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We discuss an important class of fibrations on smooth 4-manifolds, called bro-
ken Lefschetz fibrations. We outline their connection to symplectic and near-
symplectic structures, describe their topology, and discuss several approaches to
their construction. We focus on new techniques involving branched coverings
and braided surfaces with folds, and provide explicit examples of fibrations
constructed using these approaches.

1. Fibrations on 4-manifolds

Fibrations on smooth manifolds have played an important role in the development
of low-dimensional topology. These fibrations show up naturally from the viewpoint
of algebraic geometry, but have broad generalizations that extend outside of their
algebrogeometric origins. They provide very useful topological frameworks to study
geometric objects, like contact, symplectic, and Stein manifolds. Furthermore, they
can be used to describe 3- and 4-dimensional manifolds in terms of diffeomorphism
groups of surfaces, a viewpoint which can be especially fruitful.

In this paper we discuss Lefschetz fibrations and broken Lefschetz fibrations, and
survey the main results on these structures. After defining them and describing their
connection to symplectic and near-symplectic structures, we will outline several
important constructions and provide examples. These examples focus on explicit
constructions using branched coverings and braided surfaces. Although these
techniques can often be used to construct explicit broken Lefschetz fibrations on 4-
manifolds directly from a given handle decomposition, they rely on the construction
of a certain branched covering with orientable branch locus and prescribed boundary,
which cannot always be achieved.
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This first section contains definitions of the various fibration structures that we
will be concerned with on 3- and 4-manifolds, as well as descriptions of their
topology.

1A. Singular fibrations on 4-manifolds. Let X be a smooth, compact, connected,
oriented 4-manifold, 6 be a compact surface, and let f : X → 6 be a smooth
map. A critical point p of f is called a positive Lefschetz critical point if there are
orientation-preserving local complex coordinates about p on which f : C2

→ C

is modeled as f (u, v) = u2
+ v2. If the coordinates around the critical point are

instead orientation-reversing, then it is called a negative Lefschetz critical point.
We will often omit the adjective positive, and refer to a positive Lefschetz critical
point simply as a Lefschetz critical point.

An embedded circle C ⊂ X of critical points of f is called an indefinite fold
singularity if f is modeled near points of C by the map

(θ, x, y, z) 7→ (θ, x2
+ y2

− z2)

from R × R3
→ R × R, where C is given locally by x = y = z = 0. Indefinite fold

singularities are sometimes referred to as round 1-handle singularities or broken
singularities in the literature.

A surjective map f : X → 6 is called a Lefschetz fibration if all critical points
of f are in the interior of X and are positive Lefschetz critical points. It is called
an achiral Lefschetz fibration if we also allow negative Lefschetz critical points.
Finally, we add the adjective broken to either of these names to indicate that we also
allow indefinite fold singularities in the set of critical points of f . When discussing
these maps we will sometimes use the generic term fibration to describe a map
which can be any of the types defined above.

1B. Boundary behavior of fibrations. Let M be a 3-dimensional closed smooth
oriented manifold. An open book decomposition on M is a smooth map λ : M → D2

such that λ−1(∂ D2) is a compact 3-dimensional submanifold on which λ restricts
as a surface bundle over S1

= ∂ D2. Furthermore, we require that the closure
of λ−1(int D2) be the disjoint union of solid tori, on which λ is the projection
D2

× S1
→ D2. We say that λ−1(0) is the binding of the open book on M, and for

any p ∈ S1 the compact surface 6p = λ−1({αp | 0 ≤ α ≤ 1}) is the page over p.
The surface bundle structure on λ−1(∂ D2) induces a monodromy map on the pages
of λ.

By a celebrated theorem of Giroux [19], open book decompositions on a closed
3-manifold M (up to a stabilization operation) are in one-to-one correspondence
with contact structures on M (up to isotopy). Thus open book decompositions
provide a useful topological setting in which to study contact structures on a given
closed 3-manifold.
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Now suppose that X is a smooth 4-manifold and 6 is a compact surface, that
∂ X ̸= ∅ is connected, and that f : X → 6 is a fibration. Then we say that f is
convex, if

• 6 = D2,

• f (∂ X) = D2, and

• f |∂ X : ∂ X → D2 is an open book decomposition on ∂ X.

We say that f is concave if there is a disk D ⊂ int 6 such that

• f (∂ X) = D, and

• f |∂ X : ∂ X → D is an open book decomposition on ∂ X.

Finally, f is said to be flat if

• f (∂ X) = ∂6, and

• f |∂ X : ∂ X → ∂6 is a nonsingular fiber bundle.

The fibers of a flat fibration are all closed surfaces, and the boundary ∂ X consists
of the fibers above ∂6. The fibers of a convex fibration all have boundary, and ∂ X
is comprised of the fibers above ∂6 = ∂ D2, along with the boundaries of the fibers
above int D2. In contrast, concave fibrations will have both closed fibers and fibers
with boundary. Indeed, the fibers above int D ⊂ 6 will have boundary, while all
other fibers will be closed.

Suppose now that f1 : X1 → 6 is a concave fibration, f2 : X2 → D2 is a convex
fibration, and that there is an orientation-reversing diffeomorphism φ : ∂ X1 → ∂ X2

which respects the open book decompositions. Then f1 and f2 can be glued
together, to give a fibration f : X1 ∪φ X2 → 6. This gives a very useful method
for constructing fibrations on closed 4-manifolds. Indeed, one effective strategy is
to divide the closed manifold X into simpler pieces X1 and X2, on which convex
and concave fibrations can be constructed. In general these maps will induce
different open book decompositions along their common boundary. If, however,
these fibrations can be modified so that they agree along ∂ X1 = ∂ X2, then they can
be glued to give a fibration on all of X. See [1; 17; 18] for approaches to matching
these boundary fibrations which make use of Giroux’s theorem and Eliashberg’s
classification of overtwisted contact structures.

1C. Monodromy around Lefschetz critical points. The regular fibers of a flat
or convex (achiral) Lefschetz fibration f : X → 6 will all be surfaces of the
same diffeomorphism type, which we call the genus of f . Lefschetz fibrations of
genus g ≥ 2 can be determined entirely by their monodromy representations. Let
6∗

⊂ 6 denote the set of regular values of f , and let p ∈ 6\6∗ be a critical value.
If γ ⊂ 6∗ is an oriented loop based at q ∈ 6∗ which travels counterclockwise
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Figure 1. Vanishing cycle of Lefschetz critical point.

around p and no other critical values, then a trivialization of the bundle f −1(γ )

over γ induces a diffeomorphism of the fiber Fq above q . This diffeomorphism will
be a positive (negative) Dehn twist if p corresponds to a positive Lefschetz critical
point (respectively, negative Lefschetz critical point). The cycle along which this
Dehn twist takes place is called the vanishing cycle associated to the critical point.
As we approach the critical fiber Fp, the corresponding vanishing cycles in nearby
regular fibers shrink down to a single transverse intersection in Fp (see Figure 1
where the vanishing cycle is denoted with a dashed line).

The monodromy of a regular fiber provides a useful way to describe Lefschetz
fibrations. More precisely, suppose that f : X → 6 is a Lefschetz fibration that has
m critical points and that f is injective on the set of critical points. Suppose further
that 6 is either S2 or D2, and hence 6∗ is an m-times punctured sphere or disk. Fix a
basepoint q ∈6∗, and a collection of oriented simple closed curves γ1, . . . , γm based
at q, which are disjoint away from q, where γ j travels counterclockwise around
the j-th puncture of 6∗ and no other punctures. Note that the loops γ1, . . . , γm

then generate π1(6
∗
; q), and that we can order them so that the product γ1 · · · γm

is null-homotopic when 6 = S2, and homotopic to ∂6 when 6 = D2. Finally, let
Fq = f −1(q) be the fiber above q ∈ 6∗, and let M(Fq) denote the mapping class
group of Fq (i.e., the group of orientation-preserving diffeomorphisms of Fq fixing
the boundary pointwise, mod isotopy rel boundary).

Then to each loop γ j we can associate an element ϕ j ∈ M(Fq), which is
represented by a positive Dehn twist along the corresponding vanishing cycle. In the
case when 6 = S2 these elements must additionally satisfy ϕ1ϕ2 · · · ϕm =1∈M(Fq),
since the product of the loops γ1, . . . , γm is trivial in π1(6

∗
; q). The fibration f

then determines a homomorphism 3 : π1(6
∗
; q) →M(Fq), called the monodromy

representation of f . Note that 3 is only determined by f up to conjugation by a
fixed element in M(Fq) along with changes in the set of the generating loops γ j .
Conversely, given a set of generating loops γ1, . . . , γm as above, and a collection of
positive Dehn twists τ1, . . . , τm ∈ M(Fq), we can construct a Lefschetz fibration
f : X → 6 whose monodromy representation satisfies 3(γ j ) = τ j for each j (in
the case when 6 = S2 we must additionally require that τ1 · · · τm = 1 ∈ M(Fq)).
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qp

C ′

Figure 2. Passing an indefinite fold singularity.

Thus problems involving Lefschetz fibrations can be reformulated and successfully
studied in terms of factorizations of mapping class group elements.

This monodromy description of a Lefschetz fibration on X can be adapted
further to encode information about embedded surfaces in X. By selecting points
s1, . . . , sk ∈ Fq , we can instead consider the group M(Fq; {s1, . . . , sk}) of isotopy
classes of orientation-preserving diffeomorphisms of Fq which fix the boundary
pointwise and preserve {s1, . . . , sk} setwise. If we think of our monodromy represen-
tation as taking values in M(Fq; {s1, . . . , sk}), the trace of the marked points under
the monodromy can be completed to an embedded surface in X, called a multisection
of the fibration. See Baykur and Hayano’s work in [7] or [8] for more details.

1D. The topology of broken Lefschetz fibrations. Suppose now that f : X → 6

is a broken fibration, with indefinite fold singularity along an embedded circle C .
Suppose that C ′

⊂ 6 is the image of C under f , and that C ′ is embedded. Let
p and q be nearby regular points sitting on opposite sides of C ′. Suppose for
concreteness that p = (θ, −1) and q = (θ, 1) for some θ ∈ S1 in the coordinate
charts described above. Then the fiber Fq above q can be obtained from Fp by
0-surgery along a pair of points in Fp. Equivalently, Fp can be obtained from Fq by
1-surgery along a simple closed curve (see Figure 2). Indeed, we can think of the
coordinate charts describing the indefinite fold singularity as defining an S1-family
of local Morse functions, each with a single index 1 critical point. In particular, for
a broken fibration with connected fiber, the genus of the fiber changes by ±1 each
time we cross the image of an indefinite fold singularity in 6.

Now suppose that f : X → D2 is a Lefschetz fibration, possibly achiral, possibly
broken. Let K be a framed knot in f −1(∂ D2) ⊂ ∂ X, which can be isotoped so
that it lies entirely on the interior of a single fiber. Then we can attach a 2-handle
along K to yield a new manifold with boundary which we denote X ′. If we choose
the framing along K so that it is one less than the induced fiber framing, then f will
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extend to a fibration on X ′ with a new Lefschetz critical point in the newly added
2-handle. If we instead choose K to have framing one greater than the induced
fiber framing, f will instead extend to a fibration on X ′ with an additional negative
Lefschetz critical point (see, e.g., [17]).

Suppose again that f : X → D2 is a fibration as above, but that we have now
chosen two disjoint knots K1 and K2 in ∂ X, each of which gives a section of
f restricted to f −1(∂ D2) ⊂ ∂ X. Then we obtain a new manifold X ′′ by attach-
ing S1

× D1
× D2 to ∂ X along K1 and K2, by identifying S1

× {−1} × D2 and
S1

× {1} × D2 with tubular neighborhoods of K1 and K2, respectively. In this case
the fibration f will extend to X ′′, with a single indefinite fold singularity along
S1

× {0}× {0}. Indeed, the knots K1 and K2 intersect each of the boundary fibers
in a pair of points, which specify the locations of the 0-surgeries that take place
as we pass the indefinite fold image. We will sometimes refer to this procedure as
attaching a round 1-handle to X, as S1

× D1
× D2 can be thought of as an S1-family

of 3-dimensional 1-handles D1
× D2, which are attached to X fiberwise along the

boundary. Alternatively, we can split S1
× D1

× D2 into a 4-dimensional 1-handle
and 2-handle pair, where the 2-handle runs over the 1-handle twice geometrically,
but zero times algebraically.

The effect on X of adding a round 1-handle is the same as gluing a fibered
cobordism to ∂ X, where each fiber over S1 is the standard Morse theoretic cobordism
obtained by adding a 3-dimensional 1-handle to a thickened surface. Broken
Lefschetz fibrations and round 1-handle attachments are studied in detail by Baykur
in [4], where he also defines generalized n-dimensional round j-handles, for any
index j in any dimension n. In what follows we will sometimes find it convenient
to refer to 4-dimensional round 2-handles, which are the product of a 3-dimensional
2-handle with S1 (these are, of course, just upside-down round 1-handles, and will
not warrant any further discussion here).

As in the case of Lefschetz critical points, we also obtain monodromy descriptions
of the indefinite fold singularities. The monodromy of the fibration outside a new
indefinite fold singularity will depend on the framings of the tubular neighborhoods
of K1 and K2, or alternatively, on the framing k of the 2-handle in the 4-dimensional
handle pair description. Indeed, suppose that F is a fiber of the fibration f before
attaching the round 1-handle, and that the monodromy around the boundary ∂ D2 is
given by a map ϕ : F → F. Then adding the new round 1-handle changes the fibers
along the boundary by replacing two disks D1 and D2 in F with S1

× [0, 1]. The
new monodromy will be given by the restriction of ϕ to F\(D1 ∪ D2), with −k
Dehn twists along the cycle S1

×
{1

2

}
(i.e., |k| positive Dehn twists if k is negative,

and |k| negative Dehn twists if k is positive).
Combining the above monodromy descriptions of indefinite fold singularities

with those of Lefschetz critical points gives monodromy representations of broken
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Lefschetz fibrations. Returning to the notation from Section 1C, suppose that
f : X → 6 has a single indefinite fold singularity along a loop C , that f (C) is
embedded in 6, and that the basepoint q and the images of each Lefschetz critical
point are on the side of f (C) with higher genus fibers (or lower Euler characteristic,
in the case of disconnected fibers). Suppose that in addition to the loops γ1, . . . , γm

in 6∗, we have also selected an embedded arc γ in 6 from the basepoint q to the
image of the round 1-handle singularity, which is disjoint from the loops γi away
from q. Then given γ, γ1, . . . , γm , the manifold X can be reconstructed from the
mapping class group elements ϕ1, . . . , ϕm ∈ M(Fq), together with a loop in Fq

specifying the location of the 1-surgery that corresponds to crossing the image
of the indefinite fold singularity from the high genus side to the low genus side
along γ . Such monodromy descriptions of simplified broken Lefschetz fibrations
are studied in detail by Baykur and Hayano [6].

1E. Symplectic and near-symplectic structures. Lefschetz fibrations are of great
interest in 4-manifold topology, in large part due to theorems of Donaldson [14]
and Gompf [20] relating them to symplectic 4-manifolds. A symplectic form on a
smooth oriented 4-manifold X is a closed, nondegenerate 2-form ω, whose wedge
product square ω ∧ ω is a volume form inducing the given orientation on X. A
symplectic manifold is a manifold equipped with a symplectic form.

Donaldson proved that any symplectic 4-manifold admits a Lefschetz pencil.
That is, there is a finite set of points B ⊂ X and a smooth map F : X\B → CP1

which is a Lefschetz fibration, and around each point of B the map F is locally
modeled by the projectivization map C2

\{0} → CP1. Blowing up at the points
in B gives an honest Lefschetz fibration; thus Donaldson’s result can be restated by
saying that any symplectic 4-manifold admits a Lefschetz fibration after blow-ups.
Gompf proved the converse to this, by showing that any manifold which admits a
Lefschetz pencil also admits a symplectic structure.

A similar relationship exists between broken Lefschetz fibrations and near-
symplectic structures. Let ω be a smooth closed 2-form with ω2

≥ 0, and set
Z = {ω = 0}. Then ω is called a near-symplectic structure on X if ω2 > 0 on the
complement of Z , and for each point in Z there is a neighborhood U such that the
map U → 32(T ∗U ) induced by ω has rank 3. This implies that the zero locus Z is
a family of embedded circles. Manifolds admitting near-symplectic structures are
quite common. Indeed, any closed oriented smooth 4-manifold with b+

2 (X) > 0
admits a near-symplectic structure (see [22]).

Analogous to the relationship between Lefschetz pencils and symplectic struc-
tures, Auroux, Donaldson, and Katzarkov [2] proved the following: a smooth
4-manifold X admits a near-symplectic structure with zero locus Z if and only if it
admits a broken Lefschetz pencil f with indefinite fold singularities along Z , and
there is a class ω ∈ H 2(X) that evaluates positively on every component of every
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fiber of f . Here, a broken Lefschetz pencil on X is a finite set of points B ⊂ X, and a
smooth map F : X\B →CP1 which is a broken Lefschetz fibration, and around each
point of B the map F is locally modeled by the projectivization map as above. These
structures can be chosen to be compatible, in the sense that if we specify either a near-
symplectic structure or broken Lefschetz pencil, then the other object may be chosen
so that the regular fibers of the pencil are symplectic away from the singular locus.

Broken Lefschetz fibrations and near-symplectic structures gained a great deal
of attention following [2], due in part to constructions of new Floer theoretic
invariants and a conjectured relationship to gauge theory and the Seiberg–Witten
invariants of 4-manifolds. In [34; 35], Perutz defines and studies the Lagrangian
matching invariant, which counts pseudoholomorphic multisections of a broken
Lefschetz fibration, subject to certain Lagrangian boundary conditions (alternatively,
these can be thought of as pseudoholomorphic sections of an associated family of
symmetric products of the nonsingular fibers). The Lagrangian matching invariant
is a near-symplectic generalization of the Donaldson–Smith invariants defined on
symplectic Lefschetz fibrations, which were shown by Usher to be equivalent to
the Seiberg–Witten invariants of the underlying 4-manifold for fibrations of high
degree [42]. Similarly, the Lagrangian matching invariant can also be compared
to the Seiberg–Witten invariants, and Perutz conjectures these invariants are in
fact equivalent. The relationship between broken Lefschetz fibrations and Seiberg–
Witten invariants is studied further by Baykur in [4], where he discusses vanishing
results for Seiberg–Witten invariants under a near-symplectic fiber sum operation
and presents numerous examples.

Broken Lefschetz fibrations have also been used to define invariants outside of
the Floer and gauge theoretic worlds. In [5], Baykur defines the broken genera of
an oriented 4-manifold X, which are diffeomorphism invariants constructed using a
family of simplified broken Lefschetz fibrations on X. These are defined in terms of
the minimal genus of a regular fiber among all simplified broken Lefschetz fibration
on X (or an associated blow-up of X ), whose fiber realizes a certain homology
class in H2(X; Z). In addition to defining these invariants, Baykur shows that these
invariants are able to distinguish infinitely many exotic smooth structures among
manifolds of the same homeomorphism type.

1F. Existence of fibrations on closed 4-manifolds. Besides establishing a relation-
ship between near-symplectic structures and broken Lefschetz fibrations, Auroux,
Donaldson, and Katzarkov also constructed a fibration on S4 with a single indefinite
fold singularity, and no other critical points. As S4 is clearly not near-symplectic,
this raised the question of determining which smooth oriented 4-manifolds admit
broken Lefschetz fibrations.

This question, and related ones, were answered in stages by several authors.
In [17], Etnyre and Fuller proved that after surgery along an embedded circle
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every smooth closed 4-manifold admits an achiral Lefschetz fibration. Gay and
Kirby proved in [18] that every smooth closed 4-manifold admits a broken achiral
Lefschetz fibration. Building on the work of Saeki in [41], Baykur used singularity
theory to prove that all closed orientable smooth 4-manifolds admit broken Lefschetz
fibrations in [3]. Moreover, Akbulut and Karakurt [1], Baykur [30, Appendix B],
and Lekili [30] demonstrated that the negative Lefschetz singularities in Gay and
Kirby’s construction can be eliminated, and hence provided an alternate proof that
every closed oriented smooth 4-manifold admits a broken Lefschetz fibration.

The constructions in [1; 17; 18] each involve cutting X up into pieces and con-
structing the desired fibrations on the pieces separately as described in Section 1B,
before regluing. The main differences lie in the modifications that are made to the
fibrations to match the boundary open book decompositions. In either approach
however, the core argument is the same, relying on machinery from contact topology
to ensure that the open book decompositions match along the boundaries before the
pieces are reglued. More precisely, the fibrations are first modified to ensure that both
boundary open book decompositions support overtwisted contact structures, and
then to arrange that both of these contact structures are homotopic. By Eliashberg’s
classification of overtwisted contact structures [16], the two contact structures must
then be isotopic, and hence by Giroux’s theorem [19], the boundary open book
decompositions will agree after some number of positive stabilizations (which can
be realized by further modifications to the fibrations). This process is, of course,
nonconstructive due to its reliance on these deep classification results.

Baykur and Lekili’s constructions instead focused on studying deformations of
generic maps near their singularities. More precisely, they both show that a generic
indefinite surjective map X → S2 can be modified near its critical points to obtain a
broken Lefschetz fibration f : X → S2. These early singularity theory constructions
did not (in general) produce broken Lefschetz fibrations with embedded images
of their indefinite fold singularities, however. More recent work of Baykur and
Saeki [9; 10] improves upon these techniques, by presenting explicit algorithms to
convert an arbitrary broken Lefschetz fibration into one with connected fibers and a
single indefinite fold singularity with embedded image.

In the case when b+

2 (X) > 0, or equivalently when X is near-symplectic, the
near-symplectic structure can be used to construct broken Lefschetz fibrations and
pencils with additional desired properties. For example, it can be shown that any
near-symplectic structure is cohomologous to a near-symplectic form which has
connected zero locus, and this can be used to show that in this case X admits
a broken Lefschetz pencil with connected fibers and at most one indefinite fold
singularity, and that the indefinite fold image is embedded.

Aside from the existence results mentioned above, the uniqueness question for
broken Lefschetz fibrations has also been studied. In [43], Williams establishes a set
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of modifications to broken Lefschetz fibrations which preserve the homotopy class
of the fibration map, and proves that they are sufficient to relate any two broken
Lefschetz fibrations in the same homotopy class. He also obtains a set of moves
relating all broken Lefschetz fibrations on a given 4-manifold (even nonhomotopic
ones) by adding in an additional projection move.

Finally, it is worth noting that Lefschetz fibrations have also been extended
to certain nonorientable manifolds. In [33], Miller and Ozbagci show that any
nonorientable handlebody without 3- and 4-handles admits a Lefschetz fibration
over the disk. The fibers of these fibrations are nonorientable surfaces with nonempty
boundary.

2. Braided surfaces in D2 × D2

In addition to the constructions described in Section 1F, (broken) Lefschetz fibrations
can also be obtained by way of branched coverings and braided surfaces. More
precisely, fibrations on X can be obtained by constructing and modifying certain
coverings h : X → D2

× D2, which are branched along properly embedded surfaces
in D2

× D2. To obtain a fibration, we will require that these branch loci are braided
surfaces with folds in D2

× D2. This approach can be carried out directly on a
given handle decomposition of the 4-manifold, and yield explicit broken Lefschetz
fibrations. In this section we define braided surfaces and a generalization, before
outlining this technique and providing explicit examples in later sections.

2A. Braided ribbon surfaces. Rudolph defined a braided surface [37] to be a
smooth properly embedded oriented surface S ⊂ D2

× D2 on which the projection
to the second factor pr2 : D2

× D2
→ D2 restricts as a simple branched covering.

Examples of these braided surfaces can be obtained by taking intersections of
nonsingular complex plane curves with 4-balls in C2, and they can be used to study
the links that arise as their boundaries in S3

= ∂ D4 (see, e.g., [38; 39; 40]). See
Figure 3. The boundary of a braided surface will be a closed braid in the solid torus
D2

× S1
⊂ ∂(D2

× D2).

D
2
×D

2

D
2

π

Figure 3. Braided ribbon surface.
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Let S be a braided surface. In a neighborhood of any branch point p of the
covering pr2 |S , there are local complex coordinates u and v on D2 such that S is
given by the equation u2

= v in the coordinates (u, v) on D2
× D2. We say that p is

a positive branch point if these coordinates can be taken to be orientation-preserving,
and a negative branch point otherwise.

One feature of Rudolph’s braided surfaces is that they are all necessarily ribbon.
A properly embedded surface S in D4

= {(z, w) : |z|2 + |w|
2

≤ 1} is said to be
ribbon embedded if the function |z|2 + |w|

2 restricts to S as a Morse function with
no local maximal points on int S. A properly embedded surface in D4 is said to
be ribbon if it is isotopic to a surface which is ribbon embedded. By fixing an
identification of D2

× D2 with D4, we can similarly consider ribbon surfaces in
D2

× D2 (the definition of ribbon embeddings in D2
× D2 will depend on our

choice of identification, though the resulting class of ribbon surfaces will not).
Rudolph proved that any orientable ribbon surface in D2

× D2 is isotopic to a
braided surface, though in general this isotopy cannot be chosen to fix ∂S even if ∂S
is already a closed braid in D2

× S1
⊂ ∂(D2

× D2). Rudolph’s braiding algorithm
involves manipulating a ribbon immersed surface in R3, and hence can’t be applied
to nonribbon surfaces in D2

× D2.
Viro defined a similar notion which he called a 2-braid, by additionally requiring

that ∂S ⊂ D2
× S1 be a trivial closed braid (i.e., ∂S = P × S1 for some finite subset

P ⊂ D2). Viro’s 2-braids come equipped with a closure operation yielding closed
surfaces in S4, and in a September 1990 lecture at Osaka City University, Viro
proved a 4-dimensional Alexander theorem by showing that every closed oriented
surface in S4 is isotopic to the closure of a 2-braid. These 2-braids were also studied
extensively by Kamada [24; 25; 26; 27; 28], who proved a 4-dimensional Markov
theorem relating any two 2-braids with isotopic closures.

Braided surfaces admit monodromy representations, similar to the multisections
described in Section 1C. Let S ⊂ D2

× D2 be a braided surface, and let D∗ be the
regular values of the restriction pr2 |S (i.e., the complement of the images of the
branched points of S under pr2 |S). Then D∗ will be a punctured disk, and after
fixing a basepoint q ∈ ∂ D∗ we can choose a collection of oriented simple closed
curves γ1, . . . , γm based at q, which are disjoint away from q, and such that γ j

travels counterclockwise around the j -th puncture of D∗ and no other punctures. We
can order the loops γ1, . . . , γm so that the product γ1 · · · γm is homotopic to ∂ D2.

If the restriction pr2 |S is an n-sheeted branched covering of D2, then for each j
the set (pr2 |S)

−1(γ j ) will be a closed n-stranded braid in the solid torus (pr2)
−1(γ j ).

Each of the (pr2 |S)
−1(γ j ) will be the closure of a braid of the form α j = β−1

j σ±1
i j

β j ,
where σi j is one of the standard Artin generators of the n-strand braid group Bn ,
and β j ∈ Bn . Equivalently, if Dq denotes the fiber of pr2 above the point q, and
(pr2 |S)

−1(q) = {s1, . . . , sn} ⊂ Dq , then each loop γ j will induce a monodromy
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SS

D2

pS

Figure 4. Cross section of a braided surface with folds.

map ϕ j ∈ M(Dq; {s1, . . . , sn}), which swaps precisely two points in {s1, . . . , sn}

along some arc in Dq , and leaves the others points fixed. The family of monodromy
maps ϕ1, . . . , ϕm (resp. family of braids α1, . . . , αm) will be determined by S up
to conjugation by a fixed element of M(Dq; {s1, . . . , sn}) (resp. conjugation by a
fixed braid in Bn), as well as changes in the choice of loops γ1, . . . , γm . Conversely,
a family of such maps in M(Dq; {s1, . . . , sn}) or braids in Bn define a braided
surface in D2

× D2 up to isotopy through braided surfaces.

2B. Braided surfaces with folds. The surfaces in D2
× D2 we use to construct

broken Lefschetz fibrations will not in general be ribbon, and hence cannot be
braided via Rudolph’s algorithm. We thus consider a less restrictive notion of
braiding, which we define now.

Let φ : F → 6 be a smooth map of oriented surfaces. Then a fold of F with
respect to φ is an embedded circle C ⊂ F, so that

(1) φ restricts to an embedding on C ,

(2) F and 6 both admit coordinate charts of the form S1
× [−1, 1] around C =

S1
× {0} and φ(C) = S1

× {0}, on which φ is given by (θ, t) 7→ (θ, t2),

Now let S ⊂ D2
× D2, and let prS denote the restriction of pr2 to S. We say that

S is a braided surface with folds if the critical points of prS all correspond either to
isolated simple branch points or folds of S with respect to prS . Moreover, we will
often assume that the critical values in D2 form a set of embedded concentric circles
(corresponding to folds), with isolated critical values lying inside the innermost
circle. See Figure 4 for a cross sectional diagram of a braided surface with a single
fold. We prove the following.

Theorem 2.1. Let S be a smooth oriented surface properly embedded in D2
× D2.

Then S is isotopic to a braided surface with folds and only positive branch points.
If ∂S is already a closed braid, then the isotopy can be chosen rel ∂S.
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Figure 5. Replacing a negative branch point with three positive
branch points and a fold.

Proof. In [23], the author proves that every such surface S ⊂ D2
× D2 is isotopic

to a braided surface with caps. Here, a cap is an embedded disk in S on which the
projection pr2 restricts as an embedding, and whose boundary is a fold circle as
defined above. Moreover, the isotopy arranging S as a braided surface with caps
can be taken rel ∂S is ∂S if already a closed braid. Alternatively, one could start
with a bridge trisection of the surface S in the standard genus zero trisection of
D4

= D2
× D2, which Meier [32] proved is always possible.

In order to ensure only positive branch points, we replace any negative branch
points as shown in Figure 5. More precisely, if p ∈ S is a negative branch point,
then we can choose some parametrized neighborhood V around p so that S ∩ V is
described locally by the motion picture diagram shown at the top of Figure 5. We
can then remove S ∩ V from S, and replace it with the surface whose local motion
picture description is shown at the bottom of Figure 5. This removes the original
negative branch point p, and replaces it with three positive branch points, and a
single fold circle. To see that these two surfaces are isotopic rel ∂S, we construct
the isotopy shown in Figure 6 using band slides. □

Figure 6. An isotopy which takes the replacement surface to the
original surface with a single negative branch point.
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3. Broken Lefschetz fibrations from branched coverings

In this section we describe how (broken) Lefschetz fibrations can be constructed
via branched coverings and braided surfaces. We then provide examples of this
construction in Section 4.

3A. Lefschetz fibrations from branched coverings. Suppose X is an oriented 4-
dimensional 2-handlebody with a fixed handle decomposition that has no 3- or
4-handles. Then we can construct a simple branched covering H : X → D2

× D2

branched along an orientable ribbon surface S. Further, we can assume S is a braided
surface by Rudolph’s algorithm. Then the composition X H

−→ D2
× D2 pr2

−→ D2 is
an achiral Lefschetz fibration, with a positive Lefschetz critical point (resp. negative
Lefschetz critical point) for each positive (resp. negative) branch point of S → D2.
Thus if S has only positive branch points, we obtain a true Lefschetz fibration. In
fact, Loi and Piergallini [31] show that any sufficiently nice Lefschetz fibration
over D2 necessarily factors in this way.

Using these constructions, Loi and Piergallini also prove that for an oriented
connected compact 4-manifold X with boundary, the existence of a Stein structure
is equivalent to the existence of a Lefschetz fibration over D2 with all vanishing
cycles nonseparating in the fiber. By considering the associated simple branched
covering restricted to ∂ X, it follows that a 3-manifold is Stein fillable if and only if
it admits a positive open book decomposition.

Now suppose we start instead with a handlebody description of a 4-manifold X
which has 3- and 4-handles. As noted above we can construct a branched covering
of the 0-,1-, and 2-handles over D2

× D2, branched along a ribbon surface. Once
we try to extend this covering to the 3- and 4-handles however, the branch locus is
no longer ribbon, and may additionally have cusp and node singularities.

3B. Broken Lefschetz fibrations from branched coverings. Our method for creat-
ing broken Lefschetz fibrations on handlebodies with 3- and 4-handles is based on
Proposition 3.1, which takes as input a simple branched covering h : X → D2

× D2

with orientable branch locus, and yields a broken Lefschetz fibration g : X → D2.
This approach can then be combined with techniques of Gay and Kirby to produce
broken Lefschetz fibrations over S2 on many closed 4-manifolds.

Proposition 3.1 is a generalization of Proposition 1.2 of [31] to branched coverings
with nonribbon branch loci.

Proposition 3.1. Suppose that X is a smooth 4-manifold with boundary, and that
h : X → D2

× D2 is a simple branched covering with branch locus Bh ⊂ D2
× D2

an embedded orientable surface. Then there is an isotopy φt : D2
× D2

→ D2
× D2,

φ0 = idD2×D2 , such that pr2 ◦φ1 ◦ h : X → D2 is a broken Lefschetz fibration.
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Proof. By Theorem 2.1, Bh is isotopic in D2
× D2 to a braided surface with folds

and only positive branch points. Let φt be an isotopy of D2
× D2 which takes Bh to

such a surface. Let H = φ1 ◦ h denote the isotoped branched covering, and let BH

denote its branch locus. Away from the preimages of the critical points of pr2 |BH ,
the composition g = pr2 ◦H is a regular map. By [31] the map g has a Lefschetz
critical point for every positive branch point of pr2 |BH .

To see that the fold lines of BH give indefinite fold singularities, note that along
these fold lines BH is locally embedded as R2

→ R2
× R2, by (s, r) 7→ (0, r, s, r2).

Furthermore, near nonsingular points of BH , H can be written in complex coordi-
nates as (u, v) 7→ (u2, v), where BH is given locally by u = 0. Combining these
two local models yields a map of the required local form. Furthermore, the folds of
BH can be pushed out so that they lie above a neighborhood of the boundary of D2,
so that their images form a collection of concentric circles in D2 which enclose the
Lefschetz critical values. □

Remark 3.2. Note that Proposition 3.1 holds more generally than stated above.
Indeed, by [3; 30] any generic map X → D2 can be perturbed to become a broken
Lefschetz fibration, and by [9; 10] any map X → S2 can be converted to a broken
Lefschetz fibration whose fibers are all connected, and whose indefinite fold singu-
larities are connected with embedded image. The proof of Proposition 3.1 is what
will be most useful to us, since the branched covering h : X → D2

× D2 and the
isotopy φt : D2

× D2
→ D2

× D2 can often be constructed by hand from a given
Kirby diagram of X (see Section 4).

3C. Broken Lefschetz fibrations on closed 4-manifolds. We will now show how
Proposition 3.1 can be used in many cases to construct a broken Lefschetz fibration
f : X → S2 on a closed orientable 4-manifold X from a given handle decompo-
sition. Let F ⊂ X be a closed surface with F · F = 0, and consider a tubular
neighborhood νF of F. For simplicity, we describe first the construction in the
case that F ∼= S2, and hence νF ∼= S2

× D2. Such a neighborhood can sometimes
be identified in the handle diagram of X as a 2-handle attached along a 0-framed
unknot together with the 0-handle of X. If no such S2

× D2 can be identified, it
can be added to the diagram by adjoining a canceling 2- and 3-handle pair, where
the 2-handle is attached along a 0-framed unknot. We will think of the union of
this 2-handle with the 0-handle to which it is attached as forming νF.

3D. Building the concave piece. We describe how to construct a concave broken
fibration f : νF → S2 with a single indefinite fold singularity and no Lefschetz
critical points. This construction is originally due to Auroux, Donaldson, and
Katzarkov [2], as part of their construction of a broken Lefschetz fibration on S4,
though our description follows that in [18].
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S2 ×D2 ∪ round 1-handleS2 ×D2 ∪ round 1-handleS2 ×D2

0 0
0

0
0

−1

∪ 2,3-handles

∪ 3-handle

Figure 7. Concave broken fibration on S2
× D2.

We begin by identifying the target of the projection pr2 : S2
× D2

→ D2 with
the northern polar cap in S2. This defines a fibration of S2

× D2 with fiber S2

over this region (see the bottom-left diagram in Figure 7). Expressing S2
× D2

with the usual handlebody diagram (top-left, Figure 7), we can add a 1-handle and
0-framed 2-handle to this diagram, as in the top middle diagram. Taken together,
these two handles can be interpreted as a round 1-handle, which is attached to
S2

× D2 along two sections of the existing fibration restricted to the boundary. We
can thus extend this fibration over the round 1-handle, giving a fibration over the
northern hemisphere with an indefinite fold singularity over the arctic circle. Fibers
between the equator and the arctic circle will be obtained from the polar fibers by
0-surgery, and hence will be tori. Note that the fibration we have constructed so far
is flat along its boundary.

Finally, we add an additional 2-handle H2, and a 3-handle H3 to our diagram
(top-right, Figure 7). The attaching circle of H2 is a section of the flat fibration
restricted to the boundary, and hence the fibration can be extended over H2, by
projecting it to the southern hemisphere (with fiber D2). In other words, thinking of
H2 as D2

× D2 attached along ∂ D2
× D2, we think of H2 as sitting as a D2-bundle

over the southern hemisphere, with projection map D2
× D2

→ D2 being given
by projection onto the first factor. Note that we choose the attaching circle of H2

so that it runs over the existing 1-handle from the round 1-handle once, and has
framing −1. While these choices are not necessary to ensure the fibration extends,
they are made to allow for the handle cancellations described below.

After extending over H2 the resulting fibration is concave. The page of the
boundary open book decomposition is a torus with a single hole (which resulted
from attaching the 2-handle H2), while its binding will be the belt-sphere of H2.

The attaching sphere of the new 3-handle H3 is arranged so that it intersects the
binding at its north and south poles, and so that it intersects each page in a properly
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0

0

−1

∪ 3-handle
0

0

−1

∪ 3-handle

0

−1

0

Figure 8. Sliding handles in the concave fibration to identify
canceling pairs. After sliding one of the 0-framed 2-handles over
the (−1)-framed 2-handle H2 twice, the slid handle becomes a
0-framed unknot that can be canceled with the 3-handle. The
handle H2 can then be canceled with the 1-handle, leaving behind
S2

× D2.

embedded arc. The fibration can then be extended across H3, resulting in no new
critical points. This extension changes the D2 fibers over the southern hemisphere
by adding a 2-dimensional 1-handle, yielding annular fibers. On the other hand,
the pages of the boundary open book change by the removal of a neighborhood
of a properly embedded arc from the puncture torus pages (the intersection of the
original page with the attaching sphere of H3), yielding annular pages.

This gives a concave broken fibration as depicted in the bottom-right diagram
of Figure 7, with a single indefinite fold singularity, and no positive or negative
Lefschetz critical points. Moreover, after sliding the 0-framed 2-handle from the
round 1-handle over H2 twice as shown in Figure 8, we find that the added 1-,2-,
and 3-handles all form canceling pairs. Hence the total space of our fibration is
diffeomorphic to S2

× D2 ∼= νF. Notice that the induced open book decomposition
on ∂(νF) will have disconnected binding, which may cause problems when we try
to construct a matching convex fibration on X\νF. We thus instead think of the lone
canceling 3-handle as being attached as a 1-handle to X\νF, and construct a concave
fibration f1 on X1 = νF\{3-handle}, whose boundary open book decomposition
has punctured torus page and connected binding (see Figure 9).

If instead F has genus g ≥ 1 we can proceed much as before, either identifying
a neighborhood νF in the handle diagram of X, or by adding a standard diagram of
F × D2 with additional 2- and 3-handles to cancel the 1- and 2-handles of νF. More
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0

−1

0

Figure 9. Neighborhood of F ⊂ X with an extra 2-handle and
round 1-handle added.

precisely, ignoring the (−1)-framed 2-handle in Figure 9, and the 1- and 2-handles
coming from the round 1-handle, the remaining handles (together with the 0-handle)
give a diagram for F × D2. This diagram can be placed in any handlebody diagram
of a 4-manifold X without changing the diffeomorphism type of X, provided we
also add a 0-framed 2-handle attached along a meridian for each 1-handle circle,
along with a single extra 3-handle. To this diagram we could then add a round
1-handle and pair of 2- and 3-handles (see Figure 9) and continue as above.

3E. Building the convex piece. Let Y = X\X1. We now discuss how to use a
handle structure on Y to build a convex fibration g : Y → D2, so that it extends
the open book decomposition λ : ∂Y → D2 induced by the concave fibration
f1 : νF → S2. We attempt to do this in three steps:

(1) Express the open book decomposition λ as λ=pr2◦h, where h :∂Y→∂(D2
×D2)

is a simple covering branched along a closed braid in ∂(D2
× D2), and

pr2 : D2
× D2

→ D2 is the projection.

(2) Extend the branched covering h to a covering H : Y → D2
× D2 branched

along an orientable surface.

(3) Use Proposition 3.1 to obtain the desired broken Lefschetz fibration.

Part (1) is always possible. Indeed, let P be the page of λ, with monodromy
τ : P → P. Then by choosing a suitable (degree ≥ 3 and simple) branched covering
α : P → D2, the map τ is the lift of a map τ̂ : D2

→ D2 which fixes the branch
locus of α setwise [21; 29]. If K is the binding of λ, then this allows us to write
∂Y\νK as a branched covering of the solid torus D2

×∂ D2 branched over a closed
braid. A matching (unbranched) covering νK → ∂ D2

× D2 can be glued to this
covering to give the desired map h : ∂Y → ∂(D2

× D2).
Problems may arise when we try to carry out part (2) of the above process, how-

ever. The covering h can always be extended to a branched covering H :Y→ D2
×D2,

though the branch locus may not be an orientable embedded surface.
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Figure 10. Fixing a nonorientable band in the branch locus of ĥ.

To see how this covering is constructed, fix some choice of relative handle
decomposition for the pair (Y, ∂Y ). The covering h : ∂Y → ∂(D2

× D2) can be
extended to a covering

ĥ : ∂Y × [0, 1] → ∂(D2
× D2) × [0, 1]

in the usual way. Here, ∂Y ×[0, 1] and ∂(D2
× D2)×[0, 1] are thought of as collar

neighborhoods of ∂Y and ∂(D2
× D2) respectively. Identify ∂Y with ∂Y ×{0}, and

let ∂+Y = ∂Y ×{1}. We now attempt to extend this covering over the handles of Y
to construct the desired covering H.

Let σ1 = D1
× D3 be a 1-handle, and let τ1 : σ1 → σ1 be the involution defined by

τ1 : (t, x, y, z) 7−→ (−t, −x, y, z).

If σ1 is a 1-handle in our handle decomposition of (Y, ∂Y ), then we can isotope its
attaching map α1 : S0

× D3
→ ∂+Y so that it is symmetric with respect to ĥ, i.e.,

so that ĥ ◦ α1 ◦ τ = ĥ ◦ α1. Once this is done, by Lemma 6.1 of [11] we can extend
ĥ over the 1-handle σ1, using the quotient induced by τ1. The result is a branched
covering of (∂Y ×[0, 1])∪σ1 over ∂(D2

× D2)×[0, 1], where the new branch locus
is obtained by adding a disjoint disk to the branch locus of ĥ in ∂(D2

× D2)×[0, 1].
Similarly, if σ2 = D2

× D2 is instead a 2-handle attached to ∂+Y by some
attaching map α2 : S1

× D2
→ ∂+Y, by [15] we can isotope α2 so that it becomes

symmetric with respect to the involution τ2 : D2
× D2

→ D2
× D2, defined by

τ2 : (t, s, x, y) 7−→ (−t, s, −x, y).

Here, the attaching circle of σ2 will intersect the branching set of ĥ in two points,
say p1 and p2. Then we can extend the covering ĥ to a branched covering of
(Y × [0, 1]) ∪ σ2 over ∂(D2

× D2), where the new branch locus is obtained by
attaching a single band to the branch locus of ĥ at the points ĥ(p1) and ĥ(p2). This
band will have n half-twists in it, where n is the framing of σ2.

When extending ĥ over a 2-handle σ2, it is possible that the corresponding band β

may be attached to the branch locus B ⊂ ∂(D2
× D2) × [0, 1] in a nonorientable

way. By [12] this can be remedied, by adding (or removing) a half-twist in β as in
Figure 10. In this local picture we have pushed B entirely into the 3-dimensional
space ∂(D2

× D2) × {1}, where it can be depicted as an immersed surface with
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only ribbon double points. The labels on the components denote the associated
monodromy action on the sheets of ĥ.

Let Y2 denote the union of ∂Y ×[0, 1] with the 1- and 2-handles. We can thus
extend the branched covering h : ∂Y → ∂(D2

× D2) to a covering

h̃ : Y2 → ∂(D2
× D2) × [0, 1],

where the associated branch locus B̃ ⊂∂(D2
×D2)×[0, 1] is an embedded orientable

surface. If the intersection

B̃1 = B̃ ∩ ∂(D2
× D2) × {1}

is an unlink, then h̃ can be extended across the 3- and 4-handles to give a branched
covering H : Y → D2

× D2 with orientable embedded branch locus. This can be
seen by noting that the union of the 3- and 4-handles is a thickened bouquet of
circles, which can be expressed as a branched covering of D4 with branch locus a
collection of properly embedded disjoint disks. If B̃1 is an unlink, this covering
can be glued to h̃ : Y2 → ∂(D2

× D2) × [0, 1] to obtain the desired covering H.
In general however, B̃1 will not be an unlink. By [36] we can modify the covering

by adding cusp and node singularities on the interior of B̃ so that B̃1 becomes an
unlink, though doing so may fail to preserve the required orientability of the branch
locus B. When this can be avoided, we can proceed with the rest of the construction
to obtain a broken Lefschetz fibration of X over S2.

3F. Broken Lefschetz fibrations on doubles of 4-manifolds. We now discuss a
situation in which the above construction will always be possible. Let U be a
handlebody with single 0-handle and no 4-handles. The double of U is the manifold
X = U ∪Id∂U U , where U denotes the handlebody U with reversed orientation. The
handle structure on U induces a handle structure on X in a natural way, by turning
the j-handles of U upside-down and attaching them as (4− j)-handles to U.

Theorem 3.3. Let X be a smooth, closed, orientable 4-manifold, with handle
structure coming from the double of a handlebody U. Then the procedure described
in Section 3E will produce a broken Lefschetz fibration f : X → S2.

Proof. If F = S2 is a trivially embedded sphere in the 0-handle of X, we can
construct a concave fibration of νF over S2 as in Section 3D. Let Y = X\νF,
and let λ : ∂Y → D2 be the induced open book decomposition. By [18] the
monodromy of λ is trivial, and hence it factors through a simple branched covering
h : ∂Y → ∂(D2

× D2) of degree ≥ 3, whose branch locus is a trivial closed braid
in D2

× ∂ D2.
We now proceed to extend the covering h to a covering

h̃ : Y2 → ∂(D2
× D2) × [0, 1]

with branch locus B̃. Again we let B̃1 be the intersection of B̃ with ∂(D2
×D2)×{1}.
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Each 1-handle we extend over contributes an unknot component to B̃1 which is
unlinked from the other components.

Before extending h across the 2-handles, note that in the induced handle structure
on Y, the 2-handles occur pairs. Every 2-handle σ from U is paired with a 2-
handle σ ′ from U , where σ ′ is attached along a 0-framed meridian of the attaching
circle of σ (see [20]). We can also think of σ ′ as being attached along the belt
sphere of σ .

Extending h over a 2-handle from U changes B̃1 by oriented surgery along a
band β. On the other hand, since the belt sphere of σ is symmetric with respect to
the involution τ2 : σ → σ , extending h across σ ′ will change B̃1 by oriented surgery
along a band β ′ which cancels β. Hence the net effect of extending h across σ

and σ ′ does not change B̃1, which thus remains an unlink. □

Any orientable S2-bundle over a (possibly nonorientable) surface 6 is the double
of a D2-bundle over 6. See [18] for an alternate construction of broken Lefschetz
fibrations on doubles of 2-handlebodies.

3G. Connected sums. The procedure outlined in Section 3E respects connected
sums in the following sense:

Proposition 3.4. Suppose that X1 and X2 are two handlebodies for which the
procedure in Section 3E yields broken Lefschetz fibrations f1 : X1 → S2 and
f2 : X2 → S2. Then the same procedure can be used to obtain a broken Lefschetz
fibration f : X1#X2 → S2 which restricts to a concave fibration on X1\D4

⊂ X1#X2

and to a convex fibration on X2\D4
⊂ X1#X2. Moreover, the ball D4

⊂ X1 can be
chosen so that f |X1\D4 = f1|X1\D4 .

Proof. The handle structures on X1 and X2 yield a handle decomposition of X1#X2

by starting with the 0-handle of X1 and attaching all 1-,2- and 3-handles of X1,
followed by the 1-, 2-, 3- and 4-handles of X2.

Cut out a neighborhood of an S2 from X1, and construct the concave fibration
on νS2 and the branched covering h as above. The map h can be extended across
the 1,2 and 3-handles of X1 to give a covering

h′
: X1\(νS2

∪ 4-handle) → ∂(D2
× D2) × [0, 1].

We identify ∂(D2
× D2) × [0, 1] with (D2

× D2)\(D′
× D′), where D′

⊂ D2 is a
small disk containing the origin. Then by Theorem 2.1 the branch locus B ′ of h′ can
be braided rel ∂ B ′ so that it is a braided surface with folds in (D2

× D2)\(D′
× D′)

and only positive branch points. Gluing the map pr2 ◦h′ to the concave fibration
on νS2 gives a concave fibration X1\4-handle → S2. This fibration can either be
continued across the 4-handle of X1 to obtain the fibration f1 : X1 → S2, or across
the 1-, 2-, 3- and 4-handles of X2 to give a fibration f : X1#X2 → S2. □
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Broken Lefschetz fibrations on connected sums were also built by Baykur in [4]
(based on an observation by Perutz [35]), where he also defines a generalization of
the symplectic fiber sum operation on near-symplectic broken Lefschetz fibrations.

4. Examples

In this section we compute a few simple examples, to illustrate how the above
procedure is carried out.

4A. Broken Lefschetz fibration on S4. Consider the diagram of S4 in Figure 11.
As in Figure 7, the union of all 0-, 1-, and 2-handles in this decomposition gives a
neighborhood of an unknotted S2

⊂ S4, together with an additional round 1-handle
and (ordinary) 2-handle attached. Call the union of these handles X1, and set
X2 = S4

\X1. The open book decomposition on ∂ X1 = ∂ X2 induced by the concave
fibration f1 : X1 → S2 from the above proof will have a punctured torus page
with trivial monodromy (see [18]). Hence it can be represented by a 3-fold simple
branched covering h : ∂ X2 → ∂(D2

× D2), and whose branch locus in ∂(D2
× D2)

is the closure of the trivial 4-strand braid in D2
× ∂ D2 (h can be described on each

page by the branched covering in Figure 12).
The branched covering h extends to a covering H : X2 → D4, which is built by

turning the handle decomposition from Figure 11 upside-down, and viewing X2

as a 0-handle with two 1-handles attached. The 0-handle can be expressed as a
3-fold covering of D4 branched over two properly embedded unknotted disks. For
each 1-handle we extend this covering over, a properly embedded unknotted disk is
added to the branch locus. Hence the branch locus BH of H in D4 ∼= D2

× D2 is
isotopic to the braided surface {p1, . . . , p4}× D2, for some collection of disjoint
points {p1, . . . , p4} ⊂ D2. The only critical points in the resulting broken Lefschetz
fibration f : S4

→ S2 will thus lie along the indefinite fold singularity in X1, and
we recover Auroux, Donaldson, and Katzarkov’s example in [2].

4B. S2-bundles over orientable surfaces. Let X be an S2-bundle over an closed
orientable surface of genus g. For simplicity, we consider first the case when g = 1.

0
0

−1

∪ two 3-handles
∪ 4-handle

Figure 11. Handlebody structure of a neighborhood of S2 in S4.
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b2

b4

b1

b3

b2g

b2g+1

Figure 12. 3-fold branched cover 6 → D2.

Consider the diagram of X in Figure 13, where each 1-handle attaching sphere is
paired with the sphere directly across from it. Notice that the diffeomorphism type
of X depends only on the parity of n. Assume first that n =0. In this case X ∼= S2

×T 2.
While there is an obvious fibration S2

× T 2
→ S2, the construction below has

the advantage that it can be iterated to construct broken Lefschetz fibrations on
connected-sums of S2-bundles, and generalizes to the twisted bundle S2

×̃T 2. Note
that broken Lefschetz fibrations on S2 bundles over T 2 can also be obtained by
converting trisection examples given in [10] or [13] to broken Lefschetz fibrations.

We begin by adding a copy of the diagram in Figure 11 (minus the 4-handle) to
the diagram of X, which does not change the diffeomorphism type of X. Again,
let X1 denote the union of the 0-handle with the newly added 1-handle and 2-
handles, and let X2 = X\X1. As above, X1 admits a concave fibration over S2 and
induces an open book decomposition on ∂ X2 with punctured torus page and trivial
monodromy. The associated 3-fold branched covering

h : ∂ X2 → ∂(D2
× D2)

has branch locus a trivial 4-strand closed braid in D2
× ∂ D2. We need to extend h

0

n

∪
∪ 4-handle
two 3-handles∪

∪ 4-handle
two 3-handles

Figure 13. S2-bundle over torus.
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C

Figure 14. Symmetrizing the handles.

over the handles in Figure 13, as well as the additional 3-handles we introduced
when adding the diagram in Figure 11.

In ∂ X2 there are four circles of branch points, corresponding to the four com-
ponents of the branch locus in ∂(D2

× D2). We can isotope the handle attaching
maps so that one of these four circles C skewers the diagram in Figure 13, so that
locally the covering looks like rotation of π about the center of the diagram. We
first focus on extending the covering over the 1-handles σ1 and σ ′

1, and over the
2-handle σ2 coming from the handle structure on T 2.

Isotope the attaching maps of these handles so that they are symmetric with
respect to rotation by π around C , as in Figure 14. We can thus extend the covering h̃
over σ1, σ

′

1, and σ2. Extending over the 1-handles adds a pair of disks to the branch
locus, while extending over the 2-handle adds a band. Notice that when the attaching
circle of σ2 runs along the horizontal 1-handle σ1, it will intersect the branch set in
precisely two points. The branch B̃ locus of

h̃ : (∂ X2 × [0, 1]) ∪ σ1 ∪ σ ′

1 ∪ σ2 → ∂(D2
× D2) × [0, 1]

will be as in Figure 15.
More precisely, let B̃t = B̃ ∩ (∂(D2

× D2) × {t}) for t ∈ [0, 1]. The leftmost
frame represents B̃0, the branch locus of h, where we have suppressed all of the
components except for h(C). As t increases, we see two unknotted components
appear, corresponding to the 1-handles σ1 and σ ′

1, followed by a band surgery
corresponding to the 2-handle σ2. Extending h̃ across the remaining 2-handle in
Figure 13 results in an additional band surgery which cancels the first. Note that all
of the components in Figure 15 will have the same monodromy as h(C).

The branch locus B̃1 = B̃ ∩ (∂(D2
× D2) × {1}) is thus a six component un-

link (three components from Figure 15 and three additional components from
h : ∂ X2 → ∂(D2

× D2) which were suppressed from the diagrams). It only remains
to extend this covering over the four 3-handles and unique 4-handle of X2. It is
not hard to see that the union of these higher index handles admits a 3-fold simple
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h(C)

γ

Figure 15. Branch locus B̃ after extending over 1-handles and σ2.

branched covering over D4, with branch locus consisting of six disjoint properly
embedded disks in D4. This covering can thus be glued to h̃ to give a covering
H : X2 → D2

× D2, where these six disks cap off the six component unlink B̃1.
Let BH denote the branch locus of H, which consists of B̃ capped off with these
six disks.

Finally, in order to apply Proposition 3.1, we must arrange BH as a braided
surface with folds. By [23] this is equivalent to arranging BH ⊂ D2

× D2 so that it
sits in a collar neighborhood ∂(D2

× D2) × [0, 1] such that

(1) the restriction to BH of the projection ρ : ∂(D2
× D2) × [0, 1] → [0, 1] is a

Morse function, and

(2) (ρ|BH )−1(t) a closed braid in ∂(D2
× D2) × {t} for all regular values t .

Figure 16 shows how this can be done. Again we start with the component h(C)

(hiding the three other components), and introduce two new unknots corresponding
to extending the branched covering over the 1-handles. The key difference now
is that at every regular level the branch locus must be a closed braid. Hence, the
band corresponding to σ2 now shows up first as a maximal point, which is then
completed by adding two half-twisted bands via saddle points in the seventh frame.
The second band surgery takes place in the ninth frame. Finally the branch locus is
simplified to the trivial 3-strand braid, which is capped of by three minimal points
(the other unseen three unknot components are similarly capped off).

The resulting broken achiral Lefschetz fibration pr2 ◦H : X2 → D2 has an
indefinite fold singularity for each maximal point of BH (which shows up along the
boundary of the maximal disk), and a positive or negative Lefschetz critical point
for each saddle point. Hence pr2 ◦H has three indefinite fold singularities, two
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C

α

Figure 16. Branch locus BH as a braided surface with folds.

positive Lefschetz critical points, and two negative Lefschetz critical points. The
negative Lefschetz critical points can be replaced by the isotopy in Theorem 2.1,
and the monodromy information of the fibration can be read off of Figure 16.

Now suppose that X is the S2-bundle over T 2 given by Figure 13 with n = 1,
i.e., X ∼= S2

×̃T 2. Then the branch locus B̃ will be as in Figure 15, except that
the band corresponding to σ2 will have a single half-twist, and hence B̃ will be
nonorientable. This can be remedied by involving another component of the branch
locus h : ∂ X2 → ∂(D2

× D2), and performing a move as in Figure 10 (see Figure 17,
where the monodromy information must be chosen to agree with the labels in
Figure 10).

When braided, this move introduces a new local maximal point, and two new
saddle points (one of each sign). Hence the resulting broken achiral Lefschetz
fibration has an additional indefinite fold singularity, positive Lefschetz critical point,
and negative Lefschetz critical point when compared to the fibration constructed on
S2

× T 2.
If X is a S2-bundle over a higher surface of genus g > 1, we can start instead

with the diagram in Figure 18. The associated branch locus will be as in Figure 16,
except that the innermost strand α will be replaced by 2g − 1 parallel strands,
and hence the fibration pr2 ◦H : X2 → D2 will now have 2g + 1 indefinite fold
singularities. The number of saddle points will be the same as in Figure 16, and
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h(C)

γ

Figure 17. Branch locus B̃ for S2
×̃T 2.

hence the resulting fibration will have two positive Lefschetz critical points and two
negative Lefschetz critical points (where the negative critical points can be replaced
as described above).

4C. S2-bundles over RP2. We now consider S2-bundles over RP2, which can be
described by the diagram in Figure 19. Proceeding as above, we can arrange the
component C of the branch set so that it sits vertically in the diagram between the two
strands of the attaching circle of the n-framed 2-handle σ2, and so that the attaching
maps of σ2 and the 1-handle σ1 are symmetric with respect to rotation about C . For
n = 0 and n = 1 the branch locus B̃ will be as in Figures 15 and 17, respectively,

0

∪ 2g 3-handles

∪ 4-handle

∪ 2g 3-handles

∪ 4-handle

Figure 18. S2-bundle over genus g surface.
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n

∪
∪ 4-handle
3-handle∪

∪ 4-handle
two 3-handles

0

C

Figure 19. S2-bundle over RP2.

except that the second unknot components (labelled by γ and corresponding to the
extra 1-handle) will not be present. After filling in the higher index handles and
braiding the resulting branch locus BH , the result will be the same as in Figure 16,
except that in the second still only the outermost new component will appear.

4D. Connected sums. The above constructions can be repeated to give broken
Lefschetz fibrations on connected sums. For example, instead of capping off the
unknot components in the third to last still of Figure 16, the movie (or another
similar braided movie) could be repeated.
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Gauge Theory and Low-Dimensional Topology:
Progress and Interaction

This volume is a proceedings of the 2020 BIRS workshop Interactions of gauge theory with
contact and symplectic topology in dimensions 3 and 4. This was the 6th iteration of a
recurring workshop held in Banff. Regrettably, the workshop was not held onsite but was
instead an online (Zoom) gathering as a result of the Covid-19 pandemic. However, one
benefit of the online format was that the participant list could be expanded beyond the usual
strict limit of 42 individuals. It seemed to be also fitting, given the altered circumstances
and larger than usual list of participants, to take the opportunity to put together a conference
proceedings.

The result is this volume, which features papers showcasing research from participants at the
6th (or earlier) Interactions workshops. As the title suggests, the emphasis is on research
in gauge theory, contact and symplectic topology, and in low-dimensional topology. The
volume contains 16 refereed papers, and it is representative of the many excellent talks and
fascinating results presented at the Interactions workshops over the years since its inception
in 2007.
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Baykur, Roger Casals, Sudipta Kolay, Tye Lidman and Daniele Zuddas

43Lifting Lagrangian immersions in CPn−1 to Lagrangian cones in Cn — Scott
Baldridge, Ben McCarty and David Vela-Vick

81L-space knots are fibered and strongly quasipositive — John A. Baldwin and
Steven Sivek

95Tangles, relative character varieties, and holonomy perturbed traceless flat moduli
spaces — Guillem Cazassus, Chris Herald and Paul Kirk

123On naturality of the Ozsváth–Szabó contact invariant — Matthew Hedden and Lev
Tovstopyat-Nelip

145Dehn surgery and nonseparating two-spheres — Jennifer Hom and Tye Lidman

155Broken Lefschetz fibrations, branched coverings, and braided surfaces — Mark C.
Hughes

185Small exotic 4-manifolds and symplectic Calabi–Yau surfaces via genus-3 pencils —
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