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We prove that any closed simply connected smooth 4-manifold is 16-fold branched
covered by a product of an orientable surface with the 2-torus, where the con-
struction is natural with respect to spin structures. In particular this solves
Problem 4.113(C) in Kirby’s list. We also discuss analogous results for other
families of 4-manifolds with infinite fundamental groups.

1. Introduction

The work in this note was prompted by the following natural question:

Does every closed 4-manifold admit a branched covering by a symplectic
4-manifold?

Problem 4.113(C) in Kirby’s list [15] is the instance of this question for simply
connected, irreducible manifolds. This question was studied by the authors at the
2018 American Institute of Mathematics Workshop on “Symplectic four-manifolds
through branched coverings”, motivated by a conjecture of Eliashberg [9, Conjec-
ture 6.2]. We provide the following fairly strong answer to the above question in
the case of simply connected 4-manifolds.

Theorem 1. Let X be a closed oriented simply connected smooth 4-manifold. Then
there exist g € N and a degree 16 branched covering f : X' — X such that X' is the
smooth 4-manifold T? x % ¢ In addition, if the 4-manifold X is spin, the branched
covering f is natural with respect to a spin structure on T? x % g

Note that the smooth 4-manifold 72 x ¢ admits a symplectic structure. It follows
from Theorem 1 that if instead X is a closed (possibly nonorientable) connected
smooth 4-manifold with finite 771 (X), then there is a branched covering T?x% e— X
of degree 16| (X)|, which factors through the universal covering X — X.
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The above do not generalize to 4-manifolds with arbitrary fundamental groups;
for instance, no X¢-bundle over X, with g, & > 2 and infinite monodromy group
(e.g., any surface bundle with nonzero signature) can be dominated by a product
4-manifold by [16, Theorem 1.4]. Nonetheless, there are comparable results for
many other 4-manifolds with infinite fundamental groups. For example, X =
#g(S1 x §3), with 71 (X) Z % Z8, is degree 4 branched covered by X’ = §2 x X, by
[25, Theorem 1.2]. In addition, the branched virtual fibering theorem of Sakuma
[29, Addendum 1] implies the following:

Proposition 2. Let X = S! x Y be a smooth 4-manifold which is the product of
S' and a closed connected oriented 3-manifold Y. Then there exist g € N and a
double branched covering X' — X, where X' is a symplectic 4-manifold which is a
X,-bundle over T2

Indeed, [29] shows that any closed oriented 3-manifold Y is double branched
covered by a surface bundle over a circle (see also [21] for a different proof), from
which Proposition 2 is immediately deduced; this provides yet another class of 4-
manifolds with infinite fundamental group for which a (symplectic) branched cover
can be readily described. Here, we recall that the product of a fibered 3-manifold
and the circle is symplectic [30].

It is worth noting that with a little more information on the smooth topology
of X, one can easily determine the topology of the branched coverings X’ — X
in Theorem 1 and Proposition 2. For the former, one only needs to know the
number of stabilizations by taking the connected sum with S? x S? that are required
before the simply connected 4-manifold X completely decomposes into a connected
sum of copies of CP2, §? x S? and the K3 surface, taken with either orientation.
This of course can always be achieved by a classical result of Wall [31], and
for vast families of simply connected 4-manifolds, one stabilization is known to
be enough [2]. Similarly, for Proposition 2, one just needs to know a Heegaard
decomposition of the 3-manifold factor Y [29], or any open book on it [21]. See
Remark 6 for some explicit examples.

In all the results we have discussed above, the covering symplectic 4-manifold
X' is not of general type, in contrast with the symplectic domination results of Fine
and Panov [10]; see Remark 7 below. It would be interesting to find more general
families of nonsymplectic 4-manifolds branched covered (with universally fixed
degree) by specific families of symplectic 4-manifolds like ours, say by X,-bundles
over X, for arbitrary h.

2. Proof of Theorem 1

Henceforth all the manifolds and maps we consider are assumed to be smooth.
We denote by X the oriented 4-manifold X with the reversed orientation, and
by #,X #, Y the smooth connected sum of a copies of X and b copies of Y. We
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denote by Eg’ a closed connected oriented surface of genus g with b boundary
components, and we drop b from the notation when there is no boundary.

2.1. Preliminaries. Let us briefly recall the definition of a branched covering.

Definition 3. Let X and X’ be compact connected smooth manifolds (possibly
with boundary) of the same dimension, and let f : X" — X be a smooth proper
surjective map. We say that f is a branched covering if it is finite-to-one and open,
and moreover the (open) subset of X" where f is locally injective coincides with
the subset of X’ where f is a local diffeomorphism. O

The subset B} C X’ where f fails to be locally injective is called the branch set
of f, and its image By = f(B}) C X is called the branch locus of f. By aresult
of Church [7, Corollary 2.3], either B}. = & or dim B}. =dim By = dim X — 2,
and then the restriction of f over the complement of By is an ordinary connected
covering space X'\ f~1(By) — X\ By.

Moreover, for every smooth point of B’f at which f| B B} — X is a local
smooth embedding, the map f is topologically locally equivalent to the map
pa:CxR"2 - C x R"? defined by pa(z, x) = (z¢, x), for some d > 2, where
n = dim X’ = dim X. However, the branched coverings f; that we consider below
turn out to be smoothly locally equivalent to p,, while their composition, which will
be indicated by f, has this property away from the singular points of B}. Notice
that every finite composition of branched coverings is a branched covering, and the
restriction to the boundary of a branched covering is a branched covering as well.
Throughout, we assume that branched coverings between oriented manifolds are
orientation-preserving.

2.2. The argument. Let X be a closed oriented simply connected smooth 4-
manifold. We will describe the branched covering in the statement of Theorem 1,
that is f : T? x ¥, — X, as a composition of four simpler double branched
coverings f1, f2, f3, fa. While all the latter will be branched over embedded
orientable surfaces, the branch locus of the composition will typically be singular.

For clarity of exposition, we will not explicitly keep track of how the topology is
growing at each step, but instead, we will illustrate with some examples in Remark 6
how one can deduce this information.

Step 1: By Wall [31], the connected sum of X with a certain number m of copies of
$? x §? is diffeomorphic to a connected sum of copies of the standard 4-manifolds
CP?, §? x §? and the K3 surface, taken with either orientation. Note that when X
is spin, the decomposition has only spin connected summands, and also that the
resulting 4-manifold does satisfy 11/8 when m is large enough.

Moreover, since we have K3 # K3 = #5,(5% x $2) and CP? # (§% x §%) &
#,CP? #CP? [12, page 344], the complete decomposition as above can be written
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as #,K3#, (S% x §?) or #,K3#, (52 x S?) when X is spin (depending on the sign of
the signature o (X)), and as #,CP?#, CP? when X is nonspin, for some nonnegative
integers a and b which are not both zero. In the spin case, we can guarantee that
b > 2a by taking sufficiently many stabilizations.

The conjugation map (z1, z2) — (21, Z2), which is an antiholomorphic involution
on CP! x CP! = §2 x §2 induces a double branched covering S% x $2 — $% where
the branch locus is the unknotted 72 C S* (bounding a handlebody). Taking the
equivariant connected sum of m copies of it, we get an involution on #,, (S 2% 5%,
which induces a double covering #,, (S 2% 5?%) — S* branched along an unknotted %,,,
for every m > 1.

We can now take a double covering of X branched along an unknotted %,, in X
(viewing X = X #S5% take an unknotted ¥, in S*), which we denote by fi1: X1 — X,
where clearly X| = X # X #,, (57 x §%). We choose m > 1 such that X #,, (S? x §?)
completely decomposes, and so does X (as one gets at least m copies of §2 x S2
after decomposing X #,, (5% x §2)). Then X is diffeomorphic to one of the standard
connected sums we listed above.

Step 2: We would like to obtain a double branched covering of X; by some
#g(S2 x §2). We will describe this covering in essentially two different ways,
depending on whether X (and thus X) is spin or not.

The K3 surface can be obtained as a holomorphic double covering of S? x §2
branched along a curve of bidegree (4, 4) in CP! x CP! = §2 x 52 [12, page 262].
Reversing the orientations, we see that K3 is also a double branched covering of
S? x 8 (recall that S? x S? admits an orientation-reversing diffeomorphism). By
taking equivariant connected sums, we can then express both #,K3 and #,K3 as
branched double coverings of #,(S% x S?). Taking n = 2a, we then conclude that
#,K3 #, (5% x §2) admits a double branched covering by #;,K3 #,, K3 #2(b—2a)
(5% x §2). Since K3#K3 X #5,(5% x §2), we have obtained the desired double
branched cover #, (82 x S§?), for g = 40a + 2b. Mirroring the same argument, we
see that #, K3 #, (5% x S2) is also double branched covered by some #,(S 2% §%).
This concludes the construction in the spin case.

The following variation can be run for both spin and nonspin manifolds. Switch-
ing the two factors (z1, z2) — (22, z1), Which is a holomorphic involution on
CP! x CP! = §2 x S2 induces a double branched covering S2 x §2 — CP?, where
the branch locus is the quadric (this may be interpreted as the map taking a pair of
numbers to the quadratic equation having those roots). Reversing the orientations,
we obtain a double branched covering over CP2. Taking equivariant connected
sums once again, we then deduce that #,(S% x SH)#;, (52 x S?) is a double branched
covering of #,CIP2#, CP2. So in the nonspin case, we arrive at the desired double
covering #, (5% x §2) as well.

We let f>: X,—X denote the double branched covering we described in either case.
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Step 3: We next show that S Ix #q(S I x §?) is a double branched covering of
#y (8% x §?), which will prescribe our next covering f3: X3 — X;. A similar
double branched covering over #, (CP? # CP?) was described by Neofytidis in [23,
Theorem 1]. (Also see [24] for similar constructions in other dimensions.)

The hyperelliptic involution on T2 induces a double branched covering p :
T? — S? with four simple branch points x1, x2, x3, x4 € S% Taking its product with
the identity map on S? yields a double branched covering p xidg2 : T2 x §Z — §2 x §2
with branch locus {x1, x», x3, x4} X S2. Note that if g =1, we can stop here and
skip Step 4.

Let D C S? be a 2-disk containing exactly two branch points of p. So A =
p~ (D) C T? is an equivariant annulus that contains two fixed points of the hyper-
elliptic involution. Moreover, D can be chosen such that A is a union of fibers of
the trivial S'-bundle 72 = §' x S! — S! given by the canonical projection onto
the second factor.

Let S = S% x {y} € S% x S be a fiber sphere, for a certain y € S Let D’ C §?
be a disk centered at y. Then, U = D x D' C S2 x S? is a fibered bidisk, whose
preimage V = (p x idg)~'(U) = A x D' is a fibered neighborhood of a fiber of
the trivial S'-bundle

T?x $? = 8" x (8! x §%) — §' x §%.
By taking two copies of the branched covering 72 x S — S? x S2 and performing
an equivariant fiber sum upstairs along V and connected sum downstairs along
U = D* and repeating the construction for every g > 2, we finally get a branched
double covering S! x #,(S! x §2) — #,(5% x §?).

We can also describe this branched covering as follows: start with a double
covering ¢ : S' x D! — D? branched over two points in Int D? (this is the above
branched covering A — D), so the product ¢ x idp1 : S! x D! x D! — D? x D!
yields a double covering g’ : S! x D> — D3 branched over the union of two parallel
proper trivial arcs in D? (this fills the above branched covering p : T> — S2), up
to the identifications S' x D! x D! = §! x D? and D? x D! = D3, Then, we
get a double branched covering ¢” = ¢’ x idg : S! x D? x §2 — D? x S Let
D C §? be a 2-disk. Up to the identification D?> x D! x §2 = D3 x S? we consider
the bidisks C~ = D? x {—1} x D and C* = D? x {1} x D C 3(D? x §?), each of
which intersects the branch locus of ¢” along the union of two parallel proper trivial
2-disks. Consider g copies of ¢”, say ¢/ : (S' x D? x §?); — (D?® x §?);, and let
C;. Cl.+ C 3(D? x §?); be the corresponding bidisks. Thus, we obtain a double
branched covering

q" =q{U---Uqy :Ui(S' x D* x §%); > Ui(D* x §%);,

where (D3 x §?); is attached to (D3 x Sz)i+1 by identifying C;r with Ci_+1 and
(S x D* x §?); is attached to (S' x D? x §2);41 by identifying (¢/)~'(C;") with
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(qi”+l)_1 (C,,) in the obvious way, forall i =1, ..., g — 1. This in turn is a double

branched covering
q" 8" x #,(D* x §?) — #,(D? x §?),

as it can be easily realized by looking at the attaching maps, where ff denotes the
boundary connected sum. Finally, the desired branched covering S x #,(S I'x$§?) —
#,(S% x §?) can be obtained by restricting ¢”” to the boundary.

Step 4: Our final double branched covering f4 : T? x Yo —> St x #g(S1 x §?)is a
special case of Proposition 2 and can be obtained by taking the product of the identity
map on the S! factor with a double branched covering S! x £, — #,(S! x §?). The
latter can be derived from the work of Sakuma [29] we mentioned in the introduction,
or from Montesinos’ alternative construction [21], which is quicker to describe
here: the involution (z,¢) — (Z, —¢) on the annulus A = S! x[-1,1]Cc C xR
induces a double covering g : A — D? branched at two points (this is same as the
double branched cover described in Step 3), so we get a double branched covering
g xidgi : A x S' — D? x S'. Then, for any open book decomposition of a closed
connected oriented 3-manifold ¥ with pages X" and monodromy ¢, we can get
a double covering i : Y — Y branched over two parallel copies of the binding,
where Y’ is now a surface bundle whose fiber and the monodromy are the doubles
of =/ and ¢. Indeed, by lifting the usual splitting ¥ = (D? x 9Z") Uy T (¢)
that gives the open book decomposition of Y, with the branch link contained in
D? x 0%;", and where T (¢) denotes the mapping torus of ¢, one obtains a splitting
Y'= (A x3%") Uy (T(p)1 UT(¢)2), with the annulus A instead of D?, where
T (¢)1 and T (¢) are two disjoint copies of T (¢) (the branched covering h: Y — Y
is trivial over T (¢)). By looking at the attaching maps, it is immediate to get the
bundle structure on Y’ as above.

In our case, since #, (S ! §?) admits a planar open book with pages Eg 1 and
¢ = 1id, we obtain the desired covering. (The covering produced by the arguments
of both Sakuma and Montesinos in this simple setting is equivalent to the one given
in [17, Proposition 4].)

The composition f = fio fro fzo f4: T? x X, — X gives the desired covering.

The spin case: Let us conclude by observing that our construction is natural with
respect to the spin structures, when X is spin, and then briefly discuss the topology
of the branch locus of f.

Recall that a spin structure on a 4-manifold is the same as a trivialization of the
tangent bundle over the 1-skeleton that extends over the 2-skeleton [20; 14]. We
may use a handlebody decomposition in this definition. Given an unramified cover
over a spin 4-manifold, the trivialization will lift to the tangent bundle of the cover
restricted to the 1-skeleton and any extension to the 2-skeleton, so there is a natural
lift of a spin structure to a covering space.
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Now consider a 2-fold branched covering with branch locus B. We may build
a handle decomposition of the base in the following way. Start with a handle
decomposition of B. This extends to a handle decomposition of a tubular neigh-
borhood of B with only zero, one and two handles. Now extend this to a handle
decomposition of the rest of the base X. Finally turn the entire handle decomposition
over. Notice that all of the 1-handles of this new handle decomposition are in the
exterior of B. Each of these handles lifts to the cover of the exterior and the
restriction of the spin structure to the exterior lifts to the cover. We now complete
the handle decomposition of the total space of the branched cover as follows. Use
the identification of the inverse image B with B to construct a decomposmon of B
which is then extended to a decomposition of the normal bundle of B. Turn this
upside down and add it the to decomposition of the inverse image of the exterior.
This only adds 2-, 3- and 4-handles to the decomposition. It is not necessarily
true that the trivialization of the tangent bundle over the 1-skeleton will extend
over the 2-skeleton. It will extend precisely when the mod two reduction of the
integral homology class [B]/2 is zero in the second homology of the base with
Z, coefficients [4; 22]. Note that the class of [ B] is necessarily divisible by 2 due
to the existence of the double branched cover. So, a spin structure does not have
to lift to the total space of a 2-fold branched covering, but if it does, there is a
natural lift.

It is now straightforward to check that each double cover f; that we employed
in our construction when X is spin satisfies the above criterion, so for the initial
spin structure 5 on X, there is a spin structure 5’ on X' = T2 x ¥ ¢ constructed this
way. (Note that there are 22*D different spin structures on X”.) Thus the branched
covering X’ — X is compatible with the spin structures s on X and s’ on X".

The branch locus: The branch locus By C X of f is given by
By =By U fi(ByU f2(Bg U f3(By,))),

where By, C X;_; denotes the branch locus of f;, fori =1, 2, 3,4, with Xo = X.
Each By, is a smooth embedded closed orientable surface in X;_;. By taking into
account that each covering f; is two-to-one and its tangent map has a 2-dimensional
kernel along the branch set, an easy transversality argument based on perturbing
the f;’s up to isotopy, shows that the branch locus By C X can be assumed to be a
smooth orientable surface away from at most finitely many singular points, which
are transversal or tangential double points (at the latter the local link has two trivial
components with linking number £2). O

3. Ancillary remarks

Let us list a few comments in relation to Theorem 1, its proof and related works.
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Remark 4 (variations). In Step 1 above we could have stabilized by taking con-
nected sums with copies of CP? and CP? so that we got a double covering
g1: #,CP2 #, CP? — X branched over a genus m nonorientable surface, which is
trivially embedded in X, for certain integers a, b and m (once again by Wall [31]).
The complex conjugation on CP? induces this double covering CP? — S branched
over the standard smooth RP? c $* [18; 19]. Now, we can invoke Theorem 1.2
in [25] to conclude that there exists a 4-fold simple branched covering

g2 Eh X Eg — #a(]:[pz #b (I:_U:Dz

for every given a,b > 0 and & > 1, and for some g large enough. Thus, the
composition g 0 g» : g X Xj, — X is a degree 8 branched covering.

Again by Theorem 1.2 in [25] (see also Remark 2 therein), there exist degree 4
branched coverings T4 = T? x T? - X, with X = #,,CP? #, CP? and X =
#, (S2 X Sz), for every m, n < 3. Note that the case X = S2? x §%is straightforward
by taking the product p x p: T? x T? — §? x 2 and the case X =#,(S? x §?) was
previously obtained by Rickman [28]. Branched coverings from the n-dimensional
torus are relevant in connection with the theory of quasiregularly elliptic manifolds;
see Bonk and Heinonen [3]. In this direction, a result by Prywes [26, Theorem 1.1]
implies that if there is a branched covering T* — X, then by (X) <4 and br(X) <6,
so in Theorem 1 we cannot take g < 1 if br(X) > 7.

However, unlike in our construction above, the results in [25] do not give explicit
branched coverings, and there is not much control on the topology of the branch
locus.

Remark 5 (branched cover geometries). Theorem 1 and our subsequent remark
in the introduction imply that any X with finite 7 (X) is branched covered by
T? x X, where it is easy to see from our proof that we can always assume g > 2. In
terms of 4-dimensional geometries [13], this shows that all such X can be branched
covered by a 4-manifold with E> x H? geometry. However, if we replace the double
branched covering /1 : Y' — #,(S ! x §?) we used in the construction of f; =idg x h
with the one built by Brooks in [5], we can also get Y’ to be a X,-bundle over
S' with hyperbolic total space. Therefore, any X with finite r;(X) can also be
branched covered by a 4-manifold with E x H? geometry. Similarly, one can modify
the construction in Proposition 2 to get a double branched cover of any product
4-manifold S' x Y by a 4-manifold with E x H? geometry.

Remark 6 (topology of the branched coverings). Here we will try to demonstrate
by way of example how one can control the topology of the branched coverings in
Theorem 1. For some variety, we will run our construction for two infinite families
of irreducible 4-manifolds which are not completely decomposable: Dolgachev
surfaces, which are nonspin complex surfaces of general type, and knot surgered K3
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surfaces of Fintushel and Stern, which include spin 4-manifolds that do not admit
any symplectic structures [11]. The members of either one of these two families of
simply connected 4-manifolds completely decompose after a single stabilization
by S% x §?; see, e.g., [1]. Now, if X is a Dolgachev surface, we can take the
branch locus of f; as an unknotted T2 and get X1 = #;CP2 #,9 CP2. The branched
covering f, performed along the connected sum of 22 quadrics (each coming from
distinct copies of CP? and CP?) then gives X = #2, (52 x §?), and the last two
coverings yield X' = T? x X,. If we take X to be a knot surgered K3 surface
instead, thinking ahead of the second step, we take the branch locus of f; this
time as X4, so X| = #, K3 #, (5% x S?). The next double cover /> is taken along a
connected sum of four bidegree (4, 4) curves (each coming from distinct copies of
$2 x S2, with noncomplex orientation), and we get X, =#,K3#4 K3 = #gg (5% x §2).
The last two coverings this time yield X’ = T2 x Xgg.

Remark 7 (symplectic domination). A recent article of Fine and Panov provides a
symplectic domination result [10, Theorem 1] which is worth mentioning here. Their
beautiful construction is very general: for any closed oriented even-dimensional
smooth manifold M, they build a closed symplectic manifold S of the same di-
mension with a positive degree map f : S — M. In dimension 4, where we
can compare their result with ours in Theorem 1, their symplectic manifold S is
constructed as a Donaldson hypersurface in the 6-dimensional symplectic twistor
space Z of a negatively pinched manifold N, where the latter admits a degree one
map g : N — M. The construction of N, with sectional curvature arbitrarily close
to —1, is implicit, and relies on the recent works of Ontaneda involving rather
intricate new techniques in Riemannian geometry. (The condition on the sectional
curvature is to guarantee that the twistor space Z of N is a symplectic 6-manifold.)
Secondly, the construction of a symplectic hypersurface S in N, which is built
through asymptotically holomorphic techniques of [8], is also implicit and the
smooth topology of S is effectively impossible to control. Hence, one does not have
any information on the smooth topology of the dominating symplectic 4-manifold S,
other than that it is of general type, i.e., of Kodaira dimension 2 [10]. Besides the
very implicit nature of this construction, since the map f : S — M factors through the
degree one map g above, Fine and Panov’s domination is essentially never a branched
covering. Moreover, because the symplectic twistor space Z is in fact known to
be non-Kihler [27], the dominating symplectic 4-manifold S has a priori no reason
to be a Kihler surface. On the other hand, the dominating symplectic 4-manifold
X'=T>xX ¢ of Theorem 1 is obviously a Kihler surface, and X’ in both Theorem 1
and Proposition 2 is of Kodaira dimension —oo, 0 or 1, depending on whether this
(possibly trivial) X.-bundle over T2 has fiber genus g = 0, 1 or > 2, respectively.

Domination is certainly distinct from branched covering as the following example
shows. There is a degree one map from ¥4 x ¥, to X3 x X, given by the extension
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of the natural collapse of a copy of Ell X 27 to Eé X 2. However there can be no
branched covering from ¥4 X 3, to X3 X X, since the Gromov norm of the former
is 24(4 —1)(2 — 1) = 72, the Gromov norm of the latter is 24(3 —1)(2 —1) =48
and the Gromov norm is super multiplicative with respect to degree [6].

Acknowledgments

This project was started at the 2018 AIM workshop on “Symplectic four-manifolds
through branched coverings”, and was resumed following the 2020 BIRS Work-
shop on “Interactions of gauge theory with contact and symplectic topology in
dimensions 3 and 4.” The authors would like to thank the American Institute of
Mathematics and the Banff International Research Station, and the other organizers
of these workshops. Auckly was partially supported by the Simons Foundation
grant 585139 and NSF grant DMS 1952755. Inan¢ Baykur was partially supported
by the NSF grants DMS-200532 and DMS-1510395. Casals is supported by the
NSF grant DMS-1841913, the NSF CAREER grant DMS-1942363 and the Alfred
P. Sloan Foundation. Lidman was partially supported by the NSF grant DMS-
1709702 and a Sloan Fellowship. Zuddas was partially supported by the 2013 ERC
Advanced Research Grant 340258 TADMICAMT; he is member of GNSAGA,
Istituto Nazionale di Alta Matematica “Francesco Severi”, Italy. We would like to
thank the anonymous referee for helpful comments.

References

[1] R. I. Baykur, “Dissolving knot surgered 4-manifolds by classical cobordism arguments”, J. Knot
Theory Ramifications 27:5 (2018), art. id. 1871001. MR Zbl

[2] R.I. Baykur and N. Sunukjian, “Round handles, logarithmic transforms and smooth 4-manifolds”,
J. Topol. 6:1 (2013), 49-63. MR Zbl

[3] M. Bonk and J. Heinonen, “Quasiregular mappings and cohomology”, Acta Math. 186:2 (2001),
219-238. MR Zbl

[4] N. Brand, “Necessary conditions for the existence of branched coverings”, Invent. Math. 54:1
(1979), 1-10. MR

[5] R. Brooks, “On branched coverings of 3-manifolds which fiber over the circle”, J. Reine Angew.
Math. 362 (1985), 87-101. MR Zbl

[6] M. Bucher-Karlsson, “The simplicial volume of closed manifolds covered by H2 x H2, J. Topol.
1:3 (2008), 584-602. MR Zbl

[7] P. T. Church, “Differentiable open maps on manifolds”, Trans. Amer. Math. Soc. 109 (1963),
87-100. MR Zbl

[8] S. K. Donaldson, “Symplectic submanifolds and almost-complex geometry”, J. Differential
Geom. 44:4 (1996), 666-705. MR Zbl

[9] Y. Eliashberg, “Recent advances in symplectic flexibility”, Bull. Amer. Math. Soc. (N.S.) 52:1
(2015), 1-26. MR Zbl

[10] J. Fine and D. Panov, “Symplectic domination”, Bull. Lond. Math. Soc. 53:1 (2021), 100-103.

MR Zbl


http://dx.doi.org/10.1142/S0218216518710013
http://msp.org/idx/mr/3795401
http://msp.org/idx/zbl/1387.57037
http://dx.doi.org/10.1112/jtopol/jts027
http://msp.org/idx/mr/3029421
http://msp.org/idx/zbl/1297.57064
http://dx.doi.org/10.1007/BF02401840
http://msp.org/idx/mr/1846030
http://msp.org/idx/zbl/1088.30011
http://dx.doi.org/10.1007/BF01391172
http://msp.org/idx/mr/549541
http://dx.doi.org/10.1515/crll.1985.362.87
http://msp.org/idx/mr/809968
http://msp.org/idx/zbl/0565.57006
http://dx.doi.org/10.1112/jtopol/jtn012
http://msp.org/idx/mr/2417444
http://msp.org/idx/zbl/1156.53018
http://dx.doi.org/10.2307/1993648
http://msp.org/idx/mr/154296
http://msp.org/idx/zbl/0202.54801
http://projecteuclid.org/euclid.jdg/1214459407
http://msp.org/idx/mr/1438190
http://msp.org/idx/zbl/0883.53032
http://dx.doi.org/10.1090/S0273-0979-2014-01470-3
http://msp.org/idx/mr/3286479
http://msp.org/idx/zbl/1310.53001
http://dx.doi.org/10.1112/blms.12402
http://msp.org/idx/mr/4224514
http://msp.org/idx/zbl/1472.53087

BRANCHED COVERING SIMPLY CONNECTED 4-MANIFOLDS 41

[11] R. Fintushel and R. J. Stern, “Knots, links, and 4-manifolds”, Invent. Math. 134:2 (1998),
363-400. MR Zbl

[12] R.E. Gompf and A. L. Stipsicz, 4-manifolds and Kirby calculus, Graduate Studies in Mathematics
20, Amer. Math. Soc., Providence, RI, 1999. MR Zbl

[13] J. A. Hillman, Four-manifolds, geometries and knots, Geometry & Topology Monographs 5,
Geometry & Topology Publications, Coventry, 2002. MR Zbl

[14] R. C. Kirby, The topology of 4-manifolds, Lecture Notes in Mathematics 1374, Springer, 1989.
MR Zbl

[15] R. Kirby, “Problems in low-dimensional topology”, pp. 35-473 in Geometric topology (Athens,
GA, 1993), edited by R. Kirby, AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc., Providence, RI,
1997. MR Zbl

[16] D. Kotschick and C. Loh, “Fundamental classes not representable by products”, J. Lond. Math.
Soc. (2) 79:3 (2009), 545-561. MR Zbl

[17] D. Kotschick and C. Neofytidis, “On three-manifolds dominated by circle bundles”, Math. Z.
274:1-2 (2013), 21-32. MR Zbl

[18] N. H. Kuiper, “The quotient space of CP(2) by complex conjugation is the 4-sphere”, Math.
Ann. 208 (1974), 175-177. MR Zbl

[19] W. S. Massey, “The quotient space of the complex projective plane under conjugation is a
4-sphere”, Geometriae Dedicata 2 (1973), 371-374. MR Zbl

[20] J. Milnor, “Spin structures on manifolds”, Enseign. Math. (2) 9 (1963), 198-203. MR Zbl

[21] J. M. Montesinos, “On 3-manifolds having surface bundles as branched coverings”, Proc. Amer.
Math. Soc. 101:3 (1987), 555-558. MR Zbl

[22] S. Nagami, “On spin structures of double branched covering spaces”, JP J. Geom. Topol. 14:2
(2013), 119-147. MR Zbl

[23] C. Neofytidis, “Branched coverings of simply connected manifolds”, Topology Appl. 178 (2014),
360-371. MR Zbl

[24] C. Neofytidis, Non-zero degree maps between manifolds and groups presentable by products,
Ph.D. thesis, LMU Miinchen, 2014.

[25] R. Piergallini and D. Zuddas, “Branched coverings of CP? and other basic 4-manifolds”, Bull.
Lond. Math. Soc. 53:3 (2021), 825-842. Zbl

[26] E.Prywes, “A bound on the cohomology of quasiregularly elliptic manifolds”, Ann. of Math. (2)
189:3 (2019), 863-883. MR Zbl

[27] A. G. Reznikov, “Symplectic twistor spaces”, Ann. Global Anal. Geom. 11:2 (1993), 109-118.
MR Zbl

[28] S.Rickman, “Simply connected quasiregularly elliptic 4-manifolds”, Ann. Acad. Sci. Fenn. Math.
31:1 (2006), 97-110. MR Zbl

[29] M. Sakuma, “Surface bundles over S which are 2-fold branched cyclic coverings of $37, Math.
Sem. Notes Kobe Univ. 9:1 (1981), 159-180. MR Zbl

[30] W. P. Thurston, “Some simple examples of symplectic manifolds”, Proc. Amer. Math. Soc. 55:2
(1976), 467-468. MR Zbl

[31] C.T. C. Wall, “On simply-connected 4-manifolds”, J. London Math. Soc. 39 (1964), 141-149.
MR Zbl

Received 26 Jan 2021. Revised 27 Feb 2021.


http://dx.doi.org/10.1007/s002220050268
http://msp.org/idx/mr/1650308
http://msp.org/idx/zbl/0914.57015
http://dx.doi.org/10.1090/gsm/020
http://msp.org/idx/mr/1707327
http://msp.org/idx/zbl/0933.57020
http://msp.org/idx/mr/1943724
http://msp.org/idx/zbl/1087.57015
http://dx.doi.org/10.1007/BFb0089031
http://msp.org/idx/mr/1001966
http://msp.org/idx/zbl/0668.57001
http://msp.org/idx/mr/1470751
http://msp.org/idx/zbl/0892.57013
http://dx.doi.org/10.1112/jlms/jdn089
http://msp.org/idx/mr/2506686
http://msp.org/idx/zbl/1168.53024
http://dx.doi.org/10.1007/s00209-012-1055-3
http://msp.org/idx/mr/3054316
http://msp.org/idx/zbl/1277.57003
http://dx.doi.org/10.1007/BF01432386
http://msp.org/idx/mr/346817
http://msp.org/idx/zbl/0265.52002
http://dx.doi.org/10.1007/BF00181480
http://dx.doi.org/10.1007/BF00181480
http://msp.org/idx/mr/341511
http://msp.org/idx/zbl/0273.57019
http://msp.org/idx/mr/157388
http://msp.org/idx/zbl/0116.40403
http://dx.doi.org/10.2307/2046408
http://msp.org/idx/mr/908668
http://msp.org/idx/zbl/0631.57003
http://msp.org/idx/mr/3235063
http://msp.org/idx/zbl/1317.57021
http://dx.doi.org/10.1016/j.topol.2014.10.011
http://msp.org/idx/mr/3276752
http://msp.org/idx/zbl/1302.57002
http://dx.doi.org/10.1112/blms.12463
http://msp.org/idx/zbl/07381912
http://dx.doi.org/10.4007/annals.2019.189.3.5
http://msp.org/idx/mr/3961085
http://msp.org/idx/zbl/1451.30045
http://dx.doi.org/10.1007/BF00773449
http://msp.org/idx/mr/1225431
http://msp.org/idx/zbl/0810.53056
http://msp.org/idx/mr/2210111
http://msp.org/idx/zbl/1116.30011
http://msp.org/idx/mr/634005
http://msp.org/idx/zbl/0483.57003
http://dx.doi.org/10.2307/2041749
http://msp.org/idx/mr/402764
http://msp.org/idx/zbl/0324.53031
http://dx.doi.org/10.1112/jlms/s1-39.1.141
http://msp.org/idx/mr/163324
http://msp.org/idx/zbl/0131.20701

42 D. AUCKLY, R. INANC BAYKUR, R. CASALS, S. KOLAY, T. LIDMAN AND D. ZUDDAS

DAVID AUCKLY: dav@ksu.edu
Department of Mathematics, Kansas State University, Manhattan, KS, United States

R. INANC BAYKUR: baykur@math.umass.edu
Department of Mathematics and Statistics, University of Massachusetts,
Lederle Graduate Research Tower, Amherst, MA, United States

ROGER CASALS: casals@math.ucdavis.edu
Department of Mathematics, UC Davis, Davis, CA, United States

SUDIPTA KOLAY: skolay3@math.gatech.edu
School of Mathematics, Georgia Institute of Technology, Atlanta, GA, United States

TYE LIDMAN: tlid@math.ncsu.edu
Department of Mathematics, North Carolina State University, Raleigh, NC, United States

DANIELE ZUDDAS: dzuddas@units.it
Dipartimento di Matematica e Geoscienze, Universita di Trieste, Trieste, Italy

:.msp


mailto:dav@ksu.edu
mailto:baykur@math.umass.edu
mailto:casals@math.ucdavis.edu
mailto:skolay3@math.gatech.edu
mailto:tlid@math.ncsu.edu
mailto:dzuddas@units.it
http://msp.org

Volume Editors:

John A. Baldwin
Boston College
Boston, MA
United States

John B. Etnyre
Georgia Institute of Technology
Atlanta, GA
United States

Hans U. Boden
McMaster University
Hamilton, ON
Canada

Liam Watson
University of British Columbia
Vancouver, BC
Canada

The cover image is based on an illustration from the article “Khovanov homol-
ogy and strong inversions”, by Artem Kotelskiy, Liam Watson and Claudius

Zibrowius (see p. 232).

The contents of this work are copyrighted by MSP or the respective authors.

All rights reserved.

Electronic copies can be obtained free of charge from http://msp.org/obs/5 and
printed copies can be ordered from MSP (contact@msp.org).

The Open Book Series is a trademark of Mathematical Sciences Publishers.
ISSN: 2329-9061 (print), 2329-907X (electronic)
ISBN: 978-1-935107-11-8 (print), 978-1-935107-10-1 (electronic)

First published 2022.

:.msp

MATHEMATICAL SCIENCES PUBLISHERS
798 Evans Hall #3840, c/o University of California, Berkeley CA 94720-3840

contact@msp.org

https://msp.org


http://msp.org/obs/5
mailto:contact@msp.org
mailto:contact@msp.org
http://msp.org

THE OPEN BOOK SERIES 5
Gauge Theory and Low-Dimensional Topology:
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This volume is a proceedings of the 2020 BIRS workshop Interactions of gauge theory with
contact and symplectic topology in dimensions 3 and 4. This was the 6th iteration of a
recurring workshop held in Banff. Regrettably, the workshop was not held onsite but was
instead an online (Zoom) gathering as a result of the Covid-19 pandemic. However, one
benefit of the online format was that the participant list could be expanded beyond the usual
strict limit of 42 individuals. It seemed to be also fitting, given the altered circumstances
and larger than usual list of participants, to take the opportunity to put together a conference
proceedings.

The result is this volume, which features papers showcasing research from participants at the
6th (or earlier) Interactions workshops. As the title suggests, the emphasis is on research
in gauge theory, contact and symplectic topology, and in low-dimensional topology. The
volume contains 16 refereed papers, and it is representative of the many excellent talks and
fascinating results presented at the Interactions workshops over the years since its inception
in 2007.
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