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We give a new, conceptually simpler proof of the fact that knots in S3 with positive
L-space surgeries are fibered and strongly quasipositive. Our motivation for
doing so is that this new proof uses comparatively little Heegaard Floer-specific
machinery and can thus be translated to other forms of Floer homology. We
carried this out for instanton Floer homology in our article “Instantons and L-space
surgeries” and used it to generalize Kronheimer and Mrowka’s results on SU(2)

representations of fundamental groups of Dehn surgeries.

The hat version ĤF(Y ) of Heegaard Floer homology, which we will take with
coefficients in F = Z/2Z throughout, carries an absolute Z/2Z grading such that

χ(ĤF(Y, s)) =

{
1 if b1(Y ) = 0,

0 if b1(Y ) ≥ 1,
(1)

for all s∈Spinc(Y ) [13, Proposition 5.1]. Thus for any rational homology 3-sphere Y,
we have

dim ĤF(Y ) ≥ χ(ĤF(Y )) = |H1(Y ; Z)|.

A rational homology 3-sphere Y is an L-space if

dim ĤF(Y ) = |H1(Y ; Z)|.

Theorem 1 [8; 10; 15; 17]. If S3
r (K ) is an L-space for some rational slope r > 0,

then K is fibered and strongly quasipositive, and r ≥ 2g(K ) − 1.

All proofs of Theorem 1 in the literature use at least some of the following
tools: the doubly-filtered Heegaard Floer complex associated to a knot, the large
integer surgery formula, the (∞, 0, n)-surgery exact triangle for n > 1, and the
Spinc decomposition of ĤF(Y ) for Y a rational homology sphere. This presents
a major difficulty if one wishes to port this theorem to the instanton Floer setting,
where none of this machinery is available.
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Remark 2. A primary motivation for proving an analogue of Theorem 1 in the
instanton Floer setting in particular is that such an analogue can be used to prove
new results about the SU(2) representation varieties of fundamental groups of
3-manifolds obtained by Dehn surgeries on knots in the 3-sphere, about which
relatively little is known; see [4].

Remark 3. Some of the structure mentioned above is known to exist in monopole
Floer homology, though not enough of it to translate previous proofs of Theorem 1
to that setting. The new proof of Theorem 1 presented in this article (see below) can
be adapted directly to monopole Floer homology, with the caveat in Remark 4, to
give a proof of the monopole Floer analogue of Theorem 1 which does not rely on
an isomorphism between monopole Floer homology and Heegaard Floer homology.

Our goal here is to give a proof of Theorem 1 using instead: the (∞, 0, 1)-surgery
exact triangle, the blow-up formula for cobordism maps, the adjunction inequality
for cobordism maps, the Spinc decomposition of the maps associated to 2-handle
cobordisms, and Ozsváth and Szabó’s description of the contact invariant c+(ξ) as
the image of a certain class under the 2-handle cobordism map

HF+(−S3
0(K )) → HF+(−S3),

where K is a fibered knot supporting the contact structure ξ on S3. The first four of
these tools will be used to show that an L-space knot is fibered, while the last will
be used to prove that an L-space knot supports the tight contact structure on S3 and
is therefore strongly quasipositive, by Hedden [8]. Strong quasipositivity will then
be used to prove the 2g(K ) − 1 bound on L-space surgery slopes.

Remark 4. Ozsváth and Szabó do not prove that c+(ξ) is well-defined (and hence
that it certifies that ξ is tight) directly from its description in terms of the cobordism
map associated to 0-surgery on the supporting fibered knot (and it is unclear how
to do so—this is an interesting problem!). They instead use the knot filtration for
this, which poses a challenge for translating the strong quasipositivity argument
presented here to framed instanton homology. We discovered [4] a workaround in
that setting, however, by a significantly more complicated argument which involves
cabling and our framed instanton contact invariant [2]. We then used that instanton
contact class to prove the r ≥ 2g(K )−1 bound, in a manner very similar to the proof
of Proposition 15 here (also using results from [3] and [9]). The same difficulties and
solutions apply in monopole Floer homology, using our contact invariant from [1].1

1It is reasonable to expect that Kronheimer and Mrowka’s monopole Floer contact class can be
characterized in terms of the 0-surgery cobordism map as above, based on Echeverria’s work [5], which
would allow one to circumvent the more complicated strong quasipositivity argument we have in mind.
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Figure 1. An outline of the proof of Proposition 5.

In our proof of Theorem 1, we will assume that K has genus at least 2 everywhere
until Proposition 15, so that we can apply Theorem 6 below to detect whether S3

0(K )

is fibered. The following proposition uses a cabling trick (see Figure 1) to show
that we can still conclude Theorem 1 in full generality, and moreover that it suffices
to prove the theorem for integral slopes.

Proposition 5. If Theorem 1 holds for all knots of genus at least 2 and integral
slopes r ∈ Z, then it is also true for knots of genus 1 and r ∈ Q.

Proof. The claim in Theorem 1 about the set of positive integral L-space slopes is
proved in Proposition 15 without any restrictions on g(K ), so we will only address
the other claims of Theorem 1 here.

We suppose first that K is an arbitrary nontrivial knot and that some surgery
on K of nonintegral slope r > 0 is an L-space. We write r =

p
q for some positive

integers p and q ≥ 2. By applying [6, Corollary 7.3], we see that

S3
pq(K p,q) ∼= S3

p/q(K )#S3
q/p(U ),

where K p,q is the cable represented by the peripheral element µpλq in π1(∂ N (K )).
The two summands on the right are both L-spaces; hence the Künneth formula
for ĤF says that pq-surgery on K p,q is also an L-space. We observe that

g(K p,q) =
(p − 1)(q − 1)

2
+ q · g(K ),

which implies that g(K p,q) ≥ q ≥ 2 and which is also equivalent to

2g(K p,q) − 1 = pq + q
(

2g(K ) − 1 −
p
q

)
. (2)

We can now apply the assumed case of Theorem 1 to pq-surgery on K p,q to
conclude that pq ≥ 2g(K p,q)− 1, hence r =

p
q ≥ 2g(K )− 1 by (2); and that K p,q
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is fibered and strongly quasipositive. Since K p,q is fibered, K must be as well. The
strong quasipositivity of K then follows from two facts:

(1) a fibered knot is strongly quasipositive if and only if its corresponding open
book decomposition supports the tight contact structure on S3 [8], and

(2) the knots K and K p,q support the same contact structure [7].

This concludes the proof in all cases except when K has genus 1 and r is a
positive integer, say r = n. In this case it is automatic that r ≥ 2g(K ) − 1 = 1.
Moreover, repeated application of [15, Proposition 2.1], which follows easily from
the surgery exact triangle for ĤF, says that S3

(2n+1)/2(K ) is an L-space. (In fact,
it says that S3

s (K ) is an L-space for all rational s ≥ n.) Since 1
2(2n + 1) ̸∈ Z, the

fiberedness and strong quasipositivity of K follow exactly as above. □

We will suppose henceforth that K ⊂ S3 is a knot of genus g ≥ 2.
Let 60 denote the genus g surface in S3

0(K ) obtained by capping off a minimal
genus Seifert surface for K. Let si be the unique Spinc structure on S3

0(K ) satisfying

⟨c1(si ), [60]⟩ = 2i.

The adjunction inequality [13, Theorem 7.1] implies that

HF+(S3
0(K ), si ) = ĤF(S3

0(K ), si ) = 0

for |i | > g − 1. Moreover, by [11], we have

HF+(S3
0(K ), sg−1) ̸= 0

and Ni proved [10] (see also [12, Corollary 4.5]) the following.

Theorem 6. K is fibered if and only if HF+(S3
0(K ), sg−1) ∼= F.

Recall that there is an exact triangle

HF+(Y, s) · U // HF+(Y, s)

j
��

ĤF(Y, s)

i

^^

(3)

where i and multiplication by U preserve the Z/2Z grading and j shifts it by 1.
Moreover, we claim the following.

Proposition 7. U acts trivially on HF+(S3
0(K ), sg−1).
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Proof. Let
Z : (60 × S1) ⊔ S3

0(K ) → S3
0(K )

be the cobordism obtained from S3
0(K ) × I by removing a neighborhood of 60

from the interior. The Spinc structure sg−1 on S3
0(K ) extends to a product Spinc

structure on S3
0(K ) × I, and we let t denote the restriction of the latter to Z . Then

the induced map

FZ ,t : HF+(60 × S1, t|60×S1) ⊗ HF+(S3
0(K ), sg−1) → HF+(S3

0(K ), sg−1)

is surjective. Since 60 ×{pt} ⊂ 60 × S1 is homologous in Z to 60 ⊂ S3
0(K )×{0},

we must have

⟨c1(t), [60 × {pt}]⟩ = ⟨c1(t|S3
0 (K )×{0}

), [60]⟩ = 2g − 2,

and evidently HF+(60 × S1, t|60×S1) is nonzero. Thus t|60×S1 must be the unique
Spinc structure, which we also denote by sg−1, satisfying

⟨c1(sg−1), [60 × {pt}]⟩ = 2g − 2 and ⟨c1(sg−1), [γ × S1
]⟩ = 0

for all closed curves γ ⊂ 60, and we have

HF+(60 × S1, sg−1) ∼= F. (4)

For details, see [12, Theorem 9.3] and the discussion preceding it.
It follows from (4) and the surjectivity of FZ ,t that the cobordism map

FZ ,t : HF+(60 × S1, sg−1) ⊗ HF+(S3
0(K ), sg−1) → HF+(S3

0(K ), sg−1)

is in fact an isomorphism. Moreover, it satisfies

FZ ,t(a ⊗ Ub) = FZ ,t(Ua ⊗ b).

The U -action on (4) is clearly trivial, which implies the same for HF+(S3
0(K ), sg−1)

by the relation above. □

Proposition 7 together with the exact triangle in (3) implies that

ĤF(S3
0(K ), sg−1) ∼= HF+(S3

0(K ), sg−1) ⊕ HF+(S3
0(K ), sg−1)[1].

In particular, we have the following.

Corollary 8. If K is fibered then

ĤF(S3
0(K ), sg−1) ∼= F0 ⊕ F1,

where the subscripts on the right denote the Z/2Z grading. If K is not fibered then

dim ĤF(S3
0(K ), sg−1) ≥ 4.



86 JOHN A. BALDWIN AND STEVEN SIVEK

k

K

−1 ∼=

k + 1

K

−1

Figure 2. A handleslide showing that Wk+1 ◦ Xk ∼= Xk+1#CP2.

We now consider the natural 2-handle cobordisms

S3 Xk
−→ S3

k (K )
Wk+1
−−→ S3

k+1(K )

for each integer k ≥ 0, where the 2-handle Wk+1 is attached along a −1-framed
meridian of K. We observe in Figure 2 that

Wk+1 ◦ Xk = Xk ∪S3
k (K ) Wk+1 ∼= Xk+1#CP2,

and hence if we write

Vk = Wk ◦ Wk−1 ◦ · · · ◦ W1 : S3
0(K ) → S3

k (K )

then the composition
Zk = Vk ◦ X0 : S3

→ S3
k (K )

is a k-fold blow-up of Xk , i.e.,

Xk#kCP2 ∼= Wk ◦ (Xk−1#(k − 1)CP2)

∼= Wk ◦ Wk−1 ◦ (Xk−2#(k − 2)CP2)

∼= · · ·

∼= (Wk ◦ · · · ◦ W1) ◦ X0 = Zk .

The maps induced by Xk and Wk+1 fit into an (∞, 0, 1)-surgery exact triangle,

ĤF(S3)
FXk // ĤF(S3

k (K ))

FWk+1
��

ĤF(S3
k+1(K ))

\\

(5)

A Spinc structure on X0 is determined by its restriction to S3
0(K ), or, equivalently,

by the evaluation of its first Chern class on [60]. Let ti denote the unique Spinc

structure on X0 with
⟨c1(ti ), [60]⟩ = 2i.
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Define
yi := FX0,ti (1) ∈ ĤF(S3

0(K ), si ),

where 1 denotes the generator of ĤF(S3) ∼= F.
Let 6k denote the capped off Seifert surface in Xk , with

6k · 6k = k.

A Spinc structure on Xk is determined by the evaluation of its first Chern class
on [6k]. Such Chern classes are characteristic elements, so this evaluation agrees
with k (mod 2). Let tk,i denote the unique Spinc structure on Xk satisfying

⟨c1(tk,i ), [6k]⟩ + k = 2i.

The adjunction inequality [16, Proof of Theorem 1.5] implies that the map

FXk ,tk,i : ĤF(S3) → ĤF(S3
k (K ))

is nontrivial only if
|⟨c1(tk,i ), [6k]⟩| + k ≤ 2g − 2,

or equivalently 1 − g + k ≤ i ≤ g − 1.

Lemma 9. Let xk,i = FXk ,tk,i (1) for all k ≥ 1 and all i . Then

FVk (yi ) = xk,i +

(k
1

)
xk,i+1 +

(k
2

)
xk,i+2 + · · · +

( k
g−i −1

)
xk,g−1

as elements of ĤF(S3
k (K )).

Proof. Let E1, . . . , Ek ⊂ Zk denote the exceptional spheres in Zk ∼= Xk#kCP2, and
e1, . . . , ek their Poincaré duals in H 2(Zk). Note that in Zk , the surface 60 is given by

60 = 6k − E1 − · · · − Ek .

In particular,

⟨c1(tk,i + a1e1 + · · · + akek), [60]⟩ = 2i − k + a1 + · · · + ak (6)

in Zk . We will evaluate FZk by applying the blow-up formula for cobordism maps
[16, Theorem 3.7], which says that for a Spinc cobordism

(W, t) : (Y1, s1) → (Y2, s2)

with blow-up Ŵ = W #CP2 and exceptional sphere E ,

FŴ ,t±(2ℓ+1)PD(E) =

{
FW,t if ℓ = 0,

0 if ℓ ̸= 0,

as maps on ĤF for any ℓ ≥ 0.
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Let Fi denote the component of FZk =FVk ◦FX0 that factors through ĤF(S3
0(K),si).

On the one hand, we have

Fi = FVk ◦ FX0,ti : ĤF(S3) → ĤF(S3
k (K )).

On the other hand, if we let e = e1 + · · · + ek , then for each i we have

Fi = FZk ,tk,i +e +

∑
j1

FZk ,tk,i+1+e−2e j1
+

∑
j1< j2

FZk ,tk,i+2+e−2e j1−2e j2

+ · · · +

∑
j1<···< jg−i−1

FZk ,tk,g−1+e−2e j1+···−2e jg−i−1
,

by the formula (6). From the blow-up formula, we have

FZk ,tk, j ±e1±···±ek = FXk ,tk, j ,

so the expression for Fi above becomes

Fi = FXk ,tk,i +

(k
1

)
FXk ,tk,i+1 +

(k
2

)
FXk ,tk,i+2 + · · · +

( k
g−i −1

)
FXk ,tk,g−1 .

We conclude by evaluating both sides on the element 1 ∈ ĤF(S3). □

Proposition 10. For all integers k ≥ 1, we have

ker
(
FVk : ĤF(S3

0(K )) → ĤF(S3
k (K ))

)
⊂ SpanF(y1−g, . . . , yg−1).

This inclusion is an equality for all k ≥ 2g − 1.

Proof. When k = 1, the exact triangle (5) says that

ker(FV1) = ker(FW1) = Im(FX0) = SpanF

( g−1∑
i=1−g

yi

)
.

We prove the inclusion in general by induction on k.
Suppose that k ≥ 1, and fix an element z ∈ ker(FVk+1). Then

FWk+1

(
FVk (z)

)
= 0

by definition, so the exact triangle (5) tells us that FVk (z) ∈ Im(FXk ), or equivalently

FVk (z) = c · FXk (1) (7)

for some c ∈ F. Lemma 9 says that each element

xk,i = FXk ,tk,i (1) ∈ ĤF(S3
k (K ))

is a linear combination of the various FVk (yi ), since the matrix of the coefficients of
the system of linear equations relating (FVk (yi ))i to (xk,i )i is triangular and clearly
invertible. In particular, summing over all i reveals that

FXk (1) ∈ SpanF

(
FVk (y1−g), . . . , FVk (yg−1)

)
. (8)
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Combining (7) and (8), there are coefficients a j ∈ F such that

FVk (z) = c ·

g−1∑
j=1−g

a j FVk (y j ),

or equivalently

z −

g−1∑
j=1−g

ca j · y j ∈ ker FVk . (9)

By induction the left side of (9) lies in SpanF(y1−g, . . . , yg−1); hence the same is true
of z. Since z was an arbitrary element of ker FVk+1 , this completes the inductive step.

To see that equality holds when k ≥ 2g − 1, we observe from Lemma 9 that
FVk (yi ) is a linear combination of various elements xk, j = FXk ,tk, j (1). Using the
adjunction inequality, we have already noted that xk, j = 0 unless

1 − g + k ≤ j ≤ g − 1,

so for k ≥ 2g − 1 the elements xk, j and hence the FVk (yi ) are all zero. □

Proposition 11. Suppose that S3
n(K ) is an L-space for some positive integer n.

Then

ĤF(S3
0(K ), s j ) =

{
F0 ⊕ F1 if y j ̸= 0,

0 if y j = 0,

for all j, where the subscripts on each copy of F denote the Z/2Z grading.

Proof. We observe from (5) that

dimF ĤF(S3
k+1(K )) = dimF ĤF(S3

k (K )) +

{
1 if FXk = 0,

−1 if FXk ̸= 0,
(10)

for all k ≥0. If m denotes the number of k ∈{0, 1, . . . , n−1} such that FXk ̸=0, then

n = dimF ĤF(S3
n(K )) = dimF ĤF(S3

0(K )) + (n − m) − m,

which simplifies to
dimF ĤF(S3

0(K )) = 2m. (11)

Our goal is thus to compute m.
Supposing that FXk ̸= 0 for some k ≥ 0, then FXk (1) is a nonzero element which

spans ker(Wk+1), and from (8) it has the form

FXk (1) = FVk

( g−1∑
j=1−g

a j y j

)
for some coefficients a j ∈ F. The sum

∑
a j y j is thus not in ker(FVk ), but it is in

ker(FVk+1) = ker(FWk+1 ◦ FVk ),
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so we have dim ker(FVk+1) > dim ker(FVk ). This implies that

dim ker(FVn ) ≥ m.

Proposition 10 then implies that

m ≤ dim SpanF(y j ). (12)

But the nonzero y j are all linearly independent, since they belong to different
summands ĤF(S3

0(K ), s j ) of ĤF(S3
0(K )), so by combining (11) and (12) we

conclude that
dimF ĤF(S3

0(K )) ≤ 2 · #{ j | y j ̸= 0}. (13)

If y j ̸=0 then ĤF(S3
0(K ), s j ) is nonzero, and its Euler characteristic is zero by (1), so

F0 ⊕ F1 ⊂ ĤF(S3
0(K ), s j ) if y j ̸= 0.

Thus the inequality in (13) must be an equality, and each nonzero ĤF(S3
0(K ), s j )

must have the form F0 ⊕ F1, completing the proof. □

Proposition 12. If S3
n(K ) is an L-space for some integer n > 0 then K is fibered.

Proof. Corollary 8 and Proposition 11 tell us that

2 ≤ dim ĤF(S3
0(K ), sg−1) ≤ 2, (14)

and that equality on the left holds if and only if K is fibered, so K must be fibered. □

Proposition 13. If S3
n(K ) is an L-space for some integer n > 0 then K is strongly

quasipositive.

Proof. We already have seen in (14) that ĤF(S3
0(K ), sg−1) is nonzero; hence

yg−1 ̸= 0 by Proposition 11. Equivalently, the map

ĤF(S3) → ĤF(S3
0(K ), sg−1) (15)

induced by X0 is nonzero. Now, we can also view X0 as a cobordism

X0 : −S3
0(K ) → −S3,

in which case the induced map

ĤF(−S3
0(K ), s1−g) → ĤF(−S3)

is dual to that in (15). In particular, this map is also nonzero. The commutativity of

ĤF(−S3
0(K ), s1−g)

i //

��

HF+(−S3
0(K ), s1−g)

��

ĤF(−S3) i // HF+(−S3)
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where the vertical maps are those induced by X0, together with the facts that
ĤF(−S3) ∼= F and the bottom horizontal map is nonzero, implies that the rightmost
vertical map

HF+(−S3
0(K ), s1−g) → HF+(−S3) (16)

is nonzero as well. But Proposition 12 says that K is fibered; hence

HF+(−S3
0(K ), s1−g) ∼= F,

and the image of its generator under the map in (16) is the contact invariant
c+(ξK ) [14], where ξK is the contact structure corresponding to K. Thus, c+(ξK )

is nonzero, which implies that ξK is the tight contact structure on S3. It follows
that K is strongly quasipositive, by work of Hedden [8, Proposition 2.1]. □

We will now use the fact that L-space knots are strongly quasipositive to determine
the range of L-space slopes for any such knot. We begin with the following
general lemma.

Lemma 14. Let Y be a rational homology sphere with |H1(Y ; Z)|=n. Suppose that

ker
(
U : HF+(Y ) → HF+(Y )

)
has dimension n + k. Then dim ĤF(Y ) = n + 2k.

Proof. The exact triangle (3) involving the U -action on HF+(Y ) produces a short
exact sequence

0 → coker(U ) → ĤF(Y ) → ker(U ) → 0.

Thus it will suffice to show that dim coker(U ) = k.
Since each Spinc structure on Y is torsion, we have a short exact sequence

0 → (T +)⊕n
→ HF+(Y ) π

→ HFred(Y ) → 0,

of F[U ]-modules, where T + ∼= F[U, U−1
]/U F[U ]. The quotient HFred(Y ) is

defined as HF+(Y )/Im(U d) for d ≫ 0; it is finitely generated over F[U ] and over F,
and every element is U -torsion, so it has a decomposition

HFred(Y ) ∼=

r⊕
i=1

F[U ]/⟨U ni ⟩,

with each ni ≥ 1. Moreover this sequence can be shown to split, so that

HF+(Y ) ∼= (T +)⊕n
⊕

r⊕
i=1

F[U ]/⟨U ni ⟩.

But then it is clear that ker(U )∼=Fn+r, so that r =k, and then that coker(U )∼=Fr
=Fk,

and the lemma follows immediately. □
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The following proposition completes our proof of Theorem 1. The proof below
is partly inspired by the work of Lidman, Pinzón-Caicedo, and Scaduto [9].

Proposition 15. If K has genus g ≥ 1 and S3
n(K ) is an L-space for some posi-

tive integer n, then S3
n(K ) is an L-space for an arbitrary integer n if and only if

n ≥ 2g − 1.

Proof. Since K is strongly quasipositive, its maximal self-linking number is
sl(K ) = 2g − 1. We take a Legendrian representative 3 of K in the standard
contact S3 with classical invariants

(tb(3), r(3)) = (τ0, r0), τ0 − r0 = 2g − 1,

and for n ≥ 1 − τ0, we can positively stabilize this k times and negatively stabilize
it τ0 + n − 1 − k times to get a Legendrian representative with

(tb, r) = (1 − n, 2 − 2g − n + 2k), 0 ≤ k ≤ τ0 + n − 1.

For odd n ≫ 0, these values of r include every positive odd number between 1 and
n + 2g − 2.

Fixing such a large value of n, we perform Legendrian surgery on these knots 3i

with

(tb(3i ), r(3i )) = (1 − n, 2i − 1), 1 ≤ i ≤
n + 2g − 1

2
,

to get contact structures

ξ1, . . . , ξ(n+2g−1)/2

on S3
−n(K ). If X−n(K ) is the trace of this −n-surgery, and 6̂ ⊂ X−n(K ) the union

of a Seifert surface for K with the core of the 2-handle, then each ξi admits a Stein
filling (X−n(K ), Ji ) with

⟨c1(Ji ), [6̂]⟩ = r(3i ) = 2i − 1.

We can also take contact structures

ξ i = T (S3
−n(K )) ∩ Ji T (S3

−n(K )), 1 ≤ i ≤
n + 2g − 1

2
,

which are filled by X−n(K ) with the conjugate Stein structure Ji for each i . These
satisfy ⟨c1(Ji ), [6̂]⟩ = −(2i − 1), so we have exhibited n + 2g − 1 Stein structures

J1, J2, . . . , J(n+2g−1)/2, J1, J2, J(n+2g−1)/2

on X−n(K ) which are all distinguished by their first Chern classes.



L-SPACE KNOTS ARE FIBERED AND STRONGLY QUASIPOSITIVE 93

A theorem of Plamenevskaya [18, Theorem 4] now tells us that the corresponding
contact invariants

c+(ξ1), . . . , c+(ξ(n+2g−1)/2), c+(ξ 1), . . . , c+(ξ (n+2g−1)/2) ∈ HF+(−S3
−n(K ))

are linearly independent. These elements lie in ker(U ), as can be seen, for example,
from the fact that they are by defined by maps of the form (16) whose domains
have trivial U action. Thus

dim ker(U ) ≥ n + 2g − 1,

and it follows from Lemma 14 that

dim ĤF(S3
−n(K )) = dim ĤF(−S3

−n(K )) ≥ n + 4g − 2.

This same argument applies for any larger odd value of n as well, and the conclusion
also holds for even values of n after making only cosmetic changes to the argument,
so that S3

−m(K ) cannot be an L-space for any m ≥ n.
We now repeatedly apply the surgery exact triangle (5) to see that

dim ĤF(S3
−m(K )) ≥ m + 4g − 2, 0 ≤ m ≤ n,

and then that

dim ĤF(S3
m(K )) ≥ 4g − 2 − m ≥ m + 2, 0 ≤ m ≤ 2g − 2.

Thus S3
m(K ) cannot be an L-space for any integer m < 2g(K ) − 1. On the other

hand, equation (10) says that

dim ĤF(S3
2g−1+n(K )) = dim ĤF(S3

2g−1(K )) + n

for all n ≥ 0, since the maps FX2g−1, . . . , FX2g−2+n are all zero by the adjunction
inequality. Thus S3

2g−1+n(K ) is an L-space if and only if S3
2g−1(K ) is, and this

completes the proof. □
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