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When can surgery on a nullhomologous knot K in a rational homology sphere
produce a nonseparating sphere? We use Heegaard Floer homology to give
sufficient conditions for K to be unknotted. We also discuss some applications to
homology cobordism, concordance, and Mazur manifolds.

1. Introduction

One of the most fundamental constructions in three-manifold topology is Dehn
surgery. By the theorems of Lickorish and Wallace, every closed, connected,
oriented three-manifold is obtained by surgery on a link in S3. Additionally,
4-dimensional 2-handle attachments induce a cobordism from a three-manifold
to the result of surgery. It is therefore a fundamental question to understand the
behavior of three-manifolds under Dehn surgery. In this note, we focus on surgery
on knots. Two main questions are geography (which three-manifolds are obtained
by surgery on a knot) and botany (which knots surger to a fixed three-manifold).

For example, Gabai’s “Property R theorem” [6] shows that only 0-surgery on
the unknot in S3 can produce S2

× S1. The proof passes through taut foliations,
and as a result, shows that 0-surgery on a nontrivial knot is not S2

× S1 and is
prime (i.e., the 0-surgery is irreducible), giving strong geography constraints. Note
that this implies that a four-manifold built with one 0-handle, one 1-handle, one
2-handle, and boundary S3 is necessarily diffeomorphic to B4. Similarly, Gordon
and Luecke’s celebrated “knot complement theorem” [10] answers the botany
problem for surgeries from S3 to S3: only the unknot admits nontrivial S3 surgeries.
This shows that a closed four-manifold with one 0-handle, one 2-handle, and one
4-handle is necessarily diffeomorphic to CP2.
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In this article, we study a more general question: when can surgery on a knot in
a three-manifold (other than S3) produce an S2

× S1 summand? In previous work
of Daemi, Lidman, Vela-Vick, and Wong [3], some constraints were given on the
geography problem. Here, we answer both the botany and geography problems in
several different settings. While many of the arguments below are standard, we
believe it is beneficial to the community for these results to be written down.

We begin with a generalization of Property R to arbitrary rational homology
spheres.

Theorem 1.1. Let Y be a rational homology sphere and K a nullhomologous knot
in Y. Suppose Y0(K ) = N#S2

× S1. If dim ĤF(N ) = dim ĤF(Y ), then N = Y and
K is unknotted. Otherwise, dim ĤF(N ) < dim ĤF(Y ).

Theorem 1.1 has a number of immediate applications.

Corollary 1.2. Let K be a nullhomotopic knot in a prime rational homology
sphere Y. If Y0(K ) contains a nonseparating two-sphere, then K is unknotted.

Proof. It is shown in [3, Theorem 1.8] that under these hypotheses, Y0(K ) =

Y #S2
× S1. By Theorem 1.1, K is unknotted. □

Corollary 1.3. Let Y be a rational homology sphere and let W : Y → Y be a
rational homology cobordism with a handlebody decomposition with a total of two
handles. Then, W is diffeomorphic to a product.

Proof. Since W is a rational homology cobordism, after possibly flipping W upside
down, W consists of a single 2-handle and a single 3-handle. Therefore, Y has a
surgery to Y #S2

× S1. The result now follows from Theorem 1.1. □

Remark 1.4. It seems reasonable to conjecture that a rational homology cobordism
from a 3-manifold to itself without 3-handles is homeomorphic to a product. It seems
more ambitious, but still feasible, to believe that such a cobordism is diffeomorphic
to a product.

Corollary 1.5. Suppose that W is an integral homology cobordism from a rational
homology sphere Y to a three-manifold Z consisting of a single 1-handle and a
single 2-handle. If dim HFred(Z) = 1, then W is diffeomorphic to a product.

Proof. By [3, Theorem 1.19], dim HFred(Y ) = 0 or 1. If dim HFred(Y ) = 1, then
dim ĤF(Y ) = dim ĤF(Z), since dim HFred = 1 implies dim ĤF = |H1| + 2 and
|H1(Y )|= |H1(Z)|. The result follows from Theorem 1.1 by applying the arguments
in Corollary 1.3. (The fact that W is an integral homology cobordism implies that the
relevant surgery is along a nullhomologous knot.) Next, suppose dim HFred(Y ) = 0.
By the Spinc-conjugation invariance of Heegaard Floer homology, we see that
dim HFred(Z , s) = 1 in a self-conjugate Spinc-structure s. As shown by F. Lin
in [15], this implies that his correction terms α, β, γ are not all equal for s. However,
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for an L-space, they are all equal. This is a contradiction, since α, β, γ are preserved
under integral homology cobordisms for each self-conjugate Spinc structure. □

Note that the Brieskorn spheres 6(2, 3, 7) and 6(2, 3, 11) satisfy dim HFred = 1.
Corollaries 1.3 and 1.5 can be seen as “manifold versions” of the following

special case of a theorem of Gabai [7, Theorem 1]: a self-ribbon concordance with
one minimum and one saddle is trivial. (This was explained to us by Maggie Miller.)
In fact, one can recover a slight variant of this result using Theorem 1.1.

Corollary 1.6. Let K be a nullhomologous knot in a rational homology sphere Y.
Perform a band-sum with an unknot and denote the resulting knot by K ′. Suppose
K ′ is detected by its complement, which we additionally assume is irreducible and
boundary irreducible. If CFK∞(K ) ∼= CFK∞(K ′), then K ′ is isotopic to K and the
exterior of the resulting concordance is smoothly the trivial cobordism.

Note that if Y = S3 and K is nontrivial, then the hypotheses apply for any K ′

by [8; 10]. For notation, we will write E(X) to denote the exterior of the submani-
fold X. (The ambient manifold will be clear from context.)

Proof. Let C : (Y, K ) → (Y, K ′) be the ribbon concordance in Y × I given by a
single birth and saddle specified by the band-sum. Since K ′ is determined by its
complement, it suffices to show that E(C) is smoothly E(K ) × I.

Note that E(C) is an integer homology cobordism from E(K ) to E(K ′) which
consists of a single 1-handle and 2-handle addition. Reversing orientation and
flipping upside-down, we see that there exists a knot J knot in E(K ′) with an
E(K )#S2

× S1 surgery. Since K and K ′ are nullhomologous, we see that J is
necessarily nullhomologous in E(K ′). Note that if we can show that J is trivial,
then E(C) = E(K ) × I and we are done.

Write J (n) for the induced knot in Yn(K ′). Then, 0-surgery on J (n) results in
Yn(K )#S2

× S1. Since CFK∞(K ) ∼= CFK∞(K ′), the large surgery formula of
Ozsváth and Szabó [19, Theorem 4.4] implies dim ĤF(Yn(K )) = dim ĤF(Yn(K ′))

for large n. Therefore, by Theorem 1.1, J (n) is unknotted in Yn(K ′) for large n.
Since Yn(K ′) is not S3 for large n, it follows that E(J (n)) = D2

× S1#Yn(K ′) is a
reducible manifold for all large n.

In other words, E(K ′
∪ J ) has infinitely many reducible fillings. However, an irre-

ducible, boundary-irreducible three-manifold with only toral boundary components
has at most finitely many reducing fillings along a given boundary component (see,
for example, [9]). Therefore, E(K ′

∪ J ) is either boundary reducible or reducible.
Since K ′ is nontrivial, if E(K ′

∪ J ) is boundary reducible, then the toral boundary
component coming from J must be the one that compresses, and we see that J
must be unknotted in the exterior of K ′ completing the proof. On the other hand, if
E(K ′

∪ J ) is reducible, then J must be contained in an embedded three-ball. In
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this case, E(K ′)0(J ) = E(K ′)#S3
0(J ) and hence J is unknotted in the embedded

three-ball. Again, J is trivial in E(K ′) and we are done. □

Recently, Conway and Tosun [2] showed that the boundary of a nontrivial Mazur
manifold is not an L-space. Ni has pointed out that an alternate proof follows
from [17]. We now show how Theorem 1.1 gives another alternate proof of this fact.
(Lidman and Pinzón-Caicedo have also proved the analogous result in instanton
Floer homology.)

Corollary 1.7 [2, Theorem 1]. Let Y ̸= S3 be a homology sphere bounding a Mazur
manifold. Then Y is not an L-space.

Proof. Suppose that Y is an L-space homology sphere which bounds a Mazur
manifold. Then, there exists a knot K in Y such that Y0(K ) = S2

× S1. Since
dim ĤF(Y ) = dim ĤF(S3), Theorem 1.1 implies that K is unknotted. Therefore,
Y0(K ) = Y #S2

× S1, and we see that Y = S3. □

We also present a symplectic analogue of Corollary 1.3. This was explained to
the authors by Steven Sivek.

Corollary 1.8. Let Y be a rational homology sphere. Let W be a Stein cobordism
from (Y, ξ) to (Y, ξ ′) comprised of attaching single Weinstein 1- and 2-handles. If
ξ ′ is tight, then W is deformation equivalent to the (compact) symplectization of
(Y, ξ) and hence ξ and ξ ′ are contactomorphic contact structures.

Proof. Consider the (tb−1)-framed 2-handle attachment to a Legendrian K in
(Y #S2

× S1, ξ#ξstd) which results in (Y, ξ ′). By reversing this picture, we see there
is a Legendrian knot K′ in (Y, ξ ′) with a contact +1-surgery to (Y #S2

× S1, ξ#ξstd)

by [4, Proposition 8]. Note that K′ must be nullhomologous and the framing of the
surgery must be the Seifert framing in order to add a Z-summand to H1. Now, by
Theorem 1.1, K′ is unknotted topologically. Since +1-contact surgery means that
the topological framing is one more than tb, we see that tb = −1. Because ξ ′ is
tight, this implies r = 0 by [5, Theorem 1.6], and all such Legendrian unknots are
Legendrian isotopic by [5, Theorem 1.5].

This implies that all Stein cobordisms from (Y, ξ ′′) to (Y, ξ ′) built out of single
Weinstein 1- and 2-handles are equivalent, regardless of ξ ′′. However, we can
produce such a cobordism by using a cancelling Weinstein 1- and 2-handle pair,
i.e., the trivial cobordism. □

Finally, we give a new obstruction to a homology sphere admitting an S2
× S1

surgery (and hence bounding a Mazur manifold).

Proposition 1.9. Let K be a knot in a homology sphere Y with HFred,i (Y ) = F for
some i . Then Y0(K ) ̸= S2

× S1.
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Remark 1.10. It is easy to see that if a nullhomologous knot in a rational homology
sphere admits a 0-surgery with an S2

× S1 summand, then its Alexander polynomial
is trivial (i.e., constant). We leave it as a fun exercise for the reader to deduce this
fact using Heegaard Floer homology after reading the arguments in this paper.

Organization. The key idea in the proof of Theorem 1.1 comes from the special
property of the twisted Heegaard Floer homology of three-manifolds with nonsepa-
rating S2’s. (This has been used in [16] and [17]; see also [11], [12], and [1].) In
the next section, we review the mapping cone formula in Heegaard Floer homology,
with extra attention to twisted coefficients, and prove Theorem 1.1. Lastly, we
prove Proposition 1.9.

2. The mapping cone

We assume that the reader is familiar with the knot Floer chain complex of a
knot CFK∞, and the mapping cone formula for the Heegaard Floer homology
of 0-surgery along a nullhomologous knot K in a rational homology sphere Y
[22, Section 4.8]. We briefly recall the formula here, primarily to establish no-
tation. Let t denote a Spinc structure on Y. As a vector space, we have that
C = C F K ∞(Y, K , t) decomposes as a direct sum C =

⊕
i, j∈Z C(i, j). For any

set X ⊂ Z2 which is convex with respect to the product partial order on Z2 (i.e.,
if a < b < c and a, c ∈ X, then b ∈ X ), let C X denote

⊕
(i, j)∈X C(i, j) which is

naturally a subquotient complex of C .
Let B+

s (respectively, B̂s) denote C{i ≥ 0} (respectively, C{i = 0}), and A+
s

(respectively, Âs) denote C{max(i, j − s) ≥ 0} (respectively C{max(i, j − s) = 0}).
Recall the maps v+

s , h+
s : A+

s → B+ and v̂s, ĥs : Âs → B̂. The main fact that we
will need is that v̂s factors through v̂s′ for s ′

≥ s.
Let F̂ ⊂ Y0(K ) denote the surface obtained by capping off an oriented Seifert

surface F for K. As usual, we let ts denote the Spinc structure on Y0(K ) which
satisfies ⟨c1(ts), [F̂]⟩ = 2s and such that ts extends t over the 0-framed 2-handle
cobordism from Y to Y0(K ). In what follows, let ◦ denote either + or .̂

Theorem 2.1 ([20, Theorem 9.19]; see also [22, Section 4.8]). Let Y be a rational
homology sphere and K ⊂ Y a nullhomologous knot. With notation as above,

HF◦(Y0(K ), ts) ∼= H∗(Cone(v◦

s + h◦

s )).

There is a version of Theorem 2.1 with twisted coefficients, as in [20, Section 8];
see also [13, Section 2] and [14, Section 2]. Let T be a generator of H 1(Y0(K ); Z).
Consider the map

v◦

s + T h◦

s : A◦

s ⊗F F[T, T −1
] → B◦

s ⊗F F[T, T −1
].

We have the following mapping cone formula with twisted coefficients. We write
HF◦(Y0(K ), ts; F[T, T −1

]) to denote the Heegaard Floer homology with totally
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twisted coefficients. We will also write HF◦(Y0(K ), ts; F[[T, T −1
]) to be the ho-

mology of the chain complex obtained by tensoring the twisted Heegaard Floer
chain complex C F◦(Y0(K ), ts; F[T, T −1

]) with F[[T, T −1
] over F[T, T −1

].

Theorem 2.2 ([20, Theorem 9.23]; see also [14, Theorem 2.3]). Let Y be a rational
homology sphere and K ⊂ Y a nullhomologous knot. With notation as above,

HF◦(Y0(K ), ts; F[T, T −1
]) ∼= H∗(Cone(v◦

s + T h◦

s )).

We will be interested in the following consequence of the preceding theorem.

Corollary 2.3. Let Y be a rational homology sphere and K ⊂ Y nullhomologous.
Then HF◦(Y0(K ), ts; F[[T, T −1

]) is isomorphic to the homology of the cone of

v◦

s + T h◦

s : A◦

s ⊗F F[[T, T −1
] → B◦

s ⊗F F[[T, T −1
].

Proof. The result follows from Theorem 2.2 and the fact that F[[T, T −1
] is flat over

F[T, T −1
]. □

We recall one key property of the Heegaard Floer homology of three-manifolds
with nonseparating two-spheres. If M is a three-manifold which contains a nonsep-
arating two-sphere S, then HF◦(M; F[[T, T −1

]) = 0, where T denotes a generator
of H 1 of the S2

× S1 summand [16, Lemma 2.1]. Further, if s is a Spinc structure
on M such that ⟨c1(s), [S]⟩ = 0, then HF◦(M, s) ̸= 0 [20, Theorem 1.4]. With this,
we analyze the mapping cone formula for knots which surger to three-manifolds
with nonseparating two-spheres.

Proposition 2.4. Let Y be a rational homology sphere and K ⊂Y a nullhomologous
knot. Suppose that Y0(K ) = N#S2

× S1. Let ◦ = + or ̂ . Then v◦
s,∗ + h◦

s,∗ :

H∗(A◦
s ) → HF◦(Y, t) is an isomorphism for all s ̸= 0. Further, v◦

s,∗ + T h◦
s,∗ :

H∗(A◦
s ) ⊗F F[[T, T −1

] → HF◦(Y, t) ⊗F F[[T, T −1
] is an isomorphism for all s. In

particular, dim H∗( Âs) = dim ĤF(Y, t) for all s.

Proof. The first claim follows from Theorem 2.1 and that Y0(K ) contains a nonsep-
arating two-sphere.

Now, for the second claim, fix t in Spinc(Y ). Since Y0(K ) = N#S2
× S1, we

have that HF+(Y0(K ), ts; F[[T, T −1
]) = 0. By Corollary 2.3, we have that

HF+(Y0(K ), ts; F[[T, T −1
]) ∼= H∗(Cone(v+

s + T h+

s ) ⊗F[T,T −1] F[[T, T −1
]).

Hence,

(v+

s + T h+

s )∗ : H∗(A+

s ⊗F F[[T, T −1
]) → H∗(B+

s ⊗F F[[T, T −1
])

is an isomorphism of F[[T, T −1
]-modules. The analogous result for the hat flavor

follows immediately. □
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Proof of Theorem 1.1. As before, fix t in Spinc(Y ). Let t′ denote the Spinc

structure on N which is cobordant to t under the homology cobordism from Y
to N obtained by attaching a 3-handle to the trace of 0-surgery on K. Suppose that
dimF ĤF(Y, t) ≤ dimF ĤF(N , t′). We will show that equality holds and that K is
the unknot. We have

2 dimF ĤF(N , t′) = dimF(ĤF(N#S2
× S1, t′#s0)

= dimF(H∗(Cone(̂v0 + ĥ0))

= dimF H∗( Â0) + dimF ĤF(Y, t) − 2 rk(̂v0,∗ + ĥ0,∗)

= 2 dimF ĤF(Y, t) − 2 rk(̂v0,∗ + ĥ0,∗)

≤ 2 dimF ĤF(N , t′) − 2 rk(̂v0,∗ + ĥ0,∗),

where the first equality follows from the Künneth formula, the second follows from
Theorem 2.2, the third follows from rank-nullity (and the fact that we are working
over a field), the fourth follows from Proposition 2.4, and the final inequality follows
by hypothesis. Hence, we see that v̂0,∗ = ĥ0,∗. Therefore,

(1 + T )̂v0,∗ : H∗( Â0 ⊗F F[[T, T −1
]) → H∗(B̂0 ⊗F F[[T, T −1

])

is an isomorphism. This implies that v̂0,∗ is an isomorphism.
We now consider the case s > 0. As mentioned above, v̂0,∗ factors through v̂s,∗.

In particular, since v̂0,∗ is an isomorphism, we have that v̂s,∗ is surjective. By
Proposition 2.4, dim H∗( Âs) = dim ĤF(Y, t), and therefore v̂s,∗ is an isomorphism.
Since v̂s,∗ is an isomorphism if and only if v+

s,∗ is an isomorphism, it follows from
[18, Theorem 1.2] (which holds for nullhomologous knots in arbitrary rational
homology spheres) and [23, Proof of Lemma 8.1] that

g(K ) = min{s | v̂i,∗ is an isomorphism for all i ≥ s, t ∈ Spinc(Y )} ≤ 0,

which gives the desired result. □

Proof of Proposition 1.9. This is very similar to the proof of Theorem 1.1. After a
possible orientation reversal, we may assume that HFred,i (Y ) = F and i is odd. By
Proposition 2.4, Hi (A+

0 ) = F, and

v+

0,∗ + T h+

0,∗ : Hi (A+

0 ) ⊗F F[[T, T −1
] → Hi (B+

0 ) ⊗F F[[T, T −1
]

is an isomorphism. (Here, we are using the fact that v+

0 and h+

0 are homogeneous
of the same grading shift. This is not true for s ̸= 0.) Restricted to this grading,
this latter map can be written as v+

0 + T h+

0 : F[[T, T −1
] → F[[T, T −1

]. It follows
that either v+

0 or h+

0 must be nonzero as a map from Hi (A+

0 ) = F to Hi (B+

0 ) = F.
By conjugation invariance [21, Theorem 3.6], we have that v+

0 is nonzero if and
only if h+

0 is nonzero, and so they must be equal. Therefore, v+

0,∗ = h+

0,∗ as maps
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from Hi (A+

0 ) to Hi (B+

0 ), and we see that the kernel of v+

0,∗ + h+

0,∗ contains an F in
grading i , which is odd.

Consider the homology of the cone of v+

0,∗ + h+

0,∗ : H∗(A+

0 ) → H∗(B+

0 ). This
has two towers: one from the kernel of v+

0,∗ + h+

0,∗ and one from the cokernel. We
also know there is an additional generator in the kernel of v+

0,∗ + h+

0,∗ in degree i ;
this is in opposite parity of the tower found in this kernel. Consider the long exact
sequence associated to a mapping cone

· · · HF+(S2
× S1) → H∗(A+

0 ) → H∗(B+

0 ) → · · · .

A nontrivial element of the kernel of v+

0,∗ + h+

0,∗ in degree i would have to be in the
image of U n for all n, but that is ruled out by the parity of the grading. Hence, we
have a contradiction. □
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