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We show how to lift Lagrangian immersions in CPn−1 to produce Lagrangian
cones in Cn , and use this process to produce several families of examples of
Lagrangian cones and special Lagrangian cones. As an application of this theorem,
for n = 3 we show how to produce Lagrangian cones that are isotopic to the
Harvey–Lawson special Lagrangian cone and the trivial cone. The projections
of the Legendrian links of both of these cones to CP2 are immersions with four
and seven transverse double points. We expect that these double points represent
the chord generators of the 0-filtration level of a suitably defined version of
Legendrian contact homology of the links.

1. Introduction

This paper focuses on creating models for Lagrangian cones. The motivation for
this paper arises from the string theory model in physics. According to the theory,
our universe consists of the standard Minkowski space-time, R4, together with a
complex Calabi–Yau 3-fold, X. Based upon physical grounds, the SYZ-conjecture
of Strominger, Yau, and Zaslow [32] expects that this Calabi–Yau manifold can be
viewed as a fibration by 3-tori with some singular fibers. These singular fibers are
not well understood. The standard approach is to model them locally as special
Lagrangian cones C ⊂ C3 (by cone, we mean a subset C ⊂ C3 such that r · C = C
for any real number r > 0). Such a cone can be characterized by its link, C ∩ S5,
which is a Legendrian surface.

Special Lagrangian cones in C3 are solutions to nonlinear degree 2 and 3 partial
differential equations. Many papers on the subject to date have used this perspective,
often by using examples from algebraic geometry. However, given that the cone
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can be characterized by the Legendrian link, this topic is very closely related to the
study of knotted Legendrian submanifolds. This relationship connects it to a great
deal of work in the area of contact topology. In this area much progress has been
made, at least in part, due to the fact that there are topological and combinatorial
representations of such submanifolds. In dimension 3, where the problem of
understanding Legendrian submanifolds amounts to classifying Legendrian knots
up to isotopy, such diagrammatic representations are easy to generate. For instance,
grid diagrams can be used to obtain combinatorial representations of both front
and Lagrangian projections of Legendrian knots (see [4; 5; 7; 19; 28]). In higher
dimensions, there are fewer such constructions. In [9], Ekholm, Etnyre, and Sullivan
present front spinning as a way of constructing one class of knotted Legendrian
tori, showing that the theory of Legendrian submanifolds of R2n+1 is at least as
rich in higher dimensions as it is in dimension 3. To accomplish this, they extend
the definition of Legendrian contact homology to R2n+1. In [4], it was shown that
knotted Legendrian tori could be constructed from Lagrangian hypercube diagrams,
and it was shown how to compute several invariants from such a diagram. In [16],
Lambert-Cole showed how to generalize that construction to produce a product
operation on Legendrian submanifolds.

1A. Lifts of Lagrangian immersions in CPn−1 to S2n−1. With the appropriate
setup, it is possible to construct models of Legendrian surfaces in S5 so that the
resulting cone in C3 is Lagrangian, and in some cases, special Lagrangian. The
lifting theorem describes precisely the conditions under which an immersion into
CPn−1 lifts to an embedded Legendrian submanifold of S2n−1 that gives rise to a
Lagrangian cone.

Lifting theorem. Let 6 be a closed, connected, smooth (n−1)-manifold, and
f : 6 → CPn−1 be a Lagrangian immersion with respect to the integral Fubini–
Study symplectic form 1

π
ωF S . Let π : S2n−1

→ CPn−1 be the principle Hopf
S1-bundle with connection 1-form i

π
α where α = i∗

0

( 1
2

∑n
i=1 xi dyi − yi dxi

)
for

the identity map i0 : S2n−1
→ Cn. For each chart 9 j : B j × S1

→ S2n−1 (see
Section 4), there exists a 1-form τ j such that 9∗

j (α)=
1
2(dt − τ j ) where τ j =

−
∑n

i=1, i ̸= j (xi dyi − yi dxi ).
If

(1) 0
∫
γ
τ = 0 mod 2π for all [γ ] ∈ H1(6; Z), and

(2) for all distinct points x1, . . . , xk ∈ 6 such that f (x1) = f (x j ) for all j ≤ k,
and a choice of path γ j from x1 to x j in 6 for 2 ≤ j ≤ k, the set{(

0
∫

f (γ j )
τ
)

mod 2π
∣∣∣ 2 ≤ j ≤ k

}
has k − 1 distinct values, none of which are equal to 0,
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then f : 6 → CPn−1 lifts to an embedding f̃ : 6 → S2n−1 such that the im-
age (the lift) 6̃ is a Legendrian submanifold of (S2n−1, α). In turn, the cone
c6̃ is Lagrangian in Cn with respect to the standard symplectic structure ω0 =∑n

i=1 dxi ∧ dyi .

Remark 1.1. The 1-form τ j may be thought of as a multiple of a contact form on
S2n−1 as observed in Section 4.

Remark 1.2. The integral 0
∫
γ

refers to a lifting integral (see Definition 4.8).

Remark 1.3. The second condition of the lifting theorem is stated for multiple
points in general, but in most examples, we will only be working with double points
or S1-families of double points.

1B. Legendrian contact homology and Lagrangian cones. While the lifting the-
orem is quite general, it is often possible (and simpler) to work within a single
chart of CPn−1. To construct a local model for special Lagrangian cones, we
work in the symplectic manifold (Cn, ω,�) where Cn has complex coordinates
(z1, . . . , zn), ω0 =

i
2(dz1 ∧dz1 +· · ·+dzn ∧dzn) is the standard Kähler form, and

�= dz1 ∧ · · · ∧ dzn is the holomorphic volume form (see [14]).

Definition 1.4. A cone C ⊂ Cn is special Lagrangian if it is Lagrangian and
Im�|C ≡ 0 or, equivalently, if C is calibrated (in the sense of [13]) with respect to
Re�.

As a first step, we will focus first on the construction of Lagrangian cones.
Observe that the kernel of the 1-form

α =
1
2(x1dy1 − y1dx1 + · · · + xndyn − yndxn),

where z j = x j + iy j , restricted to the unit sphere, generates the standard contact
structure for S2n−1 and that α= ιRω, where R = 2

(∑n
i=1 xi

∂
∂xi

+ yi
∂
∂yi

)
. This means

that, given a Legendrian submanifold 6 ⊂ S2n−1, the associated cone c6, obtained
by scaling 6 by positive real numbers, is automatically Lagrangian. Moreover, any
Lagrangian cone with vertex at the origin, must intersect S2n−1 in a Legendrian
surface. Hence, with respect to the standard contact structure on S2n−1 and the
standard symplectic form on Cn, a given submanifold of S2n−1

⊂ Cn is Legendrian
if and only the associated cone in Cn is Lagrangian.

In knot theory, the trivial knot and the trefoil are the two simplest types of knots.
Analogously, we use the lifting theorem in this paper to study the two simplest
Lagrangian cones: the trivial cone and the Harvey–Lawson special Lagrangian
cones. We begin by recalling the construction of the Harvey–Lawson special
Lagrangian cone.

Example 1.5. Example III.3.A in [13] introduced one of the first nontrivial families
of examples of special Lagrangian cones, collectively known as the Harvey–Lawson
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cone. In particular, they proved that the cone on the (n−1)-tori defined by the
following two sets is a special Lagrangian cone:

T +
= {(eiθ1, . . . , eiθn ) ∈ Cn

| θ1 + · · · + θn = 0},

T −
= {(eiθ1, . . . , eiθn ) ∈ Cn

| θ1 + · · · + θn = π}.

Observe that we may rewrite T + as

T +
= {(eiθ1, . . . , eiθn−1, e−i(θ1+···+θn−1)) | θ1, . . . , θn−1 ∈ S1

}, (1-1)

and we will call the cone on T + the Harvey–Lawson cone.

In [30], Sabloff used combinatorial methods to define a version of Legendrian
contact homology for Legendrian knots in circle bundles over Riemann surfaces. We
expect that similar methods give rise to a version of Legendrian contact homology in
the present context as well. Sabloff’s Legendrian contact homology is filtered by the
“winding number” of the Reeb chord around the fiber. As such, the short Reeb chords
in the 0-filtration level (i.e., those that do not wrap around the fiber) are crucial to any
calculation of the homology. In this context, as an application of the lifting theorem
we calculate the expected generators of the 0-filtration level of the Legendrian
contact homology of the torus given by the intersection of the Harvey–Lawson
special Lagrangian cone with S5 using the standard contact structure α.

Theorem 3.16. Let T 2
⊂ S5 be the torus constructed in Example 3.1, which is

Legendrian isotopic to T +
⊂ S5. Then the 0-filtration level of the Legendrian

contact homology of T 2 is generated by four pairs of short Reeb chords, two each
in gradings 4, 6, 7, and 9. These Reeb chords correspond to the double points of T 2

via the projection of T 2 under π : S5
→ CP2 (as described in Example 3.1).

Many of the technical calculations in this paper are devoted to proving this
theorem (and Theorem 5.3). The Harvey–Lawson special Lagrangian cone has an
associated Legendrian torus in S5 that is a 3-fold cover of a (standard) Lagrangian
torus in CP2. The isotopies that are used to place this Legendrian torus in general
position are delicate and have to be done in steps: first we find projections with
double point circles, and then we perturb the resulting surface to obtain one whose
projection to CPn−1 has isolated transverse double points. It is only in this carefully
orchestrated setup that we can count the double points, and hence the filtration level 0
generators of contact homology. We use a similar approach in Sections 3C and 3D
to construct examples of Lagrangian cones arising from products of Legendrian
knots.

Example 1.6. The trivial cone is simply a Lagrangian copy of Rn
⊂Cn. In particular,

the following is well known and easy to check:
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Theorem 1.7. If f : Rn
→ Cn is given by (x1, . . . , xn) 7→ (x1η1, . . . , xnηn), where

η = (η1, . . . , ηn) is a complex vector with η j ̸= 0 for all j, then the image of f is
Lagrangian with respect to the standard symplectic form ω.

For some choices of η the trivial cone is special Lagrangian. For example, when
n = 3 a direct calculation shows that for η = (a1 + ib1, a2 + ib2, a3 + ib3), if

a2a3b1 + a1a3b2 + a1a2b3 − b1b2b3 = 0

then the map f : R3
→ C3 given by

(x1, . . . , xn) 7→ (x1(a1 + ib1), x2(a2 + ib2), x3(a3 + ib3))

is a special Lagrangian cone.
While the cone is just a copy of R3

⊂ C3, its intersection with S5
⊂ C3 is a copy

of S2 that double covers a copy of RP2 under the projection π : S5
→ CP2. For

computations of Legendrian contact homology, it is desirable to perturb the cone so
that, in the projection, we see only isolated transverse double points. Unlike with the
Harvey–Lawson cone, whose link embeds in a single chart (see Section 2), the lift
of RP2 used to study the trivial cone requires the full strength of the lifting theorem.

As with the Harvey–Lawson cone, we use the lifting theorem to obtain a similar
theorem about the expected generators of the trivial cone’s Legendrian contact
homology.

Theorem 5.3. Let S ⊂ S5 be the Legendrian 2-sphere obtained from intersecting
the trivial cone with S5 and then perturbing it via Legendrian isotopy to one with
transverse double points (see Section 5). Then the 0-filtration level of the Legendrian
contact homology of S is generated by 7 pairs of short Reeb chords. These Reeb
chords correspond to the double points of the projection of S under π : S5

→ CP2.

1C. Lagrangian cones given by knot diagrams. In [4], pairs of grid diagrams for
knots were used to construct immersed Lagrangian tori in R4, whose lifts to R5

equipped with the standard contact structure are embedded Legendrian tori. In
Sections 3C and 3D, we show how to adapt this construction to produce Legen-
drian tori in S5 whose associated cones in C3 are Lagrangian. This allows us to
construct infinite families of Lagrangian cones, some of which may be isotopic to
special Lagrangian cones. Future research will explore the question of under what
conditions this happens.

1D. Outline. The remainder of the paper is organized as follows. In Section 2, we
discuss the background information leading to the statement of a useful simplifica-
tion of the lifting theorem (cf. Theorem 2.2), and various examples we can construct
using it. In Section 4, we prove the lifting theorem, and in Section 5 we give an
example of a lift using it. Section 6 explores the implications of the lifting theorem
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for the study of Legendrian submanifolds of S2n−1. Finally, Section 7 introduces
some questions regarding the study of Hamiltonian minimal submanifolds using
the theorems and examples in this paper.

2. Lifting theorem in a single chart

In this section we develop a special case of the lifting theorem that we use for
constructing examples of embedded Legendrian submanifolds of S2n−1 as lifts of
Lagrangian immersions in CPn−1.

The local theory for lifting Lagrangian immersions into a symplectic manifold
to some S1-bundle over that manifold comes out of the theory of fiber bundles.
Given a 2n-dimensional symplectic manifold (X2n, ω) with an integral symplectic
form, let π : L → Xn be the complex line bundle such that c1(L) = [ω]. By the
theory of line bundles (see [12]), we know that there is a 1-form η on the unit
circle bundle P = U (L) such that dη = π∗(ω). In this case, iη ∈ �1(P; iR) is
called the connection 1-form. If f : 6n

→ X2n is a Lagrangian immersion of a
connected n-dimensional manifold 6, then [ f (6n)] ∩ [ω] = 0 and the pull-back of
the S1-bundle P over 6 is trivial. Given

f ∗(P) P

6 X2n

F

π

f

then f ∗(P)∼=6× S1. In turn, there exists a section σ :6 → f ∗(P) which gives
an immersed submanifold F(σ (6)) of P (see [34]).

In this setup, η is a contact form for P. In general, F(σ (6)) will not be Legen-
drian with respect to η. However, we can always use η to lift a neighborhood U of
x0 ∈ 6 to a Legendrian submanifold of P as follows: using the diffeomorphism
f ∗(P)∼=6× S1 along with the section σ(x)= (x, 1), we can define a trivialization
of P|U by (x, ei t) for x ∈U and t ∈R. For x ∈U, let γ be a path in U from γ (0)= x0

to γ (1) = x1. This path gives rise to a path 0 in P|U using the holonomy of the
connection 1-form F∗(η). That is, 0 is the unique path such that 0(0) = (x0, 1),
π(0(s))= γ (s), and F∗(η)(0′(s))= 0 for all s ∈ (0, 1). Define the lift f̃ : U → P
by f̃ (x)= F(0(1)).

This map is independent of the path chosen in the contractible neighborhood U
because f is a Lagrangian immersion (the restricted holonomy group at x0 is trivial).

We can write this holonomy map down explicitly in terms of 6 × S1 and the
section σ given by coordinates (x, ei t) where x ∈6 and t ∈ R. Suppose

F∗(η)= k(dt − τ),

where k ∈ R is a constant, and τ ∈ �1(6). The solution 0 is equivalent to a
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path (γ (x), ei t (x)) ∈6× S1 where

t (x)=

∫
γ

τ

is obtained by integrating dt −τ along γ , setting the result equal to 0, and choosing
t (0)= 0.

This solution defines a local Legendrian lift, f̃ of U into P. We get a global lift if∫
γ

τ ∈ 2πZ for all [γ ] ∈ H1(6).

In this case, f :6 → X lifts to a Legendrian immersion f̃ :6 → P (i.e., the local
lift extends to all of 6).

If integrating τ along any path joining a pair of double points results in a nonzero
answer (mod 2π), then the lift f̃ is an embedding. We summarize the discussion
above as follows:

Theorem 2.1. Let 6n be a connected n-manifold, X2n be a 2n-dimensional sym-
plectic manifold with integral symplectic form ω, and f :6 → X be a Lagrangian
immersion. Let π : P → X be the principle S1-bundle with connection 1-form iη
determined by dη=π∗(ω). Suppose the section σ :6→ f ∗(P) defines coordinates
(x, ei t) of the trivial bundle F : f ∗(P)→ P such that F∗(η) = k(dt − τ) where
k ∈ R is a constant and τ ∈�1(6). If

(1)
∫
γ
τ ∈ 2πZ for all [γ ] ∈ H1(6; Z), and

(2) for all points x0, x1 ∈ 6 such that f (x0) = f (x1) and any path γ from x0 to
x1 in 6,

∫
γ
τ ̸= 0 mod 2π ,

then f : 6 → X lifts to f̃ : 6 → P and the image (the lift) 6̃ is a Legendrian
submanifold of P.

Theorem 2.1 is general in that it describes exactly when immersions can be lifted,
but it is far from helpful in describing how to construct such lifts by hand (or with
the help of a computer). For example, given a symplectic manifold X, like CPn (or
T n, E(n), Symn(6g), etc), what chart system should we use to make the calculation
easiest? (Note the standard chart system Ui ={[z1 : · · · : 1 : · · · : zn]|zi ∈ C}⊂ CPn−1

is not convenient for constructing lifts.)
Can a chart system of X be chosen in such a way that the symplectic form ω is

standard in each chart? Can a chart system be chosen so that the principal S1-bundle
trivializes over each chart in such a way that η has a nice (simple) form in each
trivialization, and there is an obvious choice of sections so that τ also has a nice
representation? None of these questions are answered by Theorem 2.1 (because
they are specific to X ), but all of them are important to being able to generate
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explicit examples of lifts that satisfy the restrictive requirements needed to be able
to compute invariants like the Legendrian contact homology of the lifts.

For these reasons, the following theorem is useful to us in computing the invariants
of Lagrangian cones in Cn in this paper.

Theorem 2.2. Let Bn−1
⊂ Cn−1 be a ball, 6 be a closed, connected, smooth

(n−1)-manifold, and f :6→ Bn−1 be a Lagrangian immersion with respect to the
standard symplectic form ω0 of Cn−1. Let τ = −

∑n−1
i=1 (xi dyi − yi dxi ) be a 1-form

on Bn−1. If

(1)
∫

f (γ ) τ ∈ 2πZ for all γ ∈ H1(6; Z), and

(2) for all distinct points x1, . . . , xk ∈6 such that f (x1)= f (x j ) for all j ≤ k, and
a choice of path γ j from x1 to x j in6 for 2≤ j ≤k, the set

{(∫
f (γ j )

τ
)

mod 2π |

2 ≤ j ≤ k
}

has k − 1 distinct values, none of which are equal to 0,

then 6 lifts to an embedded Legendrian submanifold 6̃ ⊂ S2n−1 whose associated
cone c6̃ is Lagrangian in Cn.

The lift, f̃ :6 → S2n−1
⊂ Cn, is given by

f̃ (x)= ei t (x)( f1(x), . . . , fn−1(x),
√

1 − | f (x)|2)

where
t (x)=

∫
f (γ )

τ

for some path γ from an initial point x0 ∈6 to x.

Careful comparison of the calculations in Theorem 2.2 with those of Theorem 2.1
shows that Theorem 2.2 is the realization of Theorem 2.1 in the case where 6n−1

is an immersion into an open unit ball, thought of as a single chart of CPn−1

(and where we do the calculations in the chart, instead of in 6). For a proof of
Theorem 2.2, see Section 4, where we prove the lifting theorem, which is a more
general version of this theorem.

3. Examples of lifts using Theorem 2.2

3A. Legendrian contact homology generators for the Harvey–Lawson cone.

Example 3.1. Theorem 2.2 allows us to construct a family of isotopies of the famous
special Lagrangian cone given by Harvey and Lawson (see Example 1.5). Choose ϵ
so that 0 ≤ ϵ <

√
2/n and define δ =

√
1/n − ϵ2/2. Parametrize the torus T n−1

in the usual way with coordinates (θ1, . . . , θn−1) ∈ Rn−1. Let rϵ(θ1, . . . , θn−1) =

δ+ ϵ sin(θ1 + · · · + θn−1), and define fϵ : T n−1
→ Bn−1 by

fϵ(θ1, . . . , θn−1)=(
rϵ(θ1, . . . , θn−1)ei(2θ1+θ2+···+θn−1), . . . , rϵ(θ1, . . . , θn−1)ei(θ1+···+θn−2+2θn−1)

)
.
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Observe that the first condition of Theorem 2.2 is satisfied. Thus, defining t (x)
as in Theorem 2.2, we obtain a family of Legendrian tori in S2n−1

⊂ Cn, each of
whose associated cones are Lagrangian, given by the maps

f̃ϵ(θ1, . . . , θn−1)=

ei tϵ(θ1,...,θn−1)

×

(
rϵ(θ1, . . . , θn−1)ei(2θ1+θ2+···+θn−1), . . . ,rϵ(θ1, . . . , θn−1)ei(θ1+···+θn−2+2θn−1),√

1−(n−1)r2
ϵ

)
,

where
tϵ(θ1, . . . , θn−1)=

∫
fϵ(γ )

τ,

as in Theorem 2.2.

Remark 3.2. The cone on the image of the lift f̃ϵ is Lagrangian for all ϵ ≥ 0, but
is also special Lagrangian when ϵ = 0. In fact, when ϵ = 0, the associated cone is
the Harvey–Lawson cone (see Example 1.5).

Theorem 3.3. The parameter tϵ is given by

tϵ(θ1, . . . , θn−1)

= −(θ1+·· ·+θn−1)−2nδϵ(1−cos(θ1+·· ·+θn−1))+
n
4
ϵ2 sin(2(θ1+·· ·+θn−1)).

Proof. For simplicity, we work in polar coordinates and integrate the pull-back
fϵ∗(τ )= −n

∑n−1
i=1 r2

i dθi over a path in the torus T n−1 for the computation below.
Taking γi to be a path from (θ1, . . . , θi−1, 0, . . . , 0) to (θ1, . . . , θi−1, θi , 0, . . . , 0),
and γ to be the concatenation of these paths from i = 1, . . . , n, then we may solve
for tϵ as follows:

tϵ(θ1, . . . , θn−1)= −n
n−1∑
i=1

∫ θi

0
rϵ(θ1, . . . , θi−1, αi , 0, . . . , 0)2dαi

= −n
n−1∑
i=1

[(1
2(2δ

2
+ ϵ2)αi − 2δϵ cos(θ1 + · · · + θi−1 +αi )

−
1
4ϵ

2 sin(2(θ1 + · · · + θi−1 +αi ))
)∣∣θi

0

]
Observe that the sum above telescopes, and hence, we may write

tϵ(θ1, . . . , θn−1)= −n
( 1

2(2δ
2
+ϵ2)(θ1+·· ·+θn−1)−2δϵ(1−cos(θ1+·· ·+θn−1))

−
1
4ϵ

2 sin(2(θ1+·· ·+θn−1))
)

= −(θ1+·· ·+θn−1)−2nδϵ(1−cos(θ1+·· ·+θn−1))

+
n
4
ϵ2 sin(2(θ1+·· ·+θn−1)). □

In light of Theorem 3.3, we get the following corollary.
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Corollary 3.4. As ϵ → 0, δ → 1/
√

n, tϵ(θ1, . . . , θn−1) → t0(θ1, . . . , θn−1) =

−θ1 − · · · − θn−1, and

f̃ϵ(θ1, . . . , θn−1)→ f̃0(θ1, . . . , θn−1)=
1

√
n
(eiθ1, . . . , eiθn−1, e−i(θ1+···+θn−1)).

In order to verify that the second condition of Theorem 2.2 is satisfied, and
consequently that the lift is embedded, we will be interested in locating the double
points of fϵ .

Because we are mainly interested in cones of C3 via the SYZ conjecture, we
assume n = 3 in the following calculation. Lemma 3.5 specifies precisely when
the arguments of the exponential maps in the definition of fϵ all agree, a necessary
condition for a double point.

Lemma 3.5. For n = 3, if fϵ(θ1, θ2) = fϵ(γ1, γ2) then θ1 = γ1 and θ2 = γ2, or
θ1 − γ1 = θ2 − γ2 =

2π
3 (mod 2π) or θ1 − γ1 = θ2 − γ2 =

4π
3 (mod 2π).

Proof. If fϵ(θ1, θ2)= fϵ(γ1, γ2) then since the arguments of the exponential maps
differ by a multiple of 2π , (θ1, θ2) and (γ1, γ2) must satisfy the equations

2θ1 + θ2 = 2γ1 + γ2 + n2π, (3-1)

θ1 + 2θ2 = γ1 + 2γ2 + m2π, (3-2)

for some m, n ∈ Z.
Solving (3-1) and (3-2), we obtain the following:

θ1 − γ1 =
2n − m

3
2π, (3-3)

θ2 − γ2 =
2m − n

2
π. (3-4)

Since the torus T 2 is parametrized by (θ1, θ2) ∈ [0, 2π)× [0, 2π), it must be that
θi − γi < 2π for i = 1, 2, and hence

∣∣ 2m−n
3

∣∣< 1 and
∣∣2n−m

3

∣∣< 1.
Since n,m ∈ Z, we find that the possibilities for (n,m) are ±(1, 0), ±(0, 1),

±(1, 1) and (0, 0). Evaluating (3-3) and (3-4), we find that either θ1 =γ1 and θ2 =γ2,
or θ1 − γ1 = θ2 − γ2 =

2π
3 (mod 2π) or θ1 − γ1 = θ2 − γ2 =

4π
3 (mod 2π). □

In the proof above we also showed, after taking limits, that:

Scholium 3.6. The image of f̃0 is a 3-fold cover of the image of f0 via the projection
given by the Hopf map.

Lemma 3.5 specifies when the arguments of the exponential maps will agree,
but for a double point, the radii, determined by rϵ must also agree. In the following
lemma, we calculate where this occurs.

Lemma 3.7. If fϵ(θ1, θ2)= fϵ(γ1, γ2) and either θ1 − γ1 = θ2 − γ2 =
2π
3 (mod 2π)

or θ1 − γ1 = θ2 − γ2 =
4π
3 (mod 2π), then one of the following must be true:
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• θ1 + θ2 = γ1 + γ2.

• θ1 + θ2 =
7π
6 and γ1 + γ2 =

11π
6 .

• θ1 + θ2 =
5π
6 and γ1 + γ2 =

π
6 .

Proof. Since fϵ(θ1, θ2)= fϵ(γ1, γ2), not only must the arguments of the exponential
maps differ by a multiple of 2π , but the radii in each complex factor must match,
that is rϵ(θ1, θ2)= rϵ(γ1, γ2). Hence one of the following equations must hold:

θ1 + θ2 = γ1 + γ2, (3-5)

θ1 + θ2 + γ1 + γ2 = π + 2πk. (3-6)

There are several cases. If θ1 + θ2 = γ1 + γ2, then using (3-3) and (3-4), one
can show that n = −m which can only happen if n = m = 0. Furthermore, if
θ1 + θ2 + γ1 + γ2 = π + k2π , combining this with (3-3) and (3-4), we may solve
the system to obtain that θ1 + θ2 =

7π
6 and γ1 + γ2 =

11π
6 or θ1 + θ2 =

5π
6 and

γ1 + γ2 =
π
6 . □

Remark 3.8. Lemma 3.5 rules out the possibility of multiple points of fϵ of
multiplicity greater than 3, and Lemma 3.7 shows that for ϵ > 0 there are no triple
points. Hence, immersion fϵ has only double points when ϵ > 0.

The families of double points identified in Lemma 3.7 form copies of S1, and
will show up not only in this example, but in others as well. Hence the following
definition will be useful in some of the discussion that follows.

Definition 3.9. Let f :6 → M be an immersion of a surface. Suppose C1 and C2

are disjoint copies of S1 in 6 such that f (C1)= f (C2) and f |C1∪C2 is a 2-to-1 map.
Suppose further that A1 and A2 are disjoint annular neighborhoods of C1 and C2

and that f (A1)∩ f (A2)= f (C1)= f (C2). If, for any pair consisting of x1 ∈ C1

and x2 ∈ C2 such that f (x1)= f (x2), we have that d fx1(T A1) ̸= d fx2(T A2), then
we call the image of C1 and C2 a double point circle.

Theorem 3.10. The double points of fϵ , of the form fϵ(θ1, θ2)= fϵ(γ1, γ2), consist
of two double point circles such that θ1 − γ1 = θ2 − γ2 =

2π
3 (mod 2π) or θ1 −γ1 =

θ2 − γ2 =
4π
3 (mod 2π) and one of the following holds:

(1) θ1 + θ2 =
7π
6 and γ1 + γ2 =

11π
6 .

(2) θ1 + θ2 =
5π
6 and γ1 + γ2 =

π
6 .

Proof. Lemmas 3.5 and 3.7 demonstrate that systems of this type yield double
points. All that remains is the observation that if (θ1, θ2) and (γ1, γ2) satisfy
θ1 − γ1 = θ2 − γ2 =

2π
3 (mod 2π) or θ1 − γ1 = θ2 − γ2 =

4π
3 (mod 2π) but do

not satisfy either (1) or (2), then sin(θ1 + θ2) ̸= sin(γ1 + γ2). For such cases,
rϵ(θ1, θ2) ̸= rϵ(γ1, γ2) and hence fϵ(θ1, θ2) ̸= fϵ(γ1, γ2). □

Theorem 3.11. The lift f̃ϵ is an embedding.
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Proof. We already know the lift is well defined. All that remains is to check that
the second condition of Theorem 2.2 is satisfied, which means that the double
points of the projection are separated in the lift. This amounts to computing∫

f (γ ) τ for some path γ joining a pair of double points of a double point circle.
Using Theorem 3.10, suppose we have a double point such that fϵ(θ1,

5π
6 − θ1)=

fϵ
(
θ1 +

2π
3 ,

13π
6 −

(
θ1 +

2π
3

))
. Then the integral in question is given by:

tϵ

(
θ1 +

2π
3
,

13π
6

−

(
θ1 +

2π
3

))
− tϵ

(
θ1,

5π
6

− θ1

)
.

Using the expression for tϵ given in Theorem 3.3, and simplifying, we obtain

tϵ

(
θ1 +

2π
3
,

13π
6

−

(
θ1 +

2π
3

))
− tϵ

(
θ1,

5π
6

− θ1

)
= −

8π
6

− 4nδϵ cos
(

5π
6

)
+

nϵ2

2
sin

(
π

3

)
.

Noting that n = 3, 0 ≤ ϵ <
√

2/3, and δ =
√

1/3 − ϵ2/2, we have that

−
4π
3

≤ tϵ

(
θ1 +

2π
3
,

13π
6

−

(
θ1 +

2π
3

))
− tϵ

(
θ1,

5π
6

− θ1

)
<−

4π
3

+

√
3

2
.

The other double points are handled in a similar manner. □

Let Lϵ be the image of fϵ and let L̃ϵ be the Legendrian torus given by the lift f̃ϵ .
We wish to identify the generators of the 0-filtration level of the Legendrian contact
homology of L̃ϵ , which are determined by the double points of the Lagrangian
projection. Recall that in this case, the double points are actually double point
circles, hence we need to perturb the map so that it is chord-generic. We will
demonstrate the perturbation for n = 3, but the general solution is similar.

Lemma 3.12. Let f̃ϵ : T 2
→ S5 be the Legendrian torus given by the map

f̃ϵ(θ1, θ2)= ei tϵ(θ1,θ2)
(

rϵ(θ1, θ2)ei(2θ1+θ2), rϵ(θ1, θ2)ei(θ1+2θ2),
√

1 − 2rϵ(θ1, θ2)2
)
.

Choose a perturbation in the direction of the Reeb fiber, sϵ : T 2
→ S1, two pertur-

bations in the radial directions, si,ϵ : T 2
→ R, for i = 1, 2, and define

g̃ϵ(θ1,θ2)

= ei(tϵ(θ1,θ2)+sϵ(θ1,θ2))
(

r1,ϵ(θ1,θ2)ei(2θ1+θ2),r2,ϵ(θ1,θ2)ei(θ1+2θ2),

√
1−r2

1,ϵ−r2
2,ϵ

)
,

where ri,ϵ(θ1, θ2)= rϵ(θ1, θ2)+ si,ϵ(θ1, θ2) for i = 1, 2. If

(1) ∂sϵ
∂θ1

+2rϵ(θ1, θ2)(2s1,ϵ(θ1, θ2)+s2,ϵ(θ1, θ2))+2s1,ϵ(θ1, θ2)
2
+s2,ϵ(θ1, θ2)

2
= 0

and

(2) ∂sϵ
∂θ2

+2rϵ(θ1, θ2)(s1,ϵ1(θ1, θ2)+2s2,ϵ(θ1, θ2))+s1,ϵ(θ1, θ2)
2
+2s2,ϵ(θ1, θ2)

2
=0
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then the perturbation g̃ϵ is a Legendrian torus having only transverse double points
that is Legendrian isotopic to f̃ϵ .

Moreover, for a given choice of sϵ the system is solved by

s1,ϵ(θ1, θ2)= −rϵ(θ1, θ2)+ σ

√
rϵ(θ1, θ2)2 +

1
3

(
∂sϵ
∂θ2

− 2
∂sϵ
∂θ1

)
and

s2,ϵ(θ1, θ2)= −rϵ(θ1, θ2)+ σ

√
rϵ(θ1, θ2)2 +

1
3

(
∂sϵ
∂θ1

− 2
∂sϵ
∂θ2

)
,

where σ is ±1.

Proof. The calculation is easiest if we work in polar coordinates and identify a
neighborhood of the f̃ϵ with B2 × S1 (cf. the lifting theorem). Note that we may
write

f̃ϵ(θ1, θ2)=
(
rϵ(θ1, θ2), 2θ1 + θ2, rϵ(θ1, θ2), θ1 + 2θ2, tϵ(θ1, θ2)

)
,

and we work with the perturbation in polar coordinates as well:

g̃ϵ(θ1, θ2)=
(
r1,ϵ(θ1, θ2), 2θ1 + θ2, r2,ϵ(θ1, θ2), θ1 + 2θ2, tϵ(θ1, θ2)+ sϵ(θ1, θ2)

)
,

In these coordinates, we may identify the contact form α on S5 with 1
2(dt − τ)

(for details of this calculation see the lifting theorem). Pulling back α to T 2 via f̃ϵ
we obtain the form

f̃ ∗

ϵ (α)=

(
∂tϵ
∂θ1

+ 3rϵ(θ1, θ2)
2
)

dθ1 +

(
∂tϵ
∂θ2

+ 3rϵ(θ1, θ2)
2
)

dθ2.

Since f̃ϵ is Legendrian, this is 0, and hence(
∂tϵ
∂θ1

+ 3rϵ(θ1, θ2)
2
)

=

(
∂tϵ
∂θ2

+ 3rϵ(θ1, θ2)
2
)

= 0.

Pulling back α using the perturbation g̃ϵ we obtain

g̃∗

ϵ (α)=

[(
∂tϵ
∂θ1

+3rϵ(θ1,θ2)
2
)

+
∂sϵ
∂θ1

+2rϵ(θ1,θ2)(2s1,ϵ+s2,ϵ)+2s2
1,ϵ+s2

2,ϵ

]
dθ1

+

[(
∂tϵ
∂θ2

+3rϵ(θ1,θ2)
2
)
∂sϵ
∂θ2

+2rϵ(θ1,θ2)(s1,ϵ+2s2,ϵ)+s2
1,ϵ+2s2

2,ϵ

]
dθ2.

Noting that
(
∂tϵ
∂θ1

+ 3rϵ(θ1, θ2)
2
)

=
(
∂tϵ
∂θ2

+ 3rϵ(θ1, θ2)
2
)

= 0, we have justified (1)
and (2). The last part is routine, and obtained by solving this system of equations,
(1) and (2), for s1,ϵ and s2,ϵ . □

Theorem 3.13. The map gϵ : T 2
→ B2,

gϵ(θ1, θ2)= (r1,ϵ(θ1, θ2)ei(2θ1+θ2), r2,ϵ(θ1, θ2)ei(θ1+2θ2)),
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where

r1,ϵ(θ1,θ2)=

√
rϵ(θ1,θ2)2−

2
3ϵ cos(θ1) and r2,ϵ(θ1,θ2)=

√
rϵ(θ1,θ2)2+

1
3ϵ cos(θ1)

is a perturbation of fϵ having exactly two transverse double points. Moreover, the
lift g̃ϵ ,

g̃ϵ(θ1, θ2)

= ei(tϵ(θ1,θ2)+sϵ(θ1,θ2))
(

r1,ϵ(θ1, θ2)ei(2θ1+θ2), r2,ϵ(θ1, θ2)ei(θ1+2θ2),
√

1 − r2
1,ϵ − r2

2,ϵ

)
,

is Legendrian isotopic to f̃ϵ .

Proof. Choose sϵ(θ1, θ2)= ϵ sin(θ1). Direct calculation shows that the conditions of
Lemma 3.12 are satisfied. Moreover, the two maps s1,ϵ and s2,ϵ from Lemma 3.12
satisfy the following:

(1) r1,ϵ(θ1, θ2)= rϵ(θ1, θ2)+ s1,ϵ(θ1, θ2)=

√
rϵ(θ1, θ2)2 −

2
3ϵ cos(θ1).

(2) r2,ϵ(θ1, θ2)= rϵ(θ1, θ2)+ s2,ϵ(θ1, θ2)=

√
rϵ(θ1, θ2)2 +

1
3ϵ cos(θ1).

The remainder follows from Lemma 3.12. □

The following corollary is obvious:

Corollary 3.14. Taking the limit as ϵ → 0, we have the following:

(1) tϵ(θ1, θ2)→ t0(θ1, θ2)= −θ1 − θ2.

(2) g̃ϵ(θ1, θ2)→ g̃0(θ1, θ2)= f̃0(θ1, θ2)=
1

√
2
(eiθ1, eiθ2, e−i(θ1+θ2)).

Corollary 3.14 shows that g̃0 is the Harvey–Lawson cone (just as f̃0 is). What
makes g̃ϵ useful is that although it is isotopic to the Harvey–Lawson cone, it has
isolated double points. In fact, it has only four transverse double points as observed
in the following corollary.

Corollary 3.15. The double points of gϵ can be found directly, and we obtain 2 for
each double point circle, for a total of four transverse double points:

(1) gϵ
( 2π

3 ,
π
6

)
= gϵ

( 4π
3 ,

5π
6

)
,

(2) gϵ
( 5π

3 ,
7π
6

)
= gϵ

(
π
3 ,

11π
6

)
,

(3) gϵ
( 2π

3 ,
7π
6

)
= gϵ

( 4π
3 ,

11π
6

)
, and

(4) gϵ
( 5π

3 ,
π
6

)
= gϵ

(
π
3 ,

5π
6

)
.

Proof. Writing gϵ in polar coordinates, as in Lemma 3.5, we see that any double
points must be of the form gϵ(θ1, θ2)= gϵ(θ1 + j 2π

3 , θ2 + j 2π
3 ) where j is either 1

or 2, in order that the arguments of the exponential maps both differ by a multiple
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of 2π . Thus we get double points when we have the following two equations
satisfied:

r1,ϵ(θ1, θ2)= r1,ϵ

(
θ1 + j

2π
3
, θ2 + j

2π
3

)
.

r2,ϵ(θ1, θ2)= r2,ϵ

(
θ1 + j

2π
3
, θ2 + j

2π
3

)
.

Solving this system of equations, we obtain the result. □

In summary, we have constructed a family of cones, each of which is isotopic
to the Harvey–Lawson cone, but with the additional property that the projection
to CP2 has only four transverse double points, unlike the actual Harvey–Lawson
cone which is a 3-fold cover of its projection to CP2, as observed in Scholium 3.6.
Although the isotopy taking the Harvey–Lawson cone to one of our perturbations
does not preserve the special Lagrangian conditions, it does preserve the Legendrian
link, and hence, can be used to calculate a suitably defined Legendrian contact
homology [30]. Moreover, our perturbations have only transverse double points.
Thus we obtain:

Theorem 3.16. Let T 2
⊂ S5 be the torus constructed above, which is Legendrian

isotopic to T +
⊂ S5. Then the 0-filtration level of the Legendrian contact homology

of T 2 is generated by four pairs of short Reeb chords, two each in gradings 4, 6, 7,
and 9. These Reeb chords correspond to the double points of T 2 via the projection
of T 2 under π : S5

→ CP2.

Remark 3.17. The lifting theorem made it possible to compute the gradings of
Theorem 3.16 explicitly in Mathematica. By working in a single chart, we integrate
to define the lift, and compute a unitary Lagrangian frame to obtain the Maslov
index. The calculations, though long, are straightforward and therefore omitted.

Remark 3.18. While the Legendrian contact homology of the Harvey–Lawson
cone is beginning to emerge in the previous theorem, it does not take into account
the Reeb chords that wrap around the fiber. However, considering the gradings
of the short chords, it does appear that there is nontrivial homology in gradings 4
and 9.

3B. Lagrangian hypercube diagrams. Next, we show how to generalize the cal-
culations above to get knotted Legendrian tori in S5 (knotted in the sense that they
are the product of two Legendrian knots in R3; see [4]). The cones on these knotted
tori are Lagrangian cones in C3. Therefore we begin the study of diagrammatic
Lagrangian cones in C3.

In [4], Lagrangian hypercube diagrams were used to produce examples of Legen-
drian tori in the standard contact space, (R5, ξstd), using wxyzt-coordinates on R5
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Figure 1. Grid and cube diagrams for the trefoil, and a hypercube
diagram for a torus.

and letting ξstd = dt − ydw − xdz. But they can also be adapted to produce
Legendrian tori in S5 whose cones in C3 are Lagrangian. Before doing so, we
briefly recall some of the relevant material from [4] and refer the reader to that
paper for more details.

Lagrangian hypercube diagrams are closely related to grid, cube, and hypercube
diagrams. To construct a grid, cube, or hypercube diagram, one places markings
in a 2-, 3-, or 4-dimensional Cartesian grid, while ensuring that certain marking
conditions and crossing conditions hold (see Section 2 and 3 in [2], and Section 2
in [3]). In each case, the markings determine a link (see Figure 1). For a hypercube
diagram, there is an algorithm for constructing a Lagrangian torus associated to
the hypercube diagram, such as the one shown in the last picture in Figure 1 (see
Theorem 5.1 in [2]).

In order to define a Lagrangian hypercube diagram, we first need to define a
Lagrangian grid diagram:

Definition 3.19. A Lagrangian grid diagram given by γ : S1
→ R2 where γ (θ)=

(x(θ), y(θ)) is an immersed grid diagram G satisfying conditions (3-7) and (3-8):∫ 2π

0
y(θ)x ′(θ)dθ = 0, (3-7)∫ θ1

θ0

y(θ)x ′(θ)dθ ̸= 0 whenever γ (θ0)= γ (θ1) and 0< θ1 − θ0 < 2π. (3-8)

While any Lagrangian projection of a Legendrian knot satisfies (3-7) and (3-8),
it is usually difficult to determine from a given diagram in the plane whether or
not the diagram will lift to a Legendrian knot. The advantage with a Lagrangian
grid diagram is that one merely needs to add up the signed areas of a finite number
of rectangles to determine whether the diagram lifts to a Legendrian knot (see
Corollary 3.10, Scholium 3.12 and Corollary 3.13 in [4]).

A Lagrangian hypercube diagram takes two Lagrangian grid diagrams and uses
them to construct a product of two Legendrian knots (see [4] and [16]). To construct
a grid diagram, one places markings in a 2-dimensional grid, subject to a set of
marking conditions, and creates a knot diagram by drawing segments, joining



LIFTING LAGRANGIAN IMMERSIONS IN CPn−1 TO LAGRANGIAN CONES IN Cn 59

-stack -stack

-flat

together these flats
form a -stack

Figure 2. A schematic for displaying a Lagrangian hypercube
diagram. The outer w and y coordinates indicate the “level” of
each zx-flat. The inner z and x coordinates start at (0, 0) for each
of the nine zx-flats. With these conventions understood, one can
display xy-flats, xyz-stacks, wxz-stacks, wxy-stacks, etc. The
second picture is a schematic of a Lagrangian hypercube diagram.

the markings to create immersed loops. The process of creating a Lagrangian
hypercube diagram is similar: there is a set of marking conditions that determine
how to place markings in a 4-dimensional Cartesian grid, and the markings are
joined by segments, following an algorithm to create a simple loop. Before stating
the conditions, we give a few preliminaries.

A flat is any right rectangular 4-dimensional polytope with integer valued vertices
in C such that there are two orthogonal edges at a vertex of length n and the
remaining two orthogonal edges are of length 1. (Each flat is congruent to the
product of a unit square and an n × n square.) Moreover, the flat will be named
by the two edges of length n. Although a flat is a 4-dimensional object, the name
references the fact that a flat is a 2-dimensional array of unit hypercubes. For
example, an xy-flat is a flat that has a face that is an n × n square that is parallel to
the xy-plane. In a hypercube of size n = 3, one example of a xy-flat would be the
subset [0, 1] × [0, 3] × [0, 3] × [2, 3] (shown in Figure 2).

A stack is a set of n flats that form a right rectangular 4-dimensional polytope
with integer vertices in C in which there are three orthogonal edges of length n
at a vertex, and the remaining edge has length 1. (Each stack is the product of a
cube with edges of length n and a unit interval.) A stack is named by the three
edges of length n. An example of a wxz-stack in a hypercube of size 3 is the subset
[0, 3]× [0, 3]× [2, 3]× [0, 3] (shown at the top of Figure 2). Further examples of
flats and stacks may be found in Figure 2.
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A marking is a labeled point in R4 with half-integer coordinates in C . Unit
hypercubes of the 4-dimensional Cartesian grid will either be blank, or marked
with a W, X, Y, or Z such that the following marking conditions hold:

(1) Each stack has exactly one W, one X, one Y, and one Z marking.

(2) Each stack has exactly two flats containing exactly three markings in each.

(3) For each flat containing exactly three markings, the markings in that flat form
a right angle such that each ray is parallel to a coordinate axis.

(4) For each flat containing exactly three markings, the marking that is the vertex
of the right angle is W if and only if the flat is a zw-flat, X if and only if the
flat is a wx-flat, Y if and only if the flat is a xy-flat, and Z if and only if the
flat is a yz-flat.

Condition (4) rules out the possibility of either wy-flats or a zx-flats with three
markings (see Figure 2). As with oriented grid diagrams and cube diagrams, we
obtain an oriented link from the markings by connecting each W marking to an X
marking by a segment parallel to the w-axis, each X marking to a Y marking by a
segment parallel to the x-axis, and so on.

Let πxz, πwy : R4
→ R2 be the natural projections, projecting out the x, z and

w, y directions respectively. The projection πxz(C) produces an n ×n square in the
wy-plane. If we project the W and Y markings of the hypercube to this square as
well, the markings satisfy the conditions for an immersed grid diagram, which we
denote Gwy := (πxz(C), πxz(W), πxz(Y)), where W and Y are the sets of W and Y
markings, respectively. Similarly, we define Gzx := (πwy(C), πwy(Z), πwy(X )),
where Z and X are the sets of Z and X markings respectively.

In a grid diagram, one typically requires a crossing condition, namely that the
vertical segment crosses over the horizontal segment. For a Lagrangian hypercube
diagram, the crossing conditions are determined as follows. We require that the
two immersed grid diagrams, Gzx and Gwy , are Lagrangian grid diagrams (that is,
they satisfy conditions (3-7) and (3-8)). By Proposition 3.4 of [4], a Lagrangian
grid diagram lifts to a smoothly embedded Legendrian knot. Hence the crossing
conditions of the grid are determined by this lift. We require one additional product
lift condition that the pair Gzx and Gwy must satisfy. In the definition below, 1t (c)
is the length of the Reeb chord associated to the crossing c).

Definition 3.20. For two Lagrangian grid diagrams, Gwy and Gzx , let C = {ci }

be the crossings in Gzx and C′
= {c′

i } be the crossings in Gwy . The pair of grid
diagrams is said to satisfy the product lift condition if |1t (ci )| ̸= |1t (c′

i )| for all i, j.

We are now ready to define a Lagrangian hypercube diagram (see [4]):

Definition 3.21. A Lagrangian hypercube diagram, which we denote by H0 =

(C, {W,X ,Y,Z},Gzx ,Gwy), is a set of markings {W,X ,Y,Z} in C that satisfy
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Figure 3. Lagrangian hypercube diagram with unknotted Gzx and
Gwy and rotation class (1, 0).

the marking conditions, where Gwy and Gzx are Lagrangian grid diagrams, and
Gwy and Gzx satisfy the product lift condition.

The immersed torus specified by the Lagrangian hypercube diagram is the product
of Gzx and Gwy , determined as follows: place a copy of the immersed grid Gzx

at each zx-flat on the schematic that contains a pair of markings (shown in red on
Figure 3). Doing so produces a schematic with two copies of Gzx with the same
y-coordinates and two with the same w-coordinates. For each pair of copies sharing
the same w-coordinates, we may translate one parallel to the w-axis toward the
other. Doing so traces out an immersed tube connecting these two copies of Gzx .
Similarly, we may translate parallel to the y-axis to produce an immersed tube
connecting two copies of Gzx with the same y-coordinates. Since we are connecting
copies of Gzx in flats corresponding to the markings of Gwy , the tube will close to
produce an immersed torus.

3C. Lagrangian cones in C3 constructed from Lagrangian hypercube diagrams.
First, we show how to convert a grid diagram to a radial grid diagram. A set of
concentric circles {Ck}

n
k=1 of radius

√
k/(3n) will serve to represent the rows of our

grid, and a set of radial lines, determined by the list of angles,
{
k 2π

n

}n−1
k=0 , to serve

as columns. The counterclockwise direction is chosen to correspond to the positive
x-direction in the original grid, and the outward pointing radial direction is chosen
to correspond to the positive y-direction. Moreover, the radii of the concentric
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Figure 4. Converting a 5 × 5 Lagrangian grid diagram to a radial
Lagrangian grid diagram.

circles are chosen so that each annular band has area π
3n and consequently, each

cell, as shown in Figure 4, has equal area (in particular, each cell has area 1
n ·

π
3n ).

For a given marking in row i and column j, we place it in the radial grid at
the intersection of the circle Ci with the radial line segment determined by the
angle j 2π

n to obtain a radial grid diagram. Join the markings in the radial grid
diagram to match the original grid diagram (see Figure 4).

Remark 3.22. Notice that while the markings of the oriented grid diagram are
placed in the cells of the grid, the markings of the radial grid diagram are placed at
the intersections of the grid lines. This is just a shift of the markings by

(
−

1
2 ,−

1
2

)
.

Suppose that Ĝx1 y1 and Ĝx2 y2 are radial grid diagrams constructed (as above)
from Lagrangian grid diagrams Gx1 y1 and Gx2 y2 . We can define an immersion
f : T 2

→ B2 by letting γ1 : θ1 7→ (x1(θ1), y1(θ1)) and γ2 : θ2 7→ (x2(θ2), y2(θ2))

be the two loops corresponding to the radial grid diagrams Ĝx1 y1 and Ĝx2 y2 .
We wish to lift f to a Legendrian torus in S5 using Theorem 2.2, but to do so, it

must first be smoothed. This may be remedied by following a smoothing procedure
as described in Theorem 3.9, Corollary 3.10, Scholium 3.12, and Corollary 3.13
of [4], and noting that the integral used to define the lift in Theorem 2.2 results in
a net area calculation here, just as it was in [4]. To see this, observe that for a path
that follows a radial segment in one of the grids, the change in t is 0. For a path that
follows a circular arc in one of the grids, the contribution to the change in t is given
by ar2 where a is the subtended angle of the arc (positive if the segment is oriented
counterclockwise and negative otherwise), and r is the radius of the arc. That is to
say, the magnitude of the change in t along such an arc is twice the area of the sector
it bounds (and positive if the arc run counterclockwise, and negative otherwise).
Since the radial grid is constructed so that every cell has equal area, the proofs of
Theorem 3.9, Corollary 3.10, Scholium 3.12, and Corollary 3.13 in [4] may be easily
adapted to this setting. Combining this with Theorem 2.2 we obtain the following:
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Figure 5. A pair of loops that give rise to a Lagrangian cone.

Theorem 3.23. Let Ĝx1 y1 and Ĝx2 y2 be radial grid diagrams constructed from
Lagrangian grid diagrams Gx1 y1 and Gx2 y2 , and let γ1 : θ1 7→ (x1(θ1), y1(θ1))

and γ2 : θ2 7→ (x2(θ2), y2(θ2)) be the immersed loops defined by these radial grid
diagrams. Then the immersed torus f : T 2

→ B2,

f (θ1, θ2)= (x1(θ1), y1(θ1), x2(θ2), y2(θ2),

√
1 − x2

1 − y2
1 − x2

2 − y2
2 , 0),

lifts to an immersed Legendrian torus f̃ : T 2
→ S5

⊂ C3,

f̃ (θ1, θ2)= ei t (θ1,θ2)(x1(θ1), y1(θ1), x2(θ2), y2(θ2),

√
1 − x2

1 − y2
1 − x2

2 − y2
2 , 0),

whose cone in C3 is Lagrangian.

Consider the example shown in Figure 5. The dark shaded region of the first
diagram has area 3 ·

π
75 , as does the light shaded region. However, if we orient

the two regions, using the orientation of the knot along the boundary of each, we
see that the two regions have opposite orientation. The result of this is that when
computing the change in t , the contributions of each region will have opposite sign.
Since each contribution is equal in magnitude, the total change in t when traversing
the entire knot is 0. Moreover, observe that the difference in the t coordinates at the
crossing is 3 ·

2π
75 . Similarly, one can see that the total change in t for the second grid

diagram is 0, and that the difference in the t coordinates at each crossing is 2 ·
2π
75 .

Remark 3.24. In general, beginning with two Lagrangian grid diagrams, converting
to radial grid diagrams, and lifting, one produces an immersed torus, and hence an
immersed Lagrangian cone. To get an embedded torus, and hence an embedded
Lagrangian cone, one must check to see that the product lift condition is satisfied
by the pair of Lagrangian grid diagrams (see Section 4 of [4]). This amounts to
checking that condition (2) of Theorem 2.2 is satisfied. The pair of radial grid
diagrams shown in Figure 5 satisfies the product lift condition, as one may check.
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Figure 6. A 7 × 7 radial Lagrangian grid, with the associated grid
diagram from which it is constructed.

Remark 3.25. In Proposition 3.4 of [4] it was shown that the immersion determined
by a Lagrangian grid diagram could be smoothed in such a way as to ensure that
the lift of the smoothed immersion is C0-close to the lift of the original immersion,
and that any two smoothings, sufficiently close to the original immersion, would
have Legendrian isotopic lifts. The proof of that proposition depended only on the
fact that the lift was determined by a net-area calculation. Since the same is true
in this setting, the proof may be adapted to this situation, to produce a smoothly
embedded Lagrangian cone.

The family of examples produced here is specific to the case n = 3, but only
because the Lagrangian hypercube diagrams are constructed, at this time, only in
dimension 4. Yet, it is clear that Lagrangian hypercube diagrams may be generalized
to produce Lagrangian immersions f : T n−1

→ Bn−1.

3D. Examples constructed from radial hypercube diagrams. In the previous ex-
ample, beginning with a pair of Lagrangian grid diagrams meant that for any loop
on the immersed torus in B2, in the lift, the net change in t is 0. However, this is
more restrictive than necessary, since we still obtain a well-defined lift provided
that the net change in t along any loop downstairs is an integer multiple of 2π . In
fact, we may relax the conditions of the previous example a bit more, as follows.

Let Gx1 y1 and Gx2 y2 be two grid diagrams, and construct radial grid diagrams
Ĝx1 y1 and Ĝx2 y2 by placing markings as in the previous example. However, to
obtain an immersed loop from the diagram, we follow a slightly different procedure.
Along each radial column, join the markings as in the original grid diagram. In
each circular row, there are two arcs oriented from X to Y. Choose one of the two
oriented arcs in each row. Figure 6 shows one example of a grid diagram, with a
particular choice of connections made in each row. Thus to a given grid diagram of
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Figure 7. A pair of 7 × 7 radial grid diagrams that give rise to a
Lagrangian cone.

size n, there are 2n distinct, immersed loops that correspond to it by following this
procedure.

Theorem 3.26. Let Ĝx1 y1 and Ĝx2 y2 be radial grid diagrams and let

γ1 : θ1 7→ (x1(θ1), y1(θ1)) and γ2 : θ2 7→ (x2(θ2), y2(θ2))

be the immersed loops defined by these radial grid diagrams, together with a choice
of oriented circular arcs.

Suppose that
∑n

i=1 air2
i = 2πk1, where ai is the angle subtended by the chosen

arc in row i of Ĝx1,y1 , ri is the radius of the corresponding circle, and k1 ∈ Z.
Similarly assume that

∑n
i=1 bir2

i = 2πk2, where bi is the angle subtended by the
chosen arc in row i of Ĝx2,y2 , ri is the radius of the corresponding circle, and
k2 ∈ Z. Then the immersed torus f : T 2

→ B2,

f (θ1, θ2)= (x1(θ1), y1(θ1), x2(θ2), y2(θ2),

√
1 − x2

1 − y2
1 − x2

2 − y2
2 , 0),

lifts to an immersed Legendrian torus f̃ : T 2
→ S5

⊂ C3,

f̃ (θ1, θ2)= ei t (θ1,θ2)(x1(θ1), y1(θ1), x2(θ2), y2(θ2),

√
1 − x2

1 − y2
1 − x2

2 − y2
2 , 0),

where t is defined as in Theorem 2.2, and whose cone in C3 is Lagrangian.

Proof. The proof follows from Theorem 2.2 together with the observations of
Theorem 3.23 that the change in t may be interpreted as a net-area calculation.
The condition that

∑n
i=1 air2

i = 2πk1 and
∑n

i=1 bir2
i = 2πk2 guarantees that the

net-area of the loops determined by Ĝx1 y1 and Ĝx2 y2 , is a multiple of 2π and hence,
each loop lifts to a loop that wraps around the fiber k1 or k2 times. □
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The two radial grid diagrams shown in Figure 7 determine an immersion that
lifts to a torus whose cone is Lagrangian. A net-area calculation shows that the
cone is embedded, since the two diagrams satisfy the product lift condition (see
Section 4 of [4]). Moreover, the lift has the property that each diagram lifts to a
loop that wraps once around the fiber.

Remark 3.27. The pair of grid diagrams chosen at the beginning determine a
structure, similar to a hypercube diagram, which we will refer to as a radial
Lagrangian hypercube diagram.

Remark 3.28. Remark 3.25 applies in this situation as well, allowing us to produce
smooth Lagrangian cones using radial Lagrangian hypercube diagrams.

In light of Example 3.1, it is natural to ask which Lagrangian hypercube diagram
gives rise to the Harvey–Lawson cone. Note that the immersion given in Example 3.1
does not readily admit the structure of a Lagrangian hypercube diagram. It has
only two double point circles, neither of which intersect, while any Lagrangian
hypercube diagram must contain double point circles that intersect (since each
Lagrangian grid diagram used to define a Lagrangian hypercube diagram must
contain crossings, each of which produces a double point circle in the product).
Nevertheless, it seems likely that there is a Lagrangian hypercube representation of
the Harvey–Lawson cone, hence:

Conjecture 3.29. There exists a radial Lagrangian hypercube diagram, whose
associated Lagrangian cone in C3 is isotopic to the Harvey–Lawson cone.

While we do not address the construction of the perturbation of a Lagrangian
hypercube diagram needed to ensure that the corresponding torus in CP2 has only
isolated transverse double points, techniques similar to those of Section 3 paired
with the techniques described by Peter Lambert-Cole in [16; 17] can be used to do
exactly that.

Lastly, while a radial Lagrangian hypercube diagram will not lift to a special
Lagrangian cone, it may lift to a Lagrangian cone which is isotopic to a special
Lagrangian cone. This leads us to pose the following question:

Question 1. What conditions on a radial Lagrangian hypercube diagram ensure
that the Lagrangian cone to which it lifts is isotopic to a special Lagrangian cone?
Are there any obstructions?

4. The lifting theorem

While Theorem 2.2 applies only to immersions into a unit ball, Bn−1
⊂ Cn−1,

thought of as a single chart of CPn−1, it can be generalized to any immersion
f :6n−1

→ CPn−1 so that the lifting process works in much the same way as it
does in Theorem 2.2. This is the content of the lifting theorem below. We build
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up to the lifting theorem through a series of computationally useful lemmas and
definitions.

Recall that the symplectic form associated with the Fubini–Study metric is, in
coordinates z = (z1, . . . , zn) of πC∗ : Cn

\ {0} → CPn−1, given by

π∗

C∗(ωF S)=
i
2

·
1

|z|4

n∑
k=1

∑
j ̸=k

(z j z j dzk ∧ dzk − z j zkdz j ∧ dzk). (4-1)

The form ωF S is the form induced upon CPn−1 after quotienting by the invariant
C∗ action. One can check that ∫

CP1
ωF S = π

and therefore 1
π
ωF S is an integral symplectic form on CPn−1. Furthermore, for

i : S2n−1
→ Cn, it is well known that ωF S is the unique form such that i∗(ω0) =

π∗(ωF S) where π : S2n−1
→ CPn−1 is the Hopf fibration and ω0 is the standard

symplectic form on Cn, i.e., for zi = xi + iyi ,

ω0 =
i
2

n∑
i=1

dzi ∧ dzi =

n∑
i=1

dxi ∧ dyi .

As mentioned above, the usual homogeneous, holomorphic coordinate system
on CPn−1 is not suitable for our purposes. Instead, we use the hemispherical
coordinate system:

Definition 4.1. Let Bi ⊂ Cn−1 be the open unit ball and define coordinate charts
ψi : Bi → CPn−1, j = 1, . . . , n, given by

ψi (z1, . . . , zi−1, zi+1, . . . , zn)= [z1 : · · · : zi−1 :

√
1 − |z|2 : zi+1 : · · · : zn].

The charts, (Bi , ψi ) are called hemispherical charts.

Note that we are numbering the zi ’s in terms of Cn instead of Cn−1. For example,
for n =3, z ∈ B2 ⊂C2 is defined by z = (z1, z3) and is mapped to CP3

=C3
\{0}/C∗

as ψ2(z1, z3) =
[
z1 :

√
1 − |z|2 : z3

]
where |z|2 = |z1|

2
+ |z3|

2. We will often use
the hat symbol to denote removing a term. Hence z = (z1, z3) could also be written
as z = (z1, ẑ2, z3) to simplify notation.

Also, we use Ui to refer to the image of Bi in CPn−1, i.e., Ui = ψi (Bi ). The
name of the system obviously follows from the fact that the image of each chart is
the image of a hemisphere in S2n−1

⊂ Cn via the Hopf fibration π : S2n−1
→ CPn−1.

The hemispherical charts ψi are not holomorphic with respect to the natural
complex structure on CPn−1. However, they do have one very nice property: the
ψi ’s are Darboux charts on CPn−1.

Lemma 4.2. If ω0 is the standard symplectic form on B ⊂ Cn−1 then

ω0 = ψ∗

i (ωF S).
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Proof. For n = 2, observe that in homogeneous coordinates, (4-1) translates into

ω̃F S =
i

2|z|4
(z2z2dz1 ∧ dz1 − z2z1dz2 ∧ dz1 + z1z1dz2 ∧ dz2 − z1z2dz1 ∧ dz2).

Observe that in B1, z1 =
√

1 − |z2|2. Using this observation, and changing to real
coordinates, observe that in hemispherical coordinates, ω̃F S = dx2 ∧ dy2, which is
ω0 in the chart B1. The general calculation is similar. □

Before moving on, we can characterize the sets Ui and point out that theψi ’s are a
chart system (all points of CPn−1 are in at least one chart). Let [z1 : · · · : zn]∈CPn−1.
At least one coordinate is nonzero, say zi ̸= 0. In the preimage of the quotient map
for CPn−1

= (Cn
\ 0)/C∗, the point (z1, . . . , zn) is equivalent to

zi

|zi ||z|
(z1, . . . , zn)

where |z| =
√

|z1|2 + · · · + |zn|
2. Therefore [z1 : · · · : zn] ∈ Ui and

Ui = {[z1 : · · · : zn] | zi ̸= 0}.

Thus, the hemispherical chart system allows us to work with f (6)|Ui ⊂ Bi using
the standard symplectic form ω0.

Hemispherical charts also trivialize the Hopf fibration over CPn−1. In the diagram

Bi × S1 S2n−1 Cn

Bi CPn−1

9i

π πS1

ψi

Bi × S1 is a trivialization of the S1-bundle, π : S2n−1
→ CPn−1, given by

9i (z, ei t)= ei t(z1, . . . , zi−1,
√

1 − |z|2, zi+1, . . . , zn) ∈ S2n−1
⊂ Cn.

The diagram commutes and 9i gives a trivialization of the Hopf fibration over
Ui ⊂ CPn−1.

As mentioned before, there is a natural contact form α on the unit sphere S2n−1

in Cn. Given z = (z1, . . . , zn)∈ Cn where zi = xi +iyi and ω0 =
i
2

∑n
i=1 dzi ∧dzi =∑n

i=1 dxi ∧ dyi , the form on Cn ,

α0 =
1
2

( n∑
i=1

xi dyi − yi dxi

)
,

is a contact form when restricted to S2n−1. Set α = α0|S2n−1 . Equipped with this
contact form, (S2n−1, α) is a contact manifold.

We collect a few facts about α, partly to set notation for the reader, and partly to
justify choices and conventions used throughout this paper.
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Lemma 4.3. For z = (z1, . . . , zn) ∈ Cn
\ 0 where zi = xi + iyi , let

Nz = x1
∂

∂x1
+ y1

∂

∂y1
+ · · · + xn

∂

∂xn
+ yn

∂

∂yn

be the outward pointing normal vector field for any sphere of radius r > 0, centered
at the origin in R2n, and

Tz = x1
∂

∂y1
− y1

∂

∂x1
+ · · · + xn

∂

∂yn
− yn

∂

∂xn

be the vector field that generates the Hopf fibration π : S2n−1
→ CPn−1. Then the

following are facts about α0 and the contact form α:

(1) The form α0 is equal to ι 1
2 Nz
ω0 when |z| = 1.

(2) The form α0 also satisfies α0(kTz)=
k
2 |z|2 for k a constant, and ιTz dα0 =

ιTzω0 = −
∑n

i=1(xi dxi + yi dyi ). For any vector v ∈ Tz S2n−1
r for a sphere of

radius r = |z|,
ιTz dα0(v)= −⟨Nz, v⟩ = 0,

where ⟨ , ⟩ is the usual inner product on R2n. Therefore the vector field R,
defined by R = 2Tz when restricted to |z| = 1, is the Reeb vector field of α, i.e.,
α(R)= 1 and dα(R, ·)= 0.

(3) Since i∗(ω0)= π∗(ωF S) and dα0 = ω0, i
π
α is the connection one-form of the

integral cohomology class
[ 1
π
ωF S

]
.

We use α for η in Theorem 2.1 to find 9∗

i (α) in the trivialization Bi × S1 with
coordinates (z, ei t).

Lemma 4.4. Let B j ⊂ Cn−1 be the unit ball with coordinates

z = (z1, . . . , z j−1, z j+1, . . . , zn).

For a chart ψ j : B j → CPn−1 and trivialization 9 j : B j × S1
→ S2n−1 given by

9 j (z, ei t)= ei t(z1, . . . , z j−1,
√

1 − |z|2, z j−1, . . . , zn),

9∗

j (α)=
1
2(dt + 2α0),

where α0 is the form defined above on B j ⊂ Cn−1.
In polar coordinates,

9∗

j (α)=
1
2

(
dt + r2

1 dθ1 + · · · + r̂2
j dθ j + · · · + r2

n dθ j
)
.

Note that the α0 defined on B j has no z j term of the form (x j dy j − y j dx j )

since z ∈ B j has coordinates z = (z1, . . . , ẑ j , . . . , zn). The proof of the lemma is a
calculation, and left to the reader.
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Thus we can take τ in Theorem 2.1 to be the 1-form −2α0 ∈�1(B j ). In each
chart B j ×S1, label τ j =−2α0; note that the transition map9k j : B j ×S1

→ Bk ×S1

takes
9∗

k j
( 1

2(dt − τk)
)
=

1
2(dt − τ j ). (4-2)

This result follows from the next lemma.

Lemma 4.5. Let B j be the unit ball in Cn−1 with coordinates

z = (z1, . . . , z j−1, z j+1, . . . , zn),

and let the function 9 j : B j × S1
→ S2n−1

⊂ Cn be given by 9 j (z, ei t) =

ei t(z1, . . . , z j−1,
√

1 − |z|2, z j+1, . . . , zn) where |z|= |z1|
2
+· · ·+|̂z j |

2+· · ·+|zn|
2.

For k ̸= j, the map

9k j : B j \ {zk = 0} × S1
→ Bk \ {z j = 0} × S1

defined by 9k j =9−1
k ◦9 j is given by the map

9k j (z, ei t)

=

(
z1

zk

|zk |
, . . . , zk−1

zk

|zk |
, |zk |, zk+1

zk

|zk |
,

. . . , z j−1
zk

|zk |
,

zk

|zk |

√
1 − |z|2, z j+1

zk

|zk |
, . . . , zn

zk

|zk |
, ei t zk

|zk |

)
In polar coordinates,

9k j (r1,θ1, . . . , r̂ j , θ̂ j , . . . ,rn,θn, t)=(
r1,θ1−θk,r2,θ2−θk, . . . ,r j−1,θ j−1−θk,

√
1−

∑n

i=1,i ̸= j
r2

i ,

−θk,r j+1,θ j+1−θk, . . . ,rn,θn−θk, t+θk

)
Proof. We show the calculation for B2, B3 ⊂ C3. The general case is similar. The
maps

92 : B2 × S1
→ S7

⊂ C4,

92(z1, z3, z4, ei t)= ei t(z1,
√

1 − |z|2, z3, z4),

and
93 : B3 × S1

→ S7
⊂ C4,

93(w1, w2, w4, ei t)= ei t(w1, w2,
√

1 − |w|2, w4)

give rise to 932 : B2 \ {z3 = 0} × S1
→ B3 \ {w2 = 0} × S1 via 9−1

3 ◦92. By
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multiplying by 1 appropriately,

92(z1, z3, z4, ei t)

= ei t(z1,
√

1 − |z1|2 − |z3|2 − |z4|2, z3, z4
)

= ei t
(

z3

|z3|

z3

|z3|

)(
z1,

√
1 − |z1|2 − |z3|2 − |z4|2, z3, z4

)
= ei t

(
z3

|z3|

)(
z1

z3

|z3|
,

z3

|z3|

√
1 − |z1|2 − |z3|2 − |z4|2, z3

z3

|z3|
, z4

z3

|z3|

)
=93(w1, w2, w4, ei t ′)

wherew1 = z1 z3/|z3|, w2 = z3/|z3|
√

1 − |z|2, w4 = z4 z3/|z3|, and ei t ′
=ei t z3/|z3|.

One can check that (w1, w2, w4, ei t) ∈ B3 \ {w2 = 0} and ei t z3/|z3| ∈ S1 and√
1 − |w1|2 − |w2|2 − |w4|2 = |z3| as desired. □

Remark 4.6. The formula for 9k j also gives the formula for ψk j : B j \ {zk = 0} →

Bk \ {z j = 0} for ψk j = ψ−1
k ◦ψ j by looking at the z coordinates of (z, ei t).

In summary, given a Lagrangian immersion f :6→ CPn−1 and V j = f (6)∩B j ,
we can work with V j ⊂ B j using

• the standard symplectic form ω0 on B j ⊂ Cn−1,

• the standard 1-form τ j = −2α0 on B j ⊂ Cn−1,

and patch the V j ’s together using the transition maps ψk j : B j → Bk given by
ψk j = ψ−1

k ◦ψ j .
In practice, this allows us to do integration and other calculations in the B j ’s

using standard forms in each instead of working with homogeneous coordinates
and ωF S in CPn−1.

This chart system also gives us new ways to build examples of Lagrangian
immersions by first working with piecewise linear submanifolds in each ball B j ,
pasting the pieces together, and then smoothing the result (as is done with Lagrangian
hypercubes in [2] and Section 3 of [4]).

4A. The lifting theorem. The lifting theorem puts the separate pieces in the previ-
ous sections together into one result. First, we need an explicit way to calculate
integrals along paths in f (6).

Let f :6→ CPn−1 be a Lagrangian immersion and let γ : I →6 be a path. In
order to define the lift, we need to define a map t : I → R/2πZ, which we do in
pieces. Split the interval I into subintervals

I =

m−1⋃
k=0

[sk, sk+1]

where 0 = s0 < s1 < · · · < sm−1 < sm = 1 such that f (γ ([sk, sk+1])) ⊂ B j for
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some j ∈ {1, . . . , n} (after identifying B j with U j using ψ j ). Index the B j ’s
by jk so that f (γ ([sk, sk+1])) ⊂ B jk where jk is the index of the chart in which
γ ([sk, sk+1]) is contained. Let xk = γ (sk) so that x0 = γ (s0) and xm = γ (sm). Also,
for convenience, use the notation (z)k to stand for the zk coordinate of z ∈ B j . (If
z ∈ B3 ⊂ C3 such that z = (z1, z2, z4) then (z)4 = z4.)

Since f (γ ([s0, s1])) ⊂ B j0 , we can integrate τ j0 = −2α0 (see (4-2)) along the
path f (γ ([s0, s1])). Define t0 : [s0, s1] → R/2πZ by

t0(s)=

(∫ s

0
τ j0(( f ◦ γ )′(u)) du

)
mod 2π,

where t0(0)= 0.
For s ∈ [s0, s1] and t (0)= a, we can write

t (s)= t0(s)+ a.

The point ( f (γ (s1)), ei t (s1))∈ B j0×S1 also lives as a point9 j1 j0( f (γ (s1)), ei t (s1))∈

B j1 × S1. Define 9 j1 j0(t (s1)) ∈ R/2πR to be the argument of the S1 component of
this map in B j1 × S1. We can also define the point ψ j1 j0( f (γ (s1)) ∈ B j1 as the B j1
component of B j1 × S1 (see Remark 4.6).

Lemma 4.7. When t (sk) is defined for ( f (γ(sk)),eit(sk))∈Bjk−1 , then9jk jk−1(t(sk))=

t (sk)+ arg(ψ jk jk−1( f (γ (sk))) jk ).

Proof. See Lemma 4.5. □

We can now continue the integration in B j1 : Define t1 : [s1, s2] → R/2πZ by
t1(s1)= 0 and

t1(s)=

(∫ s

s1

τ j1(( f ◦ γ )′(u)) du
)

mod 2π.

Hence we can write t (s) for s ∈ [s1, s2] as

t (s)= t1(s)+9 j1 j0(t0(s1)+ a).

Induct on k to integrate the τ jk ’s over the entire path:

Definition 4.8. Let [0, 1]
γ

−→6
f

−→ CPn−1 and suppose there exists an increasing
sequence 0 = s0 < s1 < · · ·< sm−1 < sm = 1 such that f (γ ([sk, sk+1]))⊂ B jk for
jk ∈ {1, . . . , n} and f (γ (sk)) ̸= 0 and f (γ (sk+1)) ̸= 0 for all 0 ≤ k ≤ m. Assume
t (0)= a and define the lifting integral to be

0

∫
γ

τ :=[
tm−1(sm)

+9 jm−1 jm−2

(
· · ·

(
t3(s4)+9 j3 j2

(
t2(s3)+9 j2 j1

(
t1(s2)+9 j1 j0(t0(s1)+a)

))))]
mod2π.
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Remark 4.9. See Example 5.1 for an example of a calculation of the lifting integral
for the trivial cone.

In practice we usually need only m = 1 or m = 2 for most integrals. Also, since

τ jk = −

n∑
i=1, i ̸= jk

(xi dyi − yi dxi ) and ωF S|B jk
=

n∑
i=1, i ̸= j

dxi ∧ dyi ,

the calculations may be done in each chart. In summary, we obtain the lifting
theorem, which says that if

(1) 0
∫
γ
τ = 0 mod 2π for all [γ ] ∈ H1(6; Z), and

(2) for all distinct points x1, . . . , xk ∈ 6 such that f (x1) = f (x j ) for all j ≤ k,
and a choice of path γ j from x1 to x j in 6 for 2 ≤ j ≤ k, the set{(

0
∫

f (γ j )
τ
)

mod 2π | 2 ≤ j ≤ k
}

has k − 1 distinct values, none of which are equal to 0,

then f : 6 → CPn−1 lifts to an embedding f̃ : 6 → S2n−1 such that the image
(the lift) 6̃ is a Legendrian submanifold of (S2n−1, α). Furthermore, the cone c6̃
is Lagrangian in Cn with respect to the standard symplectic structure ω0.

5. Legendrian contact homology generators of the trivial Lagrangian cone

Example 5.1. We already saw in Example 1.6 how to obtain a trivial (special)
Lagrangian cone, but, we can also construct this example using the lifting theorem,
as a lift of a map f : Sn−1

→ CPn−1.
Recall that the trivial cone is given by the map f̃ :Rn

→Cn where (x1, . . . , xn) 7→

(x1η1, . . . , xnηn), and η = (η1, . . . , ηn) is a complex vector with η j ̸= 0 for all j.
Clearly the trivial cone is a lift of the Lagrangian immersion f : Sn−1

→ CPn−1

given by f (x1, . . . , xn)= [x1η1 : · · · : xnηn].
Observe that the set {(x1, . . . , xn) ⊂ Rn

|
∑n

k=1 |xkηk, j |
2

= 1} is an (n−1)-
dimensional sphere, Sn−1, for any choice of complex vector (η1, j , . . . , ηn, j ) (the
reason for the j -subscript will be apparent shortly). Moreover, we may cover Sn−1 by
charts of the form φ±

j : V ±

j → Sn−1 where V ±

j =
{
(x1, . . . , x j−1, x̂ j , x j+1, . . . , xn)∈

Rn−1
|
∑n

k=1, k ̸= j |x jηk, j |
2 < 1

}
, and the sign indicates which hemisphere is being

covered. Within each chart, after identifying V ±

j with φ±

j (V
±

j ), we may write f (x)
as f ±

j (x) where f ±

j : V ±

j → CPn−1 is given by

f ±

j (x1, . . . , x j−1, x̂ j , x j+1, . . . , xn)=[
x1η1, j : · · · : x j−1η j−1, j :

±

√
1−

∑n

k=1,k ̸= j
|xkηk, j |

2 : x j+1η j+1, j : · · · : xnηn, j

]
,

where ηk, j = ηk x jη j/|x jη j |.
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Since H1(S2,Z) is trivial, the first condition of the lifting theorem is automatically
satisfied. Moreover, f ±

i is clearly an embedding on V ±

i , so within each chart the
second condition is satisfied. However, observe that after patching these maps
together, the antipodal points of Sn−1 are the only ones identified by f (in fact, the
image of f is a copy of RPn−1). To see that the antipodal points are separated in
the lift, consider what happens when n = 3 and η = (1, 1, 1). In that case, we can
lift along a path γ from the origin of V +

3 (the “north pole”) to the origin of V −

3
(the “south pole”), and running diametrically through the origin of V +

1 . Notice that
integrating τ along γ contributes 0 to the lift within each chart. If we transition
from V +

3 to V +

1 at the point (1/
√

2, 0, 1/
√

2) and from V +

1 to V −

3 at the point
(1/

√
2, 0,−1/

√
2) then we pick up a factor of −1, or eiπ, on the S1-factor from

the transition map 931 (the second transition map). Hence,

0

∫
γ

τ = π.

The general calculation is similar. Hence, the lifting theorem guarantees the exis-
tence of an embedded lift, f̃ : Sn−1

→ S2n−1
⊂ Cn such that the cone is Lagrangian

in Cn. Moreover, our discussion above clearly identifies this as a Lagrangian
Rn

⊂ Cn, which is the trivial cone.
The trivial cone intersects S2n−1 in a Legendrian (n−1)-sphere that projects

down to a copy of RPn−1 via a 2-to-1 map (the quotient by the antipodal map).
This is inconvenient when one wishes to compute Legendrian contact homology,
because one needs isolated transverse double points. However, we can perturb f
through a family of functions fϵ so that for some ϵ the image of the lift, f̃ϵ , is a
copy of Sn−1 having only transverse double points when projected down to CPn−1.

For simplicity, we write down the perturbation in the case where n = 3 and
η = (1, 1, 1). Choose ϵ ≥ 0 and perturb each hemisphere of S2 as follows:

f ±

1,ϵ(x2, x3)=

[
±e±iϵ

√
1−x2

2−x2
3

√
1 − x2

2 − x2
3 : eiϵx2 x2 : eiϵx3 x3

]
,

f ±

2,ϵ(x1, x3)=

[
eiϵx1 x1 : ±e±iϵ

√
1−x2

1−x2
3

√
1 − x2

1 − x2
3 : eiϵx3 x3

]
,

f ±

3,ϵ(x1, x2)=

[
eiϵx1 x1 : eiϵx2 x2 : ±e±iϵ

√
1−x2

1−x2
2

√
1 − x2

1 − x2
2

]
.

Observe that the perturbations in each chart are consistent with the transition maps.
To determine the (transverse) intersections, and hence the Reeb chords, we begin
with the observation that all double points are antipodal points. We leave the proof
as an exercise for the reader.

Theorem 5.2. Let fϵ : S2
→ CP2 be the map determined by patching together

f ±

i,ϵ : V ±

i → CP2 for i = 1, 2, 3. Let (x1, x2, x3), (y1, y2, y3) ∈ S2
⊂ R3 be two

points such that fϵ(x1, x2, x3)= fϵ(y1, y2, y3). Then (x1, x2, x3)= −(y1, y2, y3)).
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To determine the double points when ϵ > 0, assume ±(x1, x2, x3) map to a
double point, fϵ(x1, x2, x3). If xi ̸= 0 for all i , then without loss of generality
we may assume x1 > 0. Using the charts V +

1 and V −

1 , we see that f +

1,ϵ(x2, x3)=

f −

1,ϵ(−x2,−x3), and hence[
eiϵ

√
1−x2

2−x2
3

√
1 − x2

2 − x2
3 : eiϵx2 x2 : eiϵx3 x3

]
=

[
−e−iϵ

√
1−x2

2−x2
3

√
1 − x2

2 − x2
3 : −e−iϵx2 x2 : −e−iϵx3 x3

]
. (5-1)

Cross-multiplying in the first two homogeneous coordinates, we see that

eiϵ(x2−
√

1−x2
2−x2

3 )
√

1 − x2
2 − x2

3 = eiϵ(−x2+
√

1−x2
2−x2

3 )
√

1 − x2
2 − x2

3 .

If 1 − x2
2 − x2

3 ̸= 0, then for small ϵ we may equate the arguments of the exponen-
tials, to obtain x2 > 0 and 2x2

2 + x2
3 = 1. Similarly, cross-multiplying in the first and

third homogeneous coordinates, and applying the same reasoning, we obtain x3 > 0
and x2

2 + 2x2
3 = 1. Solving this system, and recalling that x1 =

√
1 − x2

2 − x2
3 , we

obtain that x1 = x2 = x3 = ±1/
√

3.
If 1 − x2

2 − x2
3 = 0 and x2 = 0 then we get a double point at [0 : 0 : 1]. Similarly,

if 1 − x2
2 − x2

3 = 0 and x3 = 0 then we get a double point at [0 : 1 : 0]. Finally,
assume x1 = 0 and neither x2 nor x3 is zero. In this case, working in the charts V +

3
and V −

3 we obtain[
0 : eiϵx2 x2 : eiϵ

√
1−x2

2

√
1 − x2

2

]
=

[
0 : −e−iϵx2 x2 : −e−iϵ

√
1−x2

2

√
1 − x2

2

]
.

For small ϵ, we may use techniques similar to the previous case to obtain that
x2 = x3 = ±

1
√

2
. A similar discussion applies if 1− x2

1 − x2
2 = 0 or 1− x2

1 − x2
3 = 0.

From the discussion above, we obtain the following theorem.

Theorem 5.3. Let S ⊂ S5 be the Legendrian 2-sphere obtained from intersecting
the trivial cone with S5 and then perturbing it via Legendrian isotopy to the image
of f ±

i,ϵ for i ∈ {1, 2, 3}, for some ϵ > 0. The projection π : S5
→ CP2 has 7

transverse double points: ±(1, 0, 0), ±(0, 1, 0), ±(0, 0, 1), ±
(
1/

√
2, 1/

√
2, 0

)
,

±
(
1/

√
2, 0, 1/

√
2
)
, ±

(
0, 1/

√
2, 1/

√
2
)
, and ±

(
1/

√
3, 1/

√
3, 1/

√
3
)
. Then the 0-

filtration level of the Legendrian contact homology of S is generated by 7 pairs of
short Reeb chords.

In summary, we have constructed a family of Lagrangian cones, all isotopic to
the trivial cone. However, for small ϵ > 0 our cones have the additional property
that the projection to CP2 has 7 transverse double points, while the trivial cone
(obtained by taking ϵ = 0) is a 2-to-1 cover of its projection to CP2.
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6. Legendrian submanifolds of S2n−1 as lifts of
Lagrangian submanifolds in CPn−1

The motivation of this paper is the study of Lagrangian cones given by lifting an
immersion into CPn−1 to an embedded Legendrian submanifold of S2n−1. However,
Theorem 2.2 and the lifting theorem provide a way to study Legendrian submanifolds
of S2n−1 on their own.

A lot of work has been done to study Legendrian knots in dimension 3, especially
in the standard contact R3 (see [11; 20; 21; 22; 23; 28]), and Joshua Sabloff studied
the Legendrian contact homology of knots in 3-dimensional circle bundles in [30].

Less is known about Legendrian submanifolds in higher dimensions, and much
of it only in the standard contact R2n+1 (see [4; 8; 9; 10]). In [29], Legendrian
submanifolds of circle bundles over orbifolds are considered, and in [1], the circle
bundle R4

× S1 is considered in depth, and related to the case where R4
× S1 is

identified with the Hopf bundle over a single chart of CP2 (the special case of
Theorem 2.2 in this paper).

Theorem 2.2 allows one to study Legendrian submanifolds of S2n−1 just as one
might study Legendrian submanifolds of R2n

× S1 or even the standard contact
R2n+1. As seen in Example 3.1, and Section 3C, the lifts function in much the same
way as one might lift an exact Lagrangian to a Legendrian knot in the standard
contact R2n+1, or the 1-jet space of a manifold.

Although Theorem 2.2 makes calculations simple, it fails to capture one of the
most basic examples: the Legendrian sphere corresponding to the intersection of the
trivial cone with S2n−1 (as observed in Example 5.1). The lifting theorem moves
the story forward, allowing one to consider immersions into CPn−1 that do not lie
in a single chart. It shows that the calculations are not much more difficult than they
are in the case of Theorem 2.2, because in each chart the calculations use standard
forms, and one need only to track how the lifting parameter t transitions from one
chart to the next. This leads us to ask the following question:

Question 2. Sabloff showed in [30] how to compute the DGA of Legendrian knots
in certain contact circle bundles over surfaces. In the context of Theorem 2.2 or
the lifting theorem, is there a similar combinatorial algorithm for computing the
Legendrian contact homology in higher dimensional circle bundles?

If such an algorithm can be found, one would expect the structure of a radial
Lagrangian hypercube diagram to provide a setting in which such calculations
would be simple, and could be automated on a computer.

7. Minimal and Hamiltonian Submanifolds

Special Lagrangian submanifolds, introduced by Harvey and Lawson in [13] have
been studied extensively due to their connection with mirror symmetry. Special
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Lagrangian cones in Cn can be studied via the equations that define in them in Cn, as
minimal Legendrians in S2n−1 (the link), or from the perspective of the correspond-
ing minimal Lagrangian submanifold of CPn−1 (see [14] and [15]). While many
examples have been studied, the difficulty in working with the special Lagrangian
conditions has led to some weaker conditions being studied in the hope of better
understanding special Lagrangians. In [26], the notion of Hamiltonian minimal
(H-minimal) Lagrangian submanifolds was introduced. A Lagrangian submanifold
in a Kähler manifold is said to be H-minimal if the volume is stationary under
compactly supported smooth Hamiltonian deformations (see [15]).

H-minimal Lagrangian cones in C2 were studied and classified by Schoen and
Wolfson in [31]. In particular they showed that only cones of Maslov index ±1 are
area minimizing. Moreover, they showed that if an immersed Lagrangian subman-
ifold of a Kähler–Einstein manifold is stationary for volume, it is automatically
minimal, and special Lagrangian in the Calabi–Yau case (see Lemma 8.2 of [31]).

It is already known that the trivial cone is H-minimal (see [18], [24], and [25]).
The Harvey–Lawson cone is also known to be strictly Hamiltonian stable, that is, the
second variation of the volume is nonnegative under every Hamiltonian deformation,
(see [6] and [18]), and it is known that any Hamiltonian stable, minimal Lagrangian
torus in CP2 is congruent to the Clifford torus (see [26], [27] and [33]).

Question 3. What are the conditions on a Lagrangian immersion into CPn−1 that
guarantee it lifts to an H -minimal Lagrangian cone?

Question 4. What are the conditions on Legendrian hypercube diagrams that
generate H -minimal Lagrangian cones?
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