows that g̃0 is the Harvey–Lawson cone (just as f̃0 is). What
makes g̃ϵ useful is that although it is isotopic to the Harvey–Lawson cone, it has
isolated double points. In fact, it has only four transverse double points as observed
in the following corollary.

Corollary 3.15. The double points of gϵ can be found directly, and we obtain 2 for
each double point circle, for a total of four transverse double points:

(1) gϵ
(2π

3 ,
π
6

)
= gϵ

( 4π
3 ,

5π
6

)
,

(2) gϵ
(5π

3 ,
7π
6

)
= gϵ

(
π
3 ,

11π
6

)
,

(3) gϵ
(2π

3 ,
7π
6

)
= gϵ

( 4π
3 ,

11π
6

)
, and

(4) gϵ
(5π

3 ,
π
6

)
= gϵ

(
π
3 ,

5π
6

)
.

Proof. Writing gϵ in polar coordinates, as in Lemma 3.5, we see that any double
points must be of the form gϵ(θ1, θ2)= gϵ(θ1 + j 2π

3 , θ2 + j 2π
3 ) where j is either 1

or 2, in order that the arguments of the exponential maps both differ by a multiple
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of 2π . Thus we get double points when we have the following two equations
satisfied:

r1,ϵ(θ1, θ2)= r1,ϵ

(
θ1 + j

2π
3
, θ2 + j

2π
3

)
.

r2,ϵ(θ1, θ2)= r2,ϵ

(
θ1 + j

2π
3
, θ2 + j

2π
3

)
.

Solving this system of equations, we obtain the result. □

In summary, we have constructed a family of cones, each of which is isotopic
to the Harvey–Lawson cone, but with the additional property that the projection
to CP2 has only four transverse double points, unlike the actual Harvey–Lawson
cone which is a 3-fold cover of its projection to CP2, as observed in Scholium 3.6.
Although the isotopy taking the Harvey–Lawson cone to one of our perturbations
does not preserve the special Lagrangian conditions, it does preserve the Legendrian
link, and hence, can be used to calculate a suitably defined Legendrian contact
homology [30]. Moreover, our perturbations have only transverse double points.
Thus we obtain:

Theorem 3.16. Let T 2
⊂ S5 be the torus constructed above, which is Legendrian

isotopic to T +
⊂ S5. Then the 0-filtration level of the Legendrian contact homology

of T 2 is generated by four pairs of short Reeb chords, two each in gradings 4, 6, 7,
and 9. These Reeb chords correspond to the double points of T 2 via the projection
of T 2 under π : S5

→ CP2.

Remark 3.17. The lifting theorem made it possible to compute the gradings of
Theorem 3.16 explicitly in Mathematica. By working in a single chart, we integrate
to define the lift, and compute a unitary Lagrangian frame to obtain the Maslov
index. The calculations, though long, are straightforward and therefore omitted.

Remark 3.18. While the Legendrian contact homology of the Harvey–Lawson
cone is beginning to emerge in the previous theorem, it does not take into account
the Reeb chords that wrap around the fiber. However, considering the gradings
of the short chords, it does appear that there is nontrivial homology in gradings 4
and 9.

3B. Lagrangian hypercube diagrams. Next, we show how to generalize the cal-
culations above to get knotted Legendrian tori in S5 (knotted in the sense that they
are the product of two Legendrian knots in R3; see [4]). The cones on these knotted
tori are Lagrangian cones in C3. Therefore we begin the study of diagrammatic
Lagrangian cones in C3.

In [4], Lagrangian hypercube diagrams were used to produce examples of Legen-
drian tori in the standard contact space, (R5, ξstd), using wxyzt-coordinates on R5
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Figure 1. Grid and cube diagrams for the trefoil, and a hypercube
diagram for a torus.

and letting ξstd = dt − ydw − xdz. But they can also be adapted to produce
Legendrian tori in S5 whose cones in C3 are Lagrangian. Before doing so, we
briefly recall some of the relevant material from [4] and refer the reader to that
paper for more details.

Lagrangian hypercube diagrams are closely related to grid, cube, and hypercube
diagrams. To construct a grid, cube, or hypercube diagram, one places markings
in a 2-, 3-, or 4-dimensional Cartesian grid, while ensuring that certain marking
conditions and crossing conditions hold (see Section 2 and 3 in [2], and Section 2
in [3]). In each case, the markings determine a link (see Figure 1). For a hypercube
diagram, there is an algorithm for constructing a Lagrangian torus associated to
the hypercube diagram, such as the one shown in the last picture in Figure 1 (see
Theorem 5.1 in [2]).

In order to define a Lagrangian hypercube diagram, we first need to define a
Lagrangian grid diagram:

Definition 3.19. A Lagrangian grid diagram given by γ : S1
→ R2 where γ (θ)=

(x(θ), y(θ)) is an immersed grid diagram G satisfying conditions (3-7) and (3-8):∫ 2π

0
y(θ)x ′(θ)dθ = 0, (3-7)∫ θ1

θ0

y(θ)x ′(θ)dθ ̸= 0 whenever γ (θ0)= γ (θ1) and 0< θ1 − θ0 < 2π. (3-8)

While any Lagrangian projection of a Legendrian knot satisfies (3-7) and (3-8),
it is usually difficult to determine from a given diagram in the plane whether or
not the diagram will lift to a Legendrian knot. The advantage with a Lagrangian
grid diagram is that one merely needs to add up the signed areas of a finite number
of rectangles to determine whether the diagram lifts to a Legendrian knot (see
Corollary 3.10, Scholium 3.12 and Corollary 3.13 in [4]).

A Lagrangian hypercube diagram takes two Lagrangian grid diagrams and uses
them to construct a product of two Legendrian knots (see [4] and [16]). To construct
a grid diagram, one places markings in a 2-dimensional grid, subject to a set of
marking conditions, and creates a knot diagram by drawing segments, joining
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-stack -stack

-flat

together these flats
form a -stack

Figure 2. A schematic for displaying a Lagrangian hypercube
diagram. The outer w and y coordinates indicate the “level” of
each zx-flat. The inner z and x coordinates start at (0, 0) for each
of the nine zx-flats. With these conventions understood, one can
display xy-flats, xyz-stacks, wxz-stacks, wxy-stacks, etc. The
second picture is a schematic of a Lagrangian hypercube diagram.

the markings to create immersed loops. The process of creating a Lagrangian
hypercube diagram is similar: there is a set of marking conditions that determine
how to place markings in a 4-dimensional Cartesian grid, and the markings are
joined by segments, following an algorithm to create a simple loop. Before stating
the conditions, we give a few preliminaries.

A flat is any right rectangular 4-dimensional polytope with integer valued vertices
in C such that there are two orthogonal edges at a vertex of length n and the
remaining two orthogonal edges are of length 1. (Each flat is congruent to the
product of a unit square and an n × n square.) Moreover, the flat will be named
by the two edges of length n. Although a flat is a 4-dimensional object, the name
references the fact that a flat is a 2-dimensional array of unit hypercubes. For
example, an xy-flat is a flat that has a face that is an n × n square that is parallel to
the xy-plane. In a hypercube of size n = 3, one example of a xy-flat would be the
subset [0, 1] × [0, 3] × [0, 3] × [2, 3] (shown in Figure 2).

A stack is a set of n flats that form a right rectangular 4-dimensional polytope
with integer vertices in C in which there are three orthogonal edges of length n
at a vertex, and the remaining edge has length 1. (Each stack is the product of a
cube with edges of length n and a unit interval.) A stack is named by the three
edges of length n. An example of a wxz-stack in a hypercube of size 3 is the subset
[0, 3]× [0, 3]× [2, 3]× [0, 3] (shown at the top of Figure 2). Further examples of
flats and stacks may be found in Figure 2.

A marking is a labeled point in R4 with half-integer coordinates in C . Unit
hypercubes of the 4-dimensional Cartesian grid will either be blank, or marked
with a W, X, Y, or Z such that the following marking conditions hold:



60 SCOTT BALDRIDGE, BEN MCCARTY AND DAVID VELA-VICK

(1) Each stack has exactly one W, one X, one Y, and one Z marking.

(2) Each stack has exactly two flats containing exactly three markings in each.

(3) For each flat containing exactly three markings, the markings in that flat form
a right angle such that each ray is parallel to a coordinate axis.

(4) For each flat containing exactly three markings, the marking that is the vertex
of the right angle is W if and only if the flat is a zw-flat, X if and only if the
flat is a wx-flat, Y if and only if the flat is a xy-flat, and Z if and only if the
flat is a yz-flat.

Condition (4) rules out the possibility of either wy-flats or a zx-flats with three
markings (see Figure 2). As with oriented grid diagrams and cube diagrams, we
obtain an oriented link from the markings by connecting each W marking to an X
marking by a segment parallel to the w-axis, each X marking to a Y marking by a
segment parallel to the x-axis, and so on.

Let πxz, πwy : R4
→ R2 be the natural projections, projecting out the x, z and

w, y directions respectively. The projection πxz(C) produces an n ×n square in the
wy-plane. If we project the W and Y markings of the hypercube to this square as
well, the markings satisfy the conditions for an immersed grid diagram, which we
denote Gwy := (πxz(C), πxz(W), πxz(Y)), where W and Y are the sets of W and Y
markings, respectively. Similarly, we define Gzx := (πwy(C), πwy(Z), πwy(X )),
where Z and X are the sets of Z and X markings respectively.

In a grid diagram, one typically requires a crossing condition, namely that the
vertical segment crosses over the horizontal segment. For a Lagrangian hypercube
diagram, the crossing conditions are determined as follows. We require that the
two immersed grid diagrams, Gzx and Gwy , are Lagrangian grid diagrams (that is,
they satisfy conditions (3-7) and (3-8)). By Proposition 3.4 of [4], a Lagrangian
grid diagram lifts to a smoothly embedded Legendrian knot. Hence the crossing
conditions of the grid are determined by this lift. We require one additional product
lift condition that the pair Gzx and Gwy must satisfy. In the definition below, 1t (c)
is the length of the Reeb chord associated to the crossing c).

Definition 3.20. For two Lagrangian grid diagrams, Gwy and Gzx , let C = {ci }

be the crossings in Gzx and C′
= {c′

i } be the crossings in Gwy . The pair of grid
diagrams is said to satisfy the product lift condition if |1t (ci )| ̸= |1t (c′

i )| for all i, j.

We are now ready to define a Lagrangian hypercube diagram (see [4]):

Definition 3.21. A Lagrangian hypercube diagram, which we denote by H0 =

(C, {W,X ,Y,Z},Gzx ,Gwy), is a set of markings {W,X ,Y,Z} in C that satisfy
the marking conditions, where Gwy and Gzx are Lagrangian grid diagrams, and
Gwy and Gzx satisfy the product lift condition.
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Figure 3. Lagrangian hypercube diagram with unknotted Gzx and
Gwy and rotation class (1, 0).

The immersed torus specified by the Lagrangian hypercube diagram is the product
of Gzx and Gwy , determined as follows: place a copy of the immersed grid Gzx

at each zx-flat on the schematic that contains a pair of markings (shown in red on
Figure 3). Doing so produces a schematic with two copies of Gzx with the same
y-coordinates and two with the same w-coordinates. For each pair of copies sharing
the same w-coordinates, we may translate one parallel to the w-axis toward the
other. Doing so traces out an immersed tube connecting these two copies of Gzx .
Similarly, we may translate parallel to the y-axis to produce an immersed tube
connecting two copies of Gzx with the same y-coordinates. Since we are connecting
copies of Gzx in flats corresponding to the markings of Gwy , the tube will close to
produce an immersed torus.

3C. Lagrangian cones in C3 constructed from Lagrangian hypercube diagrams.
First, we show how to convert a grid diagram to a radial grid diagram. A set of
concentric circles {Ck}

n
k=1 of radius

√
k/(3n) will serve to represent the rows of our

grid, and a set of radial lines, determined by the list of angles,
{
k 2π

n

}n−1
k=0 , to serve

as columns. The counterclockwise direction is chosen to correspond to the positive
x-direction in the original grid, and the outward pointing radial direction is chosen
to correspond to the positive y-direction. Moreover, the radii of the concentric
circles are chosen so that each annular band has area π

3n and consequently, each
cell, as shown in Figure 4, has equal area (in particular, each cell has area 1

n ·
π
3n ).
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Figure 4. Converting a 5 × 5 Lagrangian grid diagram to a radial
Lagrangian grid diagram.

For a given marking in row i and column j, we place it in the radial grid at
the intersection of the circle Ci with the radial line segment determined by the
angle j 2π

n to obtain a radial grid diagram. Join the markings in the radial grid
diagram to match the original grid diagram (see Figure 4).

Remark 3.22. Notice that while the markings of the oriented grid diagram are
placed in the cells of the grid, the markings of the radial grid diagram are placed at
the intersections of the grid lines. This is just a shift of the markings by

(
−

1
2 ,−

1
2

)
.

Suppose that Ĝx1 y1 and Ĝx2 y2 are radial grid diagrams constructed (as above)
from Lagrangian grid diagrams Gx1 y1 and Gx2 y2 . We can define an immersion
f : T 2

→ B2 by letting γ1 : θ1 7→ (x1(θ1), y1(θ1)) and γ2 : θ2 7→ (x2(θ2), y2(θ2))

be the two loops corresponding to the radial grid diagrams Ĝx1 y1 and Ĝx2 y2 .
We wish to lift f to a Legendrian torus in S5 using Theorem 2.2, but to do so, it

must first be smoothed. This may be remedied by following a smoothing procedure
as described in Theorem 3.9, Corollary 3.10, Scholium 3.12, and Corollary 3.13
of [4], and noting that the integral used to define the lift in Theorem 2.2 results in
a net area calculation here, just as it was in [4]. To see this, observe that for a path
that follows a radial segment in one of the grids, the change in t is 0. For a path that
follows a circular arc in one of the grids, the contribution to the change in t is given
by ar2 where a is the subtended angle of the arc (positive if the segment is oriented
counterclockwise and negative otherwise), and r is the radius of the arc. That is to
say, the magnitude of the change in t along such an arc is twice the area of the sector
it bounds (and positive if the arc run counterclockwise, and negative otherwise).
Since the radial grid is constructed so that every cell has equal area, the proofs of
Theorem 3.9, Corollary 3.10, Scholium 3.12, and Corollary 3.13 in [4] may be easily
adapted to this setting. Combining this with Theorem 2.2 we obtain the following:

Theorem 3.23. Let Ĝx1 y1 and Ĝx2 y2 be radial grid diagrams constructed from
Lagrangian grid diagrams Gx1 y1 and Gx2 y2 , and let γ1 : θ1 7→ (x1(θ1), y1(θ1))
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Figure 5. A pair of loops that give rise to a Lagrangian cone.

and γ2 : θ2 7→ (x2(θ2), y2(θ2)) be the immersed loops defined by these radial grid
diagrams. Then the immersed torus f : T 2

→ B2,

f (θ1, θ2)= (x1(θ1), y1(θ1), x2(θ2), y2(θ2),

√
1 − x2

1 − y2
1 − x2

2 − y2
2 , 0),

lifts to an immersed Legendrian torus f̃ : T 2
→ S5

⊂ C3,

f̃ (θ1, θ2)= ei t (θ1,θ2)(x1(θ1), y1(θ1), x2(θ2), y2(θ2),

√
1 − x2

1 − y2
1 − x2

2 − y2
2 , 0),

whose cone in C3 is Lagrangian.

Consider the example shown in Figure 5. The dark shaded region of the first
diagram has area 3 ·

π
75 , as does the light shaded region. However, if we orient

the two regions, using the orientation of the knot along the boundary of each, we
see that the two regions have opposite orientation. The result of this is that when
computing the change in t , the contributions of each region will have opposite sign.
Since each contribution is equal in magnitude, the total change in t when traversing
the entire knot is 0. Moreover, observe that the difference in the t coordinates at the
crossing is 3 ·

2π
75 . Similarly, one can see that the total change in t for the second grid

diagram is 0, and that the difference in the t coordinates at each crossing is 2 ·
2π
75 .

Remark 3.24. In general, beginning with two Lagrangian grid diagrams, converting
to radial grid diagrams, and lifting, one produces an immersed torus, and hence an
immersed Lagrangian cone. To get an embedded torus, and hence an embedded
Lagrangian cone, one must check to see that the product lift condition is satisfied
by the pair of Lagrangian grid diagrams (see Section 4 of [4]). This amounts to
checking that condition (2) of Theorem 2.2 is satisfied. The pair of radial grid
diagrams shown in Figure 5 satisfies the product lift condition, as one may check.

Remark 3.25. In Proposition 3.4 of [4] it was shown that the immersion determined
by a Lagrangian grid diagram could be smoothed in such a way as to ensure that
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Figure 6. A 7 × 7 radial Lagrangian grid, with the associated grid
diagram from which it is constructed.

the lift of the smoothed immersion is C0-close to the lift of the original immersion,
and that any two smoothings, sufficiently close to the original immersion, would
have Legendrian isotopic lifts. The proof of that proposition depended only on the
fact that the lift was determined by a net-area calculation. Since the same is true
in this setting, the proof may be adapted to this situation, to produce a smoothly
embedded Lagrangian cone.

The family of examples produced here is specific to the case n = 3, but only
because the Lagrangian hypercube diagrams are constructed, at this time, only in
dimension 4. Yet, it is clear that Lagrangian hypercube diagrams may be generalized
to produce Lagrangian immersions f : T n−1

→ Bn−1.

3D. Examples constructed from radial hypercube diagrams. In the previous ex-
ample, beginning with a pair of Lagrangian grid diagrams meant that for any loop
on the immersed torus in B2, in the lift, the net change in t is 0. However, this is
more restrictive than necessary, since we still obtain a well-defined lift provided
that the net change in t along any loop downstairs is an integer multiple of 2π . In
fact, we may relax the conditions of the previous example a bit more, as follows.

Let Gx1 y1 and Gx2 y2 be two grid diagrams, and construct radial grid diagrams
Ĝx1 y1 and Ĝx2 y2 by placing markings as in the previous example. However, to
obtain an immersed loop from the diagram, we follow a slightly different procedure.
Along each radial column, join the markings as in the original grid diagram. In
each circular row, there are two arcs oriented from X to Y. Choose one of the two
oriented arcs in each row. Figure 6 shows one example of a grid diagram, with a
particular choice of connections made in each row. Thus to a given grid diagram of
size n, there are 2n distinct, immersed loops that correspond to it by following this
procedure.
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Figure 7. A pair of 7 × 7 radial grid diagrams that give rise to a
Lagrangian cone.

Theorem 3.26. Let Ĝx1 y1 and Ĝx2 y2 be radial grid diagrams and let

γ1 : θ1 7→ (x1(θ1), y1(θ1)) and γ2 : θ2 7→ (x2(θ2), y2(θ2))

be the immersed loops defined by these radial grid diagrams, together with a choice
of oriented circular arcs.

Suppose that
∑n

i=1 air2
i = 2πk1, where ai is the angle subtended by the chosen

arc in row i of Ĝx1,y1 , ri is the radius of the corresponding circle, and k1 ∈ Z.
Similarly assume that

∑n
i=1 bir2

i = 2πk2, where bi is the angle subtended by the
chosen arc in row i of Ĝx2,y2 , ri is the radius of the corresponding circle, and
k2 ∈ Z. Then the immersed torus f : T 2

→ B2,

f (θ1, θ2)= (x1(θ1), y1(θ1), x2(θ2), y2(θ2),

√
1 − x2

1 − y2
1 − x2

2 − y2
2 , 0),

lifts to an immersed Legendrian torus f̃ : T 2
→ S5

⊂ C3,

f̃ (θ1, θ2)= ei t (θ1,θ2)(x1(θ1), y1(θ1), x2(θ2), y2(θ2),

√
1 − x2

1 − y2
1 − x2

2 − y2
2 , 0),

where t is defined as in Theorem 2.2, and whose cone in C3 is Lagrangian.

Proof. The proof follows from Theorem 2.2 together with the observations of
Theorem 3.23 that the change in t may be interpreted as a net-area calculation.
The condition that

∑n
i=1 air2

i = 2πk1 and
∑n

i=1 bir2
i = 2πk2 guarantees that the

net-area of the loops determined by Ĝx1 y1 and Ĝx2 y2 , is a multiple of 2π and hence,
each loop lifts to a loop that wraps around the fiber k1 or k2 times. □

The two radial grid diagrams shown in Figure 7 determine an immersion that
lifts to a torus whose cone is Lagrangian. A net-area calculation shows that the
cone is embedded, since the two diagrams satisfy the product lift condition (see
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Section 4 of [4]). Moreover, the lift has the property that each diagram lifts to a
loop that wraps once around the fiber.

Remark 3.27. The pair of grid diagrams chosen at the beginning determine a
structure, similar to a hypercube diagram, which we will refer to as a radial
Lagrangian hypercube diagram.

Remark 3.28. Remark 3.25 applies in this situation as well, allowing us to produce
smooth Lagrangian cones using radial Lagrangian hypercube diagrams.

In light of Example 3.1, it is natural to ask which Lagrangian hypercube diagram
gives rise to the Harvey–Lawson cone. Note that the immersion given in Example 3.1
does not readily admit the structure of a Lagrangian hypercube diagram. It has
only two double point circles, neither of which intersect, while any Lagrangian
hypercube diagram must contain double point circles that intersect (since each
Lagrangian grid diagram used to define a Lagrangian hypercube diagram must
contain crossings, each of which produces a double point circle in the product).
Nevertheless, it seems likely that there is a Lagrangian hypercube representation of
the Harvey–Lawson cone, hence:

Conjecture 3.29. There exists a radial Lagrangian hypercube diagram, whose
associated Lagrangian cone in C3 is isotopic to the Harvey–Lawson cone.

While we do not address the construction of the perturbation of a Lagrangian
hypercube diagram needed to ensure that the corresponding torus in CP2 has only
isolated transverse double points, techniques similar to those of Section 3 paired
with the techniques described by Peter Lambert-Cole in [16; 17] can be used to do
exactly that.

Lastly, while a radial Lagrangian hypercube diagram will not lift to a special
Lagrangian cone, it may lift to a Lagrangian cone which is isotopic to a special
Lagrangian cone. This leads us to pose the following question:

Question 1. What conditions on a radial Lagrangian hypercube diagram ensure
that the Lagrangian cone to which it lifts is isotopic to a special Lagrangian cone?
Are there any obstructions?

4. The lifting theorem

While Theorem 2.2 applies only to immersions into a unit ball, Bn−1
⊂ Cn−1,

thought of as a single chart of CPn−1, it can be generalized to any immersion
f :6n−1

→ CPn−1 so that the lifting process works in much the same way as it
does in Theorem 2.2. This is the content of the lifting theorem below. We build
up to the lifting theorem through a series of computationally useful lemmas and
definitions.
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Recall that the symplectic form associated with the Fubini–Study metric is, in
coordinates z = (z1, . . . , zn) of πC∗ : Cn

\ {0} → CPn−1, given by

π∗

C∗(ωF S)=
i
2

·
1

|z|4

n∑
k=1

∑
j ̸=k

(z j z j dzk ∧ dzk − z j zkdz j ∧ dzk). (4-1)

The form ωF S is the form induced upon CPn−1 after quotienting by the invariant
C∗ action. One can check that ∫

CP1
ωF S = π

and therefore 1
π
ωF S is an integral symplectic form on CPn−1. Furthermore, for

i : S2n−1
→ Cn, it is well known that ωF S is the unique form such that i∗(ω0) =

π∗(ωF S) where π : S2n−1
→ CPn−1 is the Hopf fibration and ω0 is the standard

symplectic form on Cn, i.e., for zi = xi + iyi ,

ω0 =
i
2

n∑
i=1

dzi ∧ dzi =

n∑
i=1

dxi ∧ dyi .

As mentioned above, the usual homogeneous, holomorphic coordinate system
on CPn−1 is not suitable for our purposes. Instead, we use the hemispherical
coordinate system:

Definition 4.1. Let Bi ⊂ Cn−1 be the open unit ball and define coordinate charts
ψi : Bi → CPn−1, j = 1, . . . , n, given by

ψi (z1, . . . , zi−1, zi+1, . . . , zn)= [z1 : · · · : zi−1 :

√
1 − |z|2 : zi+1 : · · · : zn].

The charts, (Bi , ψi ) are called hemispherical charts.

Note that we are numbering the zi ’s in terms of Cn instead of Cn−1. For example,
for n =3, z ∈ B2 ⊂C2 is defined by z = (z1, z3) and is mapped to CP3

=C3
\{0}/C∗

as ψ2(z1, z3) =
[
z1 :

√
1 − |z|2 : z3

]
where |z|2 = |z1|

2
+ |z3|

2. We will often use
the hat symbol to denote removing a term. Hence z = (z1, z3) could also be written
as z = (z1, ẑ2, z3) to simplify notation.

Also, we use Ui to refer to the image of Bi in CPn−1, i.e., Ui = ψi (Bi ). The
name of the system obviously follows from the fact that the image of each chart is
the image of a hemisphere in S2n−1

⊂ Cn via the Hopf fibration π : S2n−1
→ CPn−1.

The hemispherical charts ψi are not holomorphic with respect to the natural
complex structure on CPn−1. However, they do have one very nice property: the
ψi ’s are Darboux charts on CPn−1.

Lemma 4.2. If ω0 is the standard symplectic form on B ⊂ Cn−1 then

ω0 = ψ∗

i (ωF S).
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Proof. For n = 2, observe that in homogeneous coordinates, (4-1) translates into

ω̃F S =
i

2|z|4
(z2z2dz1 ∧ dz1 − z2z1dz2 ∧ dz1 + z1z1dz2 ∧ dz2 − z1z2dz1 ∧ dz2).

Observe that in B1, z1 =
√

1 − |z2|2. Using this observation, and changing to real
coordinates, observe that in hemispherical coordinates, ω̃F S = dx2 ∧ dy2, which is
ω0 in the chart B1. The general calculation is similar. □

Before moving on, we can characterize the sets Ui and point out that theψi ’s are a
chart system (all points of CPn−1 are in at least one chart). Let [z1 : · · · : zn]∈CPn−1.
At least one coordinate is nonzero, say zi ̸= 0. In the preimage of the quotient map
for CPn−1

= (Cn
\ 0)/C∗, the point (z1, . . . , zn) is equivalent to

zi

|zi ||z|
(z1, . . . , zn)

where |z| =
√

|z1|2 + · · · + |zn|
2. Therefore [z1 : · · · : zn] ∈ Ui and

Ui = {[z1 : · · · : zn] | zi ̸= 0}.

Thus, the hemispherical chart system allows us to work with f (6)|Ui ⊂ Bi using
the standard symplectic form ω0.

Hemispherical charts also trivialize the Hopf fibration over CPn−1. In the diagram

Bi × S1 S2n−1 Cn

Bi CPn−1

9i

π πS1

ψi

Bi × S1 is a trivialization of the S1-bundle, π : S2n−1
→ CPn−1, given by

9i (z, ei t)= ei t(z1, . . . , zi−1,
√

1 − |z|2, zi+1, . . . , zn) ∈ S2n−1
⊂ Cn.

The diagram commutes and 9i gives a trivialization of the Hopf fibration over
Ui ⊂ CPn−1.

As mentioned before, there is a natural contact form α on the unit sphere S2n−1

in Cn. Given z = (z1, . . . , zn)∈ Cn where zi = xi +iyi and ω0 =
i
2

∑n
i=1 dzi ∧dzi =∑n

i=1 dxi ∧ dyi , the form on Cn ,

α0 =
1
2

( n∑
i=1

xi dyi − yi dxi

)
,

is a contact form when restricted to S2n−1. Set α = α0|S2n−1 . Equipped with this
contact form, (S2n−1, α) is a contact manifold.

We collect a few facts about α, partly to set notation for the reader, and partly to
justify choices and conventions used throughout this paper.
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Lemma 4.3. For z = (z1, . . . , zn) ∈ Cn
\ 0 where zi = xi + iyi , let

Nz = x1
∂

∂x1
+ y1

∂

∂y1
+ · · · + xn

∂

∂xn
+ yn

∂

∂yn

be the outward pointing normal vector field for any sphere of radius r > 0, centered
at the origin in R2n, and

Tz = x1
∂

∂y1
− y1

∂

∂x1
+ · · · + xn

∂

∂yn
− yn

∂

∂xn

be the vector field that generates the Hopf fibration π : S2n−1
→ CPn−1. Then the

following are facts about α0 and the contact form α:

(1) The form α0 is equal to ι 1
2 Nz
ω0 when |z| = 1.

(2) The form α0 also satisfies α0(kTz)=
k
2 |z|2 for k a constant, and ιTz dα0 =

ιTzω0 = −
∑n

i=1(xi dxi + yi dyi ). For any vector v ∈ Tz S2n−1
r for a sphere of

radius r = |z|,
ιTz dα0(v)= −⟨Nz, v⟩ = 0,

where ⟨ , ⟩ is the usual inner product on R2n. Therefore the vector field R,
defined by R = 2Tz when restricted to |z| = 1, is the Reeb vector field of α, i.e.,
α(R)= 1 and dα(R, ·)= 0.

(3) Since i∗(ω0)= π∗(ωF S) and dα0 = ω0, i
π
α is the connection one-form of the

integral cohomology class
[ 1
π
ωF S

]
.

We use α for η in Theorem 2.1 to find 9∗

i (α) in the trivialization Bi × S1 with
coordinates (z, ei t).

Lemma 4.4. Let B j ⊂ Cn−1 be the unit ball with coordinates

z = (z1, . . . , z j−1, z j+1, . . . , zn).

For a chart ψ j : B j → CPn−1 and trivialization 9 j : B j × S1
→ S2n−1 given by

9 j (z, ei t)= ei t(z1, . . . , z j−1,
√

1 − |z|2, z j−1, . . . , zn),

9∗

j (α)=
1
2(dt + 2α0),

where α0 is the form defined above on B j ⊂ Cn−1.
In polar coordinates,

9∗

j (α)=
1
2

(
dt + r2

1 dθ1 + · · · + r̂2
j dθ j + · · · + r2

n dθ j
)
.

Note that the α0 defined on B j has no z j term of the form (x j dy j − y j dx j )

since z ∈ B j has coordinates z = (z1, . . . , ẑ j , . . . , zn). The proof of the lemma is a
calculation, and left to the reader.
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Thus we can take τ in Theorem 2.1 to be the 1-form −2α0 ∈�1(B j ). In each
chart B j ×S1, label τ j =−2α0; note that the transition map9k j : B j ×S1

→ Bk ×S1

takes
9∗

k j
( 1

2(dt − τk)
)
=

1
2(dt − τ j ). (4-2)

This result follows from the next lemma.

Lemma 4.5. Let B j be the unit ball in Cn−1 with coordinates

z = (z1, . . . , z j−1, z j+1, . . . , zn),

and let the function 9 j : B j × S1
→ S2n−1

⊂ Cn be given by 9 j (z, ei t) =

ei t(z1, . . . , z j−1,
√

1 − |z|2, z j+1, . . . , zn) where |z|= |z1|
2
+· · ·+|̂z j |

2+· · ·+|zn|
2.

For k ̸= j, the map

9k j : B j \ {zk = 0} × S1
→ Bk \ {z j = 0} × S1

defined by 9k j =9−1
k ◦9 j is given by the map

9k j (z, ei t)

=

(
z1

zk

|zk |
, . . . , zk−1

zk

|zk |
, |zk |, zk+1

zk

|zk |
,

. . . , z j−1
zk

|zk |
,

zk

|zk |

√
1 − |z|2, z j+1

zk

|zk |
, . . . , zn

zk

|zk |
, ei t zk

|zk |

)
In polar coordinates,

9k j (r1,θ1, . . . , r̂ j , θ̂ j , . . . ,rn,θn, t)=(
r1,θ1−θk,r2,θ2−θk, . . . ,r j−1,θ j−1−θk,

√
1−

∑n

i=1,i ̸= j
r2

i ,

−θk,r j+1,θ j+1−θk, . . . ,rn,θn−θk, t+θk

)
Proof. We show the calculation for B2, B3 ⊂ C3. The general case is similar. The
maps

92 : B2 × S1
→ S7

⊂ C4,

92(z1, z3, z4, ei t)= ei t(z1,
√

1 − |z|2, z3, z4),

and
93 : B3 × S1

→ S7
⊂ C4,

93(w1, w2, w4, ei t)= ei t(w1, w2,
√

1 − |w|2, w4)

give rise to 932 : B2 \ {z3 = 0} × S1
→ B3 \ {w2 = 0} × S1 via 9−1

3 ◦92. By
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multiplying by 1 appropriately,

92(z1, z3, z4, ei t)

= ei t(z1,
√

1 − |z1|2 − |z3|2 − |z4|2, z3, z4
)

= ei t
(

z3

|z3|

z3

|z3|

)(
z1,

√
1 − |z1|2 − |z3|2 − |z4|2, z3, z4

)
= ei t

(
z3

|z3|

)(
z1

z3

|z3|
,

z3

|z3|

√
1 − |z1|2 − |z3|2 − |z4|2, z3

z3

|z3|
, z4

z3

|z3|

)
=93(w1, w2, w4, ei t ′)

wherew1 = z1 z3/|z3|, w2 = z3/|z3|
√

1 − |z|2, w4 = z4 z3/|z3|, and ei t ′
=ei t z3/|z3|.

One can check that (w1, w2, w4, ei t) ∈ B3 \ {w2 = 0} and ei t z3/|z3| ∈ S1 and√
1 − |w1|2 − |w2|2 − |w4|2 = |z3| as desired. □

Remark 4.6. The formula for 9k j also gives the formula for ψk j : B j \ {zk = 0} →

Bk \ {z j = 0} for ψk j = ψ−1
k ◦ψ j by looking at the z coordinates of (z, ei t).

In summary, given a Lagrangian immersion f :6→ CPn−1 and V j = f (6)∩B j ,
we can work with V j ⊂ B j using

• the standard symplectic form ω0 on B j ⊂ Cn−1,

• the standard 1-form τ j = −2α0 on B j ⊂ Cn−1,

and patch the V j ’s together using the transition maps ψk j : B j → Bk given by
ψk j = ψ−1

k ◦ψ j .
In practice, this allows us to do integration and other calculations in the B j ’s

using standard forms in each instead of working with homogeneous coordinates
and ωF S in CPn−1.

This chart system also gives us new ways to build examples of Lagrangian
immersions by first working with piecewise linear submanifolds in each ball B j ,
pasting the pieces together, and then smoothing the result (as is done with Lagrangian
hypercubes in [2] and Section 3 of [4]).

4A. The lifting theorem. The lifting theorem puts the separate pieces in the previ-
ous sections together into one result. First, we need an explicit way to calculate
integrals along paths in f (6).

Let f :6→ CPn−1 be a Lagrangian immersion and let γ : I →6 be a path. In
order to define the lift, we need to define a map t : I → R/2πZ, which we do in
pieces. Split the interval I into subintervals

I =

m−1⋃
k=0

[sk, sk+1]

where 0 = s0 < s1 < · · · < sm−1 < sm = 1 such that f (γ ([sk, sk+1])) ⊂ B j for
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some j ∈ {1, . . . , n} (after identifying B j with U j using ψ j ). Index the B j ’s
by jk so that f (γ ([sk, sk+1])) ⊂ B jk where jk is the index of the chart in which
γ ([sk, sk+1]) is contained. Let xk = γ (sk) so that x0 = γ (s0) and xm = γ (sm). Also,
for convenience, use the notation (z)k to stand for the zk coordinate of z ∈ B j . (If
z ∈ B3 ⊂ C3 such that z = (z1, z2, z4) then (z)4 = z4.)

Since f (γ ([s0, s1])) ⊂ B j0 , we can integrate τ j0 = −2α0 (see (4-2)) along the
path f (γ ([s0, s1])). Define t0 : [s0, s1] → R/2πZ by

t0(s)=

(∫ s

0
τ j0(( f ◦ γ )′(u)) du

)
mod 2π,

where t0(0)= 0.
For s ∈ [s0, s1] and t (0)= a, we can write

t (s)= t0(s)+ a.

The point ( f (γ (s1)), ei t (s1))∈ B j0×S1 also lives as a point9 j1 j0( f (γ (s1)), ei t (s1))∈

B j1 × S1. Define 9 j1 j0(t (s1)) ∈ R/2πR to be the argument of the S1 component of
this map in B j1 × S1. We can also define the point ψ j1 j0( f (γ (s1)) ∈ B j1 as the B j1
component of B j1 × S1 (see Remark 4.6).

Lemma 4.7. When t (sk) is defined for ( f (γ(sk)),eit(sk))∈Bjk−1 , then9jk jk−1(t(sk))=

t (sk)+ arg(ψ jk jk−1( f (γ (sk))) jk ).

Proof. See Lemma 4.5. □

We can now continue the integration in B j1 : Define t1 : [s1, s2] → R/2πZ by
t1(s1)= 0 and

t1(s)=

(∫ s

s1

τ j1(( f ◦ γ )′(u)) du
)

mod 2π.

Hence we can write t (s) for s ∈ [s1, s2] as

t (s)= t1(s)+9 j1 j0(t0(s1)+ a).

Induct on k to integrate the τ jk ’s over the entire path:

Definition 4.8. Let [0, 1]
γ

−→6
f

−→ CPn−1 and suppose there exists an increasing
sequence 0 = s0 < s1 < · · ·< sm−1 < sm = 1 such that f (γ ([sk, sk+1]))⊂ B jk for
jk ∈ {1, . . . , n} and f (γ (sk)) ̸= 0 and f (γ (sk+1)) ̸= 0 for all 0 ≤ k ≤ m. Assume
t (0)= a and define the lifting integral to be

0

∫
γ

τ :=[
tm−1(sm)

+9 jm−1 jm−2

(
· · ·

(
t3(s4)+9 j3 j2

(
t2(s3)+9 j2 j1

(
t1(s2)+9 j1 j0(t0(s1)+a)

))))]
mod2π.
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Remark 4.9. See Example 5.1 for an example of a calculation of the lifting integral
for the trivial cone.

In practice we usually need only m = 1 or m = 2 for most integrals. Also, since

τ jk = −

n∑
i=1, i ̸= jk

(xi dyi − yi dxi ) and ωF S|B jk
=

n∑
i=1, i ̸= j

dxi ∧ dyi ,

the calculations may be done in each chart. In summary, we obtain the lifting
theorem, which says that if

(1) 0
∫
γ
τ = 0 mod 2π for all [γ ] ∈ H1(6; Z), and

(2) for all distinct points x1, . . . , xk ∈ 6 such that f (x1) = f (x j ) for all j ≤ k,
and a choice of path γ j from x1 to x j in 6 for 2 ≤ j ≤ k, the set{(

0
∫

f (γ j )
τ
)

mod 2π | 2 ≤ j ≤ k
}

has k − 1 distinct values, none of which are equal to 0,

then f : 6 → CPn−1 lifts to an embedding f̃ : 6 → S2n−1 such that the image
(the lift) 6̃ is a Legendrian submanifold of (S2n−1, α). Furthermore, the cone c6̃
is Lagrangian in Cn with respect to the standard symplectic structure ω0.

5. Legendrian contact homology generators of the trivial Lagrangian cone

Example 5.1. We already saw in Example 1.6 how to obtain a trivial (special)
Lagrangian cone, but, we can also construct this example using the lifting theorem,
as a lift of a map f : Sn−1

→ CPn−1.
Recall that the trivial cone is given by the map f̃ :Rn

→Cn where (x1, . . . , xn) 7→

(x1η1, . . . , xnηn), and η = (η1, . . . , ηn) is a complex vector with η j ̸= 0 for all j.
Clearly the trivial cone is a lift of the Lagrangian immersion f : Sn−1

→ CPn−1

given by f (x1, . . . , xn)= [x1η1 : · · · : xnηn].
Observe that the set {(x1, . . . , xn) ⊂ Rn

|
∑n

k=1 |xkηk, j |
2

= 1} is an (n−1)-
dimensional sphere, Sn−1, for any choice of complex vector (η1, j , . . . , ηn, j ) (the
reason for the j -subscript will be apparent shortly). Moreover, we may cover Sn−1 by
charts of the form φ±

j : V ±

j → Sn−1 where V ±

j =
{
(x1, . . . , x j−1, x̂ j , x j+1, . . . , xn)∈

Rn−1
|
∑n

k=1, k ̸= j |x jηk, j |
2 < 1

}
, and the sign indicates which hemisphere is being

covered. Within each chart, after identifying V ±

j with φ±

j (V
±

j ), we may write f (x)
as f ±

j (x) where f ±

j : V ±

j → CPn−1 is given by

f ±

j (x1, . . . , x j−1, x̂ j , x j+1, . . . , xn)=[
x1η1, j : · · · : x j−1η j−1, j :

±

√
1−

∑n

k=1,k ̸= j
|xkηk, j |

2 : x j+1η j+1, j : · · · : xnηn, j

]
,

where ηk, j = ηk x jη j/|x jη j |.
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Since H1(S2,Z) is trivial, the first condition of the lifting theorem is automatically
satisfied. Moreover, f ±

i is clearly an embedding on V ±

i , so within each chart the
second condition is satisfied. However, observe that after patching these maps
together, the antipodal points of Sn−1 are the only ones identified by f (in fact, the
image of f is a copy of RPn−1). To see that the antipodal points are separated in
the lift, consider what happens when n = 3 and η = (1, 1, 1). In that case, we can
lift along a path γ from the origin of V +

3 (the “north pole”) to the origin of V −

3
(the “south pole”), and running diametrically through the origin of V +

1 . Notice that
integrating τ along γ contributes 0 to the lift within each chart. If we transition
from V +

3 to V +

1 at the point (1/
√

2, 0, 1/
√

2) and from V +

1 to V −

3 at the point
(1/

√
2, 0,−1/

√
2) then we pick up a factor of −1, or eiπ, on the S1-factor from

the transition map 931 (the second transition map). Hence,

0

∫
γ

τ = π.

The general calculation is similar. Hence, the lifting theorem guarantees the exis-
tence of an embedded lift, f̃ : Sn−1

→ S2n−1
⊂ Cn such that the cone is Lagrangian

in Cn. Moreover, our discussion above clearly identifies this as a Lagrangian
Rn

⊂ Cn, which is the trivial cone.
The trivial cone intersects S2n−1 in a Legendrian (n−1)-sphere that projects

down to a copy of RPn−1 via a 2-to-1 map (the quotient by the antipodal map).
This is inconvenient when one wishes to compute Legendrian contact homology,
because one needs isolated transverse double points. However, we can perturb f
through a family of functions fϵ so that for some ϵ the image of the lift, f̃ϵ , is a
copy of Sn−1 having only transverse double points when projected down to CPn−1.

For simplicity, we write down the perturbation in the case where n = 3 and
η = (1, 1, 1). Choose ϵ ≥ 0 and perturb each hemisphere of S2 as follows:

f ±

1,ϵ(x2, x3)=

[
±e±iϵ

√
1−x2

2−x2
3

√
1 − x2

2 − x2
3 : eiϵx2 x2 : eiϵx3 x3

]
,

f ±

2,ϵ(x1, x3)=

[
eiϵx1 x1 : ±e±iϵ

√
1−x2

1−x2
3

√
1 − x2

1 − x2
3 : eiϵx3 x3

]
,

f ±

3,ϵ(x1, x2)=

[
eiϵx1 x1 : eiϵx2 x2 : ±e±iϵ

√
1−x2

1−x2
2

√
1 − x2

1 − x2
2

]
.

Observe that the perturbations in each chart are consistent with the transition maps.
To determine the (transverse) intersections, and hence the Reeb chords, we begin
with the observation that all double points are antipodal points. We leave the proof
as an exercise for the reader.

Theorem 5.2. Let fϵ : S2
→ CP2 be the map determined by patching together

f ±

i,ϵ : V ±

i → CP2 for i = 1, 2, 3. Let (x1, x2, x3), (y1, y2, y3) ∈ S2
⊂ R3 be two

points such that fϵ(x1, x2, x3)= fϵ(y1, y2, y3). Then (x1, x2, x3)= −(y1, y2, y3)).
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To determine the double points when ϵ > 0, assume ±(x1, x2, x3) map to a
double point, fϵ(x1, x2, x3). If xi ̸= 0 for all i , then without loss of generality
we may assume x1 > 0. Using the charts V +

1 and V −

1 , we see that f +

1,ϵ(x2, x3)=

f −

1,ϵ(−x2,−x3), and hence[
eiϵ

√
1−x2

2−x2
3

√
1 − x2

2 − x2
3 : eiϵx2 x2 : eiϵx3 x3

]
=

[
−e−iϵ

√
1−x2

2−x2
3

√
1 − x2

2 − x2
3 : −e−iϵx2 x2 : −e−iϵx3 x3

]
. (5-1)

Cross-multiplying in the first two homogeneous coordinates, we see that

eiϵ(x2−
√

1−x2
2−x2

3 )
√

1 − x2
2 − x2

3 = eiϵ(−x2+
√

1−x2
2−x2

3 )
√

1 − x2
2 − x2

3 .

If 1 − x2
2 − x2

3 ̸= 0, then for small ϵ we may equate the arguments of the exponen-
tials, to obtain x2 > 0 and 2x2

2 + x2
3 = 1. Similarly, cross-multiplying in the first and

third homogeneous coordinates, and applying the same reasoning, we obtain x3 > 0
and x2

2 + 2x2
3 = 1. Solving this system, and recalling that x1 =

√
1 − x2

2 − x2
3 , we

obtain that x1 = x2 = x3 = ±1/
√

3.
If 1 − x2

2 − x2
3 = 0 and x2 = 0 then we get a double point at [0 : 0 : 1]. Similarly,

if 1 − x2
2 − x2

3 = 0 and x3 = 0 then we get a double point at [0 : 1 : 0]. Finally,
assume x1 = 0 and neither x2 nor x3 is zero. In this case, working in the charts V +

3
and V −

3 we obtain[
0 : eiϵx2 x2 : eiϵ

√
1−x2

2

√
1 − x2

2

]
=

[
0 : −e−iϵx2 x2 : −e−iϵ

√
1−x2

2

√
1 − x2

2

]
.

For small ϵ, we may use techniques similar to the previous case to obtain that
x2 = x3 = ±

1
√

2
. A similar discussion applies if 1− x2

1 − x2
2 = 0 or 1− x2

1 − x2
3 = 0.

From the discussion above, we obtain the following theorem.

Theorem 5.3. Let S ⊂ S5 be the Legendrian 2-sphere obtained from intersecting
the trivial cone with S5 and then perturbing it via Legendrian isotopy to the image
of f ±

i,ϵ for i ∈ {1, 2, 3}, for some ϵ > 0. The projection π : S5
→ CP2 has 7

transverse double points: ±(1, 0, 0), ±(0, 1, 0), ±(0, 0, 1), ±
(
1/

√
2, 1/

√
2, 0

)
,

±
(
1/

√
2, 0, 1/

√
2
)
, ±

(
0, 1/

√
2, 1/

√
2
)
, and ±

(
1/

√
3, 1/

√
3, 1/

√
3
)
. Then the 0-

filtration level of the Legendrian contact homology of S is generated by 7 pairs of
short Reeb chords.

In summary, we have constructed a family of Lagrangian cones, all isotopic to
the trivial cone. However, for small ϵ > 0 our cones have the additional property
that the projection to CP2 has 7 transverse double points, while the trivial cone
(obtained by taking ϵ = 0) is a 2-to-1 cover of its projection to CP2.
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6. Legendrian submanifolds of S2n−1 as lifts of
Lagrangian submanifolds in CPn−1

The motivation of this paper is the study of Lagrangian cones given by lifting an
immersion into CPn−1 to an embedded Legendrian submanifold of S2n−1. However,
Theorem 2.2 and the lifting theorem provide a way to study Legendrian submanifolds
of S2n−1 on their own.

A lot of work has been done to study Legendrian knots in dimension 3, especially
in the standard contact R3 (see [11; 20; 21; 22; 23; 28]), and Joshua Sabloff studied
the Legendrian contact homology of knots in 3-dimensional circle bundles in [30].

Less is known about Legendrian submanifolds in higher dimensions, and much
of it only in the standard contact R2n+1 (see [4; 8; 9; 10]). In [29], Legendrian
submanifolds of circle bundles over orbifolds are considered, and in [1], the circle
bundle R4

× S1 is considered in depth, and related to the case where R4
× S1 is

identified with the Hopf bundle over a single chart of CP2 (the special case of
Theorem 2.2 in this paper).

Theorem 2.2 allows one to study Legendrian submanifolds of S2n−1 just as one
might study Legendrian submanifolds of R2n

× S1 or even the standard contact
R2n+1. As seen in Example 3.1, and Section 3C, the lifts function in much the same
way as one might lift an exact Lagrangian to a Legendrian knot in the standard
contact R2n+1, or the 1-jet space of a manifold.

Although Theorem 2.2 makes calculations simple, it fails to capture one of the
most basic examples: the Legendrian sphere corresponding to the intersection of the
trivial cone with S2n−1 (as observed in Example 5.1). The lifting theorem moves
the story forward, allowing one to consider immersions into CPn−1 that do not lie
in a single chart. It shows that the calculations are not much more difficult than they
are in the case of Theorem 2.2, because in each chart the calculations use standard
forms, and one need only to track how the lifting parameter t transitions from one
chart to the next. This leads us to ask the following question:

Question 2. Sabloff showed in [30] how to compute the DGA of Legendrian knots
in certain contact circle bundles over surfaces. In the context of Theorem 2.2 or
the lifting theorem, is there a similar combinatorial algorithm for computing the
Legendrian contact homology in higher dimensional circle bundles?

If such an algorithm can be found, one would expect the structure of a radial
Lagrangian hypercube diagram to provide a setting in which such calculations
would be simple, and could be automated on a computer.

7. Minimal and Hamiltonian Submanifolds

Special Lagrangian submanifolds, introduced by Harvey and Lawson in [13] have
been studied extensively due to their connection with mirror symmetry. Special
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Lagrangian cones in Cn can be studied via the equations that define in them in Cn, as
minimal Legendrians in S2n−1 (the link), or from the perspective of the correspond-
ing minimal Lagrangian submanifold of CPn−1 (see [14] and [15]). While many
examples have been studied, the difficulty in working with the special Lagrangian
conditions has led to some weaker conditions being studied in the hope of better
understanding special Lagrangians. In [26], the notion of Hamiltonian minimal
(H-minimal) Lagrangian submanifolds was introduced. A Lagrangian submanifold
in a Kähler manifold is said to be H-minimal if the volume is stationary under
compactly supported smooth Hamiltonian deformations (see [15]).

H-minimal Lagrangian cones in C2 were studied and classified by Schoen and
Wolfson in [31]. In particular they showed that only cones of Maslov index ±1 are
area minimizing. Moreover, they showed that if an immersed Lagrangian subman-
ifold of a Kähler–Einstein manifold is stationary for volume, it is automatically
minimal, and special Lagrangian in the Calabi–Yau case (see Lemma 8.2 of [31]).

It is already known that the trivial cone is H-minimal (see [18], [24], and [25]).
The Harvey–Lawson cone is also known to be strictly Hamiltonian stable, that is, the
second variation of the volume is nonnegative under every Hamiltonian deformation,
(see [6] and [18]), and it is known that any Hamiltonian stable, minimal Lagrangian
torus in CP2 is congruent to the Clifford torus (see [26], [27] and [33]).

Question 3. What are the conditions on a Lagrangian immersion into CPn−1 that
guarantee it lifts to an H -minimal Lagrangian cone?

Question 4. What are the conditions on Legendrian hypercube diagrams that
generate H -minimal Lagrangian cones?
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L-space knots are fibered and strongly quasipositive

John A. Baldwin and Steven Sivek

We give a new, conceptually simpler proof of the fact that knots in S3 with positive
L-space surgeries are fibered and strongly quasipositive. Our motivation for
doing so is that this new proof uses comparatively little Heegaard Floer-specific
machinery and can thus be translated to other forms of Floer homology. We
carried this out for instanton Floer homology in our article “Instantons and L-space
surgeries” and used it to generalize Kronheimer and Mrowka’s results on SU(2)

representations of fundamental groups of Dehn surgeries.

The hat version ĤF(Y ) of Heegaard Floer homology, which we will take with
coefficients in F = Z/2Z throughout, carries an absolute Z/2Z grading such that

χ(ĤF(Y, s)) =

{
1 if b1(Y ) = 0,

0 if b1(Y ) ≥ 1,
(1)

for all s∈Spinc(Y ) [13, Proposition 5.1]. Thus for any rational homology 3-sphere Y,
we have

dim ĤF(Y ) ≥ χ(ĤF(Y )) = |H1(Y ; Z)|.

A rational homology 3-sphere Y is an L-space if

dim ĤF(Y ) = |H1(Y ; Z)|.

Theorem 1 [8; 10; 15; 17]. If S3
r (K ) is an L-space for some rational slope r > 0,

then K is fibered and strongly quasipositive, and r ≥ 2g(K ) − 1.

All proofs of Theorem 1 in the literature use at least some of the following
tools: the doubly-filtered Heegaard Floer complex associated to a knot, the large
integer surgery formula, the (∞, 0, n)-surgery exact triangle for n > 1, and the
Spinc decomposition of ĤF(Y ) for Y a rational homology sphere. This presents
a major difficulty if one wishes to port this theorem to the instanton Floer setting,
where none of this machinery is available.
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Remark 2. A primary motivation for proving an analogue of Theorem 1 in the
instanton Floer setting in particular is that such an analogue can be used to prove
new results about the SU(2) representation varieties of fundamental groups of
3-manifolds obtained by Dehn surgeries on knots in the 3-sphere, about which
relatively little is known; see [4].

Remark 3. Some of the structure mentioned above is known to exist in monopole
Floer homology, though not enough of it to translate previous proofs of Theorem 1
to that setting. The new proof of Theorem 1 presented in this article (see below) can
be adapted directly to monopole Floer homology, with the caveat in Remark 4, to
give a proof of the monopole Floer analogue of Theorem 1 which does not rely on
an isomorphism between monopole Floer homology and Heegaard Floer homology.

Our goal here is to give a proof of Theorem 1 using instead: the (∞, 0, 1)-surgery
exact triangle, the blow-up formula for cobordism maps, the adjunction inequality
for cobordism maps, the Spinc decomposition of the maps associated to 2-handle
cobordisms, and Ozsváth and Szabó’s description of the contact invariant c+(ξ) as
the image of a certain class under the 2-handle cobordism map

HF+(−S3
0(K )) → HF+(−S3),

where K is a fibered knot supporting the contact structure ξ on S3. The first four of
these tools will be used to show that an L-space knot is fibered, while the last will
be used to prove that an L-space knot supports the tight contact structure on S3 and
is therefore strongly quasipositive, by Hedden [8]. Strong quasipositivity will then
be used to prove the 2g(K ) − 1 bound on L-space surgery slopes.

Remark 4. Ozsváth and Szabó do not prove that c+(ξ) is well-defined (and hence
that it certifies that ξ is tight) directly from its description in terms of the cobordism
map associated to 0-surgery on the supporting fibered knot (and it is unclear how
to do so—this is an interesting problem!). They instead use the knot filtration for
this, which poses a challenge for translating the strong quasipositivity argument
presented here to framed instanton homology. We discovered [4] a workaround in
that setting, however, by a significantly more complicated argument which involves
cabling and our framed instanton contact invariant [2]. We then used that instanton
contact class to prove the r ≥ 2g(K )−1 bound, in a manner very similar to the proof
of Proposition 15 here (also using results from [3] and [9]). The same difficulties and
solutions apply in monopole Floer homology, using our contact invariant from [1].1

1It is reasonable to expect that Kronheimer and Mrowka’s monopole Floer contact class can be
characterized in terms of the 0-surgery cobordism map as above, based on Echeverria’s work [5], which
would allow one to circumvent the more complicated strong quasipositivity argument we have in mind.
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Figure 1. An outline of the proof of Proposition 5.

In our proof of Theorem 1, we will assume that K has genus at least 2 everywhere
until Proposition 15, so that we can apply Theorem 6 below to detect whether S3

0(K )

is fibered. The following proposition uses a cabling trick (see Figure 1) to show
that we can still conclude Theorem 1 in full generality, and moreover that it suffices
to prove the theorem for integral slopes.

Proposition 5. If Theorem 1 holds for all knots of genus at least 2 and integral
slopes r ∈ Z, then it is also true for knots of genus 1 and r ∈ Q.

Proof. The claim in Theorem 1 about the set of positive integral L-space slopes is
proved in Proposition 15 without any restrictions on g(K ), so we will only address
the other claims of Theorem 1 here.

We suppose first that K is an arbitrary nontrivial knot and that some surgery
on K of nonintegral slope r > 0 is an L-space. We write r =

p
q for some positive

integers p and q ≥ 2. By applying [6, Corollary 7.3], we see that

S3
pq(K p,q) ∼= S3

p/q(K )#S3
q/p(U ),

where K p,q is the cable represented by the peripheral element µpλq in π1(∂ N (K )).
The two summands on the right are both L-spaces; hence the Künneth formula
for ĤF says that pq-surgery on K p,q is also an L-space. We observe that

g(K p,q) =
(p − 1)(q − 1)

2
+ q · g(K ),

which implies that g(K p,q) ≥ q ≥ 2 and which is also equivalent to

2g(K p,q) − 1 = pq + q
(

2g(K ) − 1 −
p
q

)
. (2)

We can now apply the assumed case of Theorem 1 to pq-surgery on K p,q to
conclude that pq ≥ 2g(K p,q)− 1, hence r =

p
q ≥ 2g(K )− 1 by (2); and that K p,q
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is fibered and strongly quasipositive. Since K p,q is fibered, K must be as well. The
strong quasipositivity of K then follows from two facts:

(1) a fibered knot is strongly quasipositive if and only if its corresponding open
book decomposition supports the tight contact structure on S3 [8], and

(2) the knots K and K p,q support the same contact structure [7].

This concludes the proof in all cases except when K has genus 1 and r is a
positive integer, say r = n. In this case it is automatic that r ≥ 2g(K ) − 1 = 1.
Moreover, repeated application of [15, Proposition 2.1], which follows easily from
the surgery exact triangle for ĤF, says that S3

(2n+1)/2(K ) is an L-space. (In fact,
it says that S3

s (K ) is an L-space for all rational s ≥ n.) Since 1
2(2n + 1) ̸∈ Z, the

fiberedness and strong quasipositivity of K follow exactly as above. □

We will suppose henceforth that K ⊂ S3 is a knot of genus g ≥ 2.
Let 60 denote the genus g surface in S3

0(K ) obtained by capping off a minimal
genus Seifert surface for K. Let si be the unique Spinc structure on S3

0(K ) satisfying

⟨c1(si ), [60]⟩ = 2i.

The adjunction inequality [13, Theorem 7.1] implies that

HF+(S3
0(K ), si ) = ĤF(S3

0(K ), si ) = 0

for |i | > g − 1. Moreover, by [11], we have

HF+(S3
0(K ), sg−1) ̸= 0

and Ni proved [10] (see also [12, Corollary 4.5]) the following.

Theorem 6. K is fibered if and only if HF+(S3
0(K ), sg−1) ∼= F.

Recall that there is an exact triangle

HF+(Y, s) · U // HF+(Y, s)

j
��

ĤF(Y, s)

i

^^

(3)

where i and multiplication by U preserve the Z/2Z grading and j shifts it by 1.
Moreover, we claim the following.

Proposition 7. U acts trivially on HF+(S3
0(K ), sg−1).
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Proof. Let
Z : (60 × S1) ⊔ S3

0(K ) → S3
0(K )

be the cobordism obtained from S3
0(K ) × I by removing a neighborhood of 60

from the interior. The Spinc structure sg−1 on S3
0(K ) extends to a product Spinc

structure on S3
0(K ) × I, and we let t denote the restriction of the latter to Z . Then

the induced map

FZ ,t : HF+(60 × S1, t|60×S1) ⊗ HF+(S3
0(K ), sg−1) → HF+(S3

0(K ), sg−1)

is surjective. Since 60 ×{pt} ⊂ 60 × S1 is homologous in Z to 60 ⊂ S3
0(K )×{0},

we must have

⟨c1(t), [60 × {pt}]⟩ = ⟨c1(t|S3
0 (K )×{0}

), [60]⟩ = 2g − 2,

and evidently HF+(60 × S1, t|60×S1) is nonzero. Thus t|60×S1 must be the unique
Spinc structure, which we also denote by sg−1, satisfying

⟨c1(sg−1), [60 × {pt}]⟩ = 2g − 2 and ⟨c1(sg−1), [γ × S1
]⟩ = 0

for all closed curves γ ⊂ 60, and we have

HF+(60 × S1, sg−1) ∼= F. (4)

For details, see [12, Theorem 9.3] and the discussion preceding it.
It follows from (4) and the surjectivity of FZ ,t that the cobordism map

FZ ,t : HF+(60 × S1, sg−1) ⊗ HF+(S3
0(K ), sg−1) → HF+(S3

0(K ), sg−1)

is in fact an isomorphism. Moreover, it satisfies

FZ ,t(a ⊗ Ub) = FZ ,t(Ua ⊗ b).

The U -action on (4) is clearly trivial, which implies the same for HF+(S3
0(K ), sg−1)

by the relation above. □

Proposition 7 together with the exact triangle in (3) implies that

ĤF(S3
0(K ), sg−1) ∼= HF+(S3

0(K ), sg−1) ⊕ HF+(S3
0(K ), sg−1)[1].

In particular, we have the following.

Corollary 8. If K is fibered then

ĤF(S3
0(K ), sg−1) ∼= F0 ⊕ F1,

where the subscripts on the right denote the Z/2Z grading. If K is not fibered then

dim ĤF(S3
0(K ), sg−1) ≥ 4.
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k

K

−1 ∼=

k + 1

K

−1

Figure 2. A handleslide showing that Wk+1 ◦ Xk ∼= Xk+1#CP2.

We now consider the natural 2-handle cobordisms

S3 Xk
−→ S3

k (K )
Wk+1
−−→ S3

k+1(K )

for each integer k ≥ 0, where the 2-handle Wk+1 is attached along a −1-framed
meridian of K. We observe in Figure 2 that

Wk+1 ◦ Xk = Xk ∪S3
k (K ) Wk+1 ∼= Xk+1#CP2,

and hence if we write

Vk = Wk ◦ Wk−1 ◦ · · · ◦ W1 : S3
0(K ) → S3

k (K )

then the composition
Zk = Vk ◦ X0 : S3

→ S3
k (K )

is a k-fold blow-up of Xk , i.e.,

Xk#kCP2 ∼= Wk ◦ (Xk−1#(k − 1)CP2)

∼= Wk ◦ Wk−1 ◦ (Xk−2#(k − 2)CP2)

∼= · · ·

∼= (Wk ◦ · · · ◦ W1) ◦ X0 = Zk .

The maps induced by Xk and Wk+1 fit into an (∞, 0, 1)-surgery exact triangle,

ĤF(S3)
FXk // ĤF(S3

k (K ))

FWk+1
��

ĤF(S3
k+1(K ))

\\

(5)

A Spinc structure on X0 is determined by its restriction to S3
0(K ), or, equivalently,

by the evaluation of its first Chern class on [60]. Let ti denote the unique Spinc

structure on X0 with
⟨c1(ti ), [60]⟩ = 2i.
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Define
yi := FX0,ti (1) ∈ ĤF(S3

0(K ), si ),

where 1 denotes the generator of ĤF(S3) ∼= F.
Let 6k denote the capped off Seifert surface in Xk , with

6k · 6k = k.

A Spinc structure on Xk is determined by the evaluation of its first Chern class
on [6k]. Such Chern classes are characteristic elements, so this evaluation agrees
with k (mod 2). Let tk,i denote the unique Spinc structure on Xk satisfying

⟨c1(tk,i ), [6k]⟩ + k = 2i.

The adjunction inequality [16, Proof of Theorem 1.5] implies that the map

FXk ,tk,i : ĤF(S3) → ĤF(S3
k (K ))

is nontrivial only if
|⟨c1(tk,i ), [6k]⟩| + k ≤ 2g − 2,

or equivalently 1 − g + k ≤ i ≤ g − 1.

Lemma 9. Let xk,i = FXk ,tk,i (1) for all k ≥ 1 and all i . Then

FVk (yi ) = xk,i +

(k
1

)
xk,i+1 +

(k
2

)
xk,i+2 + · · · +

( k
g−i −1

)
xk,g−1

as elements of ĤF(S3
k (K )).

Proof. Let E1, . . . , Ek ⊂ Zk denote the exceptional spheres in Zk ∼= Xk#kCP2, and
e1, . . . , ek their Poincaré duals in H 2(Zk). Note that in Zk , the surface 60 is given by

60 = 6k − E1 − · · · − Ek .

In particular,

⟨c1(tk,i + a1e1 + · · · + akek), [60]⟩ = 2i − k + a1 + · · · + ak (6)

in Zk . We will evaluate FZk by applying the blow-up formula for cobordism maps
[16, Theorem 3.7], which says that for a Spinc cobordism

(W, t) : (Y1, s1) → (Y2, s2)

with blow-up Ŵ = W #CP2 and exceptional sphere E ,

FŴ ,t±(2ℓ+1)PD(E) =

{
FW,t if ℓ = 0,

0 if ℓ ̸= 0,

as maps on ĤF for any ℓ ≥ 0.
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Let Fi denote the component of FZk =FVk ◦FX0 that factors through ĤF(S3
0(K),si).

On the one hand, we have

Fi = FVk ◦ FX0,ti : ĤF(S3) → ĤF(S3
k (K )).

On the other hand, if we let e = e1 + · · · + ek , then for each i we have

Fi = FZk ,tk,i +e +

∑
j1

FZk ,tk,i+1+e−2e j1
+

∑
j1< j2

FZk ,tk,i+2+e−2e j1−2e j2

+ · · · +

∑
j1<···< jg−i−1

FZk ,tk,g−1+e−2e j1+···−2e jg−i−1
,

by the formula (6). From the blow-up formula, we have

FZk ,tk, j ±e1±···±ek = FXk ,tk, j ,

so the expression for Fi above becomes

Fi = FXk ,tk,i +

(k
1

)
FXk ,tk,i+1 +

(k
2

)
FXk ,tk,i+2 + · · · +

( k
g−i −1

)
FXk ,tk,g−1 .

We conclude by evaluating both sides on the element 1 ∈ ĤF(S3). □

Proposition 10. For all integers k ≥ 1, we have

ker
(
FVk : ĤF(S3

0(K )) → ĤF(S3
k (K ))

)
⊂ SpanF(y1−g, . . . , yg−1).

This inclusion is an equality for all k ≥ 2g − 1.

Proof. When k = 1, the exact triangle (5) says that

ker(FV1) = ker(FW1) = Im(FX0) = SpanF

( g−1∑
i=1−g

yi

)
.

We prove the inclusion in general by induction on k.
Suppose that k ≥ 1, and fix an element z ∈ ker(FVk+1). Then

FWk+1

(
FVk (z)

)
= 0

by definition, so the exact triangle (5) tells us that FVk (z) ∈ Im(FXk ), or equivalently

FVk (z) = c · FXk (1) (7)

for some c ∈ F. Lemma 9 says that each element

xk,i = FXk ,tk,i (1) ∈ ĤF(S3
k (K ))

is a linear combination of the various FVk (yi ), since the matrix of the coefficients of
the system of linear equations relating (FVk (yi ))i to (xk,i )i is triangular and clearly
invertible. In particular, summing over all i reveals that

FXk (1) ∈ SpanF

(
FVk (y1−g), . . . , FVk (yg−1)

)
. (8)
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Combining (7) and (8), there are coefficients a j ∈ F such that

FVk (z) = c ·

g−1∑
j=1−g

a j FVk (y j ),

or equivalently

z −

g−1∑
j=1−g

ca j · y j ∈ ker FVk . (9)

By induction the left side of (9) lies in SpanF(y1−g, . . . , yg−1); hence the same is true
of z. Since z was an arbitrary element of ker FVk+1 , this completes the inductive step.

To see that equality holds when k ≥ 2g − 1, we observe from Lemma 9 that
FVk (yi ) is a linear combination of various elements xk, j = FXk ,tk, j (1). Using the
adjunction inequality, we have already noted that xk, j = 0 unless

1 − g + k ≤ j ≤ g − 1,

so for k ≥ 2g − 1 the elements xk, j and hence the FVk (yi ) are all zero. □

Proposition 11. Suppose that S3
n(K ) is an L-space for some positive integer n.

Then

ĤF(S3
0(K ), s j ) =

{
F0 ⊕ F1 if y j ̸= 0,

0 if y j = 0,

for all j, where the subscripts on each copy of F denote the Z/2Z grading.

Proof. We observe from (5) that

dimF ĤF(S3
k+1(K )) = dimF ĤF(S3

k (K )) +

{
1 if FXk = 0,

−1 if FXk ̸= 0,
(10)

for all k ≥0. If m denotes the number of k ∈{0, 1, . . . , n−1} such that FXk ̸=0, then

n = dimF ĤF(S3
n(K )) = dimF ĤF(S3

0(K )) + (n − m) − m,

which simplifies to
dimF ĤF(S3

0(K )) = 2m. (11)

Our goal is thus to compute m.
Supposing that FXk ̸= 0 for some k ≥ 0, then FXk (1) is a nonzero element which

spans ker(Wk+1), and from (8) it has the form

FXk (1) = FVk

( g−1∑
j=1−g

a j y j

)
for some coefficients a j ∈ F. The sum

∑
a j y j is thus not in ker(FVk ), but it is in

ker(FVk+1) = ker(FWk+1 ◦ FVk ),
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so we have dim ker(FVk+1) > dim ker(FVk ). This implies that

dim ker(FVn ) ≥ m.

Proposition 10 then implies that

m ≤ dim SpanF(y j ). (12)

But the nonzero y j are all linearly independent, since they belong to different
summands ĤF(S3

0(K ), s j ) of ĤF(S3
0(K )), so by combining (11) and (12) we

conclude that
dimF ĤF(S3

0(K )) ≤ 2 · #{ j | y j ̸= 0}. (13)

If y j ̸=0 then ĤF(S3
0(K ), s j ) is nonzero, and its Euler characteristic is zero by (1), so

F0 ⊕ F1 ⊂ ĤF(S3
0(K ), s j ) if y j ̸= 0.

Thus the inequality in (13) must be an equality, and each nonzero ĤF(S3
0(K ), s j )

must have the form F0 ⊕ F1, completing the proof. □

Proposition 12. If S3
n(K ) is an L-space for some integer n > 0 then K is fibered.

Proof. Corollary 8 and Proposition 11 tell us that

2 ≤ dim ĤF(S3
0(K ), sg−1) ≤ 2, (14)

and that equality on the left holds if and only if K is fibered, so K must be fibered. □

Proposition 13. If S3
n(K ) is an L-space for some integer n > 0 then K is strongly

quasipositive.

Proof. We already have seen in (14) that ĤF(S3
0(K ), sg−1) is nonzero; hence

yg−1 ̸= 0 by Proposition 11. Equivalently, the map

ĤF(S3) → ĤF(S3
0(K ), sg−1) (15)

induced by X0 is nonzero. Now, we can also view X0 as a cobordism

X0 : −S3
0(K ) → −S3,

in which case the induced map

ĤF(−S3
0(K ), s1−g) → ĤF(−S3)

is dual to that in (15). In particular, this map is also nonzero. The commutativity of

ĤF(−S3
0(K ), s1−g)

i //

��

HF+(−S3
0(K ), s1−g)

��

ĤF(−S3) i // HF+(−S3)
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where the vertical maps are those induced by X0, together with the facts that
ĤF(−S3) ∼= F and the bottom horizontal map is nonzero, implies that the rightmost
vertical map

HF+(−S3
0(K ), s1−g) → HF+(−S3) (16)

is nonzero as well. But Proposition 12 says that K is fibered; hence

HF+(−S3
0(K ), s1−g) ∼= F,

and the image of its generator under the map in (16) is the contact invariant
c+(ξK ) [14], where ξK is the contact structure corresponding to K. Thus, c+(ξK )

is nonzero, which implies that ξK is the tight contact structure on S3. It follows
that K is strongly quasipositive, by work of Hedden [8, Proposition 2.1]. □

We will now use the fact that L-space knots are strongly quasipositive to determine
the range of L-space slopes for any such knot. We begin with the following
general lemma.

Lemma 14. Let Y be a rational homology sphere with |H1(Y ; Z)|=n. Suppose that

ker
(
U : HF+(Y ) → HF+(Y )

)
has dimension n + k. Then dim ĤF(Y ) = n + 2k.

Proof. The exact triangle (3) involving the U -action on HF+(Y ) produces a short
exact sequence

0 → coker(U ) → ĤF(Y ) → ker(U ) → 0.

Thus it will suffice to show that dim coker(U ) = k.
Since each Spinc structure on Y is torsion, we have a short exact sequence

0 → (T +)⊕n
→ HF+(Y ) π

→ HFred(Y ) → 0,

of F[U ]-modules, where T + ∼= F[U, U−1
]/U F[U ]. The quotient HFred(Y ) is

defined as HF+(Y )/Im(U d) for d ≫ 0; it is finitely generated over F[U ] and over F,
and every element is U -torsion, so it has a decomposition

HFred(Y ) ∼=

r⊕
i=1

F[U ]/⟨U ni ⟩,

with each ni ≥ 1. Moreover this sequence can be shown to split, so that

HF+(Y ) ∼= (T +)⊕n
⊕

r⊕
i=1

F[U ]/⟨U ni ⟩.

But then it is clear that ker(U )∼=Fn+r, so that r =k, and then that coker(U )∼=Fr
=Fk,

and the lemma follows immediately. □
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The following proposition completes our proof of Theorem 1. The proof below
is partly inspired by the work of Lidman, Pinzón-Caicedo, and Scaduto [9].

Proposition 15. If K has genus g ≥ 1 and S3
n(K ) is an L-space for some posi-

tive integer n, then S3
n(K ) is an L-space for an arbitrary integer n if and only if

n ≥ 2g − 1.

Proof. Since K is strongly quasipositive, its maximal self-linking number is
sl(K ) = 2g − 1. We take a Legendrian representative 3 of K in the standard
contact S3 with classical invariants

(tb(3), r(3)) = (τ0, r0), τ0 − r0 = 2g − 1,

and for n ≥ 1 − τ0, we can positively stabilize this k times and negatively stabilize
it τ0 + n − 1 − k times to get a Legendrian representative with

(tb, r) = (1 − n, 2 − 2g − n + 2k), 0 ≤ k ≤ τ0 + n − 1.

For odd n ≫ 0, these values of r include every positive odd number between 1 and
n + 2g − 2.

Fixing such a large value of n, we perform Legendrian surgery on these knots 3i

with

(tb(3i ), r(3i )) = (1 − n, 2i − 1), 1 ≤ i ≤
n + 2g − 1

2
,

to get contact structures

ξ1, . . . , ξ(n+2g−1)/2

on S3
−n(K ). If X−n(K ) is the trace of this −n-surgery, and 6̂ ⊂ X−n(K ) the union

of a Seifert surface for K with the core of the 2-handle, then each ξi admits a Stein
filling (X−n(K ), Ji ) with

⟨c1(Ji ), [6̂]⟩ = r(3i ) = 2i − 1.

We can also take contact structures

ξ i = T (S3
−n(K )) ∩ Ji T (S3

−n(K )), 1 ≤ i ≤
n + 2g − 1

2
,

which are filled by X−n(K ) with the conjugate Stein structure Ji for each i . These
satisfy ⟨c1(Ji ), [6̂]⟩ = −(2i − 1), so we have exhibited n + 2g − 1 Stein structures

J1, J2, . . . , J(n+2g−1)/2, J1, J2, J(n+2g−1)/2

on X−n(K ) which are all distinguished by their first Chern classes.
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A theorem of Plamenevskaya [18, Theorem 4] now tells us that the corresponding
contact invariants

c+(ξ1), . . . , c+(ξ(n+2g−1)/2), c+(ξ 1), . . . , c+(ξ (n+2g−1)/2) ∈ HF+(−S3
−n(K ))

are linearly independent. These elements lie in ker(U ), as can be seen, for example,
from the fact that they are by defined by maps of the form (16) whose domains
have trivial U action. Thus

dim ker(U ) ≥ n + 2g − 1,

and it follows from Lemma 14 that

dim ĤF(S3
−n(K )) = dim ĤF(−S3

−n(K )) ≥ n + 4g − 2.

This same argument applies for any larger odd value of n as well, and the conclusion
also holds for even values of n after making only cosmetic changes to the argument,
so that S3

−m(K ) cannot be an L-space for any m ≥ n.
We now repeatedly apply the surgery exact triangle (5) to see that

dim ĤF(S3
−m(K )) ≥ m + 4g − 2, 0 ≤ m ≤ n,

and then that

dim ĤF(S3
m(K )) ≥ 4g − 2 − m ≥ m + 2, 0 ≤ m ≤ 2g − 2.

Thus S3
m(K ) cannot be an L-space for any integer m < 2g(K ) − 1. On the other

hand, equation (10) says that

dim ĤF(S3
2g−1+n(K )) = dim ĤF(S3

2g−1(K )) + n

for all n ≥ 0, since the maps FX2g−1, . . . , FX2g−2+n are all zero by the adjunction
inequality. Thus S3

2g−1+n(K ) is an L-space if and only if S3
2g−1(K ) is, and this

completes the proof. □
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Tangles, relative character varieties, and
holonomy perturbed traceless flat moduli spaces

Guillem Cazassus, Chris Herald and Paul Kirk

We prove that the restriction map from the subspace of regular points of the
holonomy perturbed SU(2) traceless flat moduli space of a tangle in a 3-manifold
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Let (X,L) be a tangle in a compact, oriented 3-manifold X ; that is, assume
that L is a properly embedded, compact 1-manifold. For our initial discussion, we
consider G = SU(2). Let π denote some holonomy perturbation data supported in
a finite disjoint union of solid tori in the interior of X \L.

This data determines two moduli spaces,

Mπ (X,L),

the moduli space of π holonomy-perturbed flat SU(2) connections on X \L with
traceless holonomy on small meridians of L, and the (well studied) moduli space

M(∂ X, ∂L)

of flat SU(2) connections on the punctured surface ∂ X \∂L with traceless holonomy
around the marked points ∂L.

Holonomy perturbed flat connections on a 3-manifold are flat near the boundary,
and restriction to the boundary defines a map

r : Mπ (X,L) → M(∂ X, ∂L). (1-1)

The moduli space M(∂ X, ∂L) is the cartesian product of the moduli spaces
of its path components. The flat SU(2) moduli space of an oriented connected
surface of genus g with k marked points is known to be a singular variety with
smooth top stratum carrying a symplectic form called the Atiyah–Bott–Goldman
form [3; 12]. Thus the smooth top stratum of the cartesian product M(∂ X, ∂L),
denoted M(∂ X, ∂L)∗, is endowed with the product symplectic form.

The main result of this article is the following theorem (Theorem 6.9 below),
concerning the regular points (see Section 4C) of the perturbed moduli space.

Theorem A. Suppose A ∈ Mπ (X,L) is a regular point. Then A has a neighbor-
hood U so that the restriction r |U :U ⊂Mπ (X,L)→M(∂ X, ∂L)∗ is a Lagrangian
immersion.

This is not a surprising result; indeed, many special cases are known, for example,
when L is empty this result is proven in [16]. Our primary aim is to provide details
of the assertion that well-known arguments in the flat case extend to the holonomy-
perturbed flat case when L is nonempty, in support of one claim of the main result
of [7]. In that article it is shown that a certain process introduced by Kronheimer and
Mrowka to ensure admissibility of bundles in instanton homology [21] manifests
itself on the symplectic side of the Atiyah–Floer conjecture [1] (i.e., Lagrangian
Floer theory of character varieties or flat moduli spaces) as a certain Lagrangian
immersion of a smooth closed genus 3 surface into the smooth stratum P∗

× P∗ of
the product of two pillowcases (cf. (1-3)). What is proved in [7] is that this genus 3
surface satisfies the hypotheses of Theorem A at every point.
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Since it causes no extra work, we take the opportunity to provide an elementary
algebraic topology proof of Theorem A in the flat case, for any compact Lie
group G. The statement can be found in Corollary 4.5. We emphasize that the flat
case of Theorem A, when L is nonempty, is known (e.g., to those who attended the
appropriate Oxford seminars in the 1980s) and indeed discussed on pages 15–16
of Atiyah’s monograph [2].

Having stated Theorem A and described its relation to the gauge theoretic
literature using the language of flat and perturbed flat moduli spaces, we note that
these spaces can also be identified with certain character varieties, the definitions
of which do not require any of the analytical machinery of gauge theory; the proofs
in this article are most simply explained without it, so we shall henceforth revert to
the character variety terminology in our exposition. In the simplest situation of a
connected 2- or 3-manifold M with base point x0, for a fixed compact Lie group G,
each flat G connection determines a holonomy representation from π1(M, x0)

to G, and this correspondence induces a bijection between the moduli space of flat
connections and the set of G representations of π1 modulo conjugation, known as
the character variety. We describe various extensions of the notion of the character
variety corresponding to traceless and perturbed flat moduli spaces below.

We also take this opportunity to provide an elementary exposition of holonomy
perturbations from the perspective of fundamental groups and character varieties,
in the language of composition of Lagrangian immersions. Algebraic topology
arguments simplify the task of explaining how to understand the extension from
the flat to the holonomy perturbed flat situation algebraically. Other arguments,
which instead appeal to Hodge and elliptic theory of perturbed flat bundles over
3-manifolds with boundary, can be made when L is empty, and can be found in
detail in [16; 27]. But when L is nonempty, proper treatment of the traceless
condition requires more subtle analytic tools.

Our focus on holonomy perturbations is motivated by the fact that they are
compatible with the analytical framework of the instanton gauge theory side of
the Atiyah–Floer conjecture [10; 27]. Holonomy perturbations modify the flatness
condition (i.e., the nonlinear PDE Curvature = 0) in a specific way on a collection
of solid tori, as described in Lemma 8.1 of Taubes [27] (see also Lemma 16 of [16]).
We translate this result into the language of character varieties in Section 6B.

In addition to proving Theorem A, we prove Theorem B, whose statement roughly
says the four punctured 2-sphere is its own traceless SU(2) moduli space. This
is a variant, for (S2, 4), of the ubiquitous mathematical statement that a torus is
isomorphic to its Jacobian. We now set some notation in preparation for the formal
statement. First, denote U (1) × U (1) by T. The group SL(2, Z) acts on T via(

p r
q s

)
· (ex i, ey i) = (e(px+r y)i, e(qx+sy)i). (1-2)
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The 2-form dx ∧ dy defines the standard symplectic structure on T and is invariant
under the SL(2, Z) action. Note that the action of the central element −1 ∈ SL(2, Z)

on T defines the elliptic involution, denoted by ι(eix , eiy) = (e−ix , e−iy); this
involution has four fixed points (±1, ±1). Denote by T∗

⊂ T the complement of
the four fixed points, on which ι acts freely. Then set

P = T/ι and P∗
= T∗/ι. (1-3)

The quotient PSL(2, Z)=SL(2, Z)/{±1} acts on the smooth locus P∗, a 4-punctured
2-sphere, preserving the symplectic form dx ∧ dy.

a

bcd

H2

H1

Figure 1. Half Dehn twists
along the boundaries of H1

and H2.

Next, we consider the relative character variety
(defined below) of the 2-sphere with four marked
points χSU(2),J (S2, 4), where the J subscript indicates
the four meridians are sent to the conjugacy class J of
traceless elements. This character variety is equipped
with its relative Atiyah–Bott–Goldman 2-form ω(S2,4)

(defined below).

From the presentation π1(S2
\4)=⟨a,b,c,d |abcd=1⟩,

we see that this group is freely generated by a, b, c.
Hence a representation is uniquely defined by where
it sends the generators a, b, c. Define the function (identifying SU(2) with the
group of unit quaternions; see Section 2A2):

ρ̂ : P → χSU(2),J (S2, 4), [eix , eiy
] 7→

[
a 7→ j , b 7→ eix j , c 7→ eiy j

]
.

Theorem B. Half Dehn twists in the two twice-punctured disks indicated in Figure 1
generate a PSL(2, Z) action on χ(S2, 4) which preserves the Atiyah–Bott–Goldman
symplectic form ω̂(S2,4). For some nonzero constant c, the map

ρ̂ : (P∗, c dx ∧ dy) → (χ(S2, 4)∗, ω̂(S2,4))

is a PSL(2, Z) equivariant symplectomorphism.1

The proof, as well as an exposition of the simpler case of SU(2) character variety
of the torus, is contained in Section 5.

The outline of the proof of the flat case of Theorem A is the following. Holo-
nomy identifies the flat moduli spaces with character varieties. When L is empty,
Theorem A follows from Weil’s identification of the Zariski tangent spaces of
character varieties with cohomology and Poincaré-Lefschetz duality. Symplectic
reduction is used to extend to the case when L is nonempty. We use only Poincaré

1The constant c equals 1
2 .
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duality with local coefficients, which is briefly reviewed, to highlight the fact that
the proof that the image of the differential is maximal isotropic (the subtlest part of
any proof) does not depend on the deeper result that the nondegenerate 2-form is
closed, i.e., symplectic.

To put Theorem A in context, notice that the Lagrangian immersion rU depends
on the perturbation data π . Building on ideas from [1; 10; 32] and many others,
Wehrheim and Woodward developed quilted Lagrangian–Floer homology and Floer
field theory [29; 30]; a framework that aims to produce a 2 + 1 or, more generally,
(2, 0)+1 TQFT which factors as the composition of the (perturbed) flat moduli space
functor, followed by passing to the Lagrangian Floer theory of the flat moduli spaces
of surfaces equipped with the Atiyah–Bott symplectic form. This can be considered
as an approach to realizing a bordered Lagrangian Floer theory of character varieties
of surfaces and 3-manifolds, as was done for Heegaard–Floer theory in [23].

Even in the lucky case that one finds perturbation data π for which Mπ (X,L) is
smooth of the correct dimension and Lagrangian immerses into the smooth stratum
M(∂(X,L))∗, an understanding of how this immersion depends on π is necessary in
order to extract topological information. If each perturbation curve is parallel to an
embedded curve in the boundary surface, for example, then varying the perturbation
parameters changes r by a Hamiltonian isotopy, and in particular has no effect on
the topology of Mπ (X,L). This is discussed in Section 6B; see also [17].

However, for general choices of perturbation data, perturbations typically change
the topology of Mπ (X,L); indeed, the primary purpose of using perturbation
curves is precisely to smooth Mπ (X,L). As we discuss in Section 6C, Floer field
theory posits that, nevertheless, the resulting immersions should be independent
of π in a Floer-theoretic sense (i.e., isomorphic in some Fukaya category).

2. Review of Poincaré duality and symplectic forms

2A. Preliminaries and notation.

2A1. Symplectic linear algebra. Let A denote a finite-dimensional R-vector space.
A skew symmetric bilinear form ω : A × A → R is called a symplectic form if it
is nondegenerate, that is, the map A → Hom(A, R) given by a 7→ ω(a, −) is an
isomorphism. If A admits a symplectic form, then its dimension is even; denote the
dimension by 2n.

A coisotropic subspace C ⊂ A is a subspace satisfying

Annihilator(C) := {a ∈ A | ω(c, a) = 0 for all c ∈ C} ⊂ C,

and an isotropic subspace C ⊂ A is a subspace satisfying

C ⊂ Annihilator(C) := {a ∈ A | ω(c, a) = 0 for all c ∈ C}.
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A Lagrangian subspace is a coisotropic and isotropic subspace, that is, a subspace
L ⊂ A satisfying Annihilator(L) = L . Equivalently, a Lagrangian subspace L ⊂ A
is a coisotropic (or isotropic) subspace satisfying dim L =

1
2 dim A.

Symplectic reduction refers to the following process. Given any coisotropic
subspace C ⊂ A, the restriction

ω|C : C × C → R

may be degenerate, but ω|C descends to a symplectic form ω̂ on

Ĉ := C/Annihilator(C).

Furthermore if L ⊂ A is any Lagrangian subspace of (A, ω), then

L̂ := (L ∩ C)/
(
L ∩ Annihilator(C)

)
⊂ Ĉ

is a Lagrangian subspace of (Ĉ, ω̂). The subquotient (Ĉ, ω̂) is called the symplectic
reduction of (A, ω) with respect to C and the Lagrangian subspace L̂ ⊂ Ĉ the
symplectic reduction of L with respect to C .

2A2. The Lie group G. Let G be connected compact Lie group. Its Lie algebra g

admits a positive definite symmetric Ad-invariant bilinear form, so we fix one and
denote it by { , } : g×g→ R. Fix a conjugacy class J ⊂ G. It is well known that G
embeds in some RN as an algebraic variety. Thus, if Fg denotes the free group on g
generators, Hom(Fg, G) = Gg is an affine real-set variety, with tangent space gg at
the trivial homomorphism.

Our main focus, and the context for Theorem A, concerns the case when
G = SU(2), {v, w} = −

1
2 Tr(vw), and J ⊂ SU(2) is the conjugacy class of traceless

matrices. To keep notation compact, we identify SU(2) with the group of unit
quaternions

{a + bi + c j + dk | a2
+ b2

+ c2
+ d2

= 1}

and its Lie algebra su(2) with the purely imaginary quaternions {bi + c j + dk}.
With this identification, Re : SU(2) → [−1, 1] corresponds to 1

2 Tr.

2A3. Notation used for 2- and 3-manifolds. Throughout this article, the notation Y,
S, C , V , and F is fixed as follows.

First, S denotes a possibly disconnected compact oriented surface without
boundary. Denote by S+ the path connected based space obtained by first adding a
disjoint base point to S, then attaching a 1-cell from this new base point to each
path component of S.

Next, C denotes a finite disjoint union of m circles in the surface S. Number
its components Ci , i = 1, . . . m. We assume that either each Ci is oriented, or the
chosen conjugacy class J ⊂ G is invariant under inversion in G, so that the condition
that a homomorphism from π1(S+) → G takes each loop Ci into J makes sense.
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The pair (S, C) determines a decomposition of S into two surfaces as follows.
Denote by V a tubular neighborhood of C . Then V ⊂ S is a disjoint union of

oriented annuli, one around each Ci .
Denote by F the complementary surface, determining the decomposition:

S = F ∪∂ F=∂V V . (2-1)

Orient V and F as subsurfaces of S.
Finally, Y denotes a compact, connected, and oriented 3-manifold with boundary

∂Y = S; that is, we assume that an orientation preserving identification of ∂Y with S
is given. Fix a base point in the interior of Y, and extend the inclusion S = ∂Y ⊂ Y
to a based embedding of S+ into Y.

2A4. Tangles. A tangle (X,L) consists of a connected compact oriented 3-manifold
X, and L⊂ X a properly embedded compact 1-submanifold with boundary. Thus L
consists of a disjoint union of n intervals and k interior circles.

A tangle (X,L) gives rise to a triple (Y, S, C) as above by taking

Y = X \ N (L),

where N (L) denotes a tubular neighborhood of L, and letting S = ∂Y. Then let
C ⊂ S denote a union of m = n+k meridians of L, one for each component, viewed
as a curve in S. As before, Y, S, C determine V and F. Orientations of the tangle
components are equivalent to orientations of the components of C .

The process (X,L) ⇒ (Y, S, C) is nearly reversible, by attaching 2-handles to Y
along C and setting L to be union of the co-cores of the 2-handles. The resulting
tangle is obtained from (X,L) by removing k disjoint small balls from the interior
of X, each meeting a different closed component of L in a trivial arc. This results
in a tangle with no closed components, but which has the same character variety as
the starting tangle. We use the notation (Y, S, C) in our arguments as it leads to
simpler expressions, but state consequences in terms of the tangle (X,L), as they
are clearly seen as morphisms in a (more familiar) (2, 0)+1 cobordism category.

2B. Poincaré duality and intersection forms. We begin by recalling the statement
of Poincaré-Lefschetz duality with local coefficients for an oriented compact con-
nected n-manifold M with boundary ∂ M equipped with a finite cell decomposition
(see [8] for a careful exposition and proofs, and [24] for an elementary derivation
using dual regular cell decompositions). Denote by ξ ∈ Cn(M, ∂M; Z) a cellular
chain representing the fundamental class.

Fix a base point in M and some homomorphism π1 M → 0 to some group 0, and
denote by M0 → M the corresponding 0 cover, equipped with the lifted cell structure
and its cellular left 0 covering action. The cellular Z chain complexes of M0

and (M0, ∂M0) are denoted by C0
∗
(M) and C0

∗
(M,∂M). These are free finitely
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generated left Z0 modules: a choice of Z0 basis is given by arbitrarily choosing
lifts of cells of M (respectively of cells which intersect the interior of M). A choice
of cellular approximation of the diagonal determines a chain level cap product:

∩ξ : HomZ0(C0
∗
(M, ∂M), Z0) → C0

∗
(M). (2-2)

The abelian group HomZ0(C0
∗
(M,∂M,Z0) admits a left Z0 structure by (γ ·x)(σ ):=

x(σ )·γ −1. The Poincaré duality theorem asserts that the map of (2-2) is a chain
homotopy equivalence of free left Z0 chain complexes.

Given any left Z0 module W, we have that

HomZ0(C0
∗
(M, ∂M), W ) = HomZ0(C0

∗
(M, ∂M), Z0) ⊗Z0 W

and hence capping with ξ induces a chain homotopy equivalence

∩ξ : HomZ0(C0
∗
(M, ∂M), W ) → C0

∗
(M) ⊗Z0 W.

Now suppose that W is a finite-dimensional R vector space equipped with a
positive definite inner product { , } : W × W → R and 0 → O(W ) a representa-
tion, determining the left Z0 module structure on W. There is an algebraic chain
isomorphism of R chain complexes:

C0
∗
(M) ⊗Z0 W ∼= HomR

(
HomZ0(C0

∗
(M), W ), R

)
, c ⊗ w 7→

(
h 7→ {h(c), w}

)
.

Composing with the chain homotopy equivalence ∩ξ , and using the universal
coefficient theorem for R, we obtain an isomorphism

H∗(M, ∂M; W ) ∼= H∗(HomR(HomZ0(C0
∗
(M), W ), R)) = HomR(H∗(M; W ), R)

whose adjoint is the (by construction nondegenerate) cohomology intersection
pairing over W

H∗(M, ∂M; W ) × H∗(M; W ) → R. (2-3)

The cohomology intersection pairing can also be expressed in terms of cup products:

(x, y) 7→ {x ∪ y} ∩ ξ, (2-4)

where { } : H n(M, ∂M; W ⊗Z0 W ) → H n(M, ∂M; R) is induced by the coefficient
homomorphism W ⊗Z0 W → R determined by the bilinear form { , }.

When the boundary of M is empty, this pairing, which we denote by

ωM : H∗(M; W ) × H∗(M; W ) → R, (2-5)

is therefore a nondegenerate inner product on the R vector space H∗(M; W ).
If ∂ M is nonempty, precomposing the injective adjoint

H∗(M; W ) → HomR(H∗(M, ∂M; W ); R)
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with the restriction map H∗(M, ∂M; W ) → H∗(M; W ) yields a map

H∗(M, ∂M; W ) → HomR(H∗(M, ∂M; W ); R)

with kernel equal to the kernel of H∗(M, ∂M; W ) → H∗(M; W ). An equivalent
statement is that the pairing

ω(M,∂ M) : H∗(M, ∂M; W ) × H∗(M, ∂M; W ) → R (2-6)

has radical equal to ker H∗(M, ∂M; W ) → H∗(M; W ).
Taking gradings into account, when dim M = 2n restriction defines a pairing

ω(M,∂ M) : H n(M, ∂M; W ) × H n(M, ∂M; W ) → R (2-7)

with radical equal to ker H n(M, ∂M; W ) → H n(M; W ).
When dim M = 4ℓ + 2, for example when M is a surface, the pairings ωM and

ω(M,∂ M) are skew-symmetric:

ωM(x, y) = −ωM(y, x) and ω(M,∂ M)(x, y) = −ω(M,∂ M)(y, x).

3. Two- and three-dimensional manifolds and symplectic linear algebra

3A. A symplectic form on the first cohomology of surface. Recall that S+ denotes
the path connected CW complex obtained by adding a disjoint base point to the
oriented surface S and a 1-cell connecting each path component of S to this base
point. Let 0 = π1(S+). Its universal cover S̃+ → S+ is a regular 0 cover, and hence
so is its restriction over S,

S̃ → S.

A representation ρ : 0 → G is fixed.
Then ρ determines, via the adjoint action of G, the representation Adρ :0→O(g),

and hence cohomology groups H∗(S; g), H∗(S, ∂S; g), and H∗(∂S; g), with, for
example,

H∗(S; g) := H∗(HomZ0(C0
∗
(S), g)).

If we wish to emphasize ρ, we write H∗(S; gAd ρ).
Equation (2-5) shows that, since the boundary of S is empty,

ωS : H 1(S; g) × H 1(S; g) → R (3-1)

is a nondegenerate skew-symmetric form.
On the other hand, if C is nonempty, so that the boundary of F is nonempty,

equation (2-7) shows that

ω(F,∂ F) : H 1(F, ∂ F; g) × H 1(F, ∂ F; g) → R
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is in general a degenerate skew symmetric form with radical equal to

ker H 1(F, ∂ F; g) → H 1(F; g).

A degenerate skew symmetric form induces a nondegenerate form on the quotient
by its radical. The exact sequence of the pair (F, ∂ F) shows that ω(F,∂ F) descends
to a nondegenerate skew symmetric form

ω̂F : Ĥ 1(F; g) × Ĥ 1(F; g) → R, (3-2)

where

Ĥ 1(F; g) = Image H 1(F, ∂ F; g) → H 1(F; g) = ker H 1(F; g) → H 1(∂ F; g).

Summarizing:

Proposition 3.1. Let S be a compact oriented surface without boundary and
ρ : π1S+ → G a representation. Then (H 1(S; gAd ρ), ωS) is a symplectic vector
space. If F ⊂ S is the complement of a nonempty disjoint union of annuli V, then
(Ĥ 1(F; gAd ρ), ω̂F ) is a symplectic vector space.

In the following diagram of inclusions, the two vertical and two horizontal rows
are exact, and the isomorphisms are excisions (gAd ρ-coefficients omitted):

H 1(S, F) H 1(V, ∂V )

H 1(S, V ) H 1(S) H 1(V ) H 2(S, V )

H 1(F, ∂ F) H 1(F) H 1(∂ F) H 2(F, ∂ F)

q1

∼=

q2

α

p0∼=

β

p1

γ

p2 ∼=

a b c

(3-3)

Proposition 3.2. The kernel of β is a coisotropic subspace of H 1(S; g) with annihi-
lator ker p1, and hence p1 induces a symplectomorphism

ker β/ ker p1
∼=−→ Ĥ 1(F; g).

Proof. The surface V is a disjoint union of annuli. The composition {0} × S1
⊂

∂(I ×S1)⊂ I ×S1 a homotopy equivalence, and hence the restriction H 1(I ×S1)→

H 1(∂(I × S1)) is injective with any coefficients. Hence p2 is injective, and q2 = 0.
If s ∈ H 1(S) satisfies ωS(s, α(y)) = 0 for all y ∈ H 1(S, V ), we then have that

ωF,∂ F (p1(s), a◦ p0(y))=0 for all y ∈ H 1(S, V ). Hence ωF,∂ F (p1(s), a(z))=0 for
all z ∈ H 1(F, ∂ F). Since the pairing H 1(F, ∂ F) × H 1(F) → R is nondegenerate
(equation (2-3)), this implies that p1(s) = 0. In other words, the annihilator of
im α = ker β is contained in ker p1.
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Since q2 = 0, ker p1 ⊂ ker β. Therefore ker β contains its annihilator and hence
is coisotropic.

It remains to show that ker p1 = image q1 is contained in the annihilator of ker β.
Given x ∈ H 1(S, V ) and y ∈ H 1(S, F), we have that ωS(α(x), q1(y)) = 0 since
the cup product

H 1(S, V ) × H 1(S, F) → H 2(S)

factors through H 2(S, F ∪ V ) = 0 (see (2-4)). □

Corollary 3.3. If L ⊂ H 1(S; gAd ρ) is any Lagrangian subspace, then the image

p1(L ∩ ker β) ⊂ Ĥ 1(F; gAd ρ)

is a Lagrangian subspace.

3B. Restriction from a 3-manifold with boundary. Recall that Y is a compact,
connected, oriented 3-manifold with boundary S = ∂Y, extended to an embedding
S+ ⊂ Y.

Assume that the representation ρ :π1(S+)→ G is a restriction of a representation
(of the same name) ρ : π1(Y ) → G.

Lemma 3.4. The image of the restriction map,

LY := Image r : H 1(Y ; gAd ρ) → H 1(S; gAd ρ),

is a Lagrangian subspace of (H 1(S; gAd ρ), ωS).

Proof. In the following diagram, the middle row is part of the exact sequence of
the pair (Y, S). The vertical arrows all isomorphisms, with the downward pointing
isomorphisms Poincaré-Lefschetz duality. The diagram commutes up to sign [26].
We suppress the gAd ρ coefficients.

Hom(H1(Y ); R) Hom(H1(S); R) Hom(H2(Y, S); R)

H 1(Y ) H 1(S) H 2(Y, S)

H2(Y, S) H1(S) H1(Y )

δ∗

r ν

δ

The image of r equals the kernel of ν, which is isomorphic to the kernel of δ∗. The
kernel of δ∗ is isomorphic to the cokernel of its dual δ, which in turn is isomorphic
to the cokernel of r . Hence the image and cokernel of r are isomorphic, and so
dim(image(r)) =

1
2 dim H 1(S).
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Commutativity of the following diagram is a consequence of naturality of cup
product and Poincaré duality:

H 1(Y ; g) × H 1(Y ; g) H 2(Y ; R) H1(Y, S; R)

H 1(S; g) × H 1(S; g) H 2(S; R) H0(S; R) R

H0(Y ; R)

∪{,}

r×r

∩[Y,S]

∪{,} ∩[S] ϵ

ϵ

Exactness of the vertical sequence shows that the dotted arrow is zero, which implies
that the image of r is isotropic, and therefore Lagrangian. □

Recall that the boundary S = ∂Y is equipped with a embedded collection C ⊂ S of
circles, with tubular neighborhood V and complementary subsurface F, producing
the decomposition S = F ∪ V as in (2-1). Consider the ladder of exact sequences,
with all maps induced by inclusions. The gAd ρ coefficients are suppressed. The
bottom two rows coincide with those of (3-3).

· · · H 1(Y, V ) H 1(Y ) H 1(V ) · · ·

· · · H 1(S, V ) H 1(S) H 1(V ) · · ·

· · · H 1(F, ∂ F) H 1(F) H 1(∂ F) · · ·

A

r0

B

r

α

p0∼=

β

p1 p2

a b

(3-4)

A diagram chase shows that Image r ∩ ker β = Image α ◦ r0. Hence

p1(Image r ∩ ker β) = Image a ◦ p0 ◦ r0 : H 1(Y, V ) → H 1(F) ⊂ ker b = Ĥ 1(F)

Lemma 3.4 and Corollary 3.3 imply the following.

Corollary 3.5. Suppose that ∂Y = S = V ∪F with V a disjoint union of annuli. Then

LY,V := Image H 1(Y, V ; gAd ρ) → H 1(F; gAd ρ) ⊂ Ĥ 1(F; gAd ρ)

is a Lagrangian subspace. Moreover, LY,V is the symplectic reduction of LY with
respect to ker β : H 1(S; gAd ρ) → H 1(V ; gAd ρ).

4. Character varieties, relative character varieties, and their tangent spaces

4A. Character varieties.

Definition 4.1. Given a finitely presented group 0, its G character variety χG(0)

is the real semialgebraic set defined to be the orbit space of the G-conjugation
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action on the affine R-algebraic set Hom(0, G). A set of g generators of 0 embeds
Hom(0, G) in Gg equivariantly, and, since G is a compact Lie group, Hom(0, G) is
an affine R-algebraic set, with orbit space χG(0) a semialgebraic set. We call χG(0)

the G-character variety of 0. If Z is a path connected space, write χG(Z) instead
of χG(π1(Z)). The character variety of a nonpath connected space, by definition, is
the cartesian product of the character varieties of its path components.

As observed by Weil [31], the formal tangent space at the conjugacy class of
any representation ρ : 0 → G to the character variety χG(0) is naturally identified
with first cohomology:

TρχG(0) = H 1(0; gAd ρ). (4-1)

We take (4-1) as the definition of the formal tangent space at ρ for any ρ ∈ χG(0).
Recall that H 1(0; gAd ρ) and H 1(X; gAd ρ) are canonically isomorphic for any
space X with fundamental group 0.

Weil’s argument is based on the calculation that if a path of representations is ex-
pressed in the form ρs = exp(αs)ρ0 for some path αs :0 → g, then d

ds |s=0 αs :0 → g

is a 1-cocycle [6].

4B. Relative character varieties. As above, assume that Y is a compact connected
3-manifold with boundary S = ∂Y, C ⊂ S is a union of m circles Ci , V is the
tubular neighborhood of C in S, with complementary surface F.

Assume further that either J is invariant via the inversion map of G (as is the
case for the conjugacy class of traceless matrices in SU(2)) or else assume that
every circle Ci is equipped with an orientation.

Then define the relative character variety

χG,J (Y, C) ⊂ χG(Y ) (4-2)

to be the subvariety consisting of conjugacy classes of representations π1(Y ) → G
which send (any based representative of the homotopy class of) each circle in C
into J. Define the formal tangent space of χG,J (Y, C) at ρ to be

TρχG,J (Y, C) = ker H 1(Y ; gAd ρ) → H 1(C; gAd ρ). (4-3)

Given an oriented surface F, define

χG,J (F, ∂ F) = χG,J
(
F × [0, 1], ∂ F ×

{1
2

})
.

Its formal tangent space is

TρχG,J (F, ∂ F) = ker H 1(F; gAd ρ) → H 1(∂ F; gAd ρ) = Ĥ 1(F; gAd ρ). (4-4)
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4C. Regular points. The term “formal tangent space” may be replaced by its
usual elementary differential topology notion in neighborhoods of regular points of
χG,J (Y, C) and χG,J (F, ∂ F), as we next explain. In brief, as elsewhere in gauge
theory, a regular point is one which has a neighborhood diffeomorphic to Euclidean
space of the correct index-theoretic dimension. We provide a stripped-down expla-
nation, suitable for our purposes, of what this means, for the benefit of the reader.

First, given a connected compact surface F (with possibly empty boundary) we
call ρ∈χG,J (F,∂F) a regular point provided ρ has a neighborhood U ⊂χG,J (F,∂F)

so that dim Ĥ 1(F; gAd ρ′) is independent of ρ ′
∈ U.

Next, given a disjoint union of connected compact surfaces F =
⊔

i Fi , call

ρ ∈ χG,J (F, ∂ F) =

∏
i

χG,J (Fi , ∂ Fi )

a regular point provided each of its components is a regular point.
Finally, for a pair (Y, C) (with C possibly empty) ρ ∈ χG,J (Y, C) is called a reg-

ular point provided ρ admits a neighborhood U ⊂ χG,J (Y, C) so that for all ρ ′
∈ U :

• The restriction map χG,J (Y, C)→χG,J (F, ∂ F) takes ρ ′ to a regular point, and

• dim Tρ′χG,J (Y, C) =
1
2 dim TρχG,J (F, ∂ F) =

1
2

∑
i dim TρχG,J (Fi , ∂ Fi ).

Hence, if ρ ∈ χG,J (Y, C) is a regular point, the map χG,J (Y, C) → χG,J (F, ∂ F),
which takes a representation of a 3-manifold group to its restriction to the boundary
surface, is, near ρ, a smooth map of a smooth n-disk into R2n for some n.

Notice that χG,J (Y, C) is the preimage of the point (J, . . . , J ) under the restric-
tion map

χG(Y ) → χG(C) =

m∏
i=1

χG(Ci ) = (G/conjugation)
m,

and that χG,J (F,∂F) is the preimage of the point (J,. . . ,J) under the restriction map

χG(F) → χG(∂ F).

Since C ⊂ V is a deformation retract, the exact sequence of the pair shows that

TρχG,J (Y, C) ∼= Image H 1(Y, V ; gAd ρ) → H 1(Y ; gAd ρ).

The image of the differential of the restriction map χG,J (Y, C) → χG,J (F, ∂ F)

at ρ ∈ χG,J (Y, C) is therefore identified with LY,V , the image of the composition

H 1(Y, V ; gAd ρ) → H 1(F, ∂ F; gAd ρ) → Ĥ 1(F; gAd ρ),

which by Corollary 3.5 is a Lagrangian subspace of (H 1(F; gAd ρ), ω̂F ). In sum:
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Corollary 4.2. If ρ ∈χG,J (Y, C) is a regular point, then there exists a neighborhood
of ρ so that the differential of the restriction χG,J (Y, C)→χG,J (F, ∂ F) at any point
ρ ′ in this neighborhood has image a Lagrangian subspace of (Ĥ 1(F; gAd ρ′), ω̂F ).

It is known that for surfaces, with the exception of a few low genus cases, the
regular points coincide with the irreducible representations.

4D. Symplectic structure. The proof of Corollary 4.2 does not rely of the following
fundamental result of Atiyah and Bott [3] and its extensions due to Goldman [12],
Karshon [19], Biswas and Guruprasad [4], King and Sengupta [20], Guruprasad,
Huebschmann, Jeffrey and Weinstein [14].

Theorem 4.3. On the top stratum of regular points of χG(S) and χG,J (F, ∂ F), the
2-forms ωS and ω̂F are closed, that is, are symplectic forms.

In light of this result, Corollary 4.2 can be restated as follows.

Theorem 4.4. Suppose that ρ ∈ χG,J (Y, C) is a regular point. Then there exists a
neighborhood U of ρ in χG,J (Y, C) so that the restriction of r to U,

r |U : U → χG,J (F, ∂ F),

is a Lagrangian embedding.
In particular, if χG,J (Y, C) contains only regular points, then the restriction map

is a Lagrangian immersion.

Given a tangle (X,L), we write χG,J (X,L) rather than χG,J (Y, C), where Y, S,
C , F and V are determined by (X,L) as in Section 2A4. Also write χG,J (∂(X,L))

rather than χG,J (F, ∂ F). Theorem 4.4 can be restated in the new notation as follows.

Corollary 4.5. Suppose that ρ ∈ χG,J (X,L) is a regular point. Then there exists a
neighborhood U of ρ in χG,J (X,L) so that the restriction of r to U ,

r |U : U → χG,J (∂(X,L)),

is a Lagrangian embedding.
In particular, if χG,J (X,L) contains only regular points, then the restriction map

is a Lagrangian immersion.

In what follows, we simply write χ(A) for χG(A) and χ(A, B) for χG,J (A, B).
In addition, we denote by χ(S)∗ ⊂ χ(S) and χ(F, ∂ F)∗ ⊂ χ(F, ∂ F) the smooth
top strata, as real algebraic varieties, equipped with the symplectic forms ωS , ω̂F .

5. Three pillowcases

In this section, take G = SU(2) viewed as the unit quaternions, with Lie algebra
su(2) the purely imaginary quaternions. Let J ⊂ SU(2) denote the conjugacy class
of unit quaternions with zero real part, so J = su(2) ∩ SU(2), a 2-sphere.
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5A. The quotient of the torus by the elliptic involution. Let T denote U (1)×U (1)

with its symplectic form dx ∧ dy and symplectic SL(2, Z) action given in (1-2).
Multiplication by −1 ∈ SL(2, Z) is central and hence the quotient

P = T/{±1}

inherits a PSL(2, Z)= SL(2, Z)/{±1} action. The quotient map T → P is the 2-fold
branched cover of the 2-sphere with branch points the four points {(±1, ±1)}. The
complement, P∗ of the four branch points is a smooth surface, with symplectic
form dx ∧ dy and symplectic PSL(2, Z) action, and the restriction

T∗
→ P∗

is a smooth symplectic 2-fold covering map.

5B. The SU(2) character variety of the genus 1 surface. Consider the genus one
closed oriented surface T, equipped with generators µ, λ ∈ π1T represented by a
pair of oriented loops intersecting geometrically and algebraically once. The Dehn
twists Dµ, Dλ about µ and λ induce the automorphisms

Dµ :
(
µ 7→ µ, λ 7→ µλ

)
and Dλ :

(
µ 7→ µλ−1, λ 7→ λ

)
.

of π1(T, t0) ∼= Zµ⊕ Zλ (where t0 lies outside the support of these 2 Dehn twists).
These automorphisms induce, by precomposition, homeomorphisms

D∗

µ, D∗

λ : χ(T ) → χ(T ).

Let H(T ) = Hom(π1(T ), SU(2)). Denote by

p : H(T ) → χ(T )

the (surjective) orbit map of the conjugation action.
Define

ρ : T → H(T ), ρ(ex i, ey i) =
(
µ 7→ ex i, λ 7→ ey i). (5-1)

Proposition 5.1. The Dehn twists Dµ and Dλ define a symplectic PSL(2, Z)

action on (χ(T ), ωT ). The map ρ of (5-1) descends to a PSL(2, Z) equivariant
homeomorphism

ρ : P → χ(T )

which restricts to a PSL(2, Z) equivariant symplectomorphism

(P∗, c dx ∧ dy) → (χ(T )∗, ωT )

on the top strata of the SU(2) character varieties.
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Proof. It is elementary to show that ρ : P →χ(T ) is a well defined homeomorphism,
as well as an analytic diffeomorphism of the smooth strata P∗

→ χ(T )∗.
We show that ρ : (P∗, dx ∧ dy) → (χ(T )∗, ωT ) is a symplectomorphism. Since

this is a local statement, we work in R2 for simplicity. Define m =ρ◦e : R2
→χ(T ),

where e(x, y) = (ex i, ey i).
The differential of m at (x, y) ∈ R2, dm : T(x,y)R

2
→ Tm(x,y)(SU(2)× SU(2)) is

given by

dm
(

∂
∂x

)
=

(
µ 7→ ex i i, λ 7→ 0

)
, dm

(
∂
∂y

)
=

(
µ 7→ 0, λ 7→ ey i i

)
.

Following Weil [31], left translation in SU(2) × SU(2) identifies these with the
su(2)-valued 1-cochains

zx = (µ 7→ i, λ 7→ 0), zy = (µ 7→ 0, λ 7→ i) ∈ C1(T ; su(2)Ad m(x,y)).

The subspaces L = iR and V = jR + kR are invariant and complementary with
respect to Ad m(x, y), and therefore

H 1(T ; su(2)Ad m(x,y)) = H 1(T ; LAd m(x,y)) ⊕ H 1(T ; VAd m(x,y)).

Note that the action Ad m(x, y) on L is trivial, since L = iR and m(x, y) has values
in the abelian subgroup {eiu

}. Hence

H 1(T ; LAd m(x,y)) ∼= H 1(T ; R) ∼= R2.

The branched cover m : R2
→ χ(T ) is a local diffeomorphism near any

(x, y) ∈ (R2)∗ = R2
\ (πZ)2,

and hence it follows that for such (x, y),

H 1(T ; R)⊗Ri = H 1(T ; LAd m(x,y)) = Span{zx , zy} and H 1(T ; VAd m(x,y)) = 0

(these calculations can also be easily checked directly), so that

Tm(x,y)(χ(T )) = H 1(T ; R) ⊗ Ri.

The cup product

H 1(T ; LAd m(x,y)) × H 1(T ; LAd m(x,y)) → H 2(T ; R)

is thereby identified with

H 1(T ; R) ⊗ Ri × H 1(T ; R) ⊗ Ri → H 2(T ; R),

(z1 ⊗ i, z2 ⊗ i) = (z1 ∪ z2) · (− Re(ii)) = z1 ∪ z2.

In particular, zx = µ∗
⊗ i and zy = λ∗

⊗ i, where

µ∗, λ∗
∈ H 1(T ; Z) = Hom(H1(T ; Z), Z)
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is the basis dual to µ, λ. This basis is symplectic with respect to the (usual,
untwisted) intersection form. Hence(

(p ◦ m)∗(ωT )
)
|(x,y)

(
∂
∂x , ∂

∂y

)
= ωT (zx , zy) = (µ∗

∪ λ∗) ∩ [T ] = 1

= dx ∧ dy
(

∂
∂x , ∂

∂y

)
= 1.

Naturality of cup products shows that D∗
µ, D∗

λ preserve the symplectic form ωT .
Next,

D∗

µ(m(x, y)) = m(x, y) ◦ Dµ

=
(
µ 7→ m(x, y)(µ) = ex i, λ 7→ m(x, y)(µλ) = e(x+y)i)

and similarly

D∗

λ(m(x, y)) = m(x, y) ◦ Dλ =
(
µ 7→ e(x−y)i, λ 7→ ey i).

It follows that the subgroup of Homeo(χ(T )) generated by D∗
µ and D∗

λ pulls back,
via the homeomorphism ρ : P → χ(T ), to the subgroup of PSL(2, Z) generated by

ρ∗(D∗

µ) =

(
1 1
0 1

)
, ρ∗(D∗

λ) =

(
1 0

−1 1

)
.

These two matrices generate PSL(2, Z) (see [25]), finishing the proof. □

5B1. The solid torus and the restriction to its boundary. Let X denote the solid
torus with boundary T. Equip T with based loops µ, λ generating π1(T ), so that µ

is trivial in π1(X) and λ generates π1(X). Then

χ(X) = χ(Zλ) = SU(2)/conjugation.

An explicit slice of the conjugation action Hom(Zλ, SU(2)) → χ(Zλ) is given
by the map

[0, π] → Hom(Zλ, SU(2)), s 7→ (λ 7→ eis) (5-2)

with composition [0, π] → χ(X)
Reλ−−→ [−1, 1] equal to the analytic isomorphism

cos(s). Simple cohomology calculations show dim H 1(Z; su(2)) equals 1 when
0 < s < π and equals 3 when s = 0 or π . This shows that the interior of the interval
forms the smooth top stratum of χ(Z), and the endpoints are singular.

Since µ = 1 ∈ π1(X), the restriction-to-the boundary map

χ(X) → χ(T ) (5-3)

is easily computed, in P, to be the smooth (necessarily Lagrangian) embedded arc
given by

[0, π] ∋ s 7→ [es i, 1] ∈ P (5-4)

with endpoints at [−1, 1] and [1, 1].
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5C. The traceless SU(2) character variety of the 4-punctured 2-sphere. Let
4D2

⊂ S2 be four disjoint open disks, and set

F = S2
\ 4D2, ∂ F = 4S1.

Then π1(F) has presentation

π1(F) = ⟨a, b, c, d | abcd = 1⟩

and is free on a, b, c. Set

H(S2, 4) =
{
ρ ∈ Hom(π1(F), SU(2)) | ρ(a), ρ(b), ρ(c), ρ(d) ∈ J

}
.

Let p : H(S2, 4) → χ(S2, 4) denote the orbit map of the conjugation action.
Define

ρ̂ : T → H(S2, 4), (ex i, ey i) 7→
(
a 7→ j , b 7→ ex i j , c 7→ ey i j

)
. (5-5)

A half Dehn twist of (D2, p, q), where p, q are a fixed pair of interior points,
is a homeomorphism of the disk which fixes the boundary and permutes p and q,
and which generates the infinite cyclic mapping class group rel boundary of a disk
with two marked interior points. The generator which veers to the right is called a
positive half Dehn twist.

Proof of Theorem B. That ρ̂ : P → χ(S2, 4) is a well defined homeomorphism, as
well as an analytic diffeomorphism of the smooth strata P∗

→ χ(S2, 4)∗, is simple;
its proof can be found in [22; 18].

We show that ρ̂ : (P∗, c dx ∧dy)→ (χ(S2, 4)∗, ω̂(S2,4)) is a symplectomorphism,
for some constant c. Since this is a local statement, we work in R2 for simplicity.
Define m̂ = ρ̂ ◦ e : R2

→ χ(S2, 4), where e(x, y) = (ex i, ey i).
The differential of m̂ at (x, y) ∈ R2 is given by

dm̂
(

∂
∂x

)
=

(
a 7→ 0, b 7→ ex i i j , c 7→ 0

)
,

dm̂
(

∂
∂y

)
=

(
a 7→ 0, b 7→ 0, c 7→ ey i i j

)
.

Using left translation Lg−1 : SU(2) → SU(2) to identify Tg SU(2) with its Lie
algebra su(2) = T1 SU(2), transforms dm̂

(
∂
∂x

)
and dm̂

(
∂
∂y

)
to the su(2)-valued

1-cochains

zx =
(
a 7→ 0, b 7→ −i, c 7→ 0

)
, zy =

(
a 7→ 0, b 7→ 0, c 7→ −i

)
.

Since m̂ is a local diffeomorphism away from (πZ)2 [15], and ∂
∂x, ∂

∂y span T(x,y)R
2,

the cohomology classes [zx ], [zy] span

Ĥ 1(S2
− 4D2

; su(2)Ad m̂(x,y)) = T[m̂(x,y)](χ(S2, 4)).
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For any (x, y) ∈ R2
\ (πZ)2, the adjoint action

Ad m̂(x, y) : π1(S2
− 4D2) → GL(su(2))

reduces as the direct sum

Ad m̂(x, y) = Ad m̂(x, y)1 ⊕ Ad m̂(x, y)2 : π1(S2
− 4D2) → GL(Ri) × GL(C j)

and hence

Ĥ 1(S2
− 4D2

; su(2)Ad m̂(x,y))

= Ĥ 1(S2
− 4D2

; RiAd m̂(x,y)1) ⊕ Ĥ 1(S2
− 4D2

; C jAd m̂(x,y)2).

Since Ri and C j are orthogonal, the symplectic form ω̂S2,4 splits orthogonally

ω̂S2,4 = ω̂1
S2,4 ⊕ ω̂2

S2,4.

The cocyles zx and zy lie in the first summand, and hence they span the first
summand and the second summand is zero (these two facts can also be easily
calculated directly). Hence ω̂S2,4 = ω̂1

S2,4.
The representation on the first summand is independent of (x, y): indeed a, b,

and c (and hence also d) act by −1 for all x, y. The cocycles zx , zy are independent
of x, y, and hence

m̂∗(ω̂S2,4)|(x,y)

(
∂
∂x , ∂

∂y

)
= ω̂1

S2,4(zx , zy) = cdx ∧ dy
(

∂
∂x , ∂

∂y

)
for a nonzero constant c (since zx , zy span).

The half-Dehn twists along the disks H1 and H2 illustrated in Figure 1 induce
automorphisms of π1(S2

\4, s0), for a base point chosen outside the supports of H1

and H2, as indicated in the figure. These automorphisms are given by

H1 : a 7→ a, b 7→ b, c 7→ d = c̄b̄ā

H2 : a 7→ a, b 7→ cdc̄ = b̄āc̄, c 7→ c

and induce homeomorphisms H∗

1 , H∗

2 : χ(S2, 4) → χ(S2, 4). Naturality of cup
products shows that H∗

1 , H∗

2 preserve the symplectic form ω̂(S2,4).
Next,

H∗

1 (m(x, y))

=
(
a 7→ m(x, y)(a) = j , b 7→ m(x, y)(b) = ex i, c 7→ m(x, y)(c̄b̄ā) = e(y−x)i j

)
= m(x, y − x)

and similarly

H∗

2 (m(x, y)) =
(
a 7→ j , b 7→ m(x, y)(b̄āc̄) = e(x+y)i j , c 7→ ey i)

= m(x + y, y).
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It follows that the subgroup of Homeo(χ(S2, 4)) generated by H∗

1 and H∗

2
pulls back, via the homeomorphism ρ̂ : P → χ(T ), to the subgroup of PSL(2, Z)

generated by

ρ̂∗(H∗

1 ) =

(
1 −1
0 1

)
, ρ̂∗(H∗

2 ) =

(
1 0
1 1

)
.

These two matrices generate PSL(2, Z) (see [25]), finishing the proof. □

Mapping classes of (S2, 4) permute the four punctures. The subgroup of the
mapping class group of (S2, 4) which fixes the point labeled a in Figure 1 can be
shown to act on χ(S2, 4); this subgroup is isomorphic to PSL(2, Z) (see, e.g., [9]),
generated by these half twists.

6. Perturbations

The holonomy perturbation process is easily understood, as well as motivated, in
the language of Weinstein composition of Lagrangian immersions.

6A. Composition. Given any two (set) maps

α : A → M and β = βM × βN : B → M × N ,

define the composition (A ×M B, βα
N ) by

A ×M B := {(a, b) ∈ A × B | α(a) = βM(b)} = (α × βM)−1(1M) (6-1)

and
βα

N : A ×M B → N , βα
N (a, b) := βN (b). (6-2)

6A1. Composition in character varieties. Recall that if ρ : 0 → G is a homo-
morphism,

Stab(ρ) = {g ∈ G | gρ(γ )g−1
= ρ(γ ) for all γ ∈ 0}.

The proof of the following lemma can be found in [15, Lemma 4.2].

Lemma 6.1. Suppose that 00, 01, H are groups, h0 : H → 00, h1 : H → 01

homomorphisms. Set 0 = 00 ∗H 01, the pushout along h0, h1. There is a surjection

χ(0) → χ(00) ×χ(H) χ(01)

with fiber over ([ρ0], [ρ1]) the double coset

Stab(ρ0)\Stab(ρ0|H )/Stab(ρ1).

The fibers Stab(ρ0)\Stab(ρ0|H )/Stab(ρ1) are called gluing parameters.

Proposition 6.2. If Z = Z0 ∪6 Z1 is a decomposition of a compact 3-manifold
along a closed separating surface 6, with π1(6) → π1(Y0) surjective, then
χ(Z)→χ(Z0)×χ(6)χ(Z1) is a homeomorphism, in fact, an algebraic isomorphism.
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Proof. Choose ([ρ0], [ρ1]) ∈ χ(Z0) ×χ(6) χ(Z1). Since π1(6) → π1(Y0) is
surjective, ρ0 and ρ0|π1(6) have the same image, and hence equal stabilizers.
Thus Stab(ρ0)\Stab(ρ0|6)/Stab(ρ1) is a single point, and the proof follows from
Lemma 6.1. □

Corollary 6.3. If Z = Z0 ∪6 Z1 with Z0 a handlebody, then

χ(Z) = χ(Z0) ×χ(6) χ(Z1).

6A2. Composition in the Weinstein category. The Weinstein category [32] is,
roughly speaking, a category with objects symplectic manifolds and morphisms
Lagrangian immersions. Composition is not always defined, however. The following
criterion ensures that a composition of Lagrangian immersions is defined.

Lemma 6.4 [13, §4.1; 5, Lemma 2.0.5]. Suppose M, N are symplectic manifolds,

α : A → M and β = βM × βN : B → M−
× N

are Lagrangian immersions (with M− obtained from M by reversing the sign of
the symplectic form). If α × βM is transverse to the diagonal 1M ∈ M × M, then
A ×M B is a smooth manifold and βα

N : A ×M B → N is a Lagrangian immersion.

When the transversality assumption in Lemma 6.4 holds, one says the composition

(A ×M B, βα
N )

of (A, α) and (B, β) is defined and immersed.
In cases where the transversality assumption in Lemma 6.4 does not hold, a

differential topological approach to remedying the situation would be to deform
either or both of the immersions α, β. In order to retain the symplectic properties,
one would typically deform them by Hamiltonian flows. In the context in this article,
where character varieties correspond to flat moduli spaces in the gauge theoretic
framework, we seek deformations in Lemma 6.4 that correspond to holonomy
perturbations in the gauge theory context; we describe these in the next section.

6B. SU(2) and holonomy perturbations. We return to the pair (Y, C), determining
S = V ∪ F as above, so S = ∂Y and V = nbd(C).

Suppose that e : D2
× S1 ↪→ Int(Y ) is an embedding of a solid torus. Denote its

image by Y0, the closure of the complement by Y1, and the separating torus by T,
so that Y = Y0 ∪T Y1. Corollary 6.3 shows that

χ(Y, C) = χ(Y0) ×χ(T ) χ(Y1, C),

so that χ(Y, C) → χ(F, ∂ F) is exhibited as the composition of

α : χ(Y0) → χ(T ) and β : χ(Y1, C) → χ(T ) × χ(F, ∂ F).
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For a deformation απ : χ(Y0) → χ(T ) of α, or more generally a family of
functions απ , π ∈ U with U a manifold (for example, a small open interval), we
can view the deformed composition

χπ (Y, C) := χ(Y0) ◦π χ(Y1, C), βαπ : χ(Y0) ◦π χ(Y1, C) → χ(F, ∂ F) (6-3)

as a perturbed character variety with perturbation data π .
Restrict to the case when G = SU(2) and J is the conjugacy class of imaginary

unit quaternions. Then χ(Y0) is simply an arc [eis
], 0 ≤ s ≤ π , and the immersion

to χ(∂Y0) is α : [eis
] 7→ [eis, 1] in the pillowcase, described in (5-3) and (5-4). This

map descends from the smooth, Z2 equivariant map eis
→ (eis, 1) from S1 to T.

Let f : R → R be a smooth, odd, 2π periodic function. Then f determines a Z2

equivariant Hamiltonian deformation eis
7→ (eis, ei f (s)), inducing the deformation

of α given by

α f : [0, π] → χ(S1
× S1), α f (s) = [eis, ei f (s)

]. (6-4)

The definition extends easily to the setting of a finite disjoint collection of
embeddings of solid tori e = {ei }

k
i=1 of disjointly embedded solid tori in Y and a

corresponding collection of smooth, odd, periodic functions f1, . . . , fk as above.
Denote by π this set of perturbation data {(ei , fi )}

k
i=1. Letting Y0 denote the union

of the solid tori, (6-3) defines a way to deform the character variety.
Notice that it suffices to think of e as framed link in Y, since isotopic embeddings

yield equal perturbed character varieties.

Definition 6.5. Let V be the vector space of smooth, odd, 2π periodic functions
R → R. Fix (Y, C) as above, where C may or may not be nonempty). Given
perturbation data

π = (e, f ) =

(⊔k
i=1 ei : D2

× S1
⊂ Y, f = ( fi ) ∈ Vk

)
,

define χπ (Y, C) to be the resulting perturbed (traceless) character variety.

In light of (6-4), χπ (Y, C) has the following explicit description.

Proposition 6.6. Let (Y, C) be a compact oriented 3-manifold with a collection
of curves C in its boundary. Let π = (e, f ) be a choice of perturbation data, and
define Y0 ⊂ Y to be the disjoint union of solid tori

⊔
i ei (D2

× S1). Finally define
λi , µi ∈ π1(Y \ Y0) to be the loops ei (S1

× {1}) and ei ({1} × ∂ D2), connected to
the base point in some way. Then

χπ (Y, C) = {ρ ∈ χ(Y \ Y0, C) | if ρ(λi ) = eis, then ρ(µi ) = ei f (s)
}.

Theorem 6.7 [16; 27]. Given a set of perturbation data π = (e, f ) as in Definition
6.5, there is a holonomy perturbation h(e, f ) of the flatness equation on SU(2)

connections for which the perturbed flat moduli space is identified with the perturbed
character variety as described above.
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Remark 6.8. More flexible holonomy perturbations can be defined using a solid
handlebody, rather than disjoint solid tori (see, for example, [10]). In light of
Corollary 6.3, there is a similar composition interpretation of the perturbed character
variety, with Y0 the handlebody. But in this setting, an explicit description of the
perturbed character variety and the counterpart to the restriction map in (6-4), are
not known to the authors.

We can now prove the following theorem, which is equivalent to Theorem A.

Theorem 6.9. Suppose A ∈ χπ (Y, C) is a regular point. Then A admits a neigh-
borhood U so that r |U : U → χ(F, ∂ F)∗ is a Lagrangian embedding.

Proof. Apply Lemma 6.4. □

6C. Dependence on perturbations. In [16], the second author showed that (when L
is empty) different holonomy perturbations in general yield Legendrian cobordant
immersions. Unfortunately this usually does not guarantee that they have isomorphic
Floer homology. We now outline how one can address this point using Wehrheim
and Woodward’s quilt theory [28] (a rigorous formulation of the Weinstein cate-
gory [33]), as well as its extension to the immersed case as developed by Bottman
and Wehrheim [5].

One can find a discussion of holonomy perturbations in cylinders (S, p)×[0, 1],
with p a finite set of points in a surface S, in [17]. In particular, Theorem 6.3 of
that article states the following. Take perturbation data π with framed perturbation
curve obtained by pushing a simple closed curve in S \ p into the interior of S × I.
Then define the 1-parameter family of holonomy perturbations sπ, s ∈ [0, ϵ).

The restriction

χsπ ((S, p) × I ) → χ(S0, p) × χ(S1, p)

can be identified with the family of graphs of a Hamiltonian isotopy of χ(S)

known as the Goldman twist flow associated to the simple closed curve [12]. This
implies that the holonomy perturbation process can be viewed as a combination of a
decomposition induced by cutting a 3-manifold along a separating torus T, followed
by a perturbation as in (6-3), with αsπ : χ(S1

× D2) → χ(T ) the composition of
the unperturbed inclusion α0 followed by a small time flow of the Hamiltonian
Goldman twist flow associated to a curve in this torus.

We formalize this in the following way. Call two Lagrangian immersions

ι0 : L0 ↬ M, ι1 : L1 ↬ M

secretly Hamiltonian isotopic if they can be expressed as compositions with some
β : 3 ↬ X × M :

i0 : L0 ↬ M = β
j0
M : L ′

0 ×X 3 ↬ M,

i1 : L1 ↬ M = β
j1
M : L ′

1 ×X 3 ↬ M,
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in such a way that j0, j1 : L ′

0, L ′

1 ↬ X are Hamiltonian isotopic in X. It follows
from the discussion in Section 6B that different choices of holonomy perturbations
induce secretly Hamiltonian isotopic immersed Lagrangians.

Being secretly Hamiltonian isotopic does not necessarily imply being Hamil-
tonian isotopic. Indeed, L0 and L1 need not even be diffeomorphic. Moreover, in
the absence of extra hypotheses (embedded composition, monotonicity, exactness,
etc.), the conclusion of the Wehrheim–Woodward composition theorem [28] need
not hold. In particular, given a third Lagrangian L2, HF(L0, L2) and HF(L1, L2)

need not be isomorphic, even if they are both well-defined.
However, provided that

• all Lagrangian immersions and symplectic manifolds satisfy suitable assump-
tions so to be able to define Lagrangian (quilted) Floer homology,

• all Lagrangian immersions come equipped with suitable bounding cochains,
in a way consistent with composition,

then it would follow from the Bottman–Wehrheim conjecture [5, §4.4] (see also
a similar statement in [11]) that the secretly Hamiltonian isotopic Lagrangian
immersions L0 and L1, when paired with any test Lagrangian L2 ⊂ M, produce
isomorphic Floer homology groups HF(L0, L2) ≃ HF(L1, L2) (since these would
respectively correspond to the quilted Floer homology groups HF(L ′

0, 3, L2) and
HF(L ′

1, 3, L2), which are isomorphic).
In that sense secretly Hamiltonian isotopic Lagrangian immersions L0 and L1

can be thought as being equivalent. In particular, the problem of dependence of
Floer theory on the choice of holonomy perturbation is seen as a special case of the
general problem of dependence of quilted Floer homology on composition.
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On naturality of the Ozsváth–Szabó contact invariant

Matthew Hedden and Lev Tovstopyat-Nelip

We discuss functoriality properties of the Ozsváth–Szabó contact invariant, and
expose a number of results which seemed destined for folklore. We clarify the
(in)dependence of the invariant on the basepoint, prove that it is functorial with
respect to contactomorphisms, and show that it is strongly functorial under Stein
cobordisms.

1. Introduction

Heegaard Floer homology provides a seemingly ever-growing number of invariants
for low-dimensional topology. Its influence has perhaps most firmly been felt
within the realm of 3-dimensional contact geometry, upon which the Ozsváth–
Szabó contact invariant [30] and its refinements have had a profound impact. In its
most basic form, the contact invariant of a closed contact 3-manifold (Y, ξ) is an
element residing in the Heegaard Floer homology group ĤF(−Y ) of the underlying
manifold, equipped with the opposite orientation to the one it receives from the
contact structure (a group which, perhaps more naturally, can be identified with the
Floer cohomology of Y ). A decade after its initial development by Ozsváth and
Szabó [27; 28], Juhász, Thurston, and Zemke discovered a subtle dependence of
Heegaard Floer homology on a choice of basepoint underlying its definition [19].
Indeed, they showed that Floer homology cannot associate a well-defined group to
a 3-manifold alone, but only to a 3-manifold equipped with a basepoint. This raises
the questions of whether the contact element is well defined, how it depends on
the basepoint, and how it behaves under diffeomorphisms, questions raised but not
pursued in [19] and [22, pg. 1360].

The purpose of this article is to examine these questions, and further explore
functoriality properties of the contact invariant. As a first step, we show that the
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contact element is a well-defined element (as opposed to an orbit under the group of
graded automorphisms) in the Floer homology of a pointed contact 3-manifold; see
Theorem 2.3. To prove this, we first establish an appropriate definition and notion
of equivalence for pointed contact 3-manifolds and incorporate these ideas into the
Giroux correspondence. We then revisit Ozsváth and Szabó’s proof of invariance
within the naturality framework of [19], ensuring that Heegaard surfaces, links,
open books, basepoints, etc. can be arranged to be explicitly embedded in a fixed
3-manifold.

Having checked the aforementioned details, we turn to a refined understanding of
invariance of the contact class, showing that it is functorial with respect to pointed
contactomorphisms.

Theorem 1.1. Suppose f is a pointed contactomorphism between pointed contact
3-manifolds (Y, ξ, w) and (Y ′, ξ ′, w′). Then the induced map on Floer homology

f∗ : ĤF(−Y, w) → ĤF(−Y ′, w′)

carries c(ξ, w) to c(ξ ′, w′).

The functoriality above is an immediate consequence of the functoriality of
Floer homology under pointed diffeomorphisms from [19], provided one parses
the Giroux correspondence in a categorical framework, which we clarify with
Proposition 2.6.

We then show that, while the group in which the contact element lives depends
on the basepoint, the contact element itself does not. This can be explained as
follows: the dependence of the Floer homology of Y on the basepoint is determined
by a functor

H F(Y, −) : 51(Y ) → iGrp

from the fundamental groupoid of Y to the isomorphism subcategory of groups.
Concretely, this just means that there is a well-defined isomorphism between Floer
groups ĤF(Y, w) and ĤF(Y, w′) associated to a homotopy class of a path between
w and w′, which is compatible with concatenation (see the next section for more
details). If one restricts to the subgroups of ĤF(Y, w) spanned by contact classes,
which we denote cHF(Y, w), this functor yields a transitive system indexed by
points in Y ; that is, the isomorphisms cHF(Y, w) → cHF(Y, w′) are independent
of paths. We can therefore consider the direct limit of the transitive system, which
we call the contact subgroup of Floer homology, and denote cHF(Y ).

Theorem 1.2. The contact subgroup cHF(Y ) is a well-defined invariant of an
(unpointed) 3-manifold, functorial with respect to diffeomorphisms. There is an
element c(ξ) ∈ cHF(Y ), associated to a contact structure ξ on Y, and the map
f∗ : cHF(Y ) → cHF(Y ′) induced by a contactomorphism f : (Y, ξ) → (Y ′, ξ ′)

sends c(ξ) to c(ξ ′).
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One can view this result in two ways. On the one hand, it follows from the
functoriality established in Theorem 1.1, together with the fact that we can realize
the change-of-basepoint diffeomorphism associated to a homotopy class of path
by a contactomorphism (see Proposition 2.9). On the other, it can be viewed as a
consequence of Zemke’s calculation of the representation of the fundamental group
on Floer homology in terms of the H1(Y )/ Tor action and the basepoint action 8w,
together with the fact that contact classes are in the kernel of the H1(Y )/ Tor action.
Adopting the latter perspective, we see that the contact subgroup is a subgroup of
a larger basepoint independent subgroup, arising as the kernel of the H1(Y )/ Tor
action. Note that these considerations dash any naive hope that Heegaard Floer
homology is generated by contact classes, much less by elements associated to taut
foliations, and indicate that such a conjecture might more reasonably be made in
the context of a twisted coefficient system in which the H1(Y )/ Tor action vanishes,
e.g., totally twisted coefficients, or for the subgroup arising as the intersection of
the reduced Floer homology HF−

red(Y, w) and the kernel of the H1(Y )/ Tor action.
For a rational homology sphere the latter action vanishes, and the question lands
back within a similar realm to the L-space conjecture.

Having clarified the definition and invariance properties of the contact element,
we then show that it is functorial under Stein cobordisms in a precise way.

Theorem 1.3. Suppose (W, J, φ) is a Stein cobordism from a contact 3-manifold
(Y1, ξ1) to a contact 3-manifold (Y2, ξ2). Then

FW †,k(c(Y2, ξ2)) = c(Y1, ξ1),

where W † indicates the 4-manifold W, viewed as a cobordism from −Y2 to −Y1,
and k is the canonical Spinc structure associated to J. Moreover,

FW †,s(c(Y2, ξ2)) = 0
for s ̸= k.

In a weaker form, such a result follows fairly easily from the existing literature,
and was widely known to experts. See Section 3 for a discussion. In the present
level of specificity, the proof is slightly more involved than one might initially
expect, owing largely to the nature of the composition law for cobordism maps
in Heegaard Floer theory. We remark that the incoming and outgoing boundaries
of W are not assumed to be connected, and that Theorem 1.3 immediately yields
a generalization of Plamenevskaya’s independence result for contact invariants
from [33]; see Corollary 3.9.

It would be interesting to know how much naturality of the contact element
persists as one weakens assumptions on the cobordism. It is known, for instance,
that the contact element in monopole Floer homology is natural under strong
symplectic cobordisms [2, Theorem 1]; see also [24]. One would thus expect an
affirmative answer to the following:
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Question 1.4. Is the contact element natural under strong symplectic cobordisms?

Finally, we note that we work with Heegaard Floer homology with Z/2Z coeffi-
cients throughout. The naturality results of [19] have been extended to projective
Z coefficients (i.e., Z/ ± 1) [7], but at the moment these extensions have not been
established for the graph cobordism maps. Assuming they will be, the results at
hand should immediately extend to the refined setting.

2. Functoriality of the contact class under diffeomorphisms

In this section we clarify the dependence of the contact class on the basepoint used
in the definition of Heegaard Floer homology, and highlight how the results of
Juhász, Thurston and Zemke [19] and Zemke [34] couple with Ozsváth and Szabó’s
argument from [30] to imply that the contact class is a well-defined invariant of a
pointed contact 3-manifold, up to pointed isotopy (Theorem 2.3). This invariant
is shown to be functorial under pointed contactomorphisms (Theorem 2.7). We
then show that while, according to [19], the Heegaard Floer homology group in
which the contact element lives depends in an essential way upon the basepoint,
the contact invariant is essentially independent from the basepoint (Theorem 1.2).
Unless otherwise specified, all 3-manifolds are assumed to be closed and oriented,
and contact structures assumed to be cooriented.

Recall from [19] that the Heegaard Floer homology group of a pointed 3-
manifold (Y, w) is defined as the direct limit of a transitive system of groups and
isomorphisms defined by pointed Heegaard diagrams (6, α, β, w) embedded in
(Y, w) and pointed Heegaard moves passing between them (together with auxiliary
choices of almost complex structures). See [19, Theorem 1.5] and the surrounding
discussion. The contact invariant should therefore be interpreted as an element
in the aforementioned direct limit. As such, it would appear to depend on the
basepoint, and we therefore make the following definition

Definition 2.1. A pointed contact 3-manifold is a 3-manifold Y equipped with a
contact structure ξ and a distinguished basepoint w.

By Gray’s theorem, an isotopy between contact structures is induced by an isotopy
of the underlying (compact) 3-manifold, and two contact structures on (Y, w) will
be considered equivalent if we can find such an isotopy fixing the basepoint w.

Remark 2.2. One could consider a more restrictive definition of equivalence where
the isotopy fixes the contact plane at w. This differs from the present notion only by
the choice of oriented plane at w, a choice parametrized by a 2-sphere, and would
have no effect on our results. See [19, Lemma 2.45] for more details.

In [30], Ozsváth and Szabó defined an invariant of contact structures utilizing
the Giroux correspondence between isotopy classes of contact structures on Y and
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equivalence classes of fibered links in Y under Hopf plumbing. Given a fibered knot
representing ξ , its knot Floer homology has a distinguished filtered subcomplex in
bottommost Alexander grading, whose homology is rank one [30, Theorem 1.1].
Inclusion of this subcomplex in ĈF(−Y ) defines an element c(ξ) ∈ ĤF(−Y )

[30, Definition 1.2], which they showed does not depend on the particular choice
of fibered knot representing ξ [30, Theorem 1.3]. Absent from the literature at that
time, however, was an understanding of the dependence of the Floer homology
group in which c(ξ) resides on the choice of basepoint. We restate their theorem so
that this dependence is explicit, and outline the elements of their proof of invariance
which should be refined accordingly.

Theorem 2.3 [30, Theorem 1.3]. Suppose two contact structures ξ, η on the pointed
3-manifold (Y, w) are equivalent. Then c(ξ, w) = c(η, w) ∈ ĤF(−Y, w).

Proof. We begin by observing that the Giroux correspondence [6; 9] has the pointed
analogue

{pointed open books (L , πL) in (Y 3, w)}

{(pointed) isotopy and positive Hopf plumbing}
=

{contact structures on (Y 3, w)}

{isotopy fixing w}

where we emphasize that on the left-hand side we are considering concrete open
book decompositions of Y, by which we mean an embedded link L ⊂ Y together
with a fibration on its exterior πL : Y \ L → S1 for which the boundary of the
closure of each fiber is L . In these terms a pointed open book for the pointed
contact manifold is an open book supporting ξ for which the basepoint is contained
in L . Two open books are considered equivalent if they differ by a sequence
consisting of ambient isotopies of links and ambient (de)plumbings with positive
Hopf bands, where isotopies and (de)plumbings are required to fix the basepoint.
The pointed statement follows easily from the unpointed statement. We remark that
the inclusion of ambient isotopies of the open book is essential, though typically
omitted or implicit in the literature.

Ozsváth and Szabó’s proof relies on two lemmas. If we denote the element
associated to a fibered knot K ⊂ Y by c(K ) ∈ ĤF(−Y ), then [30, Lemma 4.1]
states that this element is unchanged under connected summing with the right-
handed trefoil, T ; that is, c(K #T ) = c(K ) for any fibered knot K ⊂ Y. Then
[30, Lemma 4.4] shows that the element associated to a fibered knot obtained by
plumbing 2h right-handed Hopf bands to K ⊂ Y is independent of the choice of
plumbings. Using plumbings which realize iterated connected sums with T, the
result follows.

The proof of the latter lemma goes by realizing the element associated to any
genus h stabilization as the image of a fixed class in ĤF(−Y ) under a map induced
by a cobordism W which is diffeomorphic to Y ×[0, 1]. To do this, one observes that
a genus h stabilization can be obtained by attaching canceling 4-dimensional 1- and
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2-handles to Y × I, where the former add handles to the page of the open book and
the latter enact Dehn twists to the monodromy. One then uses [30, Theorem 4.2],
which states that the element is carried naturally under the 2-handle cobordisms
that add left-handed Dehn twists to the monodromy.

According to [19], one should refine these arguments so that they use embedded
Heegaard diagrams in Y, with the basepoint lying on the embedded Heegaard
surface. When appealing to the functoriality with respect to cobordisms used in the
proof of Ozsváth and Szabó’s second lemma, one must also be careful about the
embedded path in W ∼= Y × [0, 1] from the basepoint to itself.

To address the first issue, consider a concrete pointed open book (K , πK ) in Y
supporting (a contact structure isotopic to) ξ , with connected binding. From this,
one can construct Ozsváth and Szabó’s Heegaard diagram adapted to K from
[30, Section 3]. This construction can be done so that the diagram is embedded
in Y, built from the union of the closure of two fibers by a stabilization, and so that
it contains the basepoint. The proof of naturality for knot Floer homology adapts
to produce a functorial invariant from the category of pointed knots to a category
whose objects are transitive systems of Z-filtered complexes (where the maps in
such systems are certain canonical filtered homotopy classes of filtered homotopy
equivalences). See [14, Proposition 2.3] for the adaptation of the proof of naturality
in [19] to the context of transitive systems of complexes, and [13, Proposition 2.8]
for a discussion on how to apply this to knots. Naturality implies that the generator
of the homology of the bottommost filtered subcomplex defined by the embedded
Heegaard diagram for the knot (K , πK ) produces a well-defined invariant c(K , w)∈

ĤF(−Y, w), by consideration of the inclusion-induced map.
To argue that the element c(K , w) is invariant under connected summing with a

trefoil, we observe that one can form the connected sum of the open book with the
trefoil knot ambiently, by embedding the trefoil and its fiber surface in a small ball
near the basepoint, but in the complement of the Heegaard surface for K. One can
then form an embedded Heegaard diagram adapted to K #T, which is a connected
sum of embedded diagrams. The Künneth theorem for the knot Floer homology of
a connected sum [26, Theorem 7.1], together with the fact that the new diagram is
obtained from the initial diagram by a sequence of pointed embedded Heegaard
moves, shows that c(K #T, w) = c(K , w).

The second lemma from Ozsváth and Szabó’s proof also goes through in the
context of pointed 3-manifolds and concrete open books. Indeed, if we are given
a concrete pointed open book (K ′, π ′) for (Y, w) which is obtained from (K , π)

by ambiently plumbing 2h positive Hopf bands, we cancel the additional right-
handed Dehn twists in the monodromy by attaching 2h 4-dimensional 2-handles
along curves in the page. This results in a cobordism whose outgoing boundary
is diffeomorphic to Y #2h S1

× S2. Further attaching 2h 4-dimensional 3-handles
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to cancel the 2-handles results in a composite cobordism which is diffeomorphic,
rel boundary, to Y × [0, 1]. Moreover, since the attaching regions for the 2- and
3-handles lie in the complement of the basepoint, the path traced by the basepoint
in the cobordism is sent, under a diffeomorphism to Y ×[0, 1], to the trivial path
w×[0, 1]. We can reverse the orientation of Y before performing the aforementioned
handle attachments, and the resulting map on the Floer homology of ĤF(−Y, w)

is the identity. The result follows as in [30] by appealing to the naturality of the
contact invariant under addition of Dehn twists. □

Remark 2.4. One could alternatively approach the pointed invariance of the con-
tact element using its interpretation by Honda, Kazez and Matić [17]. Such an
approach seems necessary to establish naturality of the contact invariants in sutured
Floer homology defined using partial open books for 3-manifolds with convex
boundary [16].

To understand the functoriality of the contact class, we observe that pointed
contact 3-manifolds form the objects of a category whose morphisms are pointed
isotopy classes of contactomorphisms. With respect to this structure, the (pointed)
Giroux correspondence is functorial. To understand this, we make the following
definition:

Definition 2.5. A ( pointed ) diffeomorphism between concrete ( pointed ) open
books is an orientation-preserving diffeomorphism of pairs f : (Y, L) → (Y ′, L ′)

which intertwines the fibrations on the link complements, i.e., πL = πL ′ ◦ fY\L (and
which maps the basepoint on L to the basepoint on L ′).

If the open book (L , πL) supports a contact structure ξL on Y, then a diffeo-
morphic open book (L ′, π ′

L) supports a contact structure ξL ′ on Y ′ satisfying
f∗(ξL) = ξL ′ . Since the contact structure induced by an open book is only well
defined up to isotopy, we will regard diffeomorphisms of open books up to isotopy
without loss of information. In this way, a diffeomorphism of open books defines
an isotopy class of contactomorphisms.

Conversely, given an isotopy class of contactomorphisms f : (Y, ξ) → (Y ′, ξ ′),
we can push-forward an open book (L , πL) supporting ξ under f , yielding an open
book ( f (L), πL ◦ f −1) supporting (Y ′, ξ ′). The evident diffeomorphism of open
books induces the given contactomorphism, up to isotopy. In this way, the Giroux
correspondence can be lifted to an isomorphism of categories:

Proposition 2.6 (functorial Giroux correspondence). There is an isomorphism of
categories between the category of ( pointed ) contact 3-manifolds and ( pointed )
isotopy classes of contactomorphisms and the concrete open book category, whose
objects are 3-manifolds equipped with concrete ( pointed ) open books up to ambient
( pointed ) Hopf plumbing and whose morphisms are ( pointed ) isotopy classes of
( pointed ) diffeomorphisms between open books.
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Proof. The (pointed) Giroux correspondence yields a bijection between objects
which, in one direction, sends an (equivalence class of (pointed)) open book to the
((pointed) isotopy class of a) contact structure supporting it. The discussion above
shows that there are corresponding bijections between morphism sets. □

Using this, we can show that the contact class is functorial with respect to pointed
contactomorphisms; see Theorem 1.1.

Theorem 2.7 (functoriality under contactomorphisms). Suppose f is a pointed
contactomorphism between pointed contact manifolds (Y, ξ, w) and (Y ′, ξ ′, w′).
Then the map on Floer homology f∗ : ĤF(−Y, w) → ĤF(−Y ′, w′) carries c(ξ, w)

to c(ξ ′, w′).

Proof. This follows easily from the definition of the map on Floer homology associ-
ated to a pointed diffeomorphism, as described in [19, Section 2.5, Definition 2.42],
together with the functorial Giroux correspondence. More precisely, according to
Section 2.5 of [19], the map between Floer homology groups associated to a pointed
isotopy class of diffeomorphism is defined by the map on transitive systems induced
by pushing forward embedded pointed Heegaard diagrams in (Y, w) (and moves
between them) to (Y ′, w′). A pointed Heegaard diagram adapted to a concrete open
book supporting (Y, ξ) is mapped, via f , to a pointed Heegaard diagram adapted to
a diffeomorphic concrete open book supporting (Y ′, ξ ′). Taking homology of these
complexes gives rise to representatives for the direct limit of the transitive systems
that define ĤF(−Y, w) and ĤF(−Y ′, w′), respectively. Under the induced map,
the cycle representing the contact element for c(ξ, w) is taken to that representing
c(ξ ′, w′). The result follows. □

Since the hat Floer homology groups depend on the basepoint, the above re-
finements are necessary in order to understand the invariance of the contact class.
Having addressed this, however, we will now show that the contact class is essentially
independent of the basepoint, relying on it only insomuch as it is required to define
the group in which the class resides.

To explain this, recall that the map Diff(Y )
evw

−−→ Y which evaluates a diffeo-
morphism at a basepoint is a Serre fibration, and the fiber over w is the pointed
diffeomorphism group Diff(Y, w). The associated long exact sequence on homotopy
terminates in

π1(Y, w) → π0(Diff(Y, w)) → π0(Diff(Y )) → 1.

Concretely, this implies that if a pointed diffeomorphism is (unpointed) isotopic to
the identity, then it is isotopic to a “point-pushing map” about a loop representing
an element in π1(Y, w). If one considers instead the fiber of evw over a different
basepoint, w′, we see that any diffeomorphism of Y sending w to w′ which is
(unpointed) isotopic to the identity is isotopic, through diffeomorphisms sending
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w to w′, to a point-pushing map defined by a choice of arc γ from w to w′. Moreover,
any two such diffeomorphisms differ, up to pointed isotopy, by a point-pushing map
along an element in π1(Y, w). In light of this, the dependence of Floer homology on
the basepoint is captured by a representation π1(Y, w) →Aut(ĤF(Y, w)) defined
by isomorphisms associated to isotopy classes of point-pushing diffeomorphisms.
While this representation can be nontrivial, the following proposition implies that it
acts trivially on the subspace spanned by contact elements.

Proposition 2.8. Suppose that contact structures ξ and η on the pointed 3-manifold
(Y, w) are isotopic, induced by an isotopy of Y which does not necessarily fix the
basepoint. Then c(ξ, w) = c(η, w) ∈ ĤF(−Y, w).

We note that the functoriality of the contact invariant only implies f∗(c(ξ, w)) =

c(η, w), where f is the endpoint of the isotopy.

Proof. Let φt : Y × [0, 1] → Y denote the isotopy carrying ξ to η, where φ0 = IdY

and φ1 = f is a diffeomorphism fixing w, but where φt may not fix the basepoint
for 0 < t < 1. The discussion preceding the proposition indicates that f is isotopic
to a point-pushing map along a curve γ representing an element [γ ] ∈ π1(Y, w).
More precisely, a loop γ based at w can be regarded as an isotopy of embeddings
of a point into Y which, by the isotopy extension theorem, can be extended to an
isotopy of Y which is the identity outside a neighborhood of the image of γ . The
endpoint of this latter isotopy is a pointed diffeomorphism fγ : (Y, w) → (Y, w)

whose pointed isotopy class depends only on the homotopy class [γ ] ∈ π1(Y, w),
by another application of the isotopy extension theorem (or, rather its interpretation
in terms of the homotopy lifting property of the map Diff(M) → Diff(N , M)

which evaluates a diffeomorphism at a submanifold; see [20; 32]). According to
the main theorem of [19], there is an induced automorphism ( fγ )∗ of the Floer
homology group ĤF(Y, w), and the functoriality of the contact class under pointed
contactomorphisms implies

( fγ )∗(c(ξ, w)) = c( fγ ∗(ξ), w) = c(η, w).

The automorphism ( fγ )∗ will, in general, be nontrivial; indeed, Zemke shows that
it can be computed via the formula [34, Theorem D]

( fγ )∗ = Id +(8w)∗ ◦ (Aγ )∗,

where Aγ is the chain level map defining the H1(Y )/Tor action on ĤF(Y, w), and
8w is the basepoint action which, in the case of ĈF(Y, w), counts J -holomorphic
disks which pass through the hypersurface specified by the basepoint exactly once.
The proposition will follow if we can show that contact classes are in the kernel
of the H1(Y )/Tor action. But this is an easy consequence of their definition.
Letting c ∈ H∗(F(−Y, K , w, bot)) ∼= F denote the generator of the homology of the
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bottommost nontrivial filtered subcomplex in the filtration of ĈF(−Y, w) induced
by the binding of a pointed open book supporting ξ , the contact class is defined as

c(ξ, w) := ι∗(c),

where ι :F(−Y, K , w, bot) ↪→ CF(−Y, w) is the inclusion map. The chain map Aγ

on ĈF(−Y, w) respects the filtration induced by K, defined as it is by counting
J -holomorphic disks which avoid w (see [13, Proof of Proposition 5.8]). It follows
that Aγ maps F(−Y, K , w, bot) to F(−Y, K , w, bot), but since it shifts the relative
Z/2Z homological grading, and the homology of the latter subcomplex is one-
dimensional, the map on homology must be trivial. Therefore the automorphism on
Floer homology induced by a point-pushing map acts as the identity on any contact
elements, and we have c(ξ, w) = ( fγ )∗(c(ξ, w)) = c(η, w) as claimed. □

The above proposition can be used to show that change-of-basepoint maps on
Floer homology induced by pushing points along arcs act on contact elements in
a canonical way, i.e., ( fγ )∗(c(ξ, w)) ∈ ĤF(Y, w′) is independent of the choice of
arc used to construct a diffeomorphism fγ : (Y, w) → (Y, w′). This indicates an
independence of the contact class from the choice of basepoint. We can make this
independence more precise. To do this, we show that the point-pushing maps along
arcs can be refined to pointed contactomorphisms.

Proposition 2.9 (cf. [11]). Given w, w′
∈ Y, there exists a contactomorphism

φ : (Y, ξ) → (Y, ξ), which is isotopic to the identity and maps w to w′.

Proof. Let γ : [0, 1] → Y denote a smooth embedded path from w to w′. After a
C∞-small isotopy we may assume the path γ is transverse to ξ . Let ν(γ ([0, 1]))

denote a neighborhood of the transverse arc. A standard neighborhood theorem
gives a contact embedding

φ : (ν(γ ([0, 1])), ξ) → (R3, ker(α)), where α = dz + r2dθ,

which takes the image of the arc to the segment {(0, 0)} × [0, 1] along the z-axis;
in particular φ(w) = (0, 0, 0) and φ(w′) = (0, 0, 1).

Let β denote a contact 1-form for ξ which is an extension of φ∗α. The time one
flow of the Reeb vector field Rβ is then the desired contactomorphism taking w

to w′. □

Corollary 2.10. The contact class is independent of the basepoint in the following
sense: given two basepoints w, w′

⊂ Y , a path γ between them induces an iso-
morphism γ∗ : ĤF(−Y, w) → ĤF(−Y, w′). For any choice of γ , the contact class
satisfies γ∗(c(ξ, w)) = c(ξ, w′).

Proof. Suppose γ is a path connecting w to w′. As in the proof of Proposition 2.8,
the based homotopy class of γ gives rise to a well-defined pointed isotopy class
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of pointed diffeomorphism fγ : (Y, w) → (Y, w′), whose associated isomorphism
between Floer homology groups we denote γ∗. The contactomorphism constructed
using γ in the proof of the preceding proposition is a representative of this pointed
isotopy class. Functoriality of the invariant under pointed contactomorphisms,
Theorem 2.7, then implies that γ∗(c(ξ, w)) = c(ξ, w′). □

Proof of Theorem 1.2. In light of the corollary, if we let the subgroup of ĤF(−Y, w)

spanned by contact elements be denoted cHF(−Y, w), we obtain a transitive system
(in the sense of [3, Definition 6.1]) of groups indexed by points in Y, for which the
isomorphism fw,w′ : cHF(−Y, w) → cHF(−Y, w′) is the map on Floer homology
associated to the point-pushing map along any arc from w to w′. We call the direct
limit of this transitive system the contact subgroup associated to Y, and denote it
cHF(−Y ):

cHF(−Y ) := lim
−→

cHF(−Y, w).

The corollary shows that it is well defined, independent of any choice of basepoint,
and that a contact structure ξ on Y receives an associated element c(ξ) ∈ cHF(−Y )

defined as the image of c(ξ, w) ∈ cHF(−Y, w) under the canonical inclusion-
induced isomorphism cHF(−Y, w) → cHF(−Y ). The contact subgroup is functo-
rial with respect to (unpointed) diffeomorphisms of Y by the main theorem of [19],
and an (unpointed) contactomorphism f : (Y, ξ) → (Y ′, ξ ′) sends c(ξ) to c(ξ ′) by
Theorem 2.7. □

Remark 2.11. There is a contact invariant c+(ξ) ∈ HF+(−Y ) defined as the im-
age of c(ξ) under the map on homology induced by the inclusion of complexes
ι : ĈF → CF+, [25, Section 4]. Corresponding results for c+(ξ) follow from Theo-
rems 1.1 and 1.2, together with the naturality of ι∗ implied by [19, Theorem 1.5].

3. Functoriality of the contact class under Stein cobordisms

In this section we provide a proof of the well-known folk theorem that the Ozsváth–
Szabó contact invariant is natural with respect to Stein cobordisms. Nontrivi-
ality of the contact invariant of a Stein fillable contact structure was proved in
[30, Theorem 1.5]. The proof relied on a naturality result [30, Theorem 4.2] for the
invariants of contact structures represented by open book decompositions which
differ by a single Dehn twist. This latter result implicitly showed that the contact in-
variant is natural with respect to a Stein cobordism associated to a Weinstein 2-handle
attachment along a Legendrian knot, a fact made more clear in [21, Theorem 2.3]
(though stated there in terms of contact +1 surgery). These naturality results for
Weinstein 2-handles consider the sum of maps associated to all the Spinc structures
on the cobordism. Together with a calculation for 1-handles, they immediately
yield a weak naturality of the contact invariant under Stein cobordisms, where one
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sums over all Spinc structures. This is spelled out in [18, Theorem 11.24], under
an additional topological restriction on the 1-handles.

The Spinc refinement of naturality for the contact invariant of a Stein filling,
viewed as a Stein cobordism to the standard structure on the 3-sphere, was estab-
lished in [33, Theorem 4]. A Spinc refinement of naturality for the contact invariant
under general Weinstein 2-handle attachments along a Legendrian link was stated in
[8, Lemma 2.11]. The proof relied crucially on a naturality result for the cobordism
map associated to a Lefschetz fibration over an annulus. The latter was attributed
to Ozsváth and Szabó, who only proved the result for Lefschetz fibrations over
a disk. We spell out the proof of the required naturality in Lemma 3.6 below,
and use it to establish naturality of the contact class under Weinstein 2-handle
cobordism following the strategy in [8]. Given the body of literature on topological
aspects of Stein surfaces and domains, exposed beautifully in [1; 4; 10], the only
remaining piece necessary for the Spinc refinement of naturality under a general
Stein cobordism (Theorem 1.3) is a discussion of 1-handles, particularly those with
feet in different path components.

Recall, then, that a Stein cobordism from a contact 3-manifold (Y1, ξ1) to (Y2, ξ2)

is a smooth 4-manifold W with ∂W = −Y1 ∪Y2, oriented by a complex structure J
for which the oriented complex lines of tangency on ∂W agree with ξ1 and ξ2,
respectively, and which admits a J -convex Morse function φ, defined by the re-
quirement that −ddCφ = ωφ is symplectic. Such a manifold comes equipped with
a Liouville vector field, Xφ , defined as the gradient of φ with respect to the metric
induced by ωφ . See [1] for an introduction.

Theorem 3.1. Suppose (W, J, φ) is a Stein cobordism from a contact 3-manifold
(Y1, ξ1) to a contact 3-manifold (Y2, ξ2). Then

FW †,k(c(Y2, ξ2)) = c(Y1, ξ1),

where W † denotes the 4-manifold W, viewed as a cobordism from −Y2 to −Y1, and
k is the canonical Spinc structure associated to J. Moreover,

FW †,s(c(Y2, ξ2)) = 0

for s ̸= k.

Remark 3.2. The result is equally valid for Weinstein cobordisms, which [1] shows
are equivalent to Stein cobordisms for the present purposes.

Remark 3.3. Strictly speaking, the Stein cobordism should be equipped with a
properly embedded graph, in the sense of [34]. In this context, the graph is obtained
from the basepoints present on the incoming end of the cobordism by their image
under the flow of the Liouville vector field. We pick basepoints on the incoming
ends which flow to the outgoing ends, with some extra care taken in the case that
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components of the boundary merge via Stein 1-handles so that all components
of the boundary have a single basepoint (see Lemma 3.5 below). In light of the
naturality results from the previous section, and the resulting independence of the
contact class of the choice of basepoint, we can safely omit basepoints from most
of the discussion and obtain a naturality result for the contact invariant which is
basepoint independent.

Proof. By [4, Theorem 1.3.3], the cobordism can be decomposed as a composition
of elementary cobordisms corresponding to Stein 0-, 1-, and 2-handle attachments,
with the latter two attached along framed points and Legendrian curves, respectively.
In this dimension, the subtleties involved with 2-handle framings were clarified
by [10]. Though we could avoid it with a more cumbersome inductive argument, we
can and will assume that the attachments are ordered by their indices, arising from a
self-indexing plurisubharmonic Morse function. For a smooth manifold, this follows
from the standard rearrangement theorem for Morse functions [23, Theorem 4.8].
The proof of that theorem, however, modifies the gradient-like vector field for the
Morse function so that the stable manifold of an index λ critical point is disjoint
from the unstable manifold of an index λ′

≥ λ critical point (achieving the Morse–
Smale condition for the manifolds associated to these critical points). In the Stein
setting, the gradient vector field and metric are coupled, and one cannot vary one
without changing the other. Rearranging critical levels is therefore more subtle.
These subtleties are nicely exposed, and dispatched with, in Chapter 10 of [1]. Of
particular relevance are Proposition 10.10 and 10.1. Proposition 10.10 allows one
to vary the critical values of the J-convex Morse function specifying the handle
decomposition, provided the stable and unstable manifolds of the points of interest
are disjoint, the Stein analogue of [23, Theorem 4.1]. Proposition 10.1 allows one to
vary an isotropic submanifold of a given contact type hypersurface by an isotropic
isotopy compatible with a family of J-convex Morse functions, the Stein analogue
of [23, Lemma 4.7]. Applying the latter to the attaching spheres of the Stein handles
allows us to assume, as in the classical case, that the stable manifold of an index λ

critical point is disjoint from the unstable manifold of an index λ′
≥ λ critical point.

Thus we can proceed by induction to order the handles and further ensure that all
critical points of a given index have the same critical value. The existence of such
an ordering for a 2-dimensional Stein domain (a Stein cobordism with Y1 = ∅) is
implicit in the statement of [10, Theorem 1.3], a result which itself is attributed as
implicit in Eliashberg [4].

We assume then, that the cobordism is decomposed as a sequence of elementary
0- and 1-handle cobordisms, followed by a cobordism associated to a collection
of Weinstein 2-handle attachments along Legendrian curves, equipped with a J-
convex Morse function with a unique critical value. We will show that the contact
invariant is mapped in the specified way under a single 0- or 1-handle attachment,
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and similarly for a simultaneous collection of Stein 2-handle attachments. The
result will then follow from the composition law for cobordism-induced maps on
Heegaard Floer homology:

FW †
1 ,t1

◦ FW †
2 ,t2

=

∑
{s∈Spinc(W ) | s|Wi =ti }

FW †,s.

Examining the law, one observes that naturality of the contact invariant for Stein
cobordisms W1 and W2 sharing a common intermediate boundary does not imply
either of the conclusions in the statement of the theorem for their union W = W1∪W2,
if Spinc structures on the latter are not uniquely determined by their restrictions to
W1 and W2. The following standard lemma makes this precise:

Lemma 3.4. Suppose W = W1 ∪Y W2 is a 4-manifold glued along a 3-manifold Y
arising as a connected component of ∂Wi (with boundary orientation of Y different
for i = 1, 2). Then the set of Spinc structures on W restricting to ti ∈ Spinc(Wi ),
provided it is nonempty, is in affine correspondence with δH 1(Y ), where δ is the
connecting homomorphism in the Mayer–Vietoris sequence.

In particular, if either Wi is a cobordism associated to a 0- or 1-handle attachment,
then a Spinc structure on W is uniquely determined by its restrictions to the pieces.
This is because 0- and 1-handle cobordisms have the property that the restriction
H 1(Wi ) → H 1(∂Wi ) is surjective, which implies δH 1(Y ) is trivial, by exactness.
Therefore, we can treat 0- and 1-handles individually. It is certainly possible,
however, that a Spinc structure on a 4-manifold composed of two or more 2-handle
cobordisms will not be determined by its restrictions to the pieces. It is therefore not
sufficient to prove the naturality of c(ξ) with respect to a single Stein 2-handle. For
this reason, we group the index 2 critical points giving rise to the 2-handles together
into a single critical level, and prove naturality for such a 2-handle cobordism.

We turn to our treatment of the handles in each dimension. The fact that the
contact invariant is natural under Stein 0-handle attachment follows immediately
from the definition of the associated map on Floer homology, which is simply
the map induced by the canonical isomorphism between Heegaard Floer chain
complexes under taking disjoint union with a Heegaard diagram whose surface is a
pointed 2-sphere with no curves [34, Section 11.1]. This definition, together with
the fact that the contact class of the Stein fillable contact structure on the 3-sphere
is nontrivial, yield, upon taking duals, the stated naturality.

The following lemma establishes naturality under Stein 1-handle cobordisms.

Lemma 3.5. Suppose (W, J ) is the cobordism associated to a Stein 1-handle
attachment. Then Theorem 3.1 is true for F†

W .

Proof. Unlike the case of a Stein domain, a Stein cobordism can have disconnected
boundary. Thus, there are two possibilities (1) the feet of the 1-handle lay in different
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components of Y1, the incoming boundary of W, or (2) the feet of the 1-handle
lay in the same component of Y1. In the former, we may assume without loss of
generality that there only two components of Y1, since Floer homology is manifestly
multiplicative under disjoint unions (i.e., groups and homomorphisms associated to
disjoint unions of 3-manifolds and cobordisms, respectively, are tensor products),
and product cobordisms map contact invariants naturally according to the previous
section.1 Similarly, for the second possibility, we may assume Y1 is connected.

Naturality for 1-handles that connect two components is a consequence of a
calculation for the graph cobordism map of the 1-handle cobordism, endowed with
a trivalent (strong ribbon) graph that merges the two basepoints in the incoming
components to a single basepoint in their outgoing connected sum. This calculation
is the content of [15, Proposition 5.2], which indicates that such a graph cobordism
induces a chain homotopy equivalence, and the complex associated to a connected
sum is therefore homotopy equivalent to the tensor product of the complexes
associated to the factors. This calculation reproved, in a functorial way, Ozsváth
and Szabó’s earlier connected sum formula [27, Theorem 6.2], under which the
contact invariant behaves multiplicatively for contact connected sums [12, product
formula]. The claimed naturality for Stein 1-handles is then immediate, provided
that Ozsváth and Szabó’s chain homotopy equivalence, used by the product formula
for the contact invariant, agrees, up to homotopy, with the map Zemke associates
to the 1-handle cobordism. But this is precisely the content of [35, Proposition 8.1].
Here, we should point out that the trivalent graph arises naturally from the Stein
structure, as the stable manifold of the index one critical point of φ with respect
to Xφ , union a flowline of Xφ from the critical point to the outgoing boundary.

The case of 1-handles with feet on the same component of the incoming boundary
is simpler and, in this case, follows from Ozsváth and Szabó’s definition of the
1-handle map [31, Section 4.3], together again with the fact that the contact invariant
is multiplicative under contact connected sums. In this case, the outgoing manifold
is contactomorphic to the connected sum (Y #(S1

× S2), ξ#ξstd), so it suffices to
show that the image of the dual of c(ξ) under Ozsváth and Szabó’s map induced
by the 1-handle agrees with the dual c(ξ#ξstd). But the 1-handle map sends c(ξ)∗

to c(ξ)∗ ⊗2+. Thus the problem is reduced to a single calculation, verifying that
the dual of the contact class of the standard contact structure on S1

× S2 satisfies
2+ = (c(S1

× S2, ξstd))∗ ∈ ĤF(S1
× S2). This calculation can be done in numerous

ways; see, e.g., [13, Proof of Proposition 5.19], for an explicit treatment. □

1Here, a product cobordism means a 4-manifold diffeomorphic to Y × I, through a diffeomorphism
induced by the flow of the Liouville vector field. Since the “holonomy” diffeomorphism from the
outgoing boundary to the incoming boundary [1, Definition 9.40] is a contactomorphism, the naturality
results of the previous section, together with [34, Theorem B.2], indicate the contact invariants are
mapped in the specified way.
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Next we turn to 2-handles. While the naturality statement needed here for Stein
2-handle cobordisms was stated by Ghiggini in [8, Lemma 2.11], the proof relied
on a naturality result for the cobordism map associated to a Lefschetz fibration
over an annulus, attributed to [29, Theorem 5.3]. The latter theorem applies only
to Lefschetz fibrations over the disk. The desired result can be derived from
Ozsváth and Szabó’s by a capping argument, together with the composition law for
cobordism induced maps on Floer homology. We spell this out explicitly.

Lemma 3.6 (cf. [29, Theorem 5.3]). Let π : W →[0, 1]×S1 be a relatively minimal
Lefschetz fibration over the annulus, viewed as a cobordism from Y1 to Y2, whose
fiber F has genus g > 1. Then there is a unique Spinc structure s over W for which

⟨c1(s), [F]⟩ = 2 − 2g

and the induced map

F+

W,s : HF+(Y1, s|Y1) → HF+(Y2, s|Y2)

is nontrivial. This is the canonical Spinc structure k, and its associated map is an
isomorphism.

Proof. Suppose that s ∈ Spinc(W ) is as in the statement of the lemma, and induces
a nontrivial map. We will show that s is the canonical Spinc structure k on W, and
the map is an isomorphism. By [29, Theorem 2.2] the fibration on Y2 extends to a
Lefschetz fibration on a 4-manifold W ′ over the disk π ′

: W ′
→ D2, whose fiber is

identified with F. Let V = W ∪Y2 W ′. Then V admits a Lefschetz fibration π ∪ π ′

over the disk.
The composition law for cobordism maps states that

F+

W ′−B4,k′
◦ F+

W,s =

∑
{t∈Spinc(W ) | t|W =s, t|W ′−B4=k′}

F+

V −B4,t
, (1)

where k′ is the canonical Spinc structure on W ′. By [29, Theorem 5.3], the map

F+

W ′−B4,k′
: HF+(Y2, k

′
|Y2) → HF+(S3)

is an isomorphism. Note that, according to [29, Theorem 5.2], there is a unique
Spinc structure on Y2 whose Chern class evaluates on the class [F] of the fiber
to 2 − 2g, and for which the Floer homology is nontrivial. It follows that if the
map F+

W,s is nontrivial, as we’ve assumed, then the composite F+

W ′−B4,k′
◦ F+

W,s is
also nontrivial, since the restrictions of s and k′ to Y2 must agree.

Now, since the Chern classes of the Spinc structures t′ and s evaluate to 2 − 2g
on the class of the fiber [F], the same is true for the Spinc structures considered
on V in the sum on the right-hand side of (1). Applying [29, Theorem 5.3] to the
Lefschetz fibration on V implies that there is a unique nontrivial contribution to
the sum, coming from the canonical Spinc structure kV on V, and F+

V −B4,kV
is an
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isomorphism. Since kV restricts to the canonical Spinc structure k on W, it follows
that s = k, and the corresponding map is an isomorphism. □

With this in hand, we modify the argument of [8, Lemma 2.11] to establish
naturality with respect to a collection of Stein 2-handles. This boils down to another
application of the composition law, together with a theorem of Eliashberg:

Lemma 3.7. Suppose (W, J ) is the cobordism associated to a collection of Stein
2-handle attachments. Then Theorem 3.1 is true for FW † .

Proof. As detailed above, we assume that all critical points of the plurisubharmonic
Morse function on W have the same critical value, or equivalently that (W, J ) is
constructed by attaching a Stein 2-handle along each component of a Legendrian
link L in (Y1, ξ1).

We may choose an open book decomposition adapted to ξ1 such that the Leg-
endrian link L sits naturally in a page. After positively stabilizing the open book
we may assume that the pages have connected boundary and are of genus greater
than one.

For i ∈ {1, 2} let Vi denote the trace cobordism from Yi to Y ′

i, the 3-manifold
obtained by performing zero surgery along the binding of the open book. Surgery
along L gives rise to the cobordism W from Y1 to Y2, and a cobordism W0 from
Y ′

1 to Y ′

2. Note that both Y ′

1 and Y ′

2 are fibered 3-manifolds with fiber F obtained
by capping off the boundary component of a page of the open book. W0 admits
a Lefschetz fibration over the annulus with fiber F.

Let X = W ∪ V2 ∼= V1 ∪ W0 denote the cobordism from Y1 to Y ′

2. Using
[5, Theorem 1.1] we may extend the symplectic structure induced by the Lefschetz
fibration on W0 over the 2-handle cobordism V1, giving a symplectic structure ω

on X. The restriction of ω to W agrees with the symplectic structure on W induced
by the Legendrian surgery along L; in particular, the canonical Spinc structure
kX ∈ Spinc(X) of ω restricts to the canonical Spinc-structure k of (W, J ).

Since V1 can be obtained from surgery along a homologically nontrivial curve
in Y ′

1, restriction induces an isomorphism H 2(X, Z) → H 2(W0, Z), so every Spinc-
structure on W0 admits a unique extension over X. In particular, the extension of
the canonical Spinc-structure k0 ∈ Spinc(W0) is kX . For i ∈ {1, 2}, let ti = k0|Y ′

i
.

Ozsváth and Szabó [30] characterize the contact invariant c+(ξi )∈HF+(−Yi , sξi )

as the image of a class c+(πi ) ∈ HF+(−Y ′

i , ti ) associated to the fibration under the
map F+

V †
i ,pi

where pi ∈ Spinc(Vi ) is the unique extension of ti . Let s ∈ Spinc(W ),

then

F+

W †,s
(c+(ξ2))= F+

W †,s
◦F+

V †
2
(c+(π2))=

∑
{sX ∈Spinc(X) | sX |W =s, sX |V2=p2}

F+

X†,sX
(c+(π2)),

where the last equality is given by the composition law for cobordism maps. Because
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every Spinc-structure on W0 admits a unique extension over X, another application
of the composition law shows that the above sum is equal to∑

{sX ∈Spinc(X) | sX |W =s, sX |V2=p2}

F+

V †
1 ,sX |V1

◦ F+

W †
0 ,sX |W0

(c+(π2)).

Note that ⟨c1(sX |W0), [F]⟩ = ⟨c1(t2), [F]⟩ = 2 − 2g. Lemma 3.6 implies that
there is at most one nonzero contribution to this sum, coming from a term where
sX |W0 is the canonical Spinc-structure k0, in which case sX = kX and s = k by the
preceding discussion. We have

F+

W †,s
(c+(ξ2)) =

F+

V †
1
◦ F+

W †
0 ,k0

(c+(π2)) for s = k,

0 otherwise.

Moreover, Lemma 3.6 also tells us that F+

W †
0 ,k0

is an isomorphism mapping c+(π2)

to c+(π1), thus

F+

W †,s
(c+(ξ2)) =

F+

V †
1
(c+(π1)) = c+(ξ1) for s = k,

0 otherwise.

This proves that the contact invariant in HF+ satisfies the naturality claimed by
Theorem 3.1 under the map induced by a Stein 2-handle cobordism. To establish
the result for the contact invariant in ĤF, recall that c+(ξ) is defined as the image
of c(ξ) under the inclusion-induced map ι∗ : ĤF → HF+, and that both invariants
can be characterized as the image of a particular class under the 2-handle cobordism
which caps the fiber of the open book. In the case of the plus invariant, this is the
distinguished class c+(π) associated to the fibration considered above, whereas
for the hat invariant we consider the element ĉ(π) mapping to c+(π) under ι∗.
The claimed naturality result for 2-handles now follows from naturality of ι∗ with
respect to the maps on Floer homology associated to cobordisms [31, Theorem 3.1,
Remark 3.2]; cf. [34, Theorem A]. □

Having established the claimed naturality result for a Stein 0- or 1-handle and
for a collection of Stein 2-handles, the theorem follows from the composition law
for cobordism maps. □

Remark 3.8. Echoing Remark 2.4, one could alternatively approach Theorem 3.1
using the Honda–Kazez–Matić interpretation of the contact invariant. Using their
Heegaard diagrams, the proof hinges on (a) showing that there exists a unique
pseudoholomorphic triangle contributing to F+

W †(c(ξ2)) whose domain is a union
of small triangles having corners at the components of a generator representing
c(ξ1) and (b) identifying the Spinc structure associated to this pseudoholomorphic
triangle with the canonical one.
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We conclude with the following immediate corollary of Theorem 3.1, which
generalizes the main result of [33]:

Corollary 3.9 (cf. [33, Theorem 2]). Let W be a smooth 4-manifold with boundary,
equipped with two Stein structures J1, J2 with associated Spinc structures s1, s2,
and let ξ1, ξ2 be the induced contact structures on Y, the outgoing boundary of W.
Suppose that the contact structure induced on the incoming boundary of W by J1 has
nonvanishing contact invariant. If the Spinc structures s1 and s2 are not isomorphic,
then the contact invariants c(ξ1), c(ξ2) are distinct elements of ĤF(−Y ).
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Dehn surgery and nonseparating two-spheres

Jennifer Hom and Tye Lidman

When can surgery on a nullhomologous knot K in a rational homology sphere
produce a nonseparating sphere? We use Heegaard Floer homology to give
sufficient conditions for K to be unknotted. We also discuss some applications to
homology cobordism, concordance, and Mazur manifolds.

1. Introduction

One of the most fundamental constructions in three-manifold topology is Dehn
surgery. By the theorems of Lickorish and Wallace, every closed, connected,
oriented three-manifold is obtained by surgery on a link in S3. Additionally,
4-dimensional 2-handle attachments induce a cobordism from a three-manifold
to the result of surgery. It is therefore a fundamental question to understand the
behavior of three-manifolds under Dehn surgery. In this note, we focus on surgery
on knots. Two main questions are geography (which three-manifolds are obtained
by surgery on a knot) and botany (which knots surger to a fixed three-manifold).

For example, Gabai’s “Property R theorem” [6] shows that only 0-surgery on
the unknot in S3 can produce S2

× S1. The proof passes through taut foliations,
and as a result, shows that 0-surgery on a nontrivial knot is not S2

× S1 and is
prime (i.e., the 0-surgery is irreducible), giving strong geography constraints. Note
that this implies that a four-manifold built with one 0-handle, one 1-handle, one
2-handle, and boundary S3 is necessarily diffeomorphic to B4. Similarly, Gordon
and Luecke’s celebrated “knot complement theorem” [10] answers the botany
problem for surgeries from S3 to S3: only the unknot admits nontrivial S3 surgeries.
This shows that a closed four-manifold with one 0-handle, one 2-handle, and one
4-handle is necessarily diffeomorphic to CP2.
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In this article, we study a more general question: when can surgery on a knot in
a three-manifold (other than S3) produce an S2

× S1 summand? In previous work
of Daemi, Lidman, Vela-Vick, and Wong [3], some constraints were given on the
geography problem. Here, we answer both the botany and geography problems in
several different settings. While many of the arguments below are standard, we
believe it is beneficial to the community for these results to be written down.

We begin with a generalization of Property R to arbitrary rational homology
spheres.

Theorem 1.1. Let Y be a rational homology sphere and K a nullhomologous knot
in Y. Suppose Y0(K ) = N#S2

× S1. If dim ĤF(N ) = dim ĤF(Y ), then N = Y and
K is unknotted. Otherwise, dim ĤF(N ) < dim ĤF(Y ).

Theorem 1.1 has a number of immediate applications.

Corollary 1.2. Let K be a nullhomotopic knot in a prime rational homology
sphere Y. If Y0(K ) contains a nonseparating two-sphere, then K is unknotted.

Proof. It is shown in [3, Theorem 1.8] that under these hypotheses, Y0(K ) =

Y #S2
× S1. By Theorem 1.1, K is unknotted. □

Corollary 1.3. Let Y be a rational homology sphere and let W : Y → Y be a
rational homology cobordism with a handlebody decomposition with a total of two
handles. Then, W is diffeomorphic to a product.

Proof. Since W is a rational homology cobordism, after possibly flipping W upside
down, W consists of a single 2-handle and a single 3-handle. Therefore, Y has a
surgery to Y #S2

× S1. The result now follows from Theorem 1.1. □

Remark 1.4. It seems reasonable to conjecture that a rational homology cobordism
from a 3-manifold to itself without 3-handles is homeomorphic to a product. It seems
more ambitious, but still feasible, to believe that such a cobordism is diffeomorphic
to a product.

Corollary 1.5. Suppose that W is an integral homology cobordism from a rational
homology sphere Y to a three-manifold Z consisting of a single 1-handle and a
single 2-handle. If dim HFred(Z) = 1, then W is diffeomorphic to a product.

Proof. By [3, Theorem 1.19], dim HFred(Y ) = 0 or 1. If dim HFred(Y ) = 1, then
dim ĤF(Y ) = dim ĤF(Z), since dim HFred = 1 implies dim ĤF = |H1| + 2 and
|H1(Y )|= |H1(Z)|. The result follows from Theorem 1.1 by applying the arguments
in Corollary 1.3. (The fact that W is an integral homology cobordism implies that the
relevant surgery is along a nullhomologous knot.) Next, suppose dim HFred(Y ) = 0.
By the Spinc-conjugation invariance of Heegaard Floer homology, we see that
dim HFred(Z , s) = 1 in a self-conjugate Spinc-structure s. As shown by F. Lin
in [15], this implies that his correction terms α, β, γ are not all equal for s. However,
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for an L-space, they are all equal. This is a contradiction, since α, β, γ are preserved
under integral homology cobordisms for each self-conjugate Spinc structure. □

Note that the Brieskorn spheres 6(2, 3, 7) and 6(2, 3, 11) satisfy dim HFred = 1.
Corollaries 1.3 and 1.5 can be seen as “manifold versions” of the following

special case of a theorem of Gabai [7, Theorem 1]: a self-ribbon concordance with
one minimum and one saddle is trivial. (This was explained to us by Maggie Miller.)
In fact, one can recover a slight variant of this result using Theorem 1.1.

Corollary 1.6. Let K be a nullhomologous knot in a rational homology sphere Y.
Perform a band-sum with an unknot and denote the resulting knot by K ′. Suppose
K ′ is detected by its complement, which we additionally assume is irreducible and
boundary irreducible. If CFK∞(K ) ∼= CFK∞(K ′), then K ′ is isotopic to K and the
exterior of the resulting concordance is smoothly the trivial cobordism.

Note that if Y = S3 and K is nontrivial, then the hypotheses apply for any K ′

by [8; 10]. For notation, we will write E(X) to denote the exterior of the submani-
fold X. (The ambient manifold will be clear from context.)

Proof. Let C : (Y, K ) → (Y, K ′) be the ribbon concordance in Y × I given by a
single birth and saddle specified by the band-sum. Since K ′ is determined by its
complement, it suffices to show that E(C) is smoothly E(K ) × I.

Note that E(C) is an integer homology cobordism from E(K ) to E(K ′) which
consists of a single 1-handle and 2-handle addition. Reversing orientation and
flipping upside-down, we see that there exists a knot J knot in E(K ′) with an
E(K )#S2

× S1 surgery. Since K and K ′ are nullhomologous, we see that J is
necessarily nullhomologous in E(K ′). Note that if we can show that J is trivial,
then E(C) = E(K ) × I and we are done.

Write J (n) for the induced knot in Yn(K ′). Then, 0-surgery on J (n) results in
Yn(K )#S2

× S1. Since CFK∞(K ) ∼= CFK∞(K ′), the large surgery formula of
Ozsváth and Szabó [19, Theorem 4.4] implies dim ĤF(Yn(K )) = dim ĤF(Yn(K ′))

for large n. Therefore, by Theorem 1.1, J (n) is unknotted in Yn(K ′) for large n.
Since Yn(K ′) is not S3 for large n, it follows that E(J (n)) = D2

× S1#Yn(K ′) is a
reducible manifold for all large n.

In other words, E(K ′
∪ J ) has infinitely many reducible fillings. However, an irre-

ducible, boundary-irreducible three-manifold with only toral boundary components
has at most finitely many reducing fillings along a given boundary component (see,
for example, [9]). Therefore, E(K ′

∪ J ) is either boundary reducible or reducible.
Since K ′ is nontrivial, if E(K ′

∪ J ) is boundary reducible, then the toral boundary
component coming from J must be the one that compresses, and we see that J
must be unknotted in the exterior of K ′ completing the proof. On the other hand, if
E(K ′

∪ J ) is reducible, then J must be contained in an embedded three-ball. In
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this case, E(K ′)0(J ) = E(K ′)#S3
0(J ) and hence J is unknotted in the embedded

three-ball. Again, J is trivial in E(K ′) and we are done. □

Recently, Conway and Tosun [2] showed that the boundary of a nontrivial Mazur
manifold is not an L-space. Ni has pointed out that an alternate proof follows
from [17]. We now show how Theorem 1.1 gives another alternate proof of this fact.
(Lidman and Pinzón-Caicedo have also proved the analogous result in instanton
Floer homology.)

Corollary 1.7 [2, Theorem 1]. Let Y ̸= S3 be a homology sphere bounding a Mazur
manifold. Then Y is not an L-space.

Proof. Suppose that Y is an L-space homology sphere which bounds a Mazur
manifold. Then, there exists a knot K in Y such that Y0(K ) = S2

× S1. Since
dim ĤF(Y ) = dim ĤF(S3), Theorem 1.1 implies that K is unknotted. Therefore,
Y0(K ) = Y #S2

× S1, and we see that Y = S3. □

We also present a symplectic analogue of Corollary 1.3. This was explained to
the authors by Steven Sivek.

Corollary 1.8. Let Y be a rational homology sphere. Let W be a Stein cobordism
from (Y, ξ) to (Y, ξ ′) comprised of attaching single Weinstein 1- and 2-handles. If
ξ ′ is tight, then W is deformation equivalent to the (compact) symplectization of
(Y, ξ) and hence ξ and ξ ′ are contactomorphic contact structures.

Proof. Consider the (tb−1)-framed 2-handle attachment to a Legendrian K in
(Y #S2

× S1, ξ#ξstd) which results in (Y, ξ ′). By reversing this picture, we see there
is a Legendrian knot K′ in (Y, ξ ′) with a contact +1-surgery to (Y #S2

× S1, ξ#ξstd)

by [4, Proposition 8]. Note that K′ must be nullhomologous and the framing of the
surgery must be the Seifert framing in order to add a Z-summand to H1. Now, by
Theorem 1.1, K′ is unknotted topologically. Since +1-contact surgery means that
the topological framing is one more than tb, we see that tb = −1. Because ξ ′ is
tight, this implies r = 0 by [5, Theorem 1.6], and all such Legendrian unknots are
Legendrian isotopic by [5, Theorem 1.5].

This implies that all Stein cobordisms from (Y, ξ ′′) to (Y, ξ ′) built out of single
Weinstein 1- and 2-handles are equivalent, regardless of ξ ′′. However, we can
produce such a cobordism by using a cancelling Weinstein 1- and 2-handle pair,
i.e., the trivial cobordism. □

Finally, we give a new obstruction to a homology sphere admitting an S2
× S1

surgery (and hence bounding a Mazur manifold).

Proposition 1.9. Let K be a knot in a homology sphere Y with HFred,i (Y ) = F for
some i . Then Y0(K ) ̸= S2

× S1.
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Remark 1.10. It is easy to see that if a nullhomologous knot in a rational homology
sphere admits a 0-surgery with an S2

× S1 summand, then its Alexander polynomial
is trivial (i.e., constant). We leave it as a fun exercise for the reader to deduce this
fact using Heegaard Floer homology after reading the arguments in this paper.

Organization. The key idea in the proof of Theorem 1.1 comes from the special
property of the twisted Heegaard Floer homology of three-manifolds with nonsepa-
rating S2’s. (This has been used in [16] and [17]; see also [11], [12], and [1].) In
the next section, we review the mapping cone formula in Heegaard Floer homology,
with extra attention to twisted coefficients, and prove Theorem 1.1. Lastly, we
prove Proposition 1.9.

2. The mapping cone

We assume that the reader is familiar with the knot Floer chain complex of a
knot CFK∞, and the mapping cone formula for the Heegaard Floer homology
of 0-surgery along a nullhomologous knot K in a rational homology sphere Y
[22, Section 4.8]. We briefly recall the formula here, primarily to establish no-
tation. Let t denote a Spinc structure on Y. As a vector space, we have that
C = C F K ∞(Y, K , t) decomposes as a direct sum C =

⊕
i, j∈Z C(i, j). For any

set X ⊂ Z2 which is convex with respect to the product partial order on Z2 (i.e.,
if a < b < c and a, c ∈ X, then b ∈ X ), let C X denote

⊕
(i, j)∈X C(i, j) which is

naturally a subquotient complex of C .
Let B+

s (respectively, B̂s) denote C{i ≥ 0} (respectively, C{i = 0}), and A+
s

(respectively, Âs) denote C{max(i, j − s) ≥ 0} (respectively C{max(i, j − s) = 0}).
Recall the maps v+

s , h+
s : A+

s → B+ and v̂s, ĥs : Âs → B̂. The main fact that we
will need is that v̂s factors through v̂s′ for s ′

≥ s.
Let F̂ ⊂ Y0(K ) denote the surface obtained by capping off an oriented Seifert

surface F for K. As usual, we let ts denote the Spinc structure on Y0(K ) which
satisfies ⟨c1(ts), [F̂]⟩ = 2s and such that ts extends t over the 0-framed 2-handle
cobordism from Y to Y0(K ). In what follows, let ◦ denote either + or .̂

Theorem 2.1 ([20, Theorem 9.19]; see also [22, Section 4.8]). Let Y be a rational
homology sphere and K ⊂ Y a nullhomologous knot. With notation as above,

HF◦(Y0(K ), ts) ∼= H∗(Cone(v◦

s + h◦

s )).

There is a version of Theorem 2.1 with twisted coefficients, as in [20, Section 8];
see also [13, Section 2] and [14, Section 2]. Let T be a generator of H 1(Y0(K ); Z).
Consider the map

v◦

s + T h◦

s : A◦

s ⊗F F[T, T −1
] → B◦

s ⊗F F[T, T −1
].

We have the following mapping cone formula with twisted coefficients. We write
HF◦(Y0(K ), ts; F[T, T −1

]) to denote the Heegaard Floer homology with totally
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twisted coefficients. We will also write HF◦(Y0(K ), ts; F[[T, T −1
]) to be the ho-

mology of the chain complex obtained by tensoring the twisted Heegaard Floer
chain complex C F◦(Y0(K ), ts; F[T, T −1

]) with F[[T, T −1
] over F[T, T −1

].

Theorem 2.2 ([20, Theorem 9.23]; see also [14, Theorem 2.3]). Let Y be a rational
homology sphere and K ⊂ Y a nullhomologous knot. With notation as above,

HF◦(Y0(K ), ts; F[T, T −1
]) ∼= H∗(Cone(v◦

s + T h◦

s )).

We will be interested in the following consequence of the preceding theorem.

Corollary 2.3. Let Y be a rational homology sphere and K ⊂ Y nullhomologous.
Then HF◦(Y0(K ), ts; F[[T, T −1

]) is isomorphic to the homology of the cone of

v◦

s + T h◦

s : A◦

s ⊗F F[[T, T −1
] → B◦

s ⊗F F[[T, T −1
].

Proof. The result follows from Theorem 2.2 and the fact that F[[T, T −1
] is flat over

F[T, T −1
]. □

We recall one key property of the Heegaard Floer homology of three-manifolds
with nonseparating two-spheres. If M is a three-manifold which contains a nonsep-
arating two-sphere S, then HF◦(M; F[[T, T −1

]) = 0, where T denotes a generator
of H 1 of the S2

× S1 summand [16, Lemma 2.1]. Further, if s is a Spinc structure
on M such that ⟨c1(s), [S]⟩ = 0, then HF◦(M, s) ̸= 0 [20, Theorem 1.4]. With this,
we analyze the mapping cone formula for knots which surger to three-manifolds
with nonseparating two-spheres.

Proposition 2.4. Let Y be a rational homology sphere and K ⊂Y a nullhomologous
knot. Suppose that Y0(K ) = N#S2

× S1. Let ◦ = + or ̂ . Then v◦
s,∗ + h◦

s,∗ :

H∗(A◦
s ) → HF◦(Y, t) is an isomorphism for all s ̸= 0. Further, v◦

s,∗ + T h◦
s,∗ :

H∗(A◦
s ) ⊗F F[[T, T −1

] → HF◦(Y, t) ⊗F F[[T, T −1
] is an isomorphism for all s. In

particular, dim H∗( Âs) = dim ĤF(Y, t) for all s.

Proof. The first claim follows from Theorem 2.1 and that Y0(K ) contains a nonsep-
arating two-sphere.

Now, for the second claim, fix t in Spinc(Y ). Since Y0(K ) = N#S2
× S1, we

have that HF+(Y0(K ), ts; F[[T, T −1
]) = 0. By Corollary 2.3, we have that

HF+(Y0(K ), ts; F[[T, T −1
]) ∼= H∗(Cone(v+

s + T h+

s ) ⊗F[T,T −1] F[[T, T −1
]).

Hence,

(v+

s + T h+

s )∗ : H∗(A+

s ⊗F F[[T, T −1
]) → H∗(B+

s ⊗F F[[T, T −1
])

is an isomorphism of F[[T, T −1
]-modules. The analogous result for the hat flavor

follows immediately. □
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Proof of Theorem 1.1. As before, fix t in Spinc(Y ). Let t′ denote the Spinc

structure on N which is cobordant to t under the homology cobordism from Y
to N obtained by attaching a 3-handle to the trace of 0-surgery on K. Suppose that
dimF ĤF(Y, t) ≤ dimF ĤF(N , t′). We will show that equality holds and that K is
the unknot. We have

2 dimF ĤF(N , t′) = dimF(ĤF(N#S2
× S1, t′#s0)

= dimF(H∗(Cone(̂v0 + ĥ0))

= dimF H∗( Â0) + dimF ĤF(Y, t) − 2 rk(̂v0,∗ + ĥ0,∗)

= 2 dimF ĤF(Y, t) − 2 rk(̂v0,∗ + ĥ0,∗)

≤ 2 dimF ĤF(N , t′) − 2 rk(̂v0,∗ + ĥ0,∗),

where the first equality follows from the Künneth formula, the second follows from
Theorem 2.2, the third follows from rank-nullity (and the fact that we are working
over a field), the fourth follows from Proposition 2.4, and the final inequality follows
by hypothesis. Hence, we see that v̂0,∗ = ĥ0,∗. Therefore,

(1 + T )̂v0,∗ : H∗( Â0 ⊗F F[[T, T −1
]) → H∗(B̂0 ⊗F F[[T, T −1

])

is an isomorphism. This implies that v̂0,∗ is an isomorphism.
We now consider the case s > 0. As mentioned above, v̂0,∗ factors through v̂s,∗.

In particular, since v̂0,∗ is an isomorphism, we have that v̂s,∗ is surjective. By
Proposition 2.4, dim H∗( Âs) = dim ĤF(Y, t), and therefore v̂s,∗ is an isomorphism.
Since v̂s,∗ is an isomorphism if and only if v+

s,∗ is an isomorphism, it follows from
[18, Theorem 1.2] (which holds for nullhomologous knots in arbitrary rational
homology spheres) and [23, Proof of Lemma 8.1] that

g(K ) = min{s | v̂i,∗ is an isomorphism for all i ≥ s, t ∈ Spinc(Y )} ≤ 0,

which gives the desired result. □

Proof of Proposition 1.9. This is very similar to the proof of Theorem 1.1. After a
possible orientation reversal, we may assume that HFred,i (Y ) = F and i is odd. By
Proposition 2.4, Hi (A+

0 ) = F, and

v+

0,∗ + T h+

0,∗ : Hi (A+

0 ) ⊗F F[[T, T −1
] → Hi (B+

0 ) ⊗F F[[T, T −1
]

is an isomorphism. (Here, we are using the fact that v+

0 and h+

0 are homogeneous
of the same grading shift. This is not true for s ̸= 0.) Restricted to this grading,
this latter map can be written as v+

0 + T h+

0 : F[[T, T −1
] → F[[T, T −1

]. It follows
that either v+

0 or h+

0 must be nonzero as a map from Hi (A+

0 ) = F to Hi (B+

0 ) = F.
By conjugation invariance [21, Theorem 3.6], we have that v+

0 is nonzero if and
only if h+

0 is nonzero, and so they must be equal. Therefore, v+

0,∗ = h+

0,∗ as maps
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from Hi (A+

0 ) to Hi (B+

0 ), and we see that the kernel of v+

0,∗ + h+

0,∗ contains an F in
grading i , which is odd.

Consider the homology of the cone of v+

0,∗ + h+

0,∗ : H∗(A+

0 ) → H∗(B+

0 ). This
has two towers: one from the kernel of v+

0,∗ + h+

0,∗ and one from the cokernel. We
also know there is an additional generator in the kernel of v+

0,∗ + h+

0,∗ in degree i ;
this is in opposite parity of the tower found in this kernel. Consider the long exact
sequence associated to a mapping cone

· · · HF+(S2
× S1) → H∗(A+

0 ) → H∗(B+

0 ) → · · · .

A nontrivial element of the kernel of v+

0,∗ + h+

0,∗ in degree i would have to be in the
image of U n for all n, but that is ruled out by the parity of the grading. Hence, we
have a contradiction. □

Acknowledgements

The authors thank Maggie Miller for helpful conversations and Steven Sivek for
describing the proof of Corollary 1.8. They also thank Matt Hedden and Yi Ni for
helpful comments on an earlier draft of this paper. Finally, they thank the referee
for their helpful feedback.

References

[1] A. Alishahi and R. Lipshitz, “Bordered Floer homology and incompressible surfaces”, Ann. Inst.
Fourier (Grenoble) 69:4 (2019), 1525–1573. MR Zbl

[2] J. Conway and B. Tosun, “Mazur-type manifolds with L-space boundary”, Math. Res. Lett. 27:1
(2020), 35–42. MR

[3] A. Daemi, T. Lidman, D. S. Vela-Vick, and C. M. M. Wong, “Ribbon homology cobordisms”,
preprint, 2019. arXiv 1904.09721

[4] F. Ding and H. Geiges, “Symplectic fillability of tight contact structures on torus bundles”,
Algebr. Geom. Topol. 1 (2001), 153–172. MR

[5] Y. Eliashberg and M. Fraser, “Topologically trivial Legendrian knots”, J. Symplectic Geom. 7:2
(2009), 77–127. MR Zbl

[6] D. Gabai, “Foliations and the topology of 3-manifolds, III”, J. Differential Geom. 26:3 (1987),
479–536. MR Zbl

[7] D. Gabai, “Genus is superadditive under band connected sum”, Topology 26:2 (1987), 209–210.
MR Zbl

[8] C. M. Gordon, “Ribbon concordance of knots in the 3-sphere”, Math. Ann. 257:2 (1981),
157–170. MR Zbl

[9] C. M. Gordon, “Dehn filling: a survey”, pp. 129–144 in Knot theory ((Warsaw, 1995)), Banach
Center Publ. 42, Polish Acad. Sci. Inst. Math., Warsaw, 1998. MR Zbl

[10] C. M. Gordon and J. Luecke, “Knots are determined by their complements”, J. Amer. Math. Soc.
2:2 (1989), 371–415. MR Zbl

[11] M. Hedden and Y. Ni, “Manifolds with small Heegaard Floer ranks”, Geom. Topol. 14:3 (2010),
1479–1501. MR Zbl

http://dx.doi.org/10.5802/aif.3276
http://msp.org/idx/mr/4010864
http://msp.org/idx/zbl/1427.57008
http://msp.org/idx/mr/4088806
http://dx.doi.org/10.48550/ARXIV.1904.09721
http://msp.org/idx/arx/1904.09721
http://dx.doi.org/10.2140/agt.2001.1.153
http://msp.org/idx/mr/1823497
http://dx.doi.org/10.4310/JSG.2009.v7.n2.a4
http://msp.org/idx/mr/2496415
http://msp.org/idx/zbl/1179.57040
http://projecteuclid.org/euclid.jdg/1214441488
http://msp.org/idx/mr/910018
http://msp.org/idx/zbl/0639.57008
http://dx.doi.org/10.1016/0040-9383(87)90061-9
http://msp.org/idx/mr/895573
http://msp.org/idx/zbl/0621.57004
http://dx.doi.org/10.1007/BF01458281
http://msp.org/idx/mr/634459
http://msp.org/idx/zbl/0451.57001
http://msp.org/idx/mr/1634453
http://msp.org/idx/zbl/0916.57016
http://dx.doi.org/10.2307/1990979
http://msp.org/idx/mr/965210
http://msp.org/idx/zbl/0672.57009
http://dx.doi.org/10.2140/gt.2010.14.1479
http://msp.org/idx/mr/2653731
http://msp.org/idx/zbl/1206.57014


DEHN SURGERY AND NONSEPARATING TWO-SPHERES 153

[12] M. Hedden and Y. Ni, “Khovanov module and the detection of unlinks”, Geom. Topol. 17:5
(2013), 3027–3076. MR Zbl

[13] S. Jabuka and T. E. Mark, “Product formulae for Ozsváth–Szabó 4-manifold invariants”, Geom.
Topol. 12:3 (2008), 1557–1651. MR Zbl

[14] A. S. Levine and D. Ruberman, “Heegaard Floer invariants in codimension one”, Trans. Amer.
Math. Soc. 371:5 (2019), 3049–3081. MR Zbl

[15] F. Lin, “Indefinite Stein fillings and PIN(2)-monopole Floer homology”, Selecta Math. (N.S.)
26:2 (2020), art. id. 18. MR Zbl

[16] Y. Ni, “Heegaard Floer homology and fibred 3-manifolds”, Amer. J. Math. 131:4 (2009), 1047–
1063. MR Zbl

[17] Y. Ni, “Nonseparating spheres and twisted Heegaard Floer homology”, Algebr. Geom. Topol.
13:2 (2013), 1143–1159. MR Zbl

[18] P. Ozsváth and Z. Szabó, “Holomorphic disks and genus bounds”, Geom. Topol. 8 (2004),
311–334. MR

[19] P. Ozsváth and Z. Szabó, “Holomorphic disks and knot invariants”, Adv. Math. 186:1 (2004),
58–116. MR

[20] P. Ozsváth and Z. Szabó, “Holomorphic disks and three-manifold invariants: properties and
applications”, Ann. of Math. (2) 159:3 (2004), 1159–1245. MR

[21] P. Ozsváth and Z. Szabó, “Holomorphic triangles and invariants for smooth four-manifolds”,
Adv. Math. 202:2 (2006), 326–400. MR

[22] P. S. Ozsváth and Z. Szabó, “Knot Floer homology and integer surgeries”, Algebr. Geom. Topol.
8:1 (2008), 101–153. MR

[23] P. S. Ozsváth and Z. Szabó, “Knot Floer homology and rational surgeries”, Algebr. Geom. Topol.
11:1 (2011), 1–68. MR

Received 4 Nov 2020. Revised 23 Mar 2021.

JENNIFER HOM: hom@math.gatech.edu
School of Mathematics, Georgia Institute of Technology, Atlanta, GA, United States

TYE LIDMAN: tlid@math.ncsu.edu
Department of Mathematics, North Carolina State University, Raleigh, NC, United States

msp

http://dx.doi.org/10.2140/gt.2013.17.3027
http://msp.org/idx/mr/3190305
http://msp.org/idx/zbl/1277.57012
http://dx.doi.org/10.2140/gt.2008.12.1557
http://msp.org/idx/mr/2421135
http://msp.org/idx/zbl/1156.57026
http://dx.doi.org/10.1090/tran/7345
http://msp.org/idx/mr/3896105
http://msp.org/idx/zbl/1415.57022
http://dx.doi.org/10.1007/s00029-020-0547-y
http://msp.org/idx/mr/4069854
http://msp.org/idx/zbl/1441.57020
http://dx.doi.org/10.1353/ajm.0.0064
http://msp.org/idx/mr/2543922
http://msp.org/idx/zbl/1184.57026
http://dx.doi.org/10.2140/agt.2013.13.1143
http://msp.org/idx/mr/3044606
http://msp.org/idx/zbl/1352.57022
http://dx.doi.org/10.2140/gt.2004.8.311
http://msp.org/idx/mr/2023281
http://dx.doi.org/10.1016/j.aim.2003.05.001
http://msp.org/idx/mr/2065507
http://dx.doi.org/10.4007/annals.2004.159.1159
http://dx.doi.org/10.4007/annals.2004.159.1159
http://msp.org/idx/mr/2113020
http://dx.doi.org/10.1016/j.aim.2005.03.014
http://msp.org/idx/mr/2222356
http://dx.doi.org/10.2140/agt.2008.8.101
http://msp.org/idx/mr/2377279
http://dx.doi.org/10.2140/agt.2011.11.1
http://msp.org/idx/mr/2764036
mailto:hom@math.gatech.edu
mailto:tlid@math.ncsu.edu
http://msp.org




THE OPEN BOOK SERIES 5 (2022)

Gauge theory and low-dimensional topology: progress and interaction
https://doi.org/10.2140/obs.2022.5.155

msp

Broken Lefschetz fibrations, branched coverings,
and braided surfaces

Mark C. Hughes

We discuss an important class of fibrations on smooth 4-manifolds, called bro-
ken Lefschetz fibrations. We outline their connection to symplectic and near-
symplectic structures, describe their topology, and discuss several approaches to
their construction. We focus on new techniques involving branched coverings
and braided surfaces with folds, and provide explicit examples of fibrations
constructed using these approaches.

1. Fibrations on 4-manifolds

Fibrations on smooth manifolds have played an important role in the development
of low-dimensional topology. These fibrations show up naturally from the viewpoint
of algebraic geometry, but have broad generalizations that extend outside of their
algebrogeometric origins. They provide very useful topological frameworks to study
geometric objects, like contact, symplectic, and Stein manifolds. Furthermore, they
can be used to describe 3- and 4-dimensional manifolds in terms of diffeomorphism
groups of surfaces, a viewpoint which can be especially fruitful.

In this paper we discuss Lefschetz fibrations and broken Lefschetz fibrations, and
survey the main results on these structures. After defining them and describing their
connection to symplectic and near-symplectic structures, we will outline several
important constructions and provide examples. These examples focus on explicit
constructions using branched coverings and braided surfaces. Although these
techniques can often be used to construct explicit broken Lefschetz fibrations on 4-
manifolds directly from a given handle decomposition, they rely on the construction
of a certain branched covering with orientable branch locus and prescribed boundary,
which cannot always be achieved.
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This first section contains definitions of the various fibration structures that we
will be concerned with on 3- and 4-manifolds, as well as descriptions of their
topology.

1A. Singular fibrations on 4-manifolds. Let X be a smooth, compact, connected,
oriented 4-manifold, 6 be a compact surface, and let f : X → 6 be a smooth
map. A critical point p of f is called a positive Lefschetz critical point if there are
orientation-preserving local complex coordinates about p on which f : C2

→ C

is modeled as f (u, v) = u2
+ v2. If the coordinates around the critical point are

instead orientation-reversing, then it is called a negative Lefschetz critical point.
We will often omit the adjective positive, and refer to a positive Lefschetz critical
point simply as a Lefschetz critical point.

An embedded circle C ⊂ X of critical points of f is called an indefinite fold
singularity if f is modeled near points of C by the map

(θ, x, y, z) 7→ (θ, x2
+ y2

− z2)

from R × R3
→ R × R, where C is given locally by x = y = z = 0. Indefinite fold

singularities are sometimes referred to as round 1-handle singularities or broken
singularities in the literature.

A surjective map f : X → 6 is called a Lefschetz fibration if all critical points
of f are in the interior of X and are positive Lefschetz critical points. It is called
an achiral Lefschetz fibration if we also allow negative Lefschetz critical points.
Finally, we add the adjective broken to either of these names to indicate that we also
allow indefinite fold singularities in the set of critical points of f . When discussing
these maps we will sometimes use the generic term fibration to describe a map
which can be any of the types defined above.

1B. Boundary behavior of fibrations. Let M be a 3-dimensional closed smooth
oriented manifold. An open book decomposition on M is a smooth map λ : M → D2

such that λ−1(∂ D2) is a compact 3-dimensional submanifold on which λ restricts
as a surface bundle over S1

= ∂ D2. Furthermore, we require that the closure
of λ−1(int D2) be the disjoint union of solid tori, on which λ is the projection
D2

× S1
→ D2. We say that λ−1(0) is the binding of the open book on M, and for

any p ∈ S1 the compact surface 6p = λ−1({αp | 0 ≤ α ≤ 1}) is the page over p.
The surface bundle structure on λ−1(∂ D2) induces a monodromy map on the pages
of λ.

By a celebrated theorem of Giroux [19], open book decompositions on a closed
3-manifold M (up to a stabilization operation) are in one-to-one correspondence
with contact structures on M (up to isotopy). Thus open book decompositions
provide a useful topological setting in which to study contact structures on a given
closed 3-manifold.
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Now suppose that X is a smooth 4-manifold and 6 is a compact surface, that
∂ X ̸= ∅ is connected, and that f : X → 6 is a fibration. Then we say that f is
convex, if

• 6 = D2,

• f (∂ X) = D2, and

• f |∂ X : ∂ X → D2 is an open book decomposition on ∂ X.

We say that f is concave if there is a disk D ⊂ int 6 such that

• f (∂ X) = D, and

• f |∂ X : ∂ X → D is an open book decomposition on ∂ X.

Finally, f is said to be flat if

• f (∂ X) = ∂6, and

• f |∂ X : ∂ X → ∂6 is a nonsingular fiber bundle.

The fibers of a flat fibration are all closed surfaces, and the boundary ∂ X consists
of the fibers above ∂6. The fibers of a convex fibration all have boundary, and ∂ X
is comprised of the fibers above ∂6 = ∂ D2, along with the boundaries of the fibers
above int D2. In contrast, concave fibrations will have both closed fibers and fibers
with boundary. Indeed, the fibers above int D ⊂ 6 will have boundary, while all
other fibers will be closed.

Suppose now that f1 : X1 → 6 is a concave fibration, f2 : X2 → D2 is a convex
fibration, and that there is an orientation-reversing diffeomorphism φ : ∂ X1 → ∂ X2

which respects the open book decompositions. Then f1 and f2 can be glued
together, to give a fibration f : X1 ∪φ X2 → 6. This gives a very useful method
for constructing fibrations on closed 4-manifolds. Indeed, one effective strategy is
to divide the closed manifold X into simpler pieces X1 and X2, on which convex
and concave fibrations can be constructed. In general these maps will induce
different open book decompositions along their common boundary. If, however,
these fibrations can be modified so that they agree along ∂ X1 = ∂ X2, then they can
be glued to give a fibration on all of X. See [1; 17; 18] for approaches to matching
these boundary fibrations which make use of Giroux’s theorem and Eliashberg’s
classification of overtwisted contact structures.

1C. Monodromy around Lefschetz critical points. The regular fibers of a flat
or convex (achiral) Lefschetz fibration f : X → 6 will all be surfaces of the
same diffeomorphism type, which we call the genus of f . Lefschetz fibrations of
genus g ≥ 2 can be determined entirely by their monodromy representations. Let
6∗

⊂ 6 denote the set of regular values of f , and let p ∈ 6\6∗ be a critical value.
If γ ⊂ 6∗ is an oriented loop based at q ∈ 6∗ which travels counterclockwise
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Figure 1. Vanishing cycle of Lefschetz critical point.

around p and no other critical values, then a trivialization of the bundle f −1(γ )

over γ induces a diffeomorphism of the fiber Fq above q . This diffeomorphism will
be a positive (negative) Dehn twist if p corresponds to a positive Lefschetz critical
point (respectively, negative Lefschetz critical point). The cycle along which this
Dehn twist takes place is called the vanishing cycle associated to the critical point.
As we approach the critical fiber Fp, the corresponding vanishing cycles in nearby
regular fibers shrink down to a single transverse intersection in Fp (see Figure 1
where the vanishing cycle is denoted with a dashed line).

The monodromy of a regular fiber provides a useful way to describe Lefschetz
fibrations. More precisely, suppose that f : X → 6 is a Lefschetz fibration that has
m critical points and that f is injective on the set of critical points. Suppose further
that 6 is either S2 or D2, and hence 6∗ is an m-times punctured sphere or disk. Fix a
basepoint q ∈6∗, and a collection of oriented simple closed curves γ1, . . . , γm based
at q, which are disjoint away from q, where γ j travels counterclockwise around
the j-th puncture of 6∗ and no other punctures. Note that the loops γ1, . . . , γm

then generate π1(6
∗
; q), and that we can order them so that the product γ1 · · · γm

is null-homotopic when 6 = S2, and homotopic to ∂6 when 6 = D2. Finally, let
Fq = f −1(q) be the fiber above q ∈ 6∗, and let M(Fq) denote the mapping class
group of Fq (i.e., the group of orientation-preserving diffeomorphisms of Fq fixing
the boundary pointwise, mod isotopy rel boundary).

Then to each loop γ j we can associate an element ϕ j ∈ M(Fq), which is
represented by a positive Dehn twist along the corresponding vanishing cycle. In the
case when 6 = S2 these elements must additionally satisfy ϕ1ϕ2 · · · ϕm =1∈M(Fq),
since the product of the loops γ1, . . . , γm is trivial in π1(6

∗
; q). The fibration f

then determines a homomorphism 3 : π1(6
∗
; q) →M(Fq), called the monodromy

representation of f . Note that 3 is only determined by f up to conjugation by a
fixed element in M(Fq) along with changes in the set of the generating loops γ j .
Conversely, given a set of generating loops γ1, . . . , γm as above, and a collection of
positive Dehn twists τ1, . . . , τm ∈ M(Fq), we can construct a Lefschetz fibration
f : X → 6 whose monodromy representation satisfies 3(γ j ) = τ j for each j (in
the case when 6 = S2 we must additionally require that τ1 · · · τm = 1 ∈ M(Fq)).
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qp

C ′

Figure 2. Passing an indefinite fold singularity.

Thus problems involving Lefschetz fibrations can be reformulated and successfully
studied in terms of factorizations of mapping class group elements.

This monodromy description of a Lefschetz fibration on X can be adapted
further to encode information about embedded surfaces in X. By selecting points
s1, . . . , sk ∈ Fq , we can instead consider the group M(Fq; {s1, . . . , sk}) of isotopy
classes of orientation-preserving diffeomorphisms of Fq which fix the boundary
pointwise and preserve {s1, . . . , sk} setwise. If we think of our monodromy represen-
tation as taking values in M(Fq; {s1, . . . , sk}), the trace of the marked points under
the monodromy can be completed to an embedded surface in X, called a multisection
of the fibration. See Baykur and Hayano’s work in [7] or [8] for more details.

1D. The topology of broken Lefschetz fibrations. Suppose now that f : X → 6

is a broken fibration, with indefinite fold singularity along an embedded circle C .
Suppose that C ′

⊂ 6 is the image of C under f , and that C ′ is embedded. Let
p and q be nearby regular points sitting on opposite sides of C ′. Suppose for
concreteness that p = (θ, −1) and q = (θ, 1) for some θ ∈ S1 in the coordinate
charts described above. Then the fiber Fq above q can be obtained from Fp by
0-surgery along a pair of points in Fp. Equivalently, Fp can be obtained from Fq by
1-surgery along a simple closed curve (see Figure 2). Indeed, we can think of the
coordinate charts describing the indefinite fold singularity as defining an S1-family
of local Morse functions, each with a single index 1 critical point. In particular, for
a broken fibration with connected fiber, the genus of the fiber changes by ±1 each
time we cross the image of an indefinite fold singularity in 6.

Now suppose that f : X → D2 is a Lefschetz fibration, possibly achiral, possibly
broken. Let K be a framed knot in f −1(∂ D2) ⊂ ∂ X, which can be isotoped so
that it lies entirely on the interior of a single fiber. Then we can attach a 2-handle
along K to yield a new manifold with boundary which we denote X ′. If we choose
the framing along K so that it is one less than the induced fiber framing, then f will
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extend to a fibration on X ′ with a new Lefschetz critical point in the newly added
2-handle. If we instead choose K to have framing one greater than the induced
fiber framing, f will instead extend to a fibration on X ′ with an additional negative
Lefschetz critical point (see, e.g., [17]).

Suppose again that f : X → D2 is a fibration as above, but that we have now
chosen two disjoint knots K1 and K2 in ∂ X, each of which gives a section of
f restricted to f −1(∂ D2) ⊂ ∂ X. Then we obtain a new manifold X ′′ by attach-
ing S1

× D1
× D2 to ∂ X along K1 and K2, by identifying S1

× {−1} × D2 and
S1

× {1} × D2 with tubular neighborhoods of K1 and K2, respectively. In this case
the fibration f will extend to X ′′, with a single indefinite fold singularity along
S1

× {0} × {0}. Indeed, the knots K1 and K2 intersect each of the boundary fibers
in a pair of points, which specify the locations of the 0-surgeries that take place
as we pass the indefinite fold image. We will sometimes refer to this procedure as
attaching a round 1-handle to X, as S1

× D1
× D2 can be thought of as an S1-family

of 3-dimensional 1-handles D1
× D2, which are attached to X fiberwise along the

boundary. Alternatively, we can split S1
× D1

× D2 into a 4-dimensional 1-handle
and 2-handle pair, where the 2-handle runs over the 1-handle twice geometrically,
but zero times algebraically.

The effect on X of adding a round 1-handle is the same as gluing a fibered
cobordism to ∂ X, where each fiber over S1 is the standard Morse theoretic cobordism
obtained by adding a 3-dimensional 1-handle to a thickened surface. Broken
Lefschetz fibrations and round 1-handle attachments are studied in detail by Baykur
in [4], where he also defines generalized n-dimensional round j-handles, for any
index j in any dimension n. In what follows we will sometimes find it convenient
to refer to 4-dimensional round 2-handles, which are the product of a 3-dimensional
2-handle with S1 (these are, of course, just upside-down round 1-handles, and will
not warrant any further discussion here).

As in the case of Lefschetz critical points, we also obtain monodromy descriptions
of the indefinite fold singularities. The monodromy of the fibration outside a new
indefinite fold singularity will depend on the framings of the tubular neighborhoods
of K1 and K2, or alternatively, on the framing k of the 2-handle in the 4-dimensional
handle pair description. Indeed, suppose that F is a fiber of the fibration f before
attaching the round 1-handle, and that the monodromy around the boundary ∂ D2 is
given by a map ϕ : F → F. Then adding the new round 1-handle changes the fibers
along the boundary by replacing two disks D1 and D2 in F with S1

× [0, 1]. The
new monodromy will be given by the restriction of ϕ to F\(D1 ∪ D2), with −k
Dehn twists along the cycle S1

×
{1

2

}
(i.e., |k| positive Dehn twists if k is negative,

and |k| negative Dehn twists if k is positive).
Combining the above monodromy descriptions of indefinite fold singularities

with those of Lefschetz critical points gives monodromy representations of broken
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Lefschetz fibrations. Returning to the notation from Section 1C, suppose that
f : X → 6 has a single indefinite fold singularity along a loop C , that f (C) is
embedded in 6, and that the basepoint q and the images of each Lefschetz critical
point are on the side of f (C) with higher genus fibers (or lower Euler characteristic,
in the case of disconnected fibers). Suppose that in addition to the loops γ1, . . . , γm

in 6∗, we have also selected an embedded arc γ in 6 from the basepoint q to the
image of the round 1-handle singularity, which is disjoint from the loops γi away
from q. Then given γ, γ1, . . . , γm , the manifold X can be reconstructed from the
mapping class group elements ϕ1, . . . , ϕm ∈ M(Fq), together with a loop in Fq

specifying the location of the 1-surgery that corresponds to crossing the image
of the indefinite fold singularity from the high genus side to the low genus side
along γ . Such monodromy descriptions of simplified broken Lefschetz fibrations
are studied in detail by Baykur and Hayano [6].

1E. Symplectic and near-symplectic structures. Lefschetz fibrations are of great
interest in 4-manifold topology, in large part due to theorems of Donaldson [14]
and Gompf [20] relating them to symplectic 4-manifolds. A symplectic form on a
smooth oriented 4-manifold X is a closed, nondegenerate 2-form ω, whose wedge
product square ω ∧ ω is a volume form inducing the given orientation on X. A
symplectic manifold is a manifold equipped with a symplectic form.

Donaldson proved that any symplectic 4-manifold admits a Lefschetz pencil.
That is, there is a finite set of points B ⊂ X and a smooth map F : X\B → CP1

which is a Lefschetz fibration, and around each point of B the map F is locally
modeled by the projectivization map C2

\{0} → CP1. Blowing up at the points
in B gives an honest Lefschetz fibration; thus Donaldson’s result can be restated by
saying that any symplectic 4-manifold admits a Lefschetz fibration after blow-ups.
Gompf proved the converse to this, by showing that any manifold which admits a
Lefschetz pencil also admits a symplectic structure.

A similar relationship exists between broken Lefschetz fibrations and near-
symplectic structures. Let ω be a smooth closed 2-form with ω2

≥ 0, and set
Z = {ω = 0}. Then ω is called a near-symplectic structure on X if ω2 > 0 on the
complement of Z , and for each point in Z there is a neighborhood U such that the
map U → 32(T ∗U ) induced by ω has rank 3. This implies that the zero locus Z is
a family of embedded circles. Manifolds admitting near-symplectic structures are
quite common. Indeed, any closed oriented smooth 4-manifold with b+

2 (X) > 0
admits a near-symplectic structure (see [22]).

Analogous to the relationship between Lefschetz pencils and symplectic struc-
tures, Auroux, Donaldson, and Katzarkov [2] proved the following: a smooth
4-manifold X admits a near-symplectic structure with zero locus Z if and only if it
admits a broken Lefschetz pencil f with indefinite fold singularities along Z , and
there is a class ω ∈ H 2(X) that evaluates positively on every component of every
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fiber of f . Here, a broken Lefschetz pencil on X is a finite set of points B ⊂ X, and a
smooth map F : X\B →CP1 which is a broken Lefschetz fibration, and around each
point of B the map F is locally modeled by the projectivization map as above. These
structures can be chosen to be compatible, in the sense that if we specify either a near-
symplectic structure or broken Lefschetz pencil, then the other object may be chosen
so that the regular fibers of the pencil are symplectic away from the singular locus.

Broken Lefschetz fibrations and near-symplectic structures gained a great deal
of attention following [2], due in part to constructions of new Floer theoretic
invariants and a conjectured relationship to gauge theory and the Seiberg–Witten
invariants of 4-manifolds. In [34; 35], Perutz defines and studies the Lagrangian
matching invariant, which counts pseudoholomorphic multisections of a broken
Lefschetz fibration, subject to certain Lagrangian boundary conditions (alternatively,
these can be thought of as pseudoholomorphic sections of an associated family of
symmetric products of the nonsingular fibers). The Lagrangian matching invariant
is a near-symplectic generalization of the Donaldson–Smith invariants defined on
symplectic Lefschetz fibrations, which were shown by Usher to be equivalent to
the Seiberg–Witten invariants of the underlying 4-manifold for fibrations of high
degree [42]. Similarly, the Lagrangian matching invariant can also be compared
to the Seiberg–Witten invariants, and Perutz conjectures these invariants are in
fact equivalent. The relationship between broken Lefschetz fibrations and Seiberg–
Witten invariants is studied further by Baykur in [4], where he discusses vanishing
results for Seiberg–Witten invariants under a near-symplectic fiber sum operation
and presents numerous examples.

Broken Lefschetz fibrations have also been used to define invariants outside of
the Floer and gauge theoretic worlds. In [5], Baykur defines the broken genera of
an oriented 4-manifold X, which are diffeomorphism invariants constructed using a
family of simplified broken Lefschetz fibrations on X. These are defined in terms of
the minimal genus of a regular fiber among all simplified broken Lefschetz fibration
on X (or an associated blow-up of X ), whose fiber realizes a certain homology
class in H2(X; Z). In addition to defining these invariants, Baykur shows that these
invariants are able to distinguish infinitely many exotic smooth structures among
manifolds of the same homeomorphism type.

1F. Existence of fibrations on closed 4-manifolds. Besides establishing a relation-
ship between near-symplectic structures and broken Lefschetz fibrations, Auroux,
Donaldson, and Katzarkov also constructed a fibration on S4 with a single indefinite
fold singularity, and no other critical points. As S4 is clearly not near-symplectic,
this raised the question of determining which smooth oriented 4-manifolds admit
broken Lefschetz fibrations.

This question, and related ones, were answered in stages by several authors.
In [17], Etnyre and Fuller proved that after surgery along an embedded circle
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every smooth closed 4-manifold admits an achiral Lefschetz fibration. Gay and
Kirby proved in [18] that every smooth closed 4-manifold admits a broken achiral
Lefschetz fibration. Building on the work of Saeki in [41], Baykur used singularity
theory to prove that all closed orientable smooth 4-manifolds admit broken Lefschetz
fibrations in [3]. Moreover, Akbulut and Karakurt [1], Baykur [30, Appendix B],
and Lekili [30] demonstrated that the negative Lefschetz singularities in Gay and
Kirby’s construction can be eliminated, and hence provided an alternate proof that
every closed oriented smooth 4-manifold admits a broken Lefschetz fibration.

The constructions in [1; 17; 18] each involve cutting X up into pieces and con-
structing the desired fibrations on the pieces separately as described in Section 1B,
before regluing. The main differences lie in the modifications that are made to the
fibrations to match the boundary open book decompositions. In either approach
however, the core argument is the same, relying on machinery from contact topology
to ensure that the open book decompositions match along the boundaries before the
pieces are reglued. More precisely, the fibrations are first modified to ensure that both
boundary open book decompositions support overtwisted contact structures, and
then to arrange that both of these contact structures are homotopic. By Eliashberg’s
classification of overtwisted contact structures [16], the two contact structures must
then be isotopic, and hence by Giroux’s theorem [19], the boundary open book
decompositions will agree after some number of positive stabilizations (which can
be realized by further modifications to the fibrations). This process is, of course,
nonconstructive due to its reliance on these deep classification results.

Baykur and Lekili’s constructions instead focused on studying deformations of
generic maps near their singularities. More precisely, they both show that a generic
indefinite surjective map X → S2 can be modified near its critical points to obtain a
broken Lefschetz fibration f : X → S2. These early singularity theory constructions
did not (in general) produce broken Lefschetz fibrations with embedded images
of their indefinite fold singularities, however. More recent work of Baykur and
Saeki [9; 10] improves upon these techniques, by presenting explicit algorithms to
convert an arbitrary broken Lefschetz fibration into one with connected fibers and a
single indefinite fold singularity with embedded image.

In the case when b+

2 (X) > 0, or equivalently when X is near-symplectic, the
near-symplectic structure can be used to construct broken Lefschetz fibrations and
pencils with additional desired properties. For example, it can be shown that any
near-symplectic structure is cohomologous to a near-symplectic form which has
connected zero locus, and this can be used to show that in this case X admits
a broken Lefschetz pencil with connected fibers and at most one indefinite fold
singularity, and that the indefinite fold image is embedded.

Aside from the existence results mentioned above, the uniqueness question for
broken Lefschetz fibrations has also been studied. In [43], Williams establishes a set
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of modifications to broken Lefschetz fibrations which preserve the homotopy class
of the fibration map, and proves that they are sufficient to relate any two broken
Lefschetz fibrations in the same homotopy class. He also obtains a set of moves
relating all broken Lefschetz fibrations on a given 4-manifold (even nonhomotopic
ones) by adding in an additional projection move.

Finally, it is worth noting that Lefschetz fibrations have also been extended
to certain nonorientable manifolds. In [33], Miller and Ozbagci show that any
nonorientable handlebody without 3- and 4-handles admits a Lefschetz fibration
over the disk. The fibers of these fibrations are nonorientable surfaces with nonempty
boundary.

2. Braided surfaces in D2 × D2

In addition to the constructions described in Section 1F, (broken) Lefschetz fibrations
can also be obtained by way of branched coverings and braided surfaces. More
precisely, fibrations on X can be obtained by constructing and modifying certain
coverings h : X → D2

× D2, which are branched along properly embedded surfaces
in D2

× D2. To obtain a fibration, we will require that these branch loci are braided
surfaces with folds in D2

× D2. This approach can be carried out directly on a
given handle decomposition of the 4-manifold, and yield explicit broken Lefschetz
fibrations. In this section we define braided surfaces and a generalization, before
outlining this technique and providing explicit examples in later sections.

2A. Braided ribbon surfaces. Rudolph defined a braided surface [37] to be a
smooth properly embedded oriented surface S ⊂ D2

× D2 on which the projection
to the second factor pr2 : D2

× D2
→ D2 restricts as a simple branched covering.

Examples of these braided surfaces can be obtained by taking intersections of
nonsingular complex plane curves with 4-balls in C2, and they can be used to study
the links that arise as their boundaries in S3

= ∂ D4 (see, e.g., [38; 39; 40]). See
Figure 3. The boundary of a braided surface will be a closed braid in the solid torus
D2

× S1
⊂ ∂(D2

× D2).

D
2
×D

2

D
2

π

Figure 3. Braided ribbon surface.
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Let S be a braided surface. In a neighborhood of any branch point p of the
covering pr2 |S , there are local complex coordinates u and v on D2 such that S is
given by the equation u2

= v in the coordinates (u, v) on D2
× D2. We say that p is

a positive branch point if these coordinates can be taken to be orientation-preserving,
and a negative branch point otherwise.

One feature of Rudolph’s braided surfaces is that they are all necessarily ribbon.
A properly embedded surface S in D4

= {(z, w) : |z|2 + |w|
2

≤ 1} is said to be
ribbon embedded if the function |z|2 + |w|

2 restricts to S as a Morse function with
no local maximal points on int S. A properly embedded surface in D4 is said to
be ribbon if it is isotopic to a surface which is ribbon embedded. By fixing an
identification of D2

× D2 with D4, we can similarly consider ribbon surfaces in
D2

× D2 (the definition of ribbon embeddings in D2
× D2 will depend on our

choice of identification, though the resulting class of ribbon surfaces will not).
Rudolph proved that any orientable ribbon surface in D2

× D2 is isotopic to a
braided surface, though in general this isotopy cannot be chosen to fix ∂S even if ∂S
is already a closed braid in D2

× S1
⊂ ∂(D2

× D2). Rudolph’s braiding algorithm
involves manipulating a ribbon immersed surface in R3, and hence can’t be applied
to nonribbon surfaces in D2

× D2.
Viro defined a similar notion which he called a 2-braid, by additionally requiring

that ∂S ⊂ D2
× S1 be a trivial closed braid (i.e., ∂S = P × S1 for some finite subset

P ⊂ D2). Viro’s 2-braids come equipped with a closure operation yielding closed
surfaces in S4, and in a September 1990 lecture at Osaka City University, Viro
proved a 4-dimensional Alexander theorem by showing that every closed oriented
surface in S4 is isotopic to the closure of a 2-braid. These 2-braids were also studied
extensively by Kamada [24; 25; 26; 27; 28], who proved a 4-dimensional Markov
theorem relating any two 2-braids with isotopic closures.

Braided surfaces admit monodromy representations, similar to the multisections
described in Section 1C. Let S ⊂ D2

× D2 be a braided surface, and let D∗ be the
regular values of the restriction pr2 |S (i.e., the complement of the images of the
branched points of S under pr2 |S). Then D∗ will be a punctured disk, and after
fixing a basepoint q ∈ ∂ D∗ we can choose a collection of oriented simple closed
curves γ1, . . . , γm based at q, which are disjoint away from q, and such that γ j

travels counterclockwise around the j -th puncture of D∗ and no other punctures. We
can order the loops γ1, . . . , γm so that the product γ1 · · · γm is homotopic to ∂ D2.

If the restriction pr2 |S is an n-sheeted branched covering of D2, then for each j
the set (pr2 |S)

−1(γ j ) will be a closed n-stranded braid in the solid torus (pr2)
−1(γ j ).

Each of the (pr2 |S)
−1(γ j ) will be the closure of a braid of the form α j = β−1

j σ±1
i j

β j ,
where σi j is one of the standard Artin generators of the n-strand braid group Bn ,
and β j ∈ Bn . Equivalently, if Dq denotes the fiber of pr2 above the point q, and
(pr2 |S)

−1(q) = {s1, . . . , sn} ⊂ Dq , then each loop γ j will induce a monodromy
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SS

D2

pS

Figure 4. Cross section of a braided surface with folds.

map ϕ j ∈ M(Dq; {s1, . . . , sn}), which swaps precisely two points in {s1, . . . , sn}

along some arc in Dq , and leaves the others points fixed. The family of monodromy
maps ϕ1, . . . , ϕm (resp. family of braids α1, . . . , αm) will be determined by S up
to conjugation by a fixed element of M(Dq; {s1, . . . , sn}) (resp. conjugation by a
fixed braid in Bn), as well as changes in the choice of loops γ1, . . . , γm . Conversely,
a family of such maps in M(Dq; {s1, . . . , sn}) or braids in Bn define a braided
surface in D2

× D2 up to isotopy through braided surfaces.

2B. Braided surfaces with folds. The surfaces in D2
× D2 we use to construct

broken Lefschetz fibrations will not in general be ribbon, and hence cannot be
braided via Rudolph’s algorithm. We thus consider a less restrictive notion of
braiding, which we define now.

Let φ : F → 6 be a smooth map of oriented surfaces. Then a fold of F with
respect to φ is an embedded circle C ⊂ F, so that

(1) φ restricts to an embedding on C ,

(2) F and 6 both admit coordinate charts of the form S1
× [−1, 1] around C =

S1
× {0} and φ(C) = S1

× {0}, on which φ is given by (θ, t) 7→ (θ, t2),

Now let S ⊂ D2
× D2, and let prS denote the restriction of pr2 to S. We say that

S is a braided surface with folds if the critical points of prS all correspond either to
isolated simple branch points or folds of S with respect to prS . Moreover, we will
often assume that the critical values in D2 form a set of embedded concentric circles
(corresponding to folds), with isolated critical values lying inside the innermost
circle. See Figure 4 for a cross sectional diagram of a braided surface with a single
fold. We prove the following.

Theorem 2.1. Let S be a smooth oriented surface properly embedded in D2
× D2.

Then S is isotopic to a braided surface with folds and only positive branch points.
If ∂S is already a closed braid, then the isotopy can be chosen rel ∂S.
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Figure 5. Replacing a negative branch point with three positive
branch points and a fold.

Proof. In [23], the author proves that every such surface S ⊂ D2
× D2 is isotopic

to a braided surface with caps. Here, a cap is an embedded disk in S on which the
projection pr2 restricts as an embedding, and whose boundary is a fold circle as
defined above. Moreover, the isotopy arranging S as a braided surface with caps
can be taken rel ∂S is ∂S if already a closed braid. Alternatively, one could start
with a bridge trisection of the surface S in the standard genus zero trisection of
D4

= D2
× D2, which Meier [32] proved is always possible.

In order to ensure only positive branch points, we replace any negative branch
points as shown in Figure 5. More precisely, if p ∈ S is a negative branch point,
then we can choose some parametrized neighborhood V around p so that S ∩ V is
described locally by the motion picture diagram shown at the top of Figure 5. We
can then remove S ∩ V from S, and replace it with the surface whose local motion
picture description is shown at the bottom of Figure 5. This removes the original
negative branch point p, and replaces it with three positive branch points, and a
single fold circle. To see that these two surfaces are isotopic rel ∂S, we construct
the isotopy shown in Figure 6 using band slides. □

Figure 6. An isotopy which takes the replacement surface to the
original surface with a single negative branch point.
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3. Broken Lefschetz fibrations from branched coverings

In this section we describe how (broken) Lefschetz fibrations can be constructed
via branched coverings and braided surfaces. We then provide examples of this
construction in Section 4.

3A. Lefschetz fibrations from branched coverings. Suppose X is an oriented 4-
dimensional 2-handlebody with a fixed handle decomposition that has no 3- or
4-handles. Then we can construct a simple branched covering H : X → D2

× D2

branched along an orientable ribbon surface S. Further, we can assume S is a braided
surface by Rudolph’s algorithm. Then the composition X H

−→ D2
× D2 pr2

−→ D2 is
an achiral Lefschetz fibration, with a positive Lefschetz critical point (resp. negative
Lefschetz critical point) for each positive (resp. negative) branch point of S → D2.
Thus if S has only positive branch points, we obtain a true Lefschetz fibration. In
fact, Loi and Piergallini [31] show that any sufficiently nice Lefschetz fibration
over D2 necessarily factors in this way.

Using these constructions, Loi and Piergallini also prove that for an oriented
connected compact 4-manifold X with boundary, the existence of a Stein structure
is equivalent to the existence of a Lefschetz fibration over D2 with all vanishing
cycles nonseparating in the fiber. By considering the associated simple branched
covering restricted to ∂ X, it follows that a 3-manifold is Stein fillable if and only if
it admits a positive open book decomposition.

Now suppose we start instead with a handlebody description of a 4-manifold X
which has 3- and 4-handles. As noted above we can construct a branched covering
of the 0-,1-, and 2-handles over D2

× D2, branched along a ribbon surface. Once
we try to extend this covering to the 3- and 4-handles however, the branch locus is
no longer ribbon, and may additionally have cusp and node singularities.

3B. Broken Lefschetz fibrations from branched coverings. Our method for creat-
ing broken Lefschetz fibrations on handlebodies with 3- and 4-handles is based on
Proposition 3.1, which takes as input a simple branched covering h : X → D2

× D2

with orientable branch locus, and yields a broken Lefschetz fibration g : X → D2.
This approach can then be combined with techniques of Gay and Kirby to produce
broken Lefschetz fibrations over S2 on many closed 4-manifolds.

Proposition 3.1 is a generalization of Proposition 1.2 of [31] to branched coverings
with nonribbon branch loci.

Proposition 3.1. Suppose that X is a smooth 4-manifold with boundary, and that
h : X → D2

× D2 is a simple branched covering with branch locus Bh ⊂ D2
× D2

an embedded orientable surface. Then there is an isotopy φt : D2
× D2

→ D2
× D2,

φ0 = idD2×D2 , such that pr2 ◦φ1 ◦ h : X → D2 is a broken Lefschetz fibration.
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Proof. By Theorem 2.1, Bh is isotopic in D2
× D2 to a braided surface with folds

and only positive branch points. Let φt be an isotopy of D2
× D2 which takes Bh to

such a surface. Let H = φ1 ◦ h denote the isotoped branched covering, and let BH

denote its branch locus. Away from the preimages of the critical points of pr2 |BH ,
the composition g = pr2 ◦H is a regular map. By [31] the map g has a Lefschetz
critical point for every positive branch point of pr2 |BH .

To see that the fold lines of BH give indefinite fold singularities, note that along
these fold lines BH is locally embedded as R2

→ R2
× R2, by (s, r) 7→ (0, r, s, r2).

Furthermore, near nonsingular points of BH , H can be written in complex coordi-
nates as (u, v) 7→ (u2, v), where BH is given locally by u = 0. Combining these
two local models yields a map of the required local form. Furthermore, the folds of
BH can be pushed out so that they lie above a neighborhood of the boundary of D2,
so that their images form a collection of concentric circles in D2 which enclose the
Lefschetz critical values. □

Remark 3.2. Note that Proposition 3.1 holds more generally than stated above.
Indeed, by [3; 30] any generic map X → D2 can be perturbed to become a broken
Lefschetz fibration, and by [9; 10] any map X → S2 can be converted to a broken
Lefschetz fibration whose fibers are all connected, and whose indefinite fold singu-
larities are connected with embedded image. The proof of Proposition 3.1 is what
will be most useful to us, since the branched covering h : X → D2

× D2 and the
isotopy φt : D2

× D2
→ D2

× D2 can often be constructed by hand from a given
Kirby diagram of X (see Section 4).

3C. Broken Lefschetz fibrations on closed 4-manifolds. We will now show how
Proposition 3.1 can be used in many cases to construct a broken Lefschetz fibration
f : X → S2 on a closed orientable 4-manifold X from a given handle decompo-
sition. Let F ⊂ X be a closed surface with F · F = 0, and consider a tubular
neighborhood νF of F. For simplicity, we describe first the construction in the
case that F ∼= S2, and hence νF ∼= S2

× D2. Such a neighborhood can sometimes
be identified in the handle diagram of X as a 2-handle attached along a 0-framed
unknot together with the 0-handle of X. If no such S2

× D2 can be identified, it
can be added to the diagram by adjoining a canceling 2- and 3-handle pair, where
the 2-handle is attached along a 0-framed unknot. We will think of the union of
this 2-handle with the 0-handle to which it is attached as forming νF.

3D. Building the concave piece. We describe how to construct a concave broken
fibration f : νF → S2 with a single indefinite fold singularity and no Lefschetz
critical points. This construction is originally due to Auroux, Donaldson, and
Katzarkov [2], as part of their construction of a broken Lefschetz fibration on S4,
though our description follows that in [18].
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S2 ×D2 ∪ round 1-handleS2 ×D2 ∪ round 1-handleS2 ×D2

0 0
0

0
0

−1

∪ 2,3-handles

∪ 3-handle

Figure 7. Concave broken fibration on S2
× D2.

We begin by identifying the target of the projection pr2 : S2
× D2

→ D2 with
the northern polar cap in S2. This defines a fibration of S2

× D2 with fiber S2

over this region (see the bottom-left diagram in Figure 7). Expressing S2
× D2

with the usual handlebody diagram (top-left, Figure 7), we can add a 1-handle and
0-framed 2-handle to this diagram, as in the top middle diagram. Taken together,
these two handles can be interpreted as a round 1-handle, which is attached to
S2

× D2 along two sections of the existing fibration restricted to the boundary. We
can thus extend this fibration over the round 1-handle, giving a fibration over the
northern hemisphere with an indefinite fold singularity over the arctic circle. Fibers
between the equator and the arctic circle will be obtained from the polar fibers by
0-surgery, and hence will be tori. Note that the fibration we have constructed so far
is flat along its boundary.

Finally, we add an additional 2-handle H2, and a 3-handle H3 to our diagram
(top-right, Figure 7). The attaching circle of H2 is a section of the flat fibration
restricted to the boundary, and hence the fibration can be extended over H2, by
projecting it to the southern hemisphere (with fiber D2). In other words, thinking of
H2 as D2

× D2 attached along ∂ D2
× D2, we think of H2 as sitting as a D2-bundle

over the southern hemisphere, with projection map D2
× D2

→ D2 being given
by projection onto the first factor. Note that we choose the attaching circle of H2

so that it runs over the existing 1-handle from the round 1-handle once, and has
framing −1. While these choices are not necessary to ensure the fibration extends,
they are made to allow for the handle cancellations described below.

After extending over H2 the resulting fibration is concave. The page of the
boundary open book decomposition is a torus with a single hole (which resulted
from attaching the 2-handle H2), while its binding will be the belt-sphere of H2.

The attaching sphere of the new 3-handle H3 is arranged so that it intersects the
binding at its north and south poles, and so that it intersects each page in a properly
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0

0

−1

∪ 3-handle
0

0

−1

∪ 3-handle

0

−1

0

Figure 8. Sliding handles in the concave fibration to identify
canceling pairs. After sliding one of the 0-framed 2-handles over
the (−1)-framed 2-handle H2 twice, the slid handle becomes a
0-framed unknot that can be canceled with the 3-handle. The
handle H2 can then be canceled with the 1-handle, leaving behind
S2

× D2.

embedded arc. The fibration can then be extended across H3, resulting in no new
critical points. This extension changes the D2 fibers over the southern hemisphere
by adding a 2-dimensional 1-handle, yielding annular fibers. On the other hand,
the pages of the boundary open book change by the removal of a neighborhood
of a properly embedded arc from the puncture torus pages (the intersection of the
original page with the attaching sphere of H3), yielding annular pages.

This gives a concave broken fibration as depicted in the bottom-right diagram
of Figure 7, with a single indefinite fold singularity, and no positive or negative
Lefschetz critical points. Moreover, after sliding the 0-framed 2-handle from the
round 1-handle over H2 twice as shown in Figure 8, we find that the added 1-,2-,
and 3-handles all form canceling pairs. Hence the total space of our fibration is
diffeomorphic to S2

× D2 ∼= νF. Notice that the induced open book decomposition
on ∂(νF) will have disconnected binding, which may cause problems when we try
to construct a matching convex fibration on X\νF. We thus instead think of the lone
canceling 3-handle as being attached as a 1-handle to X\νF, and construct a concave
fibration f1 on X1 = νF\{3-handle}, whose boundary open book decomposition
has punctured torus page and connected binding (see Figure 9).

If instead F has genus g ≥ 1 we can proceed much as before, either identifying
a neighborhood νF in the handle diagram of X, or by adding a standard diagram of
F × D2 with additional 2- and 3-handles to cancel the 1- and 2-handles of νF. More
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0

−1

0

Figure 9. Neighborhood of F ⊂ X with an extra 2-handle and
round 1-handle added.

precisely, ignoring the (−1)-framed 2-handle in Figure 9, and the 1- and 2-handles
coming from the round 1-handle, the remaining handles (together with the 0-handle)
give a diagram for F × D2. This diagram can be placed in any handlebody diagram
of a 4-manifold X without changing the diffeomorphism type of X, provided we
also add a 0-framed 2-handle attached along a meridian for each 1-handle circle,
along with a single extra 3-handle. To this diagram we could then add a round
1-handle and pair of 2- and 3-handles (see Figure 9) and continue as above.

3E. Building the convex piece. Let Y = X\X1. We now discuss how to use a
handle structure on Y to build a convex fibration g : Y → D2, so that it extends
the open book decomposition λ : ∂Y → D2 induced by the concave fibration
f1 : νF → S2. We attempt to do this in three steps:

(1) Express the open book decomposition λ as λ=pr2◦h, where h :∂Y→∂(D2
×D2)

is a simple covering branched along a closed braid in ∂(D2
× D2), and

pr2 : D2
× D2

→ D2 is the projection.

(2) Extend the branched covering h to a covering H : Y → D2
× D2 branched

along an orientable surface.

(3) Use Proposition 3.1 to obtain the desired broken Lefschetz fibration.

Part (1) is always possible. Indeed, let P be the page of λ, with monodromy
τ : P → P. Then by choosing a suitable (degree ≥ 3 and simple) branched covering
α : P → D2, the map τ is the lift of a map τ̂ : D2

→ D2 which fixes the branch
locus of α setwise [21; 29]. If K is the binding of λ, then this allows us to write
∂Y\νK as a branched covering of the solid torus D2

×∂ D2 branched over a closed
braid. A matching (unbranched) covering νK → ∂ D2

× D2 can be glued to this
covering to give the desired map h : ∂Y → ∂(D2

× D2).
Problems may arise when we try to carry out part (2) of the above process, how-

ever. The covering h can always be extended to a branched covering H :Y→ D2
×D2,

though the branch locus may not be an orientable embedded surface.
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Figure 10. Fixing a nonorientable band in the branch locus of ĥ.

To see how this covering is constructed, fix some choice of relative handle
decomposition for the pair (Y, ∂Y ). The covering h : ∂Y → ∂(D2

× D2) can be
extended to a covering

ĥ : ∂Y × [0, 1] → ∂(D2
× D2) × [0, 1]

in the usual way. Here, ∂Y ×[0, 1] and ∂(D2
× D2)×[0, 1] are thought of as collar

neighborhoods of ∂Y and ∂(D2
× D2) respectively. Identify ∂Y with ∂Y ×{0}, and

let ∂+Y = ∂Y ×{1}. We now attempt to extend this covering over the handles of Y
to construct the desired covering H.

Let σ1 = D1
× D3 be a 1-handle, and let τ1 : σ1 → σ1 be the involution defined by

τ1 : (t, x, y, z) 7−→ (−t, −x, y, z).

If σ1 is a 1-handle in our handle decomposition of (Y, ∂Y ), then we can isotope its
attaching map α1 : S0

× D3
→ ∂+Y so that it is symmetric with respect to ĥ, i.e.,

so that ĥ ◦ α1 ◦ τ = ĥ ◦ α1. Once this is done, by Lemma 6.1 of [11] we can extend
ĥ over the 1-handle σ1, using the quotient induced by τ1. The result is a branched
covering of (∂Y ×[0, 1])∪σ1 over ∂(D2

× D2)×[0, 1], where the new branch locus
is obtained by adding a disjoint disk to the branch locus of ĥ in ∂(D2

× D2)×[0, 1].
Similarly, if σ2 = D2

× D2 is instead a 2-handle attached to ∂+Y by some
attaching map α2 : S1

× D2
→ ∂+Y, by [15] we can isotope α2 so that it becomes

symmetric with respect to the involution τ2 : D2
× D2

→ D2
× D2, defined by

τ2 : (t, s, x, y) 7−→ (−t, s, −x, y).

Here, the attaching circle of σ2 will intersect the branching set of ĥ in two points,
say p1 and p2. Then we can extend the covering ĥ to a branched covering of
(Y × [0, 1]) ∪ σ2 over ∂(D2

× D2), where the new branch locus is obtained by
attaching a single band to the branch locus of ĥ at the points ĥ(p1) and ĥ(p2). This
band will have n half-twists in it, where n is the framing of σ2.

When extending ĥ over a 2-handle σ2, it is possible that the corresponding band β

may be attached to the branch locus B ⊂ ∂(D2
× D2) × [0, 1] in a nonorientable

way. By [12] this can be remedied, by adding (or removing) a half-twist in β as in
Figure 10. In this local picture we have pushed B entirely into the 3-dimensional
space ∂(D2

× D2) × {1}, where it can be depicted as an immersed surface with
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only ribbon double points. The labels on the components denote the associated
monodromy action on the sheets of ĥ.

Let Y2 denote the union of ∂Y ×[0, 1] with the 1- and 2-handles. We can thus
extend the branched covering h : ∂Y → ∂(D2

× D2) to a covering

h̃ : Y2 → ∂(D2
× D2) × [0, 1],

where the associated branch locus B̃ ⊂∂(D2
×D2)×[0, 1] is an embedded orientable

surface. If the intersection

B̃1 = B̃ ∩ ∂(D2
× D2) × {1}

is an unlink, then h̃ can be extended across the 3- and 4-handles to give a branched
covering H : Y → D2

× D2 with orientable embedded branch locus. This can be
seen by noting that the union of the 3- and 4-handles is a thickened bouquet of
circles, which can be expressed as a branched covering of D4 with branch locus a
collection of properly embedded disjoint disks. If B̃1 is an unlink, this covering
can be glued to h̃ : Y2 → ∂(D2

× D2) × [0, 1] to obtain the desired covering H.
In general however, B̃1 will not be an unlink. By [36] we can modify the covering

by adding cusp and node singularities on the interior of B̃ so that B̃1 becomes an
unlink, though doing so may fail to preserve the required orientability of the branch
locus B. When this can be avoided, we can proceed with the rest of the construction
to obtain a broken Lefschetz fibration of X over S2.

3F. Broken Lefschetz fibrations on doubles of 4-manifolds. We now discuss a
situation in which the above construction will always be possible. Let U be a
handlebody with single 0-handle and no 4-handles. The double of U is the manifold
X = U ∪Id∂U U , where U denotes the handlebody U with reversed orientation. The
handle structure on U induces a handle structure on X in a natural way, by turning
the j-handles of U upside-down and attaching them as (4− j)-handles to U.

Theorem 3.3. Let X be a smooth, closed, orientable 4-manifold, with handle
structure coming from the double of a handlebody U. Then the procedure described
in Section 3E will produce a broken Lefschetz fibration f : X → S2.

Proof. If F = S2 is a trivially embedded sphere in the 0-handle of X, we can
construct a concave fibration of νF over S2 as in Section 3D. Let Y = X\νF,
and let λ : ∂Y → D2 be the induced open book decomposition. By [18] the
monodromy of λ is trivial, and hence it factors through a simple branched covering
h : ∂Y → ∂(D2

× D2) of degree ≥ 3, whose branch locus is a trivial closed braid
in D2

× ∂ D2.
We now proceed to extend the covering h to a covering

h̃ : Y2 → ∂(D2
× D2) × [0, 1]

with branch locus B̃. Again we let B̃1 be the intersection of B̃ with ∂(D2
×D2)×{1}.
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Each 1-handle we extend over contributes an unknot component to B̃1 which is
unlinked from the other components.

Before extending h across the 2-handles, note that in the induced handle structure
on Y, the 2-handles occur pairs. Every 2-handle σ from U is paired with a 2-
handle σ ′ from U , where σ ′ is attached along a 0-framed meridian of the attaching
circle of σ (see [20]). We can also think of σ ′ as being attached along the belt
sphere of σ .

Extending h over a 2-handle from U changes B̃1 by oriented surgery along a
band β. On the other hand, since the belt sphere of σ is symmetric with respect to
the involution τ2 : σ → σ , extending h across σ ′ will change B̃1 by oriented surgery
along a band β ′ which cancels β. Hence the net effect of extending h across σ

and σ ′ does not change B̃1, which thus remains an unlink. □

Any orientable S2-bundle over a (possibly nonorientable) surface 6 is the double
of a D2-bundle over 6. See [18] for an alternate construction of broken Lefschetz
fibrations on doubles of 2-handlebodies.

3G. Connected sums. The procedure outlined in Section 3E respects connected
sums in the following sense:

Proposition 3.4. Suppose that X1 and X2 are two handlebodies for which the
procedure in Section 3E yields broken Lefschetz fibrations f1 : X1 → S2 and
f2 : X2 → S2. Then the same procedure can be used to obtain a broken Lefschetz
fibration f : X1#X2 → S2 which restricts to a concave fibration on X1\D4

⊂ X1#X2

and to a convex fibration on X2\D4
⊂ X1#X2. Moreover, the ball D4

⊂ X1 can be
chosen so that f |X1\D4 = f1|X1\D4 .

Proof. The handle structures on X1 and X2 yield a handle decomposition of X1#X2

by starting with the 0-handle of X1 and attaching all 1-,2- and 3-handles of X1,
followed by the 1-, 2-, 3- and 4-handles of X2.

Cut out a neighborhood of an S2 from X1, and construct the concave fibration
on νS2 and the branched covering h as above. The map h can be extended across
the 1,2 and 3-handles of X1 to give a covering

h′
: X1\(νS2

∪ 4-handle) → ∂(D2
× D2) × [0, 1].

We identify ∂(D2
× D2) × [0, 1] with (D2

× D2)\(D′
× D′), where D′

⊂ D2 is a
small disk containing the origin. Then by Theorem 2.1 the branch locus B ′ of h′ can
be braided rel ∂ B ′ so that it is a braided surface with folds in (D2

× D2)\(D′
× D′)

and only positive branch points. Gluing the map pr2 ◦h′ to the concave fibration
on νS2 gives a concave fibration X1\4-handle → S2. This fibration can either be
continued across the 4-handle of X1 to obtain the fibration f1 : X1 → S2, or across
the 1-, 2-, 3- and 4-handles of X2 to give a fibration f : X1#X2 → S2. □
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Broken Lefschetz fibrations on connected sums were also built by Baykur in [4]
(based on an observation by Perutz [35]), where he also defines a generalization of
the symplectic fiber sum operation on near-symplectic broken Lefschetz fibrations.

4. Examples

In this section we compute a few simple examples, to illustrate how the above
procedure is carried out.

4A. Broken Lefschetz fibration on S4. Consider the diagram of S4 in Figure 11.
As in Figure 7, the union of all 0-, 1-, and 2-handles in this decomposition gives a
neighborhood of an unknotted S2

⊂ S4, together with an additional round 1-handle
and (ordinary) 2-handle attached. Call the union of these handles X1, and set
X2 = S4

\X1. The open book decomposition on ∂ X1 = ∂ X2 induced by the concave
fibration f1 : X1 → S2 from the above proof will have a punctured torus page
with trivial monodromy (see [18]). Hence it can be represented by a 3-fold simple
branched covering h : ∂ X2 → ∂(D2

× D2), and whose branch locus in ∂(D2
× D2)

is the closure of the trivial 4-strand braid in D2
× ∂ D2 (h can be described on each

page by the branched covering in Figure 12).
The branched covering h extends to a covering H : X2 → D4, which is built by

turning the handle decomposition from Figure 11 upside-down, and viewing X2

as a 0-handle with two 1-handles attached. The 0-handle can be expressed as a
3-fold covering of D4 branched over two properly embedded unknotted disks. For
each 1-handle we extend this covering over, a properly embedded unknotted disk is
added to the branch locus. Hence the branch locus BH of H in D4 ∼= D2

× D2 is
isotopic to the braided surface {p1, . . . , p4}× D2, for some collection of disjoint
points {p1, . . . , p4} ⊂ D2. The only critical points in the resulting broken Lefschetz
fibration f : S4

→ S2 will thus lie along the indefinite fold singularity in X1, and
we recover Auroux, Donaldson, and Katzarkov’s example in [2].

4B. S2-bundles over orientable surfaces. Let X be an S2-bundle over an closed
orientable surface of genus g. For simplicity, we consider first the case when g = 1.

0
0

−1

∪ two 3-handles
∪ 4-handle

Figure 11. Handlebody structure of a neighborhood of S2 in S4.
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b2

b4

b1

b3

b2g

b2g+1

Figure 12. 3-fold branched cover 6 → D2.

Consider the diagram of X in Figure 13, where each 1-handle attaching sphere is
paired with the sphere directly across from it. Notice that the diffeomorphism type
of X depends only on the parity of n. Assume first that n =0. In this case X ∼= S2

×T 2.
While there is an obvious fibration S2

× T 2
→ S2, the construction below has

the advantage that it can be iterated to construct broken Lefschetz fibrations on
connected-sums of S2-bundles, and generalizes to the twisted bundle S2

×̃T 2. Note
that broken Lefschetz fibrations on S2 bundles over T 2 can also be obtained by
converting trisection examples given in [10] or [13] to broken Lefschetz fibrations.

We begin by adding a copy of the diagram in Figure 11 (minus the 4-handle) to
the diagram of X, which does not change the diffeomorphism type of X. Again,
let X1 denote the union of the 0-handle with the newly added 1-handle and 2-
handles, and let X2 = X\X1. As above, X1 admits a concave fibration over S2 and
induces an open book decomposition on ∂ X2 with punctured torus page and trivial
monodromy. The associated 3-fold branched covering

h : ∂ X2 → ∂(D2
× D2)

has branch locus a trivial 4-strand closed braid in D2
× ∂ D2. We need to extend h

0

n

∪
∪ 4-handle
two 3-handles∪

∪ 4-handle
two 3-handles

Figure 13. S2-bundle over torus.
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C

Figure 14. Symmetrizing the handles.

over the handles in Figure 13, as well as the additional 3-handles we introduced
when adding the diagram in Figure 11.

In ∂ X2 there are four circles of branch points, corresponding to the four com-
ponents of the branch locus in ∂(D2

× D2). We can isotope the handle attaching
maps so that one of these four circles C skewers the diagram in Figure 13, so that
locally the covering looks like rotation of π about the center of the diagram. We
first focus on extending the covering over the 1-handles σ1 and σ ′

1, and over the
2-handle σ2 coming from the handle structure on T 2.

Isotope the attaching maps of these handles so that they are symmetric with
respect to rotation by π around C , as in Figure 14. We can thus extend the covering h̃
over σ1, σ

′

1, and σ2. Extending over the 1-handles adds a pair of disks to the branch
locus, while extending over the 2-handle adds a band. Notice that when the attaching
circle of σ2 runs along the horizontal 1-handle σ1, it will intersect the branch set in
precisely two points. The branch B̃ locus of

h̃ : (∂ X2 × [0, 1]) ∪ σ1 ∪ σ ′

1 ∪ σ2 → ∂(D2
× D2) × [0, 1]

will be as in Figure 15.
More precisely, let B̃t = B̃ ∩ (∂(D2

× D2) × {t}) for t ∈ [0, 1]. The leftmost
frame represents B̃0, the branch locus of h, where we have suppressed all of the
components except for h(C). As t increases, we see two unknotted components
appear, corresponding to the 1-handles σ1 and σ ′

1, followed by a band surgery
corresponding to the 2-handle σ2. Extending h̃ across the remaining 2-handle in
Figure 13 results in an additional band surgery which cancels the first. Note that all
of the components in Figure 15 will have the same monodromy as h(C).

The branch locus B̃1 = B̃ ∩ (∂(D2
× D2) × {1}) is thus a six component un-

link (three components from Figure 15 and three additional components from
h : ∂ X2 → ∂(D2

× D2) which were suppressed from the diagrams). It only remains
to extend this covering over the four 3-handles and unique 4-handle of X2. It is
not hard to see that the union of these higher index handles admits a 3-fold simple
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h(C)

γ

Figure 15. Branch locus B̃ after extending over 1-handles and σ2.

branched covering over D4, with branch locus consisting of six disjoint properly
embedded disks in D4. This covering can thus be glued to h̃ to give a covering
H : X2 → D2

× D2, where these six disks cap off the six component unlink B̃1.
Let BH denote the branch locus of H, which consists of B̃ capped off with these
six disks.

Finally, in order to apply Proposition 3.1, we must arrange BH as a braided
surface with folds. By [23] this is equivalent to arranging BH ⊂ D2

× D2 so that it
sits in a collar neighborhood ∂(D2

× D2) × [0, 1] such that

(1) the restriction to BH of the projection ρ : ∂(D2
× D2) × [0, 1] → [0, 1] is a

Morse function, and

(2) (ρ|BH )−1(t) a closed braid in ∂(D2
× D2) × {t} for all regular values t .

Figure 16 shows how this can be done. Again we start with the component h(C)

(hiding the three other components), and introduce two new unknots corresponding
to extending the branched covering over the 1-handles. The key difference now
is that at every regular level the branch locus must be a closed braid. Hence, the
band corresponding to σ2 now shows up first as a maximal point, which is then
completed by adding two half-twisted bands via saddle points in the seventh frame.
The second band surgery takes place in the ninth frame. Finally the branch locus is
simplified to the trivial 3-strand braid, which is capped of by three minimal points
(the other unseen three unknot components are similarly capped off).

The resulting broken achiral Lefschetz fibration pr2 ◦H : X2 → D2 has an
indefinite fold singularity for each maximal point of BH (which shows up along the
boundary of the maximal disk), and a positive or negative Lefschetz critical point
for each saddle point. Hence pr2 ◦H has three indefinite fold singularities, two
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C

α

Figure 16. Branch locus BH as a braided surface with folds.

positive Lefschetz critical points, and two negative Lefschetz critical points. The
negative Lefschetz critical points can be replaced by the isotopy in Theorem 2.1,
and the monodromy information of the fibration can be read off of Figure 16.

Now suppose that X is the S2-bundle over T 2 given by Figure 13 with n = 1,
i.e., X ∼= S2

×̃T 2. Then the branch locus B̃ will be as in Figure 15, except that
the band corresponding to σ2 will have a single half-twist, and hence B̃ will be
nonorientable. This can be remedied by involving another component of the branch
locus h : ∂ X2 → ∂(D2

× D2), and performing a move as in Figure 10 (see Figure 17,
where the monodromy information must be chosen to agree with the labels in
Figure 10).

When braided, this move introduces a new local maximal point, and two new
saddle points (one of each sign). Hence the resulting broken achiral Lefschetz
fibration has an additional indefinite fold singularity, positive Lefschetz critical point,
and negative Lefschetz critical point when compared to the fibration constructed on
S2

× T 2.
If X is a S2-bundle over a higher surface of genus g > 1, we can start instead

with the diagram in Figure 18. The associated branch locus will be as in Figure 16,
except that the innermost strand α will be replaced by 2g − 1 parallel strands,
and hence the fibration pr2 ◦H : X2 → D2 will now have 2g + 1 indefinite fold
singularities. The number of saddle points will be the same as in Figure 16, and
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h(C)

γ

Figure 17. Branch locus B̃ for S2
×̃T 2.

hence the resulting fibration will have two positive Lefschetz critical points and two
negative Lefschetz critical points (where the negative critical points can be replaced
as described above).

4C. S2-bundles over RP2. We now consider S2-bundles over RP2, which can be
described by the diagram in Figure 19. Proceeding as above, we can arrange the
component C of the branch set so that it sits vertically in the diagram between the two
strands of the attaching circle of the n-framed 2-handle σ2, and so that the attaching
maps of σ2 and the 1-handle σ1 are symmetric with respect to rotation about C . For
n = 0 and n = 1 the branch locus B̃ will be as in Figures 15 and 17, respectively,

0

∪ 2g 3-handles

∪ 4-handle

∪ 2g 3-handles

∪ 4-handle

Figure 18. S2-bundle over genus g surface.
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n

∪
∪ 4-handle
3-handle∪

∪ 4-handle
two 3-handles

0

C

Figure 19. S2-bundle over RP2.

except that the second unknot components (labelled by γ and corresponding to the
extra 1-handle) will not be present. After filling in the higher index handles and
braiding the resulting branch locus BH , the result will be the same as in Figure 16,
except that in the second still only the outermost new component will appear.

4D. Connected sums. The above constructions can be repeated to give broken
Lefschetz fibrations on connected sums. For example, instead of capping off the
unknot components in the third to last still of Figure 16, the movie (or another
similar braided movie) could be repeated.
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Small exotic 4-manifolds and
symplectic Calabi–Yau surfaces via genus-3 pencils

R. İnanç Baykur

We introduce a strategy to produce exotic rational and elliptic ruled surfaces, and
possibly new symplectic Calabi–Yau surfaces, via constructions of symplectic
Lefschetz pencils using a novel technique we call breeding. We deploy our
strategy to breed explicit symplectic genus-3 pencils, whose total spaces are
homeomorphic but not diffeomorphic to the rational surfaces CP2#pCP2 for
p = 6, 7, 8, 9. Similarly, we breed explicit genus-3 pencils, whose total spaces
are symplectic Calabi–Yau surfaces that have b1 > 0 and realize all the integral
homology classes of torus bundles over tori.

1. Introduction

Since the advent of Gauge theory, many construction techniques, such as knot
surgery, rational blowdowns, generalized fiber sums and Luttinger surgery, have
been introduced and successfully employed to produce exotic smooth structures
on 4-manifolds, primarily through constructions of symplectic 4-manifolds homeo-
morphic but not diffeomorphic to smooth connected sums of standard 4-manifolds,
where those with small topology (i.e., small second homology) have proven to be
the most challenging.

In this article, we deploy a strategy to produce small symplectic 4-manifolds as
total spaces of Lefschetz pencils,1 which correspond to small positive factorizations
(i.e., a small number of Dehn twists) we construct using a new technique we will
discuss below. Recall that by the celebrated work of Donaldson [20] any compact
symplectic 4-manifold admits a Lefschetz pencil, and in turn, corresponds to a pos-
itive factorization in the mapping class group of an orientable surface [44; 52; 54].

MSC2020: primary 57R55; secondary 57K20, 57K43.
Keywords: Lefschetz pencil, exotic 4-manifold, symplectic Calabi–Yau.

1Conventions: We assume that Lefschetz pencils, unlike Lefschetz fibrations, always have base
points, whereas both have critical points and no exceptional spheres contained in the fibers.
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For the small 4-manifolds we consider, the additional information presented by the
pencil structure will be crucial to detect the exotic smooth structures, as illustrated
by our first theorem:

Theorem A. Let X be a symplectic 4-manifold homeomorphic to a rational or
ruled surface Z with c2

1(Z) ≥ 0. Then X is an exotic Z if and only if it admits a
genus-g Lefschetz pencil with number of base points b ≤ 2g − 2 −χh(Z).

Here c2
1 = 2e+3σ is the first Chern number and χh =

1
4(e+σ) is the holomorphic

Euler characteristic, where e and σ are the Euler characteristic and the signature of
the 4-manifold. Rational and ruled surfaces satisfying the c2

1 ≥ 0 condition are the
rational surfaces CP2# p CP2, for p ≤ 9, and S2

× S2 (which have χh = 1), and
the minimal elliptic ruled surfaces T 2

× S2 and T 2 ∼
×S2 (which have χh = 0). The

existence of the Lefschetz pencils in the statement of the theorem is granted by
Donaldson, whereas our proof of the essential constraints on the topology of the
pencils uses Seiberg–Witten theory, and builds on the works of Taubes [63; 64],
McDuff [53] and Li and Liu [51]. We note that while there are numerous construc-
tions of minimal symplectic 4-manifolds homeomorphic but not diffeomorphic to
the rational surfaces CP2#pCP2, for p ≥ 2, there are no known examples of exotic
irrational ruled surfaces to date.

The homeomorphism types of the rational and elliptic ruled surfaces are easily
determined by their fundamental group and intersection form by Freedman [30],
and Hambleton and Kreck [40], respectively. Thus, powered by Theorem A, one
can produce exotic copies of these small 4-manifolds by constructing Lefschetz
pencils with the right algebraic invariants and small number of base points relative
to the fiber genus. As a successful implementation of this approach, we show that:

Theorem B. There are symplectic genus-3 Lefschetz pencils {(X i,φ, fi,φ)} whose
total spaces have χh(X i,φ)= 1 and c2

1(X i,φ)= 3−i , and they include exotic rational
surfaces CP2#(6 + i)CP2 as well as infinitely many symplectic 4-manifolds which
are not homotopy equivalent to any complex surface, for each i = 0, 1, 2, 3.

The index φ for the family of pencils {(X i,φ, fi,φ)} takes values in a certain
infinite subgroup of the mapping class group Mod(61

3) for each i = 0, 1, 2, 3.
Each symplectic 4-manifold X i,φ in the theorem is “almost minimal”, that is, it

is either minimal or at most one blow-up of a minimal symplectic 4-manifold; see
Remark 8. Notably, our family of genus-3 pencils with c2

1 = 3 are all hyperelliptic,
and therefore, by the work of Siebert-Tian [58], each X0,φ , including our exotic
CP2# 6 CP2, admits a symplectic involution and is a blow-down of a symplectic
double branched covering of a rational surface; see Remark 10. We should also note
that g = 3 is the smallest fiber genus for any Lefschetz pencil on an exotic rational
surface, and we moreover suspect that our examples in Theorem B are also optimal
in regard to the smallest exotic rational surfaces one can obtain via genus-3 pencils;
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see Remark 9. While in this article we only study pencils of genus g = 3, one can
obtain much sharper results even with g = 4 or 5 pencils, as demonstrated in our
forthcoming work [11].

We describe our Lefschetz pencils in Theorem B in terms of their monodromy
factorizations, which amount to positive Dehn twist factorizations of the boundary
multitwist in the mapping class group of an orientable surface. We build these
pencils out of lower genera pencils, using a novel technique we call breeding, which
consists of carefully embedding the positive factorizations for lower genera pencils
into the mapping class group of a higher genus surface in such a way that one can
cancel all the negative Dehn twists (along nonboundary parallel curves) against
positive ones at the end. It is worth noting that, although we use the breeding
technique to derive new symplectic 4-manifolds from smaller ones, it is not an
inherently symplectic operation. In the intermediary steps we get achiral Lefschetz
pencils and fibrations which do contain negative nodes, but then we match them
with positive nodes and remove all these pairs, which corresponds to surgering out
self-intersection zero spheres contained in the fibers.

In an unpublished note with Korkmaz, we used a simpler version of the breeding
technique to produce hyperelliptic genus-g Lefschetz fibrations with 5g − 3 critical
points, which yield the smallest hyperelliptic Lefschetz fibrations when g = 3.
Since the appearance of the first version of this paper on the arxiv, the breeding
technique has been used to produce several new Lefschetz pencils and fibrations
(e.g., [38; 4; 10; 11]) and especially played a vital role in the recent resolution of
Stipsicz’s conjecture on the signature of Lefschetz fibrations in [10].

In the last portion of our paper, we turn to symplectic Calabi–Yau surfaces. Recall
that a symplectic 4-manifold is called a symplectic Calabi–Yau surface if it has trivial
canonical class, in obvious analogy with complex Calabi–Yau surfaces. The works
of Li and Bauer established that any symplectic Calabi–Yau surface with b1 > 0 has
the rational homology type of a torus bundle over a torus [7; 48; 49], and it remains
an open question whether torus bundles over tori exhaust all the diffeomorphism
types of symplectic Calabi–Yau surfaces with b1 > 0 [22; 49]. As stated by Li [50],
a posteriori reasoning for an affirmative answer to this question often seems to stem
from the lack of any new constructions of symplectic Calabi–Yau surfaces. The
surgical operations like knot surgery, simplest rational blow-downs, generalized
fiber sums or Luttinger surgery, do not produce any new symplectic Calabi–Yau
surfaces [23; 43; 50; 66].

Akin to our strategy for producing exotic rational and elliptic ruled surfaces,
in [12; 16] we implemented a strategy to construct (possibly new) symplectic
Calabi–Yau surfaces via positive factorizations for pencils. The breeding technique,
which is particularly effective for getting small positive factorizations, allows us to
produce small symplectic Calabi–Yau surfaces as well:
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Theorem C. There are symplectic genus-3 Lefschetz pencils {(Xφ, fφ)} whose
total spaces are symplectic Calabi–Yau surfaces that realize all integral homology
types of torus bundles over tori, and they include a symplectic Calabi–Yau surface
homeomorphic to the 4-torus and fake symplectic T 2

× S2s.

The index φ for the family of pencils {(Xφ, fφ)} takes values in a certain infinite
subgroup of the mapping class group Mod(64

3). A fake T 2
× S2 is a 4-manifold

which has the same homology type as T 2
× S2 but is not diffeomorphic to it.

We describe the Lefschetz pencils in Theorem C in terms of their monodromy
factorizations given in (47), which feeds into Donaldson’s proposal of analyzing
monodromies of pencils on symplectic Calabi–Yau surfaces [21, Problem 5]. These
are the first explicit monodromy factorizations of pencils on symplectic Calabi–Yau
surfaces with b1> 0 in the literature, whereas many examples on symplectic Calabi–
Yau surfaces with b1 = 0 were obtained in [12; 16]. Following the arxiv posting of
an earlier version of this paper, similar examples were obtained by Hamada and
Hayano in [38], also by employing the breeding technique.

Since symplectic Calabi–Yau surfaces with b1 > 0 have the same Seiberg–Witten
invariants as torus bundles over tori, detecting any new symplectic Calabi–Yau
surfaces among {Xφ} hangs on essentially the possibility of detecting a π1(Xφ)
that is not a torus bundle group; see Remark 14. At the time of writing, we have
not been able to determine whether all π1(Xφ) we get are torus bundle groups.
Likewise, we have not been able to spot any fake symplectic T 2

× S2 among {Xφ}
with π1(Xφ)= Z2, which would make it homeomorphic to T 2

× S2, and thus an
exotic elliptic ruled surface. (There are torus bundle over tori which have the same
homology type as T 2

× S2.) On the other hand, Hamada and Hayano were able to
show in [38] that our symplectic Calabi–Yau surface homeomorphic to the 4-torus
is in fact diffeomorphic to it, by comparing our example with a holomorphic pencil
on the standard 4-torus described by Smith; see Remark 15. While we do not
know if any other Xφ is standard, it is worth noting that if our family of symplectic
Calabi–Yau surfaces {Xφ} were to fully overlap with torus bundles over tori, then
an additional feature of our construction would imply that any of these bundles can
be equipped with a symplectic structure so that it is obtained via Luttinger surgeries
from the standard 4-torus [43, Conjecture 4.9]; see Remark 16.
Outline of the paper: We review the basic definitions and preliminary results on Lef-
schetz pencils and fibrations, mapping class groups and positive factorizations, and
symplectic 4-manifolds and Calabi–Yau surfaces in Section 2. In Section 3, we pro-
vide a characterization of small symplectic exotic rational surfaces (Theorem 3) and
that of exotic minimal ruled surfaces (Theorem 6), which together give Theorem A.
We breed our genus-3 pencils on exotic rational surfaces in Section 4, and on
symplectic Calabi–Yau surfaces with b1 > 0 in Section 5, which yield Theorem B
and Theorem C, respectively.
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2. Preliminaries

Here we quickly review the definitions and the basic properties of Lefschetz pencils
and fibrations, Dehn twist factorizations in mapping class groups of surfaces, and
symplectic 4-manifolds. The reader can turn to [13; 36; 47] for more details.

2.1. Lefschetz pencils and fibrations. A Lefschetz pencil on a closed, smooth,
oriented 4-manifold X is a smooth surjective map f : X \{bj } → S2, defined on the
complement of a nonempty finite collection of points {bj }, such that around every
base point bj and critical point pi there are local complex coordinates (compatible
with the orientations on X and S2) with respect to which the map f takes the
forms (z1, z2) 7→ z1/z2 and (z1, z2) 7→ z1z2, respectively. A Lefschetz fibration is
defined similarly for {bj } =∅. Blowing-up at each base point bj of a pencil (X, f ),
one obtains a Lefschetz fibration (X̃ , f̃ ) with disjoint (−1)-sphere sections Sj

corresponding to each bj , and conversely, blowing down disjoint (−1)-sphere
sections of a Lefschetz fibration, one obtains a pencil.

We say (X, f ) is a genus-g Lefschetz pencil or fibration for g the genus of a
regular fiber F of f . The fiber containing the critical point pi has a nodal singularity
at pi , which locally arises from shrinking a simple loop ci on F , called a vanishing
cycle. A singular fiber of (X, f ) is called reducible if ci is separating. When ci is
null-homotopic on F , one of the fiber components becomes an exceptional sphere,
an embedded 2-sphere of self-intersection −1, which one can blow down without
altering the rest of the fibration.

In this paper we use the term Lefschetz fibration only when the set of critical
points {pi } is nonempty, i.e., when the Lefschetz fibration is nontrivial. We moreover
assume that the fibration is relatively minimal, i.e., there are no exceptional spheres
contained in the fibers, and also that the critical points pi lie in distinct singular
fibers, which can be always achieved after a small perturbation.

Allowing the local model (z1, z2) 7→ z1 z̄2 around the critical points pi , which
give rise to negative nodes, all of the above notions extend to so-called achiral
Lefschetz pencils and fibrations.

2.2. Positive factorizations. Let 6b
g denote a compact, connected, oriented surface

of genus g with b boundary components, and simply write 6g when there is no
boundary. We denote by Mod(6b

g) its mapping class group; the group composed of
orientation-preserving self-homeomorphisms of 6m

g which restrict to the identity
along ∂6b

g , modulo isotopies that also restrict to the identity along ∂6b
g . Let

Mod(6b
g, S) denote the stabilizer subgroup of Mod(6b

g) which consists of elements
fixing the subset S ⊂6b

g pointwise. Denote by tc ∈ Mod(6b
g) the positive (right-

handed) Dehn twist along the simple closed curve c ⊂ 6m
g . Its inverse t−1

c is the
negative (left-handed) Dehn twist along c.
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Let {ci } be a nonempty collection of simple closed curves on 6b
g , which do

not become null-homotopic when ∂6b
g is capped off by disks, and let {δj } be a

collection of curves parallel to distinct boundary components of 6b
g . If the relation

tcl · · · tc2 tc1 = tδ1 · · · tδb (1)

holds in Mod(6b
g), we call the word W on the left-hand side a positive factorization

of the boundary multitwist 1 = tδ1 · · · tδb in 0b
g . (We will also use ∂i instead

of δi when there are several surfaces with boundaries involved in our discussion.)
Capping off all the boundary components of6b

g with disks induces a homomorphism
Mod(6b

g)→ Mod(6g), under which W maps to a similar positive factorization of
the identity element 1 ∈ Mod(6g).

The positive factorization in (1) gives rise to a genus-g Lefschetz fibration (X̃ , f̃ )
with b disjoint (−1)-sections Sj , and therefore a genus-g Lefschetz pencil (X, f )
with b base points. Identifying the regular fiber F with 6g, we can view the
vanishing cycles of the fibration as the Dehn twist curves {ci }. Every Lefschetz
pencil and fibration can be described by such a positive factorization, which is
called its monodromy factorization [36; 44; 52].

Let W be a positive factorization of the form W = P P ′ in Mod(6b
g), where

P and P ′ are some products of positive Dehn twists along curves which do not
become null-homotopic when ∂6b

g is capped off. If P = 5i tci , as a mapping
class, commutes with some element φ ∈ Mod(6b

g), we can then produce a new
positive factorization Wφ = PφP ′, where Pφ denotes the conjugate factorization
φPφ−1

=5i (φtciφ
−1)=5i tφ(ci ). In this case, we say Wφ is obtained from W by

a partial conjugation φ along P .
Allowing negative Dehn twists, which correspond to negative nodes, we can

more generally work with factorizations for achiral Lefschetz fibrations and pencils.
All of the above definitions and results extend to this more general setting.

2.3. Symplectic 4-manifolds and Kodaira dimension. It was shown by Donaldson
that every symplectic 4-manifold (X, ω) admits a symplectic Lefschetz pencil whose
fibers are symplectic with respect to ω [20]. Conversely, generalizing a construction
of Thurston, Gompf showed that the total space of a Lefschetz pencil and fibration
always admits a symplectic form ω with respect to which all regular fibers and any
preselected collection of disjoint sections are symplectic [36]. Whenever we take a
symplectic form ω on a Lefschetz pencil or fibration (X, f ), we will assume it is
of Thurston–Gompf type, with respect to which any explicitly mentioned sections
will be assumed to be symplectic as well.

The Kodaira dimension for projective surfaces can be extended to symplectic
4-manifolds as follows: Let K Xmin be the canonical class of a minimal model
(Xmin, ωmin) of (X, ω). The symplectic Kodaira dimension of (X, ω), denoted
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by κ = κ(X, ω) is then defined as

κ(X, ω)=


−∞ if K Xmin · [ωmin]< 0 or K 2

Xmin
< 0,

0 if K Xmin · [ωmin] = K 2
Xmin

= 0,

1 if K Xmin · [ωmin]> 0 and K 2
Xmin

= 0,

2 if K Xmin · [ωmin]> 0 and K 2
Xmin

> 0.

Remarkably, not only is κ independent of the minimal model (Xmin, ωmin) but also
it is independent of the particular symplectic form ω on X ; so it is a smooth invariant
of the 4-manifold X [49]. Symplectic 4-manifolds with κ = −∞ are classified up
to symplectomorphisms, which are precisely the rational and ruled surfaces [47].

Symplectic 4-manifolds with κ = 0, which are the analogues of the Calabi–Yau
surfaces, are those with torsion canonical class [49]. It was shown by Tian-Jun Li,
and independently by Stefan Bauer [49; 7], that the rational homology type of any
minimal symplectic 4-manifold with κ = 0 is that of a torus bundle over a torus,
the K3 surface or the Enrique surfaces. In the first two cases we have symplectic
Calabi–Yau surfaces, which have trivial canonical class, whereas in the last case
the canonical class is torsion.

We have the following topological characterization of Lefschetz pencils on
minimal symplectic 4-manifolds with κ = 0, which can be easily derived from the
more general characterization for Lefschetz fibrations on symplectic 4-manifolds
with κ = 0 given in [12, Theorem 4.1], [57, Theorem 5.12]:

Proposition 1. Let (X, f ) be a genus-g Lefschetz pencil with b base points, where
X is neither rational nor ruled. Then there is a symplectic form ω on X so that
(X, ω) is a symplectic Calabi–Yau or a rational homology Enriques surface if and
only if b = 2g − 2.

3. Topology of pencils on rational and elliptic ruled surfaces

In this section we will prove two theorems that might be of independent interest;
one on the topology of Lefschetz pencils and fibrations on (small) rational surfaces,
and one on (small) irrational ruled surfaces. These results enable one to tackle
producing exotic smooth structures on the rational surfaces CP2# p CP2, S2

× S2,
and the minimal elliptic ruled surfaces T 2

× S2 and T 2 ∼
×S2, via constructions of

new positive factorizations, as we will try to demonstrate in the later sections.

3.1. Lefschetz pencils and fibrations on rational surfaces. We first prove the
following lemma, which shows that pencils on rational surfaces always have a lot
of base points with respect to the fiber genera:

Lemma 2. The rational surfaces CP2# p CP2, for p ≤ 9, or S2
× S2, do not admit

any genus-g pencil with b < 2g − 2 base points or any Lefschetz fibration of g ≥ 2.
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Proof. We claim that the statement of the lemma holds even for nonrelatively
minimal pencils and fibrations. With this in mind, it suffices to prove our claim
for X = CP2 # 9 CP2, because we can blow-up on the fibers of a given genus-g
Lefschetz pencil or fibration on CP2# p CP2 with p< 9 or S2

× S2 to get one on X .
Now suppose for contradiction that X = CP2# 9 CP2 admits a genus-g pencil

with b < 2g − 2 base points or a Lefschetz fibration of genus g ≥ 2. Note that in
either case, g ≥ 2. For our arguments to follow, it will be convenient to allow b to
be a nonnegative integer so that b = 0 marks the fibration case.

Let F = aH −
∑9

i=1 ci Ei be the fiber class, where H2(X) is generated by the
hyperplane class H and the exceptional classes E1, . . . , E9, which satisfy H 2

= 1,
Ei · E j = −δi j , and H · Ei = 0. Since F2

= b, we have

a2
= b +

9∑
i=1

c2
i .

We can equip X with a Thurston–Gompf symplectic form ω which makes the
fibers symplectic. Moreover, we can choose an ω-compatible almost complex
structure J , even a generic one in the sense of Taubes, with respect to which the
pencil/fibration is J -holomorphic for a suitable choice of almost complex structure
on the base 2-sphere; see, e.g., [65]. It was shown by Li and Liu [51] that for
a generic ω-compatible J , the class H in the rational surface X has an embed-
ded J -holomorphic representative. Hence, F and H both have J -holomorphic
representatives, which implies that F · H = a ≥ 0.

Since there is a unique symplectic structure on X up to deformation and sym-
plectomorphisms [51], we can apply the adjunction formula to get

2g −2 = F2
+ K · F = b+

(
−3H +

9∑
i=1

Ei

)
·

(
aH −

9∑
i=1

ci Ei

)
= b−3a +

9∑
i=1

ci .

Since a, b ≥ 0, and g ≥ 2, from the above equalities we have

3a =

√
9a2 =

√
9
(
b +

∑9
i=1 c2

i

)
≥

√
9
(∑9

i=1 c2
i

)
=

√(∑9
i=1 1

)(∑9
i=1 c2

i

)
≥

√∣∣∑9
i=1 ci

∣∣2
,

where the last inequality is by Cauchy–Schwarz. In turn, we get:

3a ≥

√∣∣∑9
i=1 ci

∣∣2
=

∣∣∑9
i=1 ci

∣∣ = |2g − 2 − b + 3a| = 2g − 2 − b + 3a,

which implies that b ≥ 2g − 2. The contradiction shows that there is no such fiber
class F . In turn, there is no such Lefschetz pencil or fibration. □

The statement as stated is obviously not true for p > 9; for example there is
a genus-2 Lefschetz fibration on CP2# 13 CP2 (which in fact is the blow-up of
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a genus-2 pencil on S2
× S2). Otherwise, one can generalize the above result to

rational surfaces CP2# p CP2 with p > 9, under particular assumptions for b and g
with respect to the number of blow-ups p.

Any symplectic, exotic rational surface would admit a pencil of genus g ≥ 2
by Donaldson’s result and by the fact that only rational surfaces admit genus-0 or
genus-1 pencils. On the other hand, the regular fiber of a pencil of genus g ≥ 2
with b ≥ 2g −2 base points would violate the Seiberg–Witten adjunction inequality
(which holds for any symplectic 4-manifold that is not a rational or a ruled surface).
We can thus conclude that:

Theorem 3. A symplectic 4-manifold X in the homeomorphism class of CP2# p CP2

with p ≤ 9 or S2
× S2 is an exotic rational surface if and only if it admits a genus-g

pencil with b < 2g − 2 base points or a Lefschetz fibration of genus g ≥ 2.

As we mentioned earlier, there are numerous examples of symplectic 4-manifolds
homeomorphic but not diffeomorphic to CP2# p CP2, for 2 ≤ p ≤ 9, and they
should all admit genus-g pencils with b< 2g −2 base points by the above theorem.
However, in the literature there appear to be no examples of Lefschetz pencils (with
base points, no multiple fibers) on these 4-manifolds, even on the complex algebraic
ones. We will provide some novel symplectic examples admitting genus-3 pencils
in the next section.

As for fibrations, for K any fibered knot of genus g ≥ 1, knot surgered elliptic
surfaces E(1)K of Fintushel and Stern yield exotic E(1) = CP2# 9 CP2, which
admit symplectic genus-2g Lefschetz fibrations [28]. Moreover, there are genus-2
symplectic Lefschetz fibrations in the homeomorphism classes of CP2# p CP2 for
p = 7, 8, 9 [13] and even holomorphic ones for p = 8, 9 [56].

Remark 4. When X is an exotic CP2# p CP2, with p ≤ 8, we can strengthen the
statement of Theorem 3 a bit. If the pencil of genus g ≥ 2 on X had b = 2g−3 base
points, blowing up all of them, we would get a Lefschetz fibration with b disjoint
(−1)-sphere sections. It then follows from [57, Theorem 5-12] that K 2

Xmin
= 0,

which cannot be the case here since K 2
Xmin

≥ K 2
X = 9 − p > 0. Hence, any pencil

on such an exotic rational surface X can have at most 2g − 4 base points.

3.2. Lefschetz pencils and fibrations on minimal elliptic ruled surfaces. We now
show that pencils on minimal elliptic ruled surfaces also have a lot of base points
with respect to the fiber genera:

Lemma 5. The minimal elliptic ruled surfaces T 2
× S2 or T 2 ∼

×S2 do not admit any
genus-g Lefschetz pencil with b ≤ 2g − 2 base points or any Lefschetz fibration.

Proof. These minimal elliptic surfaces do not admit Lefschetz fibrations of genus
g < 2 for fairly elementary reasons (which do not require classification results):
any genus-0 Lefschetz fibration has a simply connected total space, and the Euler



194 R. İNANÇ BAYKUR

characteristic of any genus-1 Lefschetz fibration is equal to the number of critical
points, and therefore it is positive. Clearly, neither one of these two implications
work for T 2

× S2 or T 2 ∼
×S2.

Now suppose for a contradiction that X = T 2
× S2 or T 2 ∼

×S2 admits a genus-g
pencil with b ≤ 2g − 2 base points or a Lefschetz fibration. Once again, it will be
convenient here to let b be a nonnegative integer so that b = 0 marks the fibration
case. By our observation in the previous paragraph, we can assume that g ≥ 2.

We equip X with a Thurston–Gompf symplectic form ω which makes the fibers,
and in particular a regular fiber F , of the pencil/fibration symplectic. We can
choose an ω-compatible almost complex structure J with respect to which the
pencil/fibration is J -holomorphic, so in particular F is a J–holomorphic curve.
Because there is a unique symplectic structure on a minimal ruled surface up to
deformations and symplectomorphisms [51], we will be able to once again apply
the adjunction formula using a standard canonical class in each case. Furthermore,
it will be important for our arguments that it was also shown in [51] that for
any ω-compatible almost complex structure J , the sphere fiber of the ruling on
the elliptic surface has a J–holomorphic representative. Therefore the algebraic
intersection of F with the sphere fiber is nonnegative. Akin to our proof of Lemma 2,
we will show that neither one of the minimal elliptic ruled surfaces contains an
embedded genus-g symplectic surface with self-intersection ≤ 2g − 2, whereas F
is such.

We will run our arguments for the spin and nonspin cases separately:

X = T 2
× S2: Here H2(X)∼= Z2 is generated by S = {pt}× S2 and T = T 2

×{pt},
where S · S = 0, T · T = 0, and S · T = 1. By a slight abuse of notation, we denote
the homology class of the fiber also by F , so F = x S + yT for some x, y ∈ Z.

As remarked above, the algebraic intersection of F with S is nonnegative, which
means that F · S = y ≥ 0. Since F2

= b, we have

b = 2xy,

where b ≥ 0 and y ≥ 0 imply that x ≥ 0.
On the other hand, by the adjunction formula we get

2g − 2 = F2
+ K X · F = b + (−2T ) · (x S + yT )= b − 2x,

which implies that 2x = b − (2g − 2)≤ 0 by our assumption on b. It follows that
x = 0, and in turn, b = 0 by the first equality, and g = 1 by the second, which is a
contradiction.

X = T 2 ∼
×S2: Now H2(X) ∼= Z2 is generated by the fiber S and section T of the

degree–1 ruling on X , where S · S = 0, T · T = 1, and S · T = 1. Let the fiber
class F be given by F = x S + yT , for some x, y ∈ Z.
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Since the algebraic intersection of F with S is nonnegative, we have F ·S = y ≥ 0.
Since F2

= b, we now have

b = 2xy + y2
= (2x + y)y,

where b ≥ 0 and y ≥ 0 imply that 2x + y ≥ 0.
We apply the adjunction formula to get

2g − 2 = F2
+ K X · F = b + (S − 2T ) · (x S + yT )= b − 2x − y,

which means that 2x + y = b − (2g −2)≤ 0. As we also had 2x + y ≥ 0, it follows
that 2x + y = 0, and then b = 0 by the first equality, and g = 1 by the second, which
once again contradicts our assumption on the fiber genus — that g is greater than or
equal to 2. □

The above result, at least as stated, does not generalize to pencils on other ruled
surfaces. First of all, there exist genus-g Lefschetz pencils with b = 2g − 2 base
points on nonminimal elliptic ruled surfaces, even after a single blow-up; an example
with g = b = 2 can be found in the next section. Secondly, there are pencils on the
minimal ruled surfaces 6h × S2 and 6h

∼
×S2 with fiber genus g = 2h and b = 4

base points [37], so the statement fails for any h ≥ 2 in both spin and nonspin cases.
Using Donaldson’s result on the existence of Lefschetz pencils on symplectic

4-manifolds, we moreover conclude that:

Theorem 6. A symplectic 4-manifold X in the homeomorphism class of T 2
× S2 or

T 2 ∼
×S2 is an exotic elliptic ruled surface if and only if it admits a genus-g pencil

with b ≤ 2g − 2 base points or a Lefschetz fibration.

It is worth noting that to this date there are no known examples of exotic elliptic
ruled surfaces, despite their topological types being amenable to Freedman type
arguments [41]. While we plan to explore this direction elsewhere, in Section 5,
through positive factorizations for pencils, we will provide examples of fake sym-
plectic elliptic ruled surfaces, which have the same cohomology as T 2

× S2, but
are not diffeomorphic to it.

4. Exotic rational surfaces via symplectic genus-3 pencils

Here we construct positive factorizations for symplectic genus-3 Lefschetz pencils,
whose total spaces are homeomorphic but not diffeomorphic to rational surfaces.
These will be bred from genus-2 pencils on elliptic ruled surfaces. For a better
exposition, we first present our examples with χh = 1 and c2

1 = 0, 1, 2, and we
discuss our examples with χh = 1 and c2

1 = 3, whose constructions are a bit more
involved, afterwards.
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C

x1

x3

x2

d

e

B2 B′
2

B0

B1

B′
0

B′
1

C ′

x4 A0 A′
0

A1 A′
1

A2 A′
2

Figure 1. The curves C , x1, x2, x3, x4, d , e of the first embedding
are given on the left. The curves B0, B1, B2, A0, A1, A2 of the
second embedding (except for C , which is already given on the
left) and C ′, B ′

0, B ′

1, B ′

2, A′

0, A′

1, A′

2 of the third embedding are on
the right.

4.1. Breeding pencils with χh = 1 and c2
1 = 0, 1, 2. In [13], Korkmaz and the

author obtained the following relation in Mod(61
2):

tetx1 tx2 tx3 td tC tx4 = tδ,

which is a positive factorization for a genus-2 pencil with one base point on
T 2

× S2# 2 CP2. See Figure 2 for the curves xi , C , d, e (where the boundary
component δ is obtained by carving out a disk neighborhood of the marked point
on right end of the surface). Consider the embedding of 61

2 into 61
3 given by

mapping the boundary δ = ∂61
2 to the curve C ′, and the remaining Dehn twist

curves xi ,C, d, e to the ones shown in Figure 1, denoted by the same letters. After
a single Hurwitz move (see, e.g., [36]), and collecting all the Dehn twists on the
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same side, we get the following relation in Mod(61
3):

tetx1 tx2 tx3 td tB2 tC t−1
C ′ = 1, (2)

where B2 = tC(x4). Rewrite this relation as P1tC t−1
C ′ = 1, for P1 = tetx1 tx2 tx3 td tB2 .

Note that P1, tC and tC ′ all commute with each other.
Next, we take the following lift of the positive factorization for Matsumoto’s

genus-2 Lefschetz fibration to Mod(62
2) obtained by Hamada in [37]:

(tB0 tB1 tB2 tC)2 = tδ1 tδ2,

where δi are the boundary parallel curves, and the curves Bi and C are as shown on
the left-hand side of Figure 6. This is a positive factorization for a genus-2 pencil
with two base points on T 2

× S2# 2 CP2. After Hurwitz moves, and collecting all
the Dehn twists on the same side, we get the following relation in Mod(62

2):

tB0 tB1 tB2 tA0 tA1 tA2 t2
C t−1
δ1

t−1
δ2

= 1,

where each Aj = tC(Bj ), for j = 0, 1, 2, are as shown in Figure 6. We will describe
two different embeddings of this relation into Mod(61

3).
Cap off the boundary component δ1 of 62

2 , and then embed the resulting copy
of 61

2 into 61
3 via the embedding we used to derive the relation (2) above, so the

boundary δ2 is mapped to C ′, and all the other Dehn twist curves are as shown in
Figure 1, once again denoted by the same letters. So we have the following relation
in Mod(61

3):
tB0 tB1 tB2 tA0 tA1 tA2 t2

C t−1
C ′ = 1, (3)

which we rewrite as P2t2
C t−1

C ′ = 1, for P2 = tB0 tB1 tB2 tA0 tA1 tA2 . Here P2, tC and tC ′

all commute with each other.
Lastly, consider an embedding of 62

2 into 61
3 so that δ1 is mapped to c, δ2 is

mapped to ∂ = ∂61
3 , and the remaining curves are as shown in Figure 1, where we

use a prime symbol when denoting the curves by the same letters. This gives a
third relation in Mod(61

3):

tB ′

0
tB ′

1
tB ′

2
tA′

0
tA′

1
tA′

2
t2
C ′ t−1

C = t∂ , (4)

which we rewrite as P ′

2t2
C ′ t−1

C = tδ, for P ′

2 = tB ′

0
tB ′

1
tB ′

2
tA′

0
tA′

1
tA′

2
. Similarly, P ′

2, tC
and tC ′ all commute with each other.

With these three embeddings in hand, we can now describe our positive factor-
izations. Let φ be any mapping class in Mod(61

3, S), the subgroup of Mod(61
3)

which consists of elements fixing the set S := {C,C ′
} pointwise. Then we have

(P1)
φP1 P ′

2tC = (P1tC t−1
C ′ )

φP1tC t−1
C ′ P ′

2t2
C ′ t−1

C = 1 · t∂ · 1 = t∂ ,

where the first equality follows from the commutativity relations noted above
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and the fact that φ commutes with tC t−1
C ′ . The second equality follows from the

relations (2)–(4). Therefore

W1,φ = (P1)
φP1 P ′

2tC

is a positive factorization of the boundary twist t∂ in Mod(61
3). By identical

arguments, we see

W2,φ = (P1)
φP2 P ′

2t2
C and W3,φ = (P2)

φP2 P ′

2t3
C

are also positive factorizations of t∂ in Mod(61
3).

Each Wi,φ prescribes a symplectic genus-3 Lefschetz pencil (X i,φ, fi,φ) with
one base point, equipped with a Thurston–Gompf symplectic form. We claim that
χh(X i,φ)= 1 and c2

1(X i,φ)= 3 − i for each i = 1, 2, 3.
The Euler characteristic of X i,φ is given by

e(X i,φ)= 4 − 4g + ℓ− b = 4 − 4 · 3 + (18 + i)− 1 = 9 + i,

where g and b are the genus and the number of base points of the pencil, and ℓ is
the number of critical points, which is the same as the number of Dehn twists in
the positive factorization Wi,φ .

Since we have explicit positive factorizations for the pencils (X i,φ, fi,φ), the sig-
nature of each X i,φ can be easily calculated using the work of Endo and Nagami [24],
which states that the signature of the pencil is equal to the algebraic sum of the
signatures of the mapping class group relations used to derive this positive factor-
ization from the trivial word in Mod(61

3). Since the signature of any embedding
of a relation into a higher genus surface is the same, and since Hurwitz moves,
conjugations and cancellations of positive–negative Dehn twist pairs do not change
the signature, we just need to understand the signatures of the genus-2 relations
we used as our building blocks. The signature of the relation (2) is the same as the
signature of the genus-2 pencil with one base point on T 2

×S2# 2 CP2, which is −2.
The signature of the relation (3) is that of the genus-2 pencil with one base point on
T 2

× S2# 3 CP2 (recall that we capped off one of the boundaries first), which is −3.
Finally, the signature of the relation (4) is that of the genus-2 pencil with two base
points on T 2

× S2# 2 CP2, which is −2. We conclude that σ(X i,φ)= −5 − i .
Hence, χh(X i,φ)=

1
4(e(X i,φ)+ σ(X i,φ))=

1
4(9 + i − 5 − i))= 1 for each i =

1, 2, 3, whereas c2
1(X i,φ)= 2e(X i,φ)+ 3σ(X i,φ)= 2(9 + i)+ 3(−5 − i)= 3 − i , as

claimed. Note that the only rational or ruled surfaces which have the same invariants
are the rational surfaces CP2#(6 + i)CP2, which by Lemma 2, cannot admit such
pencils.

4.2. Breeding pencils with χh = 1 and c2
1 = 3. In our next construction we strive to

get hyperelliptic pencils. While getting hyperelliptic positive factorizations at every
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x1

x2

x3

x4 B2

C

d

e

Figure 2. The curves C , x1, x2, x3, x4, d, e in the lift of Baykur–
Korkmaz genus-2 positive factorization to Mod(63

2), along with
the curve B2 one gets after a Hurwitz move

step will constrain some of the freedom we have in our breeding constructions, we
will also leverage this additional property whenever we can.

Our construction will be comparable to that of the positive factorization W3,φ in
the previous section, where we employed three embeddings of (various lifts of) the
positive factorization for Matsumoto’s genus-2 Lefschetz fibration. Here we will
get our examples using three different embeddings of (various lifts of) the positive
factorization for the genus-2 Lefschetz fibration of Korkmaz and the author in [13].
This positive factorization, after a single Hurwitz move as before, has the following
lift in Mod(63

2):
tetx1 tx2 tx3 td tB2 tC = tδ1 tδ2 tδ3, (5)

where the curves xi , B2,C, d, e are as shown in Figure 2. We will simply use the
same labels for the Dehn twist curves xi , B2,C, d, e for any other relation we derive
from (5) by capping off some of the boundary components δ1, δ2, δ3.

A comprehensive proof of the relation (5) is given in [11], where it is also shown
that this is a positive factorization for a genus-2 pencil with two marked points on
the elliptic ruled surface T 2 ∼

×S2. It can also be verified in a straightforward fashion
using the Alexander method [25]. Below we sketch yet another argument based on
the hyperelliptic symmetry of the monodromy curves. This line of arguments can
be proved to be useful for similar calculations in general.

Let (X, f ) be the hyperelliptic genus-2 Lefschetz fibration corresponding to the
positive factorization tetx1 tx2 tx3 td tB2 tC = 1 in Mod(62), where X ∼= T 2

× S2# 3 CP2
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is equipped with a Thurston–Gompf symplectic form [13]. As shown in [33; 58],
there is a symplectic involution on X extending the hyperelliptic involution on the
fibers, and f is the relative minimalization of a Lefschetz fibration obtained via the
induced symplectic double branched cover X# 3 CP2

→ S2
× S2# 6 CP2 (where the

blow-ups are for the reducible fibers). The branch set consists of a multisection B of
the latter fibration, which intersects every fiber at the fixed points of the hyperelliptic
involution, and BE that consists of exceptional spheres contained in the reducible
fibers. Now, observe that when we isotope the monodromy curves of (X, f ) so that
they are symmetric under the obvious hyperelliptic involution obtained by rotating
the surface 62 in Figure 2 by a π–degree rotation along the x–axis (taking the
z–axis to be perpendicular to the page), they miss the three marked points (drawn
in blue in the figure) of the fixed points of the hyperelliptic involution, whereas
the four nonseparating curves go through the other three points. We can deduce
the topology of the branch set from this very data, and in particular conclude that
the multisection B consists of three disjoint (−1)-sphere sections E1, E2, E3 (one
for each marked point) and a 3-section which is a square zero symplectic 2-sphere
(going through the other three fixed points). Circling back to our original discussion,
the (−1)-sections E1, E2, E3 yield the lift (5).

We are now ready to describe our three embeddings.
Note that we have now drawn the surface 61

3 so that its boundary curve ∂ is as
shown in Figure 3. With this in mind, our first embedding is essentially the same as
the one yielded by the relation (2) in Mod(61

3): Cap off the boundary components
δ1 and δ2 of 63

2 and then embed it into 61
3 so that δ3 maps to C ′ and the rest of the

Dehn twist curves are as shown in Figure 1, except the boundary ∂63, which is
outside of their support, is shifted. Using the same notation as before, we get the
relation P1tC t−1

C ′ = 1 in Mod(61
3), where P1 = tetx1 tx2 tx3 td tB2 .

For our second embedding, cap off the boundary component δ3 of 63
2 , and then

embed the resulting copy of 62
2 into 61

3 so that

δ1 7→ C, δ2 7→ ∂, C 7→ C ′,

and the remaining curves are as shown in Figure 3, where we once again use a prime
symbol when denoting the curves by the same letters. For our arguments to follow,
here it is more convenient to take the genus-2 relation as tx4 tetx1 tx2 tx3 td tC = tδ1 tδ2 ,
where we moved tB2 back over tC by a Hurwitz move and then applied a cyclic
permutation. So we get the following relation in Mod(61

3):

tx ′

4
te′ tx ′

1
tx ′

2
tx ′

3
td ′ tC ′ t−1

C = t∂ , (6)

which we rewrite as P ′

1td ′ tC ′ t−1
C = tδ , for P ′

1 = tx ′

4
te′ tx ′

1
tx ′

2
tx ′

3
. Notably, P ′

1td ′ , tC , tC ′

and t∂ all commute with each other.
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Figure 3. The surface 61
3 with shifted boundary. The curves C ′,

x ′

1, x ′

2, x ′

3, x ′

4, d ′, e′ of the second embedding are on the right, and
the curves C , x ′′

1 , x ′′

2 , x ′′

3 , B2, d ′′, e′′ of the third embedding are
given on the left. The Dehn twist curve z in the conjugation φ is
on the top left (in green).

For our last embedding, cap off the boundary components δ1 and δ2 of 63
2 , and

then embed the resulting copy of 61
2 into 61

3 so that δ3 maps to the curve d ′ above,
where the curves e′′, x ′′

1 , x ′′

2 , x ′′

3 , d ′′, B2,C, d ′ are as shown in Figure 3. (Note that
we get the same B2,C curves.) So we obtain another relation in Mod(61

3):

te′′ tx ′′

1
tx ′′

2
tx ′′

3
td ′′ tB2 tC t−1

d ′ = 1, (7)

which we rewrite as P ′′

1 t−1
d ′ = 1, for P ′′

1 = te′′ tx ′′

1
tx ′′

2
tx ′′

3
td ′′ tB2 tC . Here P ′′

1 and td ′

commute.
We can now describe our positive factorizations using the three embeddings

above. Let φ be any mapping class in the stabilizer group Mod(61
3, d ′). Then

P1 P ′

1(P
′′

1 )
φ

= (P1tC t−1
C ′ )(P ′

1td ′ tC ′ t−1
C )(P ′′

1 t−1
d ′ )

φ
= 1 · t∂ · 1 = t∂ .
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Here the first equality follows from the commutativity relations we noted above,
along with our choice of φ as follows: In the middle, the multitwist tC ′ t−1

C commutes
with P ′

1, so we can bring it to its left and cancel it against tC t−1
C ′ . Since φ stabilizes

the curve d ′, we have td ′ = (td ′)φ , so we can now take the td ′ factor into the
conjugated expression, and then, because it commutes with P ′′

1 , we can move it to
its right and cancel against t−1

d ′ within the parentheses. The second equality is the
product of the equalities (2), (6) and (7).

So, we have obtained a positive factorization W0,φ = P1 P ′

1(P
′′

1 )
φ of the boundary

twist tδ in Mod(61
3). Each W0,φ prescribes a symplectic genus-3 Lefschetz pencil

(X0,φ, f0,φ) with one base point, equipped with a Thurston–Gompf symplectic form.
As before, we can calculate the Euler characteristic of X0,φ as

e(X0,φ)= 4 − 4g + ℓ− b = 4 − 4 · 3 + 18 − 1 = 9,

and the signature of X0,φ as the signature of the relation W0,φ after [24]. The
latter is equal to the sum of the signatures of the three relations (2), (6) and (7),
which correspond to pencils on T 2 ∼

×S2# 2 CP2, T 2 ∼
×S2#CP2 and T 2 ∼

×S2#2CP2,
respectively. (In the case of the second embedding, since its second boundary
twist tδ2 was mapped to t∂ , it now corresponds to the base point of the genus-3
pencil.) So we get σ(X0,φ) = −2 − 1 − 2 = −5. Therefore, χh(X0,φ) = 1 and
c2

1(X0,φ)= 3, as claimed. The only rational or ruled surface which has the same
invariants is CP2# 6 CP2, which by Lemma 2, cannot admit such pencils.

Lastly, observe that the Dehn twist curves in all three factors P1, P ′

1 and P ′′

1
involved in W0,φ commute with the obvious involution on 61

3 given by a π–rotation
of the surface along the x–axis in Figure 3 (taking the z–axis perpendicular to the
page). If we let HMod(61

3) denote the symmetric mapping class group with respect
to this involution [25], then for any φ in the subgroup Mod(61

3, d ′)∩ HMod(61
3),

we get a positive factorization W0,φ prescribing a hyperelliptic pencil (X0,φ, f0,φ).

4.3. Homeomorphism and homology types of c2
1 = 0, 1, 2 examples. Recall that

we have e(X i,φ) = 9 + i and σ(X i,φ) = −5 − i , for i = 0, 1, 2, 3. None of our
examples have even intersection forms, which can be easily seen by the existence of
reducible fibers in X i,φ , which have self-intersection −1. To be able to pin down the
homeomorphism and integral homology types of these 4-manifolds, it remains to
determine their fundamental groups and the first integral homology groups, which
we will do for particular choices of φ.

Below, we will first carry out these calculations for our examples (X i,φ, fi,φ)

with i = 1, 2, 3, and then do the same for the i = 0 case in the next subsection. Here
we aspire to keep our calculations simple but also generate as many fundamental
groups as possible. Finding the right balance will come at a cost of getting a
somewhat asymmetric picture; the fundamental groups of X i,φ will realize any
quotient of Z2 when i = 1, 3, and any quotient of Z when i = 0, 2.
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a1 a2 a3

b1 b2 b3

Figure 4. Generators aj , bj of π1(63)

Let φ = t−m1
b1

tm2
a2

, where b1, a2 are as in Figure 4. Since b1 and a2 are disjoint
from C and C ′, we have φ ∈ Mod(61

3, S) for S = {C,C ′
}, as required. Denote the

positive factorizations in this case by Wi,m := Wi,φ , where for i = 1, 3, we take
φ = t−m1

b1
tm2
a2

and m = (m1,m2) ∈ N2, whereas for i = 2, we take φ = t−5
b1

tm
a2

and
m ∈ N. Now, set (X i,m, fi,m) := (X i,φ, fi,φ), and further set (X i , fi ) := (X i,m, fi.m)

in the specific cases of m = (1, 1) when i = 1, 3, and m = 1 when i = 2.
We claim that π1(X i,m) is (Z/m1Z)⊕ (Z/m2Z), for i = 1, 3, and Z/mZ, for

i = 2. In particular each X i is simply connected.
Let (X̃ i,m, f̃i,m) be the Lefschetz fibration we obtain by blowing-up the base

points of the pencil (X i,m, fi,m). Let {aj , bj } be the standard generators of π1(6g)

as shown in Figure 4. Using the standard handlebody decomposition for a Lefschetz
fibration with a section, we obtain a finite presentation for π1(X i,m)= π1(X̃ i,m) of
the form

⟨a1, b1, a2, b2, a3, b3 | [a1, b1][a2, b2][a3, b3], Ri,m,1, . . . , Ri,m,18+i ⟩, (8)

where {Ri,m,k}
18+i
k=1 are relators obtained by expressing the Dehn twist curves in the

positive factorization Wi,m in the basis {aj , bj }
3
j=1. We denote the inverse of any

fundamental group element x by x̄ .
We will first show that a subset of these relators, which come from Dehn twist

curves that are all present in each factorization Wi,m , for i = 1, 2, 3, already yield
an abelian quotient. Since any further quotient will also be abelian, at that point it
will suffice to consider only the abelianizations of all the relators {Ri,m,k}

18+i
k=1 .

Each positive factorization Wi,m contains the factor P ′

2tC . So the following
relations hold for the finite presentations we have for each π1(X i,m):

[a1, b1][a2, b2][a3, b3] = 1, (9)

[a1, b1] = 1, (10)

a2a3 = 1, (11)

a2b̄2a3b̄3 = 1, (12)

b3b2 = 1, (13)

where the relators (10)–(13) come from the vanishing cycles C, B ′

0, B ′

1, B ′

2, respec-
tively. We have a3 = ā2 from (11) and b3 = b̄2 from (13). Together with (12), these
imply [a2, b2] = 1 and [a3, b3] = 1. We conclude [aj , bj ] = 1 for every j = 1, 2, 3.
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From the factor P1, we get (among many others) the relators

a1(b̄1a2b2)
2
= 1, (14)

a1b̄3
1a2b2a2 = 1, (15)

a1b̄5
1a2[b2, a2]b1a2 = 1, (16)

b2b1[b3, a3] = 1, (17)

induced by the vanishing cycles x1, x2, x3 and B2, respectively. Adding these to the
previous relators from the factor P ′

2, we immediately see that the commutativity of
a3 and b3 and (17) imply b1 = b̄2. So (14) implies that a1 = (b̄2ā2b̄2)

2, and since
a2 and b2 commute, we get a1 = ā2

2 b̄4
2

On the other hand, if we have the factor P2 instead, we get (again, among many
others) the relators

a1a2 = 1, (18)

b2ā2b1ā1[b3, a3] = 1, (19)

b2b1[b3, a3] = 1,

induced by the vanishing cycles B0, B1 and B2, respectively. We get a1 = ā2, and
together with the relators from P ′

2 we once again get b1 = b̄2, since [a3, b3] = 1.
Now, since the positive factorization W1,m contains the factor P1 P ′

2tC and the
positive factorizations W2,m and W3,m both contain the factor P2 P ′

2tC , the above
discussion shows that every π1(X i,m) is a quotient of an abelian group generated by
a2 and b2. It therefore remains to look at the abelianizations of the relators coming
from the remaining Dehn twist curves, i.e., we can simply look at the homology
classes of the vanishing cycles.

Without the conjugated factor, we have the abelianized relations

a3 = −a2 and b3 = −b2 = b1 for all Wi,m (20)

and depending on whether Wi contains the factor P1 or P2, either

a1 + 2a2 + 4b2 = 0 for W1,m , or (21)

a1 + a2 = 0 for W2,m and W3,m, (22)

where we used (20) to simplify the relators. These relators amount to all the other
generators being obtained from a2 and b2.

In fact, there are no other relations coming from the nonconjugated factors P1, P2

or P ′

2: This is easy to see by abelianizing the relators (9)–(19), which include all
the relators induced by the curves x1, x2, x3, B0, B1, B2, B ′

0, B ′

1, B ′

2. Missing are
the relators induced by the separating curves d, e from P1, the curves A0, A1, A2

from P1, and the curves A′

0, A′

1, A′

2 from P ′

2. The first two are trivial in homology,
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so they have no contribution to the list of relators we already have. On the other
hand, for each j = 0, 1, 2, Aj is homologous to Bj , because [Aj ] = [tC(Bj )] =

[Bj ]+ (C · Bj )[C], where C is a separating cycle. Similarly each A′

j is homologous
to B ′

j . Therefore the abelianized relations they induce are identical to those we
already had from Bj , B ′

j .
2

It remains to look at the abelianizations of the relators coming from the conjugated
factors Pφ1 or Pφ2 . When i =1, 3, for φ = t−m1

b1
tm2
a2

, we easily check using the Picard–
Lefschetz formula that we get the additional relators

b1 + m2a2 + b2 = 0 for W1,m and W3,m , (23)

a1 + m1b1 + (2 + 4m2)a2 + 4b2 = 0 for W1,m , (24)

a1 + m1b1 + a2 = 0 for W3,m . (25)

The relations (20) and (23) imply that m2a2 = 0. The remaining relators involved
in W1,m or W3,m then easily give m1b2 = 0. Hence, for i = 1, 3, we have

π1(X i,m)= (Z/m1Z)⊕ (Z/m2Z),

as claimed.
On the other hand, when i = 2, for φ = t−5

b1
tm
a2

, we get the following additional
relators in W2,m :

b1 + ma2 + b2 = 0, (26)

a1 + 5b1 + (2 + 4m)a2 + 4b2 = 0. (27)

This time, the relations (20) and (26) imply that ma2 = 0, but then if we use this
identity and substitute a1 = −a2 and b1 = −b2 into the relator (27), we get b2 = a2.
Therefore, the m–torsion element a2 generates the whole group. So we have

π1(X2,m)= Z/mZ.

In particular, when i = 1, 3, we get a trivial group for (m1,m2) = (±1,±1),
and when i = 2, we get a trivial group for m = 1. So X i is simply connected for
each i = 1, 2, 3. By Freedman’s celebrated work [30], each X i is homeomorphic
to CP2#(6 + i)CP2, for i = 1, 2, 3.3 However, they are not diffeomorphic by
Theorem 3.

2For the proof of the simply connected case, one could skip this whole paragraph, since we would
only need to find enough relations to kill the fundamental group.

3Homeomorphism types of other Xi,m can also be determined using extensions of Freedman’s
work by Hambleton, Kreck and Teichner for respective fundamental groups; for example by [40] we
can see that when i = 1, 3, for m = (p, 1), and when i = 2, for m = p, each Xi,m is homeomorphic
to CP2#(6 + i)CP2#L p , where L p is the spun of the Lens space L(p, 1).
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4.4. Homeomorphism and homology types of c2
1 = 3 examples. Now we take

φ = t−m−10
b1

tz , where b1 and z are as in Figures 4 and 3. Since

φ ∈ Mod(61
3, d ′)∩ HMod(61

3),

for each such φ, the positive factorization W0,φ prescribes a hyperelliptic genus-3
pencil (X0,φ, f0,φ). To sync up our notation with the c2

1 = 0, 1, 2 examples, set
W0,m := W0,φ and (X0,m, f0,m) := (X0φ, f0,φ), while noting that the parameter m
takes values in N (rather than in N2). Finally, let (X0, f0) := (X0,1, f0,1). We claim
that π1(X0,m)= Z/mZ, and in particular X0 is simply connected.

As before, we calculate the fundamental group using the presentation of the
form (8) induced by the pencil structure. We will first write down only some of the
relators we get from the Dehn twist curves in the positive factorization W0,m and
observe that any π1(X0,m) will be a quotient of an abelian group. It will then suffice
to look at the abelianized relators induced by the remaining Dehn twist curves, and
run the calculation at the level of homology.

The following relations hold in π1(X0,m):

[a1, b1][a2, b2][a3, b3] = 1, (28)

a1(b̄1a2b2)
2
= 1, (29)

a1b̄3
1a2b2a2 = 1, (30)

[b1, a2b2a1] = 1, (31)

[a2, b̄1a2b2] = 1, (32)

a2(b̄2a3b3)
2
= 1, (33)

a3b̄3ā3b̄2[a3, b3] = 1, (34)

[a1, b1] = 1, (35)

where the first one is the surface relation, and (29)–(32) are induced by x1, x2, e, d
coming from the P1 factor, (33)–(34) by x ′

1, x ′

4 from P ′

1 and (35) by C from (P ′′

1 )
φ .

We can rewrite (30) as a1b̄2
1a2b̄1a2b2 = 1 using the commutativity relation (32).

Setting this relator equal to the relator (29), we get: a1b̄2
1a2b̄1a2b2 =a1b̄1a2b2b̄1a2b2,

which, through cancellations, give b̄1a2 = a2b2. Using this last identity, we can
rewrite (31) as [b1, b̄1a2a1] = 1. This implies that [b1, a2a1] = 1. However, by (35),
b1 commutes with a1, so we can further conclude that [b1, a2] = 1. Since a2

commutes with b1, we derive from (32) that [a2, b2] = 1. In turn, using (28)
and (35) we conclude that [a3, b3] = 1 as well.

We are now ready to show that a3 and b1 generate the whole group. Since we saw
that b̄1a2 = a2b2, the commutativity of a2 and b2 implies that b2 = b̄1. Since a3 and
b3 commutes, (34) gives b3 = b̄2, which in turn means b3 = b1. Note that this last
identity and the commutativity of a3 and b3 now show that [a3, b1] = 1. Now by (33),
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we have a2 = (b̄3ā3b2)
2, which implies that a2 = (b̄1ā3b̄1)

2. After commuting the
factors, we can rewrite the last identity as a2 = ā2

3 b̄4
1. Similarly, by (29), we

have a1 = (b̄2ā2b1)
2, which, after substitutions becomes a1 = (b1(b4

1a2
3)b1)

2, so
a1 = b12

1 a4
3 .

Underlined equalities we obtained above show that a3 and b1 generate the whole
group and commute with each other. Hence, π1(X0,m) is the quotient of an abelian
group with two generators. To finish our calculation of π1(X0,m), it now suffices to
write out the abelianizations of the relators induced by all the Dehn twist curves in
the positive factorization W0,m . Clearly the separating Dehn twists do not contribute
any nontrivial abelianized relators, whereas each quadruple of nonseparating Dehn
twists coming from the factors P1, P ′

1 and (P ′′

2 )
φ , respectively, can be seen to

give only two linearly independent abelianized relators. For instance, the curves
x1, x2, x3, B2 in the P1 factor yield the relators

a1 − 2b1 + 2a2 + 2b2 = 0, (36)

a1 − 3b1 + 2a2 + b2 = 0, (37)

a1 − 4b1 + 2a2 = 0, (38)

b1 + b2 = 0, (39)

where (38) and (39) generate them all. Similarly, the abelianized relators we get
from x ′

1, x ′

2, x ′

3, x ′

4 in the P ′

1 factor are generated by

a2 − 4b2 + 2a3 = 0, (40)

b2 + b3 = 0, (41)

and those we get from x ′′

1 , x ′′

2 , x ′′

3 , B2 in the nonconjugated P ′′

1 are generated by

a1 − 4b1 + 2a2 + 2a3 = 0,

b1 + b2 = 0.

By the Picard-Lefschetz formula, conjugating P ′′

1 with φ = t−m−10
b1

tz yields the
following additional relators:

a1 + (m + 6)b1 − 2b2 = 0, (42)

b1 + a2 + 2b2 + a3 = 0. (43)

Note that, taking an auxiliary orientation on the twisting curve z, here we have
[z] = a2 + b2 + a3 in homology.

We can replace the two relations (39) and (41) with b2 = −b1 and b3 = b1.
Then (40) can be changed to a2 = −4b1 − 2a3, and in turn (38) can be changed
to a1 = 12b1 + 4a3. As we express all the other generators in terms of a3 and b1,
(43) becomes a3 = −5b1. Finally, expressing all the generators in terms of b1, the
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remaining relation (42) now reads as mb1 = 0. We conclude that

π1(X0,m)= Z/mZ

as claimed. When m = ±1, we get a trivial group, so in particular, X0 = X0,1 is
simply connected. Since we have e(X0)= 9 and σ(X0)= −5, by Freedman [30],
X0 is homeomorphic to CP2# 6 CP2, but not diffeomorphic to it by Theorem 3.

4.5. The theorem and ancillary remarks. Combining the results of the previous
four subsections, we have:

Theorem 7. {(X i,φ, fi,φ)} are symplectic genus-3 Lefschetz pencils whose total
spaces have χh(X i,φ) = 1 and c2

1(X i,φ) = 3 − i , and they include exotic rational
surfaces CP2# (6 + i)CP2 as well as infinitely many symplectic 4-manifolds which
are not homotopy equivalent to any complex surface, for each i = 0, 1, 2, 3.

The additional claim regarding the examples which are not homotopy equivalent
to any complex surface follows from standard arguments: The family of symplectic
4-manifolds {X i,φ} contains {X i,m} we studied in detail, and the fundamental groups
of the latter family realize any (Z/m1Z)⊕ (Z/m2Z) for i = 1, 3, and any Z/mZ,
for i = 0, 2. For i = 1, 3, we get infinitely many examples with b1(X i,m) = 1
(and b+(X i,m) > 0) by setting m1 = 0 and varying m2. These cannot be homotopy
equivalent to any complex surface; see, e.g., [8, Lemma 2]. For i = 0, 2, we have
κ(X i,m)= 2. However, there are only finitely many deformation classes of compact
complex surfaces of general type with the same χh and c2

1 invariants [34], so all but
finitely many of these X i,m cannot have the homotopy type of a complex surface.

Remark 8. We claim that the X i,φ are either minimal or at most one blow-up of
a minimal symplectic 4-manifold. This follows from the following more general
observation (cf. Remark 4): For any pencil (X, f ), where X is not rational or ruled,
the collection of all exceptional classes in the corresponding Lefschetz fibration
(X̃ , f̃ ) can be represented by disjoint multisections Sj , each one of which intersects
the regular fiber F positively. By [57, Theorem 5-12], κ(X)= 2 and g ≥ 3 implies
that

(∑
Sj

)
· F ≤ 2g−4, which in turn means X can have at most 2g−4 exceptional

classes. Note that if X3,φ is not minimal, then κ(X3,φ)= 2, like the other X i,φ , for
i = 0, 1, 2. Now for every i = 0, 1, 2, 3, since the genus-3 pencil (X i,φ, fi,φ) already
has one base point (yielding an exceptional class in the corresponding fibration),
there can be at most one more exceptional class, proving our claim.

Remark 9. We suspect that the smallest exotic rational surface one can get via
genus-3 pencils has c2

1 =3 or 4 and our example (X0, f0)might very well be optimal.
Our subsequent work in [11] shows that one can already get sharper results with
pencils of genus g = 4 or 5, which is in part due to having room for more base points,
since the number of base points b is less than or equal to 2g − 4 by the previous
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remarks. It is also worth noting that no exotic rational surface admits a pencil of
genus g ≤ 2. The total space of any pencil of genus g ≤ 1 is a rational surface, and
that of any genus-2 pencil has κ ≥ 1 by Lemma 2 and Proposition 1. Moreover, by
[57, Theorem 5-5(iii)], a genus-2 pencil with κ = 1 should have only one reducible
fiber, which is not possible when the total space has Euler characteristic smaller
than 14 by [13, Lemmas 4 and 5]. Hence, the smallest fiber genera for pencils on
minimal exotic rational surfaces is g = 3. In contrast, there exist genus-2 Lefschetz
fibrations on minimal exotic rational surfaces with c2

1 = 0, 1, 2, and in fact for no
other c2

1 [13].

Remark 10. By the work of Siebert and Tian [58], the hyperellipticity of our
genus-3 pencil (X0, f0) implies that the exotic rational surface X0 with c2

1 = 3
is the blow-down of a symplectic double cover of a rational ruled surface. The
exotic rational surfaces we built in [13] with c2

1 = 0, 1, 2 via hyperelliptic genus-2
Lefschetz fibrations have the same property. In particular, all these exotic rational
surfaces admit symplectic involutions.

Remark 11. There are many prior constructions of Kähler surfaces and symplectic
4-manifolds in the homeomorphism classes of the rational surfaces in Theorem 7.
The first examples with c2

1 = 0 and 1 were the Dolgachev surfaces and the Barlow
surface, as shown by Donaldson [19] and Kotschick [46], respectively, in the
late 1980s. The first examples with c2

1 = 2 and 3 were obtained around 2005
via generalized rational blowdowns by J. Park [55] and Stipsicz and Szabó [61],
respectively. Infinitely many distinct smooth structures in these homeomorphism
classes were constructed using logarithmic transforms, knot surgeries and Luttinger
surgeries; see, e.g., [1; 2; 3; 27; 29; 32; 62] (all of which are indeed instances of
surgeries along tori [14].) However, it remains an open question whether there are
two distinct minimal symplectic 4-manifolds homeomorphic but not diffeomorphic
to the same rational surface with c2

1 < 9; see [60, Problem 11]. As observed by
Stipsicz and Szabó, Seiberg–Witten invariants cannot distinguish these symplectic
4-manifolds [61, Corollary 4.4]. It is thus desirable to have examples with more
structure like ours, in hope of addressing this intriguing question.

Remark 12. It follows from the works of Donaldson [20] and Gompf [35] that every
finitely presented group is the fundamental group of a symplectic Lefschetz pencil;
also see [5; 39; 45] for direct constructions. One can thus define an invariant mg of
finitely presented groups, where for any such G, mg(G) is the smallest g among
all the genus-g pencils with π1 = G. Well-known examples of pencils of genus
g = 0, 1, 2 show that for the groups G = 1,Z2 and Z2, we have mg = 0, 2, 2,
realized by pencils on CP2, the Enriques surface, and T 2

× S2, respectively. We
conjecture that mg(G)= 3 for all the other G ∼= (Z/m1Z)⊕ (Z/m2Z), which are
realized by our genus-3 pencils (X i,m, fi,m), when i = 0, 1, 2.
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C1 C2

C ′
2 C ′

1

∂1

∂2

∂3

∂4

Figure 5. The curves involved in our embeddings of ∂62
4 into ∂64

3 .

5. Symplectic Calabi–Yau surfaces with b1 > 0 via genus-3 pencils

In this section we will give a new construction of an infinite family of symplectic
Calabi–Yau surfaces with b1 > 0 in all possible rational homology classes allowed
by the rational homology classification of symplectic Calabi–Yaus [7; 49]. These
examples will come from our construction of new positive factorizations of boundary
multitwists in Mod(64

3) corresponding to symplectic genus-3 Lefschetz pencils.

5.1. Breeding symplectic Calabi–Yau pencils. The positive factorization for Mat-
sumoto’s genus-2 Lefschetz fibration has the following further lift to Mod(64

2),
which was obtained by Hamada in [37]:

tB0,1 tB1,1 tB2,1 tC1 tB0,2 tB1,2 tB2,2 tC2 = tδ1 tδ2 tδ3 tδ4, (44)

where δi are boundary parallel curves, and B j,i and Ci are as shown on the right-hand
side of Figure 6. This relation will be the main building block in our construction.

After Hurwitz moves, we can rewrite the relation (44) as

tB0,1 tB1,1 tB2,1 tA0,2 tA1,2 tA2,2 tC1 tC2 t−1
δ1

t−1
δ2

= tδ3 tδ4,

where each A j,2 = tC1(B j,2) for j = 0, 1, 2. Note that if we cap off the two boundary
components δ3 and δ4, the curves B j,i descend to the curves Bj and Ci to C given
on the left-hand side of Figure 6, for each j = 0, 1, 2 and i = 1, 2.

Consider the embedding of 64
2 into 64

3 obtained by attaching a 64
0 along two of

the boundary components of 64
2 . We choose an embedding of 64

2 such that we map

δ1 7→ C ′

2, δ2 7→ C ′

1, δ3 7→ ∂2, δ4 7→ ∂1,

where Ci ,C ′

i are as shown in Figure 5. We then map the interior of 64
2 so that

the curves B j,1 and A j,2 all map to the curves Bj and Aj in Figure 7 when the
boundary components ∂1, . . . , ∂4 are capped off.4 Thus, the following relation holds

4At the end of our construction, the four boundary components of 64
3 will correspond to disk

neighborhoods of the four base points of our genus-3 pencils, so knowing the isotopy classes of these
Dehn twist curves after we cap off all ∂i will be enough for our π1 and H1 calculations.
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Figure 6. The curves Bj ,C, B j,i ,Ci in Hamada’s lifts. On the left
are the curves of the positive factorization in Mod(62

2), along with
the curves Aj we got after the Hurwitz moves. On the right are the
curves of the further lift in Mod(64

2).

in Mod(64
3):

tB0,1 tB1,1 tB2,1 tA0,2 tA1,2 tA2,2 tC1 tC2 t−1
C ′

2
t−1
C ′

1
= t∂1 t∂2, (45)

which we can rewrite as

PtC1 tC2 t−1
C ′

2
t−1
C ′

1
= tδ1 tδ2, for P = tB0,1 tB1,1 tB2,1 tA0,2 tA1,2 tA2,2 .

A similar embedding of 64
2 into 64

3 can be given by mapping

δ1 7→ C2, δ2 7→ C1, δ3 7→ ∂3, δ4 7→ ∂4,

where the interior is mapped in a similar fashion to before, so we get the curves B ′

j
and A′

j in Figure 7 when the boundary components ∂1, . . . , ∂4 are capped off. Note
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that this second embedding can be obtained from the first one by a rotation of the
surface 64

3 in Figure 5. So we get another relation in Mod(64
3):

tB ′

0,1
tB ′

1,1
tB ′

2,1
tA′

0,2
tA′

1,2
tA′

2,2
tC ′

1
tC ′

2
t−1
C2

t−1
C1

= t∂3 t∂4, (46)

which we can rewrite as

P ′tC ′

1
tC ′

2
t−1
C2

t−1
C1

= tδ3 tδ4, for P ′
= tB ′

0,1
tB ′

1,1
tB ′

2,1
tA′

0,2
tA′

1,2
tA′

2,2
.

Let φ be any mapping class in Mod(64
3)which fixes the set S := {C1,C2,C ′

1,C ′

2}

pointwise, i.e., φ ∈ Mod(64
3, S). Then the product of Pφ and P ′ yield

PφP ′
= PφtC1 tC2 t−1

C ′

2
t−1
C ′

1
P ′tC ′

1
tC ′

2
t−1
C2

t−1
C1

= (PtC1 tC2 t−1
C ′

2
t−1
C ′

1
)φ P ′tC ′

1
tC ′

2
t−1
C2

t−1
C1

=1,

where 1 = t∂1 t∂2 t∂3 t∂4 is the boundary multitwist. Here, in the first equality we
used the commutativity of disjoint Dehn twists tC1 , tC2 , tC ′

1
, tC ′

2
and that they all

commute with P and P ′. The second equality holds since φ commutes with the
Dehn twists along C1, C2, C ′

1 and C ′

2.
Therefore Wφ = PφP ′ is a positive factorization of the boundary multitwist

1= t∂1 t∂2 t∂3 t∂4 in Mod(64
3) for any φ as above. Under the boundary capping

homomorphism Mod(64
3)→ Mod(63) this maps to a positive factorization

(tB0 tB1 tB2 tA0 tA1 tA2)
ψ tB ′

0
tB ′

1
tB ′

2
tA′

0
tA′

1
tA′

2
= 1, (47)

where ψ is the image of the mapping class φ under this homomorphism.
Let (Xφ, fφ) denote the symplectic genus-3 Lefschetz pencil corresponding to

the positive factorization Wφ . We claim that each Xφ is a symplectic Calabi–Yau
surface.

The Euler characteristic of Xφ is easily calculated as

e(Xφ)= 4 − 4g + ℓ− b = 4 − 4 · 3 + 12 − 4 = 0,

where g and b are the genus and the number of base points of the pencil, and ℓ is
the number of critical points, which is equal to the number of Dehn twists in the
positive factorization Wφ .

As we have an explicit positive factorization (47) for the pencil (Xφ, fφ), the
signature of Xφ can be once again easily calculated using the work of Endo and
Nagami in [24]. The signature of the relation (44) we used as our main building
block, which corresponds to a pencil on a minimal ruled surface, is zero, and so is
the signature of any embedding of this relation into a higher genus surface. Since
Hurwitz moves, conjugations and cancellations of positive–negative Dehn twist
pairs have no effect on the signature, the signature of the final relation (47) is also
zero. Therefore σ(Xφ)= 0.
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A1

A0

B2

B1

B0

C

A2

C ′

B′
0

A′
1

A′
0

B′
2

B′
1

A′
2

Figure 7. The curves Bj , Aj , B ′

j , A′

j of the genus-3 pencil (X, f ).
On the left are the curves coming from the factorization P and
on the right are those coming from P ′, which correspond to the
two different embeddings of the factorization in Mod(62

2) into
Mod(63). (Dotted lines are the identified images of δ1 and δ2

under these two embeddings.)

The only rational or ruled surfaces that have the same Euler characteristic and
signature as Xφ are T 2

× S2 and T 2 ∼
×S2. However, by Lemma 5 they do not admit

pencils with b = 2g −2 base points. Hence, we can apply Proposition 1 to conclude
that κ(Xφ) = 0. Since Xφ clearly does not have the same rational homology as
the K3 surface or the Enriques surface, we can already tell that it is a symplectic
Calabi–Yau surface with b1 > 0.

5.2. Homeomorphism and homology types. We will first calculate the fundamental
group of Xφ in the extremal case: when φ is the identity and b1(Xφ)= 4. We will
show that the 4-manifold we simply denote by X in this case has π1(X)= H1(X)∼=
Z4, and we will in fact conclude that X is homeomorphic to the 4-torus. After this de-
tailed calculation, we will calculate H1(Xφ) for a certain family of φ ∈ Mod(64

3, S),
where S = {C1,C2,C ′

1,C ′

2}, to cover all rational homology types of symplectic
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Calabi–Yau surfaces with b1 > 0. For any choice of φ, one can easily derive a
presentation for π1(Xφ) from that of π1(X), which we will leave to the reader.

Let (X̃ , f̃ ) be the Lefschetz fibration we obtain by blowing-up the base points
of the pencil (X, f ). Let {aj , bj } be the standard generators of π1(6g) as shown in
Figure 4. Once again, we have a finite presentation for π1(X̃) of the form

⟨a1, b1, a2, b2, a3, b3 | [a1, b1][a2, b2][a3, b3], R1, . . . , R12⟩,

where each {Rk}
12
k=1 is a relation obtained by expressing the Dehn twist curves in

the positive factorization (47) in the basis {aj , bj }
3
j=1.

So we have the following relations induced by B0, B1, B2, A0, A1, A2, B ′

0, B ′

1,
B ′

2, A′

0, A′

1, A′

2 (see Figure 7), in the same order:
a1a3 = 1, (48)

a1b̄1a2b2ā2a3b̄3 = 1, (49)

b̄1a2b2ā2b̄3 = 1, (50)

a1[b3, a3]b2a3b̄2[a3, b3] = 1, (51)

a3b̄3b̄2[a3, b3]a2
1 b̄1ā1[b3, a3]b2[b3, a3]b2 = 1, (52)

a1b̄1ā1[b3, a3]b2[b3, a3]b2b̄3b̄2[a3, b3] = 1, (53)

ā2a1a2a3 = 1, (54)

a1b̄1a2a2
3 b̄3ā3b2ā2 = 1, (55)

b1a2b̄2a3b3ā3ā2 = 1, (56)

a1a2b̄2a3b2ā2 = 1, (57)

a1b̄1a2b̄2a2
3 b̄3ā3b2

2ā2 = 1, (58)

b̄1a2b̄2a3b̄3ā3b2
2ā2 = 1. (59)

First observe that, when abelianized, the relations coming from each triple
{B0, B1, B2}, {A0, A1, A2}, {B ′

0, B ′

1, B ′

2}, {A′

0, A′

1, A′

2} yield the same three rela-
tions

a1 + a3 = 0,

a1 − b1 + b2 + a3 − b3 = 0,

b1 − b2 + b3 = 0,

where we identified the abelianized images of the π1 generators with the same
letters. Any two of these relations imply the third. Since a1 = −a3 and b1 = b2 −b3,
we can eliminate a1 and b1 (and these relations) from the presentation, and we get
a free abelian group of rank 4, generated by a2, b2, a3 and b3.

Now, going back to the presentation we had for π1(X̃), we see that it is also gen-
erated by a2, b2, a3, b3, for a1 = ā3 by (48) and b1 = a2b2ā2b̄3 by (50). Therefore, to
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conclude that π1(X̃)= Z4, it suffices to show that a2, b2, a3 and b3 all commute with
each other, which is what do next: Replacing a1 with ā3 in (54) gives [a2, a3] = 1.
From (50) we have b̄1a2b2ā2 = b3. Substituting this in (49), and replacing a1

with ā3, we get [a3, b3] = 1. With a1 = ā3 and [a3, b3] = 1, the relation (51)
simplifies to [b2, a3] = 1. So a3 commutes with a2, b2 and b3, and therefore, with
everything. Since a1 = ā3, the surface relation [a1, b1][a2, b2][a3, b3] = 1 becomes
[a2, b2] = 1. Recall that b1 =a2b2ā2b̄3, which now becomes b1 =b2b̄3. Substituting
a1 = ā3 and b1 = b2b̄3 into (53), and then simplifying it using all the commutativity
relations we have so far, we get [b2, b3] = 1. Finally, commuting and canceling the
a1 and a3 terms in the relation (55) we get b̄1a2b̄3b2ā2 = 1, which, we can rewrite
as b3b̄2a2b̄3b2ā2 = 1 by substituting b1 = b2b̄3. Since b2 commutes with both a2

and b3, we can simplify the last relation to get [a2, b3] = 1.
Hence π1(X)= π1(X̃)= Z4, generated by a2, b2, a3 and b3.
Since π1(X)= Z4 is a virtually poly-Z group, the Borel conjecture holds in this

case by the work of Farrell and Jones [26]. As observed by Friedl and Vidussi,
this implies that a symplectic Calabi–Yau surface with π1 = Z4 is unique up to
homeomorphism [31]. So X is homeomorphic to the 4-torus.

Lastly, we will show that for suitable choices of φ, we can get Xφ realizing all
possible rational homology types of symplectic Calabi–Yau surfaces with b1 > 0,
which are precisely the rational homology types of torus bundles over tori [48]. In
fact, we will get an infinite family realizing all integral homology types of torus
bundles over tori. Because the Euler characteristic and the signature are fixed (both
zero), the first homology groups determine all the others. Therefore, it will suffice
to show that we can get Xφ with H1(Xφ)= Z2

⊕(Z/m1Z)⊕(Z/m2Z) for any given
m1,m2 ∈ N.

Let us take φ = t−m1
b1

tm2
a3

, where b1 and a3 are as in Figure 4. Note that b1

and a3 are disjoint from C1,C2,C ′

1,C ′

2, so φ fixes this set of curves pointwise. For
m = (m1,m2) any pair of nonnegative integers, let us denote the genus-3 pencil we
obtain this way by (Xm, fm) and its positive factorization by Wm = PφP ′, where
φ = t−m1

b1
tm2
a3

. Note that X(0,0) = X .
Recall that, every triple of vanishing cycles

{B0, B1, B2}, {A0, A1, A2}, {B ′

0, B ′

1, B ′

2}, {A′

0, A′

1, A′

2}

yield the two linearly independent relations

a1 + a3 = 0, (60)

b1 − b2 + b3 = 0. (61)

There are two conclusions to draw: first, the Dehn twist curves coming from
the nonconjugated factor P ′ induce exactly these relations in H1(Xm). Second,
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the vanishing cycles coming from the conjugated factor Pφ induce the following
relations, which we can easily derive using the Picard–Lefschetz formula:

a1 + m1b1 + a3 = 0, (62)

b1 − b2 + m2a3 + b3 = 0. (63)

We can now easily see that (60) and (62) together imply m1b1 = 0, whereas (61)
and (63) imply m2a3 = 0. From the relations a3 = −a1 and b3 = b2 − b1, we
then conclude that H1(Xm) is generated by a1, b1, a2, b2 with only two relations:
m1b1 = 0 and m2a1 = 0. Hence, H1(Xm)= Z2

⊕ (Z/m1Z)⊕ (Z/m2Z), as claimed.
Note that when m1 = m2 = ±1, we get symplectic Calabi–Yau surfaces with the

same integral homology type as T 2
× S2, but obviously not diffeomorphic to it, as

they have different Kodaira dimensions.

5.3. The theorem and final remarks. For {(Xφ, fφ)} symplectic genus-3 pencils
prescribed by the positive factorizations Wφ , for φ ∈ Mod(64

3, S), we have now
proved that:

Theorem 13. The {(Xφ, fφ)} are symplectic genus-3 Lefschetz pencils whose to-
tal spaces are symplectic Calabi–Yau surfaces that realize all integral homology
types of torus bundles over tori, and they include a symplectic Calabi–Yau surface
homeomorphic to the 4-torus and fake symplectic T 2

× S2s.

We finish with a few observations and comparisons regarding our examples.

Remark 14. The most curious question about our examples is whether every Xφ
is a torus bundle over a torus, as they are commonly conjectured to exhaust all
the diffeomorphism types of symplectic Calabi–Yau surfaces with b1 > 0. After
the first version of our paper was publicized, Hamada and Hayano succeeded in
proving that our symplectic Calabi–Yau surface that is homeomorphic to the 4-
torus [38], is in fact diffeomorphic to it, by comparing the pencil we described on
it with a pencil described by Ivan Smith on the standard 4-torus [59] (more on this
below). This is so far the only example we know to be standard within this infinite
family of examples.5 If for any conjugation φ ̸= 1, it turns out that π1(Xφ) is not a
4-dimensional solvmanifold group [31; 42], this would imply that Xφ is not a torus
bundle over a torus, and is a new symplectic Calabi–Yau surface. As our arguments
in the proof of Theorem 13 show, more generally, if any partial conjugation along
any Hurwitz equivalent factorization to the positive factorization Wφ results in a
pencil with a fundamental group which is not a solvmanifold group, we can arrive

5It might be possible to use the recent works of W. Chen in [18; 17] to conclude that some other
Xφ are also standard by finding finite symplectic symmetries on them. In the special case of trivial
φ, one can in fact see that the monodromy of the pencil (X, f ) with b1(X)= 4 has a Z2–symmetry
under cyclic permutation, which gives rise to a symplectic involution on X .
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at a similar conclusion. So far, a handful of examples we examined seem to have
the same group theoretic properties as their infrasolvmanifold counter-parts; e.g.,
they are poly-Z of Hirsch length 4. In particular, we don’t know at this point if any
of the fake symplectic T 2

× S2 we get has π1 = Z2 so that it would be exotic.

Remark 15. In [59], Ivan Smith constructed genus-3 pencils on torus bundles
over tori admitting sections (not all do), by generalizing the algebraic geometric
construction of holomorphic genus-3 pencils on abelian surfaces. It is natural to
ask whether our examples overlap with Smith’s. As Hamada and Hayano showed
in [38], this is the case for our 4-torus example, but we don’t know much about
it beyond that. There are however reasons to think that our family of genus-3
pencils (Xφ, fφ) is at least larger than Smith’s examples. For comparison, note
that any torus bundle over a torus with a section would admit a second disjoint
section as well; for any section of a surface bundle over a torus has self-intersection
zero [15] and can be pushed off itself. So the family of genus-3 pencils of Smith are
determined by a pair φ1, φ2 ∈ Mod(62

1) subject to the relation [φ1, φ2] = 1. On the
other hand, our family of genus-3 pencils are parametrized by φ ∈ Mod(64

3, S)},
where S := {C1,C2,C ′

1,C ′

2}, which has a proper subgroup that consists of mapping
classes which fix each one of the curves C1, C2, C ′

1, C ′

2. Any φ in the latter stabilizer
group has disjoint support in two copies of 62

1 embedded in 64
3 (the left and the

right sides of the surface in Figure 5). So a subset of our family of examples are also
parametrized by φ1, φ2 ∈ Mod(62

1), but with no relation to each other whatsoever.

Remark 16. The subfamily of pencils {(Xm, fm) | m = (m1,m2) ∈ N2
} we studied

in the proof of Theorem 13 have the following property: they can all be obtained
from the 4-torus pencil (X, f ) through fibered Luttinger surgeries [6; 9]. To see
this, first observe that for φ = t−m1

b1
tm2
a3

, we have the positive factorizations

Wm = (t−m1
b1

tm2
a3

Pt−m2
a3

tm1
b1
)P ′

= (t−1
b1

· · · t−1
b1

ta3 · · · ta3 Pt−1
a3

· · · t−1
a3

tb1 · · · )tb1 P ′

which are obtained by a sequence of partial conjugations by tb1 and ta3 . Since
b1 and a3 are disjoint from C1,C ′

1,C2,C ′

2, they are stabilized by P , which, as a
mapping class, is equal to t−1

C1
t−1
C2

tC ′

1
tC ′

2
. So each conjugation by a factor of t±1

b1

or t±1
a3

amounts to performing a Luttinger surgery along a Lagrangian torus swept
off by b1 or a3 on the regular fibers, over a loop on the base [6; 9]. One can easily
see how this observation generalizes to more general conjugations (but perhaps
requiring Luttinger surgeries along Lagrangian Klein bottles). With this in mind,
we see that if {(Xφ, fφ)} contains all the torus bundles over tori, then one would
immediately get a proof of an improved version of a conjecture by Ho and Li: that
every torus bundle over a torus admits a symplectic structure so that it is obtained via
Luttinger surgeries along tori from the 4-torus equipped with the standard product
symplectic structure [43, Conjecture 4.9], or, we add, Klein bottles.
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There is a one-to-one correspondence between strong inversions on knots in the
three-sphere and a special class of four-ended tangles. We compute the reduced
Khovanov homology of such tangles for all strong inversions on knots with up
to 9 crossings, and discuss these computations in the context of earlier work by
the second author (Adv. Math. 313 (2017), 915–946). In particular, we provide a
counterexample to Conjecture 29 therein, as well as a refinement of and additional
evidence for Conjecture 28.

The Brieskorn spheres 6(2, q, 2nq ∓ 1) may be obtained by Dehn surgery on a
torus knot in the three-sphere, namely, these are the integer homology spheres
S3
±1/n(T2,q), where T2,q is the positive (2, q) torus knot. These homology spheres

admit Seifert fibrations, with base orbifold S2(2, q, 2nq∓1). Denoting by 6(A, b)

the two-fold branched cover of A with branch set b, each of these manifolds admits
two descriptions as a two-fold branched cover:

S3
±1/n(T2,q)∼=6(S3, T ∗q,2qn∓1)

∼=6(S3, τ (±1/n)).

This construction might be best termed as classical; for our purposes it is helpful to
review the notation introduced in [9]. The first of these two-fold branched covers
results from an involution on the Seifert fibred space that preserves an orientation
on the fibres — we refer to this as the Seifert involution. The second of these arises
from the Montesinos involution, which reverses an orientation on the fibres; the
branch set in question arises from the Montesinos trick, that is, by first constructing
a tangle (B3, τ ) over which the exterior of T2,q is realized as a two-fold branched
cover. We review the construction below as it is central to our enumeration of
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tangles. In particular, the branch set τ(±1/n) is an explicit Montesinos link, which
despite the notation depends on q. Generically, these two branch sets are distinct
knots. For example, when q = 5 and n = 1 we have

S3
+1(T2,5)∼=6(S3, T ∗5,9)

∼=6(S3, τ (+1))

and it can be calculated that

dim K̃h(T ∗5,9)= 57 > 15= dim K̃h(τ (+1)),

where the reduced Khovanov homology is taken over
the two-element field F. (The Montesinos branch set
when q = 5 is shown on the right, and the construction
of the tangle in this case is reviewed in Figure 1.) This
example serves to answer a question due to Ozsváth in
the negative: The total dimension of the mod 2 reduced
Khovanov homology is not an invariant of two-fold
branched covers [9].

This paper focusses on tangles admitting knot exteriors as two-fold branched
covers, and the immersed curves that arise as the reduced Khovanov invariants of
these tangles [5]. Coefficients are restricted to F throughout.

1. Strong inversions

A knot K in S3 is invertible if it admits an isotopy

µ

h

Figure 1. The cinqfoil ex-
terior as a 2-fold branched
cover.

exchanging a choice of orientation on K with the re-
verse of this choice. A strong inversion is an inversion
realized by an involution of the three-sphere. Note that
invertible knots which are not strongly invertible ex-
ist [4], but that when restricting to hyperbolic knots the
two symmetries are equivalent. Following Sakuma [8],
given a knot K and a strong inversion h, we will call the
pair (K , h) a strongly invertible knot. Strongly invert-
ible knots (K , h) and (K ′, h′) are equivalent if there
exists an orientation preserving homeomorphism f
on S3 for which f (K ) = K ′ (so that K and K ′ are
equivalent knots) and h = f −1

◦ h′ ◦ f . Alternatively,
a strong inversion on a given knot may be viewed as
the conjugacy class of an order-two element of the
mapping class group of the exterior of the knot; this
mapping class group is known as the symmetry group of the knot K . For hyperbolic
knots, this group is a subgroup of a dihedral group; see [8, Proposition 3.1].
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A strong inversion gives rise to an involution on a knot’s exterior with one-
dimensional fixed point set meeting the boundary in exactly 4 points. Note that,
according to the Smith conjecture, given an involution on the three-sphere with
one-dimensional fixed point set, the fixed point set is unknotted; as a result the
fixed point set of the strong inversion on the exterior is a pair of unknotted arcs.
Taking the quotient of the order two action on the knot exterior gives rise to a
three ball B3

= (S3 ∖ ν(K ))/h, and the image of the fixed point set of the strong
inversion gives rise to a pair of properly embedded arcs τ = Im(Fix(h)). Therefore,
given a strongly invertible knot, the knot exterior may be viewed as a two-fold
branched cover over a four-ended tangle τ in a three ball: h ↷ (S3, K ) so that
S3∖ν(K )∼=6(B3, τ ). We refer to the tangle T = (B3, τ ) as the associated quotient
tangle to a given knot with strong inversion; see Figure 1 for an explicit example.

In this context, the natural notion of equivalence on tangles is homeomorphism
of the pair (B3, τ ) where the boundary is fixed only set-wise. Note that this is, of
course, more flexible than the requirement that the boundary be fixed point-wise as
is perhaps more common when considering tangle diagrams. In order to be clear
about the distinction, we will refer to this latter as a framed tangle. We remark that
[9, Definition 3] gives a third notion of equivalence by introducing sutured tangles.
This object will not play an explicit role here, however, consulting Figure 1 the
reader may find that sutures are a helpful tool for tracking the image of the knot
meridian µ in the quotient.

From this point of view, there is a distinguished trivial tangle obtained as the
quotient of a solid torus, that is, the associated quotient tangle for the trivial knot.
The equivalence class of this tangle is the rational tangle. We will have need for
choices of representatives Q p/q as described in Figure 2: For any p/q ∈QP1, there
is a framed tangle diagram Q p/q . This choice will allow us to make use of the
Montesinos trick:

S3
p/q(K )∼=6(S3, τ (p/q)),

where p/q-surgery along the knot K corresponds to the knot τ(p/q) obtained by
gluing the −p/q-rational tangle Q−p/q to the tangle τ as in Figure 2 (bottom).

In particular, we are fixing a preferred representative for our associated quotient
tangle once and for all: Given (K , h), this is the tangle T = (B3, τ ) such that
the rational closure τ(0) corresponds to surgery along the Seifert longitude and
τ(∞) corresponds to S3

∞
(K )∼= S3. The former implies that the determinant of τ(0)

vanishes, while the latter implies that τ(∞) is the unknot, as observed above. (These
are also the conditions we check in practice to determine the correct framing.) In
fact, there is a bijection between equivalence classes of nontrivial strongly invertible
knots (K , h) and tangles (B3, τ ) for which τ(∞) is unknotted (this follows from
[3, Theorem 2]; compare [10, Proposition 9]). As such, associated quotient tangles
provide an invariant of strong inversions.
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Q∞ Q0 Q1 Q1/3

Q−p/q τ

τ(p/q)

Figure 2. Examples of framed rational tangles (top) and the rational
closure of a four-ended tangle τ (bottom).

Strong inversions give a means of enumerating interesting tangles, and we use
this strategy below. Observe that, given a hyperbolic knot admitting a pair of
distinct strong inversions h1 and h2, by Thurston’s hyperbolic Dehn filling theorem,
S3

p/q(K ) is hyperbolic for all but finitely many slopes p/q . Moreover

6(S3, τ1(p/q))∼= S3
p/q(K )∼=6(S3, τ2(p/q))

and, generically, the branch sets τ1(p/q) and τ2(p/q) are distinct knots. It is a
striking fact that for all K with fewer than 9 crossings

dim K̃h(τ1(p/q))= dim K̃h(τ2(p/q)),

that is, finding a negative answer to Ozsváth’s question in the hyperbolic setting is
surprisingly difficult. This observation follows from Theorem 3.2 below.

A range of examples of strong inversions and associated quotient tangles are
considered in [10]. We will expand this list in a systematic way below, and highlight
in particular the knot 946 in the Rolfsen table; see Figure 3. It is worth noting that
these tangles distinguish the strong inversions in question: Ignoring one strand, the
second tangle contains 819 as a subknot, while the only subknots in the first tangle
are trefoils.

In the context of the discussion above, it seems natural to try and articulate a
relative version of Ozsváth’s question. In particular, are there Khovanov-type tangle
invariants that are invariants of the knot K independent on the chosen strong inver-
sion h? We will see that 946 dashes any hope of this (see Counterexample 3.8) and,
furthermore, provides hyperbolic counterexamples to Ozsváth’s original question
(see Remark 3.3).
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µ µ

λ+ n1µ λ+ n2µ

Figure 3. Two strong inversions on the knot 946 (top row) together
with the associate quotient tangle for each (bottom row). In order
to present minimal crossing diagrams for the associated quotient
tangles, this is the one place where we present something other
than the preferred tangle representative: The first symmetry gives
rise to a tangle T1 shown with framing n1 = 2, while the second
symmetry gives rise to a tangle T2 with framing n2 =−6.

Interestingly, 946 also makes a star appearance in the recent work of Boyle and
Issa [2]. In particular, this knot is slice, but it has nonzero equivariant four-genus;
see [2, Figure 14] and the surrounding discussion.

2. Review of the tangle invariants K̃h and B̃N

Let T be a four-ended tangle in the three-ball B3. In earlier work we interpreted the
Bar–Natan tangle invariant [[T ]]/ l in terms of multicurves, that is, isotopy classes
of collections of immersed curves in the four-punctured sphere ∂ B3 ∖ ∂T [1; 5].
After choosing a distinguished tangle end ∗ of T , the construction outputs two
multicurve-valued invariants K̃h(T ) and B̃N(T ):

T [1]
7−→ [[T ]]/ l

[5]
7−→ K̃h(T ), B̃N(T ) ↬ S2

4,∗ = ∂ B3 ∖ ∂T .

These multicurves are equipped with a bigrading, which we expand on below.
Also, strictly speaking, components of B̃N(T ) come equipped with local systems.
However, in this paper, we will suppress this subtlety, since over F these local
systems are trivial in all known examples.
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h

T2T1

K̃h(T2)

B̃N(T1)

K̃h(T1)

Figure 4. Illustrated on the left is the trefoil with strong inversion,
highlighting the decomposition of the unknot into tangles T1 and T2,
where T2 is the preferred representative of the associated quotient
tangle to the strong inversion. The corresponding intersection pic-
ture is shown on the right, where all of the relevant information has
been projected to the front face of the sphere: The Lagrangian Floer
homology HF(B̃N(T1), K̃h(T2))= F recovers the one-dimensional
reduced Khovanov homology of the unknot.

The curve invariants enjoy the following gluing property [5, Theorem 1.9]:
Given a decomposition of a knot K = T1 ∪ T2 into four-ended tangles, the reduced
Khovanov homology of the knot is recovered via Lagrangian Floer homology:

K̃h(K )∼= HF(m(B̃N(T1)), K̃h(T2)) (1)

where m is the map identifying the two four-punctured spheres. An example
illustrating this gluing formula is given in Figure 4.

Let us recall some basic facts about K̃h(T ) and B̃N(T ) from [5, Section 6]: Both
invariants may consist of multiple components. A component is either an immersion
of a circle or an immersion of an interval. In the first case we call a component
compact; in the second, noncompact. The invariant B̃N(T ) contains exactly one
noncompact component (unless the tangle T contains some closed component,
which is not the case in the present context), whereas K̃h(T ) consists only of
compact components. These curves become easier to manage when considered in
a certain covering space of S2

4,∗, namely the planar cover that factors through the
toroidal two-fold cover:

(R2 ∖Z2)→ (T 2 ∖ 4pt)→ S2
4,∗
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2n punctures︷ ︸︸ ︷
n punctures︷ ︸︸ ︷

s̃n(0)

r̃n(0)ã(0)

Figure 5. The curves ã(0), {s̃n(0)}n⩾1, and {r̃n(0)}n⩾1.

Definition 2.1. Given an immersed curve c ↬ S2
4,∗, denote by c̃ a lift of c to the

cover R2∖Z2. For n ∈N, let a(0), rn(0), and s2n(0) be the immersed curves in S2
4,∗

that respectively admit lifts to the curves ã(0), r̃n(0), and s̃2n(0) in Figure 5. For
every p/q ∈QP1, we respectively define the curves a(p/q), rn(p/q), and s2n(p/q)

as the images of a(0), rn(0), and s2n(0) under the action of[
q r
p s

]
considered as an element of the mapping class group fixing the special puncture
Mod(S2

4,∗)
∼= PSL(2, Z), where qs − pr = 1. (This transformation maps straight

lines of slope 0 to straight lines of slope p/q.) We call a(p/q) a rational arc of
slope p/q; we call rn(p/q) a curve of rational type, slope p/q , and length n; and
s2n(p/q) a curve of special type, slope p/q, and length 2n.

Example 2.2. The curve K̃h(T2) from Figure 4 consists of the special component
s4(∞) and the rational component r1(4). Furthermore, B̃N(T1) = {a(∞)} is the
red vertical arc, while K̃h(T1)= {r1(∞)} consists of the figure-eight curve lying
in a small neighbourhood of this arc. More generally, justifying the terminology,
naturality of the invariants under the mapping class group action [5, Theorem 1.13]
implies that B̃N(Q p/q) = {a(p/q)} and K̃h(Q p/q) = {r1(p/q)}— so, rational
tangles have rational invariants.

The invariants B̃N(T ) and K̃h(T ) are topological interpretations of algebraic
invariants D(T ) and D1(T ), respectively, which are type D structures over the
algebra B. For example, the curve s4(∞), which is the blue curve on the left of
Figure 7, corresponds to the type D structure in Figure 6; the arc a(0) corresponds
to the one-generator complex [0•0]. To translate between these two viewpoints, we
need to fix a parametrization of the four-punctured sphere S2

4,∗, which is indicated
by the two grey dashed arcs in Figure 7. Briefly, intersection points of these arcs
with a given curve give rise to the generators of the corresponding type D structure
and paths between intersection points determine the differential; for more details,
see [5, Example 1.6]. The generators of the type D structures carry a bigrading, that
is a quantum grading q and a homological grading h. We indicate these gradings
on generators • and the corresponding intersection points by super- and subscripts
like so: q

•h . Also the algebra B is equipped with quantum and homological
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−5
•−3

−4
◦−2

−2
◦−1

0
◦0

2
◦1

3
•2

−3
•−2

−2
◦−1

0
◦0

2
◦1

4
◦2

5
•3

D

S D S2 D S

D

S D S2 D S

Figure 6. The symmetrically bigraded type D structure correspond-
ing to the special curve s4n(∞) for n = 1. The type D structures for
n > 1 look similar. The total number of generators in idempotent ◦
is equal to 8n. The absolute bigrading is fixed by requiring that
the minimal and maximal homological and quantum gradings are
±(2n+ 1) and ±(4n+ 1), respectively.

0
0

5
3

3
2-3

-2

-5
-3

-2
-1

-4
-2

0
0

2
1

0
0

-2
-1

2
1

4
2

q5δ
−

1
2 h3 q1δ

−
1
2 h1

q−5δ
−

1
2 h−2 q−1δ

−
1
2 h0

SD

S D

Figure 7. Computing the gradings associated with the four-
dimensional vector space HF(a(0), s4(∞)), according to Lemma 2.5.

gradings, which are determined by q(D) = 2q(S) = −2, h(D) = h(S) = 0. The
differentials of type D structures reduce homological grading by 1 and preserve
the quantum grading, namely if there is an arrow x a

−→ y in the differential, then
q(y)+q(a)−q(x)= 0, h(y)+h(a)−h(x)= 1. Thus, the bigrading of any given
component of a multicurve is determined by the bigrading of a single generator
which lies on this component.

The bigradings on B̃N(T ) and K̃h(T ) depend on an orientation of the tangle T .
This dependence is discussed in [5, Proposition 4.8]. If T is an unoriented tangle,
B̃N(T ) and K̃h(T ) only carry relative bigradings, i.e., bigradings that are well-
defined up to an overall shift. For tangles whose components have linking number 0,
such as the trivial tangle , all orientations induce the same bigrading.
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Theorem 2.3 [6, Theorem 2.15]. For any pointed Conway tangle T , every com-
ponent of K̃h(T ) is equal to rn(p/q) or s2n(p/q) for some n ∈ N and p/q ∈QP1,
up to some bigrading shift. In other words, components of K̃h(T ) are completely
classified by their type, slope, length, and bigrading.

In the context of Heegaard Floer homology, analogous properties are known for
the tangle invariant HFT(T ) [11]. Note, however, that components of the invariant
B̃N(T ) are known to be much more complicated even when restricting to only
compact components.

We conclude this section with a computation of the Lagrangian Floer intersection
pairing between a simple arc and the special curves s4n(∞), which will play a
central role later.

Definition 2.4. Define V~ as the four-dimensional bigraded vector space supported
in δ-grading 0 and quantum gradings −5, −1, +1, and +5.

Lemma 2.5. We have

HF(a(0), s4(∞))∼= q0δ−
1
2 h

1
2 V~ .

More generally, for any positive integer n,

HF(a(0), s4n(∞))∼=

n⊕
i=1

q4(2i−n−1)δ−
1
2 h

1
2+2(2i−n−1)V~ .

In both cases, the isomorphism holds as absolutely bigraded vector spaces if s4n(∞)

is symmetrically bigraded (in the sense of Figure 6) and a(0) agrees with B̃N
( )

as a bigraded curve.

Proof. The total dimension of HF(a(0), s4n(∞)) is 4n, since the minimal number
of intersection points between the two curves is 4n. For the computation of the
bigrading, we will focus on the case n = 1; the case n > 1 is similar. Recall how
this works [5, Section 7.2]: The bigrading of an intersection point • generating
HF(a(0), s4(∞)) is computed by considering a path on a(0)∪ s4(∞) which starts
at x = 0

•0, turns right at the intersection point • and ends at the nearest intersection
point y = q

◦h or y = q
•h of s4(∞) with the parametrization. These paths are

illustrated on the right of Figure 7. Each of these paths in S2
4,∗ is homotopic relative

to the parametrizing arcs to some path γ on the boundary of the special puncture;
these homotopies are indicated on the right of Figure 7 by the shaded disks. We
set q(γ )= 0,−1,−2, depending on whether the path γ is constant, equal to S, or
equal to D, respectively. (More generally, these paths correspond to some algebra
elements in B, whose quantum gradings define q(γ ).) Then

h(•)= h(y)− h(x) and q(•)= q(y)− q(x)+ q(γ ).

Finally, we compute the δ-grading from the identity δ+ h = 1
2q . □
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3. The Khovanov homology of strong inversions

A strongly invertible knot (K , h) gives rise to an associated four-ended quotient
tangle T = (B3, τ ). (When we have need for it, we will use the notation TK ,h

to remember the dependence on the strongly invertible knot.) We use the same
preferred framing as in Section 1; in particular, τ(∞) is the unknot. This imposes
strong restrictions on the curve invariant K̃h(T ), namely, it implies that

K̃h(τ (∞))= HF
(
B̃N

( )
, K̃h(T )

)
= HF(a(∞), K̃h(T ))= F.

In other words, K̃h(T ) is homotopic to a multicurve that intersects the arc a(∞)

only once, as is the case for the example K̃h(T2) from Figure 4. In the light of the
classification given in Theorem 2.3, this implies:

Theorem 3.1. Let h be a strong inversion on a knot K ⊂ S3. Then

K̃h(TK ,h)= r1(k)∪ s2n1(∞)∪ · · · ∪ s2nN (∞)

for some integers k ∈ Z and N , n1, . . . , nN ∈ Z>0. □

In fact, with the help of a computer [12], we show the following:

Theorem 3.2. Let h be a strong inversion on a knot K ⊂ S3 with at most 9 crossings.
With notation as in Theorem 3.1, k is divisible by 4 and ni = 2 for i = 1, . . . , N. □

Table 1 shows the ungraded invariants for all pairs (K , h) from Theorem 3.2;
the bigraded invariants are listed in Section 4. To determine the absolute bigrading,
we use the braid-like orientation on TK ,h . Note that, in order to match Sakuma’s
table [8], the first row in Table 1 describes the left-hand trefoil and its rational
component has slope −4, while Figure 4 depicts the right-hand trefoil and its
rational component has slope 4. Among tabulated knots through 9 crossings, there
are 57 knots that admit two distinct strong inversions. For all but one of these knots
with two distinct strong inversions, the ungraded invariants K̃h(T ) agree; these
pairs of strong inversions are indicated in Table 1 by the superscript ♠.

Remark 3.3. The knot 946 is the only knot in this collection whose strong in-
versions 91

46 and 92
46 can be distinguished by their ungraded invariants K̃h(T ), as

shown in the two highlighted rows in Table 1. Here, we follow the same numbering
convention for strong inversions as in [8]. Note that both the slope k and the
number n of special components s4(∞) distinguish 91

46 and 92
46. With this example

in hand, one can check that dim K̃h(τ1(n)) ̸= dim K̃h(τ2(n)) by applying the pairing
formula (1), despite the fact that 6(S3, τ1(n)) ∼= 6(S3, τ2(n)) by construction.
Calculations for dim K̃h(τi (p/q)) with i = 1, 2 can be obtained as well with a little
more patience.
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31 −4 1

4♠1 0 2

51 −8 2

5♠2 −4 3

6♠1 0 4

6♠2 −4 5

6♠3 0 6

71 −12 3

7♠2 −4 5

7♠3 8 6

7♠4 4 7

7♠5 −8 8

7♠6 −4 9

7♠7 0 10

8♠1 0 6

8♠2 −8 8

8♠3 0 8

8♠4 −4 9

8♠5 8 10

8♠6 −4 11

8♠7 4 11

8♠8 0 12

8♠9 0 12

810 4 13

8♠11 −4 13

8♠12 0 14

8♠13 0 14

8♠14 4 15

8♠15 −8 16

816 −4 17

8♠18 0 22

819 8 2

820 0 4

8♠21 −4 7

91 −16 4

9♠2 −4 7

9♠3 12 9

9♠4 −8 10

9♠5 4 11

9♠6 −12 13

9♠7 −8 14

9♠8 −4 15

9♠9 −12 15

9♠10 8 16

9♠11 8 16

9♠12 −4 17

9♠13 8 18

9♠14 0 18

9♠15 4 19

9♠16 12 19

9♠17 −4 19

9♠18 −8 20

9♠19 0 20

9♠20 −8 20

9♠21 4 21

922 4 21

9♠23 −8 22

924 0 22

925 −4 23

9♠26 4 23

9♠27 0 24

9♠28 −4 25

929 −4 25

930 0 26

9♠31 4 27

934 0 34

9♠35 −4 13

936 8 18

9♠37 0 22

938 −8 28

939 4 27

9♠40 −4 37

941 0 24

942 0 4

943 8 6

944 0 8

945 −4 11

91
46 0 4

92
46 −4 7

947 4 13

9♠48 −4 13

949 8 12

Table 1. The ungraded reduced Khovanov homology of the tangles
TK ,h associated with strong inversions h on all prime knots K with up
to 9 crossings. There are three columns in this table. The first specifies
the knots K . Those marked by a superscript ♠ admit two distinct
strong inversions, and the associated ungraded invariants agree (and
are hence listed together). The knot 946 admits two strong inversions,
but their invariants are distinct; see the two highlighted rows. All
remaining knots admit only a single strong inversion. The second
column specifies the slope k of the single rational component r1(k)

in K̃h(TK ,h), and the third column gives the number N of special
components, all of which are equal to s4(∞).

As stated in Section 2, K̃h(T ) for a general four-ended tangle only consists of
rational and special curves; it would be interesting to give a geometric interpretation
for the slopes of these curves. For quotient tangles TK ,h of strong inversions (K , h),
the existence of the unknot closure implies that the slope of any special curve is
fixed and the slope of the rational component is an integer. As we can see from the
second column in Table 1, this integer may be nonzero; in other words, the slope
of the rational component of Kh(TK ,h) need not agree with the slope given by the
rational longitude of the knot K . Our computations raise the following:
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Questions 3.4. Is there a geometric/topological meaning of the slope of the rational
component of K̃h(TK ,h)? Is the slope always divisible by 4?

We now focus on the special components:

Definition 3.5. Given a knot with a strong inversion (K , h), let s(K , h) be the set of
special components of K̃h(TK ,h). Let a(0)= B̃N

( )
as in Figure 7. Then define

~(K , h) := HF(a(0), s(K , h))

In [10], the second author defined an invariant of the same name. The following
lemma justifies our notation:

Lemma 3.6. The invariant ~(K , h) agrees with the invariant from [10] as a rela-
tively bigraded vector space.

Proof. The original invariant ~(K , h) was defined as a certain finite-dimensional
quotient of the inverse limit lim

←−−
K̃h(τ (n)) associated with the maps

K̃h(τ (n+ 1))→ K̃h(τ (n))

induced by resolving a crossing [10, Proposition 11]. Since this inverse limit is
determined by the maps for positive n we can assume in the following that n > 0.
By the gluing property of the multicurve tangle invariants,

K̃h(τ (n))∼= HF(a(n), K̃h(τ ))

The right-hand side can also be interpreted as the homology of the morphism space
between the type D structures associated with a(n) and K̃h(τ ) [5, Theorem 1.5].
Gluing is functorial; in fact, the map

HF(a(n+ 1), K̃h(τ ))
∼=−→ K̃h(τ (n+ 1))→ K̃h(τ (n))

∼=−→ HF(a(n), K̃h(τ ))

is induced by precomposition with the following morphism from the type D structure
for a(n) to the type D structure for a(n+ 1):

a(n) : ◦ ◦ · · · ◦ ◦ ◦ •

a(n+ 1) : ◦ ◦ ◦ · · · ◦ ◦ ◦ •

D or S2

1 1

S2

1

D

1

S

1 1

S2 or D D or S2 S2 D S

(2)

This can be seen explicitly by induction or by observing that the Lagrangian
Floer homology HF(a(n), a(n + 1)) computes the Bar–Natan homology of the
unknot, so there is only one nonzero equivalence class of morphisms in the correct
quantum grading.
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D

D

S

S

b

bb

b

bb

*
a(n)

Figure 8. A schematic for the Lagrangian Floer pairing
HF(a(n), s2i (∞)) in the proof of Lemma 3.6: The curve s2i (∞)

can be drawn such that it lies in the shaded region, and so do
all the intersection points with a(n). Precomposition with the
map (2) induces the identity on the corresponding morphisms.

Now apply the (contravariant) functor HF(−, K̃h(τ )) to this map. We can do this
for each component of K̃h(τ ) separately, using Theorem 3.1. First, for any integer k,
lim
←−−

HF(a(n), r1(k)) is isomorphic to lim
←−−

HF(a(n− k), r1(0)). The latter computes
the invariant of the unknot (with its unique strong inversion), which vanishes by
[10, Theorem 1]. Moreover, a simple computation shows that the map

HF(a(n+ 1), s2i (∞))→ HF(a(n), s2i (∞))

induced by (2) is an isomorphism for any integer i > 0; this is illustrated in
Figure 8. Thus

lim
←−−

HF(a(n), s2i (∞))∼= HF(a(0), s2i (∞)).

Moreover, the subspace that we need to quotient by to obtain the invariant from [10]
vanishes. This proves the claim. □

Remark 3.7. Since the maps for the inverse limit lim
←−−

K̃h(τ (n)) preserve the homo-
logical grading, the original invariant ~(K , h) carries an absolute (co)homological
grading. The identification with our invariant respects this grading, so the two
definitions actually give rise to the same absolute homological grading. However,
the quantum and δ-gradings on the original invariant are only well-defined as relative
gradings. An ad hoc construction to lift these to absolute gradings is discussed in
[10, Section 7]. We have not attempted to relate these lifts to the absolute bigrading
on our invariant; in general, they do not agree.
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Counterexample 3.8. Returning to the pair of strong inversions on the knot 946,
we calculate that

dim ~(K , h1)= 16 < 28= dim ~(K , h2)

contrary to [10, Conjecture 29]. This conjecture was originally posed in the hope that
a relative variant of Ozsváth’s question might help to explain the examples described
in [9], which depend heavily on the Seifert structure. Comparing with Remark 3.3
and the proof of Lemma 3.6, it is worth noting a simple relationship between
~(K , h) and K̃h(τ (n)) when restricting to the preferred framing: According to
Definition 3.5,

dim K̃h(τ (n))= dim ~(K , h)+ dim HF(a(n), r1(k)),

where k is as in Theorem 3.2. Note that the second summand is the dimension of
the reduced Khovanov homology of the (2, n− k)-torus link.

On the other hand, certain structural properties appear to persist:

Conjecture 3.9 [10, Conjecture 28]. For any strong inversion (K , h), the vector
space ~(K , h) is a direct sum of copies of V~ . In particular, dim ~(K , h) is
divisible by 4.

By Lemma 2.5, the vector space V~ is precisely the Lagrangian Floer homol-
ogy of the arc a(0) and the special curve s4(∞). So a strong inversion (K , h)

satisfies Conjecture 3.9 if all special components of K̃h(TK ,h) are equal to s4(∞)

up to a grading shift. In particular, the calculations summarized in Table 1 verify
Conjecture 3.9 for all strong inversions on tabulated knots through 9 crossings.

We remark that Conjecture 3.9 implies that the slope of the rational component
of K̃h(TK ,h) should be divisible by 4 (Questions 3.4, second part). This can be seen
as follows. First note that the group H1(6(S3, τ (0))) ∼= H1(S3

0(K )) has positive
rank hence det(τ (0)) = 0. The determinant of a link can also be computed by
evaluating the Jones polynomial at −1, which agrees with the Euler characteristic
of Khovanov homology with respect to the δ-grading:

0= det(τ (0))= |V (−1)|

= |χδK̃h(τ (0))| = |χδ HF(a(0), K̃h(T ))|.

This means that the δ-graded intersections of a(0) with special components cancel
out intersections with the rational component. Conjecture 3.9 implies that inter-
sections with special components come in groups of 4 concentrated in a single
δ-grading, and so the number of intersections with the rational component — also
concentrated in a single δ-grading — should be divisible by 4.

Incorporating Lemma 2.5 gives the following refinement of Conjecture 3.9:
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Conjecture 3.10. The length of any special component of K̃h(TK ,h) for any strongly
invertible knot (K , h) is divisible by 4.

The special components in all examples that we have tabulated are equal to
s4(∞), but there exist strongly invertible knots (K , h) for which K̃h(TK ,h) contains
special components s4n(∞) with n ̸= 1.

As we can see from Table 1, the ungraded invariant ~(K , h) cannot tell all
strong inversions apart. However, the absolutely bigraded invariant ~(K , h) can
distinguish any pair of strong inversion for knots up to 9 crossings.

Question 3.11 [10, Question 19]. Is there a hyperbolic knot K ⊂ S3 with two
distinct strong inversions that cannot be distinguished by the absolutely bigraded
invariant ~?

The restriction to hyperbolic is important here, and was omitted in error in the
statement of [10, Question 19]. Note that the question is not interesting for torus
knots, as these admit unique strong inversions. However, it is possible to generate
satellite knots with strong inversions whose associated quotient tangles differ by
mutation on a subtangle. Owing to the insensitivity of Khovanov homology to
mutation, such symmetries cannot be separated.

Remark 3.12. Although our focus has been entirely on four-ended tangles admitting
an unknot closure, we expect Conjecture 3.10 to hold more generally: For any
four-ended tangle T , any special component of K̃h(T ) should be equal to s4n(p/q)

for some p/q ∈QP1 and n > 0.

Remark 3.13. In this paper, we have worked exclusively over the field F of two
elements; all of the above questions should be read with this coefficient system in
place. We conclude with a comment about other fields of coefficients. Unlike knot
Floer homology, Khovanov homology is known to behave very differently over
fields of different characteristic. Many of the conjectures above fail if we work over
a field different from F. For example, consider the second strong inversion 72

4 on the
knot 74 in Sakuma’s table [8]. Its invariant K̃h(T72

4
;Z/3) consists of a single rational

component r1(6), two special components s4(∞), but also five special components
s2(∞). So the corresponding version of Conjecture 3.9 over Z/3 does not hold.
Also note that the slope of the rational component is no longer divisible by 4.

4. A table of invariants

In the following, we list the absolutely bigraded invariants ~ for all strong inversions
whose underlying knots have at most 9 crossings. We do this as follows: We
subdivide the drawing plane into a grid and associate with each point on the plane
a bigrading, namely the homological grading is equal to the x-coordinate and the
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δ-grading is equal to the y-coordinate. Moving a point right and upwards increases
both gradings. For each pair (K , h), we can write

~(K , h)=
⊕

i

hai δbi V~

since all special components of the tangle invariants have length 2. Then, for each i ,
we place a grey box centred at the point (ai , bi ). If multiple boxes line up at the
same bigrading, we add a label which indicates the number of such boxes. Finally,
the absolute bigrading is specified by the two numbers in the bottom left corner,
which indicate the absolute coordinate of the bottom-and-left-most intersection
point of the grid: The top-left number is the δ-grading, the bottom-right number is
equal to the homological grading. For example,

~(41
1)= h2.5δ5.5V~ ⊕ h6.5δ4.5V~ .

The superscripts ♠= 1, 2 indicate the strong inversions, using the same numbering
convention as in [8]. We follow the grading conventions in [5]; when comparing
these computations to [10], note that our δ-grading has the opposite sign, and our
quantum grading is twice as large.

Finally, we note that there is a mistake in the diagram
for 943 in Sakuma’s tabulation [8], where the diagram
given is an alternating knot of determinant 43 and
Rasmussen’s s-invariant±2. The only such knots with
fewer than 10 crossings sharing these properties are 921

and 922, according to knotinfo [7]; by comparing the
~-invariant of the quotients, we see that Sakuma’s
diagram shows 922. A diagram for the knot 943 is
shown on the right. (Its determinant is 13 and s =±4.
The only other knot with fewer than 10 crossings with these properties is 73, but
its strong inversions have different ~ than the ones we compute for 943.) Changing
the pair of shaded crossings indicated in the image on the right gives the diagram
in Sakuma’s table.

4
2

31

4
2

41
1

−6
−7

42
1

4
−2

51

8
2

51
2

−1
−7

52
2

8
2

61
1
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−2
0

62
1

24
−2

61
2

2
2

62
2

2
−6
−11

61
3

2
3

2

62
3

8
2

71

12
2

71
2

3
0

72
2

−7
0

71
3

2
−5
−3

72
3

−3
2

71
4

−11
−14

72
4

2
2

8
−2

71
5

3
7

2

72
5

2
2 2

4
−6

71
6

2
2

−7
−15

72
6

2
2 2

−6
−15

71
7

2
2

2
2

72
7

12
2

81
1

−6
−9

82
1

2 28
2

81
2

−2
−10

82
2

0
−14

81
3

−4
0

82
3

0
2

81
4

2 2
2

4
−2

82
4

2
3 2

−6
−1

81
5

3
2

82
5

2
3

−2
−7

81
6
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2
2

2

8
−2

82
6

2 3
−2

0

81
7

2
2 2

−1
−3

82
7

2
3 2

−1
−6

81
8

2
2

2

−12
−19

82
8

2 3
2

−1
−7

81
9

2
3 2

−2
−3

82
9

2 4
2

−6
−8

810

2
2 2

2 2

4
−10

81
11

3
3

−7
−15

82
11

2
3 2

2 2

4
−6

81
12

2 2
2 3

2

−8
−8

82
12

2
2 2

2 2

−6
−19

81
13

3
3 2

−6
−15

82
13

3
4 2

−11
−15

81
14

2
3 2

2 2

−11
−19

82
14

3 2
3 4

−2
−15

81
15

2
2 3

2

−2
−18

82
15

2
2 2

3 2

−7
−18

816

3 2
3 4

3 2

−6
−18

81
18

2 3
4 3

2 3

1
2

82
18

−5
3

819

−1
−4

820

2 2
−1
−11

81
21

2
−2
−7

82
21

8
−2

91

16
2

91
2
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−1
−9

92
2

−15
−13

91
3

2 2
−5

0

92
3

4
−18

91
4

2
2 2

3
−4

92
4

−5
2

91
5

−11
−14

92
5

2 2
2 2

12
2

91
6

3 3
3
−10

92
6

2
2

2
2

12
−2

91
7

2
3 3

3
−7

92
7

2 2
2 3 2

8
2

91
8

2
2

2
2

−13
−23

92
8

2
4 3

7
−2

91
9

2 2
2 3

2

8
−6

92
9

2
3

3

−11
−11

91
10

2
3 2

2

−11
−11

92
10

2
2 2

2 2

−1
−3

91
11

2
2 3 2

2 2

−11
−9

92
11

2
2 2

2 2
2 2

4
−14

91
12

2 3
2 3

1
0

92
12

2
3 2

3 2

−7
−3

91
13

3
3

3

−16
−19

92
13

2 2
2 2

2 2
2

0
2

91
14

2 3 2
3 2

−6
−14

92
14

2
4 2

3 2

−1
−6

91
15

2 2
2 3

2 3
2

−13
−12

92
15
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2
4 3

3 3

−11
−5

91
16

3 3
2 2

2

−2
2

92
16

2
2 3 2

3 2

−2
−10

91
17

2 2
3 3

2

−2
−10

92
17

2
3 2

3 3
2 2

8
−10

91
18

4 2
4 4

−2
−15

92
18

2
2 4 2

3 2

−2
−7

91
19

2 2
2 3

2 3
2

6
2

92
19

3 3
3 4 2

2

8
−2

91
20

2 3
2 3

3

5
2

92
20

2 2
3 3

2 3
2

1
2

91
21

2
2 4 2

4 2

−7
−7

92
21

2 4
2 4 2

2

−6
−12

922

2 4
2 4

3

11
2

91
23

2 3
3 3

2

2
−10

92
23

2 4
2 5 2

2

−7
−12

924

3 4
3 5

2

−3
−8

925

2
2 5 3

3 3

−2
−3

91
26

3
2 5 2

3 2

−11
−19

92
26

2 4
2 5 2

3

7
2

91
27

3 4
3 5 2

2

−3
−4

92
27

3 2
4 4

3 4

−7
−19

91
28

3
4 3

2 4 2

−7
−18

92
28

2
2 3 2

4 4
2

−7
−18

929
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3 2
4 5

3 4

−6
−19

930

3
2 6 3

4 3

−11
−19

91
31

2 4 2
3 4

3 2

−2
−6

92
31

3 2
4 5

3 5 2
3 2

−6
−22

934

11
2

91
35

2
2

3
−7

92
35

2
2 4 2

3 2

−7
−1

936

2
2 3

2 3
2

−6
−22

91
37

2
2 4

3 3
2

−6
−15

92
37

2 4 2
4 5

3

6
−2

938

2
3 3

2 4 2
3 2

−11
−22

939

3 2
4 4

3 6 3
4 3

−7
−22

91
40

2 4 2
5 5

2 6 3
2 2

1
−2

92
40

2 3
2 3 2

2 2
2

6
2

941

−2
3

942

−5
−8

943

2 2
−2
−4

944

2 2
2 2

−1
−15

945

−2
−1

91
46

8
2

92
46

2 3
2

−6
−11

947

3
2 2

3
−6

91
48

2
2 2

2

1
1

92
48

2
3

−11
−11

949
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Lecture notes on trisections and cohomology

Peter Lambert-Cole

We describe several geometric interpretations of H2(X) when X is a trisected
4-manifold. The main insight is that, by analogy with Hodge theory and sheaf
cohomology in algebraic geometry, classes in H2(X) can be usefully interpreted
as “(1,1)”-classes. First, we reinterpret work of Feller, Klug, Schirmer and Zemke
and of Florens and Moussard on the (co)homology of trisected 4-manifolds in
terms of the Čech cohomology of presheaves on X , in both the case of singular and
de Rham cohomology. We then discuss complex line bundles, almost-complex
structures, spin structures and SpinC-structures on trisected 4-manifolds.

1. Introduction

A motivating question in 4-manifold topology is the following:

Question 1.1. To what extent are general 4-manifolds similar to projective complex
surfaces?

Donaldson showed that, like projective surfaces, every closed symplectic man-
ifold admits a Lefschetz pencil [4]. Later, Auroux, Donaldson and Katzarkov
showed that near-symplectic manifolds admit so-called broken Lefschetz pen-
cils1 [1]. Baykur then proved that every closed, oriented, smooth 4-manifold admits
a broken Lefschetz fibration over S2 [2]. This gives one sense in which all such
4-manifolds are similar to projective surfaces.

It is a classical fact, known as Theorem B, that over a Stein domain, coherent
sheaves have no higher cohomology. That is, if Z is Stein and F is a coherent sheaf,
then H i (Z;F) = 0 for i > 0. A consequence is that if X is a complex manifold,
F is a coherent sheaf, and Z = {Zi } is an open cover of X by Stein domains, then

MSC2020: 57K40.
Keywords: 4-manifolds, trisections.

1The term “singular Lefschetz pencil” was used in [1].
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the sheaf cohomology of F can be computed by the Čech complex with respect to
the open cover Z:

H∗(X;F)∼= Ȟ∗(Z;F).

On a projective surface, Hodge theory implies that Dolbeault cohomology refines
de Rham cohomology. Specifically, there is an isomorphism

H k(X; C)∼=

⊕
i+ j=k

H i, j
∂̄
(X; C).

In addition, Dolbeault’s theorem states that Dolbeault cohomology is isomorphic to
the cohomology of the sheaf of holomorphic differential forms:

H i, j
∂̄
(X; C)∼= H i (X;� j ).

Moreover, applying Serre duality to the constant sheaf C shows that there is an
isomorphism

H i, j
∂̄
(X; C)∼= H n−i,n− j

∂̄
(X; C),

where n is the complex dimension of X.
Interestingly, trisections of 4-manifolds reveal similar results for singular and

de Rham cohomology. The four-dimensional handlebody ♮k S1
× B3 admits a Stein

structure. Thus, since every closed 4-manifold admits a trisection, it can be covered
by three domains that admit Stein structures. In addition, by slightly enlarging the
sectors of trisection, we get an open cover T = {U1,U2,U3}, where

(1) Ui is diffeomorphic to ♮ki S1
× B3,

(2) Ui ∩ U j is diffeomorphic to ♮g S1
× B3, and

(3) U1 ∩ U2 ∩ U3 is diffeomorphic to 6g × D2.

Let Ci denote the presheaf on X defined as

Ci (U ) := H i (U ; Z).

It is clear that Ci is a presheaf. However, in general it is not a sheaf as it satisfies
the gluing axiom but not the locality axiom. In particular, it is not separated.
Nonetheless, we can compute the Čech cohomology Ȟ∗(T , Ci ) of the presheaf Ci

with respect to the open cover T .
Methods to compute the homology of 4-manifolds from a trisection have been

given by Feller, Klug, Schirmer and Zemke [5] and by Florens and Moussard [6].
Reinterpreting their results, we get the following theorems:

Theorem 1.2 (Hodge/Dolbeault theorem). There is an isomorphism

H k(X; Z)∼=

⊕
i+ j=k

Ȟ i (T , C j ).
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Moreover, we have the following “Hodge diamond” for the cohomology of a
trisected 4-manifold:

H 4(X; Z)

0 H 3(X; Z)

0 H 2(X; Z) 0

H 1(X; Z) 0

H 0(X; Z)

In particular, the Čech complex Č∗(T , C1)— representing the middle diagonal
of the Hodge diamond — is essentially given in [6, Section 2.1] but not described
as such.

We can also interpret the symmetry of the Hodge diamond as Serre duality.

Theorem 1.3 (Serre duality). There is an isomorphism

Ȟ i (T , C j )⊗ R ∼= Ȟ 2−i (T , C2− j )⊗ R.

1A. Second cohomology as (1, 1)-classes. By analogy with complex geometry,
we refer to any class in Ȟ 1(T , C1)∼= H 2(X; Z) as a (1, 1)-class. On a projective
surface, the Lefschetz theorem states that the integral (1,1)-classes are precisely
those that can be represented by a divisor. The proof of Theorem 1.2 further implies
that every class of is a (1,1)-class.

Theorem 1.4. Every class in H 2(X; Z) is a (1,1)-class with respect to the trisec-
tion T . Specifically,

H 2(X; Z)∼= Ȟ 1(T , C1).

Unpacking the definition of Čech cohomology, this means that every element
of H 2(X) is represented by a triple (β1, β2, β3) where βλ is a 1-dimensional co-
homology class on the handlebody Hλ of the trisection. We will describe several
geometric interpretations of this.

(1) De Rham cohomology: Every class ω ∈ H 2
DR(X) can be represented by a triple

(β1, β2, β3) where βλ is a closed 1-form on Hλ.

(2) C-line bundles. Recall that isomorphism classes of C-line bundles over X are
classified by H 2(X; Z) and homotopy classes of maps from Hλ to S1 are classified
by H 1(Hλ; Z). Take a C-line bundle E with first Chern class c1(E). Then E
can be trivialized over each sector Zλ of the trisection and the triple (β1, β2, β3)

corresponding to c1(E) determines the transition maps (up to homotopy).
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(3) SpinC-structures. The set of SpinC-structures on X is an affine copy of
H 2(X; Z). Following Gompf, we show how to interpret a SpinC-structure as
an almost-complex structure on the spine of the trisection. Then, the action of
H 2(X; Z) can be described in terms of “Lutz twists” along a collection of curves
representing homology classes in H1(Hλ) that are hom-dual to (β1, β2, β3).

2. Singular cohomology

2A. Sheaves. We first review the basics of sheaves and Čech cohomology. Let X
be a topological space and let R be a commutative ring.

Definition 2.1. A presheaf of R-modules F on X consists of

(1) an R-module F(U ) for each open set U, and

(2) a restriction map ρU,V : F(U )→ F(V ) if V is contained in U.

Furthermore, the restriction maps satisfy the relations

(1) ρU,U : F(U )→ F(U ) is the identity homomorphism, and

(2) ρU,W = ρV,W ◦ ρU,V if W ⊂ V ⊂ U.

If s ∈ F(U ) and V ⊂ U, then we will denote ρU,V (s) by s|V .

Exercise 2.2. Suppose that X is a smooth manifold. Check that the following are
presheaves:

(1) R is the constant presheaf, where R(U ) = R and the restriction map is the
identity.

(2) Ci is a presheaf of Z-modules, where Ci (U ) = H i (U ; Z) and the restriction
maps are given by the inclusion map.

(3) DRi is a presheaf of R-modules, where DRi (U )= H i
DR(U,R) and the restric-

tion maps are given by the inclusion map.

(4) �p is a sheaf of R-modules, where �p(U ) is the set of p-forms on U and the
restriction maps are given by the inclusion map.

Definition 2.3. A sheaf of R-modules is a presheaf of R-modules that satisfy the
further conditions:

(1) (locality) If {Ui }i∈I is an open covering of U and if s, t ∈ F(U ) satisfy s|Ui =

t |Ui for all i ∈ I, then s = t .

(2) (gluing) Let {Ui }i∈I be an open covering of U and let {si ∈ F(Ui )}i∈I be a
collection of local sections such that

si |Ui ∩U j = s j |Ui ∩U j

for all i, j ∈ I. Then there is a section s ∈F(U ) such that s|Ui = si for all i ∈ I.



LECTURE NOTES ON TRISECTIONS AND COHOMOLOGY 249

Exercise 2.4. Show that R and �p are sheaves, but Ci and DRi are not sheaves in
general.

2B. Čech cohomology. We refer the reader to [3] for a discussion of Čech coho-
mology in general. To simplify the exposition, we restrict to open covers consisting
of at most three open sets.

Let X be a smooth manifold, let F be a presheaf of R-modules, and let U =

{U1,U2,U3} be an open cover of X. The Čech cochain groups are defined to be

Č0(U,F)= F(U1)⊕F(U2)⊕F(U3),

Č1(U,F)= F(U1 ∩ U2)⊕F(U1 ∩ U3)⊕F(U2 ∩ U3),

Č2(U,F)= F(U1 ∩ U2 ∩ U3).

For 1 ≤ i < j ≤ 3, denote the restriction maps by

ρi,i j : F(Ui )→ F(Ui ∩ U j ),

ρi j,123 : F(Ui ∩ U j )→ F(U1 ∩ U2 ∩ U3).

The Čech coboundary map is defined to be

δ−1
= 0,

δ0
= (ρ1,12 − ρ2,12)⊕ (ρ1,13 − ρ3,13)⊕ (ρ2,23 − ρ3,23),

δ1
= ρ12,123 − ρ13,123 + ρ23,123,

δ2
= 0.

The Čech cohomology Ȟ∗(U,F) of the presheaf F with respect to the open cover U
is defined to be

Ȟ i (U, F)=
ker(δi )

Im(δi−1)
.

Exercise 2.5. Find open covers U = {U1,U2,U3} and compute the Čech cohomol-
ogy of the sheaf R for the following topological spaces:

(1) S1.

(2) S1
∨ S1.

(3) S2.

2C. Notational setup. Let X = Z1 ∪ Z2 ∪ Z3 be a trisection of X, let Yλ = ∂Zλ
and let Hλ = Zλ−1 ∩ Zλ. Let 6 be the central surface. The inclusion

ιλ :6 → Hλ

induces two maps

(ιλ)∗ : H1(6)→ H1(Hλ), (ιλ)
∗
: H 1(Hλ)→ H 1(6).
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Define subspaces

Lλ := ker((ιλ)∗)⊂ H1(6), Mλ := Im((ιλ)∗)⊂ H 1(6).

We can use the intersection pairing ⟨−,−⟩6 on H1(6) to define an isomorphism
π : H1(6)→ H 1(6) by setting

π(x)= ⟨−, x⟩6.

Furthermore, we have inclusion maps κi, j : H j ↪→ Yi and ρi : Yi → Zi for i = 1, 2, 3
and j = i − 1, i . These induce maps

(κi, j )∗ : H1(H j )→ H1(Yi ), (ρi )∗ : H1(Yi )→ H1(Zi ),

(κi, j )
∗
: H 1(Yi )→ H 1(H j ), (ρi )

∗
: H 1(Zi )→ H 1(Yi ).

2D. Hodge diamond. The results in [5; 6] compute homology. In particular, we
have the following expression for H∗(X).

Theorem 2.6 [6]. The homology of X with Z-coefficients is the homology of the
complex

0→Z
0

−→(L1∩L2)⊕(L2∩L3)⊕(L3∩L1)
ζ

−→ L1⊕L2⊕L3
ι

−→ H1(6)
0

−→Z→0,

where ζ(a, b, c)= (c − a, a − b, b − c) and ι(a, b, c)= a + b + c.

The middle terms of this complex are essentially the Čech complex.

Proposition 2.7. There is a chain complex isomorphism

0 //

0
��

(L1 ∩ L2)⊕ (L2 ∩ L3)⊕ (L3 ∩ Lα)
ζ
//

φ1
��

Lα ⊕ L2 ⊕ L3
ι
//

φ2
��

H1(6)

π

��

// 0

0
��

0 //
⊕

λ H 1(Zλ)
δ1

//
⊕

λ H 1(Hλ)
δ2
// H 1(6) // 0

The second complex of this proposition is exactly the Čech complex of C1 with
respect to T , thus by applying Poincaré duality we obtain the following corollary.

Corollary 2.8. For i = 1, 2, 3, there are isomorphisms

H4−i (X; Z)∼= H i (X; Z)∼= Ȟ i−1(T , C1).

Proof of Proposition 2.7. By definition, Zλ= ♮kλS1
× B3 and Yλ= ∂Zλ= #kλS1

×S2.
In particular,

H1(Zλ)∼= H1(Yλ)∼= Zkλ .
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We can apply the Mayer–Vietoris sequence to the Heegaard splitting Yλ= Hλ∪Hλ+1

to get the sequence

→ H2(Hλ)⊕ H2(Hλ+1)→ H2(Yλ)→ H1(6)

→ H1(Hλ)⊕ H1(Hλ+1)→ H1(Yλ)→ H0(6).

Since H2(Hλ)= H2(Hλ+1)= 0, we see that

H 1(Yλ)∼= H2(Yλ)∼= ker(H1(6)→ H1(Hλ)⊕ H1(Hλ+1))∼= Lλ ∩ Lλ+1,

where the first isomorphism follows by Poincaré duality. This defines φ1.
Using the long exact sequence of the pair (Hλ, 6) we obtain

H2(Hλ)→ H2(Hλ, 6)→ H1(6)→ H1(Hλ)→ .

Since H2(Hλ)= 0, we see that

H 1(Hλ)∼= H2(Hλ, 6)∼= ker(H1(6)→ H1(Hλ))= Lλ.

This defines φ2. □

The remaining cohomology groups are straightforward to calculate.

Proposition 2.9. The cohomology groups of C0 are

Ȟ 0(T , C0)∼= Z, Ȟ 1(T , C0)∼= 0, Ȟ 2(T , C0)∼= 0.

Proof. Each open set Ui and each double and triple intersection is connected and so

H 0(Ui ; Z)∼= H 0(Ui ∩ U j ; Z)∼= H 0(U1 ∩ U2 ∩ U3)∼= Z.

The Čech complex is therefore

0 → Z3
→ Z3

→ Z → 0.

If {a, b, c} is a chain in Č0(T , C0) then

δ0
{a, b, c} = {a − b, b − c, c − a}.

Thus, this chain is coclosed if and only if a = b = c. Thus, Ȟ 0(T , C0) ∼=

Z⟨{a, a, a}⟩ ∼= Z. If {a, b, c} is a chain in Č1(T , C0), then

δ1
{a, b, c} = {a + b + c}.

The chain is coclosed if and only if it has the form

{a, b,−a − b} = a{1, 0,−1} + b{0, 1,−1}.

Both elements {1, 0,−1} and {0, 1,−1} are in the image of δ0, so Ȟ 1(T , C0)∼= 0.
Finally, the differential δ1 is surjective so Ȟ 1(T , C0)∼= 0 as well. □
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Proposition 2.10. The cohomology groups of C2 are

Ȟ 0(T , C2)∼= 0, Ȟ 1(T , C2)∼= 0, Ȟ 2(T , C2)∼= Z.

Exercise 2.11. Prove the proposition. [Hint: what is the rank of Č i (T , C2)?]

3. De Rham

Let DRi denote the presheaf on X defined as

DRi (U ) := H i
DR(U ; R)

3A. De Rham to Čech isomorphism.

Theorem 3.1. There are isomorphisms

H 1
DR(X; R)∼= Ȟ 0(T ,DR1), H 0

DR(X; R)∼= Ȟ 0(T ,DR0),

H 2
DR(X; R)∼= Ȟ 1(T ,DR1), H 4

DR(X; R)∼= Ȟ 2(T ,DR2),

H 3
DR(X; R)∼= Ȟ 2(T ,DR1).

We break up the proof by the degree of the cohomology group:

Degree 0: The cohomology group H 0
DR(X; R) consists of constant functions. Given

a constant function C : X → R, its restriction to Uλ is also a constant function
C : Uλ → R and therefore an element of H 0

DR(Uλ; R). The isomorphism from
de Rham to Čech is given by C 7→ (C,C,C).

Conversely, an element of Ȟ 0(T ,DR0) is a triple (C1,C2,C3) of constant
functions whose restrictions to the pairwise intersections agree. In other words,
C1 = C2 = C3 = C . The inverse isomorphism is therefore (C,C,C) 7→ C .

Degree 1: The map from de Rham to Čech is identical to the degree 0 case above.
Given some closed 1-form β, the corresponding element in Čech cohomology is
given by restricting β to each Uλ.

The inverse isomorphism is more complicated. In particular, an element of
Ȟ 0(T ,DR1) is a triple ([β1], [β2], [β3]) of cohomology classes, not specific closed
forms. Choose representative closed 1-forms β1, β2, β3. By assumption, the restric-
tions satisfy

[βλ−1] = [βλ] ∈ H 1
DR(Uλ−1 ∩ Uλ; R).

Therefore, βλ −βλ−1 = dgλ for some function gλ : Uλ−1 ∩ Uλ → R.

Exercise 3.2. Show that there exist functions fλ : Uλ → R such that, on Uλ−1 ∩Uλ,

βλ−1 + d fλ−1 = βλ + d fλ.
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Consequently, we can represent our original Čech class by the triple

(β1 + d f1, β2 + d f2, β3 + d f3)

and these 1-forms glue into a global 1-form β.

Degree 2: In this case, the maps in both directions are more complicated and
we need to check that they are in fact isomorphisms. First, choose a class [ω] ∈

H 2
DR(X; R) and represent it by a closed 2-form ω. The restriction ω|Uλ

is exact
since H 2

DR(Uλ; R)= 0, thus we can choose a primitive αλ for ω|Uλ
. Over the double

intersection Uλ−1 ∩ Uλ, the restrictions αλ−1 and αλ are both primitives for ω,
therefore their difference αλ−αλ−1 is closed. Consequently, the map from de Rham
to Čech is given by

ω 7→ (α1 −α3, α2 −α1, α3 −α2).

There were three sources of indeterminancy:

(1) We could replace αλ by αλ + d fλ for some function fλ : Uλ → R.

(2) We could replace ω by ω+ dµ for some global 1-form µ.

(3) We could replace the primitive αλ with αλ + ρλ, where ρ is a closed 1-form
on Uλ.

Exercise 3.3. (1) Show that modifying the primitives {αλ} by exact 1-forms results
in the same Čech cochain.

(2) Show that we can choose primitives for ω+ dµ that result in the same Čech
cochain.

(3) Show that modifying the primitives {αλ} by closed 1-forms {ρλ} changes the
Čech cochain by a Čech coboundary.

Conversely, given a class in Ȟ 0(T,DR1), choose a fixed cochain ([β1], [β2], [β3])

and fixed closed 1-forms {β1, β2, β3} to represent this class.

Exercise 3.4. (1) There exists a triple of 1-forms {αλ} on the open sets {Uλ} such
that αλ −αλ−1 = βλ.

(2) The 2-forms {dα1, dα2, dα3} glue together to give a global 2-form ω.

(3) Modifying the choices — modifying the Čech cochain by a coboundary, modi-
fying the closed 1-forms {βλ} by exact 1-forms, and modifying the choices
of {αλ} — results in a cohomologous 2-form ω′.

Degree 3: Given a class [µ] ∈ H 3
DR(X; R), represent it by a closed 3-form µ. Since

H 3
DR(Uλ; R)= 0, we can choose a primitive ωλ for µ over each Uλ. The differences

ωλ−ωλ−1 are closed and represent elements of H 3
DR(Uλ∩Uλ−1; R)=0. In particular,

these forms are also exact and we can choose further primitive 1-forms {βλ}.
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Restricting to the triple intersection U1 ∩U2 ∩U3 we get a 1-form β = β1 +β2 +β3

that is closed since

dβ = dβ1 + dβ2 + dβ3 = (ω1 −ω3)+ (ω2 −ω1)+ (ω3 −ω2)= 0.

Thus, [µ] is sent to an element [β] ∈ H 1
DR(U1 ∩ U2 ∩ U3; R) and therefore represents

a Čech 2-cocycle.

Exercise 3.5. (1) Show that changing ωλ by a closed 2-form results in the same
Čech 2-cocycle

(2) Show that changing βλ by a closed 1-form modifies the resulting Čech 2-
cocycle by a Čech 2-coboundary.

The inverse map can be constructed by an argument similar to the degree 2 case;
we leave it as an exercise.

Exercise 3.6. Construct the inverse map Ȟ 2(T , C1)→ H 3
DR(X; R) and show that

it is well defined.

Degree 4: The isomorphism is constructed in a analogous method to the degree 3
case and we leave it as an exercise to the reader.

Exercise 3.7. Construct the isomorphism H 4
DR(X; R)∼= Ȟ 2(T , C2).

3B. Intersection pairing. The intersection pairing on de Rham cohomology can
also be expressed in terms of the Čech cohomology of the de Rham presheafs. In
particular, we can describe the pairings

H 2
DR(X)× H 2

DR(X)→ R,

H 3
DR(X)× H 1

DR(X)→ R.

Moreover, we can describe the pairing obtained by integrating a closed p-form over
a closed p-dimensional submanifold:

H 2
DR(X)× H2(X; Z)→ R,

H 3
DR(X)× H3(X; Z)→ R,

H 4
DR(X)× H4(X; Z)→ R.

Theorem 3.8 (intersection pairing). Let X be a trisected 4-manifold.

(1) Let ω1, ω2 be a pair of closed 2-forms. Suppose that under the de Rham–Čech
isomorphism we have

[ω1] 7→ (α1, α2, α3), [ω2] 7→ (β1, β2, β3).

Then ∫
X
ω1 ∧ω2 =

∫
6

α1 ∧β2 =

∫
6

α2 ∧β3 =

∫
6

α3 ∧β1.
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(2) Let µ be a closed 3-form and α be a closed 1-form. Suppose that under the
de Rham–Čech isomorphism, we have that [µ] 7→ [β]. Then∫

X
µ∧α =

∫
6

β ∧α|6.

Exercise 3.9. Prove these statements. [Hint: use Stokes’ theorem combined with
the arguments in the previous subsection.]

To describe the integration pairing, we first fix some notation.

(1) Let K be an embedded, oriented closed surface in general position with respect
to the trisection. Let τKλ denote the tangle K ⋔ Hλ. We orient τλ as follows:
since K is oriented, the intersection Fλ=K∩Zλ is oriented. The boundary ∂Fλ
inherits an orientation from Fλ; the tangle τKλ is a subset of this boundary and
inherits an orientation.

(2) Let M be an embedded, oriented, closed hypersurface in general position with
respect to the trisection. In particular, the intersection M ⋔ 6 is a simple
closed curve γM.

Theorem 3.10 (integration pairing). Let X be a trisected 4-manifold.

(1) Let ω be a closed 2-form on X that maps to (β1, β2, β3) under the de Rham–
Čech isomorphism and let K be an embedded, oriented closed surface. Then,∫

K
ω =

∑
λ=1,2,3

∫
τKλ

βλ.

(2) Let µ be a closed 3-form on X that maps to β ∈ H 1
DR(6) under the de Rham–

Čech isomorphism and let M be an embedded, oriented, closed hypersurface.
Then, ∫

M
µ=

∫
γM

β.

(3) Let � be a closed 4-form on X that maps to ω ∈ H 2
DR(6) under the de Rham–

Čech isomorphism. Then, ∫
X
�=

∫
6

ω.

Exercise 3.11. Prove these statements [Hint: again, use Stokes’ theorem].

4. Complex line bundles

4A. Algebraic topology. First, we recall some facts from algebraic topology.

(1) The circle S1 is a K (Z, 1). In particular, there is a one-to-one correspondence
between classes in H 1(X; Z) and homotopy classes of maps f : X → S1.
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(2) The space CP∞ is a K (Z, 2). In particular, there is a one-to-one correspondence
between classes in H 2(X; Z) and homotopy classes of maps f : X → CP∞. The
cohomology ring of CP∞ is Z[α], where α has degree 2, and the identification
between maps and cohomology classes is given by

f ↔ f ∗(α).

(3) The space CP∞ is the classifying space for U (1) (equivalently C-line) bundles.
In particular, there is a one-to-one correspondence between C-line bundles on X,
up to isomorphism, and homotopy classes of maps f : X → CP∞. There is a
tautological line bundle E → CP∞ and the correspondence between maps and
C-bundles is given by

f ↔ f ∗(E).

(4) The first Chern class is a complete invariant of C-line bundles and connects (2)
and (3) above. In particular, for the tautological bundle E on CP∞ we have

c1(E)= α.

Moreover, since Chern classes are characteristic, they are natural with respect to
pullbacks and therefore

c1( f ∗(E))= f ∗(c1(E))= f ∗(α).

4B. Chern classes of C-line bundles. Using a trisection T of X, we can explicitly
see the equivalence

{C-line bundles on X}/{equivalence} = Ȟ 1(T , C1)∼= H 2(X; Z),

where an element of Ȟ 1(T , C1) is a “(1, 1)-class”.

Line bundles to (1, 1)-classes. Take a line bundle E on X. Since each sector Zλ of
a trisection is a 1-handlebody, we can choose a trivialization sλ of E over Zλ. Up to
homotopy, the potential choices of trivializations are in one-to-one correspondence
with elements of H 1(Zλ; Z)∼= Zkλ . Over the double intersection Hλ, we have two
trivializations sλ−1, sλ. Taking their quotient, we obtain a map

gλ :=
sλ

sλ−1
→ C∗.

Composing this with the homotopy equivalence C∗
≃ S1, the map gλ determines a

homotopy class of maps from Hλ to S1. In other words, the transition function gλ
determines a unique element βλ of H 1(Hλ; Z). Moreover, since

g1g2g3 =
s1

s3

s2

s1

s3

s2
= 1,

the resulting triple (β1, β2, β3) is a Čech 1-cocycle in Č∗(T , C1). Modifying the
trivialization sλ by some element of H 1(Zλ; Z) changes the resulting cocycle
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by a Čech coboundary. In particular, we obtain a well-defined element c1(E) ∈

Ȟ 1(T , C1).

(1, 1)-classes to line bundles. Given a (1,1)-class (β1, β2, β3)∈ Ȟ 1(T , C1), we can
represent βλ ∈ H 1(Hλ; Z) by a map gλ : Hλ → S1. Moreover, given the cocycle
condition β1 +β2 +β3 = 0 we can assume that g1g2g3 = 1. In particular, the triple
{g1, g2, g3} determines a triple of transition functions that allow us to construct a
C-bundle over X.

5. Almost-complex structures

An almost-complex structure J on X is a fiberwise homomorphism J : T X → T X
such that J 2

= −I. This turns every fiber Tx X into a complex vector space, where
J is multiplication by i . Consequently, the almost-complex structure determines
Chern classes ci (T X, J ) ∈ H 2i (X; Z). The goal of this section is to describe
almost-complex structures on the spine of a trisection.

5A. Field of complex tangencies. Let Y 3
⊂ X4 be a smooth hypersurface and let J

be an almost-complex structure. The field of J -complex tangencies is defined to be

ξ := J (T Y )∩ T Y

Exercise 5.1. Show that ξ has rank 2 at every point. [Hint: ξx is a J -complex line
in Tx X.] In particular, ξ is an oriented plane field.

Exercise 5.2. Let φ : X → R be a function such that Y = φ−1(0). Show that the
field of J -tangencies is the kernel of the 1-form dCφ = dφ(J−), restricted to Y.

Proposition 5.3. Let Y be a 3-manifold. Homotopy classes of almost-complex
structures on Y ×[0, 1] are in one-to-one correspondence with homotopy classes of
(coorientable) 2-plane fields on Y.

Proof. Let J be an almost-complex structure on Y × [0, 1] and let ξt denote the
field of J -tangencies along Y × {t}. It is immediately clear that {ξt } is a homotopy
of 2-plane fields. Furthermore, let Js be a family of almost-complex structures and
let ξs,t denote the field of Js-tangencies along Y × {t}. Again, this clearly gives a
2-parameter homotopy of plane fields on Y.

Now let ξ be an oriented, coorientable 2-plane field and choose a fiberwise metric
g on ξ . We can define an almost-complex structure J : ξ → ξ using the metric as
follows. Locally, we can choose an oriented, orthonormal frame {e1, e2} and define

J (e1)= e2 and J (e2)= −e1

and extend linearly.

Exercise 5.4. Show that, up to homotopy, this J does not depend on the metric g
or the local orthonormal frame.
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Next, let 3 be an oriented line field that coorients ξ . After choosing a metric h
on3, we get a unit-length section σ of3 and can extend J from ξ to T X by defining

J (∂t)= σ and J (σ )= −∂t .

Exercise 5.5. Show that, up to homotopy, this J does not depend on the homotopy
class of J |ξ , the homotopy class of 3, or the metric h.

Finally, we have to check that every J on Y × [0, 1] can be constructed in this
way. Choose some J and define E = ⟨∂t , J (∂t)⟩ and 3 = T Y ∩ E . Choose a
nonvanishing section σ of 3. Then,

J (∂t)= f ∂t + gσ

for some functions f, g. By assumption, {∂t , J∂t } is an oriented basis for E and
therefore g > 0. Since J preserves ξ , we can define a family Js of almost-complex
structures for s ∈ [0, 1] by defining

Js |ξ = J and Js(∂t)= s f ∂t + gσ.

After scaling the metric so that |gσ | = 1, we have that J0 is an almost-complex
structure of the form constructed above and J1 is our original J. □

Exercise 5.6. Show that 6 × D2 admits an almost-complex structure J with
c1(J )= 0. [Hint: embed 6 in C2.]

Lemma 5.7. The spine of a trisection admits an almost-complex structure J.

Proof. By the previous exercise, we can choose some J on a tubular neighborhood of
the central surface 6. The remaining task is to extend it across each handlebody Hλ.
The almost-complex structure J determines a hyperplane field ξλ in a neighborhood
of ∂Hλ =6.

Exercise 5.8. Show ⟨e(ξλ), [6]⟩ = ⟨c1(J ), [6]⟩ = 0. [Hint: Choose a section σ of
ξλ and a normal vector field ν to Hλ. Then det(ν, σ )= 0 precisely where σ = 0.]

Consequently, it is possible to extend ξλ across Hλ and by Proposition 5.3, this
determines a homotopy class of J in a neighborhood of Hλ. □

5B. First Chern class of J. Given some J on the spine of a trisection, we can
construct a 1-complex CJ in the spine that represents the Poincaré dual to c1(T X, J ).

The central surface 6 is canonically framed. In particular, we can choose
coordinates (s, t) on D2 such that pulling back the coordinates by the projection

π : ν(6)∼=6× D2
→ D2

we have that

6 = π−1(0), H2 = π−1(0, t) for t ≥ 0,

H1 = π−1(s, 0) for s ≤ 0,H3 = π−1(−x, x) for x ≥ 0.
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Consider the conormal sequence for the central surface 6:

0 → N ∗6 → T ∗X → T ∗6 → 0.

A coframing of 6 is a trivialization of its conormal bundle. Since N ∗6 is an
R2-bundle, a coframing is determined by a single, nowhere-vanishing section.
Moreover, it is clear from the conormal sequence that such a section is given by
a nowhere-vanishing 1-form whose restriction to 6 is identically 0. An almost-
complex structure J determines a dual almost-complex structure J t

: T ∗X → T ∗X.
Inserting this, we get a (nonexact) sequence

N ∗6 → T ∗X J t
−→ T ∗X → T ∗6.

Given a section α of N ∗6, we can push it through this sequence to get a 1-form α̃

on 6, defined to be
α̃ = α(J−)|6.

Exercise 5.9. A complex point of 6 is a point x ∈ 6 such that J (Tx6) = Tx6.
Show that α̃ vanishes at precisely the complex points of 6.

Exercise 5.10. By a C∞-small perturbation of 6, we can assume that 6 has
finitely many complex points [Hint: what are the dimensions of the Grassmannians
GrR(2, 4) and GrC(1, 2)?]

Recall the normal coordinates (s, t) on 6× D2. The pair ds, dt of 1-forms gives
a coframing of 6. Define

β1 := d̃s, β2 := d̃t, β3 = −d̃s − d̃t .

Exercise 5.11. Show that β1 ∧ β2 ̸= 0, except at the complex points of 6. In
particular, β1 vanishes at x ∈6 if and only if β2 vanishes at x .

Exercise 5.12. Suppose that β1, β2, viewed as sections of T ∗6, are transverse to
the 0-section. Show that at each complex point x ∈6, the indices of the vanishing
of β1 and β2 at x agree.

Exercise 5.13. Show that βλ extends to a 1-form on the handlebody Hλ of the
trisection such that ker(βλ) is the field of J -complex tangencies along Hλ.

Choose vector fields {v1, v2} on 6 such that

β1(v1)= 0, β2(v1)= β1(v2)≥ 0, β2(v2)= 0

and set v3 = −v1 −v2 ∈ ker(β3). Since vλ ∈ ker(βλ), we can extend vλ to a section
of ξλ over Hλ.

For notational purposes, let νλ be a normal vector fields to Hλ such that near 6,
we have

u1 = ∂s, u2 = ∂t , u3 = −∂s − ∂t .
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Exercise 5.14. Show that the pairs

{u1, v1}, {u2, v2}, {u3, v3}

determine the same section of det(T X, J ) over 6.

Proposition 5.15. Let J be an almost-complex structure on the spine of a trisection
T of X. Choose vector fields {vλ ⊂ ξλ} as above and let τλ = v−1

λ (0). The 1-complex

CJ = τ1 ∪ τ2 ∪ τ3

is the intersection of PD(c1(J )) with the spine of the trisection T .

Proof. The bivector uλ ∧ vλ determines a section of the determinant line bundle
over Hλ. The vector uλ is everywhere normal to Hλ and nonvanishing, while vλ
is tangent and vanishes along τλ. By the previous exercise, we obtain a section
of the determinant bundle on the entire spine that vanishes precisely along the
1-complex CJ . □

6. SpinC-structures

A standard interpretation of a spin structure on a manifold X is a trivialization of T X
over the 1-skeleton that extends across the 2-skeleton. A similar interpretation of
SpinC-structures, due to Gompf, is an almost-complex structure over the 2-skeleton
that extends across the 3-skeleton.

6A. Handle decompositions. Every trisection T of X determines an inside-out
handle decomposition as follows.

(1) Start with a neighborhood ν(6) of the central surface. This is diffeomorphic to
6× D2 and can be built in the standard way using a 0-handle, 2g 1-handles, and a
2-handle. The boundary of this neighborhood is 6× S1.

(2) Next, attach a neighborhood ν(Hλ) of each 3-dimensional piece of the trisection.
The solid handlebody Hλ is built from a single 3-dimensional 0-handle and g 3-
dimensional 1-handles. Upside-down, this becomes g 2-handles and a single
3-handle. Fix some distinct angular points θ1, θ2, θ3 ∈ S1 in positive cyclic order.
Then attaching ν(Hλ) is equivalent to the following. Attach g 2-handles along a
cut system of curves on 6 × {θλ} with surface framing. After this surgery, the
surface 6× {θλ} is now an essential 2-sphere and the 4-dimensional 3-handle is
attached along this 2-sphere. The resulting boundary of the 4-manifold has three
components Y1, Y2, Y3 with Y3 ∼= #ki S1

× S2.

(3) Last, attach the 4-dimensional sectors. These are 4-dimensional 1-handlebodies;
upside-down they consist of ki 3-handles and a single 4-handle. The 3-handles are
attached along the essential spheres in #ki S1

× S2. The resulting boundary is three
copies of S3, which is where the 4-handles are attached.
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The outside-in handle decomposition determined by T is the handle decomposi-
tion obtained by turning the inside-out handle decomposition upside-down.

6B. Spin structures. A standard interpretation of a spin structure on a manifold X
is a trivialization of T X over the 1-skeleton that extends across the 2-skeleton. Now,
consider the inside-out handle decomposition of X determined by a trisection T . The
1-skeleton of X is contained in the 1-skeleton of ν(6). Thus, every spin structure
of X restricts to a spin structure on ν(6); moreover, since spin structures are stable,
every spin structure of X restricts to a spin structure on the central surface 6.

Recall that there exist two spin structures on S1 and exactly one extends across D2.
The spin structures on a closed, oriented surface 6 are classified by maps

q : H1(6; Z/2Z)→ Z/2,

where q(γ )= 0 if the spin structure, restricted to a curve representing γ , is the spin
structure that extends across the disk. This map is a quadratic enhancement of the
intersection form on H1(6); in particular, it satisfies the relation

q(x + y)= q(x)+ q(y)+ ⟨x, y⟩ mod 2. (1)

Let α = {αi } be a cut system of curves on 6. We say that q(α) = 0 if q(αi ) = 0
for every αi ∈ α. Note that by the relation in (1), if q(α) = 0, then for every cut
system α′ obtained by handlesliding some curves in α, we also have q(α′)= 0.

Proposition 6.1. Let T be a trisection of X with trisection diagram (6,α,β, γ ).
Then X admits a spin structure if and only if there exists a quadratic enhancement
q : H1(6; Z/2Z)→ Z/2Z such that

q(α)= q(β)= q(γ )= 0.

Moreover, the set of spin structures is in one-to-one correspondence with such
quadratic enhancements.

Proof. Each q corresponds to a spin structure on 6 and therefore a trivialization
of T X over its 1-skeleton. In the inside-out handle decomposition, we have 3g + 1
2-handles. One 2-handle corresponds to the 2-handle of 6; by assumption the
trivialization extends over this handle. The remaining 2-handles are attached along
the curves of α,β, γ with surface framing. Consequently, the trivialization of T X
extends across such a handle if and only if the spin structure, restricted to the
attaching circle, is the spin structure on S1 that extends across the disk. □

6C. Lutz twists. A Lutz twist is a method for modifying a 2-plane field ξ along an
embedded curve γ .

Fix a metric and orthonormal framing of T Hλ. Let ξ be a 2-plane field on Hλ.
Then ξ determines a map ψ : Hλ → S2, by sending the unit normal vector to ξ to its
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direction in R3 using the framing of T Hλ. Now let γ be an embedded curve in Hλ.
The image ψ(γ ) is a closed loop S2, which is contractible and therefore this path is
homotopic to a constant path at the north pole. Consequently, we can homotope ξ
and assume that ψ(γ ) is the constant map to the north pole. Geometrically, this
means that tangent vector γ ′ is perpendicular to ξ at every point along γ .

Definition 6.2. A Lutz twist of ξ consists of the following operation. Choose a
framed neighborhood of γ , with coordinates (r, θ, t). Assume that ξ = ker(dt).
Now, choose smooth functions f, g such that

(1) f : [0, 2ϵ] → R is identically 0 near the endpoints and nonnegative,

(2) g : [0, 2ϵ] → R is increasing, identically −1 near 0, identically 0 near ϵ, and
identically 1 near 2ϵ.

Replace ξ with
ξ̂ = ker(gdt + f dθ).

Exercise 6.3. (1) Show that applying two Lutz twists along γ is homotopic to the
identity.

(2) We have described a left-handed Lutz twist; i.e., the planes make a single
left-handed turn along every diameter of the normal disk to γ . We could
alternatively do a right-handed Lutz twist by choosing f to be nonpositive.
Show that left-handed and right-handed Lutz twists result in homotopic plane
fields.

A Lutz twist changes the relative Euler class of the plane field ξλ. Let τ denote
a fixed trivialization of ξλ along 6 and define the relative Euler class e(ξλ, τ ) ∈

H 2(Hλ, 6)∼= H1(Hλ).

Lemma 6.4. For a Lutz twist along γ , the relative Euler classes satisfy

e(ξ, τ )− e(̂ξ , τ )= 2[γ ] ∈ H1(Hλ).

Proof. We can extend τ to a framing that is {∂r , ∂θ } in a tubular neighborhood of γ .
This framing must vanish along γ and so e(ξλ, τ )= A +[γ ] for some A ∈ H1(Hλ).
However, after the Lutz twist, we can use the same framing, which still vanishes
along γ , except with opposite sign. Thus e(ξ̂λ, τ )= A − [γ ]. □

6D. Action of H2(X; Z). The set of SpinC-structures on X is an affine copy of
H 2(X; Z). This means that H 2(X; Z) acts freely and transitively on the set of SpinC-
structures. That is, given a SpinC-structure s and some nonzero A ∈ H 2(X; Z),
there is a distinct SpinC-structure s′

= s+ A. Furthermore, the first Chern classes
satisfy

c1(s+ A)= c1(s)+ 2A.
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To describe the action of H 2(X; Z) on the set of SpinC-structures, we interpret
H 2(X) by dualizing the complex in Proposition 2.7. This is a complex

0 → H1(6)→

⊕
λ

H1(Hλ)→

⊕
λ

H1(Zλ)→ 0

whose middle homology group is isomorphic to H 2(X; Z). In particular, it consists
of triples (a, b, c) ∈

⊕
λ H1(Hλ) such that

a − b = 0 ∈ H1(Z1), b − c = 0 ∈ H1(Z2), c − a = 0 ∈ H1(Z3)

modulo the image of H1(6).
In order to move from almost-complex structures to SpinC-structures, we need

the following facts.

Lemma 6.5. Let X be a closed 4-manifold with a handle decomposition. Let J
be an almost-complex structure on the 2-skeleton X2 and let ξ be the field of J -
tangencies along the boundary Y2 := ∂X2. In particular, ξ is the 2-plane field
T Y2 ∩ J (T Y2). Then J extends across a 3-handle attached along a 2-sphere S ⊂ Y2

if and only if ⟨e(ξ), [S]⟩ = 0.

Proof. One direction is obvious: if a 3-handle is attached along S then [S] = 0 in
H2(X; Z). Thus ⟨e(ξ), [S]⟩ = ⟨c1(J ), [S]⟩ = 0.

Conversely, suppose that ⟨e(ξ), [S]⟩ = 0. There is a homotopy {ξt } of 2-plane
fields from ξ = ξ0 to ξ1 such that ξ1 is the standard, negative tight contact structure
in a neighborhood of S. There is an almost-complex structure J on Y ×[0, 1] whose
restriction to Y × {t} is precisely ξt .

Finally, we can attach a 3-handle by turning a Stein 1-handle upside-down. A
1-handle addition is cobordism from S0

× B3 to B1
× S2; when S0

× B3 has the
standard tight contact structure, the almost-complex structure can be extended
across the cobordism and induces the standard tight (positive) contact structure on
B1

× S2. Turning this upside-down, the induced contact structure is negative on the
neighborhood of S2. Therefore, the almost-complex structure extends across the
3-handle. □

Choose a thickening of the spine and let {Ŷλ} denote its boundary components.
If J is an almost-complex structure on the spine, let {̂ξλ} denote the fields of
J -complex tangencies.

Corollary 6.6. An almost-complex structure J on the spine of the trisection T
of X is a SpinC-structure if and only if the plane field ξ̂λ satisfies e(̂ξλ)= 0 for all
λ= 1, 2, 3.

We can now define the action of H 2(X; Z) on a SpinC-structure s.
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(1) We can view s as an almost-complex structure on the spine such that the Euler
classes e(̂ξλ) all vanish.

(2) Given A ∈ H 2(X; Z), represent it by a triple (a, b, c) in
⊕

λ H1(Hλ). We can
represent each element a, b, c, by an embedded collection of curves {γλ ⊂ Hλ}.

(3) Modify J by a Lutz twist on every component of γλ for λ= 1, 2, 3.

Exercise 6.7. Show that after the Lutz twists, we still have that e(̂ξλ)= 0 for each
λ= 1, 2, 3.

Consequently, the resulting almost-complex structure also extends across the
3-handles and determines a SpinC-structure.

Exercise 6.8. Show that modifying a SpinC-structure s by the Lutz twist along
A ∼ (a, b, c), the first Chern classes satisfy

c1(s+ A)= c1(s)+ 2A.

[Hint: how does the Lutz twist affect the 1-complex CJ from Proposition 5.15?]
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A remark on quantum Hochschild homology

Robert Lipshitz

We observe that quantum Hochschild homology is a composition of two familiar
operations, and give a short proof that it gives an invariant of annular links, in
some generality. Much of this is implicit in Beliakova, Putyra and Wehrli’s work.

Beliakova, Putyra and Wehrli studied various kinds of traces, in relation to
annular Khovanov homology [2]. In particular, to a graded algebra and a graded
bimodule over it, they associate a quantum Hochschild homology of the algebra
with coefficients in the bimodule, and use this to obtain a deformation of the annular
Khovanov homology of a link. A spectral refinement of the resulting invariant was
recently given by Akhmechet, Krushkal and Willis [1].

Before giving our reformulation, we recall Beliakova, Putyra, and Wehrli’s
definition.

Definition 1 [2, Section 3.8.5]. Let A be a graded ring, M a chain complex of
graded A-bimodules (so M is bigraded), and q ∈ A an invertible central element
with grading 0. The quantum Hochschild complex of A with coefficients in M and
parameter q has chain groups qCHn(A; M) = M ⊗Z A⊗Zn and differential

∂(m⊗a1⊗· · ·⊗an)=ma1⊗a2⊗· · ·⊗an+

n−1∑
i=1

(−1)i m⊗a1⊗· · ·⊗ai ai+1⊗· · ·⊗an

+(−1)nq−|an |anm ⊗ a1 ⊗ · · · ⊗ an−1.

The homology of this complex is the quantum Hochschild homology qHH•(A; M)

of A with coefficients in M and parameter q .

This work was supported by NSF grant DMS-1810893.
MSC2020: 16E40, 57K16.
Keywords: Hochschild homology, trace decategorification, Chen–Khovanov algebras, annular
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The goal of this note is to reformulate this operation and deduce that it often
leads to annular link invariants. The data of A and q specifies a ring homomorphism
fq : A → A defined on homogeneous elements a of A by

fq(a) = q−|a|a,

where |a| denotes the grading of a. We can twist the left action on the A-bimodule M
by fq to obtain a new bimodule fq M which is equal to M as a right A-module and
has left action given by the composition A ⊗Z fq M fq⊗I

−−→ A ⊗Z M m
−→ M = fq M.

This operation is a special case of tensor product:

fq M ∼= fq A ⊗A M

(compare [2, Section 3.8.3]).
Our first observation is:

Proposition 2. The quantum Hochschild homology of A with coefficients in M is
isomorphic to the ordinary Hochschild homology of A with coefficients in fq M.

Proof. This is immediate from the definitions. □

Call a chain complex of graded A-bimodules M weakly central if for any graded
A-bimodule N there is a quasi-isomorphism M ⊗

L
A N ≃ N ⊗

L
A M.

Lemma 3. The bimodule fq A is weakly central.

Proof. The isomorphism M ⊗A fq A → fq A ⊗ M sends m to q−|m|m. □

We turn next to annular link invariants. Consider the category Tan with one
object for each even integer and Hom(2m, 2n) given by the set of isotopy classes
of (2m, 2n)-tangles (embedded in D2

×[0, 1]). Given a (graded) algebra A, a very
weak action of Tan on the category of A-modules is a choice of quasi-isomorphism
class of chain complex of (graded) A-bimodules C(T ) for each T ∈ Hom(2m, 2n)

so that C(T2 ◦ T1) is quasi-isomorphic to C(T2) ⊗
L
A C(T1). For example, if we

take A to be the direct sum of the Khovanov arc algebras [4] then Khovanov defined
a very weak action of Tan on AMod, and if we define A to be the direct sum of the
Chen–Khovanov algebras [3] then Chen and Khovanov defined a very weak action
of Tan on AMod. (In fact, in both cases, they did more; cf. Remark 6.)

Any (2n, 2n)-tangle T ⊂ D2
× [0, 1] has an annular closure in D2

× S1.

Proposition 4. Fix a very weak action of Tan on AMod and fix a weakly cen-
tral A-bimodule P. Then, for any (2n, 2n)-tangle T, the isomorphism class of
HH∗(A; C(T ) ⊗

L
A P) is an invariant of the annular closure of T.

(Compare [2, Corollary 3.23].)



A REMARK ON QUANTUM HOCHSCHILD HOMOLOGY 267

Proof. This is immediate from the definitions and the trace property of Hochschild
homology, i.e., that, given A-bimodules M and N,

HH∗(A; M ⊗
L
A N ) ∼= HH∗(A; N ⊗

L
A M). □

The following is part of Beliakova, Putyra and Wehrli’s Theorem B [2]:

Corollary 5. Up to isomorphism, the quantum Hochschild homology of the Chen–
Khovanov bimodule associated to a (2n, 2n)-tangle T is an invariant of the annular
closure of T.

Proof. This is immediate from Lemma 3, Proposition 4, and the fact that the Chen–
Khovanov bimodules induce a very weak action of Tan [3]. □

Remark 6. To keep this note short, we have not discussed functoriality of these
annular link invariants under annular cobordisms. To do so, one replaces Tan by an
appropriate 2-category of tangles and weak centrality by a notion keeping track of
the isomorphisms. See Beliakova, Putyra and Wehrli [2] for further discussion.
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On uniqueness of symplectic fillings
of links of some surface singularities

Olga Plamenevskaya

We consider the canonical contact structures on links of rational surface singular-
ities with reduced fundamental cycle. These singularities can be characterized by
their resolution graphs: the graph is a tree, and the weight of each vertex is no
greater than its negative valency. The contact links are given by the boundaries
of the corresponding plumbings. In a joint work with L. Starkston, we have
previously shown that if the weight of each vertex in the graph is at most −5, the
contact structure has a unique symplectic filling (up to symplectic deformation and
blow-up); the proof was based on a symplectic analog of de Jong and van Straten’s
description of smoothings of these singularities. Here, we give a short self-
contained proof of the uniqueness of fillings, via analysis of positive monodromy
factorizations for planar open books supporting these contact structures.

1. Introduction

In this note, we consider links of complex surface singularities, equipped with their
canonical contact structures. Let X ⊂ CN be a singular complex surface with an
isolated singularity at the origin. For small r > 0, the intersection Y = X ∩ S2N−1

r
with the sphere S2N−1

r = {|z1|
2
+ |z2|

2
+ · · · + |zN |

2
= r} is a smooth 3-manifold

called the link of the singularity (X, 0). The induced contact structure ξ on Y is
the distribution of complex tangencies to Y, and is referred to as the canonical or
Milnor fillable contact structure on the link. The contact manifold (Y, ξ), which we
will call the contact link, is independent of the choice of r , up to contactomorphism.

Our main result, Theorem 1, states that for a certain class of singularities, the
canonical contact structure on the link has a unique symplectic filling (up to blow-up
and symplectic deformation). This theorem was originally proved in [23]; here, we

Partially supported by NSF grant DMS-1906260.
MSC2020: 57K33, 57K43.
Keywords: links of singularities, symplectic fillings.
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will give a new proof, from a different perspective. The sufficient condition will be
stated in terms of the dual resolution graph of the singularity. Recall that for a normal
surface singularity (X, 0), this graph is defined as follows. Consider a resolution
of the singularity, i.e., a proper birational morphism π : X̃ → X such that X̃ is
smooth. We can assume that the exceptional divisor π−1(0) has normal crossings.
This means that π−1(0) =

⋃
v∈G Ev, where the irreducible components Ev are

smooth complex curves that intersect transversally at double points only. The
(dual) resolution graph encodes the topology of the resolution: the vertices E ∈ G
correspond to the exceptional curves and are weighted by the self-intersection E · E
of the corresponding curve, while the edges of G record intersections of different
irreducible components. Up to contactomorphism, the link of the singularity with
its canonical contact structure can be reconstructed from the graph G and the data of
self-intersections and genera of exceptional curves, as the boundary of the plumbing
of symplectic disk bundles over surfaces according to G.

In this paper, we only work with rational singularities; then G is always a tree,
and each exceptional curve has genus 0. The following assumption plays the key
role in this paper: for every exceptional curve E , we require that the self-intersection
E · E and the valency a(E) of the corresponding vertex in G satisfy the inequality

a(E) ≤ −E · E . (1)

Plumbing graphs with this property are sometimes referred to as “graphs with
no bad vertices” in low-dimensional topology; a bad vertex, by definition, has
valency greater than its negative weight. (The boundary of the corresponding
plumbing is a Heegaard Floer L-space [21].) If the dual resolution graph is a tree
with the above property, (X, 0) is a rational singularity with reduced fundamen-
tal cycle. In the literature, singularities of this type are also known as minimal
singularities [13].

We will give a direct new proof of the following theorem, first established in [23]:

Theorem 1 [23]. Suppose that (X, 0) is a rational surface singularity with reduced
fundamental cycle, and assume additionally that every exceptional curve in its
resolution has self-intersection at most −5. Then the contact link (Y, ξ) of (X, 0)

has a unique minimal weak symplectic filling, which is Stein.

In the special case where the resolution graph is star-shaped with three legs, this
fact is proved in [5, Theorem 2.7, Remark 2.8], by a different method.

Symplectic and Stein fillings of links of surface singularities are of interest
because of the connection to algebrogeometric questions, namely to the smoothings
of the singularity. The Milnor fiber of each smoothing of (X, 0) gives a Stein filling
of its link (Y, ξ); another Stein filling can be provided by the minimal resolution of
the singularity, after deforming the symplectic form. (Rational surface singularities
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are always smoothable, with an “Artin smoothing component” whose Milnor fiber
gives the same Stein filling as the resolution. In particular, for the singularities
in Theorem 1, the filling can be viewed as the resolution or as the Milnor fiber
for the Artin smoothing.) An important question is whether all Stein fillings of
a given surface singularity arise in this way [16]. Although this correspondence
breaks down when the singularity is sufficiently complicated [1; 2; 23], the answer
is positive for certain simple classes of singularities. Namely, all Stein fillings come
from Milnor fibers or the minimal resolution for (S3, ξstd) [6], for links of simple
and simple elliptic singularities [19; 20], for lens spaces (links of cyclic quotient
singularities) [15; 17], and in general for quotient singularities [4; 22]. Theorem 1
significantly extends this list.

Our interest in the question of Theorem 1 was motivated by a (very special
case of) a conjecture of Kollár on deformations of rational surface singularities [14].
The conjecture asserts that every exceptional curve has self-intersection at most −5
in the resolution of a rational singularity, then the base space of a semiuniversal
deformation of this singularity has a unique component. For the case of rational
singularities with reduced fundamental cycle, the conjecture was established by
de Jong and van Straten [12]; in particular, it follows that under the hypotheses of
Theorem 1, the singularity has a unique smoothing component. Our Theorem 1
gives the symplectic analog of this statement.

The proof we gave in [23] comes as a side product of the theory developed in
that article, where we describe symplectic fillings of the corresponding class of
singularities via a symplectic analog of de Jong and van Straten’s construction.
Fillings are encoded by certain configurations of symplectic disks in C2; we were
then able to apply a lemma of de Jong and van Straten to establish “combinatorial
uniqueness” of the corresponding disk arrangements, and then finish the argument
via topological considerations.

In this paper, we will instead give a direct proof of Theorem 1, working with open
book factorizations. As a corollary, we get a symplectic proof that all smoothings
of the corresponding singularity are diffeomorphic. We will assume that the reader
is familiar with the basics of open book decompositions for contact 3-manifolds;
see [7] for a survey. Under the hypotheses of the theorem, the canonical contact
structures on the links of singularities admit planar open books. (This follows from a
construction of Gay and Mark [10]; see Section 2. Planarity was also a key ingredient
that allowed us to build an analog of the de Jong–van Straten theory in [23].) In
the planar case, symplectic fillings can be studied via theorems of Wendl and
Niederkruger [18; 25]: every minimal symplectic filling is symplectic deformation
equivalent to a Lefschetz fibration over a disk with the same planar fiber P. The
classification of fillings then reduces to enumerating positive factorizations of the
monodromy of the given open book.
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In general, finding all positive factorizations of the monodromy is a daunting
task, even in the planar case. The question is much easier if one only seeks to
determine the image of the Dehn twists of the factorization in the abelianization of
the mapping class group of the page. This is equivalent to finding the homology
classes of the curves about which the Dehn twists are performed; we also disregard
the order of the twists. This easier question can be studied by counting how many
times the Dehn twists enclose each hole in the planar page, and how many times
they enclose each pair of holes. (The planar page is a disk with holes, and we
say that a simple closed curve in a disk with holes encloses a hole if the curve
separates the hole from the outer boundary component of the disk.) If P is planar,
any two factorizations of the boundary-fixing monodromy φ : P → P can be
connected by a sequence of lantern relations, and it follows that the number of
Dehn twists enclosing a given hole (or a given pair of holes) is independent of the
factorization of φ. Thus, we can introduce the multiplicity m(v) of a hole v with
respect to the monodromy φ, and similarly the joint multiplicity m(v1, v2) of a pair
of holes v1, v2. Knowing these multiplicities, one can attempt to describe possible
other factorizations of φ, by examining the combinatorics of how the Dehn twists
can enclose the holes. This method was introduced in [24] to classify fillings of
certain lens spaces.

Once we understand the Dehn twists in the factorization at the level of homology
classes of the curves, additional information is needed to find the isotopy classes of
the curves. In the case at hand, this step is possible because the given monodromy
admits a positive factorization into Dehn twists about disjoint curves.

In [23], the combinatorial part of the proof was based on the description of
fillings via a symplectic analog of the de Jong–van Straten construction. We then
used the result of [12] asserting uniqueness of a combinatorial solution for a certain
curve arrangement problem. For the second part of the proof, we gave a direct
mapping class argument. The purpose of the note is to give a direct multiplicity-
count argument for the first part; see Lemma 2. For the second part, we essentially
repeat the reasoning from [23]; this argument, based on right-veering properties, is
given in Lemma 3 for completeness.

It is interesting to note that our direct argument for the combinatorics of Dehn
twists follows the strategy of [12, Theorem 6.23]: we translate their proof from the
incidence matrices to multiplicities of holes, and provide some extra details where
needed.

2. Proof of Theorem 1

To begin, we recall the construction of the open books supporting the canonical
contact structures for the class of singularities that satisfy (1) [10, Theorem 1.1].
Starting with the plumbing graph G, the construction given by Gay and Mark
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−6 −5 −2−4

−3
−2 −3

−3

Figure 1. The Gay–Mark open book supporting the canonical contact
structure on the link of the singularity with dual resolution graph shown
on the right. The page of the open book has genus 0 and is constructed
from the spheres with holes corresponding to the vertices of the graph.
Each sphere is connected to the other spheres by necks that correspond
to the edges; the total number of holes and necks for each sphere equals
the negative self-intersection of the vertex. The monodromy is the
product of the positive Dehn twists about the boundaries of the holes
and the meridians of the necks; these curves are shown in red.

produces a planar Lefschetz fibration compatible with the symplectic resolution
of a rational singularity (X, 0) with reduced fundamental cycle. (The symplectic
structure on the plumbing can be deformed to the corresponding Stein structure.)
We describe the induced planar open book on the link (Y, ξ). To construct the
page of the Gay–Mark open book, take a sphere SE for each vertex E ∈ G and cut
−a(E) − E · E ≥ 0 disks out of this sphere. (As before, a(E) is the valency of the
vertex E ; the number of disks is nonnegative by (1).) Next, make a connected sum
of these spheres with holes by adding a connected sum neck for each edge of G. For
a sphere SE corresponding to the vertex E , the number of necks equals the number
of edges adjacent to E , i.e., its valency a(E). The resulting surface S has genus 0
because G is a tree. See Figure 1 for an example. The open book monodromy is
given by the product of positive Dehn twists around each of the holes and around
the meridians of the necks. We will call this product the standard factorization of
the Gay–Mark monodromy.

To examine positive factorizations of this open book, we first we put the resolution
graph in the following special form, as in [12]. We choose the vertices E1, E2, . . . Ek

and partition the remaining vertices into subsets R2, . . . , Rk as shown in Figure 2,
so that for any vertex F ∈ Rj , the length l(E j , F) of the chain from F to E j satisfies
l(E j , F)≤ j −1. Here, the length of chain means the number of edges; for example,
the statement means that every vertex in R2 is directly connected to E2 by a single
edge. This can always be achieved via the following procedure. We choose E1

to be the endpoint of a longest chain C in the graph; then E1 is necessarily a leaf
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E1 E2 E3 E4

R2

R3
R4

Figure 2. A graph with conveniently arranged vertices: after re-
moving E1, E2, . . ., the remaining vertices are partitioned into
subsets R2, R3, . . . . Every vertex in the set Rj connects to the
vertex E j by a chain with fewer than j edges.

vertex of G. Let E2 be its adjacent vertex, and let E3 be the vertex on the chain C
that is adjacent to E2. Removing E2 from G, we get one connected component
consisting of E1, another that contains E3, and possibly a number of other vertices
in the remaining components. Let R2 be the set of these remaining vertices. Each
vertex F ∈ R2 must be a leaf vertex connected to E2 (otherwise we can build a
chain longer than C by going to R2 instead of E1); thus the condition l(E2, F) ≤ 1
is satisfied. If E3 is a leaf vertex, it can be included in R2, and the procedure is over.
If E3 is not a leaf vertex, and every other vertex in G \ (E1 ∪ R2) is connected to E3

by a path of at most 2 edges, then all remaining vertices can be included in E3.
Otherwise we consider the vertex E4 preceding E3 on the path C . Removing E3,
we set aside the two components of G \ E3 that contain E1 resp. E4 and let E3

be the set of all remaining vertices. Again, since no chain in the graph G can
be longer than C , every vertex F ∈ R3 must be connected to E3 by a path of no
more than 2 edges, satisfying l(F, E3) ≤ 2. We continue this process to define
E5, R4, etc., stopping when we reach k such that all the remaining vertices in G can
be connected to Ek by a path no longer than (k − 1) edges, and thus placed in Rk .
See Figure 2. We will say that vertices of the graph are conveniently arranged if
they are partitioned into subsets as above.

For the resolution graph G with conveniently arranged vertices, we build the
Gay–Mark open book as in Figure 1. We will identify the planar page of this open
book with a disk with holes, so that the outer boundary of the disk corresponds to
the boundary of one of the holes associated to the vertex E1. This identification
and the choice of the outer boundary component of the disk will be fixed from now
on, for the statement and the proof of Lemma 2. In the standard factorization of
the Gay–Mark monodromy, there is a sequence of the Dehn twists D1, D2, . . . , Dk

around a nested collection of curves γ1, . . . , γk , such that
(i) D1 is the twist around the outer boundary component γ1 of the page, and

therefore D1 encloses all the holes;
(ii) Dj is the twist around the neck γj between E j−1 and E j for j =2, . . . , k, so that

Dj encloses all the holes corresponding to E j , Rj , E j+1, R j+1, . . . , Ek, Rk .
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k
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k
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Dk
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v2
2 v3

2

v1
k−1
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k−1 v3

k−1
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k

v2
k v3

k

D1 D2

Dk−1

D3
k D1

k

D2
k

Figure 3. Property F1 (left) and Property F2 (right) for a chosen
subset of holes v1

1, v
2
1, v

3
1, . . . v

1
k , v

2
k , v

3
k and the Dehn twists that

enclose them in a factorization. Note that we only require that the
homology classes of the curves are as schematically shown; isotopy
classes may look different from the picture.

The curves {γj }
k
j=1 cut the disk page into annular domains {Vj }

k−1
j=1 such that Vj is

bounded by γj , γ j+1 for j = 1, . . . , k − 1, and a disk Vk bounded by γk . It follows
that the joint multiplicity of any two holes from Vj is at least j. In the Gay–Mark
construction, the holes from Vj are associated to vertices E j , Rj of the graph G.

We now make a choice of a certain ordered subset of holes in the page. Because
the valency of E1 is one, and the self-intersection E1 · E1 is at most −5, the
corresponding annular domain V1 contains −E1 · E1 − 2 ≥ 3 holes. We label three
of these holes as v1

1 , v2
1 , v3

1 . Next, again because self-intersections of vertices are
at most −5, we can pick three holes v1

2, v
2
2, v

3
2 in the domain V2. We require that

v1
2, v

2
2, v

3
2 satisfy an additional condition m(vr

2, v
s
2) = 2: if R2 is nonempty, we

make sure that no two holes are in the same branch of R2 to avoid higher joint
multiplicities. For j = 3, . . . k, we proceed to pick v1

j , v
2
j , v

3
j in the domain Vj ,

choosing different branches of Rj if Rj is nonempty, so that m(vr
j , v

s
j ) = j for any

pair of indices r, s = 1, 2, 3. By construction, we have
m(vr

i , v
s
j ) = min(i, j) (2)

for any two chosen holes vr
i , v

s
j .

The choice of the holes v1
1, v

2
1, v

3
1, . . . , v

1
k , v

2
k , v

3
k will be fixed. By construction,

the standard factorization of the Gay–Mark open book satisfies the following:

Property F1. The factorization includes Dehn twists D1, . . . , Dk such that

• the Dehn twist Dj encloses the holes v1
i , v

2
i , v

3
i for all i ≥ j.

This is illustrated in Figure 3. Note that we have only listed the Dehn twists that
correspond to the edges of the chain E1, . . . , Ek . The Dehn twists that correspond
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to edges the sets Rj are not listed above; for each Rj , the corresponding Dehn
twists enclose holes in the domain Vj . While these Dehn twists may be nested, the
hypothesis that chains of edges in Rj connecting to E j have length at most j − 1
gives a bound on a number of twists enclosing any hole w in Vj in the standard
factorization: there are at most j nested Dehn twists inside Vj (including the Dehn
twist around the boundary of w), in addition to D1, . . . , Dj . This means that in φ,
the multiplicity of the hole w is at most 2 j.

For an inductive step in our proof, we will consider graphs G satisfying a weaker
hypothesis: when the vertices of G are conveniently arranged, we require that
the self-intersection Ek · Ek be less than or equal to −4, whereas E · E ≤ −5 for
every other vertex E ∈ G. Note that in the case where Ek · Ek = −4, we can still
choose a labeled collection of holes v1

1, v
2
1, v

3
1, . . . , v

1
k , v

2
k , v

3
k as above. Because

Ek · Ek = −4, we can use the lantern relation to replace the product of Dk and three
other Dehn twists (around holes or necks in the sphere corresponding to Ek) by
three Dehn twists D1

k , D2
k , D3

k . For this new factorization, we have:

Property F2. The factorization includes Dehn twists D1, . . . , Dk−1, D1
k , D2

k , D3
k

such that:

• Dj encloses the holes v1
i , v

2
i , v

3
i for all i ≥ j, for each for each j = 1, . . . , k−1.

• D1
k encloses v2

k , v
3
k but not v1

k .

• D2
k encloses v1

k , v
3
k but not v2

k .

• D3
k encloses v1

k , v
2
k but not v3

k .

Under the hypotheses of the following lemma, we will show that an arbitrary
factorization of the monodromy of the Gay–Mark open book must have Property F1
or Property F2. This will be a step in the argument showing that any monodromy
factorization must be standard if the self-intersection of each vertex of G is at
most −5.

Lemma 2. Suppose that the vertices of the graph G are conveniently arranged,
with distinguished vertices E1, E2, . . . , Ek , and the corresponding sets R2, . . . , Rk .
Assume that the self-intersections of all vertices in the graph are at most −5, except
possibly Ek , which has self-intersection at most −4. Suppose also that there is a
collection of holes {v1

j , v
2
j , v

3
j }

k
j=1, chosen as above. Then:

(1) If Ek · Ek = −4, then every monodromy factorization includes

(a) the Dehn twist around the outer boundary component of the page,
(b) a collection of Dehn twists (containing the twist around the outer boundary)

that has Property F1 or Property F2.

(2) If Ek · Ek ≤ −5, then every monodromy factorization is homologically equiva-
lent to the standard one.
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Proof. We will build an inductive argument, with double induction on k and the
number of vertices in the graph.

The base of induction is given by k = 1 and k = 2. The case of k = 1 corresponds
to lens spaces and was treated in [24]. (This is an easy exercise on computing
multiplicities.) The case k = 2 is straightforward but more tedious; we check it
after explaining the induction step.

For now, assume that k ≥ 2, and that the statement of the lemma is established
for all graphs where the chain of distinguished vertices E1, E2, . . . has length at
most k. Consider the graph G with convenienly arranged vertices with a longer chain
E1, . . . , Ek+1, and the remaining vertices partitioned into the sets R2, . . . , Rk+1.
Take a new graph G ′, obtained from G by removing all vertices of Rk+1 and Ek+1,
increasing by 1 the self-intersection of Ek , and keeping the same self-intersection
for all other vertices. The Gay–Mark open books (P, φ) and (P ′, φ′), representing,
respectively, the contact links of singularities with graphs G and G ′, are related as
follows. To obtain the page P ′ from P, we cap off all the holes in P associated to
Ek+1 and Rk+1; the boundary-fixing diffeomorphism φ then induces φ′. (Note that
Ek · Ek increases by 1 in the graph G ′ since the corresponding subsurface in the
page has fewer boundary components now: removing Ek+1, Rk+1 is the same as
pinching off the neck connecting the Ek-sphere to the Ek+1-sphere.)

Fix an arbitrary factorization 8 of the Gay–Mark open book for G. When the
holes in P are capped off to obtain P ′, 8 induces the factorization 8′ for the open
book (P ′, φ′). Since by assumption Ek · Ek ≤ −5 in G, the self-intersection of the
corresponding vertex is at most −4 in G ′. The induction hypothesis applies to the
graph G ′, and therefore, the conclusion of the lemma holds for the factorization 8′

of the monodromy φ′. In particular, there is a Dehn twist T ′
= T ′

1 around the
outer boundary component of P ′ in the factorization 8′, and moreover, there are
Dehn twists T ′

2, T ′

3, . . . , T ′

k−1, and T ′

k (or T ′

k,1, T ′

k,2, T ′

k,3) that have Property F1 (or,
respectively, Property F2). These Dehn twists must be induced by the corresponding
Dehn twists T = T1, T2, . . . , Tk−1 and Tk (or Tk,1, Tk,2, Tk,3) in the factorization 8

of φ : P → P.
To show that 8 has a Dehn twist around the outer boundary component of P,

we need to check that T encloses all the holes corresponding to Ek+1 and Rk+1

that were removed from P to obtain P ′; we already know that T encloses all the
holes that P inherits from P ′. For the sake of contradiction, let v = vs

k+1 be a hole
associated to Ek+1 or Rk+1, and suppose that it is not enclosed by T. First assume
that the factorization 8′ has property F1, so that the factorization 8 includes Dehn
twists T = T1, T2, . . . , Tk−1, Tk as above. We examine the multiplicities of the
selected holes. Because these multiplicities can be computed from the standard
factorization of φ : P → P, by (2) we know that the joint multiplicity m(v, vs

j ) = j
for i = 1, 2, 3 and j = 1, . . . , k.
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If T = T1 does not enclose v, the holes v and vs
j are enclosed together by at

most j − 1 of the Dehn twists T1, T2, . . . , Tk−1, Tk . Even if v is enclosed by all of
T2, . . . , Tk−1, Tk , it follows that there must be an additional Dehn twist τ s

j enclosing
both v and vs

j . Observe that the Dehn twists τ i
j must be all distinct (that is, τ s

j = τ r
i

only if i = j, r = s): the joint multiplicity m(vs
j , v

r
i ) of any two distinct holes vs

j , v
r
i

is already realized by T1, T2, . . . , Tk−1, Tk , so no additional Dehn twist can enclose
them both. It follows that the hole v must be enclosed by at least 3k distinct Dehn
twists τ 1

1 , τ 2
1 , τ 3

1 , . . . , τ 1
k , τ 2

k , τ 3
k in the factorization 8, in addition to k − 1 Dehn

twists T2, . . . , Tk−1, Tk . It is not hard to see that if v is not enclosed by some of the
twists among T2, . . . , Tk−1, Tk , then each missing twist will need to be replaced
by several individual twists to achieve m(v, vs

j ) = j. It follows that v is enclosed
by at least 3k + k − 1 = 4k − 1 twists. To obtain a contradiction, we compute the
multiplicity m(v) in the monodromy φ. The hole v is associated to Ek+1 or to some
vertex E in Rk+1; in the standard factorization of φ, it is enclosed by the small
twist around the hole v, by the outer boundary twist, as well as by the Dehn twists
corresponding to the edges in the chain in G from E1 to Ek+1 and then the chain
from Ek+1 to E , if the latter chain is present. Since E ∈ Rk+1, and by construction
the length of the chain from Ek+1 to any vertex in Rk+1 is at most k, we see that
m(v) ≤ 2k + 2. This is a contradiction since 2k + 2 < 4k − 1 for k ≥ 2.

Similar reasoning leads to the same conclusion in the case where the factor-
ization 8′ has Property F2 instead of Property F1. As above, we see that if v

is not enclosed by T = T1, there must be at least 3(k − 1) distinct Dehn twists
τ 1

1 , τ 2
1 , τ 3

1 , . . . , τ 1
k−1, τ

2
k−1, τ

3
k−1 in the factorization 8 to achieve m(v, vs

j ) = j for
j = 1, . . . , k − 1, s = 1, 2, 3. The holes v1

k , v
2
k , v

3
k need a bit more attention.

Indeed, when v is not enclosed by T = T1, there are at most k − 2 twists among
T2, . . . , Tk−1 enclosing v and vs

k for each s = 1, 2, 3. The joint multiplicity
m(v, vs

k) = k can be achieved if v is enclosed by all three twists Tk,1, Tk,2, Tk,3, in
addition to all of T2, . . . , Tk−1 and τ 1

1 , τ 2
1 , τ 3

1 , . . . , τ 1
k−1, τ

2
k−1, τ

3
k−1. This would give

m(v)≥ 3k+(k−1) as before. Another case is when one of the twists Tk,1, Tk,2, Tk,3

(say Tk,3) does not enclose v. In that case, two additional twists, distinct from all of
the above, enclosing, respectively, v and v1

k (but not v2
k or v3

k ) and v and v2
k (but not

v1
k or v3

k ), are needed (again for the reason of joint multiplicities). This would still
yield m(v)> 3k+(k−1). As in the case of Property F1, the multiplicity of v will be
even higher if v is not enclosed by some of the twists among T2, . . . , Tk−1, Tk . As
above, we get a contradiction since m(v) ≤ 2k + 2, as computed from the standard
factorization of 8.

At this point, we have shown that the Gay–Mark open book for the resolution
graph G must have an outer boundary twist T in any factorization 8, assuming
that the smaller graph G ′ satisfies the conclusion of the lemma. To prove the other
statements of the lemma for G, we will now reduce to a different smaller graph G̃.
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In the page P, consider all the holes associated to the vertex E1 ∈ G. We know
that these holes have joint multiplicity 1 with any other hole in P, thus they cannot
be enclosed by any twists other than T that involve several holes. Since there is one
boundary Dehn twist δi around each of these holes in the standard factorization,
so that the multiplicity of each hole is 2, these boundary twists must be present
in 8 as well. It follows that the factorization 8 has the form 8 = T δ1δ2 · · · δm ◦ 8̃,
where 8̃ is supported in P̃ = P \ V1, the part of the page P associated to G \ E1.
Remove the vertex E1 and its connecting edge from the graph G, and consider the
resulting graph G̃, keeping the same self-intersections of vertices. Clearly, 8̃ gives
a factorization of the Gay–Mark open book associated to G̃. If self-intersections
of all vertices of G are at most −5, the same holds for G̃. The graph G̃ has fewer
vertices, so by the induction hypothesis, the factorization 8̃ must be standard. It
follows that the factorization 8 of the Gay–Mark open book for G is standard as
well, proving part (2) of the lemma.

To make the induction step work for part (1), assume that in G, the vertex Ek+1

has self-intersection at most −4, while all the other vertices have self-intersection
at most −5. When we remove E1 to form the graph G̃, the vertices of G̃ may no
longer be conveniently arranged; after vertices are rearranged, we need to have
the (−4) vertex at the appropriate position to apply the induction hypothesis. We
must rearrange the vertices of G̃ to have a chain Ẽ1, Ẽ2, . . . , with the other vertices
partitioned into the sets R̃1, R̃2, . . . , so that the length of any chain in E j , Rj is at
most j − 1. Consider the vertex E2 in G. If R2 is not empty in G, we can pick a
vertex of R2 to play the role Ẽ1 in G̃, let R̃2 be the remaining vertices of R2, and
set Ẽ2 = E2, Ẽ3 = E3, . . . , R̃3 = R3, R̃4 = R4, . . . . In this case, the (−4) vertex
Ek+1 in G becomes the vertex Ẽk+1 at the end of the chain Ẽ1, Ẽ2, . . . in G̃, as
required. If R2 is empty in G, we check if R3 has a chain of (maximum possible)
length 2. If so, we rearrange the vertices: let Ẽ3 = E3, pick Ẽ1 and Ẽ2 forming a
length 2 chain in R3 (with Ẽ1 being the leaf vertex). Let R̃2 consist of all vertices
other than Ẽ1, Ẽ3, and let R̃3 consist of all remaining vertices of R3, together with
the old vertex E2. For j ≥ 4, we have Ẽ j = E j , R̃j = Rj , so the (−4) vertex
remains in the right place for the graph G̃, which is now conveniently arranged.
See Figure 4. If there are no chains of length 2 in R3, we similarly examine R4

to see if there are chains of length 3. If so, we flip the graph to put this length 3
chain into the position of vertices Ẽ1, Ẽ2, Ẽ3, make the vertices E2, E3 and all of
R3 be part of the new set R4; the graph is now conveniently arranged, and the (−4)

vertex does not move. If there are no length 3 chains in R4, we look at R5, etc.
To summarize, the above procedure means that we can conveniently rearrange the
vertices of G̃ without moving the (−4) vertex whenever for some j = 2, . . . , k, the
set Rj in G has a chain of the maximum possible length j −1. If such a chain does
not exist, we check if Rk+1 has a chain of length k. If so, this chain will become the
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G

G̃

E1 E2 E3 E4 Ek+1

R3
R4

Rk+1

Ẽ1 Ẽ2 Ẽ3 Ẽ4 Ẽk+1

R̃2
R̃3

R̃4
R̃k+1

Figure 4. After removing the vertex E1 from G, we flip a chain in
the graph to make the new graph G̃ conveniently arranged, while
keeping in place the vertex Ek . The graph G is shown at the top,
the new graph G̃ at the bottom. The picture illustrates the situation
where R2 is empty, and we flip a length 2 chain in R3, together
with all the edges and vertices attached to this chain in R3. The
vertex E2 becomes part of the new set R̃3.

new chain Ẽ1, Ẽ2, . . . , the old vertices E2, . . . , Ek as well as the sets R2, . . . , Rk

will all be in R̃k+1, and the graph will be conveniently rearranged without moving
the (−4) vertex Ek+1 = Ẽk+1. Lastly, if each chain Rj , j = 2, . . . , k + 1 has
length at most j − 2 in G, we can set Ẽ1 = E2, Ẽ2 = E3, . . . , Ẽk = Ek+1 and
R̃2 = R3, . . . , R̃k = Rk+1, so that the graph G̃ will be conveniently arranged, and
the vertex Ẽk ∈ G̃ will have self-intersection −4.

With the rearrangement in place, part (1) follows by induction: if the factoriza-
tion 8 of the Gay–Mark open book for G has the form 8 = T δ1δ2 · · · δm ◦8̃, where
8̃ is the factorization of the Gay–Mark open book for G̃, and part (1) of the lemma
holds for 8̃, then clearly the same is true for 8.

We now return to the base of induction and check the case k = 2. In this case,
the graph is star-shaped with legs of length 1, with E2 in the center. As above,
the page P is identified with the disk whose outer boundary corresponds to one
of the holes associated to E1; there are at least three holes v1

1, v
2
1, v

3
1 in V1. First,

we claim that any factorization has a Dehn twist enclosing all of these holes. If
not, we must have two distinct Dehn twists τ1 and τ2, τ1 enclosing v1

1, v
1
3 and τ2

enclosing v1
2, v

1
3 , because m(vr

1, v
s
1) = 1. Since m(v1

3) = 2 and there are at least 4
holes in P having joint multiplicity 2 with v1

3 , one of these Dehn twists, say τ1,
contains an additional hole w. But then there must be two additional Dehn twists
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in the factorization, enclosing, respectively, v1
2, v

1
1 and v1

2, w, which is impossible
since m(v2

2) = 2. Thus, there is a Dehn twist τ enclosing v1
1, v

2
1, v

3
1 . We would

like to show that τ encloses all the holes in P. Suppose not, and let w be a hole
not enclosed by τ . Then there must be distinct Dehn twists τ1, τ2, τ3, enclosing,
respectively, w, v1

1 , w, v2
1 , and w, v3

1 . Since m(v1
1) = m(v2

1) = m(v3
1) = 2, there

cannot be any other Dehn twists enclosing v1
1, v

2
1, v

3
1, and since m(vr

1, v) = 1 for
r = 1, 2, 3 and any other hole v, every hole v must be either in τ or in each of
τ1, τ2, τ3 (but not simultaneously in τ and τi , i = 1, 2, 3). For the hole w, two
cases are possible: (1) w belongs to E2, in which case m(w) = 3, so there are
no Dehn twists except τ1, τ2, τ3 enclosing w; or (2) w belongs to R2, in which
case m(w) = 4, and there is exactly one additional Dehn twist τ ′. In either case,
there must exist another hole w′ such that m(w, w′) = 2; however, we can only
get m(w, w′) = 3 (if w′ is in all three of τ1, τ2, τ3) or m(w, w′) = 1 (if w′ is in τ

and τ ′). It follows that the Dehn twist τ must enclose all holes in P.
We conclude that the factorization includes Dehn twists around the curves that

are homologous, and therefore isotopic, to the boundaries of all the holes associated
to E1. As above, these can be removed from consideration. The same argument
works for any leaf vertex of the graph, reducing the question to the situation of only
one vertex, E2. This is the case k = 1 representing an open book for a lens space as
in [24]; if E2 · E2 ≤ −5, there is a unique factorization, and if E2 · E2 = −4, then
the only other option for the homology classes of curves comes from the lantern
relation. □

By Lemma 2, we now know that under the hypotheses of Theorem 1, the Dehn
twists in every positive factorization are performed about the curves in the same
homology classes as the Dehn twists in the standard factorization. We now show
that the curves are in the same isotopy classes.

Lemma 3. Let (P, φ) be a planar open book whose monodromy φ admits a fac-
torization 8 into a product of positive Dehn twists about disjoint simple closed
curves in P. Suppose that 8′ is another positive factorization of φ, such that 8 is
homologically equivalent to 8′. Then the factorizations 8 and 8′ are the same, up
to the order of Dehn twists.

Proof. After reordering, we can write 8 = D1 D2 · · · Dlδ1δ2 · · · δn , where the δi ’s
are Dehn twists about the boundary-parallel curves, and D1, D2, . . . , Dl are the
Dehn twists around disjoint curves γ1, . . . , γl in P that are not boundary parallel.

Then, again after reordering, we have 8′
= T1T2 · · · Tlδ1δ2 · · · δn , where the

Dehn twists Dj and Tj are performed about homologous curves in P : indeed, every
boundary-parallel curve γj is determined by its homology class, uniquely up to
isotopy. We can thus remove the Dehn twists δ1, δ2, . . . , δn from consideration.
We will use the same notation, 8 = D1 D2 · · · Dl and 8′

= T1T2 · · · Tl for the two
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η1 η2

P P ′

Dl Dl

Figure 5. After cutting P along arcs η1, η2, . . ., the Dehn twist
Dl becomes boundary-parallel in the new surface P ′.

factorizations of the diffeomorphism

φ = D1 D2 · · · Dl = T1T2 · · · Tl . (3)

We will prove the lemma by induction on the number l of the nonboundary
parallel Dehn twists. Identifying P with a disk with holes, we can assume that γl is
an innermost curve in the collection γ1, γ2, . . . , γl . Suppose that γl encloses r holes.
Choose a collection of arcs η1, η2, . . . , ηr−1 connecting these holes and disjoint
from γl , so that after cutting along these arcs, the holes become a single hole,
and the domain enclosed by γl becomes an annulus (which deformation retracts
to γl). See Figure 5. By construction, the arcs η1, η2, . . . , ηr−1 are disjoint from
the support of each of the Dehn twists D1, D2, . . . , Dl , thus the diffeomorphism
φ = D1 D2 · · · Dl fixes each of these arcs. As in [3, Proposition 3] and [9, Section 2],
we now make the following key observation: after an isotopy removing nonessential
intersections, all arcs η1, . . . , ηr−1 must be also disjoint from the support of each
of the Dehn twists T1, T2, . . . , Tl . To see this, we recall that each right-handed
Dehn twist is a right-veering diffeomorphism of the oriented surface P [11]. If
α and β are two arcs with the same endpoint x ∈ ∂S, we say that β lies to the
right of α if the pair of tangent vectors (β̇, α̇) at x gives the orientation of P. The
right-veering property of a boundary-fixing map τ : P → P means that for every
simple arc α with endpoints on ∂ P, the image τ(α) is either isotopic to α or lies to
the right of α at both endpoints, once all nonessential intersections between α and
τ(α) are removed. Now, suppose that the support of the Dehn twist Tj essentially
intersects one of the arcs, say η1. Then the curve Tj (η1) is not isotopic to η1 (see,
e.g., [8, Proposition 3.2]), so Tj (η1) lies to the right of η1. Since the composition
of right-veering maps is right-veering, we can only get curves that lie further to the
right of η1 after composing with the other Dehn twists T1, . . . , Tl . However, the
composition φ = T1T2 · · · Tj · · · Tl fixes η1, a contradiction.

Once we know that the support of all the Dehn twists is disjoint from all of
the arcs η1, . . . , ηr−1, we can cut the page P along these arcs, and consider the
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image of the relation (3) in the resulting cut-up surface P ′. In P ′, we have that (the
induced diffeomorphisms) Tl and Dl are Dehn twists around the curve homologous
to the boundary of the same hole, and therefore, Tl = Dl as Dehn twists in P ′. It
follows that for the Dehn twists (induced by) D1, . . . , Dl−1 and T1, . . . , Tl−1 in P ′,
we have

D1 D2 · · · Dl−1 = T1T2 · · · Tl−1.

By the induction hypothesis, we can conclude that for each j = 1, . . . , l − 1, the
Dehn twists Dj and Tj are performed about isotopic curves in P ′. It follows that
each pair Dj , Tj gives the same Dehn twists in P, for each j = 1, . . . , l. □

Proof of Theorem 1. Under the hypotheses of Theorem 1, the contact 3-manifold
(Y, ξ) is supported by an open book with planar page P. Theorems of Wendl and
Niederkruger then imply that up to blow-up and deformation of the symplectic
form, every weak symplectic filling has a Lefschetz fibration whose fiber is given
by P; the monodromy of the fibration is the monodromy of the open book. The
Lefschetz fibration is described by its vanishing cycles, or, equivalently, by a positive
factorization of the monodromy. Lemmas 2 and 3 show that the positive monodromy
factorization is unique. □
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On the spectral sets of Inoue surfaces

Daniel Ruberman and Nikolai Saveliev

We study the Inoue surfaces SM with the Tricerri metric and the canonical spinc

structure, and the corresponding chiral Dirac operators twisted by a flat C∗-
connection. The twisting connection is determined by z ∈ C∗, and the points for
which the twisted Dirac operators D±

z are not invertible are called spectral points.
We show that there are no spectral points inside the annulus α−1/4 < |z| < α1/4,
where α > 1 is the only real eigenvalue of the matrix M that determines SM ,
and find the spectral points on its boundary. Via Taubes’ theory of end-periodic
operators, this implies that the corresponding Dirac operators are Fredholm on
any end-periodic manifold whose end is modeled on SM .

1. Introduction

Inoue surfaces are compact complex surfaces with zero second Betti number which
are most remarkable in that they contain no holomorphic curves. These surfaces,
constructed by Inoue [18], belong to the class VII0 in Kodaira’s classification [6],
which is to say that they are minimal connected compact complex surfaces X with
Kodaira dimension κ(X) = −∞ and the first Betti number b1(X) = 1. In fact, any
class VII0 surface with vanishing second Betti number and no holomorphic curves is
biholomorphic to an Inoue surface; see Bogomolov [7; 8] and Teleman [28]. Inoue
surfaces, which are not Kähler because their first Betti number is odd, have been
extensively studied from the viewpoints of both algebraic and differential geometry.

In this paper, we restrict ourselves to the Inoue surfaces X of class SM associated
with certain integral matrices M ∈ SL(3, Z) with one real eigenvalue α > 1 and two
complex eigenvalues β ̸= β̄. These surfaces, described in detail in Section 2, are
known to be diffeomorphic to the mapping torus of a self-diffeomorphism of the
3-torus induced by M. It is in this incarnation that the surfaces SM are best known
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to topologists. In particular, Cappell and Shaneson [9; 10] independently used
some of the matrices M to construct a fake RP4 and interesting fibered 2-spheres
in a homotopy 4-sphere. From this point of view, the manifolds SM are given
by surgery on this homotopy 4-sphere along those knots. The question of when
this homotopy 4-sphere is in fact diffeomorphic to S4 has received considerable
attention [2; 1; 3; 14].

Inoue surfaces are an intriguing class of examples to which to apply our work on
the Seiberg–Witten invariants [24] and the end-periodic index theorem [25]. Spectral
properties of chiral Dirac operators D±(X) play an important role in determining
the index of associated Dirac operators on end-periodic manifolds whose end is
modeled on an infinite cyclic cover of X. In applications of those papers to date
[21; 20; 22], the infinite cyclic cover was a Riemannian product of the real line and
a 3-manifold. In the case of an Inoue surface, while this cover is topologically the
product of the real line and a 3-torus, it is not a metric product. (This is related to
the fact that the monodromy of the bundle X → S1 has infinite order.) Since the
end-periodic index is metric dependent, this makes for an index problem that must
be investigated analytically. We study this problem for the Tricerri metric on X,
which makes it into a locally conformal Kähler manifold, and the canonical spinc

structure; see Section 2.
More specifically, we are interested in the spectral sets of the associated chiral

Dirac operators D±(X). Recall from [24] that z ∈ C∗ is a spectral point of D±(X)

if and only if the operator

z f
◦D±(X) ◦ z− f

= D±(X) − ln z · d f

has nonzero kernel, where f : X → S1 is a smooth function realizing a generator
of H 1(X; Z) = Z, and d f operates by Clifford multiplication. One can easily
check that the spectral sets of D+(X) and D−(X) are obtained from each other by
inversion τ(z) = 1/z̄ with respect to the unit circle. The following theorem, which
was announced in [25, Section 6.4], is the main result of this paper.

Theorem 1.1. The operators D±(X) have no spectral points in the annulus α−1/4 <

|z|<α1/4. Furthermore, the only spectral points of D+(X) on the circles |z|=α−1/4

and |z| = α1/4 are, respectively, z = α1/4β and z = α1/4.

Let Z∞ be a spinc end-periodic manifold whose end is modeled on the infinite
cyclic cover of an Inoue surface X. According to Taubes [27, Lemma 4.3], the
Dirac operators D±(Z∞) are Fredholm in the usual Sobolev L2 completion if and
only if their spectral sets are disjoint from the unit circle |z| = 1.

Corollary 1.2. The operators D±(Z∞) : L2
1(Z∞) → L2(Z∞) are Fredholm on any

end-periodic spinc manifold Z∞ whose end is modeled on an Inoue surface X of
type SM .
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Remark 1.3. Inoue surfaces do not admit metrics of positive scalar metric, as
was proved by Albanese [4, Theorem 4.5]. This also follows from Cecchini and
Schick [11], making use of the fact that Inoue surfaces are solvmanifolds (see
Wall [31; 32] and Hasegawa [16]) and hence are enlargeable in the sense of Gromov
and Lawson [15]. In particular, one cannot prove that the operators D±(Z∞) of
Corollary 1.2 are Fredholm by using the (uniformly) positive scalar curvature at
infinity condition as in [15].

Once we establish that the operators D±(Z∞) are Fredholm, their index can in
principle be calculated as in [25] in terms of an integral term and the periodic eta-
invariant η(X). The latter is a spectral invariant which generalizes the eta-invariant
of Atiyah, Patodi, and Singer [5] and which can be viewed as a regularized count
of points in the spectral set of D±(X). The partial information about the spectral
set we obtain in this paper is not sufficient to calculate η(X) or the associated index
of D±(Z∞). However, even this modest attempt leads to some fascinating analysis
which we felt was worth sharing.

It is worth mentioning that our original interest in end-periodic index theory grew
out of our work [24] with Mrowka on Seiberg–Witten theory for 4-manifolds X
with b2(X) = 0 and b1(X) = 1. In that paper, a Seiberg–Witten invariant λSW(X)

was defined as a sum of two metric dependent terms. One is a count of solutions to
the Seiberg–Witten equations, and the other is an index-theoretic correction term,
whose most important part is the index of the Dirac operator D+(Z∞).

Evaluating λSW(X) for an Inoue surface X presents quite a challenge. One
can actually solve a modified version of the Seiberg–Witten equations for the
Tricerri metric; see [26; 23]. However, the modification involves a certain twisting
of the Dirac operator used in the formulation of the Seiberg–Witten equations.
In order to turn this into a calculation of λSW(X), one would have to first re-
late this modified Seiberg–Witten equation to the one used in [25]. The second
step would be to evaluate the correction term; this is essentially the same as
finding the invariant η(X). As mentioned above, we are quite far from achiev-
ing this.

In conclusion, we mention that a recent paper of Holt and Zhang [17] uses related
techniques to investigate ∂̄-harmonic forms on a different non-Kähler complex
manifold, the Kodaira–Thurston surface [19; 29].

2. Inoue surfaces

The Inoue surfaces X we are interested in are all compact quotients of H×C, where
H = {w = w1 + iw2 ∈ C | w2 > 0} is the upper complex half-plane. To construct X,
start with an integral matrix M ∈ SL(3, Z) with one real eigenvalue α > 1 (which
must therefore be irrational) and two complex conjugate eigenvalues β ̸= β̄. For
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example, the matrices

Am =

 0 1 0
0 1 1
1 0 m + 1

,

which are equivalent to the Cappell and Shaneson [10] family, will do as long as
−2 ≤ m ≤ 3. Let a = (a1, a2, a3) be a real eigenvector corresponding to α, and
b = (b1, b2, b3) a complex eigenvector corresponding to β. Let GM be the group
of complex analytic transformations of H× C generated by

g0(w, z) = (αw, βz),

gi (w, z) = (w + ai , z + bi ), i = 1, 2, 3.

The group GM acts on H× C freely and properly discontinuously so that the
quotient X = (H× C)/GM is a compact complex surface.

Inoue [18] showed that, as a smooth manifold, X is a 3-torus bundle over a circle
whose monodromy is given by the matrix M, and that b1(X) = 1 and b2(X) = 0.
One can check, for example, that H∗(X)= H∗(S1

×S3) for all manifolds X obtained
from the Cappell–Shaneson matrices Am . Define a function f : H× C → R by the
formula f (w, z) = ln w2/ ln α. One can easily see that d f is a well-defined 1-form
on X, whose cohomology class generates H 1(X; Z) = Z.

The complex surface X admits no global Kähler metric. We will however consider
the following Hermitian metric on H× C, called the Tricerri metric:

g =
dw ⊗ dw̄

w2
2

+ w2dz ⊗ dz̄,

see [30; 12]. Let ω be the Kähler form associated with this metric, then dω =

d ln w2 ∧ω, with the torsion form d ln w2 = ln α ·d f . The metric g is GM -invariant;
hence it defines a metric on X which makes X into a locally conformal Kähler
manifold (or l.c.K. manifold, for short).

The complex surface X admits a canonical spinc structure with respect to which

S+
= 30,0(X) ⊕ 30,2(X) and S−

= 30,1(X).

Let D±(X) be the chiral Dirac operators associated with the Tricerri metric and
the canonical spinc structure on X. These are the operators that Theorem 1.1 is
concerned with. The proof of Theorem 1.1 will take up the rest of these notes.

3. Reduction to the Dirac–Dolbeault operator

Let D−(X) be the negative chiral Dirac operator associated with the Tricerri metric
and the canonical spinc structure on X. According to Gauduchon [13, page 283],
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there is an isomorphism

D−(X) +
1
4 ln α · d f =

√
2(∂̄ ⊕ ∂̄∗), (1)

where
∂̄ ⊕ ∂̄∗

: �0,1(X) → �0,2(X) ⊕ �0,0(X) (2)

is the Dirac–Dolbeault operator on the complex surface X. To prove Theorem 1.1,
it will suffice to compute the spectral set of (2). The spectral set of D−(X) will
be obtained from it via multiplication by α−1/4, and the spectral set of D+(X) by
further inversion.

4. The periodic boundary value problem

To compute the spectral set of (2), we will complete the operator (2) to an operator
L2

1 → L2 and look for z = eµ
∈ C∗ such that the kernel of the operator

eµ f
◦ (∂̄ ⊕ ∂̄∗) ◦ e−µ f

= (∂̄ ⊕ ∂̄∗) − µ · d f

on X is nonzero. Equivalently, after passing to the universal covering space
H× C → X, we will look for µ such that the following periodic boundary problem
on H× C has a nonzero solution ω ∈ �0,1(H× C):

(∂̄ ⊕ ∂̄∗)(ω) = 0, where g∗

i ω = ω for i = 1, 2, 3, and g∗

0ω = e−µ
· ω.

Let us restate this periodic boundary problem by writing ω = adw̄ + bdz̄ on
H× C. The equation (∂̄ ⊕ ∂̄∗)(ω) = 0 turns into the system

∂a
∂ z̄

−
∂b
∂w̄

= 0,

∂(w2a)

∂w
+

1
w2

2
·
∂b
∂z

= 0,

and, after introducing the new function c = w2a and the new variable t = ln w2

into the system, (
∂

∂t
+ i Bt

) (
b
c

)
= 0 (3)

with

Bt =

−et ∂

∂w1
2 ∂

∂ z̄

2e−t ∂

∂z
et ∂

∂w1

.

Taking into account the periodic boundary conditions g∗

i ω = ω for i = 1, 2, 3,
this can be viewed as a system on the product R × T 3, with the coordinates t on
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the real line and (w1, z1, z2) on the torus T 3. The remaining periodic boundary
condition g∗

0ω = e−µ
· ω can be expressed in the language of (0, 1)-forms as

g∗

0(a(w, z)dw̄ + b(w, z)dz̄) = e−µ
· (a(w, z)dw̄ + b(w, z)dz̄).

After switching to c = w2 · a, this turns into

β̄ · b(αw, βz) = e−µ
· b(w, z) and c(αw, βz) = e−µ

· c(w, z). (4)

It is the periodic boundary value problem (3), (4) on the manifold R × T 3 that
we now wish to solve.

5. Fourier analysis

We will use Fourier analysis on the 3-torus to solve the system (3). First, consider
the following basis in R3:

ξ = (a1, Re b1, Im b1),

η = (a2, Re b2, Im b2),

ζ = (a3, Re b3, Im b3),

where a = (a1, a2, a3) and b = (b1, b2, b3) are, as before, the eigenvectors of M
corresponding to the eigenvalues α and β. The quotient of R3 by the integer lattice
spanned by the vectors ξ , η, ζ is our 3-torus. The matrix whose rows are the vectors
ξ , η, ζ will be called Y so that

Y =

ξ1 ξ2 ξ3

η1 η2 η3

ζ1 ζ2 ζ3

.

Without loss of generality, we will assume that det Y = 1. The columns of the
matrix

Y −1
=

ξ∗

1 η∗

1 ζ ∗

1
ξ∗

2 η∗

2 ζ ∗

2
ξ∗

3 η∗

3 ζ ∗

3


form the dual basis ξ∗, η∗, ζ ∗ with respect to the usual dot product ( · , · ) on R3.
One can easily check that the functions T 3

→ C defined by

θ → exp(2π i(θ, kξ∗
+ ℓη∗

+ mζ ∗)) for all (k, ℓ, m) ∈ Z3, (5)

where θ = (θ1, θ2, θ3) = (w1, z1, z2), form an orthonormal basis in the L2-space of
complex-valued functions on the 3-torus.

For each t ∈ R, expand the functions b(t, θ) and c(t, θ) : T 3
→ C into Fourier

series,
b(t, θ) =

∑
k,ℓ,m

bkℓm(t) exp(2π i(θ, kξ∗
+ ℓη∗

+ mζ ∗))
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and
c(t, θ) =

∑
k,ℓ,m

ckℓm(t) exp(2π i(θ, kξ∗
+ ℓη∗

+ mζ ∗)),

and plug them into (3). For each individual triple of integers (k, ℓ, m), we obtain
the system (

b′

kℓm
c′

kℓm

)
=

(
−et Pkℓm Qkℓm

e−t Q̄kℓm et Pkℓm

) (
bkℓm

ckℓm

)
, (6)

where the prime stands for the t-derivative,

Pkℓm = 2π(kξ∗

1 + ℓη∗

1 + mζ ∗

1 ) ∈ R, and

Qkℓm = 2π(kξ∗

2 + ℓη∗

2 + mζ ∗

2 ) + 2π i(kξ∗

3 + ℓη∗

3 + mζ ∗

3 ) ∈ C.

This is a linear system of ordinary differential equations with nonconstant coeffi-
cients. Note that Pkℓm and Qkℓm are actually constants so the only dependence of
the coefficients on t comes from the factors of et and e−t. For future use, we make
the following observation.

Lemma 5.1. For no choice of (k, ℓ, m) ̸= (0, 0, 0) can Qkℓm be equal to zero.

Proof. Observe that

Y

 Pkℓm

Re Qkℓm

Im Qkℓm

 = 2π

 k
ℓ

m

.

If Qkℓm = 0, the first column of Y, which is an eigenvector of M with the eigen-
value α, is proportional to the vector with integral coordinates k, ℓ, and m. The
latter vector is then also an eigenvector of M ∈ SL(3, Z) with the eigenvalue α,
which contradicts the fact that α is irrational. □

Next, we need to take care of the boundary conditions (4). In our θ -notation, we
have βz = (β1+iβ2)(z1+i z2)= (β1+iβ2)(θ2+iθ3)= (β1θ2−β2θ3)+i(β2θ2+β1θ3)

and αw = α(w1 + iw2) = αθ1 + iet+ln α. To simplify notation, introduce the matrix

A =

α 0 0
0 β1 −β2

0 β2 β1

 ,

then the boundary conditions (4) become

β̄ · b(t + ln α, A(θ)) = e−µ
· b(t, θ), c(t + ln α, A(θ)) = e−µ

· c(t, θ).

In order to rewrite these in terms of the Fourier coefficients bkℓm and ckℓm , we need
the following technical result.
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Lemma 5.2. For any integers k, ℓ and m, we have (A(θ), kξ∗
+ ℓη∗

+ mζ ∗) =

(θ, k ′ξ∗
+ ℓ′η∗

+ m′ζ ∗), where  k ′

ℓ′

m′

 = M

 k
ℓ

m

. (7)

Proof. A straightforward calculation with matrices shows that MY = Y At. Viewing
θ as a column, we obtain
(A(θ), kξ∗

+ ℓη∗
+ mζ ∗)

= θ t At Y −1

 k
ℓ

m

 = θ t Y −1 M

 k
ℓ

m

 = θ t Y −1

 k ′

ℓ′

m′


= (θ, k ′ξ∗

+ ℓ′η∗
+ m′ζ ∗). □

Now, substitute the Fourier expansions of b(t, θ) and c(t, θ) into the boundary
conditions to obtain

β̄ · b(t + ln α, A(θ)) = β̄
∑
k,ℓ,m

bkℓm(t + ln α) exp(2π i(A(θ), kξ∗
+ ℓη∗

+ mζ ∗))

= β̄
∑
k,ℓ,m

bkℓm(t + ln α) exp(2π i(θ, k ′ξ∗
+ ℓ′η∗

+ m′ζ ∗))

= e−µ
∑

k′,ℓ′,m′

bk′ℓ′m′(t) exp(2π i(θ, k ′ξ∗
+ ℓ′η∗

+ m′ζ ∗)),

and similarly for c. A term-by-term comparison of the coefficients allows us to
conclude that

β̄ · bkℓm(t + ln α) = e−µ
· bk′ℓ′m′(t), ckℓm(t + ln α) = e−µ

· ck′ℓ′m′(t), (8)

where the triples (k, ℓ, m) and (k ′, ℓ′, m′) are related by (7). Therefore, to fit bkℓm(t)
and ckℓm(t) together into a Fourier series solution, we need to know how M acts
on the triples (k, ℓ, m).

6. Finite orbits

The infinite cyclic subgroup of SL(3, Z) generated by the matrix M acts on the
lattice Z3. The only finite orbit of this action consists of the triple (k, ℓ, m)= (0, 0, 0).
The solutions of (6) corresponding to this triple must be constant; we will denote
them by b and c. The boundary conditions (8) then translate into β̄b = e−µb
and c = e−µc, resulting in exactly two choices for the spectral point z = eµ

of the operator (2), namely, z = 1 and z = 1/β̄ = αβ. These correspond to
the spectral points z = α1/4 and z = α1/4β of the operator D+(X) as claimed
in Theorem 1.1.
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7. Infinite orbits

For any fixed triple of integers (k0, ℓ0, m0) ̸= (0, 0, 0), the triples (kn, ℓn, mn),
n ∈ Z, in its orbit can be found from the equation kn

ℓn

mn

 = Mn

 k0

ℓ0

m0

.

Denote bn(t) = bknℓnmn (t) and cn(t) = cknℓnmn (t). It follows from (8) that, once
we know b0(t) and c0(t), the rest of bn(t) and cn(t) can be determined uniquely
from the recursive relation

bn+1(t) = β̄ · eµ
· bn(t + ln α), cn+1(t) = eµ

· cn(t + ln α).

Therefore, each infinite orbit gives rise to the infinite series

b(t, θ) =

∑
n∈Z

β̄n
· enµ

· b0(t + n ln α) · exp(2π i(θ, knξ
∗
+ ℓnη

∗
+ mnζ

∗)),

c(t, θ) =

∑
n∈Z

enµ
· c0(t + n ln α) · exp(2π i(θ, knξ

∗
+ ℓnη

∗
+ mnζ

∗)).

The question becomes whether these formal series solutions converge to a solution
of (3). We will show that, for certain values of µ, the series cannot converge in L2

norm unless b0(t) = c0(t) = 0; this will imply that the corresponding z = eµ are not
in the spectral set of the operator ∂̄ ⊕ ∂̄∗. To this end, denote by δ the real number

δ = Re µ/ ln α − 1/4

and introduce the notation

u(t) = b0(t) and v(t) = et/2c0(t).

Lemma 7.1. The above Fourier series for b(t, θ) and c(t, θ) converge to L2
1 sections

on X if and only if both u(t) and v(t) belong to L2
1,δ−1/4(R).

Proof. Let z = β̄ · eµ, then zt/ln α
· b(t, θ) is the Fourier–Laplace transform [24] of

the function u(t) exp(2π i(θ, k0ξ
∗
+ ℓ0η

∗
+ m0ζ

∗)) on R × T 3 with respect to the
covering translation (t, θ) → (t + ln α, A(θ)). One can easily check that

|z1/ln α
| = eδ−1/4.

From this point on, we follow the proof of [24, Proposition 4.2] and use the fact
that the functions exp(2π i(θ, knξ

∗
+ ℓnη

∗
+ mnζ

∗)) form an orthonormal basis on
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the fibers {t} × T 3. For example, it follows by direct calculation that

∥zt/ln α
· b(t, θ)∥2

L2(X)
=

∑
n∈Z

∫ ln α

0
|z|2(n+t/ln α)

· |u(t + n ln α)|2 dt

=

∫
∞

−∞

|z|2t/ln α
· |u(t)|2 dt = ∥u∥

2
L2

δ−1/4(R)
.

The proof for the function c(t, θ) is similar. □

One can easily check using (6) that the functions u(t) and v(t) solve the system
of ordinary differential equations(

u′

v′

)
=

(
−Pet Qe−t/2

Q̄e−t/2 1/2 + Pet

) (
u
v

)
, (9)

where P = Pk0ℓ0m0 ∈ R and Q = Qk0ℓ0m0 ∈ C. Because of Lemma 7.1, we are only
interested in solutions u(t) and v(t) which belong to L2

1,δ−1/4(R).

Proposition 7.2. Suppose that −1/4 ≤ δ ≤ 1/4, then all solutions u(t), v(t) of the
system (9) which belong to L2

1,δ−1/4(R) are identically zero.

Proof. Decoupling (9) turns it into the following pair of Sturm–Liouville problems:

−u′′
+ (Pet(Pet

− 1) + |Q|
2e−t)u = 0 and (10)

−v′′
+ (Pet(Pet

+ 2) + |Q|
2e−t

+ 1/4)v = 0. (11)

Without loss of generality, we will assume that u and v are real-valued functions.
We will separate our argument into three cases, depending on whether P is positive,
negative, or zero.

If P < 0, introduce the positive real numbers p = −P and q = |Q| and rewrite
(10) in the form −u′′

+ U (t)u = 0 with the everywhere-positive potential U (t) =

pet(pet
+ 1) + q2e−t. For any choice of a < b, we then have

−

∫ b

a
u′′(t)u(t) dt +

∫ b

a
U (t)u2(t) dt = 0

and, after integration by parts,∫ b

a
u′(t)2 dt + u(a)u′(a) − u(b)u′(b) +

∫ b

a
U (t)u(t)2 dt = 0. (12)

The first and the last terms in this formula are nonnegative for any choice of
a < b. We will show that there exist a arbitrarily close to −∞ and b arbitrarily
close to +∞ such that the other two terms in (12) are nonnegative as well. This will
imply that u(t) = 0. Plugging u(t) = 0 back into (9) will then imply that v(t) = 0
because Q ̸= 0 by Lemma 5.1.
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We first show that for any a0 there exists a ≤ a0 such that u(a)u′(a) ≥ 0. If
u(a0) = 0, we are finished. Otherwise, suppose that u(t)u′(t) < 0 for all t ≤ a0.
Then (u2(t))′ = 2u(t)u′(t) < 0 so that u2(t) is a decreasing function and hence
u2(t) ≥ u2(a0) > 0 for all t ≤ a0. This contradicts the fact that u ∈ L2

δ−1/4(R) with
δ ≤ 1/4.

Next, we show that for any b0 there exists b ≥ b0 such that u(b)u′(b) ≤ 0. If
u(b0) = 0 we are finished. Otherwise, suppose that u(t)u′(t) > 0 for all t ≥ b0.
Then (u2(t))′ = 2u(t)u′(t) > 0 so that u2(t) is an increasing function and hence
u2(t) ≥ u2(b0) > 0 for all t ≥ b0. Using the formula (12) with a = b0 we obtain
the estimate

u(b)u′(b) ≥

∫ b

b0

U (t)u2(t) dt ≥ u2(b0)

∫ b

b0

U (t) dt,

and using the fact that U (t) ≥ p2e2t for all t , the estimate

u(b)u′(b) ≥
1
2 p2u2(b0)(e2b

− e2b0) for all b ≥ b0.

Since u(t) and u′(t) belong to L2
δ−1/4(R), it follows from the Hölder inequality

that u(t)u′(t) ∈ L1
2(δ−1/4)(R). This contradicts the above estimate for δ ≥ −1/4.

If P > 0, essentially the same argument using (11) shows that v(t) = 0. After
plugging v(t) = 0 back in (9), we see that u(t) = 0 as well.

In the remaining case of P = 0, both (10) and (11) admit explicit solutions in
terms of Bessel functions. To be precise, the general solution of (11) is of the form

C1 · I1(2qe−t/2) + C2 · K1(2qe−t/2), (13)

where I1(x) and K1(x) are the modified Bessel functions of the first and second
kind, solving the equation x2 y′′

+ xy′
− (x2

+ 1)y = 0. One can check that the
zero function is the only function among (13) that belongs to L2

δ−1/4(R) with
−1/4 ≤ δ ≤ 1/4. □

Proposition 7.2 together with the discussion in Section 6 completes the proof of
Theorem 1.1.
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A note on thickness of knots

András I. Stipsicz and Zoltán Szabó

We introduce a numerical invariant β(K ) ∈ N ∪ {0} of a knot K ⊂ S3 which
measures how nonalternating K is. We prove an inequality between β(K ) and
the (knot Floer) thickness th(K ) of a knot K. As an application we show that all
Montesinos knots have thickness at most one.

1. Introduction

A knot K ⊂ S3 is alternating if it admits a diagram with the property that when
traversing through the diagram, we alternate between over- and under-crossings.
(An intrinsic definition of alternating knots has been recently found by Greene and
Howie [5; 6].) A diagram of K partitions the plane into domains (the connected
components of the complement of the projection), and the alternating property can
be rephrased by saying that on the boundary of each domain each edge connects
an under-crossing with an over-crossing. Indeed, this observation provides a way
to measure how far a knot is from being alternating. We introduce the following
definition:

Definition 1.1. Suppose that D is the diagram of a given knot K ⊂ S3. A domain d
of D is good if any edge on the boundary of d connects an over- and an under-
crossing. The domain d is bad if it is not good. The number of bad domains of the
diagram D is denoted by B(D).

Clearly, the diagram D is alternating if and only if B(D) = 0. Indeed, by taking
β(K ) = min{B(D) | D is a diagram for K },

we get a knot invariant, which satisfies β(K ) = 0 if and only if K is an alternating
knot. As it is typical for knot invariants given by minima of quantities over all
diagrams, it is easy to find an upper bound on β(K ) (by determining B(D) for a
diagram of K ), but it is harder to actually compute its value.

MSC2020: 57K10.
Keywords: knot Floer homology, thickness, alternating knots.
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As it turns out, knot Floer homology provides a lower bound for β(K ) through the
thickness of K. Recall that ĤFK(K ), the hat-version of knot Floer homology of K,
is a finite-dimensional bigraded vector space over the field F of two elements. By
collapsing the Maslov and Alexander gradings M and A on ĤFK(K ) to δ = A− M,
we get a graded vector space ĤFKδ

(K ). The thickness th(K ) of K is the largest
possible difference of δ-gradings of two homogeneous (nonzero) elements of this
vector space. It is known that for an alternating knot K the δ-graded Floer homology
is in a single δ-grading (determined by the signature of the knot); hence if K is
alternating, then th(K ) = 0. (Knots satisfying th(K ) = 0 are called thin knots,
hence alternating knots are thin.)

With this definition in place, the main result of this paper is as follows:

Theorem 1.2. Suppose that K ⊂ S3 is a nonalternating knot. Then

th(K ) ≤
1
2β(K ) − 1. (1-1)

While the thickness of K can be used to estimate how nonalternating K is,
(1-1) can also be used to estimate th(K ) by finding appropriate diagrams of K. In
particular, the formula can be applied to show the following:

Corollary 1.3 (Lowrance [7]). Suppose K is a Montesinos knot. Then, th(K ) ≤ 1.

Remark 1.4. • A quantity similar to β(K ) has been introduced by Turaev [10],
now called the Turaev genus gT (K ). An inequality similar to (1-1) for the Turaev
genus and the (knot Floer) thickness th(K ) was shown by Lowrence in [7]. As the
Turaev genus of nonalternating Montesinos knots is known to be equal to 1 [1; 2],
our Corollary 1.3 also follows from [7].
• Indeed, a simple argument (due to Adam Lowrence (personal communication,
2020)) shows that

gT (K ) ≤
1
2β(K ) − 1,

since by [7, Theorem 4.1] for a diagram D of K we have gT (D) = th(Cδ
D,p) (with

the notation of Section 2).
• Similar observations regarding the relation between the Turaev genus gT and β

have been communicated to us by Homayun Karimi and Seungwon Kim (2020).

The formula (1-1) can be used in a further way: by a recent result of Zibrow-
ius [11], mutation does not change ĤFKδ

(K ), and hence leaves th(K ) unchanged.
Consequently, besides isotopies, we can change a diagram by mutations to get better
estimates for th(K ) through B(D) for a diagram D of a mutant.

The paper is organized as follows. In Section 2, we recall basics of knot Floer
homology and prove the theorem stated above. In Section 3, we give the details of
the proof of Corollary 1.3, and finally in Section 4, we list some further properties
and questions regarding β.



A NOTE ON THICKNESS OF KNOTS 301

0 0

−1/2

1/2

00

0

1

00

0

−1

M:

00

−1/2

−1/2

0 0

1/2

1/2

0 0

1/2

−1/2

A :

δ :

Figure 1. The local contributions for A, M and δ = A − M at a
crossing. The Kauffman state distinguishes a corner at the crossing,
and we take the value in that corner as a contribution of the crossing
to A, M or δ of the Kauffman state at hand.

2. The knot Floer homology thickness of knots

Suppose that V =
∑

a Va is a finite-dimensional graded vector space, where Va ⊂ V
is the subspace of homogeneous elements of grading a ∈ R. The thickness th(V )

of V is by definition the largest possible difference between gradings of (nonzero)
homogeneous elements:

th(V ) = max{a ∈ R | Va ̸= 0} − min{a ∈ R | Va ̸= 0}.

Suppose now that the graded vector space V is endowed with a boundary oper-
ator ∂ of degree 1; then the homology H(V, ∂) also admits a natural grading from
the grading of V. As H(V, ∂) is the quotient of a subspace of V, it is easy to see that

th(H(V, ∂)) ≤ th(V ).

The hat version of knot Floer homology (over the field F of two elements) of a knot
K⊂S3 is a finite-dimensional bigraded vector space ĤFK(K )=

∑
M,AĤFKM(K , A).

By collapsing the two gradings to δ= A−M, we get the δ-graded invariant ĤFKδ
(K ).

The thickness of ĤFKδ
(K ) is by definition the thickness th(K ) of K.

Knot Floer homology is defined as the homology of a chain complex, which we
can associate to a diagram of the knot (and some further choices). Indeed, for a
given diagram D of a knot K , fix a marking, that is, a point of D which is not a
crossing. Consider the bigraded vector space CD,p (graded by the Alexander and
the Maslov gradings A and M) associated to the marked diagram (D, p), which is
generated over F by the Kauffman states of the marked diagram, a concept which
we recall below.

Suppose that for the marked diagram (D, p) of the knot K , the set of crossings is
denoted by Cr(D), the set of domains by Dom(D), and Dom p(D) denotes the set
of those domains which do not contain p on their boundary. A Kauffman state κ is
a bijection κ : Cr(D) → Dom p(D) with the property that for a crossing c ∈ Cr(D)

the value κ(c) is one of the (at most four) domains meeting at c. The Alexander,
Maslov and δ-gradings of a Kauffman state are computed by summing the local
contributions at each crossing, as given by the diagrams of Figure 1.
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According to [8] there is a boundary map ∂ : CD,p → CD,p of bidegree (−1, 0)

(in the bigrading (M, A)) with the property that H(CD,p, ∂) is isomorphic to the
knot Floer homology ĤFK(K ) of K (as a bigraded vector space). By collapsing
the two gradings A and M to δ = A− M, we get the graded vector spaces (Cδ

D,p, ∂)

and its homology ĤFKδ
(K ). As ĤFKδ

(K ) is the quotient of a subspace of Cδ
D,P ,

we have that
th(ĤFKδ

(K )) ≤ th(Cδ
D,p, ∂).

Proposition 2.1. Suppose that D is a diagram of the knot K. If D is not an
alternating diagram, then

th(Cδ
D,p) ≤

1
2 B(D) − 1.

Proof. Fix a marked point p on D, and consider the δ-graded chain complex
(Cδ

D,p, ∂) generated by the Kauffman states of (D, p).
The δ-grading at a positive crossing is either 0 or 1

2 , and at a negative crossing it
is either 0 or −

1
2 . So we can express the δ-grading of a Kauffman state κ as the sum

1
4 wr(D) +

∑
c∈Cr

f (κ(c)),

where wr is the writhe of the diagram, and f is a function on the Kauffman corners,
which is either 1

4 or −
1
4 (depending on the chosen quadrant at the crossing c).

Simple computation shows that for a good domain each corner in the domain
gives the same f -value; hence for different Kauffman states the contributions from
this particular domain are the same. This is no longer true for a bad domain, but
the difference of two contributions is at most 1

2 . When determining the possible
maximum of δ(x) − δ(x ′) for two homogeneous elements x, x ′

∈ Cδ
D,p, the con-

tributions from the writhe cancel, and so do the contributions from good domains,
while bad domains contribute at most 1

2 . This shows that th(Cδ
D,p) ≤

1
2 B(D).

By assumption, D is not alternating; hence there is a bad domain, with an edge
showing that it is bad. Choose the marking p on such an edge. Since this edge
guarantees that the two domains having it on their boundary are both bad, while these
two bad domains do not get Kauffman corners, we get that th(CD,p) is bounded by

1
2(B(D) − 2) =

1
2 B(D) − 1,

concluding the proof. □

Proof of Theorem 1.2. Suppose that K is not alternating. Then any diagram D of K
is nonalternating; hence we have that

th(K ) ≤ th(Cδ
D,p) ≤

1
2 B(D) − 1.

Since β(K ) is computed from the minimum of the right-hand side of this inequality,
the proof follows at once. □
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Figure 2. The Montesinos knot M(r1, . . . , rn). The box containing
ri denotes the algebraic tangle determined by the rational number
ri = βi/αi (cf. Figure 3). In order to have a knot, at most one of
the αi can be even.

3. Montesinos knots

Montesinos knots are straightforward generalizations of pretzel knots; a diagram
involving rational tangles defining the Montesinos knot M(r1, . . . , rn) is shown
by Figure 2. (A box with a rational number ri in it symbolizes the tangle shown
by Figure 3.) We allow any of the ri to be equal to ±1. Notice that the order of
(r1, . . . , rn) is important; those ri which are equal to ±1 can be commuted with
any other parameter through a simple isotopy of the diagram.

Lemma 3.1. Consider the diagram of the Montesinos knot M(r1, . . . , rn) given by
Figure 2. It can be isotoped to a diagram with at most four bad domains.

.

.

.

.

.

.

r c

c

c c

1

2

n n

Figure 3. The rational tangle corresponding to r ∈ Q. The ratio-
nal number r determines the coefficients ci through its continued
fraction expansion. The boxes with ci ∈ Z on the right denote |ci |

half twists (right-handed for positive, left-handed for negative ci ).
Depending on the parity of n (the number of ci ’s) we have two
different finishing forms. The tangle is alternating (as part of a
knot or link) if the ci alternate in sign.
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Figure 4. The introduction of cancelling twists to turn domains
between tangles to be good.

Proof. Recall that a rational tangle has the form given by Figure 3. Adapting the
isotopies described in [4], we can achieve that all tangles are alternating; hence the
potentially bad domains are the ones between the tangles, together with the central
and the unbounded domains. The number of bad domains between the tangles can be
reduced by the following observation. The domain between two tangles is bad if the
first coefficients c1

1 and c2
1 of the two rational numbers determining the tangles have

opposite signs, say c1
1 > 0 and c2

1 < 0. Then by Reidemeister-II moves we can intro-
duce canceling twistings, as shown by Figure 4, and then commute the first twisting
(in the figure given by the box with 2 in it) between the first and second tangles of
the Montesinos knot. All domains between the boxes will become good, except the
ones connecting the first tangle with the newly introduced twists and the second
tangle also connecting it with the newly introduced twists. After these alterations,
make sure that (by the adaptation of [4]) all tangles are isotoped to be alternating.
In total the new diagram then has four bad domains, concluding the proof. □

Proof of Corollary 1.3. For a Montesinos knot M(r1, . . . , rn), an appropriate isotopy
of the diagram of Figure 2 (as given by Lemma 3.1) gives a diagram with at most
four bad domains. The application of Theorem 1.2 concludes the argument. □

Remark 3.2. Using the mutation invariance of th(K ), Lemma 3.1 can be avoided:
by mutations, any Montesinos knot M(r1, . . . , rn) can be moved to M(q1, . . . , qn)

with the same rational parameters in a different order so that qi and qi+1 have the
same sign with at most one exception. Isotoping the diagram so that the tangles are
alternating, the mutated diagram then has at most 4 bad domains. Using the result
of [11, Theorem 0.1] then the corollary follows as before.

4. Further properties

It is a standard fact that the knot Floer homology of the connected sum of two knots
is the tensor product of the knot Floer homologies:

ĤFK(K1#K2) ∼= ĤFK(K1) ⊗ ĤFK(K2).
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Figure 5. The knot Kn . In (a) the pretzel knot P(−3, 5, 5) is
shown. The B symbols signify the bad domains. (A box containing
the integer n denotes |n| half twists, right-handed for n > 0 and
left-handed for n < 0.) In (b) we provide a diagram of Kn , where
the connected sum is taken at bad domains.

From this (bigraded) isomorphism it follows that

th(K1#K2) = th(K1) + th(K2).

The behaviour of β(K ) is less clear under connected summing. Suppose that K1, K2

are both nonalternating knots. By taking the connected sum of two diagrams D1, D2

for these knots at bad edges (i.e., arcs on the boundary of bad domains verifying
that the domains are bad), we get that

B(D1#D2) = B(D1) + B(D2) − 2,

immediately implying that

β(K1#K2) ≤ β(K1) + β(K2) − 2.

Motivated by the equality for the thickness th, we arrive at the following conjecture:

Conjecture 4.1. If K1, K2 are two nonalternating knots, then

β(K1#K2) = β(K1) + β(K2) − 2.

Sharpness. It is not hard to find knot diagrams for which (1-1) is sharp. In-
deed, the standard diagram of the pretzel knot P(−3, 5, 5) admits four bad do-
mains (see Figure 5(a)), while an explicit calculation of ĤFK(P(−3, 5, 5)) shows
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Figure 6. The planar weighted tree defining the knot Cn . The
central vertex is of framing 0, and has n + 1 neighbours, all with
framing 0. The first of these vertices is connected to two leaves of
framings 3 and −3, while the further vertices are connected to two
leaves with framings 3 and −2.

that th(P(−3, 5, 5)) = 1. Consider the n-fold connected sum Kn = #n P(−3, 5, 5);
connect summing the diagrams at bad edges (in the above sense) we get a se-
quence of knots Kn and diagrams Dn for them with the properties that th(Kn) = n
and B(Dn) = 2n + 2; see Figure 5(b). The nonalternating knots Kn then satisfy
n = th(Kn) =

1
2β(Kn) − 1.

Arborescent examples. A family of knots (and links) can be specified by combina-
torial means as follows. Consider a planar tree (a graph with no circles), with an
integer attached to each vertex. An embedded surface can be constructed from the
tree by the following algorithm: for each vertex consider a twisted band, with the
integer attached to the vertex prescribing the number of half-twists introduced. (The
boundary of such a band is the T2,n torus knot or link, where n ∈ Z is the decoration
of the vertex.) If two vertices are connected in the tree by an edge, plumb the two
surfaces together. The boundary of the resulting surface is an arborescent knot
(or link). To make the definition precise (i.e., to get a well-defined knot or link)
further information is needed, prescribing the location of the plumbing on each
band, relative to the twisting; see [3]. We will not make this distinction here for two
reasons: (a) the different choices one can make for a given graph result in mutation
equivalent knots, and since the thickness is mutation invariant, different choices
make no effect on our calculations, and (b) in the example we will show below,
the nodes (i.e., vertices of degree more than 2) have framing 0, hence the above
mentioned choice makes no difference.

It is easy to see that pretzel knots (and more generally Montesinos knots) are
all arborescent; these knots correspond to graphs with a single node. (Such graphs
are called star-shaped.) Consider the family of knots Cn defined by the graph of
Figure 6. (For diagrams of the knots Cn , see Figure 7.) Computer calculations [9]
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CCn

n

Figure 7. The knot Cn in general and C1 in particular.

show that Cn has thickness n once n ≤ 4. (For n = 1 the knot C1 is a pretzel knot
having thickness equal to 1, while for n = 0 the knot C0 is the connected sum of
a right-handed and a left-handed trefoil; hence it is thin.) These cases lead us to
expect that th(Cn) = n holds in general. Indeed, it is not hard to find a diagram
for Cn with 2n + 2 bad domains; hence th(Cn) ≤ n follows from our main result,
and the above mentioned calculations suggest that we have equality here. More
generally, it would be interesting to see if there is a simple relation between the
number of nodes of a (weighted) tree and the thickness of a corresponding knot;
maybe the thickness is at most the number of nodes.
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Morse foliated open books
and right-veering monodromies
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Morse foliated open books were introduced by the authors (arXiv 2002.01752v1),
along with abstract and embedded versions, as a tool for studying contact mani-
folds with boundary. This article illustrates the advantages of the Morse perspec-
tive. We use this to extend the definition of right-veering to foliated open books
and we show that it plays a similar role in detecting overtwistedness as in other
versions of open books.

1. Introduction

Three flavors of foliated open books were introduced in [11], each a topological de-
composition of a manifold with boundary which determines an equivalence class of
contact structures on the ambient manifold. Embedded foliated open books provide
an intuitive construction: cut a traditional open book along a generic separating
surface and the result is a pair of embedded foliated open books. Abstract foliated
open books were explored further in [1], where they were used to defined a contact
invariant in bordered sutured Floer homology. In this article we turn attention to
Morse foliated open books, illustrating the benefits of this perspective by extending
the established notion of a right-veering monodromy to the open book setting.

We also admit to a fondness for Morse foliated open books. There are technical
advantages to having three versions to select from, but when foliated open books
existed only as chalked pictures on a board, their intrinsic data always included a
circle-valued Morse function. It is therefore a pleasure to return to this approach
now. For a topologist, one of the beautiful applications of Morse theory is the
metamorphosis it facilitates from differential geometry to geometric topology,
turning a smooth manifold into a handle structure. Open books of all flavours
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serve a similar purpose in contact geometry, encoding a non-integrable plane field
via a topological decomposition. Here, we equip the complement of a properly
embedded one-manifold with an S1-Morse function, all of whose critical points lie
on the boundary. As in standard Morse theory, such a critical point corresponds
to a change in the topology of the level sets of the Morse function, but the level
sets are now interpreted as pages of an open book decomposition. We may thus
see an unlimited number of topologically distinct page types, but the transition
between any two page types is tightly controlled. Furthermore, a catalog of these
changes is recorded on the boundary, where each critical point of the original Morse
function is a critical point of its restriction to the boundary. As previously shown,
this boundary data alone determines a family of compatible Morse functions on the
original contact manifold, so that a relatively small amount of data captures a broad
and flexible set of decompositions. Precise definitions and key theorems are recalled
in the next section, and we briefly outline some dividends from this perspective.

The step from smooth manifold to handle decomposition requires a choice of
gradient-like vector field, and such a choice is similarly useful in the case of Morse
foliated open books. We choose a particular class of gradient-like vector fields
characterized by their flow on the restriction to the boundary of the manifold. With
this class fixed, we define the monodromy of a Morse foliated open book as the first
return map of this flow relative to a fixed page. This is defined only on a subsurface
of the page, just as in the case of the partial open books defined by Honda–Kazez–
Matić, and in some cases our notion of monodromy can be directly identified with
their notion [7]. However, the fact that foliated open books admit a quite flexible
notion of pages leads to Morse foliated open books which may not immediately be
interpreted as partial open books. In this case, the monodromy of a foliated open
book is a strict generalization of the partial open book monodromy, and Section 3
explores the consonance of the two versions through a family of examples. We also
show — perhaps unsurprisingly — that veering monodromies play a similar role in
foliated open books as in their classical and partial counterparts.

The study of right-veering monodromies initiated by Goodman and developed
by Honda–Kazez–Matić relates the tightness of a contact structure to a measure of
positivity in its supporting open books [5; 8; 7]. The definition of right-veering ex-
tends verbatim to foliated open book monodromies, and with similar consequences:
a contact manifold is tight if and only if all of its supporting Morse foliated open
books have right-veering monodromy. In the case that a Morse foliated open book
admits a left-veering arc, one may construct an overtwisted disc as in [10].

Acknowledgements. We are grateful to BIRS for hosting the workshop Interactions
of gauge theory with contact and symplectic topology in dimensions 3 and 4. We’d
also like to thank the referee for helpful feedback.
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2. Foliated open books

Definition 2.1. A (Morse) foliated open book for a three-manifold with boundary
(M, ∂M) consists of (B, π), where B is an oriented, properly embedded 1-manifold
and π : M \ B → S1 satisfies the following properties:

(1) π is an S1-valued Morse function whose critical points all lie on ∂ M .

(2) π̃ := π |∂ M is Morse with the same set of critical points as π .

(3) π has a unique critical point for each critical value.

One of the first applications of classical Morse theory is to relate the topology
of sublevel sets to the critical points of the Morse function. Because the present
function π has only boundary critical points, the critical points instead detect
changes in the topology of the level sets of π . Equivalently, the critical points of π̃

detect changes in the topology of the level sets of π , and we record this on ∂ M .
Specifically, let Fπ̃ be the singular foliation whose leaves are the level sets of π̃ ,
oriented as the boundary of the level sets of π , and each singular point comes with
a sign: elliptic points are distinguished as positive sources and negative sinks, while
(four-pronged) hyperbolic points are distinguished by the index of the critical point
of π . An index two critical point of π gives rise to a positive hyperbolic point of
the singular foliation and corresponds to cutting a level set of π along an arc. An
index one critical point of π gives rise to a negative hyperbolic point of the singular
foliation and corresponds to adding a one-handle to a level set of π . See Figure 1.

Definition 2.2. If (B, π) is a foliated open book on (M, ∂M), then Fπ̃ is the
associated open book foliation on ∂ M .

By a slight abuse of the notation we call any (singular) foliation that comes
from this construction an open book foliation, sometimes without a reference to the
enclosing open book and manifold.

Open book foliations were first studied by Pavelescu [12] and by Ito–Kawamuro
+ -

+-

+

-

+

-

+

+

Figure 1. Left: a local cobordism between level sets near an index
two boundary critical point of π . Right: the boundary foliation Fπ̃

near the positive hyperbolic point.
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[9] as a generalization of the braid foliations introduced by Birman–Menasco [4]
that in turn rest on the ideas of Bennequin [3]. Our definition differs slightly from
that of Ito–Kawamuro in the requirement that the foliation is by level sets of a
Morse function, but this may be imposed in their setting without penalty.

When Fπ̃ has no circle leaves, it admits a dividing set, a curve 0 defined up
to isotopy as the boundary of a neighborhood of the positive separatrices from
positive hyperbolic points. If there is a (not necessarily smooth) isotopy of the
surface taking one signed singular foliation to another through a path of foliations
with the same cyclic order on hyperbolic points, we say that the two foliations are
strongly topologically conjugate. This allows us to state the relationship between
foliated open books and contact structures:

Definition 2.3. [11, Definition 3.7] The Morse foliated open book (B, π) supports
the contact structure ξ on (M, ∂M) if ξ is the kernel of some one-form α on M
satisfying the following properties:

(1) α(T B) > 0.

(2) dα|π−1(t) is an area form for all t .

(3) F is strongly topologically conjugate to the characteristic foliation of ξ .

Note that condition (3) imposes that Fπ̃ has no circle leaves.

Definition 2.4. A foliated contact three-manifold (M, ξ,F) is a manifold with
foliated boundary together with a contact structure ξ on M such that F is an open
book foliation that is strongly topologically conjugate to Fξ .

Theorem 2.5. [11, Theorems 3.10, 6.9, 7.1, 7.2] Any foliated open book supports a
unique isotopy class of contact structures, and any foliated contact three-manifold
(M, ξ,F) admits a supporting foliated open book. Two foliated open books for the
same foliated contact three-manifold are related by positive stabilization.

Although we have not yet defined positive stabilization here, we note that it is
an internal operation analogous to stabilization on other forms of open books.

2.1. Preferred gradient-like vector fields and the monodromy. As in the case of
standard Morse theory, the benefit of a Morse function is fully realized only in
the presence of a gradient-like vector field. We will designate a class of gradient-
like vector fields as preferred based on their compatibility with the open book
foliation on ∂ M . Suppose that Fπ̃ is the open book foliation on a manifold M
supporting some contact structure with convex boundary. As Fπ̃ has no circle leaves,
it decomposes the surface as a union of square tiles, each of which contains a single
hyperbolic singularity in the middle, four elliptic singularities at the corners, and
four connected components of leaves as edges. In fact, one may recover the entire
open book foliation up to topological equivalence by decomposing a surface into
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+ -

+-

Figure 2. Flowlines of a preferred gradient-like vector field on the
tile defined by a hyperbolic point. The hyperbolic point could be
positive or negative.

squares labeled with signs, signed corners, and an order in which the hyperbolic
singularities appear. See Figure 2 for an illustration of a single tile and Figure 10
for an example of a surface decomposed into squares.

Definition 2.6. A gradient-like vector field ∇π is preferred if it is tangent to ∂ M
on ∂ M and if the flowlines on each tile of the foliated surface ∂ M are isotopic to
those shown in Figure 2.

We will assume henceforth that ∇π is always preferred.
Said slightly differently, ∇π is preferred if it is the extension to M of some ∇π̃

with prescribed properties on ∂ M . The condition on flowlines is chosen so that
topological properties of the original foliation are reflected in topological properties
of the flowlines of ∇π̃ . Specifically, we may consider the graph formed by the
positive separatrices of positive hyperbolic points, just as above in the definition
of 0. The flowlines of the gradient-like vector field spiral around the elliptic points

+

+

+

+

π  (0)-1~-

Figure 3. The squares represent positive hyperbolic points with a
positive separatrix terminating at the shown positive elliptic point
(circle). The separatrices of ∇π̃ intersect π̃−1(0) in the same order
that the separatrices of F intersect the elliptic point.
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Figure 4. The lightly shaded descending critical submanifold inter-
sects the darker-shaded ascending critical submanifold, cutting the
intersection curve on all subsequent pages.

infinitely many times, but we may nevertheless define a similar graph: replace each
positive elliptic point by the connected component of π̃−1(0) which terminates at
it, and let the graph be this component together with the union of positive flowlines
of ∇π̃ from positive hyperbolic points truncated when they hit these intervals first.
See Figure 3. After a deformation retract of the leaf to its positive endpoint, these
two graphs are isotopic. The analogous statement holds for the analogously defined
graph constructed from negative separatrices of negative elliptic points.

We now assume every foliated open book is equipped with a preferred gradient-
like vector field, and we write (B, π,Fπ̃ , ∇π) to denote the additional data described
above. Choosing a gradient-like vector field has the immediate consequence of
determining critical submanifolds associated to each hyperbolic point. In fact, we
will truncate each critical submanifold at its first intersection with π−1(0). If h+

is a positive hyperbolic point of Fπ̃ (i.e., an index-two critical point of π) with
π(h+) = c+, its stable submanifold intersects each level set of π−1

[0, c+]. Denote
these intersections by γ +, specifying the level set containing γ + if necessary.
Similarly, the unstable critical submanifold of a negative hyperbolic point h−

(i.e., an index-one critical point of π) with π(h−) = c− intersects each level set
of π−1

[c−, 1] and we denote each of these intersections by γ −. Observe, as in
Figure 4, that if the unstable and stable critical submanifolds intersect, then a single
critical submanifold may be represented on subsequent pages by multiple arcs.

Example 2.7. As a first example, we consider a Morse foliated open book for a
solid torus. Begin with an embedding of the solid torus in S3 as shown in Figure 5.
As proven in [11], the function defined as the radial coordinate of the embedding
may be perturbed near the boundary of the solid torus so that the resulting restriction
defines a Morse foliated open book with the same critical points on the boundary.
There are four critical points, alternating in sign, and S1, S2, and S3 in Figure 5 are
pages — that is, level sets — for regular values separated by critical points. Pages
S0 and S4 are not separated by a critical level, but we include both in order to



MORSE FOLIATED OPEN BOOKS AND RIGHT-VEERING MONODROMIES 315

+

+

S0

2

S1

1

3

S2

4

S3 S4

+

+

-

-

Figure 5. Level sets Sq := π−1(
qπ

2 + ϵ) for a Morse foliated
open book on a solid torus, together with their intersections with
the truncated critical submanifolds. The bold dots along the non-
binding boundary of the pages indicate the relative positions of the
intersection arcs γ ±, a consequence of choosing ∇π to be pre-
ferred.

see the intersections of both the ascending (on S4) and descending (on S0) critical
submanifolds.

Lemma 2.8. The truncated stable critical submanifolds are disjoint. Similarly, the
truncated unstable critical submanifolds are disjoint.

Proof. The lemma follows from the fact that ∇π̃ is Morse–Smale. □

We now consider the flowline through an arbitrary point p in the interior of
π−1(0). If p ∈ γ +

i for some positive hyperbolic point h+

i , then the flowline through
p will terminate at h+

i . However, for all points in the complement of the {γ +

i },
there is a well-defined first-return map. Define P := π−1(0) \ (∪iγ

+

i ).

Definition 2.9. The monodromy H : P → P of a foliated open book is the first
return map of ∇π .

Remark 2.10. This use of the term monodromy differs slightly from the map h
called the monodromy in [11; 1]. The domain of H is a proper subset of the S0

page, while h is a homeomorphism from the final page to the initial one. On P ,
H = h ◦ ι.

2.2. From foliated to partial open books. Foliated and partial open books are
alternative ways to decompose contact manifolds with boundary, and unsurprisingly,
they are closely related. To each foliated open book we associate a triple (S, P, H),
where S := π−1(0), and P and H are as above. Although S and P may be viewed
as abstract surfaces, rather than embedded ones, we retain the identifications P ⊂ S
and ∂S = B ∪ π̃−1(0), where B = ∂S ∩ ∂ P . Under certain circumstances described



316 VERA VÉRTESI AND JOAN E. LICATA

below, the triple associated to a foliated open book in fact defines a partial open
book for the same contact manifold.

Remark 2.11. In [11], P is defined by removing a neighborhood of the arcs γ +

i
together with the non-binding boundary of S. However, the resulting subsurface is
isotopic to the P defined above and the results stated for triples are all independent
of this choice.

Definition 2.12. A Morse foliated open book (B, π,Fπ̃ , ∇π) is sorted if there are
no flowlines contained in π−1(0, 1) between distinct critical points.

Equivalently, a foliated open book is sorted if the set of all truncated critical
submanifolds is disjoint. We note that this definition highlights the role of preferred
gradient-like vector fields, as the constraints on the boundary will force intersections
that could otherwise be avoided.

Proposition 2.13 [11, Proposition 8.11]. Suppose that (S, P, H) is the triple asso-
ciated to a sorted foliated open book. If S may be built up from S \ P by attaching
one-handles along 0-spheres embedded in P , then the triple (S, P, H) defines a
partial open book for (M, ∂M, 0).

As in the case of other forms of open books, foliated open books admit an
operation called positive stabilization which preserves the supported contact struc-
ture. Positive stabilization is equivalent to taking an appropriate connect sum with
a foliated open book cut from the standard tight S3; see Figure 6. A positive
stabilization is determined up to equivalence by a choice of properly embedded
arc γ ⊂ π−1(t) with ∂γ ⊂ B, and it changes each level set of π by attaching a
1-handle along ∂γ which becomes part of P . The monodromy of the foliated open
book changes by a positive Dehn twist along the circle formed by γ and core of
the added 1-handle, restricted to P .

Figure 6. The complement of the shaded ball on the left is a ball
in the standard tight S3. The unshaded portions of the annuli in the
center are the topologically distinct pages of the resulting foliated
open book, and the boundary foliation is shown on the right. This
example appears as Figure 16 in [11] where it is discussed in detail.
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3. Right-veering monodromies and examples

Definition 3.1. Let γ, δ be properly embedded arcs with ∂γ = ∂δ. We write δ < γ

if, after isotoping the two arcs relative to their shared boundary so that they intersect
minimally, δ does not lie to the left of γ near either endpoint. If δ < γ or δ is
isotopic to γ , then we write δ ≤ γ .

Consider a surface S and a subsurface P ⊂ S. Let H : P → S be an embedding
which restricts to the identity on ∂ P ∩ ∂S.

Definition 3.2. Given (S, P, H) as above, H : P → S is right-veering if for every
γ properly embedded in P with ∂γ ⊂ (∂ P ∩ ∂S), H(γ ) ≤ γ .

Definition 3.3. The foliated open book (B, π,Fπ̃ , ∇π) is right-veering if the
associated triple (S, P, H) is right-veering.

We note that this definition does not depend on the choice of preferred ∇π . Any
two preferred gradient-like vector fields for a fixed π agree near ∂ M , and they
are connected by a path of preferred gradient-like vector fields all fixed near the
boundary. In particular, this implies that the flowlines on the boundary are preserved
throughout the interpolation. It follows that the arcs γ +

i on S may change only by
isotopy, as an arc slide would required the Morse–Smale condition to fail at some
point.

When the triple (S, P, H) defines a partial open book, the previous two defini-
tions exactly coincide with those of Honda–Kazez–Matić. However, we observe that
the definitions here are broader in scope, applying to the triple (S, P, H) associated
to an arbitrary Morse foliated open book.

Example 3.4. Consider the solid torus of Example 2.7. As seen in Figure 5, P
consists of a union of four discs. It follows that the monodromy H restricted to each
component is trivial, so the Morse foliated open book is necessarily right-veering.
Note, however, that this triple does not define a partial open book; since some
components of P meet S \ P along a single curve, S cannot be built up from S \ P
by one-handle addition.

We next show an advantage of extending these definitions; informally, it allows
one to recognize non-right-veering monodromy (and hence, overtwistedness) in
simpler objects. The following example begins with a non-right-veering Morse foli-
ated open book that does not define a partial open book. However, after performing
a single stabilization, the resulting Morse foliated open book defines a right-veering
partial open book.

Example 3.5. We describe (B, π,Fπ̃ , ∇π) via three of its regular pages; in fact,
this determines several distinct foliated open books depending on the order in which
the positive (respectively, negative) hyperbolic points appear in the foliation, but the
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π  (ε)-1 π  (1-ε)-1π  (1/2)-1

Figure 7. Selected regular pages decorated with their intersections
with the truncated critical submanifolds.

example does not depend on this choice. Suppose that the map h : π−1(1 − ϵ) →

π−1(ϵ) is a left-handed Dehn twist relative to the page, so that the dotted arc in
Figure 7 is evidently non-right-veering. Note, too, that the associated triple does
not define a partial open book, as the bigon components of P cannot be built up
from the rest of the page by attaching one-handles.

Now stabilize the foliated open book along γ ⊂ π−1(1−2ϵ) of Figure 8, adding
a one-handle to P on each page and changing the monodromy by a positive Dehn
twist on π−1(1 − 2ϵ). After the dotted arc flows through this page, it is disjoint
from the core of the original annulus, so it remains unaffected by the negative Dehn
twist. Since P consists of just two rectangular components, it is easy to verify that
there are no arcs which veer strictly left.

The appeal of this example lies in the fact that it detects non-right-veering
behavior — and hence, overtwistedness — in a simple object, a foliated open book
whose associated triple satisfies weaker conditions than those required by a partial
open book. However, it also highlights the difference between equivalence classes of
contact manifolds with foliated boundary and those with merely convex boundary.
Honda–Kazez–Matić have shown that every overtwisted contact manifold with
convex boundary is supported by some non-right-veering open book; in fact, the
partial open book of Figure 8 is a stabilization of a non-right-veering open book, but
this stabilization changes |B|, and hence does not preserve the foliated boundary.

Nevertheless, a non-right-veering arc in a foliated open book does play the same
role as in other forms of open books:

π  (ε)-1 π  (1-ε)-1π  (1/2)-1

stabilize

Figure 8. After stabilizing along the indicated arc, the flow changes
by a positive Dehn twist.
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P’

S’

stabilize

Figure 9. This partial open book stabilization preserves the equiv-
alence class of the convex boundary, but not the foliated boundary.

Theorem 3.6. A contact three-manifold with foliated boundary is overtwisted if
and only if it is supported by a foliated open book that is not right-veering.

Remark 3.7. The overtwistedness of a contact 3-manifold with foliated boundary
does not depend on the particular foliation on the boundary, but only on the associ-
ated dividing set 0. By Theorem 3.6, then, if two contact structures differ only near
∂ M × I , and there they are both foliated by convex surfaces ∂ M ×{t}, then one of
them is supported by a non-right-veering foliated open book if and only if the other is.

The “if” direction of Theorem 3.6 follows from the following result:

Proposition 3.8. If a foliated open book is non-right-veering, then the supported
contact structure is overtwisted.

Proof. We prove this result via the analogous statement for partial open books.
Specifically, we will show that if a foliated open book has a non-right-veering arc,
then we may construct a partial open book for the same contact manifold that also
has a non-right-veering arc. By the work of Honda–Kazez–Matić, this implies the
supported contact structure is overtwisted. If the triple associated to the foliated
open book already defines a partial open book, there is nothing to do, so we consider
the following case.

Suppose that (B, π,Fπ̃ , ∇π) has a non-right-veering arc but the associated triple
(S, P, H) does not define a partial open book. It is always possible to stabilize the
foliated open book so that the triple defines a partial open book, and we show that
these stabilizations may be chosen to preserve the non-right-veering arc.

A stabilization is completely determined by a choice of stabilizing arc on a page.
We show that under the conditions of the proposition, a sequence of stabilizing arcs
may be chosen that are both disjoint from the fixed non-right-veering arc γ ⊂ P
and which produce a partial open book as the associated triple.

Note first that there are two ways in which the triple associated to a Morse
foliated open book may fail to define a partial open book. First, the Morse foliated
open book may not be sorted, and second, if may be impossible to build S up from
S \ P by one-handle addition.

If a foliated open book is not sorted, [11] describes how to choose stabilizing
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arcs to produce a sorted version. Starting from t = 0, increase the t value until the
first time when a flowline between a pair of critical points appears. The stabilization
should be performed on a page intersecting this flowline, and except for at its
endpoints, the arc should be chosen to lie in a neighborhood of the non-binding
boundary and the intersections between critical submanifolds and the chosen page,
π−1(t0). A non-right-veering arc on π−1(0) lies completely in P , and by definition,
it will flow to an arc in π−1(t0) which is disjoint from the critical submanifolds and
the non-binding boundary of the page. The stabilizing arcs involved in rendering a
foliated open book sorted may be assumed disjoint from any non-right-veering arcs.

If (S, P, H) fails to define a partial open book because S cannot be built up
from S \ P by one-handle addition, then there are components of P which intersect
S \ P along a single interval in ∂ P . Fix one such component, and choose a next
component with respect the boundary orientation around S. Choose a boundary
parallel stabilizing arc that connects the two components; this may clearly be done
in the complement of a non-right-veering arc that is properly embedded in P . This
argument misses the case when P consists of single component; however, since P is
cut from S by a two-sided arc, such a subsurface meets S\ P in two components. □

The proof of the ”only if“ direction in Theorem 3.6 is an amalgamation of the
constructions of [11, Section 8.5 ] and [7, Proposition 4.1.]. Although these require
the use of embedded foliated open books, rather than the Morse foliated open books
highlighted in this article, the statement is such a close fit to the topic that we have
elected to include it anyway.

Proof of Theorem 3.6:. Section 8.5 of [11] proves the existence of a supporting
foliated open book for a given contact manifold via a partial open book adapted to
the given foliation near the boundary. The proof uses the foliation to construct this
adapted partial open book near the boundary and then extends it into the interior
of the manifold in a standard way using a contact cell decomposition. On the other
hand, the proof of [7, Proposition 4.1.] considers a (non-right-veering) partial open
book for a neighborhood of an overtwisted disc, connects it with a Legendrian arc to
the portion of the partial open book that is constructed near the boundary, and then
extends it in a standard way using a contact cell decomposition for the complement.

We now prove that an overtwisted contact three-manifold with foliated boundary
(M, ξ,F) has a non-right-veering foliated open book. Take a partial open book
for a neighborhood of an overtwisted disc, connect it with a Legendrian arc to the
portion of the partial open book near the boundary that is adapted to the foliation,
and then extend it in a standard way using a contact cell decomposition for the
complement. This partial open book now can be extended to a foliated open book
that supports (M, ξ,F) and the non-right-veering arc is preserved throughout the
extension process. □
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Corollary 3.9. If (B, π,Fπ̃ , ∇π) is non-right-veering, then the bordered sutured
contact invariant c(ξ) vanishes.

Proof. Theorem 3 in [1] shows that under a certain isomorphism between the
bordered sutured Floer homology of a foliated open book and the sutured Floer
homology associated to the corresponding partial open book, the bordered sutured
contact invariant c(ξ) maps to the Honda–Kazez–Matić invariant EH(M, 0, ξ). The
EH invariant vanishes for overtwisted contact manifolds, and the result follows. □

Example 3.10. Here, we describe a Morse foliated open book for an overtwisted
three-ball and then show how the existence of a non-right-veering arc guides the
construction of a transverse overtwisted disc. This is essentially the construction
described in [10], but some adaptation is required because the topological type of
the page changes with the S1 parameter.

Figure 10 shows an S2 decomposed into ten squares, each of which represents the
square tile in the boundary open book foliation defined by a single hyperbolic point.
The integers indicate the order of the hyperbolic points, so that the first is a saddle
resolution which transforms AJ and LE leaves into AE and LJ leaves. The first five
hyperbolic points are all positive, so each of the first five changes to the topology
of the page is given by cutting along a single arc where the corresponding critical
submanifold intersects the page. These arcs are shown together on the first page in
Figure 11, showing that P consists of five discs. There is a unique non-boundary-
parallel arc, shown as a dotted curve, in the disc with corners labeled GLKH.
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Figure 10. Hyperbolic tiles of the open book foliation on the
boundary of an overtwisted three-ball. The dividing set 0 is shown
in thinner (red) lines.
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Figure 11. Selected pages of the Morse foliated open book decorated
with their intersections with the truncated critical submanifolds, each
labeled by the corresponding hyperbolic point. The dotted arc is non-
right-veering under the foliated open book monodromy that identifies
the right-hand page with the left-hand page by translation.

It is not difficult to show that the manifold defined by these pages is a ball;
to see that it’s an overtwisted ball, recall from Definition 2.3 that the open book
foliation is topologically conjugate to the characteristic foliation of a supported
contact structure. Thus, the dividing set on S2 is the boundary of a neighborhood
of the positive separatrices of the positive hyperbolic points. Shown in thinner (red)
lines on Figure 10, the resulting 0 has three components.

Following the approach of [10], we construct a transverse overtwisted disc by
describing how it intersects each page. As t changes, this intersection changes
either by isotopy or by a saddle resolution, as shown in Figure 12.

Although the existence of a non-right-veering arc allows us to construct an
overtwisted disc, certainly there are foliated open books for overtwisted contact
manifolds that don’t have non-right-veering arcs. There are several constructions in
the literature that show how a non-right-veering open book may become a right-
veering open book via a sequence of positive stabilizations but the next example
illustrates that even an unstabilized foliated open book for an overtwisted contact
manifold may be right-veering [6].

Example 3.11. Finally, we turn to a “minimal” neighborhood of an overtwisted
disc. Beginning with the simplest open book foliation on a transverse overtwisted
disc, we first construct something that is almost a foliated book by thickening the
disc and taken the thickened leaves of the foliation as pages. This general approach
for constructing foliated open books described in Section 4.2 of [11], and this
specific case is explored in detail as Example 4.7 of [2].



MORSE FOLIATED OPEN BOOKS AND RIGHT-VEERING MONODROMIES 323

+

-

+

+

Figure 12. Movie presentation of the transverse overtwisted disc
shown on the lower right. Steps between slices are given by isotopy
of the bold arcs and saddle resolutions guided by the thin arcs.

In this construction, the function to S1 is induced from the S1 function on the
foliation, but when we thicken the surface, each of the two critical pages constructed
thus has a pair of critical points. We therefore locally perturb the Morse function
so that π(h1) < π(h2) < π(h3) < π(h4). This yields the regular pages shown in
Figure 13. Each page is decorated with its intersections with the ascending critical
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Figure 13. Top: selected leaves of the open book foliation on the
front (left) and reverse (right) of a transverse overtwisted disc. Cir-
cles are elliptic points and squares are hyperbolic points. Bottom:
Regular pages of a Morse foliated open book for a neighborhood
of the disc, decorated with the their intersections with the truncated
critical submanifolds.
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submanifold of hyperbolic points with lower values and the descending critical
submanifold of hyperbolic points with greater values.

Although this ball is overtwisted, the Morse foliated open book is right-veering.
To see this, observe in Figure 13 that P consists of eight discs, none of which has
more than one component of B on the boundary. Thus all arcs in P are boundary
parallel and the monodromy is trivial.
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