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We prove that the restriction map from the subspace of regular points of the
holonomy perturbed SU(2) traceless flat moduli space of a tangle in a 3-manifold
to the traceless flat moduli space of its boundary marked surface is a Lagrangian
immersion. A key ingredient in our proof is the use of composition in the
Weinstein category, combined with the fact that SU(2) holonomy perturbations in
a cylinder induce Hamiltonian isotopies. In addition, we show that (S2, 4), the
2-sphere with four marked points, is its own traceless flat SU(2) moduli space.

1. Introduction

We gather together some of the key symplectic properties of character varieties and
traceless character varieties, as well as variants which correspond to perturbed flat
moduli spaces that arise in the gauge theoretic study of 3-manifolds. Some of these
results are well known to the experts, but the proofs in the literature are framed in
contexts that include gauge theory, Hodge theory, and symplectic reduction. In the
present exposition, we provide a general proof of the fact that, roughly, the character
variety of a 3-manifold provides an immersed Lagrangian in the character variety
of its boundary surface, for any compact Lie group G, whether the 3-manifold
and its boundaries include tangles, or whether there are trace or other conjugacy
restrictions on some meridional generators, and furthermore we extend the result
to the holonomy perturbed situation. Moreover, we clarify why different natural
definitions of symplectic structures on the pillowcase, arising as the character variety
of the torus or the 2-sphere with four marked points, are equivalent. The results are
proved using only the Poincaré-Lefschetz duality theorem, basic algebraic topology,
and the notion of composition in the Weinstein category.
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Let (X,L) be a tangle in a compact, oriented 3-manifold X ; that is, assume
that L is a properly embedded, compact 1-manifold. For our initial discussion, we
consider G = SU(2). Let π denote some holonomy perturbation data supported in
a finite disjoint union of solid tori in the interior of X \L.

This data determines two moduli spaces,

Mπ (X,L),

the moduli space of π holonomy-perturbed flat SU(2) connections on X \L with
traceless holonomy on small meridians of L, and the (well studied) moduli space

M(∂ X, ∂L)

of flat SU(2) connections on the punctured surface ∂ X \∂L with traceless holonomy
around the marked points ∂L.

Holonomy perturbed flat connections on a 3-manifold are flat near the boundary,
and restriction to the boundary defines a map

r : Mπ (X,L) → M(∂ X, ∂L). (1-1)

The moduli space M(∂ X, ∂L) is the cartesian product of the moduli spaces
of its path components. The flat SU(2) moduli space of an oriented connected
surface of genus g with k marked points is known to be a singular variety with
smooth top stratum carrying a symplectic form called the Atiyah–Bott–Goldman
form [3; 12]. Thus the smooth top stratum of the cartesian product M(∂ X, ∂L),
denoted M(∂ X, ∂L)∗, is endowed with the product symplectic form.

The main result of this article is the following theorem (Theorem 6.9 below),
concerning the regular points (see Section 4C) of the perturbed moduli space.

Theorem A. Suppose A ∈ Mπ (X,L) is a regular point. Then A has a neighbor-
hood U so that the restriction r |U :U ⊂Mπ (X,L)→M(∂ X, ∂L)∗ is a Lagrangian
immersion.

This is not a surprising result; indeed, many special cases are known, for example,
when L is empty this result is proven in [16]. Our primary aim is to provide details
of the assertion that well-known arguments in the flat case extend to the holonomy-
perturbed flat case when L is nonempty, in support of one claim of the main result
of [7]. In that article it is shown that a certain process introduced by Kronheimer and
Mrowka to ensure admissibility of bundles in instanton homology [21] manifests
itself on the symplectic side of the Atiyah–Floer conjecture [1] (i.e., Lagrangian
Floer theory of character varieties or flat moduli spaces) as a certain Lagrangian
immersion of a smooth closed genus 3 surface into the smooth stratum P∗

× P∗ of
the product of two pillowcases (cf. (1-3)). What is proved in [7] is that this genus 3
surface satisfies the hypotheses of Theorem A at every point.
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Since it causes no extra work, we take the opportunity to provide an elementary
algebraic topology proof of Theorem A in the flat case, for any compact Lie
group G. The statement can be found in Corollary 4.5. We emphasize that the flat
case of Theorem A, when L is nonempty, is known (e.g., to those who attended the
appropriate Oxford seminars in the 1980s) and indeed discussed on pages 15–16
of Atiyah’s monograph [2].

Having stated Theorem A and described its relation to the gauge theoretic
literature using the language of flat and perturbed flat moduli spaces, we note that
these spaces can also be identified with certain character varieties, the definitions
of which do not require any of the analytical machinery of gauge theory; the proofs
in this article are most simply explained without it, so we shall henceforth revert to
the character variety terminology in our exposition. In the simplest situation of a
connected 2- or 3-manifold M with base point x0, for a fixed compact Lie group G,
each flat G connection determines a holonomy representation from π1(M, x0)

to G, and this correspondence induces a bijection between the moduli space of flat
connections and the set of G representations of π1 modulo conjugation, known as
the character variety. We describe various extensions of the notion of the character
variety corresponding to traceless and perturbed flat moduli spaces below.

We also take this opportunity to provide an elementary exposition of holonomy
perturbations from the perspective of fundamental groups and character varieties,
in the language of composition of Lagrangian immersions. Algebraic topology
arguments simplify the task of explaining how to understand the extension from
the flat to the holonomy perturbed flat situation algebraically. Other arguments,
which instead appeal to Hodge and elliptic theory of perturbed flat bundles over
3-manifolds with boundary, can be made when L is empty, and can be found in
detail in [16; 27]. But when L is nonempty, proper treatment of the traceless
condition requires more subtle analytic tools.

Our focus on holonomy perturbations is motivated by the fact that they are
compatible with the analytical framework of the instanton gauge theory side of
the Atiyah–Floer conjecture [10; 27]. Holonomy perturbations modify the flatness
condition (i.e., the nonlinear PDE Curvature = 0) in a specific way on a collection
of solid tori, as described in Lemma 8.1 of Taubes [27] (see also Lemma 16 of [16]).
We translate this result into the language of character varieties in Section 6B.

In addition to proving Theorem A, we prove Theorem B, whose statement roughly
says the four punctured 2-sphere is its own traceless SU(2) moduli space. This
is a variant, for (S2, 4), of the ubiquitous mathematical statement that a torus is
isomorphic to its Jacobian. We now set some notation in preparation for the formal
statement. First, denote U (1) × U (1) by T. The group SL(2, Z) acts on T via(

p r
q s

)
· (ex i, ey i) = (e(px+r y)i, e(qx+sy)i). (1-2)
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The 2-form dx ∧ dy defines the standard symplectic structure on T and is invariant
under the SL(2, Z) action. Note that the action of the central element −1 ∈ SL(2, Z)

on T defines the elliptic involution, denoted by ι(eix , eiy) = (e−ix , e−iy); this
involution has four fixed points (±1, ±1). Denote by T∗

⊂ T the complement of
the four fixed points, on which ι acts freely. Then set

P = T/ι and P∗
= T∗/ι. (1-3)

The quotient PSL(2, Z)=SL(2, Z)/{±1} acts on the smooth locus P∗, a 4-punctured
2-sphere, preserving the symplectic form dx ∧ dy.

a

bcd

H2

H1

Figure 1. Half Dehn twists
along the boundaries of H1

and H2.

Next, we consider the relative character variety
(defined below) of the 2-sphere with four marked
points χSU(2),J (S2, 4), where the J subscript indicates
the four meridians are sent to the conjugacy class J of
traceless elements. This character variety is equipped
with its relative Atiyah–Bott–Goldman 2-form ω(S2,4)

(defined below).

From the presentation π1(S2
\4)=⟨a,b,c,d |abcd=1⟩,

we see that this group is freely generated by a, b, c.
Hence a representation is uniquely defined by where
it sends the generators a, b, c. Define the function (identifying SU(2) with the
group of unit quaternions; see Section 2A2):

ρ̂ : P → χSU(2),J (S2, 4), [eix , eiy
] 7→

[
a 7→ j , b 7→ eix j , c 7→ eiy j

]
.

Theorem B. Half Dehn twists in the two twice-punctured disks indicated in Figure 1
generate a PSL(2, Z) action on χ(S2, 4) which preserves the Atiyah–Bott–Goldman
symplectic form ω̂(S2,4). For some nonzero constant c, the map

ρ̂ : (P∗, c dx ∧ dy) → (χ(S2, 4)∗, ω̂(S2,4))

is a PSL(2, Z) equivariant symplectomorphism.1

The proof, as well as an exposition of the simpler case of SU(2) character variety
of the torus, is contained in Section 5.

The outline of the proof of the flat case of Theorem A is the following. Holo-
nomy identifies the flat moduli spaces with character varieties. When L is empty,
Theorem A follows from Weil’s identification of the Zariski tangent spaces of
character varieties with cohomology and Poincaré-Lefschetz duality. Symplectic
reduction is used to extend to the case when L is nonempty. We use only Poincaré

1The constant c equals 1
2 .
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duality with local coefficients, which is briefly reviewed, to highlight the fact that
the proof that the image of the differential is maximal isotropic (the subtlest part of
any proof) does not depend on the deeper result that the nondegenerate 2-form is
closed, i.e., symplectic.

To put Theorem A in context, notice that the Lagrangian immersion rU depends
on the perturbation data π . Building on ideas from [1; 10; 32] and many others,
Wehrheim and Woodward developed quilted Lagrangian–Floer homology and Floer
field theory [29; 30]; a framework that aims to produce a 2 + 1 or, more generally,
(2, 0)+1 TQFT which factors as the composition of the (perturbed) flat moduli space
functor, followed by passing to the Lagrangian Floer theory of the flat moduli spaces
of surfaces equipped with the Atiyah–Bott symplectic form. This can be considered
as an approach to realizing a bordered Lagrangian Floer theory of character varieties
of surfaces and 3-manifolds, as was done for Heegaard–Floer theory in [23].

Even in the lucky case that one finds perturbation data π for which Mπ (X,L) is
smooth of the correct dimension and Lagrangian immerses into the smooth stratum
M(∂(X,L))∗, an understanding of how this immersion depends on π is necessary in
order to extract topological information. If each perturbation curve is parallel to an
embedded curve in the boundary surface, for example, then varying the perturbation
parameters changes r by a Hamiltonian isotopy, and in particular has no effect on
the topology of Mπ (X,L). This is discussed in Section 6B; see also [17].

However, for general choices of perturbation data, perturbations typically change
the topology of Mπ (X,L); indeed, the primary purpose of using perturbation
curves is precisely to smooth Mπ (X,L). As we discuss in Section 6C, Floer field
theory posits that, nevertheless, the resulting immersions should be independent
of π in a Floer-theoretic sense (i.e., isomorphic in some Fukaya category).

2. Review of Poincaré duality and symplectic forms

2A. Preliminaries and notation.

2A1. Symplectic linear algebra. Let A denote a finite-dimensional R-vector space.
A skew symmetric bilinear form ω : A × A → R is called a symplectic form if it
is nondegenerate, that is, the map A → Hom(A, R) given by a 7→ ω(a, −) is an
isomorphism. If A admits a symplectic form, then its dimension is even; denote the
dimension by 2n.

A coisotropic subspace C ⊂ A is a subspace satisfying

Annihilator(C) := {a ∈ A | ω(c, a) = 0 for all c ∈ C} ⊂ C,

and an isotropic subspace C ⊂ A is a subspace satisfying

C ⊂ Annihilator(C) := {a ∈ A | ω(c, a) = 0 for all c ∈ C}.
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A Lagrangian subspace is a coisotropic and isotropic subspace, that is, a subspace
L ⊂ A satisfying Annihilator(L) = L . Equivalently, a Lagrangian subspace L ⊂ A
is a coisotropic (or isotropic) subspace satisfying dim L =

1
2 dim A.

Symplectic reduction refers to the following process. Given any coisotropic
subspace C ⊂ A, the restriction

ω|C : C × C → R

may be degenerate, but ω|C descends to a symplectic form ω̂ on

Ĉ := C/Annihilator(C).

Furthermore if L ⊂ A is any Lagrangian subspace of (A, ω), then

L̂ := (L ∩ C)/
(
L ∩ Annihilator(C)

)
⊂ Ĉ

is a Lagrangian subspace of (Ĉ, ω̂). The subquotient (Ĉ, ω̂) is called the symplectic
reduction of (A, ω) with respect to C and the Lagrangian subspace L̂ ⊂ Ĉ the
symplectic reduction of L with respect to C .

2A2. The Lie group G. Let G be connected compact Lie group. Its Lie algebra g

admits a positive definite symmetric Ad-invariant bilinear form, so we fix one and
denote it by { , } : g×g→ R. Fix a conjugacy class J ⊂ G. It is well known that G
embeds in some RN as an algebraic variety. Thus, if Fg denotes the free group on g
generators, Hom(Fg, G) = Gg is an affine real-set variety, with tangent space gg at
the trivial homomorphism.

Our main focus, and the context for Theorem A, concerns the case when
G = SU(2), {v, w} = −

1
2 Tr(vw), and J ⊂ SU(2) is the conjugacy class of traceless

matrices. To keep notation compact, we identify SU(2) with the group of unit
quaternions

{a + bi + c j + dk | a2
+ b2

+ c2
+ d2

= 1}

and its Lie algebra su(2) with the purely imaginary quaternions {bi + c j + dk}.
With this identification, Re : SU(2) → [−1, 1] corresponds to 1

2 Tr.

2A3. Notation used for 2- and 3-manifolds. Throughout this article, the notation Y,
S, C , V , and F is fixed as follows.

First, S denotes a possibly disconnected compact oriented surface without
boundary. Denote by S+ the path connected based space obtained by first adding a
disjoint base point to S, then attaching a 1-cell from this new base point to each
path component of S.

Next, C denotes a finite disjoint union of m circles in the surface S. Number
its components Ci , i = 1, . . . m. We assume that either each Ci is oriented, or the
chosen conjugacy class J ⊂ G is invariant under inversion in G, so that the condition
that a homomorphism from π1(S+) → G takes each loop Ci into J makes sense.
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The pair (S, C) determines a decomposition of S into two surfaces as follows.
Denote by V a tubular neighborhood of C . Then V ⊂ S is a disjoint union of

oriented annuli, one around each Ci .
Denote by F the complementary surface, determining the decomposition:

S = F ∪∂ F=∂V V . (2-1)

Orient V and F as subsurfaces of S.
Finally, Y denotes a compact, connected, and oriented 3-manifold with boundary

∂Y = S; that is, we assume that an orientation preserving identification of ∂Y with S
is given. Fix a base point in the interior of Y, and extend the inclusion S = ∂Y ⊂ Y
to a based embedding of S+ into Y.

2A4. Tangles. A tangle (X,L) consists of a connected compact oriented 3-manifold
X, and L⊂ X a properly embedded compact 1-submanifold with boundary. Thus L
consists of a disjoint union of n intervals and k interior circles.

A tangle (X,L) gives rise to a triple (Y, S, C) as above by taking

Y = X \ N (L),

where N (L) denotes a tubular neighborhood of L, and letting S = ∂Y. Then let
C ⊂ S denote a union of m = n+k meridians of L, one for each component, viewed
as a curve in S. As before, Y, S, C determine V and F. Orientations of the tangle
components are equivalent to orientations of the components of C .

The process (X,L) ⇒ (Y, S, C) is nearly reversible, by attaching 2-handles to Y
along C and setting L to be union of the co-cores of the 2-handles. The resulting
tangle is obtained from (X,L) by removing k disjoint small balls from the interior
of X, each meeting a different closed component of L in a trivial arc. This results
in a tangle with no closed components, but which has the same character variety as
the starting tangle. We use the notation (Y, S, C) in our arguments as it leads to
simpler expressions, but state consequences in terms of the tangle (X,L), as they
are clearly seen as morphisms in a (more familiar) (2, 0)+1 cobordism category.

2B. Poincaré duality and intersection forms. We begin by recalling the statement
of Poincaré-Lefschetz duality with local coefficients for an oriented compact con-
nected n-manifold M with boundary ∂ M equipped with a finite cell decomposition
(see [8] for a careful exposition and proofs, and [24] for an elementary derivation
using dual regular cell decompositions). Denote by ξ ∈ Cn(M, ∂M; Z) a cellular
chain representing the fundamental class.

Fix a base point in M and some homomorphism π1 M → 0 to some group 0, and
denote by M0 → M the corresponding 0 cover, equipped with the lifted cell structure
and its cellular left 0 covering action. The cellular Z chain complexes of M0

and (M0, ∂M0) are denoted by C0
∗
(M) and C0

∗
(M,∂M). These are free finitely
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generated left Z0 modules: a choice of Z0 basis is given by arbitrarily choosing
lifts of cells of M (respectively of cells which intersect the interior of M). A choice
of cellular approximation of the diagonal determines a chain level cap product:

∩ξ : HomZ0(C0
∗
(M, ∂M), Z0) → C0

∗
(M). (2-2)

The abelian group HomZ0(C0
∗
(M,∂M,Z0) admits a left Z0 structure by (γ ·x)(σ ):=

x(σ )·γ −1. The Poincaré duality theorem asserts that the map of (2-2) is a chain
homotopy equivalence of free left Z0 chain complexes.

Given any left Z0 module W, we have that

HomZ0(C0
∗
(M, ∂M), W ) = HomZ0(C0

∗
(M, ∂M), Z0) ⊗Z0 W

and hence capping with ξ induces a chain homotopy equivalence

∩ξ : HomZ0(C0
∗
(M, ∂M), W ) → C0

∗
(M) ⊗Z0 W.

Now suppose that W is a finite-dimensional R vector space equipped with a
positive definite inner product { , } : W × W → R and 0 → O(W ) a representa-
tion, determining the left Z0 module structure on W. There is an algebraic chain
isomorphism of R chain complexes:

C0
∗
(M) ⊗Z0 W ∼= HomR

(
HomZ0(C0

∗
(M), W ), R

)
, c ⊗ w 7→

(
h 7→ {h(c), w}

)
.

Composing with the chain homotopy equivalence ∩ξ , and using the universal
coefficient theorem for R, we obtain an isomorphism

H∗(M, ∂M; W ) ∼= H∗(HomR(HomZ0(C0
∗
(M), W ), R)) = HomR(H∗(M; W ), R)

whose adjoint is the (by construction nondegenerate) cohomology intersection
pairing over W

H∗(M, ∂M; W ) × H∗(M; W ) → R. (2-3)

The cohomology intersection pairing can also be expressed in terms of cup products:

(x, y) 7→ {x ∪ y} ∩ ξ, (2-4)

where { } : H n(M, ∂M; W ⊗Z0 W ) → H n(M, ∂M; R) is induced by the coefficient
homomorphism W ⊗Z0 W → R determined by the bilinear form { , }.

When the boundary of M is empty, this pairing, which we denote by

ωM : H∗(M; W ) × H∗(M; W ) → R, (2-5)

is therefore a nondegenerate inner product on the R vector space H∗(M; W ).
If ∂ M is nonempty, precomposing the injective adjoint

H∗(M; W ) → HomR(H∗(M, ∂M; W ); R)
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with the restriction map H∗(M, ∂M; W ) → H∗(M; W ) yields a map

H∗(M, ∂M; W ) → HomR(H∗(M, ∂M; W ); R)

with kernel equal to the kernel of H∗(M, ∂M; W ) → H∗(M; W ). An equivalent
statement is that the pairing

ω(M,∂ M) : H∗(M, ∂M; W ) × H∗(M, ∂M; W ) → R (2-6)

has radical equal to ker H∗(M, ∂M; W ) → H∗(M; W ).
Taking gradings into account, when dim M = 2n restriction defines a pairing

ω(M,∂ M) : H n(M, ∂M; W ) × H n(M, ∂M; W ) → R (2-7)

with radical equal to ker H n(M, ∂M; W ) → H n(M; W ).
When dim M = 4ℓ + 2, for example when M is a surface, the pairings ωM and

ω(M,∂ M) are skew-symmetric:

ωM(x, y) = −ωM(y, x) and ω(M,∂ M)(x, y) = −ω(M,∂ M)(y, x).

3. Two- and three-dimensional manifolds and symplectic linear algebra

3A. A symplectic form on the first cohomology of surface. Recall that S+ denotes
the path connected CW complex obtained by adding a disjoint base point to the
oriented surface S and a 1-cell connecting each path component of S to this base
point. Let 0 = π1(S+). Its universal cover S̃+ → S+ is a regular 0 cover, and hence
so is its restriction over S,

S̃ → S.

A representation ρ : 0 → G is fixed.
Then ρ determines, via the adjoint action of G, the representation Adρ :0→O(g),

and hence cohomology groups H∗(S; g), H∗(S, ∂S; g), and H∗(∂S; g), with, for
example,

H∗(S; g) := H∗(HomZ0(C0
∗
(S), g)).

If we wish to emphasize ρ, we write H∗(S; gAd ρ).
Equation (2-5) shows that, since the boundary of S is empty,

ωS : H 1(S; g) × H 1(S; g) → R (3-1)

is a nondegenerate skew-symmetric form.
On the other hand, if C is nonempty, so that the boundary of F is nonempty,

equation (2-7) shows that

ω(F,∂ F) : H 1(F, ∂ F; g) × H 1(F, ∂ F; g) → R
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is in general a degenerate skew symmetric form with radical equal to

ker H 1(F, ∂ F; g) → H 1(F; g).

A degenerate skew symmetric form induces a nondegenerate form on the quotient
by its radical. The exact sequence of the pair (F, ∂ F) shows that ω(F,∂ F) descends
to a nondegenerate skew symmetric form

ω̂F : Ĥ 1(F; g) × Ĥ 1(F; g) → R, (3-2)

where

Ĥ 1(F; g) = Image H 1(F, ∂ F; g) → H 1(F; g) = ker H 1(F; g) → H 1(∂ F; g).

Summarizing:

Proposition 3.1. Let S be a compact oriented surface without boundary and
ρ : π1S+ → G a representation. Then (H 1(S; gAd ρ), ωS) is a symplectic vector
space. If F ⊂ S is the complement of a nonempty disjoint union of annuli V, then
(Ĥ 1(F; gAd ρ), ω̂F ) is a symplectic vector space.

In the following diagram of inclusions, the two vertical and two horizontal rows
are exact, and the isomorphisms are excisions (gAd ρ-coefficients omitted):

H 1(S, F) H 1(V, ∂V )

H 1(S, V ) H 1(S) H 1(V ) H 2(S, V )

H 1(F, ∂ F) H 1(F) H 1(∂ F) H 2(F, ∂ F)

q1

∼=

q2

α

p0∼=

β

p1

γ

p2 ∼=

a b c

(3-3)

Proposition 3.2. The kernel of β is a coisotropic subspace of H 1(S; g) with annihi-
lator ker p1, and hence p1 induces a symplectomorphism

ker β/ ker p1
∼=−→ Ĥ 1(F; g).

Proof. The surface V is a disjoint union of annuli. The composition {0} × S1
⊂

∂(I ×S1)⊂ I ×S1 a homotopy equivalence, and hence the restriction H 1(I ×S1)→

H 1(∂(I × S1)) is injective with any coefficients. Hence p2 is injective, and q2 = 0.
If s ∈ H 1(S) satisfies ωS(s, α(y)) = 0 for all y ∈ H 1(S, V ), we then have that

ωF,∂ F (p1(s), a◦ p0(y))=0 for all y ∈ H 1(S, V ). Hence ωF,∂ F (p1(s), a(z))=0 for
all z ∈ H 1(F, ∂ F). Since the pairing H 1(F, ∂ F) × H 1(F) → R is nondegenerate
(equation (2-3)), this implies that p1(s) = 0. In other words, the annihilator of
im α = ker β is contained in ker p1.
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Since q2 = 0, ker p1 ⊂ ker β. Therefore ker β contains its annihilator and hence
is coisotropic.

It remains to show that ker p1 = image q1 is contained in the annihilator of ker β.
Given x ∈ H 1(S, V ) and y ∈ H 1(S, F), we have that ωS(α(x), q1(y)) = 0 since
the cup product

H 1(S, V ) × H 1(S, F) → H 2(S)

factors through H 2(S, F ∪ V ) = 0 (see (2-4)). □

Corollary 3.3. If L ⊂ H 1(S; gAd ρ) is any Lagrangian subspace, then the image

p1(L ∩ ker β) ⊂ Ĥ 1(F; gAd ρ)

is a Lagrangian subspace.

3B. Restriction from a 3-manifold with boundary. Recall that Y is a compact,
connected, oriented 3-manifold with boundary S = ∂Y, extended to an embedding
S+ ⊂ Y.

Assume that the representation ρ :π1(S+)→ G is a restriction of a representation
(of the same name) ρ : π1(Y ) → G.

Lemma 3.4. The image of the restriction map,

LY := Image r : H 1(Y ; gAd ρ) → H 1(S; gAd ρ),

is a Lagrangian subspace of (H 1(S; gAd ρ), ωS).

Proof. In the following diagram, the middle row is part of the exact sequence of
the pair (Y, S). The vertical arrows all isomorphisms, with the downward pointing
isomorphisms Poincaré-Lefschetz duality. The diagram commutes up to sign [26].
We suppress the gAd ρ coefficients.

Hom(H1(Y ); R) Hom(H1(S); R) Hom(H2(Y, S); R)

H 1(Y ) H 1(S) H 2(Y, S)

H2(Y, S) H1(S) H1(Y )

δ∗

r ν

δ

The image of r equals the kernel of ν, which is isomorphic to the kernel of δ∗. The
kernel of δ∗ is isomorphic to the cokernel of its dual δ, which in turn is isomorphic
to the cokernel of r . Hence the image and cokernel of r are isomorphic, and so
dim(image(r)) =

1
2 dim H 1(S).
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Commutativity of the following diagram is a consequence of naturality of cup
product and Poincaré duality:

H 1(Y ; g) × H 1(Y ; g) H 2(Y ; R) H1(Y, S; R)

H 1(S; g) × H 1(S; g) H 2(S; R) H0(S; R) R

H0(Y ; R)

∪{,}

r×r

∩[Y,S]

∪{,} ∩[S] ϵ

ϵ

Exactness of the vertical sequence shows that the dotted arrow is zero, which implies
that the image of r is isotropic, and therefore Lagrangian. □

Recall that the boundary S = ∂Y is equipped with a embedded collection C ⊂ S of
circles, with tubular neighborhood V and complementary subsurface F, producing
the decomposition S = F ∪ V as in (2-1). Consider the ladder of exact sequences,
with all maps induced by inclusions. The gAd ρ coefficients are suppressed. The
bottom two rows coincide with those of (3-3).

· · · H 1(Y, V ) H 1(Y ) H 1(V ) · · ·

· · · H 1(S, V ) H 1(S) H 1(V ) · · ·

· · · H 1(F, ∂ F) H 1(F) H 1(∂ F) · · ·

A

r0

B

r

α

p0∼=

β

p1 p2

a b

(3-4)

A diagram chase shows that Image r ∩ ker β = Image α ◦ r0. Hence

p1(Image r ∩ ker β) = Image a ◦ p0 ◦ r0 : H 1(Y, V ) → H 1(F) ⊂ ker b = Ĥ 1(F)

Lemma 3.4 and Corollary 3.3 imply the following.

Corollary 3.5. Suppose that ∂Y = S = V ∪F with V a disjoint union of annuli. Then

LY,V := Image H 1(Y, V ; gAd ρ) → H 1(F; gAd ρ) ⊂ Ĥ 1(F; gAd ρ)

is a Lagrangian subspace. Moreover, LY,V is the symplectic reduction of LY with
respect to ker β : H 1(S; gAd ρ) → H 1(V ; gAd ρ).

4. Character varieties, relative character varieties, and their tangent spaces

4A. Character varieties.

Definition 4.1. Given a finitely presented group 0, its G character variety χG(0)

is the real semialgebraic set defined to be the orbit space of the G-conjugation
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action on the affine R-algebraic set Hom(0, G). A set of g generators of 0 embeds
Hom(0, G) in Gg equivariantly, and, since G is a compact Lie group, Hom(0, G) is
an affine R-algebraic set, with orbit space χG(0) a semialgebraic set. We call χG(0)

the G-character variety of 0. If Z is a path connected space, write χG(Z) instead
of χG(π1(Z)). The character variety of a nonpath connected space, by definition, is
the cartesian product of the character varieties of its path components.

As observed by Weil [31], the formal tangent space at the conjugacy class of
any representation ρ : 0 → G to the character variety χG(0) is naturally identified
with first cohomology:

TρχG(0) = H 1(0; gAd ρ). (4-1)

We take (4-1) as the definition of the formal tangent space at ρ for any ρ ∈ χG(0).
Recall that H 1(0; gAd ρ) and H 1(X; gAd ρ) are canonically isomorphic for any
space X with fundamental group 0.

Weil’s argument is based on the calculation that if a path of representations is ex-
pressed in the form ρs = exp(αs)ρ0 for some path αs :0 → g, then d

ds |s=0 αs :0 → g

is a 1-cocycle [6].

4B. Relative character varieties. As above, assume that Y is a compact connected
3-manifold with boundary S = ∂Y, C ⊂ S is a union of m circles Ci , V is the
tubular neighborhood of C in S, with complementary surface F.

Assume further that either J is invariant via the inversion map of G (as is the
case for the conjugacy class of traceless matrices in SU(2)) or else assume that
every circle Ci is equipped with an orientation.

Then define the relative character variety

χG,J (Y, C) ⊂ χG(Y ) (4-2)

to be the subvariety consisting of conjugacy classes of representations π1(Y ) → G
which send (any based representative of the homotopy class of) each circle in C
into J. Define the formal tangent space of χG,J (Y, C) at ρ to be

TρχG,J (Y, C) = ker H 1(Y ; gAd ρ) → H 1(C; gAd ρ). (4-3)

Given an oriented surface F, define

χG,J (F, ∂ F) = χG,J
(
F × [0, 1], ∂ F ×

{ 1
2

})
.

Its formal tangent space is

TρχG,J (F, ∂ F) = ker H 1(F; gAd ρ) → H 1(∂ F; gAd ρ) = Ĥ 1(F; gAd ρ). (4-4)
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4C. Regular points. The term “formal tangent space” may be replaced by its
usual elementary differential topology notion in neighborhoods of regular points of
χG,J (Y, C) and χG,J (F, ∂ F), as we next explain. In brief, as elsewhere in gauge
theory, a regular point is one which has a neighborhood diffeomorphic to Euclidean
space of the correct index-theoretic dimension. We provide a stripped-down expla-
nation, suitable for our purposes, of what this means, for the benefit of the reader.

First, given a connected compact surface F (with possibly empty boundary) we
call ρ∈χG,J (F,∂F) a regular point provided ρ has a neighborhood U ⊂χG,J (F,∂F)

so that dim Ĥ 1(F; gAd ρ′) is independent of ρ ′
∈ U.

Next, given a disjoint union of connected compact surfaces F =
⊔

i Fi , call

ρ ∈ χG,J (F, ∂ F) =

∏
i

χG,J (Fi , ∂ Fi )

a regular point provided each of its components is a regular point.
Finally, for a pair (Y, C) (with C possibly empty) ρ ∈ χG,J (Y, C) is called a reg-

ular point provided ρ admits a neighborhood U ⊂ χG,J (Y, C) so that for all ρ ′
∈ U :

• The restriction map χG,J (Y, C)→χG,J (F, ∂ F) takes ρ ′ to a regular point, and

• dim Tρ′χG,J (Y, C) =
1
2 dim TρχG,J (F, ∂ F) =

1
2

∑
i dim TρχG,J (Fi , ∂ Fi ).

Hence, if ρ ∈ χG,J (Y, C) is a regular point, the map χG,J (Y, C) → χG,J (F, ∂ F),
which takes a representation of a 3-manifold group to its restriction to the boundary
surface, is, near ρ, a smooth map of a smooth n-disk into R2n for some n.

Notice that χG,J (Y, C) is the preimage of the point (J, . . . , J ) under the restric-
tion map

χG(Y ) → χG(C) =

m∏
i=1

χG(Ci ) = (G/conjugation)
m,

and that χG,J (F,∂F) is the preimage of the point (J,. . . ,J) under the restriction map

χG(F) → χG(∂ F).

Since C ⊂ V is a deformation retract, the exact sequence of the pair shows that

TρχG,J (Y, C) ∼= Image H 1(Y, V ; gAd ρ) → H 1(Y ; gAd ρ).

The image of the differential of the restriction map χG,J (Y, C) → χG,J (F, ∂ F)

at ρ ∈ χG,J (Y, C) is therefore identified with LY,V , the image of the composition

H 1(Y, V ; gAd ρ) → H 1(F, ∂ F; gAd ρ) → Ĥ 1(F; gAd ρ),

which by Corollary 3.5 is a Lagrangian subspace of (H 1(F; gAd ρ), ω̂F ). In sum:



TANGLES, RELATIVE CHARACTER VARIETIES, PERTURBED FLAT MODULI SPACES 109

Corollary 4.2. If ρ ∈χG,J (Y, C) is a regular point, then there exists a neighborhood
of ρ so that the differential of the restriction χG,J (Y, C)→χG,J (F, ∂ F) at any point
ρ ′ in this neighborhood has image a Lagrangian subspace of (Ĥ 1(F; gAd ρ′), ω̂F ).

It is known that for surfaces, with the exception of a few low genus cases, the
regular points coincide with the irreducible representations.

4D. Symplectic structure. The proof of Corollary 4.2 does not rely of the following
fundamental result of Atiyah and Bott [3] and its extensions due to Goldman [12],
Karshon [19], Biswas and Guruprasad [4], King and Sengupta [20], Guruprasad,
Huebschmann, Jeffrey and Weinstein [14].

Theorem 4.3. On the top stratum of regular points of χG(S) and χG,J (F, ∂ F), the
2-forms ωS and ω̂F are closed, that is, are symplectic forms.

In light of this result, Corollary 4.2 can be restated as follows.

Theorem 4.4. Suppose that ρ ∈ χG,J (Y, C) is a regular point. Then there exists a
neighborhood U of ρ in χG,J (Y, C) so that the restriction of r to U,

r |U : U → χG,J (F, ∂ F),

is a Lagrangian embedding.
In particular, if χG,J (Y, C) contains only regular points, then the restriction map

is a Lagrangian immersion.

Given a tangle (X,L), we write χG,J (X,L) rather than χG,J (Y, C), where Y, S,
C , F and V are determined by (X,L) as in Section 2A4. Also write χG,J (∂(X,L))

rather than χG,J (F, ∂ F). Theorem 4.4 can be restated in the new notation as follows.

Corollary 4.5. Suppose that ρ ∈ χG,J (X,L) is a regular point. Then there exists a
neighborhood U of ρ in χG,J (X,L) so that the restriction of r to U ,

r |U : U → χG,J (∂(X,L)),

is a Lagrangian embedding.
In particular, if χG,J (X,L) contains only regular points, then the restriction map

is a Lagrangian immersion.

In what follows, we simply write χ(A) for χG(A) and χ(A, B) for χG,J (A, B).
In addition, we denote by χ(S)∗ ⊂ χ(S) and χ(F, ∂ F)∗ ⊂ χ(F, ∂ F) the smooth
top strata, as real algebraic varieties, equipped with the symplectic forms ωS , ω̂F .

5. Three pillowcases

In this section, take G = SU(2) viewed as the unit quaternions, with Lie algebra
su(2) the purely imaginary quaternions. Let J ⊂ SU(2) denote the conjugacy class
of unit quaternions with zero real part, so J = su(2) ∩ SU(2), a 2-sphere.
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5A. The quotient of the torus by the elliptic involution. Let T denote U (1)×U (1)

with its symplectic form dx ∧ dy and symplectic SL(2, Z) action given in (1-2).
Multiplication by −1 ∈ SL(2, Z) is central and hence the quotient

P = T/{±1}

inherits a PSL(2, Z)= SL(2, Z)/{±1} action. The quotient map T → P is the 2-fold
branched cover of the 2-sphere with branch points the four points {(±1, ±1)}. The
complement, P∗ of the four branch points is a smooth surface, with symplectic
form dx ∧ dy and symplectic PSL(2, Z) action, and the restriction

T∗
→ P∗

is a smooth symplectic 2-fold covering map.

5B. The SU(2) character variety of the genus 1 surface. Consider the genus one
closed oriented surface T, equipped with generators µ, λ ∈ π1T represented by a
pair of oriented loops intersecting geometrically and algebraically once. The Dehn
twists Dµ, Dλ about µ and λ induce the automorphisms

Dµ :
(
µ 7→ µ, λ 7→ µλ

)
and Dλ :

(
µ 7→ µλ−1, λ 7→ λ

)
.

of π1(T, t0) ∼= Zµ⊕ Zλ (where t0 lies outside the support of these 2 Dehn twists).
These automorphisms induce, by precomposition, homeomorphisms

D∗

µ, D∗

λ : χ(T ) → χ(T ).

Let H(T ) = Hom(π1(T ), SU(2)). Denote by

p : H(T ) → χ(T )

the (surjective) orbit map of the conjugation action.
Define

ρ : T → H(T ), ρ(ex i, ey i) =
(
µ 7→ ex i, λ 7→ ey i). (5-1)

Proposition 5.1. The Dehn twists Dµ and Dλ define a symplectic PSL(2, Z)

action on (χ(T ), ωT ). The map ρ of (5-1) descends to a PSL(2, Z) equivariant
homeomorphism

ρ : P → χ(T )

which restricts to a PSL(2, Z) equivariant symplectomorphism

(P∗, c dx ∧ dy) → (χ(T )∗, ωT )

on the top strata of the SU(2) character varieties.
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Proof. It is elementary to show that ρ : P →χ(T ) is a well defined homeomorphism,
as well as an analytic diffeomorphism of the smooth strata P∗

→ χ(T )∗.
We show that ρ : (P∗, dx ∧ dy) → (χ(T )∗, ωT ) is a symplectomorphism. Since

this is a local statement, we work in R2 for simplicity. Define m =ρ◦e : R2
→χ(T ),

where e(x, y) = (ex i, ey i).
The differential of m at (x, y) ∈ R2, dm : T(x,y)R

2
→ Tm(x,y)(SU(2)× SU(2)) is

given by

dm
(

∂
∂x

)
=

(
µ 7→ ex i i, λ 7→ 0

)
, dm

(
∂
∂y

)
=

(
µ 7→ 0, λ 7→ ey i i

)
.

Following Weil [31], left translation in SU(2) × SU(2) identifies these with the
su(2)-valued 1-cochains

zx = (µ 7→ i, λ 7→ 0), zy = (µ 7→ 0, λ 7→ i) ∈ C1(T ; su(2)Ad m(x,y)).

The subspaces L = iR and V = jR + kR are invariant and complementary with
respect to Ad m(x, y), and therefore

H 1(T ; su(2)Ad m(x,y)) = H 1(T ; LAd m(x,y)) ⊕ H 1(T ; VAd m(x,y)).

Note that the action Ad m(x, y) on L is trivial, since L = iR and m(x, y) has values
in the abelian subgroup {eiu

}. Hence

H 1(T ; LAd m(x,y)) ∼= H 1(T ; R) ∼= R2.

The branched cover m : R2
→ χ(T ) is a local diffeomorphism near any

(x, y) ∈ (R2)∗ = R2
\ (πZ)2,

and hence it follows that for such (x, y),

H 1(T ; R)⊗Ri = H 1(T ; LAd m(x,y)) = Span{zx , zy} and H 1(T ; VAd m(x,y)) = 0

(these calculations can also be easily checked directly), so that

Tm(x,y)(χ(T )) = H 1(T ; R) ⊗ Ri.

The cup product

H 1(T ; LAd m(x,y)) × H 1(T ; LAd m(x,y)) → H 2(T ; R)

is thereby identified with

H 1(T ; R) ⊗ Ri × H 1(T ; R) ⊗ Ri → H 2(T ; R),

(z1 ⊗ i, z2 ⊗ i) = (z1 ∪ z2) · (− Re(ii)) = z1 ∪ z2.

In particular, zx = µ∗
⊗ i and zy = λ∗

⊗ i, where

µ∗, λ∗
∈ H 1(T ; Z) = Hom(H1(T ; Z), Z)
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is the basis dual to µ, λ. This basis is symplectic with respect to the (usual,
untwisted) intersection form. Hence(

(p ◦ m)∗(ωT )
)
|(x,y)

(
∂
∂x , ∂

∂y

)
= ωT (zx , zy) = (µ∗

∪ λ∗) ∩ [T ] = 1

= dx ∧ dy
(

∂
∂x , ∂

∂y

)
= 1.

Naturality of cup products shows that D∗
µ, D∗

λ preserve the symplectic form ωT .
Next,

D∗

µ(m(x, y)) = m(x, y) ◦ Dµ

=
(
µ 7→ m(x, y)(µ) = ex i, λ 7→ m(x, y)(µλ) = e(x+y)i)

and similarly

D∗

λ(m(x, y)) = m(x, y) ◦ Dλ =
(
µ 7→ e(x−y)i, λ 7→ ey i).

It follows that the subgroup of Homeo(χ(T )) generated by D∗
µ and D∗

λ pulls back,
via the homeomorphism ρ : P → χ(T ), to the subgroup of PSL(2, Z) generated by

ρ∗(D∗

µ) =

(
1 1
0 1

)
, ρ∗(D∗

λ) =

(
1 0

−1 1

)
.

These two matrices generate PSL(2, Z) (see [25]), finishing the proof. □

5B1. The solid torus and the restriction to its boundary. Let X denote the solid
torus with boundary T. Equip T with based loops µ, λ generating π1(T ), so that µ

is trivial in π1(X) and λ generates π1(X). Then

χ(X) = χ(Zλ) = SU(2)/conjugation.

An explicit slice of the conjugation action Hom(Zλ, SU(2)) → χ(Zλ) is given
by the map

[0, π] → Hom(Zλ, SU(2)), s 7→ (λ 7→ eis) (5-2)

with composition [0, π] → χ(X)
Reλ−−→ [−1, 1] equal to the analytic isomorphism

cos(s). Simple cohomology calculations show dim H 1(Z; su(2)) equals 1 when
0 < s < π and equals 3 when s = 0 or π . This shows that the interior of the interval
forms the smooth top stratum of χ(Z), and the endpoints are singular.

Since µ = 1 ∈ π1(X), the restriction-to-the boundary map

χ(X) → χ(T ) (5-3)

is easily computed, in P, to be the smooth (necessarily Lagrangian) embedded arc
given by

[0, π] ∋ s 7→ [es i, 1] ∈ P (5-4)

with endpoints at [−1, 1] and [1, 1].
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5C. The traceless SU(2) character variety of the 4-punctured 2-sphere. Let
4D2

⊂ S2 be four disjoint open disks, and set

F = S2
\ 4D2, ∂ F = 4S1.

Then π1(F) has presentation

π1(F) = ⟨a, b, c, d | abcd = 1⟩

and is free on a, b, c. Set

H(S2, 4) =
{
ρ ∈ Hom(π1(F), SU(2)) | ρ(a), ρ(b), ρ(c), ρ(d) ∈ J

}
.

Let p : H(S2, 4) → χ(S2, 4) denote the orbit map of the conjugation action.
Define

ρ̂ : T → H(S2, 4), (ex i, ey i) 7→
(
a 7→ j , b 7→ ex i j , c 7→ ey i j

)
. (5-5)

A half Dehn twist of (D2, p, q), where p, q are a fixed pair of interior points,
is a homeomorphism of the disk which fixes the boundary and permutes p and q,
and which generates the infinite cyclic mapping class group rel boundary of a disk
with two marked interior points. The generator which veers to the right is called a
positive half Dehn twist.

Proof of Theorem B. That ρ̂ : P → χ(S2, 4) is a well defined homeomorphism, as
well as an analytic diffeomorphism of the smooth strata P∗

→ χ(S2, 4)∗, is simple;
its proof can be found in [22; 18].

We show that ρ̂ : (P∗, c dx ∧dy)→ (χ(S2, 4)∗, ω̂(S2,4)) is a symplectomorphism,
for some constant c. Since this is a local statement, we work in R2 for simplicity.
Define m̂ = ρ̂ ◦ e : R2

→ χ(S2, 4), where e(x, y) = (ex i, ey i).
The differential of m̂ at (x, y) ∈ R2 is given by

dm̂
(

∂
∂x

)
=

(
a 7→ 0, b 7→ ex i i j , c 7→ 0

)
,

dm̂
(

∂
∂y

)
=

(
a 7→ 0, b 7→ 0, c 7→ ey i i j

)
.

Using left translation Lg−1 : SU(2) → SU(2) to identify Tg SU(2) with its Lie
algebra su(2) = T1 SU(2), transforms dm̂

(
∂
∂x

)
and dm̂

(
∂
∂y

)
to the su(2)-valued

1-cochains

zx =
(
a 7→ 0, b 7→ −i, c 7→ 0

)
, zy =

(
a 7→ 0, b 7→ 0, c 7→ −i

)
.

Since m̂ is a local diffeomorphism away from (πZ)2 [15], and ∂
∂x, ∂

∂y span T(x,y)R
2,

the cohomology classes [zx ], [zy] span

Ĥ 1(S2
− 4D2

; su(2)Ad m̂(x,y)) = T[m̂(x,y)](χ(S2, 4)).
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For any (x, y) ∈ R2
\ (πZ)2, the adjoint action

Ad m̂(x, y) : π1(S2
− 4D2) → GL(su(2))

reduces as the direct sum

Ad m̂(x, y) = Ad m̂(x, y)1 ⊕ Ad m̂(x, y)2 : π1(S2
− 4D2) → GL(Ri) × GL(C j)

and hence

Ĥ 1(S2
− 4D2

; su(2)Ad m̂(x,y))

= Ĥ 1(S2
− 4D2

; RiAd m̂(x,y)1) ⊕ Ĥ 1(S2
− 4D2

; C jAd m̂(x,y)2).

Since Ri and C j are orthogonal, the symplectic form ω̂S2,4 splits orthogonally

ω̂S2,4 = ω̂1
S2,4 ⊕ ω̂2

S2,4.

The cocyles zx and zy lie in the first summand, and hence they span the first
summand and the second summand is zero (these two facts can also be easily
calculated directly). Hence ω̂S2,4 = ω̂1

S2,4.
The representation on the first summand is independent of (x, y): indeed a, b,

and c (and hence also d) act by −1 for all x, y. The cocycles zx , zy are independent
of x, y, and hence

m̂∗(ω̂S2,4)|(x,y)

(
∂
∂x , ∂

∂y

)
= ω̂1

S2,4(zx , zy) = cdx ∧ dy
(

∂
∂x , ∂

∂y

)
for a nonzero constant c (since zx , zy span).

The half-Dehn twists along the disks H1 and H2 illustrated in Figure 1 induce
automorphisms of π1(S2

\4, s0), for a base point chosen outside the supports of H1

and H2, as indicated in the figure. These automorphisms are given by

H1 : a 7→ a, b 7→ b, c 7→ d = c̄b̄ā

H2 : a 7→ a, b 7→ cdc̄ = b̄āc̄, c 7→ c

and induce homeomorphisms H∗

1 , H∗

2 : χ(S2, 4) → χ(S2, 4). Naturality of cup
products shows that H∗

1 , H∗

2 preserve the symplectic form ω̂(S2,4).
Next,

H∗

1 (m(x, y))

=
(
a 7→ m(x, y)(a) = j , b 7→ m(x, y)(b) = ex i, c 7→ m(x, y)(c̄b̄ā) = e(y−x)i j

)
= m(x, y − x)

and similarly

H∗

2 (m(x, y)) =
(
a 7→ j , b 7→ m(x, y)(b̄āc̄) = e(x+y)i j , c 7→ ey i)

= m(x + y, y).
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It follows that the subgroup of Homeo(χ(S2, 4)) generated by H∗

1 and H∗

2
pulls back, via the homeomorphism ρ̂ : P → χ(T ), to the subgroup of PSL(2, Z)

generated by

ρ̂∗(H∗

1 ) =

(
1 −1
0 1

)
, ρ̂∗(H∗

2 ) =

(
1 0
1 1

)
.

These two matrices generate PSL(2, Z) (see [25]), finishing the proof. □

Mapping classes of (S2, 4) permute the four punctures. The subgroup of the
mapping class group of (S2, 4) which fixes the point labeled a in Figure 1 can be
shown to act on χ(S2, 4); this subgroup is isomorphic to PSL(2, Z) (see, e.g., [9]),
generated by these half twists.

6. Perturbations

The holonomy perturbation process is easily understood, as well as motivated, in
the language of Weinstein composition of Lagrangian immersions.

6A. Composition. Given any two (set) maps

α : A → M and β = βM × βN : B → M × N ,

define the composition (A ×M B, βα
N ) by

A ×M B := {(a, b) ∈ A × B | α(a) = βM(b)} = (α × βM)−1(1M) (6-1)

and
βα

N : A ×M B → N , βα
N (a, b) := βN (b). (6-2)

6A1. Composition in character varieties. Recall that if ρ : 0 → G is a homo-
morphism,

Stab(ρ) = {g ∈ G | gρ(γ )g−1
= ρ(γ ) for all γ ∈ 0}.

The proof of the following lemma can be found in [15, Lemma 4.2].

Lemma 6.1. Suppose that 00, 01, H are groups, h0 : H → 00, h1 : H → 01

homomorphisms. Set 0 = 00 ∗H 01, the pushout along h0, h1. There is a surjection

χ(0) → χ(00) ×χ(H) χ(01)

with fiber over ([ρ0], [ρ1]) the double coset

Stab(ρ0)\Stab(ρ0|H )/Stab(ρ1).

The fibers Stab(ρ0)\Stab(ρ0|H )/Stab(ρ1) are called gluing parameters.

Proposition 6.2. If Z = Z0 ∪6 Z1 is a decomposition of a compact 3-manifold
along a closed separating surface 6, with π1(6) → π1(Y0) surjective, then
χ(Z)→χ(Z0)×χ(6)χ(Z1) is a homeomorphism, in fact, an algebraic isomorphism.
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Proof. Choose ([ρ0], [ρ1]) ∈ χ(Z0) ×χ(6) χ(Z1). Since π1(6) → π1(Y0) is
surjective, ρ0 and ρ0|π1(6) have the same image, and hence equal stabilizers.
Thus Stab(ρ0)\Stab(ρ0|6)/Stab(ρ1) is a single point, and the proof follows from
Lemma 6.1. □

Corollary 6.3. If Z = Z0 ∪6 Z1 with Z0 a handlebody, then

χ(Z) = χ(Z0) ×χ(6) χ(Z1).

6A2. Composition in the Weinstein category. The Weinstein category [32] is,
roughly speaking, a category with objects symplectic manifolds and morphisms
Lagrangian immersions. Composition is not always defined, however. The following
criterion ensures that a composition of Lagrangian immersions is defined.

Lemma 6.4 [13, §4.1; 5, Lemma 2.0.5]. Suppose M, N are symplectic manifolds,

α : A → M and β = βM × βN : B → M−
× N

are Lagrangian immersions (with M− obtained from M by reversing the sign of
the symplectic form). If α × βM is transverse to the diagonal 1M ∈ M × M, then
A ×M B is a smooth manifold and βα

N : A ×M B → N is a Lagrangian immersion.

When the transversality assumption in Lemma 6.4 holds, one says the composition

(A ×M B, βα
N )

of (A, α) and (B, β) is defined and immersed.
In cases where the transversality assumption in Lemma 6.4 does not hold, a

differential topological approach to remedying the situation would be to deform
either or both of the immersions α, β. In order to retain the symplectic properties,
one would typically deform them by Hamiltonian flows. In the context in this article,
where character varieties correspond to flat moduli spaces in the gauge theoretic
framework, we seek deformations in Lemma 6.4 that correspond to holonomy
perturbations in the gauge theory context; we describe these in the next section.

6B. SU(2) and holonomy perturbations. We return to the pair (Y, C), determining
S = V ∪ F as above, so S = ∂Y and V = nbd(C).

Suppose that e : D2
× S1 ↪→ Int(Y ) is an embedding of a solid torus. Denote its

image by Y0, the closure of the complement by Y1, and the separating torus by T,
so that Y = Y0 ∪T Y1. Corollary 6.3 shows that

χ(Y, C) = χ(Y0) ×χ(T ) χ(Y1, C),

so that χ(Y, C) → χ(F, ∂ F) is exhibited as the composition of

α : χ(Y0) → χ(T ) and β : χ(Y1, C) → χ(T ) × χ(F, ∂ F).
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For a deformation απ : χ(Y0) → χ(T ) of α, or more generally a family of
functions απ , π ∈ U with U a manifold (for example, a small open interval), we
can view the deformed composition

χπ (Y, C) := χ(Y0) ◦π χ(Y1, C), βαπ : χ(Y0) ◦π χ(Y1, C) → χ(F, ∂ F) (6-3)

as a perturbed character variety with perturbation data π .
Restrict to the case when G = SU(2) and J is the conjugacy class of imaginary

unit quaternions. Then χ(Y0) is simply an arc [eis
], 0 ≤ s ≤ π , and the immersion

to χ(∂Y0) is α : [eis
] 7→ [eis, 1] in the pillowcase, described in (5-3) and (5-4). This

map descends from the smooth, Z2 equivariant map eis
→ (eis, 1) from S1 to T.

Let f : R → R be a smooth, odd, 2π periodic function. Then f determines a Z2

equivariant Hamiltonian deformation eis
7→ (eis, ei f (s)), inducing the deformation

of α given by

α f : [0, π] → χ(S1
× S1), α f (s) = [eis, ei f (s)

]. (6-4)

The definition extends easily to the setting of a finite disjoint collection of
embeddings of solid tori e = {ei }

k
i=1 of disjointly embedded solid tori in Y and a

corresponding collection of smooth, odd, periodic functions f1, . . . , fk as above.
Denote by π this set of perturbation data {(ei , fi )}

k
i=1. Letting Y0 denote the union

of the solid tori, (6-3) defines a way to deform the character variety.
Notice that it suffices to think of e as framed link in Y, since isotopic embeddings

yield equal perturbed character varieties.

Definition 6.5. Let V be the vector space of smooth, odd, 2π periodic functions
R → R. Fix (Y, C) as above, where C may or may not be nonempty). Given
perturbation data

π = (e, f ) =

(⊔k
i=1 ei : D2

× S1
⊂ Y, f = ( fi ) ∈ Vk

)
,

define χπ (Y, C) to be the resulting perturbed (traceless) character variety.

In light of (6-4), χπ (Y, C) has the following explicit description.

Proposition 6.6. Let (Y, C) be a compact oriented 3-manifold with a collection
of curves C in its boundary. Let π = (e, f ) be a choice of perturbation data, and
define Y0 ⊂ Y to be the disjoint union of solid tori

⊔
i ei (D2

× S1). Finally define
λi , µi ∈ π1(Y \ Y0) to be the loops ei (S1

× {1}) and ei ({1} × ∂ D2), connected to
the base point in some way. Then

χπ (Y, C) = {ρ ∈ χ(Y \ Y0, C) | if ρ(λi ) = eis, then ρ(µi ) = ei f (s)
}.

Theorem 6.7 [16; 27]. Given a set of perturbation data π = (e, f ) as in Definition
6.5, there is a holonomy perturbation h(e, f ) of the flatness equation on SU(2)

connections for which the perturbed flat moduli space is identified with the perturbed
character variety as described above.
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Remark 6.8. More flexible holonomy perturbations can be defined using a solid
handlebody, rather than disjoint solid tori (see, for example, [10]). In light of
Corollary 6.3, there is a similar composition interpretation of the perturbed character
variety, with Y0 the handlebody. But in this setting, an explicit description of the
perturbed character variety and the counterpart to the restriction map in (6-4), are
not known to the authors.

We can now prove the following theorem, which is equivalent to Theorem A.

Theorem 6.9. Suppose A ∈ χπ (Y, C) is a regular point. Then A admits a neigh-
borhood U so that r |U : U → χ(F, ∂ F)∗ is a Lagrangian embedding.

Proof. Apply Lemma 6.4. □

6C. Dependence on perturbations. In [16], the second author showed that (when L
is empty) different holonomy perturbations in general yield Legendrian cobordant
immersions. Unfortunately this usually does not guarantee that they have isomorphic
Floer homology. We now outline how one can address this point using Wehrheim
and Woodward’s quilt theory [28] (a rigorous formulation of the Weinstein cate-
gory [33]), as well as its extension to the immersed case as developed by Bottman
and Wehrheim [5].

One can find a discussion of holonomy perturbations in cylinders (S, p)×[0, 1],
with p a finite set of points in a surface S, in [17]. In particular, Theorem 6.3 of
that article states the following. Take perturbation data π with framed perturbation
curve obtained by pushing a simple closed curve in S \ p into the interior of S × I.
Then define the 1-parameter family of holonomy perturbations sπ, s ∈ [0, ϵ).

The restriction

χsπ ((S, p) × I ) → χ(S0, p) × χ(S1, p)

can be identified with the family of graphs of a Hamiltonian isotopy of χ(S)

known as the Goldman twist flow associated to the simple closed curve [12]. This
implies that the holonomy perturbation process can be viewed as a combination of a
decomposition induced by cutting a 3-manifold along a separating torus T, followed
by a perturbation as in (6-3), with αsπ : χ(S1

× D2) → χ(T ) the composition of
the unperturbed inclusion α0 followed by a small time flow of the Hamiltonian
Goldman twist flow associated to a curve in this torus.

We formalize this in the following way. Call two Lagrangian immersions

ι0 : L0 ↬ M, ι1 : L1 ↬ M

secretly Hamiltonian isotopic if they can be expressed as compositions with some
β : 3 ↬ X × M :

i0 : L0 ↬ M = β
j0
M : L ′

0 ×X 3 ↬ M,

i1 : L1 ↬ M = β
j1
M : L ′

1 ×X 3 ↬ M,
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in such a way that j0, j1 : L ′

0, L ′

1 ↬ X are Hamiltonian isotopic in X. It follows
from the discussion in Section 6B that different choices of holonomy perturbations
induce secretly Hamiltonian isotopic immersed Lagrangians.

Being secretly Hamiltonian isotopic does not necessarily imply being Hamil-
tonian isotopic. Indeed, L0 and L1 need not even be diffeomorphic. Moreover, in
the absence of extra hypotheses (embedded composition, monotonicity, exactness,
etc.), the conclusion of the Wehrheim–Woodward composition theorem [28] need
not hold. In particular, given a third Lagrangian L2, HF(L0, L2) and HF(L1, L2)

need not be isomorphic, even if they are both well-defined.
However, provided that

• all Lagrangian immersions and symplectic manifolds satisfy suitable assump-
tions so to be able to define Lagrangian (quilted) Floer homology,

• all Lagrangian immersions come equipped with suitable bounding cochains,
in a way consistent with composition,

then it would follow from the Bottman–Wehrheim conjecture [5, §4.4] (see also
a similar statement in [11]) that the secretly Hamiltonian isotopic Lagrangian
immersions L0 and L1, when paired with any test Lagrangian L2 ⊂ M, produce
isomorphic Floer homology groups HF(L0, L2) ≃ HF(L1, L2) (since these would
respectively correspond to the quilted Floer homology groups HF(L ′

0, 3, L2) and
HF(L ′

1, 3, L2), which are isomorphic).
In that sense secretly Hamiltonian isotopic Lagrangian immersions L0 and L1

can be thought as being equivalent. In particular, the problem of dependence of
Floer theory on the choice of holonomy perturbation is seen as a special case of the
general problem of dependence of quilted Floer homology on composition.
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