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We give a short introduction to the contact invariant in bordered Floer homology
defined by Földvári, Hendricks, and the authors. We survey the contact geom-
etry required to understand the new invariant but assume some familiarity with
bordered Heegaard Floer invariants. The input for the construction is a special
class of foliated open books, which are introduced carefully and with multiple
examples. We discuss how a foliated open book may be constructed from an open
book for a closed manifold, and how it may be modified to ensure compatibility
with the contact bordered invariant. As an application of these techniques, we
give a “local proof” of the vanishing of the contact invariant for overtwisted
structures in the form of an explicit bordered computation.

1. Introduction

Contact geometry, often pitched as the odd-dimensional complement to symplectic
geometry, considers a (2k+1)-dimensional manifold equipped with some additional
structure. In dimension three — where we reside henceforth — this extra data is
a nowhere-integrable plane field called a contact structure. Adding this extra
data prompts interesting new questions, but one of the most intriguing features of
the subject is that this “extra” data also offers insight into topological structure
apparently unrelated to plane fields at all. Two notable examples are the role of
contact geometry in the proof of the property P conjecture [11] and the proofs that
knot Floer homology detects knot genus [17] and fiberedness [3; 16].

Contact structures themselves split into two mutually exclusive types, known
as tight and overtwisted. Overtwisted structures are determined by homotopical
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data, and so are easy to understand. In contrast, tight contact structures are more
mysterious: some, but not all, tight contact structures arise naturally as the boundary
of symplectic manifolds, and tight contact structures do not satisfy an h-principle.
Many existence and classification questions for tight contact structures remain
open, but significant progress has been made since the advent of Heegaard Floer
homology in the early 2000s and the subsequent development of Floer-theoretic
contact invariants.

Like other Heegaard Floer invariants, the input data for these constructions
is a Heegaard diagram for the three-manifold, but in this setting, the Heegaard
diagram is induced from an open book decomposition, a topological decomposition
of a three-manifold that captures the additional data of an equivalence class of
contact structure. Ozsváth and Szabó defined the first Heegaard Floer invariant of
closed contact three-manifolds in [18]. Given a closed, contact manifold (M, ξ),
this invariant is a class c(ξ) in the Heegaard Floer homology ĤF(−M). In [8],
Honda, Kazez, and Matić gave an alternative description of c(ξ), again using
open books. This “contact class” gives information about overtwistedness: if ξ

is overtwisted, then c(ξ) = 0, whereas if ξ is Stein fillable, then c(ξ) ̸= 0 [18].
The contact class was used in the knot Floer homology proofs noted above, and
also to distinguish notions of fillability: Ghiggini used it to construct examples of
strongly symplectically fillable contact three-manifolds which do not have Stein
fillings [2].

In this paper, we discuss a recent extension of the contact class to three-manifolds
with boundary. Namely, in [1], a contact invariant was defined in the bordered
sutured Floer homology of a foliated contact three-manifold (M, ξ,F), which
is a contact manifold with a certain type of singular foliation on the boundary.
We associate to a foliated contact three-manifold a bordered sutured manifold
(M, 0,Z). The resulting sutures are particularly simple, so one can think of
(M, 0,Z) as a bordered manifold (M,Z) of a type slightly more general than
in [14]. Below, we rephrase the main results of [1], translating from “bordered
sutured” to “multipointed” language. Section 4 explores the correspondence between
these two viewpoints in more detail.

Using a special decomposition of (M, ξ,F) called a sorted foliated open book,
one can construct an admissible multipointed bordered Heegaard diagram for the
manifold (M,Z) and identify a preferred generator. This preferred generator is an
invariant of the contact structure.

Theorem 1.1 [1, Theorem 1]. Let (M, ξ,F) be a foliated contact three-manifold
with associated bordered manifold (M,Z). Then there are invariants cD(M, ξ,F)

and cA(M, ξ,F) of the contact structure which are well defined homotopy equiv-
alence classes in the multipointed bordered Floer homologies C̃FD(−M,Z) and
C̃FA(−M,Z), respectively.
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Furthermore, this generator vanishes for overtwisted manifolds, in the following
sense.

Theorem 1.2 [1, Corollary 4]. If (M, ξ,F) is overtwisted, the classes cD(M, ξ,F)

and cA(M, ξ,F) are zero in H∗(C̃FD(−M,Z)) and H∗(C̃FA(−M,Z)), respec-
tively.

Given a pair of foliated contact three-manifolds (M L , ξ L ,F L) and (M R, ξ R,F R)

whose boundaries agree in an appropriate sense, there is a natural way to glue them
to obtain a closed contact three-manifold (M, ξ). The contact invariants of the two
foliated contact three-manifolds pair to recover the contact invariant of (M, ξ).

Theorem 1.3 [1, Theorem 2]. The tensor product

cA(M L , ξ L ,F L)⊠ cD(M R, ξ R,F R)

recovers the contact invariant c(M, ξ).

This paper offers a hands-on introduction to the bordered contact invariant,
favoring geometric intuition over the formal proofs that may be found in [12]
and [1]. We assume minimal background in contact geometry, so Section 2 focuses
on understanding contact structures via characteristic foliations. Section 4 introduces
multipointed bordered Floer homology as a special case of bordered sutured Floer
homology, laying the groundwork for a simplified description of the construction
of the bordered contact invariant. Section 3 discusses open books, reviewing the
classical case for closed manifolds before introducing foliated open books for
manifolds with boundary. After exploring some topological examples we define the
contact structure supported by a foliated open book. We also define the technical
condition “sorted” for a foliated open book and explain how it may be achieved
by stabilization preserving the supported contact structure. We illustrate this in
a carefully chosen example of a foliated open book for a neighborhood of an
overtwisted disk. In Section 5 we describe how to construct a Heegaard diagram
from a sorted foliated open book and define an associated generator that represents
the contact invariant. Finally, in Section 6 we extend the earlier example to construct
a Heegaard diagram for an overtwisted ball. A local computation, in conjunction
with Theorem 1.3, then recovers the following vanishing result:

Corollary 1.4 [18]. Let (M, ξ) be a closed contact three-manifold. If ξ is over-
twisted, then c(ξ) = 0.

Note that [7] establishes the vanishing of the sutured contact class for a neigh-
borhood of an overtwisted disk. The TQFT gluing map from [6] then yields a
sutured argument that c(ξ) vanishes for overtwisted closed manifolds. Our local
construction explicitly constructs the “contact compatible” layer needed in the
sutured setting, giving a bordered counterpart to the argument.
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2. Contact manifolds and surfaces

A key aim of this paper is to render more accessible a new invariant in bordered
sutured Floer homology, but we’d like to start with a discussion of what this is an
invariant of. Since its inception in the early 2000s, Heegaard Floer theory has given
rise to invariants for a large range of mathematical objects; this one is distinguished
not simply by its input, but also by the fact that the algebraic invariant behaves well
under a natural topological operation.

2A. Contact structures. Recall from the introduction that a contact structure is
a nowhere-integrable two-plane field. We will consider contact structures only
on orientable three-manifolds, and we further require that contact structures be
cooriented. That is, each contact plane is oriented, so there is a consistent choice
of positive normal vector. It will be useful to reference a coordinate model, so we
introduce the standard contact structure on R3, where the contact plane at each
point is the kernel of the one-form dz − ydx . (A cooriented contact structure may
always be described as the kernel of such a contact form.) In this case, the vector
field ∂z coorients the contact planes. We are primarily interested in studying contact
manifolds up to contactomorphism, that is, up to diffeomorphism preserving the
plane fields.

Like topological manifolds, contact manifolds are locally simple but globally
complicated. The contact Darboux theorem states that every point in a contact
three-manifold has a neighborhood contactomorphic to a neighborhood of the origin
in the standard contact R3. In fact, some higher-dimensional substructures also have
well-behaved neighborhoods. For example, a curve segment everywhere transverse
to the contact planes has a neighborhood contactomorphic to a neighborhood of
the z-axis in the standard R3. In this paper, we will focus on the kind of two-
dimensional submanifolds with particularly nice neighborhoods: convex surfaces.
We will characterize convex surfaces by considering certain foliations they carry,
but since codimension-one foliations are so central to the rest of the paper, we
briefly detour into some general discussion before returning specifically to foliations
on convex surfaces.

2B. Foliations on surfaces. Throughout this article we will consider only oriented
singular foliations whose singularities are isolated and are either elliptic (see bottom-
right picture of Figure 2) or hyperbolic (see bottom-left picture of Figure 2). We
denote the set of elliptic singularities by E , and the set of hyperbolic singularities
by H. Unless explicitly noted, we assume that all regular leaves of the foliation
compactify to oriented intervals. Elliptic points are either sources, in which case
they are also called positive elliptic points, or sinks, which are also called negative
elliptic points. At a four-pronged hyperbolic singularity, the two opposite prongs
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oriented towards the hyperbolic point form the stable separatrix, while the two
prongs oriented away from the hyperbolic point form the unstable separatrix.
The topological type of these foliations can be described combinatorially by the
embedded graph formed by the stable and unstable separatrices of the hyperbolic
points.

The foliations appearing in this paper will have additional structure given by
assigning a sign to each singular point. The signs of elliptic points have already been
introduced, but the signs of hyperbolic points are not visible from the combinatorics
of the foliation. (The sign of a hyperbolic point comes from the orientation of the
surface and additional local data that depends on the source of the foliation; see
Sections 2C and 3A.) A foliation with the properties above, together with the extra
partition of H = H+ ⊔ H−, is called a signed singular foliation; in the following
we refer to oriented signed singular foliations simply as foliations.

Given a foliation F on a surface F satisfying the hypotheses imposed above, we
say that a multicurve 0 ⊂ F is a dividing set if 0 is everywhere transverse to the
leaves of F and separates F into two subsurfaces, each of which contains all the
singularities of a fixed sign. With this structure in hand, we are ready to introduce
the characteristic foliation on a surface in a contact manifold, which is the key to
the local neighborhood theorem mentioned above. We introduce the aspects of
this theory that we will need, and we recommend [15] for further reading on the
topic.

2C. Convex surfaces. An oriented surface F embedded in a contact three-manifold
(M, ξ) inherits a characteristic foliation from ξ . Intersecting the contact plane with
the tangent plane at each point in the surface defines a line field, and the leaves of the
characteristic foliation are the integral curves of these intersections. Characteristic
foliations may be more general than the foliations described above, admitting
leaves that are circles or even nonmanifolds. However, we will not consider any
cases where these phenomena arise. The orientation of the leaves follows from the
coorientation of the contact structure, while the signs of the singular points depend
on whether the coorientation of the contact structure is a positive or negative normal
for F.

A surface in a contact structure is convex if the contact structure is I -invariant
in some product neighborhood; a key result states that a surface is convex if and
only if its characteristic foliation admits a dividing curve 0 [4]. Remarkably, the
local neighborhood of a convex surface is determined by the dividing set alone.
The property of admitting a dividing curve (and hence, convexity) can be checked
combinatorially, and in fact, convex surfaces are C∞-generic [4]. Another important
aspect of this equivalence is Giroux’s flexibility, it describes the sense in which
0 captures the essential data of the contact structure in a neighborhood of F.
Specifically, if 0 is a dividing set on F ⊂ (M, ξ), then any foliation divided by 0
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Figure 1. Local pictures of two characteristic foliations divided
by the same curve 0, shown in green. Circles are elliptic points
and the squares are hyperbolic points.

can be realized as the characteristic foliation of some isotopic surface F ′ in a
neighborhood of F. Thus, given a separating multicurve 0 on a surface F, one
may choose any foliation divided by 0 and construct a compatible contact structure
on F × I. If we choose another foliation, then Giroux’s flexibility implies this is the
characteristic foliation on some surface inside this neighborhood, so our original
neighborhood in fact contains the contact structure determined by this new foliation.

Characteristic foliations may exhibit many leaf types, but we will restrict attention
to the cases where the hypotheses of Section 2B are satisfied; this is also a generic
property. In addition, we will require that each signed singular foliation has no
closed leaves or leaves connecting two hyperbolic points, and any such foliation
will admit a dividing set, thus ensuring convexity. To see this, we introduce two
graphs G± embedded into F and associated to F . The vertices of G+ are the
positive elliptic points, and the edges between them are the stable separatrices of
positive hyperbolic points. The graph G− is analogously defined using the negative
elliptic points and unstable separatrices. Observe that G+ and G− are disjoint and
that the complement of their neighborhoods N (G+) and N (G−) has no singularities
and is thus foliated by intervals. The dividing curve 0 of such a foliation is given
by the oriented boundary of N (G+), which is isotopic through curves transverse to
the foliation to −∂ N (G−). When a foliation admits a dividing set, it is unique up
to isotopy, so we will often refer to “the” dividing set.

With the given restrictions on leaf types (i.e., only intervals and leaves containing
a single hyperbolic point), the complement of the union of the separatrices is a
collection of disks, each with one positive and one negative elliptic point on its
boundary. The interior of each disk is foliated by an I -family of leaves from the
positive to the negative elliptic point; this can be seen in Figure 1.

3. Foliated open books

We saw in Section 2 that the dividing set on a convex surface suffices to deter-
mine the contact structure in a neighborhood of the surface. Although the precise
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information about the characteristic foliation is lost, enough data is retained to
identify the relevant equivalence class. This theme is pervasive throughout contact
geometry, with open books being one of the most notable illustrations. An open
book decomposition of a contact manifold loses information about the specific
contact structure, but with the benefit that the isotopy class of the contact structure is
determined by a minimal amount of data. This economical encoding of the isotopy
class was first studied in the contact setting by Thurston and Winkelnkemper and
rose in prominence with the work of Giroux [5; 20]. After recalling the classical
construction, we will describe the foliated open books first introduced in [12] as a
new version of open books for contact manifolds with convex boundary. Although
the definition of a foliated open book will require us to keep track of more data on
the boundary than simply the dividing set, the payoff will be a more user-friendly
set of gluing theorems than seen with previous types of open books.

An abstract open book for a closed three-manifold is a pair (S, h), where S is
a surface with boundary and h an element of its mapping class group. This data
suffices to construct an S-bundle over S1, and after collapsing the boundary in a
controlled way, yields a closed three-manifold. A foliated open book adapts this
approach to the setting of a manifold with boundary. This time, the data consist of a
sequence of 2k topologically distinct surfaces and the maps identifying one surface
with the next. Analogously, this determines a manifold with foliated boundary.

3A. Classical open books. This section reviews the definition of an open book
decomposition of a closed three-manifold, along with the notion of an open book
foliation developed in [9].

Definition 3.1. An abstract open book is a pair (S, h) where S is a surface with
boundary ∂S = B and h : S → S is a diffeomorphism that preserves B pointwise.

An abstract open book determines a closed three-manifold M as follows. First,
consider the product S × I and identify the points (h(x), 0) ∼ (x, 1) to form the
mapping torus of h. Then collapse each component of the boundary ∂S × S1 to a
circle via (x, t) ∼ (x, t ′) whenever x ∈ ∂S. The image of ∂S × S1 is an oriented
link called the binding and again denoted by B, while the surfaces S ×{t} become
the pages. We will also make use of the function π : M \ B → S1 that sends each
point on S × {t} to t .

The simplest example of an open book is given by setting S = D2, so that h
is necessarily isotopic to the identity. The pair (D2, id) determines S3; to see
this, observe that N (B) and M \ N (B) give a genus-one Heegaard splitting with
meridional curves on the two solid tori intersecting once. In fact, an open book
determines not only a topological three-manifold, but actually a contact three-
manifold, but this will be explored in the next section. For now, we consider further
topological structure associated to an open book.
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•
• •

Figure 2. The intersection of F with the pages and binding (above)
induces the singularity of Fπ (below). Left: the foliation on a disk
transverse to the binding has an elliptic point. Center: the foliation
on a cup with one point tangent to a page has a center. Right:
the foliation on a saddle with one point tangent to a page has a
hyperbolic point.

Suppose that M is the closed three-manifold built from (S, h). Then the pages of
S induce a foliation on a generic surface embedded in M. Assume that a surface F
is transverse to the binding B, so that E = B ∩ F is finite. Additionally, assume
that the restriction π̃ = π |F : F \ E → S1 is an S1-valued Morse function with
only one critical point for any critical value. Then the open book foliation Fπ on F
is the foliation induced by the level sets of π̃ together with the elliptic points E .
Equivalently, the leaves of the foliation are the intersections of F with the pages
of the open book. As seen in Figure 2, such a foliation may have three types of
singularities: the points in E are elliptic points; the index 0 and 2 critical points
of π̃ are centers; and the index 1 critical points are hyperbolic points. Each level set
of π̃ has at most one critical point, and there are no leaves connecting hyperbolic
points. Although closed leaves may arise, one may eliminate them via a bigger
isotopy of the surface [9].

As above, we can associate signs to the elliptic points depending on whether the
binding coorients F or not, whereas the sign of a critical point of π̃ is given by the
sign of dπ evaluated on the normal to F. Just as characteristic foliations on convex
surfaces determine the nearby contact structure, open book foliations determine the
open book decomposition near the surface.

3B. Foliated open books. Intuitively, a foliated open book is the structure on a
manifold with boundary formed by cutting a classical open book along a surface
with an open book foliation. We consider two examples of this sort before carefully
stating a definition in parallel to Definition 3.1.
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Figure 3. Cutting the open book (D2, id) for S3 (left) along a
pair of parallel spheres yields a (pair of) foliated book(s) for the
three-ball(s) (center) and a foliated open book for the thickened
sphere (right, selected pages shown). On the boundary spheres
of the resulting foliated open books, each leaf of the open book
foliation is a line of longitude, and the only singularities are the
two elliptic points at the poles.

Example 3.2. Consider the open book for S3 described above with connected
binding and disk pages. Choose a neighborhood of a point on the binding and
cut S3 along the boundary of this ball as shown in the center of Figure 3. Discarding
the complement of this ball, one sees that it inherits a binding and pages from
the original open book, and that the new boundary is naturally equipped with the
foliation whose leaves are boundary intervals of the pages. This is the simplest
possible foliated open book.

For an example that is one step more interesting, cut S3 along a pair of parallel
spheres to get a thickened sphere that intersects the binding in two intervals. The
complement of these binding intervals is a union of rectangles.

We will see more interesting examples after the formal definition.

Definition 3.3 [12, Definition 3.12]. An abstract foliated open book is a tuple
({Si }

2k
i=0, h) where Si is a surface with boundary ∂Si = B ∪ Ai

1 and corners at
E = B ∩ Ai such that

(1) for all i , Ai is a finite union of intervals and B is a union of intervals or circles;

(2) the surface Si is obtained from Si−1 by either
• attaching a 1-handle along two points on Ai−1, or
• cutting Si−1 along a properly embedded arc γi with endpoints in Ai−1 and

then smoothing.2

1By a slight abuse of notation we denote the “constant” part of the boundary of Si by B for all i .
2The indices of γi in this paper are shifted compared to [12], where the cutting arcs were denoted

by γi−1.
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Figure 4. A different foliated open book for a ball cut from S3.

Furthermore, h : S2k → S0 is a diffeomorphism between cornered surfaces that
preserves B pointwise.

We invite the reader to pause and compare Definitions 3.1 and 3.3. The latter
has two levels of complexity not seen in the classical definition: first, the definition
replaces a single surface S with a family of surfaces Si of distinct topological
type, and second, the boundary of each surface is partitioned into Ai -intervals
and B-intervals or -circles. This second feature was seen already in Example 3.2:
cutting each page in the open book for S3 along its intersection with the sphere
resulted in two new bigon pages each bounded by an Ai -interval and a B-interval.

Example 3.4. To illustrate the differences between classical and foliated open
books, we consider a further example built by cutting the standard open book for S3

along a separating S2; see Figure 4. Here, the intersections between the indicated
ball and the pages of the original open book are not all homeomorphic. The points
on the embedded S2 where the changes in topological type occur are labeled by
squares on the figure; the right-hand side of the figure shows the distinct subsurfaces
(the pages of the resulting abstract open book), labeled to match the (embedded)
pages in the original open book.

We now take on the full complexity of Definition 3.3 and describe how to build
a manifold from a sequence of pages of distinct topological types. Throughout, we
will use subscript indices to distinguish topologically distinct page types, referring
to these as “abstract pages” for convenience.

Any pair of consecutively indexed abstract pages Si and Si+1 defines an elemen-
tary cobordism. We build an analogue of the mapping torus by concatenating these
elementary cobordisms and gluing S2k to S0 by the map h. More precisely, each
abstract page Si yields a product Si ×

( i
2k , i+1

2k

)
, for 0 ≤ i ≤ 2k −1, and consecutive

products join smoothly along a singular page which is a surface with two points
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on its boundary identified. (Since h : S2k → S0 is a diffeomorphism, we need not
assign a separate product to S2k). After collapsing B × S1 to a multicurve called
the binding and still denoted by B, the remaining boundary is decorated by the
nonbinding boundaries of the pages. With the above decomposition in mind, define
a function π : M \ B → S1 so that on each piece Si ×

( i
2k , i+1

2k

)
, the function is

projection to the second coordinate; here S1 is identified with [0, 1]/(0 ∼ 1). Below,
we abuse notation a couple of times and write St for π−1(t).

This construction induces a singular foliation F on ∂ M whose regular leaves are
copies of Ai , oriented as the boundary of the pages, and whose singular leaves each
contain a single four-pronged hyperbolic point. Equivalently, leaves are level sets
of the restriction of the function π to ∂S. The elliptic points E and the hyperbolic
points H each come with signs: each interval component of Ai is oriented from
a positive elliptic point towards a negative one. Hyperbolic points associated to
attaching a one-handle are negative, while hyperbolic points associated to cutting
along an arc are positive; for an illustration of the latter, refer to Figure 10.

We denote the resulting smooth object by the triple (M, ∂M,F) and call it a man-
ifold with foliated boundary. We remember the identification of leaves with intervals
on the boundary of abstract pages, and, in particular, the foliation has a distinguished
union of 0-leaves, which are always regular. Because there are no closed leaves or
saddle-saddle connections, we may use the signs of the singular points to associate a
dividing set to the foliation: as seen in Section 2C, the boundary of a neighborhood
of the positive separatrices of positive hyperbolic points is a dividing set, and this
is unique up to isotopy transverse to the leaves. Note that a manifold with foliated
boundary does not have an associated foliated open book structure; rather, it has
a boundary foliation that is compatible with the existence of a foliated open book.

We conclude with one more topological example before turning attention to the
relationship between open books and contact structures.

Example 3.5. For a final example in this section, we describe a process for promot-
ing a nicely foliated surface F to a foliated open book F × I with the property that
the open book foliation on each F ×{s} is isotopic to the original foliation. This
procedure is described in detail in [12, Section 4.2], but we summarize it here for
later use in this article.

The open book decomposition near a surface F is completely determined by the
open book foliation Fπ on F [12, Corollary 4.6]. In the following, we describe this
local structure by constructing a foliated open book for F ×[−1, 1] that embeds
into any other (foliated) open book inducing Fπ . Naively, one might try to cross the
original surface with [−1, 1] and take the pages to be the products of leaves with
the interval. This works in the case of a foliation with only elliptic singularities, as
in Example 3.2, but the process is more subtle in the case that the original foliation
has hyperbolic points.
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We first briefly describe the open book determined by Fπ near F before using the
foliation to construct its abstract pages. The binding of the open book is transverse
to F, so we can assume it embeds as E × I in F × I, oriented by ∂/∂s (respectively,
−∂/∂s) for positive (negative) elliptic points. Recall that 0 denotes the dividing
set for a signed foliation. Away from a neighborhood of 0 × I, each page St is
the union of the leaves π̃−1(t ± ϵs) × {s} ⊂ F × {s}, where the sign depends on
whether we are in F+ or F−, and ϵ is sufficiently small so that no page contains
more than one hyperbolic point. We connect these across 0 × I by bands which
twist to compensate for the shearing of leaves in opposite directions as |s| increases.
(Figure 8 in [12] provides local models for this construction near 0 and E .)

As noted above, when t is not near a singular point, this yields pages which are
simply thickened copies of the original interval leaves; when F is closed, these are
rectangular pages with two binding intervals separating a pair of leaves, one on
each of F × {±1}. This is illustrated by the thickened sphere in Example 3.2.

To see what happens near a singular value t0 for the original foliation, consider
the page which contains the corresponding hyperbolic point on F × {0}. The
boundary of this page on F × {−1} is a copy of the π̃−1(t0 − ϵ) leaf in which
the saddle resolution has not yet happened, while the boundary of this page on
F ×{1} is a copy of the π̃−1(t0 + ϵ) leaf where the saddle resolution has already
occurred. This gives a recipe for writing down abstract pages: starting from the
regular value 0, set S0 = π̃−1(0)× I. To form S1, perform the first cut/add operation
on the corresponding F × {1} edges of S0; to form S2, perform the corresponding
add/cut operation on the F × {−1} edges of S1. Note that S2 can be thought of as
π̃−1(t0 + ϵ) × I, where t0 is the first singular value encountered after 0. We can
continue to obtain a pair of pages for each hyperbolic point in the same way. If the
original foliation had n hyperbolic points, the new foliated open book will therefore
have 2n + 1 pages. Each even-indexed page is a thickened regular leaf, while
odd-indexed pages interpolate between these. Finally, note that the monodromy h
will always be trivial, as the first and last pages are simply unions of disks.

3C. Foliated open books and contact structures. With the topological construc-
tions well in hand, we are ready to recall the compatibility between foliated open
books and contact structures.

Definition 3.6. [12, Definition 3.7] The abstract foliated open book ({Si }, h) sup-
ports the contact structure ξ on (M, ∂M,F) if
(1) TB is positively transverse to ξ ;

(2) there exists a nowhere zero vector field everywhere transverse to the interior
of each page and to ξ whose flow preserves ξ ;

(3) there is a topological isotopy of ∂ M taking F to the characteristic foliation Fξ

such that some 0 is a dividing set for each foliation throughout the isotopy.
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We will often want to consider a manifold with foliated boundary (M, ∂M,F)

together with a contact structure ξ supported by a foliated open book inducing the
boundary foliation; we call this a foliated contact three-manifold and denote it by
the triple (M, ξ,F).

As above, we may ignore the third condition to recover the classical definition of
a contact structure supported by an open book decomposition of a closed manifold.
If a three-manifold M has both an open book decomposition (B, π) and a contact
structure ξ supported by this open book, then a sufficiently generic surface will
carry both a characteristic foliation Fπ and an open book foliation Fξ . A priori
these foliations are unrelated, but if the open book foliation has no circle leaves,
then the contact structure can be isotoped so that the characteristic foliation and
the open book foliation have the same combinatorics and further, that the singular
points agree [9]. This is the key observation that gives the boundary criteria for
foliated open books.

In the examples produced by cutting an honest open book along a separating
surface, observe that the open book foliations on the two new boundaries match,
but with the signs of all singular points reversed. Conversely, any two foliated open
books with matching, sign-reversed boundary foliations may be glued to produce
a closed manifold with an open book structure. In fact, these cutting and gluing
results respect the contact structures supported by each of the open books in the
sense of Definition 3.6 [12, Theorems 6.1 and 6.2].

In the remainder of this section, we construct several additional foliated open
books for specific contact manifolds. Example 3.7 constructs foliated open books
for a pair of distinct contact structures on the three-ball. In this case, as in the
examples above, the foliated open books are identified as submanifolds of an open
book for a closed three-manifold. Finally, Example 3.8 is a specific instance of
the procedure described in Example 3.5 above; we endeavor to provide a plausible
construction here while referring the reader to [12] for the technical details.

Example 3.7. Different open book decompositions of a fixed topological manifold
may determine different contact structures, and the same holds true in the case of
foliated open books. In this example we consider a pair of open books for S3, one
of which supports the unique tight contact structure and the other of which supports
an overtwisted contact structure. Cutting each of these along a separating S2 yields
foliated open books for tight and overtwisted balls.

Let (A, h±) denote the open book for S3 with annular pages and monodromy a
single Dehn twist of the indicated sign. The binding of the associated open book
decomposition is a positive (resp. negative) Hopf link, denoted by H+ (resp. H−).
To picture this, consider the genus one Heegaard splitting of S3

= H1 ∪∂ (−H2)

into two solid tori where H+ (resp. H−) is embedded on the Heegaard torus as
in Figure 5. Here π−1([0, 1

2 ]) = H1 and π−1([1
2 , 1]) = H2. The positive twist
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Figure 5. Left: H+ embedded in ∂ H1 in a tight S3. Center: H−

embedded in ∂ H1 in an overtwisted S3. Right: the open book
foliation on the boundary of a neighborhood of the spanning arc
in the shaded annulus; as in Figure 1, elliptic points are drawn as
circles, and hyperbolic ones as squares.

monodromy induces the tight contact structure on S3, while the negative twist
monodromy induces an overtwisted structure.

In each of these open books, consider the embedded S2 bounding a neighborhood
of the orange arc in π−1

(1
2

)
shown in Figure 5. Discard this ball, leaving a pair of

foliated open books for the complementary tight and overtwisted balls. The open
book foliation on the boundary sphere has four elliptic points and two hyperbolic
points as in the right-hand picture of Figure 5. The pages of these foliated open
books are shown as the shaded subsurfaces in Figure 6. The Dehn twists from the
original open book restrict to Dehn twists on the annular pages of the foliated open
books.

S0 S1 S2
Figure 6. Removing a neighborhood of the orange arc from S3

yields the shaded pages for a foliated open book for the three-ball.
Each abstract page is shown embedded into an annular page for the
open book (A, h±), where h± is a positive (resp. negative) Dehn
twist around the core of the annulus. These twists restrict to the
cornered annulus S2 as the monodromy for the foliated open books
({S0, S1, S2}, h+) for a tight three-ball and ({S0, S1, S2}, h−) for an
overtwisted three-ball. The light and dark blue curves are sorting
arcs, which are introduced in Section 3D.
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Figure 7. The left-hand picture shows the top of an overtwisted
disk with transverse boundary; elliptic and hyperbolic points are
again drawn as circles and squares, respectively. The right-hand
picture labels the singularities of the characteristic foliation on the
underside of the disk; the two points in the pairs (A, D), (B, E),
and (C, F) coincide, but the sign of each singular point is reversed
when viewed from the opposite side.

Example 3.8. In this example we construct a foliated open book for a ball supporting
an overtwisted contact structure. This example is borrowed from [13], following
the procedure summarized in Example 3.5. The motivation for including this
initially opaque construction is that it will allow us to characterise any foliated
open book for an overtwisted contact manifold in terms of a particular embedded
foliated open book. To begin this process, we introduce a nonstandard definition of
overtwistedness:

Definition 3.9. A contact manifold (M, ξ) is overtwisted if it contains an embedded
disk whose boundary is everywhere transverse to ξ and whose characteristic foliation
is as shown in Figure 7.

Overtwistedness is more commonly characterized in terms of the existence of an
embedded disk with a different characteristic foliation, but it’s a consequence of
Giroux flexibility that the existence of a disk with this foliation is equivalent to the
existence of disks with related characteristic foliations. We choose Definition 3.9
with a later application in mind. We now apply the construction sketched in
Example 3.5 to build a foliated open book for a neighborhood of this disk; it follows
that inside any overtwisted contact manifold, we may find an overtwisted ball that
admits this foliated open book.

The existence of a transverse boundary requires us to slightly modify the con-
struction, smoothing the boundary of pages associated to leaves that terminate
on ∂ F. Thus a regular leaf connecting an elliptic point e to ∂ F will give rise to a
bigon with one e ×[−1, 1] component and one Ai component connecting e ×{±1}.

We now apply this construction to the overtwisted disk shown in Figure 7,
yielding an abstract foliated open book with five abstract pages. We set t = 0 to
consist of the leaves where intervals connect (1) elliptic points A and B, and (2) the
elliptic point C to the boundary. The first leaf becomes a rectangular page with two
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Figure 8. The pages of a foliated open book for a neighborhood of
the disk in Figure 7. Each hyperbolic point in the original foliation
induces a pair of hyperbolic points of opposite sign in the foliated
open book. (The labeled arcs are explained in Example 3.11.)

boundary intervals, one connecting A ×{1} and B ×{1} and the other connecting
D ×{−1} with E ×{−1}. The leaf connecting C to the boundary becomes a bigon
whose boundary interval connects C × {1} with F × {−1}. See Figure 8. Around a
positive elliptic point, t increases in the positive direction; following the procedure
outlined in Example 3.5, the first hyperbolic singularity corresponds to adding a
handle to connect these two pages. Figure 8 shows all the abstract pages of the
resulting foliated open book.

Since each component of each page is a disk, there is a unique (up to isotopy) way
to identify successive pages, and the foliated open book is completely determined
by this data. One may also reconstruct the dividing set on the ball. One component
encircles B on the “top” of the ball, while two further components bound an annulus
containing D, F, and the two positive hyperbolic points on the “bottom” of the
ball. In contrast, the foliated open book for the overtwisted ball constructed in
Example 3.8 has a connected dividing set.

To illustrate how this ball might embed in an overtwisted contact manifold, we
consider the open book for an overtwisted S3 from Example 3.7. Recall that the
pages are annuli and the monodromy is a left-handed Dehn twist. The top half
of Figure 9 shows a ball intersecting two representative pages of this open book.
The elliptic points are labeled to identify these subsurfaces with the first and third
abstract pages from Figure 8; although we find it difficult to visualize further pages
embedded in S3, it is not difficult to embed the foliated open book pages in abstract
pages, as shown below.

3D. Sorted foliated open books. Foliated open books will be our means to associat-
ing a Floer-theoretic invariant to a three-manifold with foliated boundary. However,
in order to generate a multipointed Heegaard diagram, we will need to require the
further technical condition that our foliated open book is sorted. Since the notation
to verify this condition is somewhat involved, we pause to motivate it first.

The definition of a foliated open book requires successive pages to evolve by
cutting or by gluing, but we may equivalently think of this as the condition that
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Figure 9. The foliated open book for the minimal overtwisted
ball embeds in the simplest open book for an overtwisted S3. The
monodromy is a left-handed Dehn twist.

evolution is always by addition, but in either direction: either Si is obtained from
Si−1 by a one-handle addition or else Si is obtained from Si+1 by a one-handle
addition. One-handles associated to negative hyperbolic points are those already
described in Definition 3.3 as “adds”, while positive hyperbolic points correspond to
adding a handle as the page index decreases. We will call a foliated open book sorted
if a one-handle, after being added with respect to some direction (i.e., increasing or
decreasing indices), persists for all subsequent pages with respect to that direction.
See Figure 10.

Recall that the elliptic points E = Ai ∩ B partition as E = E+ ⊔ E−, where
each interval is oriented from a point e+ ∈ E+ to a point e− ∈ E−. We impose the

+

i
S

i-1
S

Figure 10. Here Si−1 is obtained from Si by adding the shaded
one-handle, inducing a positive hyperbolic singularity at the saddle
point. The sorted condition requires that this handle persist for all
S j with 0 ≤ j < i . Note that the binding has been blown up as
B × I for ease of viewing.
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following conventions on the cutting and gluing arcs that govern how the pages
evolve:

• If Si → Si+1 cuts Si along a properly embedded arc, the endpoints of the arc
lie near the e+ end of the intervals of Ai . We decorate Si and all prior pages
with a copy of the cutting arc and label these arcs as γ +

i . If S j is decorated
with multiple cutting arcs near the same point e+, the indices decrease with
the orientation of A j .

• If Si → Si+1 adds a one-handle to Si , the points of the attaching sphere separate
any γ + endpoints from the e− on the intervals of Ai . We decorate Si+1 and
all subsequent pages with a copy of the cocore of the attached one-handle and
label these arcs as γ −

i . If S j is decorated with multiple cocores near the same
point e−, the indices decrease with the orientation of A j .

If we take the perspective that gluing is simply cutting in with the order of the
indices reversed, then the second bullet point can be phrased in identical language
to the first. Figure 11 illustrates these conventions in an example.

Definition 3.10. A foliated open book is sorted if the arcs γ −
∪ γ + are mutually

disjoint on all the pages where they appear. We denote a sorted foliated open book
by ({Si }

2k
i=0, h, {γ ±

i }).

A foliated open book which is sorted has a ghost page: a minimal surface formed
by cutting along all of the arcs. Although this surface may not actually coincide with
any Si in the foliated open book, it embeds as a subsurface in each abstract page. Re-
membering this may help in understanding the following notation-heavy definition.

Suppose ({Si }
2k
i=0, h, {γ ±

i }) is a sorted foliated open book for foliated contact
three-manifold (M, ξ,F). On each page Si , let Pi be the complement of a “cornered”
neighborhood of Ai ∪

(⋃
i< j γ +

j

)
∪

(⋃
i≥ j γ −

j

)
, with corners at E . This Pi is the

ghost page and exists as a subsurface of each Si . The copies of Pi may be identified
via the flow of a vector field transverse to the pages, and we denote the composition
of these identifications from P0 ⊂ S0 onto P2k ⊂ S2k by ι.

Figure 11. An indicative interval of An . Here i > j ≥ n > m. The
arcs γ +

i and γ +

j show arcs that will be cut along on higher-index
pages. The bold dot indicates where a one-handle could be attached
on some later page, while the arc γ −

m is the cocore of a handle
already attached.
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3E. Sorting by stabilization. In this subsection we examine the operation of posi-
tive stabilization on a foliated open book and show how it can be used to render a
nonsorted foliated open book sorted. The idea is straightforward: each stabilization
adds a one-handle to every page of the foliated open book by taking a connect sum
with a foliated open book for the standard tight S3. For a simple example, we note
that the foliated open book for a tight three-ball constructed in Example 3.7 is a
positive stabilization of the foliated open book from Example 3.2.

The number of sorting arcs γ ± is controlled by the foliation, and hence un-
changed by stabilization. Repeating the process sufficiently many times gives the
sorting arcs more space in the enlarged page to avoid each other. Of course, the
arcs that guide the stabilization must be chosen carefully, and we explain how
to do this below. The formal proof that this is always possible may be found
in [12].

As shown in [12], stabilization may be understood as a concrete example of
gluing two foliated open books. Choose an arc (γ, ∂γ ) embedded in a fixed
page (St , B) of a foliated open book. A regular neighborhood of this arc may be
chosen so that its boundary is a sphere whose signed singular foliation has two
hyperbolic singularities. Choosing such neighborhoods in two separate foliated
open books yields manifolds with matching foliated boundaries. Since we can only
glue foliations where the singularities match, but with opposite signs, shifting the t
coordinate by 1

2 allows us to glue the two spheres to construct a foliated open book
for the connect sum of the two original manifolds; the new pages are the Murasugi
sum of the pages of the original foliated open books. If one of the manifolds was an
open book with annular pages supporting the tight contact structure on S3, then the
contactomorphism type of the manifold is unchanged and we say that the foliated
open book has been positively stabilized. The open book in Example 3.7 with
positive Hopf twist binding is a stabilization of the elementary open book for S3

from Example 3.2.
The description above applies with minor modification to all versions of open

books, but a distinguishing feature of foliated open books is the nonhomogeneity
of the pages. An arc on St may not persist to some later page St ′ , or St ′ may have
a nontrivial mapping class group even though St was a collection of disks. This
highlights that there are two choices to be made when defining a stabilization of a
foliated open book: which page, and which arc?

With a goal of removing intersections of the form γ +

i ∩ γ −

j , choose a regular
page between the hyperbolic points h+

i and h−

j . We will stabilize along an arc in
this page so that as γ +

i rises up through the manifold, the subinterval that would
collide with the descending γ −

j picks of the monodromy of the foliated open book
for S3 and instead undergoes a Dehn twist around the core of the annular Murasugi
summand of the page.
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Figure 12. The stabilization of the foliated open book from Figure 8. Note that
γ +

3 and γ −

4 intersect on the new page S3, so the foliated open book remains unsorted.

Example 3.11. Example 3.8 introduced a foliated open book for an overtwisted
ball which embeds into any overtwisted contact manifold. Examining Figure 8 will
show that it is not sorted, and this example will perform the sorting stabilizations.

The first hyperbolic singularity is negative and corresponds to adding a one-
handle to S0 as shown; on the second page S1, the cocore of the one-handle is
recorded as an arc γ −

1 . However, the second hyperbolic singularity is positive and
corresponds to cutting the second page along the arc labeled γ +

2 to get the third
page. As shown in the figure, γ −

1 and γ +

2 intersect.
To remove this obstruction to sortedness, choose a copy of S1 and stabilize along

an arc that crosses γ +

2 and γ −

1 once. The result is shown in Figure 12. One can
think of γ −

1 as undergoing a right-handed twist as it ascends or γ +

2 as undergoing
a left-handed twist as it descends, and since the two curves now avoid each other,
we may proceed with increasing t until γ −

3 and γ +

4 intersect on the new S3 page.
To remove the intersection γ −

3 ∩ γ +

4 , we analogously stabilize along an arc
intersecting each of these curves once. Finally, a sorted foliated open book is seen
in Figure 13. Since the gluing map is inherited from the original foliated open book,
it remains translation in the page as drawn.

For any i , cutting along all the sorting arcs on Si yields a pair of disks, the “ghost
page” described in the previous section.

Figure 13. A sorted foliated open book for a neighborhood of an overtwisted disk,
obtained from the foliated open book in Figure 8 by a sequence of two stabilizations.
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4. Multipointed bordered Floer homology

As a stepping stone for defining link Floer homology, Ozsváth and Szabó defined
a multipointed version of ĤF denoted by H̃F [19]. This version is defined using
Heegaard diagrams with multiple basepoints, and, given a closed, oriented three-
manifold M, it is related to ĤF(M) by the isomorphism

H̃F(M, n) ∼= ĤF(M) ⊗ V n−1.

Here, n is the number of basepoints and V is a 2-dimensional graded Z/2Z-vector
space with generators in gradings 1 and 0; i.e., V ∼= H∗(S1).

In [10], Juhász defines an extension of ĤF for nonclosed three-manifolds whose
boundary is sutured, called sutured Floer homology. Note that both ĤF(M) and
H̃F(M, n) are sutured Floer homologies of specific sutured manifolds corresponding
to M. Specifically, let M(n) be the sutured manifold obtained from M by removing
n pairwise disjoint balls and adding as a suture one oriented simple closed curve
on each resulting sphere boundary component. Then, we have

ĤF(M) ∼= SFH(M(1))

while H̃F(M, n) ∼= SFH(M(n)).
Lipshitz, Ozsváth, and Thurston define bordered Floer homology as an extension

of ĤF for three-manifolds with parametrized boundary [14]. First, they associate
a differential graded algebra A(∂ M) to the parametrization. Then, they define an
A∞-module, or type A structure, ĈFA(M) over A(∂ M), or equivalently, a type D
structure (roughly, a dg module) ĈFD(M) over A(−∂ M). These invariants are
constructed to satisfy a nice gluing formula which recovers ĤF. Specifically, if M
is a closed three-manifold obtained by a gluing M1 ∪∂ M2, then the derived tensor
product ĈFA(M1)⊗̃A(∂ M1)ĈFD(M2) (which often has a smaller model denoted ⊠)
is homotopy equivalent to ĈF(M).

A generalization of bordered Floer homology, called bordered sutured Floer
homology, was defined by Zarev [21]. It is an invariant of three-manifolds whose
boundary is “part sutured, part parametrized”. This invariant satisfies a gluing
formula which recovers sutured Floer homology.

In this section, we introduce a multipointed theory for bordered Floer homology
as a special case of bordered sutured Floer homology. First, we recall the definition
of the boundary parametrization in bordered Floer homology. Let M be a three-
manifold with boundary of genus k. A parametrization for ∂ M consists of a
disk D ⊂ ∂ M ; a basepoint z ∈ ∂ D; and 2k pairwise disjoint properly embedded
arcs ⨿

2k
i=1δi in ∂ M \ Int(D) such that M \

(
D ∪ ⨿

2k
i=1δi

)
is an open disk. The

parametrization data is recorded by a pointed matched circle Z = (Z , a, m), where
Z = ∂ D with z ∈ Z , a = ∂(⨿2k

i=1δi ) is a union of 4k points on Z , and M is a
matching on a that pairs endpoints of the same arc δi .
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Definition 4.1. A pointed matched multicircle is a triple Z = (Z , a, m) where
Z = ⨿

n
i=1 Zi is a union of n circles with a basepoint zi on each Zi , a ⊂ Z is a set of

an even number of points, and m : a → a is a matching. Given a three-manifold M
with boundary of genus k, a (multipointed) parametrization of ∂ M is a pointed
matched multicircle Z with |a| = 4n + 4k − 4, along with an embedding of Z and
of pairwise disjoint arcs δ = ⨿

2n+2k−2
i=1 δi into M, satisfying the following:

(1) the image of each Zi bounds a disk Di in ∂ M whose interior is disjoint from
the arcs δi for all i ;

(2) ∂δ = a and each ∂δi is a pair of points matched by m;

(3) ∂ M \
((

⨿
n
i=1 Di

)
∪

(
⨿

2n+2k−2
i=1 δi

))
is the union of n open disks such that each

disk contains exactly one of the marked points zi for i = 1, . . . , n.

We call the three-manifold with multipointed parametrized boundary a bordered
manifold, as in [14], and denote it by (M,Z), omitting from the notation the implicit
data of how the arcs δi are embedded on ∂ M.

A three-manifold with multipointed parametrized boundary (M,Z) can be rein-
terpreted as a bordered sutured manifold (M, 0,Z◦) where ⨿

n
i=1 Di is the sutured

part while its complement is the parametrized part, and Z◦ is the arc diagram
obtained from Z by removing neighborhoods of the basepoints. Thus, Zarev’s
construction associates a type A structure B̂SA(M, 0,Z◦) over A(Z) := A(Z◦),
or equivalently a type D structure B̂SD(M, 0,Z◦) over A(−Z). The construction
uses a Heegaard diagram presentation H = (6, α, β,Z◦) for the bordered sutured
manifold. The arc diagram Z◦ is embedded on ∂H so that there is one interval on
each component of ∂H. The structures B̂SA and B̂SD are generated by certain sets
of intersection points in α ∩ β on the Heegaard diagram and they have structure
maps defined by counting certain holomorphic curves in 6× I ×R whose projection
onto 6 avoids the regions of 6 \ (α ∪ β) containing ∂H \Z◦.

The embedding of Z◦ on ∂H can be extended to an identification of Z with
∂H, by reinserting the basepoints, one in each component of ∂H \Z◦. The result
is a multipointed bordered Heegaard diagram for (M,Z). Since there is no loss
of information when moving from one perspective to the other, we denote Z◦

simply by Z in this paper. We will denote the structures B̂SA(M, 0,Z◦) and
B̂SD(M, 0,Z◦) by C̃FA(M,Z) and C̃FD(M,Z), respectively. Explicitly, given a
multipointed bordered Heegaard diagram, these structures are defined by counting
the “usual” holomorphic curves; the condition of “avoiding the basepoints” is
equivalent to “avoiding ∂H \Z◦”. The gluing formula for bordered sutured Floer
homology implies that if the closed three-manifold M with multiple basepoints
is obtained by gluing multipointed bordered three-manifolds M1 ∪∂ M2, with M1

parametrized by Z and M2 by −Z, then C̃FA(M1)⊠A(Z) C̃FD(M2) is homotopy
equivalent to C̃F(M, n).
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δ1

δ2

Figure 14. The bordered three-manifold associated to the foliated ball
that is the neighborhood of the orange arc from Example 3.7. The two
grey disks make up D, their boundary is Z , the two arcs δi are drawn
in blue and labeled on the figure, and the basepoints are drawn in green.

5. The bordered contact invariant

Let (M, ξ,F) be a foliated contact three-manifold. In [1], a sorted foliated open
book for (M, ξ,F) was used to construct a Heegaard diagram for an associated bor-
dered sutured manifold (M, 0,Z), along with a preferred generator of the diagram.
The homotopy equivalence class of this generator in the resulting bordered sutured
Floer homology is an invariant of the foliated contact three-manifold [1, Theorem 1].
In particular, the class is independent of the choice of open book. We recall the
construction next, slightly rephrasing to use multipointed bordered Floer homology,
and we work out a small example.

As explained in Section 4, we can convert the data of a bordered sutured manifold
(M, 0,Z) to multipointed bordered data for a simpler perspective. We describe the
parametrization on the boundary of the resulting bordered manifold (M,Z) directly
below.

We use the foliation to define a natural parametrization of ∂ M via a pointed
matched multicircle Z = (Z , a, m). Recall that the data of the foliation remembers
the page index associated to each leaf, and in particular, that there is a distinguished
union of regular leaves denoted by A0. Let D ⊂ ∂ M be a closed neighborhood
of A0, and let Z = ∂ D. Note that D is a union of n disks, where 2n is the number
of elliptic points in the foliation. Let δi be a subarc of the positive (resp. negative)
separatrix for h+

i (resp. h−

i ) that lies in ∂ M \ (intD). Define a ⊂ Z to be the set
of points that are the boundaries of δi and let m be the matching induced on the
points in a by δi . For each component of Z , mark a basepoint with a smallest
possible (0, 2π)-coordinate. See Figure 14 for an example. It is easy to check that
Z = (Z , a, m) together with the embedding of the arcs δi parametrizes ∂ M.

Now, fix an abstract sorted foliated open book ({Si }
2k
i=0, h, {γ ±

i }) for the foliated
contact three-manifold (M, ξ,F). The sortedness condition ensures that the first
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page of the open book together with its (indexed) γ +

i arcs, the last page together
with its (indexed) γ −

j arcs, and the monodromy h fully describe the manifold.
In fact, the union of the first and last page naturally describes a (cornered) han-
dlebody decomposition for M. Using the data of ({Si }, h, {γ ±

i }), we describe a
multipointed bordered Heegaard diagram H = (6, α, β,Z) for this handlebody
decomposition, along with a preferred generator. We outline the construction below;
see [1, Section 3].

Let gi be the genus of Si and let ni be the number of boundary components of Si .
Recall that the boundary of the cornered surface Si is B ∪ Ai , where B is a union
of circles and arcs, and Ai is a union of intervals only.

We let 6 = S0 ∪B −S0. In order to distinguish the two copies, we will write

6 = Sϵ ∪B −S0,

but we emphasize that Sϵ can be identified with S0. The surface 6 has genus
2g0 + n0 − 1 and |A0| boundary components.

For i ∈ H−, consider the S2k copies of the sorting arcs γ −

i , and let β−

i equal
−h(γ −

i ) on −S0. For i ∈ H+, consider the Sϵ copies of the sorting arcs γ +

i . The
endpoints of γ +

i lie near the E+ end of intervals of Aϵ . Isotope the arcs {γ +

i }

(simultaneously, to preserve disjointness) near the endpoints along −∂6 until they
all lie in I+ ⊂ A0; the isotopy stops after crossing E+ and before encountering
∪ j∈H−

− h(γ −

j ) ⊂ −S0. Call the resulting arcs β+

i . Define a set of arcs βa
=

{βa
1 , . . . , βa

2k} by

βa
i =

{
β+

i if i ∈ H+,

β−

i if i ∈ H−.

As in [1], we use the notation βa
i or β±

i if i ∈ H± interchangeably.
Let b = {b1, . . . , b2g0+n0+|A0|−k−2} be a set of cutting arcs for Pϵ ⊂ Sϵ disjoint

from βa and with endpoints on B, so that each connected component of Sϵ \(b∪βa)

is a disk with exactly one interval of Aϵ on its boundary. (In [1], we show this
can always be achieved.) In other words, b is a basis for H1(Pϵ, B). Recalling
the identification Sϵ = S0, we may push bi ⊂ S0 through M to lie on S0 again and
define

βi = bi ∪ −h ◦ ι(bi ) ⊂ Sϵ ∪B −S0,

where ι is the identification of P0 with P2k from Section 3D. Write

βc
= {β1, . . . , β2g0+n0+|A0|−k−2}.

For each cutting arc bi ∈ b on Sϵ , let ai be an isotopic curve formed by pushing the
endpoints negatively along the boundary so that ai and bi intersect once transversely.
Similarly, for each arc b+

i := Sϵ ∩ β+

j , let ã j be an isotopic curve formed by pushing
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the endpoints negatively along the boundary so that ã j and b+

i (and equivalently ã j

and β+

j ) intersect once transversely. We “double” each of these arcs to form the
α-circles which define the handlebody S0 × [0, ϵ]. Namely, define

αi = ai ∪ −ai ⊂ Sϵ ∪B −S0, α̃ j = ã j ∪ −ã j ⊂ Sϵ ∪B −S0,

and write αc
= {̃αi }i∈H+

∪ {α1, . . . , α2g0+n0+|A0|−k−2}. Place a basepoint on each
interval of Aϵ ⊂ Sϵ ⊂ 6. Write

z = {z1, . . . , z|Aϵ |}

for the set of basepoints.
We say that a multipointed bordered Heegaard diagram H = (6, α, β,Z) con-

structed as above is adapted to the sorted abstract foliated open book ({Si }, h, {γ ±

i })

and to the corresponding foliated contact three-manifold (M, ξ,F).
Let H be a multipointed bordered Heegaard diagram adapted to ({Si }, h, {γ ±

i }).
In [1], we show that any such diagram is admissible. (In fact, in [1], neighborhoods
of basepoints are drilled out to obtain a bordered sutured diagram for a certain
bordered sutured manifold naturally associated to (M, ξ,F), but we suppress this
discussion here.) Using the notation introduced above, define

x = {x1, . . . , x2g0+n0+|A0|−k−2} ∪ {x+

i | i ∈ H+}

to be the set of unique intersection points

xi = ai ∩ bi ∈ Sϵ ⊂ 6,

x+

i = ãi ∩ b+

i ∈ Sϵ if i ∈ H+.

We will use x to define two contact invariants in multipointed bordered Floer
homology.

By [1, Proposition 3.4] and [22, Section 3.4], the diagram H = (6, β, α,Z)

obtained by exchanging the roles of the two sets of curves and formally replacing
the arc diagram Z of β-type (which is to say, parametrized by arcs which are part of
the second set of curves) with the identical arc diagram Z of α-type (parametrized
by arcs which are part of the first set of curves) is a multipointed bordered diagram
for (−M,Z). Write Z = (Z , a, m). We have the following proposition.

Proposition 5.1 [1, Proposition 3.5]. The above x gives a well-defined generator

xD := x ∈ C̃FD(H)

with ID(x) = I (H−) and δ1(xD) = 0, and a well-defined generator

xA := x ∈ C̃FA(H)

with IA(xA) = I (H+) and mi+1(xA, a(ρ1), . . . , a(ρi )) = 0 for all i ≥ 0 and all sets
of Reeb chords ρ j in (Z , a).



26 AKRAM ALISHAHI, JOAN E. LICATA, INA PETKOVA AND VERA VÉRTESI

Sϵ −S0

∪Bx1

y1

x2

y2

Figure 15. The Heegaard diagram for the sorted foliated open
book ({S0, S1, S2}, h+) from Figure 6. The monodromy h+ is a
positive Dehn twist, so the images β−

2 =−h+(γ −

2 ) and −h+
◦ι(b1)

are the dark and medium-dark blue curves on −S0, respectively.
Intersection points are labeled differently from the above definition,
for convenience. The contact generator x is the pair {x1, y1}, or
x1 y1 for short.

Example 5.2. We illustrate the construction outlined above using the (sorted)
foliated open book in Figure 6. Recall that the three pages depicted in Figure 6 in
fact can be used to construct different foliated open books, depending on the choice
of monodromy τ n, for n ∈ Z, where τ is a positive Dehn twist along the core of the
annular page S2.

First, consider the foliated open book with pages depicted in Figure 6 and
monodromy τ (this was denoted by h+ in Figure 6). Figure 15 shows the associated
Heegaard diagram H+. We label the intersection points in the Heegaard diagram H+

by x1, x2, y1, and y2 as in Figure 15. The diagram has two generators, x1 y1 and
x2 y2, where x1 y1 is the special generator x defined above. Let ρ1 and ρ2 be the
algebra elements in A(∂H+) corresponding to the Reeb chords on the inside and
outside boundary components of the Heegaard diagram, respectively, as seen on
Figure 6. The type D structure C̃FD(H+) is generated by x1 y1 and x2 y2, and has
structure maps

δ1(x1 y1) = 0,

δ1(x2 y2) = (ρ1 + ρ2) ⊗ x1 y1.

The contact class cD(B3, ξ,F) is the homotopy equivalence class of x1 y1.
Next, consider the foliated open book with pages depicted in Figure 6 and mon-

odromy τ−1 (which was denoted h− in Figure 6). Figure 16 shows the associated
Heegaard diagram H−. We label the intersection points in H− by x ′

1, x ′

2, x ′

3, x ′

4, y′

1,
y′

2, y′

3, and y′

4 as in Figure 16. Let ρ1, ρ2 ∈ A(∂H−) be as in the previous example.
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Sϵ

∪B

−S0

x ′

1

y′

1

x ′

2

x ′

3 x ′

4

y′

2

y′

3
y′

4

Figure 16. The Heegaard diagram for the sorted foliated open
book ({S0, S1, S2}, h−) from Figure 6. The monodromy h− is a
negative Dehn twist, so the images β−

2 =−h−(γ −

2 ) and −h−
◦ι(b1)

are the dark and medium-dark blue curves on −S0, respectively.
The contact generator x is x ′

1 y′

1.

The type D structure C̃FD(H−) is generated by x ′

1 y′

1, x ′

1 y′

2, x ′

1 y′

4, x ′

2 y′

1, x ′

2 y′

2, x ′

2 y′

4,
x ′

3 y′

3, x ′

4 y′

1, x ′

4 y′

2, and x ′

4 y′

4, and has structure maps

δ1(x ′

1 y′

1) = 0,

δ1(x ′

1 y′

2) = ρ1 ⊗ x ′

1 y′

1,

δ1(x ′

1 y′

4) = ρ2 ⊗ x ′

1 y′

1,

δ1(x ′

2 y′

1) = I ⊗ x ′

1 y′

1,

δ1(x ′

2 y′

2) = ρ1 ⊗ x ′

2 y′

1 + I ⊗ x ′

1 y′

2,

δ1(x ′

2 y′

4) = I ⊗ x ′

1 y′

4 + ρ2 ⊗ x ′

2 y′

1,

δ1(x ′

3 y′

3) = 0,

δ1(x ′

4 y′

1) = I ⊗ x ′

1 y′

1,

δ1(x ′

4 y′

2) = I ⊗ x ′

1 y′

2 + I ⊗ x ′

3 y′

3,

δ1(x ′

4 y′

4) = I ⊗ x ′

1 y′

4 + ρ2 ⊗ x ′

4 y′

1.

In particular, δ1(x ′

2 y′

1) = I ⊗ x ′

1 y′

1 implies that there is a type D homotopy equiva-
lence from C̃FD(H−) to an equivalent structure, carrying x ′

1 y′

1 to zero.

6. Vanishing of the contact class for overtwisted structures: a local argument

In this section, we illustrate the power of invariants compatible with cut-and-paste
constructions by providing a local argument that the contact class c(ξ) for closed
contact manifolds vanishes if the contact structure is overtwisted.
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Figure 17. The first page (to the left) and the mirror of the last
page (to the right) of the sorted foliated open book in Figure 13.

We begin by showing that the bordered contact invariant vanishes for a neigh-
borhood of an overtwisted disk. Specifically, we consider the foliated open book
constructed in [13] for a three-ball neighborhood (B3, ξOT,FOT). In Example 3.8,
we stabilized the foliated open book from [13] to a sorted one. We now construct
the Heegaard diagram H associated to the resulting sorted foliated open book from
Figure 13. For convenience, in Figure 17 we display again the pages S0 and −S4,
along with the sorting arcs decorations.

Figure 18 shows the associated Heegaard diagram H.
The generator x1 y1w1 ∈ C̃FD(H) represents the contact class. We claim that

there is a unique holomorphic curve that avoids the basepoints and is asymptotic to
x1 y1w4 at −∞, and this curve ends at x1 y1w1.

Indeed, x1 and y1 cannot be starting moving coordinates for a holomorphic
curve; the only nonbasepointed regions at these intersection points are the thin
strips supported on the Sϵ part of the diagram, but the orientation on these strips is
into x1 and y1. So any holomorphic curve starting from x1 y1w4 must only have w4

as a moving coordinate. A curve that hits the boundary of the Heegaard diagram
would need to have a moving coordinate on a β-arc. Since w4 is on a β-circle,
all holomorphic curves starting from x1 y1w4 project to the interior of the diagram.
Thus, any such curve with a single moving coordinate projects to an immersed
bigon. By counting local coefficients, the yellow bigon from x1 y1w4 to x1 y1w1 in
Figure 18 represents the unique such curve.

x1 y1

w1

w4

w3 w2

x2x3

x4
y2

y3

x5

x6x7

Figure 18. The Heegaard diagram for the sorted foliated open
book in Figure 13. The monodromy h is the identity, so the
images β−

i = −h(γ −

i ) are simply the sorting arcs γ −

i on −S0.
Intersection points are labeled differently from the above definition,
for convenience. The contact generator x is the triple {x1, y1, w1},
or x1 y1w1 for short.
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Thus, considering C̃FD(H), we have δ1(x1 y1w4)= I ⊗x1 y1w1. Or, if one prefers
to consider C̃FA(H), we have m1(x1 y1w4) = x1 y1w1, whereas higher products mi

vanish on x1 y1w4. It follows that there is a type D (resp. type A) homotopy
equivalence from C̃FD(H) (resp. C̃FA(H)) to an equivalent structure, carrying
x1 y1w1 to zero.

Recall from the introduction that we claimed the Ozsváth–Szabó vanishing result
for overtwisted contact manifolds can be recovered from gluing properties of the
bordered contact invariant. In fact, the necessary technical results have already been
established, and we conclude by assembling them into the promised proof.

Proof of Corollary 1.4. Suppose (M, ξ) is a closed overtwisted three-manifold. As
discussed in Section 3C, (M, ξ) contains an overtwisted disk whose neighborhood
is contactomorphic to the contact three-ball (B3, ξOT,FOT) studied in Example 3.8.
Thus, (M, ξ) decomposes as the union of two foliated contact three-manifolds, one
of which is (B3, ξOT,FOT).The computation, above, together with Theorem 1.3
and functoriality for ⊠, implies that c(ξ) = 0. □
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[8] K. Honda, W. H. Kazez, and G. Matić, “On the contact class in Heegaard Floer homology”, J.
Differential Geom. 83:2 (2009), 289–311. MR Zbl

[9] T. Ito and K. Kawamuro, “Open book foliation”, Geom. Topol. 18:3 (2014), 1581–1634. MR
Zbl

http://dx.doi.org/10.48550/ARXIV.2011.08672
http://dx.doi.org/10.48550/ARXIV.2011.08672
http://msp.org/idx/arx/2011.08672
http://dx.doi.org/10.2140/gt.2005.9.1677
http://msp.org/idx/mr/2175155
http://msp.org/idx/zbl/1091.57018
http://dx.doi.org/10.1353/ajm.0.0016
http://msp.org/idx/mr/2450204
http://msp.org/idx/zbl/1149.57019
http://dx.doi.org/10.1007/BF02566670
http://msp.org/idx/mr/1129802
http://msp.org/idx/zbl/0766.53028
http://msp.org/idx/mr/1957051
http://msp.org/idx/zbl/1015.53049
http://msp.org/idx/arx/0807.2431
http://dx.doi.org/10.1007/s00222-008-0173-3
http://msp.org/idx/mr/2501299
http://msp.org/idx/zbl/1171.57031
http://projecteuclid.org/euclid.jdg/1261495333
http://msp.org/idx/mr/2577470
http://msp.org/idx/zbl/1186.53098
http://dx.doi.org/10.2140/gt.2014.18.1581
http://msp.org/idx/mr/3228459
http://msp.org/idx/zbl/1303.57012


30 AKRAM ALISHAHI, JOAN E. LICATA, INA PETKOVA AND VERA VÉRTESI

[10] A. Juhász, “Holomorphic discs and sutured manifolds”, Algebr. Geom. Topol. 6 (2006), 1429–
1457. MR Zbl

[11] P. B. Kronheimer and T. S. Mrowka, “Witten’s conjecture and property P”, Geom. Topol. 8
(2004), 295–310. MR Zbl

[12] J. E. Licata and V. Vértesi, “Foliated open books”, preprint, 2020.

[13] J. E. Licata and V. Vértesi, “A User’s Guide to Morse Foliated Open Books”, preprint, 2021.
arXiv 2104.06705

[14] R. Lipshitz, P. S. Ozsvath, and D. P. Thurston, Bordered Heegaard Floer homology, vol. 254,
2018. MR Zbl

[15] P. Massot, “Topological methods in 3-dimensional contact geometry”, pp. 27–83 in Contact and
symplectic topology, Bolyai Soc. Math. Stud. 26, János Bolyai Math. Soc., Budapest, 2014. MR
Zbl

[16] Y. Ni, “Knot Floer homology detects fibred knots”, Invent. Math. 170:3 (2007), 577–608. MR
Zbl

[17] P. Ozsváth and Z. Szabó, “Holomorphic disks and genus bounds”, Geom. Topol. 8 (2004),
311–334. MR

[18] P. Ozsváth and Z. Szabó, “Heegaard Floer homology and contact structures”, Duke Math. J.
129:1 (2005), 39–61. MR

[19] P. Ozsváth and Z. Szabó, “Holomorphic disks, link invariants and the multi-variable Alexander
polynomial”, Algebr. Geom. Topol. 8:2 (2008), 615–692. MR

[20] W. P. Thurston and H. E. Winkelnkemper, “On the existence of contact forms”, Proc. Amer.
Math. Soc. 52 (1975), 345–347. MR Zbl

[21] R. Zarev, “Bordered Floer homology for sutured manifolds”, preprint, 2009. arXiv 0908.1106

[22] R. Zarev, “Joining and gluing sutured Floer homology”, preprint, 2010. arXiv 1010.3496

Received 1 Mar 2021. Revised 22 Dec 2021.

AKRAM ALISHAHI: akram.alishahi@uga.edu
Department of Mathematics, University of Georgia, Boyd Graduate Studies Research Center,
Athens, GA, United States

JOAN E. LICATA: joan.licata@anu.edu.au
Australian National University, Ainslie ACT, Australia

and

Mathematical Sciences Institute, The Australian National University, Canberra, Australia

INA PETKOVA: ina.petkova@dartmouth.edu
Department of Mathematics, Dartmouth College, Hanover, NH, United States

VERA VÉRTESI: vera.vertesi@univie.ac.at
University of Vienna, Vienna, Austria

msp

http://dx.doi.org/10.2140/agt.2006.6.1429
http://msp.org/idx/mr/2253454
http://msp.org/idx/zbl/1129.57039
http://dx.doi.org/10.2140/gt.2004.8.295
http://msp.org/idx/mr/2023280
http://msp.org/idx/zbl/1072.57005
http://dx.doi.org/10.48550/ARXIV.2002.01752
http://dx.doi.org/10.48550/ARXIV.2104.06705
http://msp.org/idx/arx/2104.06705
http://dx.doi.org/10.1090/memo/1216
http://msp.org/idx/mr/3827056
http://msp.org/idx/zbl/1422.57080
https://doi.org/10.1007/978-3-319-02036-5_2
http://msp.org/idx/mr/3220940
http://msp.org/idx/zbl/1325.53002
http://dx.doi.org/10.1007/s00222-007-0075-9
http://msp.org/idx/mr/2357503
http://msp.org/idx/zbl/1138.57031
http://dx.doi.org/10.2140/gt.2004.8.311
http://msp.org/idx/mr/2023281
http://dx.doi.org/10.1215/S0012-7094-04-12912-4
http://msp.org/idx/mr/2153455
http://dx.doi.org/10.2140/agt.2008.8.615
http://dx.doi.org/10.2140/agt.2008.8.615
http://msp.org/idx/mr/2443092
http://dx.doi.org/10.2307/2040160
http://msp.org/idx/mr/375366
http://msp.org/idx/zbl/0312.53028
http://dx.doi.org/10.48550/ARXIV.0908.1106
http://msp.org/idx/arx/0908.1106
http://dx.doi.org/10.48550/ARXIV.1010.3496
http://msp.org/idx/arx/1010.3496
mailto:akram.alishahi@uga.edu
mailto:joan.licata@anu.edu.au
mailto:ina.petkova@dartmouth.edu
mailto:vera.vertesi@univie.ac.at
http://msp.org


Volume Editors:

John A. Baldwin
Boston College

Boston, MA
United States

John B. Etnyre
Georgia Institute of Technology

Atlanta, GA
United States

Hans U. Boden
McMaster University

Hamilton, ON
Canada

Liam Watson
University of British Columbia

Vancouver, BC
Canada

The cover image is based on an illustration from the article “Khovanov homol-
ogy and strong inversions”, by Artem Kotelskiy, Liam Watson and Claudius
Zibrowius (see p. 232).

The contents of this work are copyrighted by MSP or the respective authors.
All rights reserved.

Electronic copies can be obtained free of charge from http://msp.org/obs/5 and
printed copies can be ordered from MSP (contact@msp.org).

The Open Book Series is a trademark of Mathematical Sciences Publishers.

ISSN: 2329-9061 (print), 2329-907X (electronic)

ISBN: 978-1-935107-11-8 (print), 978-1-935107-10-1 (electronic)

First published 2022.

msp

MATHEMATICAL SCIENCES PUBLISHERS

798 Evans Hall #3840, c/o University of California, Berkeley CA 94720-3840

contact@msp.org https: //msp.org

http://msp.org/obs/5
mailto:contact@msp.org
mailto:contact@msp.org
http://msp.org


THE OPEN BOOK SERIES 5

Gauge Theory and Low-Dimensional Topology:
Progress and Interaction

This volume is a proceedings of the 2020 BIRS workshop Interactions of gauge theory with
contact and symplectic topology in dimensions 3 and 4. This was the 6th iteration of a
recurring workshop held in Banff. Regrettably, the workshop was not held onsite but was
instead an online (Zoom) gathering as a result of the Covid-19 pandemic. However, one
benefit of the online format was that the participant list could be expanded beyond the usual
strict limit of 42 individuals. It seemed to be also fitting, given the altered circumstances
and larger than usual list of participants, to take the opportunity to put together a conference
proceedings.

The result is this volume, which features papers showcasing research from participants at the
6th (or earlier) Interactions workshops. As the title suggests, the emphasis is on research
in gauge theory, contact and symplectic topology, and in low-dimensional topology. The
volume contains 16 refereed papers, and it is representative of the many excellent talks and
fascinating results presented at the Interactions workshops over the years since its inception
in 2007.

TABLE OF CONTENTS

ixPreface — John A. Baldwin, Hans U. Boden, John B. Etnyre and Liam Watson

1A friendly introduction to the bordered contact invariant — Akram Alishahi, Joan
E. Licata, Ina Petkova and Vera Vértesi

31Branched covering simply connected 4-manifolds — David Auckly, R. İnanç
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