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R. İnanç Baykur





THE OPEN BOOK SERIES 5 (2022)

Gauge theory and low-dimensional topology: progress and interaction
https://doi.org/10.2140/obs.2022.5.185

msp

Small exotic 4-manifolds and
symplectic Calabi–Yau surfaces via genus-3 pencils
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We introduce a strategy to produce exotic rational and elliptic ruled surfaces, and
possibly new symplectic Calabi–Yau surfaces, via constructions of symplectic
Lefschetz pencils using a novel technique we call breeding. We deploy our
strategy to breed explicit symplectic genus-3 pencils, whose total spaces are
homeomorphic but not diffeomorphic to the rational surfaces CP2#pCP2 for
p = 6, 7, 8, 9. Similarly, we breed explicit genus-3 pencils, whose total spaces
are symplectic Calabi–Yau surfaces that have b1 > 0 and realize all the integral
homology classes of torus bundles over tori.

1. Introduction

Since the advent of Gauge theory, many construction techniques, such as knot
surgery, rational blowdowns, generalized fiber sums and Luttinger surgery, have
been introduced and successfully employed to produce exotic smooth structures
on 4-manifolds, primarily through constructions of symplectic 4-manifolds homeo-
morphic but not diffeomorphic to smooth connected sums of standard 4-manifolds,
where those with small topology (i.e., small second homology) have proven to be
the most challenging.

In this article, we deploy a strategy to produce small symplectic 4-manifolds as
total spaces of Lefschetz pencils,1 which correspond to small positive factorizations
(i.e., a small number of Dehn twists) we construct using a new technique we will
discuss below. Recall that by the celebrated work of Donaldson [20] any compact
symplectic 4-manifold admits a Lefschetz pencil, and in turn, corresponds to a pos-
itive factorization in the mapping class group of an orientable surface [44; 52; 54].

MSC2020: primary 57R55; secondary 57K20, 57K43.
Keywords: Lefschetz pencil, exotic 4-manifold, symplectic Calabi–Yau.

1Conventions: We assume that Lefschetz pencils, unlike Lefschetz fibrations, always have base
points, whereas both have critical points and no exceptional spheres contained in the fibers.
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For the small 4-manifolds we consider, the additional information presented by the
pencil structure will be crucial to detect the exotic smooth structures, as illustrated
by our first theorem:

Theorem A. Let X be a symplectic 4-manifold homeomorphic to a rational or
ruled surface Z with c2

1(Z) ≥ 0. Then X is an exotic Z if and only if it admits a
genus-g Lefschetz pencil with number of base points b ≤ 2g − 2 −χh(Z).

Here c2
1 = 2e+3σ is the first Chern number and χh =

1
4(e+σ) is the holomorphic

Euler characteristic, where e and σ are the Euler characteristic and the signature of
the 4-manifold. Rational and ruled surfaces satisfying the c2

1 ≥ 0 condition are the
rational surfaces CP2# p CP2, for p ≤ 9, and S2

× S2 (which have χh = 1), and
the minimal elliptic ruled surfaces T 2

× S2 and T 2 ∼
×S2 (which have χh = 0). The

existence of the Lefschetz pencils in the statement of the theorem is granted by
Donaldson, whereas our proof of the essential constraints on the topology of the
pencils uses Seiberg–Witten theory, and builds on the works of Taubes [63; 64],
McDuff [53] and Li and Liu [51]. We note that while there are numerous construc-
tions of minimal symplectic 4-manifolds homeomorphic but not diffeomorphic to
the rational surfaces CP2#pCP2, for p ≥ 2, there are no known examples of exotic
irrational ruled surfaces to date.

The homeomorphism types of the rational and elliptic ruled surfaces are easily
determined by their fundamental group and intersection form by Freedman [30],
and Hambleton and Kreck [40], respectively. Thus, powered by Theorem A, one
can produce exotic copies of these small 4-manifolds by constructing Lefschetz
pencils with the right algebraic invariants and small number of base points relative
to the fiber genus. As a successful implementation of this approach, we show that:

Theorem B. There are symplectic genus-3 Lefschetz pencils {(X i,φ, fi,φ)} whose
total spaces have χh(X i,φ)= 1 and c2

1(X i,φ)= 3−i , and they include exotic rational
surfaces CP2#(6 + i)CP2 as well as infinitely many symplectic 4-manifolds which
are not homotopy equivalent to any complex surface, for each i = 0, 1, 2, 3.

The index φ for the family of pencils {(X i,φ, fi,φ)} takes values in a certain
infinite subgroup of the mapping class group Mod(61

3) for each i = 0, 1, 2, 3.
Each symplectic 4-manifold X i,φ in the theorem is “almost minimal”, that is, it

is either minimal or at most one blow-up of a minimal symplectic 4-manifold; see
Remark 8. Notably, our family of genus-3 pencils with c2

1 = 3 are all hyperelliptic,
and therefore, by the work of Siebert-Tian [58], each X0,φ , including our exotic
CP2# 6 CP2, admits a symplectic involution and is a blow-down of a symplectic
double branched covering of a rational surface; see Remark 10. We should also note
that g = 3 is the smallest fiber genus for any Lefschetz pencil on an exotic rational
surface, and we moreover suspect that our examples in Theorem B are also optimal
in regard to the smallest exotic rational surfaces one can obtain via genus-3 pencils;
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see Remark 9. While in this article we only study pencils of genus g = 3, one can
obtain much sharper results even with g = 4 or 5 pencils, as demonstrated in our
forthcoming work [11].

We describe our Lefschetz pencils in Theorem B in terms of their monodromy
factorizations, which amount to positive Dehn twist factorizations of the boundary
multitwist in the mapping class group of an orientable surface. We build these
pencils out of lower genera pencils, using a novel technique we call breeding, which
consists of carefully embedding the positive factorizations for lower genera pencils
into the mapping class group of a higher genus surface in such a way that one can
cancel all the negative Dehn twists (along nonboundary parallel curves) against
positive ones at the end. It is worth noting that, although we use the breeding
technique to derive new symplectic 4-manifolds from smaller ones, it is not an
inherently symplectic operation. In the intermediary steps we get achiral Lefschetz
pencils and fibrations which do contain negative nodes, but then we match them
with positive nodes and remove all these pairs, which corresponds to surgering out
self-intersection zero spheres contained in the fibers.

In an unpublished note with Korkmaz, we used a simpler version of the breeding
technique to produce hyperelliptic genus-g Lefschetz fibrations with 5g − 3 critical
points, which yield the smallest hyperelliptic Lefschetz fibrations when g = 3.
Since the appearance of the first version of this paper on the arxiv, the breeding
technique has been used to produce several new Lefschetz pencils and fibrations
(e.g., [38; 4; 10; 11]) and especially played a vital role in the recent resolution of
Stipsicz’s conjecture on the signature of Lefschetz fibrations in [10].

In the last portion of our paper, we turn to symplectic Calabi–Yau surfaces. Recall
that a symplectic 4-manifold is called a symplectic Calabi–Yau surface if it has trivial
canonical class, in obvious analogy with complex Calabi–Yau surfaces. The works
of Li and Bauer established that any symplectic Calabi–Yau surface with b1 > 0 has
the rational homology type of a torus bundle over a torus [7; 48; 49], and it remains
an open question whether torus bundles over tori exhaust all the diffeomorphism
types of symplectic Calabi–Yau surfaces with b1 > 0 [22; 49]. As stated by Li [50],
a posteriori reasoning for an affirmative answer to this question often seems to stem
from the lack of any new constructions of symplectic Calabi–Yau surfaces. The
surgical operations like knot surgery, simplest rational blow-downs, generalized
fiber sums or Luttinger surgery, do not produce any new symplectic Calabi–Yau
surfaces [23; 43; 50; 66].

Akin to our strategy for producing exotic rational and elliptic ruled surfaces,
in [12; 16] we implemented a strategy to construct (possibly new) symplectic
Calabi–Yau surfaces via positive factorizations for pencils. The breeding technique,
which is particularly effective for getting small positive factorizations, allows us to
produce small symplectic Calabi–Yau surfaces as well:
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Theorem C. There are symplectic genus-3 Lefschetz pencils {(Xφ, fφ)} whose
total spaces are symplectic Calabi–Yau surfaces that realize all integral homology
types of torus bundles over tori, and they include a symplectic Calabi–Yau surface
homeomorphic to the 4-torus and fake symplectic T 2

× S2s.

The index φ for the family of pencils {(Xφ, fφ)} takes values in a certain infinite
subgroup of the mapping class group Mod(64

3). A fake T 2
× S2 is a 4-manifold

which has the same homology type as T 2
× S2 but is not diffeomorphic to it.

We describe the Lefschetz pencils in Theorem C in terms of their monodromy
factorizations given in (47), which feeds into Donaldson’s proposal of analyzing
monodromies of pencils on symplectic Calabi–Yau surfaces [21, Problem 5]. These
are the first explicit monodromy factorizations of pencils on symplectic Calabi–Yau
surfaces with b1> 0 in the literature, whereas many examples on symplectic Calabi–
Yau surfaces with b1 = 0 were obtained in [12; 16]. Following the arxiv posting of
an earlier version of this paper, similar examples were obtained by Hamada and
Hayano in [38], also by employing the breeding technique.

Since symplectic Calabi–Yau surfaces with b1 > 0 have the same Seiberg–Witten
invariants as torus bundles over tori, detecting any new symplectic Calabi–Yau
surfaces among {Xφ} hangs on essentially the possibility of detecting a π1(Xφ)
that is not a torus bundle group; see Remark 14. At the time of writing, we have
not been able to determine whether all π1(Xφ) we get are torus bundle groups.
Likewise, we have not been able to spot any fake symplectic T 2

× S2 among {Xφ}
with π1(Xφ)= Z2, which would make it homeomorphic to T 2

× S2, and thus an
exotic elliptic ruled surface. (There are torus bundle over tori which have the same
homology type as T 2

× S2.) On the other hand, Hamada and Hayano were able to
show in [38] that our symplectic Calabi–Yau surface homeomorphic to the 4-torus
is in fact diffeomorphic to it, by comparing our example with a holomorphic pencil
on the standard 4-torus described by Smith; see Remark 15. While we do not
know if any other Xφ is standard, it is worth noting that if our family of symplectic
Calabi–Yau surfaces {Xφ} were to fully overlap with torus bundles over tori, then
an additional feature of our construction would imply that any of these bundles can
be equipped with a symplectic structure so that it is obtained via Luttinger surgeries
from the standard 4-torus [43, Conjecture 4.9]; see Remark 16.
Outline of the paper: We review the basic definitions and preliminary results on Lef-
schetz pencils and fibrations, mapping class groups and positive factorizations, and
symplectic 4-manifolds and Calabi–Yau surfaces in Section 2. In Section 3, we pro-
vide a characterization of small symplectic exotic rational surfaces (Theorem 3) and
that of exotic minimal ruled surfaces (Theorem 6), which together give Theorem A.
We breed our genus-3 pencils on exotic rational surfaces in Section 4, and on
symplectic Calabi–Yau surfaces with b1 > 0 in Section 5, which yield Theorem B
and Theorem C, respectively.



EXOTIC 4-MANIFOLDS AND CALABI–YAU SURFACES VIA GENUS-3 PENCILS 189

2. Preliminaries

Here we quickly review the definitions and the basic properties of Lefschetz pencils
and fibrations, Dehn twist factorizations in mapping class groups of surfaces, and
symplectic 4-manifolds. The reader can turn to [13; 36; 47] for more details.

2.1. Lefschetz pencils and fibrations. A Lefschetz pencil on a closed, smooth,
oriented 4-manifold X is a smooth surjective map f : X \{bj } → S2, defined on the
complement of a nonempty finite collection of points {bj }, such that around every
base point bj and critical point pi there are local complex coordinates (compatible
with the orientations on X and S2) with respect to which the map f takes the
forms (z1, z2) 7→ z1/z2 and (z1, z2) 7→ z1z2, respectively. A Lefschetz fibration is
defined similarly for {bj } =∅. Blowing-up at each base point bj of a pencil (X, f ),
one obtains a Lefschetz fibration (X̃ , f̃ ) with disjoint (−1)-sphere sections Sj

corresponding to each bj , and conversely, blowing down disjoint (−1)-sphere
sections of a Lefschetz fibration, one obtains a pencil.

We say (X, f ) is a genus-g Lefschetz pencil or fibration for g the genus of a
regular fiber F of f . The fiber containing the critical point pi has a nodal singularity
at pi , which locally arises from shrinking a simple loop ci on F , called a vanishing
cycle. A singular fiber of (X, f ) is called reducible if ci is separating. When ci is
null-homotopic on F , one of the fiber components becomes an exceptional sphere,
an embedded 2-sphere of self-intersection −1, which one can blow down without
altering the rest of the fibration.

In this paper we use the term Lefschetz fibration only when the set of critical
points {pi } is nonempty, i.e., when the Lefschetz fibration is nontrivial. We moreover
assume that the fibration is relatively minimal, i.e., there are no exceptional spheres
contained in the fibers, and also that the critical points pi lie in distinct singular
fibers, which can be always achieved after a small perturbation.

Allowing the local model (z1, z2) 7→ z1 z̄2 around the critical points pi , which
give rise to negative nodes, all of the above notions extend to so-called achiral
Lefschetz pencils and fibrations.

2.2. Positive factorizations. Let 6b
g denote a compact, connected, oriented surface

of genus g with b boundary components, and simply write 6g when there is no
boundary. We denote by Mod(6b

g) its mapping class group; the group composed of
orientation-preserving self-homeomorphisms of 6m

g which restrict to the identity
along ∂6b

g , modulo isotopies that also restrict to the identity along ∂6b
g . Let

Mod(6b
g, S) denote the stabilizer subgroup of Mod(6b

g) which consists of elements
fixing the subset S ⊂6b

g pointwise. Denote by tc ∈ Mod(6b
g) the positive (right-

handed) Dehn twist along the simple closed curve c ⊂ 6m
g . Its inverse t−1

c is the
negative (left-handed) Dehn twist along c.
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Let {ci } be a nonempty collection of simple closed curves on 6b
g , which do

not become null-homotopic when ∂6b
g is capped off by disks, and let {δj } be a

collection of curves parallel to distinct boundary components of 6b
g . If the relation

tcl · · · tc2 tc1 = tδ1 · · · tδb (1)

holds in Mod(6b
g), we call the word W on the left-hand side a positive factorization

of the boundary multitwist 1 = tδ1 · · · tδb in 0b
g . (We will also use ∂i instead

of δi when there are several surfaces with boundaries involved in our discussion.)
Capping off all the boundary components of6b

g with disks induces a homomorphism
Mod(6b

g)→ Mod(6g), under which W maps to a similar positive factorization of
the identity element 1 ∈ Mod(6g).

The positive factorization in (1) gives rise to a genus-g Lefschetz fibration (X̃ , f̃ )
with b disjoint (−1)-sections Sj , and therefore a genus-g Lefschetz pencil (X, f )
with b base points. Identifying the regular fiber F with 6g, we can view the
vanishing cycles of the fibration as the Dehn twist curves {ci }. Every Lefschetz
pencil and fibration can be described by such a positive factorization, which is
called its monodromy factorization [36; 44; 52].

Let W be a positive factorization of the form W = P P ′ in Mod(6b
g), where

P and P ′ are some products of positive Dehn twists along curves which do not
become null-homotopic when ∂6b

g is capped off. If P = 5i tci , as a mapping
class, commutes with some element φ ∈ Mod(6b

g), we can then produce a new
positive factorization Wφ = PφP ′, where Pφ denotes the conjugate factorization
φPφ−1

=5i (φtciφ
−1)=5i tφ(ci ). In this case, we say Wφ is obtained from W by

a partial conjugation φ along P .
Allowing negative Dehn twists, which correspond to negative nodes, we can

more generally work with factorizations for achiral Lefschetz fibrations and pencils.
All of the above definitions and results extend to this more general setting.

2.3. Symplectic 4-manifolds and Kodaira dimension. It was shown by Donaldson
that every symplectic 4-manifold (X, ω) admits a symplectic Lefschetz pencil whose
fibers are symplectic with respect to ω [20]. Conversely, generalizing a construction
of Thurston, Gompf showed that the total space of a Lefschetz pencil and fibration
always admits a symplectic form ω with respect to which all regular fibers and any
preselected collection of disjoint sections are symplectic [36]. Whenever we take a
symplectic form ω on a Lefschetz pencil or fibration (X, f ), we will assume it is
of Thurston–Gompf type, with respect to which any explicitly mentioned sections
will be assumed to be symplectic as well.

The Kodaira dimension for projective surfaces can be extended to symplectic
4-manifolds as follows: Let K Xmin be the canonical class of a minimal model
(Xmin, ωmin) of (X, ω). The symplectic Kodaira dimension of (X, ω), denoted
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by κ = κ(X, ω) is then defined as

κ(X, ω)=


−∞ if K Xmin · [ωmin]< 0 or K 2

Xmin
< 0,

0 if K Xmin · [ωmin] = K 2
Xmin

= 0,

1 if K Xmin · [ωmin]> 0 and K 2
Xmin

= 0,

2 if K Xmin · [ωmin]> 0 and K 2
Xmin

> 0.

Remarkably, not only is κ independent of the minimal model (Xmin, ωmin) but also
it is independent of the particular symplectic form ω on X ; so it is a smooth invariant
of the 4-manifold X [49]. Symplectic 4-manifolds with κ = −∞ are classified up
to symplectomorphisms, which are precisely the rational and ruled surfaces [47].

Symplectic 4-manifolds with κ = 0, which are the analogues of the Calabi–Yau
surfaces, are those with torsion canonical class [49]. It was shown by Tian-Jun Li,
and independently by Stefan Bauer [49; 7], that the rational homology type of any
minimal symplectic 4-manifold with κ = 0 is that of a torus bundle over a torus,
the K3 surface or the Enrique surfaces. In the first two cases we have symplectic
Calabi–Yau surfaces, which have trivial canonical class, whereas in the last case
the canonical class is torsion.

We have the following topological characterization of Lefschetz pencils on
minimal symplectic 4-manifolds with κ = 0, which can be easily derived from the
more general characterization for Lefschetz fibrations on symplectic 4-manifolds
with κ = 0 given in [12, Theorem 4.1], [57, Theorem 5.12]:

Proposition 1. Let (X, f ) be a genus-g Lefschetz pencil with b base points, where
X is neither rational nor ruled. Then there is a symplectic form ω on X so that
(X, ω) is a symplectic Calabi–Yau or a rational homology Enriques surface if and
only if b = 2g − 2.

3. Topology of pencils on rational and elliptic ruled surfaces

In this section we will prove two theorems that might be of independent interest;
one on the topology of Lefschetz pencils and fibrations on (small) rational surfaces,
and one on (small) irrational ruled surfaces. These results enable one to tackle
producing exotic smooth structures on the rational surfaces CP2# p CP2, S2

× S2,
and the minimal elliptic ruled surfaces T 2

× S2 and T 2 ∼
×S2, via constructions of

new positive factorizations, as we will try to demonstrate in the later sections.

3.1. Lefschetz pencils and fibrations on rational surfaces. We first prove the
following lemma, which shows that pencils on rational surfaces always have a lot
of base points with respect to the fiber genera:

Lemma 2. The rational surfaces CP2# p CP2, for p ≤ 9, or S2
× S2, do not admit

any genus-g pencil with b < 2g − 2 base points or any Lefschetz fibration of g ≥ 2.
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Proof. We claim that the statement of the lemma holds even for nonrelatively
minimal pencils and fibrations. With this in mind, it suffices to prove our claim
for X = CP2 # 9 CP2, because we can blow-up on the fibers of a given genus-g
Lefschetz pencil or fibration on CP2# p CP2 with p< 9 or S2

× S2 to get one on X .
Now suppose for contradiction that X = CP2# 9 CP2 admits a genus-g pencil

with b < 2g − 2 base points or a Lefschetz fibration of genus g ≥ 2. Note that in
either case, g ≥ 2. For our arguments to follow, it will be convenient to allow b to
be a nonnegative integer so that b = 0 marks the fibration case.

Let F = aH −
∑9

i=1 ci Ei be the fiber class, where H2(X) is generated by the
hyperplane class H and the exceptional classes E1, . . . , E9, which satisfy H 2

= 1,
Ei · E j = −δi j , and H · Ei = 0. Since F2

= b, we have

a2
= b +

9∑
i=1

c2
i .

We can equip X with a Thurston–Gompf symplectic form ω which makes the
fibers symplectic. Moreover, we can choose an ω-compatible almost complex
structure J , even a generic one in the sense of Taubes, with respect to which the
pencil/fibration is J -holomorphic for a suitable choice of almost complex structure
on the base 2-sphere; see, e.g., [65]. It was shown by Li and Liu [51] that for
a generic ω-compatible J , the class H in the rational surface X has an embed-
ded J -holomorphic representative. Hence, F and H both have J -holomorphic
representatives, which implies that F · H = a ≥ 0.

Since there is a unique symplectic structure on X up to deformation and sym-
plectomorphisms [51], we can apply the adjunction formula to get

2g −2 = F2
+ K · F = b+

(
−3H +

9∑
i=1

Ei

)
·

(
aH −

9∑
i=1

ci Ei

)
= b−3a +

9∑
i=1

ci .

Since a, b ≥ 0, and g ≥ 2, from the above equalities we have

3a =

√
9a2 =

√
9
(
b +

∑9
i=1 c2

i

)
≥

√
9
(∑9

i=1 c2
i

)
=

√(∑9
i=1 1

)(∑9
i=1 c2

i

)
≥

√∣∣∑9
i=1 ci

∣∣2
,

where the last inequality is by Cauchy–Schwarz. In turn, we get:

3a ≥

√∣∣∑9
i=1 ci

∣∣2
=

∣∣∑9
i=1 ci

∣∣ = |2g − 2 − b + 3a| = 2g − 2 − b + 3a,

which implies that b ≥ 2g − 2. The contradiction shows that there is no such fiber
class F . In turn, there is no such Lefschetz pencil or fibration. □

The statement as stated is obviously not true for p > 9; for example there is
a genus-2 Lefschetz fibration on CP2# 13 CP2 (which in fact is the blow-up of
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a genus-2 pencil on S2
× S2). Otherwise, one can generalize the above result to

rational surfaces CP2# p CP2 with p > 9, under particular assumptions for b and g
with respect to the number of blow-ups p.

Any symplectic, exotic rational surface would admit a pencil of genus g ≥ 2
by Donaldson’s result and by the fact that only rational surfaces admit genus-0 or
genus-1 pencils. On the other hand, the regular fiber of a pencil of genus g ≥ 2
with b ≥ 2g −2 base points would violate the Seiberg–Witten adjunction inequality
(which holds for any symplectic 4-manifold that is not a rational or a ruled surface).
We can thus conclude that:

Theorem 3. A symplectic 4-manifold X in the homeomorphism class of CP2# p CP2

with p ≤ 9 or S2
× S2 is an exotic rational surface if and only if it admits a genus-g

pencil with b < 2g − 2 base points or a Lefschetz fibration of genus g ≥ 2.

As we mentioned earlier, there are numerous examples of symplectic 4-manifolds
homeomorphic but not diffeomorphic to CP2# p CP2, for 2 ≤ p ≤ 9, and they
should all admit genus-g pencils with b< 2g −2 base points by the above theorem.
However, in the literature there appear to be no examples of Lefschetz pencils (with
base points, no multiple fibers) on these 4-manifolds, even on the complex algebraic
ones. We will provide some novel symplectic examples admitting genus-3 pencils
in the next section.

As for fibrations, for K any fibered knot of genus g ≥ 1, knot surgered elliptic
surfaces E(1)K of Fintushel and Stern yield exotic E(1) = CP2# 9 CP2, which
admit symplectic genus-2g Lefschetz fibrations [28]. Moreover, there are genus-2
symplectic Lefschetz fibrations in the homeomorphism classes of CP2# p CP2 for
p = 7, 8, 9 [13] and even holomorphic ones for p = 8, 9 [56].

Remark 4. When X is an exotic CP2# p CP2, with p ≤ 8, we can strengthen the
statement of Theorem 3 a bit. If the pencil of genus g ≥ 2 on X had b = 2g−3 base
points, blowing up all of them, we would get a Lefschetz fibration with b disjoint
(−1)-sphere sections. It then follows from [57, Theorem 5-12] that K 2

Xmin
= 0,

which cannot be the case here since K 2
Xmin

≥ K 2
X = 9 − p > 0. Hence, any pencil

on such an exotic rational surface X can have at most 2g − 4 base points.

3.2. Lefschetz pencils and fibrations on minimal elliptic ruled surfaces. We now
show that pencils on minimal elliptic ruled surfaces also have a lot of base points
with respect to the fiber genera:

Lemma 5. The minimal elliptic ruled surfaces T 2
× S2 or T 2 ∼

×S2 do not admit any
genus-g Lefschetz pencil with b ≤ 2g − 2 base points or any Lefschetz fibration.

Proof. These minimal elliptic surfaces do not admit Lefschetz fibrations of genus
g < 2 for fairly elementary reasons (which do not require classification results):
any genus-0 Lefschetz fibration has a simply connected total space, and the Euler
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characteristic of any genus-1 Lefschetz fibration is equal to the number of critical
points, and therefore it is positive. Clearly, neither one of these two implications
work for T 2

× S2 or T 2 ∼
×S2.

Now suppose for a contradiction that X = T 2
× S2 or T 2 ∼

×S2 admits a genus-g
pencil with b ≤ 2g − 2 base points or a Lefschetz fibration. Once again, it will be
convenient here to let b be a nonnegative integer so that b = 0 marks the fibration
case. By our observation in the previous paragraph, we can assume that g ≥ 2.

We equip X with a Thurston–Gompf symplectic form ω which makes the fibers,
and in particular a regular fiber F , of the pencil/fibration symplectic. We can
choose an ω-compatible almost complex structure J with respect to which the
pencil/fibration is J -holomorphic, so in particular F is a J–holomorphic curve.
Because there is a unique symplectic structure on a minimal ruled surface up to
deformations and symplectomorphisms [51], we will be able to once again apply
the adjunction formula using a standard canonical class in each case. Furthermore,
it will be important for our arguments that it was also shown in [51] that for
any ω-compatible almost complex structure J , the sphere fiber of the ruling on
the elliptic surface has a J–holomorphic representative. Therefore the algebraic
intersection of F with the sphere fiber is nonnegative. Akin to our proof of Lemma 2,
we will show that neither one of the minimal elliptic ruled surfaces contains an
embedded genus-g symplectic surface with self-intersection ≤ 2g − 2, whereas F
is such.

We will run our arguments for the spin and nonspin cases separately:

X = T 2
× S2: Here H2(X)∼= Z2 is generated by S = {pt}× S2 and T = T 2

×{pt},
where S · S = 0, T · T = 0, and S · T = 1. By a slight abuse of notation, we denote
the homology class of the fiber also by F , so F = x S + yT for some x, y ∈ Z.

As remarked above, the algebraic intersection of F with S is nonnegative, which
means that F · S = y ≥ 0. Since F2

= b, we have

b = 2xy,

where b ≥ 0 and y ≥ 0 imply that x ≥ 0.
On the other hand, by the adjunction formula we get

2g − 2 = F2
+ K X · F = b + (−2T ) · (x S + yT )= b − 2x,

which implies that 2x = b − (2g − 2)≤ 0 by our assumption on b. It follows that
x = 0, and in turn, b = 0 by the first equality, and g = 1 by the second, which is a
contradiction.

X = T 2 ∼
×S2: Now H2(X) ∼= Z2 is generated by the fiber S and section T of the

degree–1 ruling on X , where S · S = 0, T · T = 1, and S · T = 1. Let the fiber
class F be given by F = x S + yT , for some x, y ∈ Z.
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Since the algebraic intersection of F with S is nonnegative, we have F ·S = y ≥ 0.
Since F2

= b, we now have

b = 2xy + y2
= (2x + y)y,

where b ≥ 0 and y ≥ 0 imply that 2x + y ≥ 0.
We apply the adjunction formula to get

2g − 2 = F2
+ K X · F = b + (S − 2T ) · (x S + yT )= b − 2x − y,

which means that 2x + y = b − (2g −2)≤ 0. As we also had 2x + y ≥ 0, it follows
that 2x + y = 0, and then b = 0 by the first equality, and g = 1 by the second, which
once again contradicts our assumption on the fiber genus — that g is greater than or
equal to 2. □

The above result, at least as stated, does not generalize to pencils on other ruled
surfaces. First of all, there exist genus-g Lefschetz pencils with b = 2g − 2 base
points on nonminimal elliptic ruled surfaces, even after a single blow-up; an example
with g = b = 2 can be found in the next section. Secondly, there are pencils on the
minimal ruled surfaces 6h × S2 and 6h

∼
×S2 with fiber genus g = 2h and b = 4

base points [37], so the statement fails for any h ≥ 2 in both spin and nonspin cases.
Using Donaldson’s result on the existence of Lefschetz pencils on symplectic

4-manifolds, we moreover conclude that:

Theorem 6. A symplectic 4-manifold X in the homeomorphism class of T 2
× S2 or

T 2 ∼
×S2 is an exotic elliptic ruled surface if and only if it admits a genus-g pencil

with b ≤ 2g − 2 base points or a Lefschetz fibration.

It is worth noting that to this date there are no known examples of exotic elliptic
ruled surfaces, despite their topological types being amenable to Freedman type
arguments [41]. While we plan to explore this direction elsewhere, in Section 5,
through positive factorizations for pencils, we will provide examples of fake sym-
plectic elliptic ruled surfaces, which have the same cohomology as T 2

× S2, but
are not diffeomorphic to it.

4. Exotic rational surfaces via symplectic genus-3 pencils

Here we construct positive factorizations for symplectic genus-3 Lefschetz pencils,
whose total spaces are homeomorphic but not diffeomorphic to rational surfaces.
These will be bred from genus-2 pencils on elliptic ruled surfaces. For a better
exposition, we first present our examples with χh = 1 and c2

1 = 0, 1, 2, and we
discuss our examples with χh = 1 and c2

1 = 3, whose constructions are a bit more
involved, afterwards.
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C

x1

x3

x2

d

e

B2 B′
2

B0

B1

B′
0

B′
1

C ′

x4 A0 A′
0

A1 A′
1

A2 A′
2

Figure 1. The curves C , x1, x2, x3, x4, d , e of the first embedding
are given on the left. The curves B0, B1, B2, A0, A1, A2 of the
second embedding (except for C , which is already given on the
left) and C ′, B ′

0, B ′

1, B ′

2, A′

0, A′

1, A′

2 of the third embedding are on
the right.

4.1. Breeding pencils with χh = 1 and c2
1 = 0, 1, 2. In [13], Korkmaz and the

author obtained the following relation in Mod(61
2):

tetx1 tx2 tx3 td tC tx4 = tδ,

which is a positive factorization for a genus-2 pencil with one base point on
T 2

× S2# 2 CP2. See Figure 2 for the curves xi , C , d, e (where the boundary
component δ is obtained by carving out a disk neighborhood of the marked point
on right end of the surface). Consider the embedding of 61

2 into 61
3 given by

mapping the boundary δ = ∂61
2 to the curve C ′, and the remaining Dehn twist

curves xi ,C, d, e to the ones shown in Figure 1, denoted by the same letters. After
a single Hurwitz move (see, e.g., [36]), and collecting all the Dehn twists on the
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same side, we get the following relation in Mod(61
3):

tetx1 tx2 tx3 td tB2 tC t−1
C ′ = 1, (2)

where B2 = tC(x4). Rewrite this relation as P1tC t−1
C ′ = 1, for P1 = tetx1 tx2 tx3 td tB2 .

Note that P1, tC and tC ′ all commute with each other.
Next, we take the following lift of the positive factorization for Matsumoto’s

genus-2 Lefschetz fibration to Mod(62
2) obtained by Hamada in [37]:

(tB0 tB1 tB2 tC)2 = tδ1 tδ2,

where δi are the boundary parallel curves, and the curves Bi and C are as shown on
the left-hand side of Figure 6. This is a positive factorization for a genus-2 pencil
with two base points on T 2

× S2# 2 CP2. After Hurwitz moves, and collecting all
the Dehn twists on the same side, we get the following relation in Mod(62

2):

tB0 tB1 tB2 tA0 tA1 tA2 t2
C t−1
δ1

t−1
δ2

= 1,

where each Aj = tC(Bj ), for j = 0, 1, 2, are as shown in Figure 6. We will describe
two different embeddings of this relation into Mod(61

3).
Cap off the boundary component δ1 of 62

2 , and then embed the resulting copy
of 61

2 into 61
3 via the embedding we used to derive the relation (2) above, so the

boundary δ2 is mapped to C ′, and all the other Dehn twist curves are as shown in
Figure 1, once again denoted by the same letters. So we have the following relation
in Mod(61

3):
tB0 tB1 tB2 tA0 tA1 tA2 t2

C t−1
C ′ = 1, (3)

which we rewrite as P2t2
C t−1

C ′ = 1, for P2 = tB0 tB1 tB2 tA0 tA1 tA2 . Here P2, tC and tC ′

all commute with each other.
Lastly, consider an embedding of 62

2 into 61
3 so that δ1 is mapped to c, δ2 is

mapped to ∂ = ∂61
3 , and the remaining curves are as shown in Figure 1, where we

use a prime symbol when denoting the curves by the same letters. This gives a
third relation in Mod(61

3):

tB ′

0
tB ′

1
tB ′

2
tA′

0
tA′

1
tA′

2
t2
C ′ t−1

C = t∂ , (4)

which we rewrite as P ′

2t2
C ′ t−1

C = tδ, for P ′

2 = tB ′

0
tB ′

1
tB ′

2
tA′

0
tA′

1
tA′

2
. Similarly, P ′

2, tC
and tC ′ all commute with each other.

With these three embeddings in hand, we can now describe our positive factor-
izations. Let φ be any mapping class in Mod(61

3, S), the subgroup of Mod(61
3)

which consists of elements fixing the set S := {C,C ′
} pointwise. Then we have

(P1)
φP1 P ′

2tC = (P1tC t−1
C ′ )

φP1tC t−1
C ′ P ′

2t2
C ′ t−1

C = 1 · t∂ · 1 = t∂ ,

where the first equality follows from the commutativity relations noted above
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and the fact that φ commutes with tC t−1
C ′ . The second equality follows from the

relations (2)–(4). Therefore

W1,φ = (P1)
φP1 P ′

2tC

is a positive factorization of the boundary twist t∂ in Mod(61
3). By identical

arguments, we see

W2,φ = (P1)
φP2 P ′

2t2
C and W3,φ = (P2)

φP2 P ′

2t3
C

are also positive factorizations of t∂ in Mod(61
3).

Each Wi,φ prescribes a symplectic genus-3 Lefschetz pencil (X i,φ, fi,φ) with
one base point, equipped with a Thurston–Gompf symplectic form. We claim that
χh(X i,φ)= 1 and c2

1(X i,φ)= 3 − i for each i = 1, 2, 3.
The Euler characteristic of X i,φ is given by

e(X i,φ)= 4 − 4g + ℓ− b = 4 − 4 · 3 + (18 + i)− 1 = 9 + i,

where g and b are the genus and the number of base points of the pencil, and ℓ is
the number of critical points, which is the same as the number of Dehn twists in
the positive factorization Wi,φ .

Since we have explicit positive factorizations for the pencils (X i,φ, fi,φ), the sig-
nature of each X i,φ can be easily calculated using the work of Endo and Nagami [24],
which states that the signature of the pencil is equal to the algebraic sum of the
signatures of the mapping class group relations used to derive this positive factor-
ization from the trivial word in Mod(61

3). Since the signature of any embedding
of a relation into a higher genus surface is the same, and since Hurwitz moves,
conjugations and cancellations of positive–negative Dehn twist pairs do not change
the signature, we just need to understand the signatures of the genus-2 relations
we used as our building blocks. The signature of the relation (2) is the same as the
signature of the genus-2 pencil with one base point on T 2

×S2# 2 CP2, which is −2.
The signature of the relation (3) is that of the genus-2 pencil with one base point on
T 2

× S2# 3 CP2 (recall that we capped off one of the boundaries first), which is −3.
Finally, the signature of the relation (4) is that of the genus-2 pencil with two base
points on T 2

× S2# 2 CP2, which is −2. We conclude that σ(X i,φ)= −5 − i .
Hence, χh(X i,φ)=

1
4(e(X i,φ)+ σ(X i,φ))=

1
4(9 + i − 5 − i))= 1 for each i =

1, 2, 3, whereas c2
1(X i,φ)= 2e(X i,φ)+ 3σ(X i,φ)= 2(9 + i)+ 3(−5 − i)= 3 − i , as

claimed. Note that the only rational or ruled surfaces which have the same invariants
are the rational surfaces CP2#(6 + i)CP2, which by Lemma 2, cannot admit such
pencils.

4.2. Breeding pencils with χh = 1 and c2
1 = 3. In our next construction we strive to

get hyperelliptic pencils. While getting hyperelliptic positive factorizations at every
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x1
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x3

x4 B2

C

d

e

Figure 2. The curves C , x1, x2, x3, x4, d, e in the lift of Baykur–
Korkmaz genus-2 positive factorization to Mod(63

2), along with
the curve B2 one gets after a Hurwitz move

step will constrain some of the freedom we have in our breeding constructions, we
will also leverage this additional property whenever we can.

Our construction will be comparable to that of the positive factorization W3,φ in
the previous section, where we employed three embeddings of (various lifts of) the
positive factorization for Matsumoto’s genus-2 Lefschetz fibration. Here we will
get our examples using three different embeddings of (various lifts of) the positive
factorization for the genus-2 Lefschetz fibration of Korkmaz and the author in [13].
This positive factorization, after a single Hurwitz move as before, has the following
lift in Mod(63

2):
tetx1 tx2 tx3 td tB2 tC = tδ1 tδ2 tδ3, (5)

where the curves xi , B2,C, d, e are as shown in Figure 2. We will simply use the
same labels for the Dehn twist curves xi , B2,C, d, e for any other relation we derive
from (5) by capping off some of the boundary components δ1, δ2, δ3.

A comprehensive proof of the relation (5) is given in [11], where it is also shown
that this is a positive factorization for a genus-2 pencil with two marked points on
the elliptic ruled surface T 2 ∼

×S2. It can also be verified in a straightforward fashion
using the Alexander method [25]. Below we sketch yet another argument based on
the hyperelliptic symmetry of the monodromy curves. This line of arguments can
be proved to be useful for similar calculations in general.

Let (X, f ) be the hyperelliptic genus-2 Lefschetz fibration corresponding to the
positive factorization tetx1 tx2 tx3 td tB2 tC = 1 in Mod(62), where X ∼= T 2

× S2# 3 CP2
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is equipped with a Thurston–Gompf symplectic form [13]. As shown in [33; 58],
there is a symplectic involution on X extending the hyperelliptic involution on the
fibers, and f is the relative minimalization of a Lefschetz fibration obtained via the
induced symplectic double branched cover X# 3 CP2

→ S2
× S2# 6 CP2 (where the

blow-ups are for the reducible fibers). The branch set consists of a multisection B of
the latter fibration, which intersects every fiber at the fixed points of the hyperelliptic
involution, and BE that consists of exceptional spheres contained in the reducible
fibers. Now, observe that when we isotope the monodromy curves of (X, f ) so that
they are symmetric under the obvious hyperelliptic involution obtained by rotating
the surface 62 in Figure 2 by a π–degree rotation along the x–axis (taking the
z–axis to be perpendicular to the page), they miss the three marked points (drawn
in blue in the figure) of the fixed points of the hyperelliptic involution, whereas
the four nonseparating curves go through the other three points. We can deduce
the topology of the branch set from this very data, and in particular conclude that
the multisection B consists of three disjoint (−1)-sphere sections E1, E2, E3 (one
for each marked point) and a 3-section which is a square zero symplectic 2-sphere
(going through the other three fixed points). Circling back to our original discussion,
the (−1)-sections E1, E2, E3 yield the lift (5).

We are now ready to describe our three embeddings.
Note that we have now drawn the surface 61

3 so that its boundary curve ∂ is as
shown in Figure 3. With this in mind, our first embedding is essentially the same as
the one yielded by the relation (2) in Mod(61

3): Cap off the boundary components
δ1 and δ2 of 63

2 and then embed it into 61
3 so that δ3 maps to C ′ and the rest of the

Dehn twist curves are as shown in Figure 1, except the boundary ∂63, which is
outside of their support, is shifted. Using the same notation as before, we get the
relation P1tC t−1

C ′ = 1 in Mod(61
3), where P1 = tetx1 tx2 tx3 td tB2 .

For our second embedding, cap off the boundary component δ3 of 63
2 , and then

embed the resulting copy of 62
2 into 61

3 so that

δ1 7→ C, δ2 7→ ∂, C 7→ C ′,

and the remaining curves are as shown in Figure 3, where we once again use a prime
symbol when denoting the curves by the same letters. For our arguments to follow,
here it is more convenient to take the genus-2 relation as tx4 tetx1 tx2 tx3 td tC = tδ1 tδ2 ,
where we moved tB2 back over tC by a Hurwitz move and then applied a cyclic
permutation. So we get the following relation in Mod(61

3):

tx ′

4
te′ tx ′

1
tx ′

2
tx ′

3
td ′ tC ′ t−1

C = t∂ , (6)

which we rewrite as P ′

1td ′ tC ′ t−1
C = tδ , for P ′

1 = tx ′

4
te′ tx ′

1
tx ′

2
tx ′

3
. Notably, P ′

1td ′ , tC , tC ′

and t∂ all commute with each other.
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Figure 3. The surface 61
3 with shifted boundary. The curves C ′,

x ′

1, x ′

2, x ′

3, x ′

4, d ′, e′ of the second embedding are on the right, and
the curves C , x ′′

1 , x ′′

2 , x ′′

3 , B2, d ′′, e′′ of the third embedding are
given on the left. The Dehn twist curve z in the conjugation φ is
on the top left (in green).

For our last embedding, cap off the boundary components δ1 and δ2 of 63
2 , and

then embed the resulting copy of 61
2 into 61

3 so that δ3 maps to the curve d ′ above,
where the curves e′′, x ′′

1 , x ′′

2 , x ′′

3 , d ′′, B2,C, d ′ are as shown in Figure 3. (Note that
we get the same B2,C curves.) So we obtain another relation in Mod(61

3):

te′′ tx ′′

1
tx ′′

2
tx ′′

3
td ′′ tB2 tC t−1

d ′ = 1, (7)

which we rewrite as P ′′

1 t−1
d ′ = 1, for P ′′

1 = te′′ tx ′′

1
tx ′′

2
tx ′′

3
td ′′ tB2 tC . Here P ′′

1 and td ′

commute.
We can now describe our positive factorizations using the three embeddings

above. Let φ be any mapping class in the stabilizer group Mod(61
3, d ′). Then

P1 P ′

1(P
′′

1 )
φ

= (P1tC t−1
C ′ )(P ′

1td ′ tC ′ t−1
C )(P ′′

1 t−1
d ′ )

φ
= 1 · t∂ · 1 = t∂ .
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Here the first equality follows from the commutativity relations we noted above,
along with our choice of φ as follows: In the middle, the multitwist tC ′ t−1

C commutes
with P ′

1, so we can bring it to its left and cancel it against tC t−1
C ′ . Since φ stabilizes

the curve d ′, we have td ′ = (td ′)φ , so we can now take the td ′ factor into the
conjugated expression, and then, because it commutes with P ′′

1 , we can move it to
its right and cancel against t−1

d ′ within the parentheses. The second equality is the
product of the equalities (2), (6) and (7).

So, we have obtained a positive factorization W0,φ = P1 P ′

1(P
′′

1 )
φ of the boundary

twist tδ in Mod(61
3). Each W0,φ prescribes a symplectic genus-3 Lefschetz pencil

(X0,φ, f0,φ) with one base point, equipped with a Thurston–Gompf symplectic form.
As before, we can calculate the Euler characteristic of X0,φ as

e(X0,φ)= 4 − 4g + ℓ− b = 4 − 4 · 3 + 18 − 1 = 9,

and the signature of X0,φ as the signature of the relation W0,φ after [24]. The
latter is equal to the sum of the signatures of the three relations (2), (6) and (7),
which correspond to pencils on T 2 ∼

×S2# 2 CP2, T 2 ∼
×S2#CP2 and T 2 ∼

×S2#2CP2,
respectively. (In the case of the second embedding, since its second boundary
twist tδ2 was mapped to t∂ , it now corresponds to the base point of the genus-3
pencil.) So we get σ(X0,φ) = −2 − 1 − 2 = −5. Therefore, χh(X0,φ) = 1 and
c2

1(X0,φ)= 3, as claimed. The only rational or ruled surface which has the same
invariants is CP2# 6 CP2, which by Lemma 2, cannot admit such pencils.

Lastly, observe that the Dehn twist curves in all three factors P1, P ′

1 and P ′′

1
involved in W0,φ commute with the obvious involution on 61

3 given by a π–rotation
of the surface along the x–axis in Figure 3 (taking the z–axis perpendicular to the
page). If we let HMod(61

3) denote the symmetric mapping class group with respect
to this involution [25], then for any φ in the subgroup Mod(61

3, d ′)∩ HMod(61
3),

we get a positive factorization W0,φ prescribing a hyperelliptic pencil (X0,φ, f0,φ).

4.3. Homeomorphism and homology types of c2
1 = 0, 1, 2 examples. Recall that

we have e(X i,φ) = 9 + i and σ(X i,φ) = −5 − i , for i = 0, 1, 2, 3. None of our
examples have even intersection forms, which can be easily seen by the existence of
reducible fibers in X i,φ , which have self-intersection −1. To be able to pin down the
homeomorphism and integral homology types of these 4-manifolds, it remains to
determine their fundamental groups and the first integral homology groups, which
we will do for particular choices of φ.

Below, we will first carry out these calculations for our examples (X i,φ, fi,φ)

with i = 1, 2, 3, and then do the same for the i = 0 case in the next subsection. Here
we aspire to keep our calculations simple but also generate as many fundamental
groups as possible. Finding the right balance will come at a cost of getting a
somewhat asymmetric picture; the fundamental groups of X i,φ will realize any
quotient of Z2 when i = 1, 3, and any quotient of Z when i = 0, 2.
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a1 a2 a3

b1 b2 b3

Figure 4. Generators aj , bj of π1(63)

Let φ = t−m1
b1

tm2
a2

, where b1, a2 are as in Figure 4. Since b1 and a2 are disjoint
from C and C ′, we have φ ∈ Mod(61

3, S) for S = {C,C ′
}, as required. Denote the

positive factorizations in this case by Wi,m := Wi,φ , where for i = 1, 3, we take
φ = t−m1

b1
tm2
a2

and m = (m1,m2) ∈ N2, whereas for i = 2, we take φ = t−5
b1

tm
a2

and
m ∈ N. Now, set (X i,m, fi,m) := (X i,φ, fi,φ), and further set (X i , fi ) := (X i,m, fi.m)

in the specific cases of m = (1, 1) when i = 1, 3, and m = 1 when i = 2.
We claim that π1(X i,m) is (Z/m1Z)⊕ (Z/m2Z), for i = 1, 3, and Z/mZ, for

i = 2. In particular each X i is simply connected.
Let (X̃ i,m, f̃i,m) be the Lefschetz fibration we obtain by blowing-up the base

points of the pencil (X i,m, fi,m). Let {aj , bj } be the standard generators of π1(6g)

as shown in Figure 4. Using the standard handlebody decomposition for a Lefschetz
fibration with a section, we obtain a finite presentation for π1(X i,m)= π1(X̃ i,m) of
the form

⟨a1, b1, a2, b2, a3, b3 | [a1, b1][a2, b2][a3, b3], Ri,m,1, . . . , Ri,m,18+i ⟩, (8)

where {Ri,m,k}
18+i
k=1 are relators obtained by expressing the Dehn twist curves in the

positive factorization Wi,m in the basis {aj , bj }
3
j=1. We denote the inverse of any

fundamental group element x by x̄ .
We will first show that a subset of these relators, which come from Dehn twist

curves that are all present in each factorization Wi,m , for i = 1, 2, 3, already yield
an abelian quotient. Since any further quotient will also be abelian, at that point it
will suffice to consider only the abelianizations of all the relators {Ri,m,k}

18+i
k=1 .

Each positive factorization Wi,m contains the factor P ′

2tC . So the following
relations hold for the finite presentations we have for each π1(X i,m):

[a1, b1][a2, b2][a3, b3] = 1, (9)

[a1, b1] = 1, (10)

a2a3 = 1, (11)

a2b̄2a3b̄3 = 1, (12)

b3b2 = 1, (13)

where the relators (10)–(13) come from the vanishing cycles C, B ′

0, B ′

1, B ′

2, respec-
tively. We have a3 = ā2 from (11) and b3 = b̄2 from (13). Together with (12), these
imply [a2, b2] = 1 and [a3, b3] = 1. We conclude [aj , bj ] = 1 for every j = 1, 2, 3.
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From the factor P1, we get (among many others) the relators

a1(b̄1a2b2)
2
= 1, (14)

a1b̄3
1a2b2a2 = 1, (15)

a1b̄5
1a2[b2, a2]b1a2 = 1, (16)

b2b1[b3, a3] = 1, (17)

induced by the vanishing cycles x1, x2, x3 and B2, respectively. Adding these to the
previous relators from the factor P ′

2, we immediately see that the commutativity of
a3 and b3 and (17) imply b1 = b̄2. So (14) implies that a1 = (b̄2ā2b̄2)

2, and since
a2 and b2 commute, we get a1 = ā2

2 b̄4
2

On the other hand, if we have the factor P2 instead, we get (again, among many
others) the relators

a1a2 = 1, (18)

b2ā2b1ā1[b3, a3] = 1, (19)

b2b1[b3, a3] = 1,

induced by the vanishing cycles B0, B1 and B2, respectively. We get a1 = ā2, and
together with the relators from P ′

2 we once again get b1 = b̄2, since [a3, b3] = 1.
Now, since the positive factorization W1,m contains the factor P1 P ′

2tC and the
positive factorizations W2,m and W3,m both contain the factor P2 P ′

2tC , the above
discussion shows that every π1(X i,m) is a quotient of an abelian group generated by
a2 and b2. It therefore remains to look at the abelianizations of the relators coming
from the remaining Dehn twist curves, i.e., we can simply look at the homology
classes of the vanishing cycles.

Without the conjugated factor, we have the abelianized relations

a3 = −a2 and b3 = −b2 = b1 for all Wi,m (20)

and depending on whether Wi contains the factor P1 or P2, either

a1 + 2a2 + 4b2 = 0 for W1,m , or (21)

a1 + a2 = 0 for W2,m and W3,m, (22)

where we used (20) to simplify the relators. These relators amount to all the other
generators being obtained from a2 and b2.

In fact, there are no other relations coming from the nonconjugated factors P1, P2

or P ′

2: This is easy to see by abelianizing the relators (9)–(19), which include all
the relators induced by the curves x1, x2, x3, B0, B1, B2, B ′

0, B ′

1, B ′

2. Missing are
the relators induced by the separating curves d, e from P1, the curves A0, A1, A2

from P1, and the curves A′

0, A′

1, A′

2 from P ′

2. The first two are trivial in homology,
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so they have no contribution to the list of relators we already have. On the other
hand, for each j = 0, 1, 2, Aj is homologous to Bj , because [Aj ] = [tC(Bj )] =

[Bj ]+ (C · Bj )[C], where C is a separating cycle. Similarly each A′

j is homologous
to B ′

j . Therefore the abelianized relations they induce are identical to those we
already had from Bj , B ′

j .
2

It remains to look at the abelianizations of the relators coming from the conjugated
factors Pφ1 or Pφ2 . When i =1, 3, for φ = t−m1

b1
tm2
a2

, we easily check using the Picard–
Lefschetz formula that we get the additional relators

b1 + m2a2 + b2 = 0 for W1,m and W3,m , (23)

a1 + m1b1 + (2 + 4m2)a2 + 4b2 = 0 for W1,m , (24)

a1 + m1b1 + a2 = 0 for W3,m . (25)

The relations (20) and (23) imply that m2a2 = 0. The remaining relators involved
in W1,m or W3,m then easily give m1b2 = 0. Hence, for i = 1, 3, we have

π1(X i,m)= (Z/m1Z)⊕ (Z/m2Z),

as claimed.
On the other hand, when i = 2, for φ = t−5

b1
tm
a2

, we get the following additional
relators in W2,m :

b1 + ma2 + b2 = 0, (26)

a1 + 5b1 + (2 + 4m)a2 + 4b2 = 0. (27)

This time, the relations (20) and (26) imply that ma2 = 0, but then if we use this
identity and substitute a1 = −a2 and b1 = −b2 into the relator (27), we get b2 = a2.
Therefore, the m–torsion element a2 generates the whole group. So we have

π1(X2,m)= Z/mZ.

In particular, when i = 1, 3, we get a trivial group for (m1,m2) = (±1,±1),
and when i = 2, we get a trivial group for m = 1. So X i is simply connected for
each i = 1, 2, 3. By Freedman’s celebrated work [30], each X i is homeomorphic
to CP2#(6 + i)CP2, for i = 1, 2, 3.3 However, they are not diffeomorphic by
Theorem 3.

2For the proof of the simply connected case, one could skip this whole paragraph, since we would
only need to find enough relations to kill the fundamental group.

3Homeomorphism types of other Xi,m can also be determined using extensions of Freedman’s
work by Hambleton, Kreck and Teichner for respective fundamental groups; for example by [40] we
can see that when i = 1, 3, for m = (p, 1), and when i = 2, for m = p, each Xi,m is homeomorphic
to CP2#(6 + i)CP2#L p , where L p is the spun of the Lens space L(p, 1).
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4.4. Homeomorphism and homology types of c2
1 = 3 examples. Now we take

φ = t−m−10
b1

tz , where b1 and z are as in Figures 4 and 3. Since

φ ∈ Mod(61
3, d ′)∩ HMod(61

3),

for each such φ, the positive factorization W0,φ prescribes a hyperelliptic genus-3
pencil (X0,φ, f0,φ). To sync up our notation with the c2

1 = 0, 1, 2 examples, set
W0,m := W0,φ and (X0,m, f0,m) := (X0φ, f0,φ), while noting that the parameter m
takes values in N (rather than in N2). Finally, let (X0, f0) := (X0,1, f0,1). We claim
that π1(X0,m)= Z/mZ, and in particular X0 is simply connected.

As before, we calculate the fundamental group using the presentation of the
form (8) induced by the pencil structure. We will first write down only some of the
relators we get from the Dehn twist curves in the positive factorization W0,m and
observe that any π1(X0,m) will be a quotient of an abelian group. It will then suffice
to look at the abelianized relators induced by the remaining Dehn twist curves, and
run the calculation at the level of homology.

The following relations hold in π1(X0,m):

[a1, b1][a2, b2][a3, b3] = 1, (28)

a1(b̄1a2b2)
2
= 1, (29)

a1b̄3
1a2b2a2 = 1, (30)

[b1, a2b2a1] = 1, (31)

[a2, b̄1a2b2] = 1, (32)

a2(b̄2a3b3)
2
= 1, (33)

a3b̄3ā3b̄2[a3, b3] = 1, (34)

[a1, b1] = 1, (35)

where the first one is the surface relation, and (29)–(32) are induced by x1, x2, e, d
coming from the P1 factor, (33)–(34) by x ′

1, x ′

4 from P ′

1 and (35) by C from (P ′′

1 )
φ .

We can rewrite (30) as a1b̄2
1a2b̄1a2b2 = 1 using the commutativity relation (32).

Setting this relator equal to the relator (29), we get: a1b̄2
1a2b̄1a2b2 =a1b̄1a2b2b̄1a2b2,

which, through cancellations, give b̄1a2 = a2b2. Using this last identity, we can
rewrite (31) as [b1, b̄1a2a1] = 1. This implies that [b1, a2a1] = 1. However, by (35),
b1 commutes with a1, so we can further conclude that [b1, a2] = 1. Since a2

commutes with b1, we derive from (32) that [a2, b2] = 1. In turn, using (28)
and (35) we conclude that [a3, b3] = 1 as well.

We are now ready to show that a3 and b1 generate the whole group. Since we saw
that b̄1a2 = a2b2, the commutativity of a2 and b2 implies that b2 = b̄1. Since a3 and
b3 commutes, (34) gives b3 = b̄2, which in turn means b3 = b1. Note that this last
identity and the commutativity of a3 and b3 now show that [a3, b1] = 1. Now by (33),
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we have a2 = (b̄3ā3b2)
2, which implies that a2 = (b̄1ā3b̄1)

2. After commuting the
factors, we can rewrite the last identity as a2 = ā2

3 b̄4
1. Similarly, by (29), we

have a1 = (b̄2ā2b1)
2, which, after substitutions becomes a1 = (b1(b4

1a2
3)b1)

2, so
a1 = b12

1 a4
3 .

Underlined equalities we obtained above show that a3 and b1 generate the whole
group and commute with each other. Hence, π1(X0,m) is the quotient of an abelian
group with two generators. To finish our calculation of π1(X0,m), it now suffices to
write out the abelianizations of the relators induced by all the Dehn twist curves in
the positive factorization W0,m . Clearly the separating Dehn twists do not contribute
any nontrivial abelianized relators, whereas each quadruple of nonseparating Dehn
twists coming from the factors P1, P ′

1 and (P ′′

2 )
φ , respectively, can be seen to

give only two linearly independent abelianized relators. For instance, the curves
x1, x2, x3, B2 in the P1 factor yield the relators

a1 − 2b1 + 2a2 + 2b2 = 0, (36)

a1 − 3b1 + 2a2 + b2 = 0, (37)

a1 − 4b1 + 2a2 = 0, (38)

b1 + b2 = 0, (39)

where (38) and (39) generate them all. Similarly, the abelianized relators we get
from x ′

1, x ′

2, x ′

3, x ′

4 in the P ′

1 factor are generated by

a2 − 4b2 + 2a3 = 0, (40)

b2 + b3 = 0, (41)

and those we get from x ′′

1 , x ′′

2 , x ′′

3 , B2 in the nonconjugated P ′′

1 are generated by

a1 − 4b1 + 2a2 + 2a3 = 0,

b1 + b2 = 0.

By the Picard-Lefschetz formula, conjugating P ′′

1 with φ = t−m−10
b1

tz yields the
following additional relators:

a1 + (m + 6)b1 − 2b2 = 0, (42)

b1 + a2 + 2b2 + a3 = 0. (43)

Note that, taking an auxiliary orientation on the twisting curve z, here we have
[z] = a2 + b2 + a3 in homology.

We can replace the two relations (39) and (41) with b2 = −b1 and b3 = b1.
Then (40) can be changed to a2 = −4b1 − 2a3, and in turn (38) can be changed
to a1 = 12b1 + 4a3. As we express all the other generators in terms of a3 and b1,
(43) becomes a3 = −5b1. Finally, expressing all the generators in terms of b1, the
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remaining relation (42) now reads as mb1 = 0. We conclude that

π1(X0,m)= Z/mZ

as claimed. When m = ±1, we get a trivial group, so in particular, X0 = X0,1 is
simply connected. Since we have e(X0)= 9 and σ(X0)= −5, by Freedman [30],
X0 is homeomorphic to CP2# 6 CP2, but not diffeomorphic to it by Theorem 3.

4.5. The theorem and ancillary remarks. Combining the results of the previous
four subsections, we have:

Theorem 7. {(X i,φ, fi,φ)} are symplectic genus-3 Lefschetz pencils whose total
spaces have χh(X i,φ) = 1 and c2

1(X i,φ) = 3 − i , and they include exotic rational
surfaces CP2# (6 + i)CP2 as well as infinitely many symplectic 4-manifolds which
are not homotopy equivalent to any complex surface, for each i = 0, 1, 2, 3.

The additional claim regarding the examples which are not homotopy equivalent
to any complex surface follows from standard arguments: The family of symplectic
4-manifolds {X i,φ} contains {X i,m} we studied in detail, and the fundamental groups
of the latter family realize any (Z/m1Z)⊕ (Z/m2Z) for i = 1, 3, and any Z/mZ,
for i = 0, 2. For i = 1, 3, we get infinitely many examples with b1(X i,m) = 1
(and b+(X i,m) > 0) by setting m1 = 0 and varying m2. These cannot be homotopy
equivalent to any complex surface; see, e.g., [8, Lemma 2]. For i = 0, 2, we have
κ(X i,m)= 2. However, there are only finitely many deformation classes of compact
complex surfaces of general type with the same χh and c2

1 invariants [34], so all but
finitely many of these X i,m cannot have the homotopy type of a complex surface.

Remark 8. We claim that the X i,φ are either minimal or at most one blow-up of
a minimal symplectic 4-manifold. This follows from the following more general
observation (cf. Remark 4): For any pencil (X, f ), where X is not rational or ruled,
the collection of all exceptional classes in the corresponding Lefschetz fibration
(X̃ , f̃ ) can be represented by disjoint multisections Sj , each one of which intersects
the regular fiber F positively. By [57, Theorem 5-12], κ(X)= 2 and g ≥ 3 implies
that

(∑
Sj

)
· F ≤ 2g−4, which in turn means X can have at most 2g−4 exceptional

classes. Note that if X3,φ is not minimal, then κ(X3,φ)= 2, like the other X i,φ , for
i = 0, 1, 2. Now for every i = 0, 1, 2, 3, since the genus-3 pencil (X i,φ, fi,φ) already
has one base point (yielding an exceptional class in the corresponding fibration),
there can be at most one more exceptional class, proving our claim.

Remark 9. We suspect that the smallest exotic rational surface one can get via
genus-3 pencils has c2

1 =3 or 4 and our example (X0, f0)might very well be optimal.
Our subsequent work in [11] shows that one can already get sharper results with
pencils of genus g = 4 or 5, which is in part due to having room for more base points,
since the number of base points b is less than or equal to 2g − 4 by the previous
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remarks. It is also worth noting that no exotic rational surface admits a pencil of
genus g ≤ 2. The total space of any pencil of genus g ≤ 1 is a rational surface, and
that of any genus-2 pencil has κ ≥ 1 by Lemma 2 and Proposition 1. Moreover, by
[57, Theorem 5-5(iii)], a genus-2 pencil with κ = 1 should have only one reducible
fiber, which is not possible when the total space has Euler characteristic smaller
than 14 by [13, Lemmas 4 and 5]. Hence, the smallest fiber genera for pencils on
minimal exotic rational surfaces is g = 3. In contrast, there exist genus-2 Lefschetz
fibrations on minimal exotic rational surfaces with c2

1 = 0, 1, 2, and in fact for no
other c2

1 [13].

Remark 10. By the work of Siebert and Tian [58], the hyperellipticity of our
genus-3 pencil (X0, f0) implies that the exotic rational surface X0 with c2

1 = 3
is the blow-down of a symplectic double cover of a rational ruled surface. The
exotic rational surfaces we built in [13] with c2

1 = 0, 1, 2 via hyperelliptic genus-2
Lefschetz fibrations have the same property. In particular, all these exotic rational
surfaces admit symplectic involutions.

Remark 11. There are many prior constructions of Kähler surfaces and symplectic
4-manifolds in the homeomorphism classes of the rational surfaces in Theorem 7.
The first examples with c2

1 = 0 and 1 were the Dolgachev surfaces and the Barlow
surface, as shown by Donaldson [19] and Kotschick [46], respectively, in the
late 1980s. The first examples with c2

1 = 2 and 3 were obtained around 2005
via generalized rational blowdowns by J. Park [55] and Stipsicz and Szabó [61],
respectively. Infinitely many distinct smooth structures in these homeomorphism
classes were constructed using logarithmic transforms, knot surgeries and Luttinger
surgeries; see, e.g., [1; 2; 3; 27; 29; 32; 62] (all of which are indeed instances of
surgeries along tori [14].) However, it remains an open question whether there are
two distinct minimal symplectic 4-manifolds homeomorphic but not diffeomorphic
to the same rational surface with c2

1 < 9; see [60, Problem 11]. As observed by
Stipsicz and Szabó, Seiberg–Witten invariants cannot distinguish these symplectic
4-manifolds [61, Corollary 4.4]. It is thus desirable to have examples with more
structure like ours, in hope of addressing this intriguing question.

Remark 12. It follows from the works of Donaldson [20] and Gompf [35] that every
finitely presented group is the fundamental group of a symplectic Lefschetz pencil;
also see [5; 39; 45] for direct constructions. One can thus define an invariant mg of
finitely presented groups, where for any such G, mg(G) is the smallest g among
all the genus-g pencils with π1 = G. Well-known examples of pencils of genus
g = 0, 1, 2 show that for the groups G = 1,Z2 and Z2, we have mg = 0, 2, 2,
realized by pencils on CP2, the Enriques surface, and T 2

× S2, respectively. We
conjecture that mg(G)= 3 for all the other G ∼= (Z/m1Z)⊕ (Z/m2Z), which are
realized by our genus-3 pencils (X i,m, fi,m), when i = 0, 1, 2.
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C1 C2

C ′
2 C ′

1

∂1

∂2

∂3

∂4

Figure 5. The curves involved in our embeddings of ∂62
4 into ∂64

3 .

5. Symplectic Calabi–Yau surfaces with b1 > 0 via genus-3 pencils

In this section we will give a new construction of an infinite family of symplectic
Calabi–Yau surfaces with b1 > 0 in all possible rational homology classes allowed
by the rational homology classification of symplectic Calabi–Yaus [7; 49]. These
examples will come from our construction of new positive factorizations of boundary
multitwists in Mod(64

3) corresponding to symplectic genus-3 Lefschetz pencils.

5.1. Breeding symplectic Calabi–Yau pencils. The positive factorization for Mat-
sumoto’s genus-2 Lefschetz fibration has the following further lift to Mod(64

2),
which was obtained by Hamada in [37]:

tB0,1 tB1,1 tB2,1 tC1 tB0,2 tB1,2 tB2,2 tC2 = tδ1 tδ2 tδ3 tδ4, (44)

where δi are boundary parallel curves, and B j,i and Ci are as shown on the right-hand
side of Figure 6. This relation will be the main building block in our construction.

After Hurwitz moves, we can rewrite the relation (44) as

tB0,1 tB1,1 tB2,1 tA0,2 tA1,2 tA2,2 tC1 tC2 t−1
δ1

t−1
δ2

= tδ3 tδ4,

where each A j,2 = tC1(B j,2) for j = 0, 1, 2. Note that if we cap off the two boundary
components δ3 and δ4, the curves B j,i descend to the curves Bj and Ci to C given
on the left-hand side of Figure 6, for each j = 0, 1, 2 and i = 1, 2.

Consider the embedding of 64
2 into 64

3 obtained by attaching a 64
0 along two of

the boundary components of 64
2 . We choose an embedding of 64

2 such that we map

δ1 7→ C ′

2, δ2 7→ C ′

1, δ3 7→ ∂2, δ4 7→ ∂1,

where Ci ,C ′

i are as shown in Figure 5. We then map the interior of 64
2 so that

the curves B j,1 and A j,2 all map to the curves Bj and Aj in Figure 7 when the
boundary components ∂1, . . . , ∂4 are capped off.4 Thus, the following relation holds

4At the end of our construction, the four boundary components of 64
3 will correspond to disk

neighborhoods of the four base points of our genus-3 pencils, so knowing the isotopy classes of these
Dehn twist curves after we cap off all ∂i will be enough for our π1 and H1 calculations.
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Figure 6. The curves Bj ,C, B j,i ,Ci in Hamada’s lifts. On the left
are the curves of the positive factorization in Mod(62

2), along with
the curves Aj we got after the Hurwitz moves. On the right are the
curves of the further lift in Mod(64

2).

in Mod(64
3):

tB0,1 tB1,1 tB2,1 tA0,2 tA1,2 tA2,2 tC1 tC2 t−1
C ′

2
t−1
C ′

1
= t∂1 t∂2, (45)

which we can rewrite as

PtC1 tC2 t−1
C ′

2
t−1
C ′

1
= tδ1 tδ2, for P = tB0,1 tB1,1 tB2,1 tA0,2 tA1,2 tA2,2 .

A similar embedding of 64
2 into 64

3 can be given by mapping

δ1 7→ C2, δ2 7→ C1, δ3 7→ ∂3, δ4 7→ ∂4,

where the interior is mapped in a similar fashion to before, so we get the curves B ′

j
and A′

j in Figure 7 when the boundary components ∂1, . . . , ∂4 are capped off. Note
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that this second embedding can be obtained from the first one by a rotation of the
surface 64

3 in Figure 5. So we get another relation in Mod(64
3):

tB ′

0,1
tB ′

1,1
tB ′

2,1
tA′

0,2
tA′

1,2
tA′

2,2
tC ′

1
tC ′

2
t−1
C2

t−1
C1

= t∂3 t∂4, (46)

which we can rewrite as

P ′tC ′

1
tC ′

2
t−1
C2

t−1
C1

= tδ3 tδ4, for P ′
= tB ′

0,1
tB ′

1,1
tB ′

2,1
tA′

0,2
tA′

1,2
tA′

2,2
.

Let φ be any mapping class in Mod(64
3)which fixes the set S := {C1,C2,C ′

1,C ′

2}

pointwise, i.e., φ ∈ Mod(64
3, S). Then the product of Pφ and P ′ yield

PφP ′
= PφtC1 tC2 t−1

C ′

2
t−1
C ′

1
P ′tC ′

1
tC ′

2
t−1
C2

t−1
C1

= (PtC1 tC2 t−1
C ′

2
t−1
C ′

1
)φ P ′tC ′

1
tC ′

2
t−1
C2

t−1
C1

=1,

where 1 = t∂1 t∂2 t∂3 t∂4 is the boundary multitwist. Here, in the first equality we
used the commutativity of disjoint Dehn twists tC1 , tC2 , tC ′

1
, tC ′

2
and that they all

commute with P and P ′. The second equality holds since φ commutes with the
Dehn twists along C1, C2, C ′

1 and C ′

2.
Therefore Wφ = PφP ′ is a positive factorization of the boundary multitwist

1= t∂1 t∂2 t∂3 t∂4 in Mod(64
3) for any φ as above. Under the boundary capping

homomorphism Mod(64
3)→ Mod(63) this maps to a positive factorization

(tB0 tB1 tB2 tA0 tA1 tA2)
ψ tB ′

0
tB ′

1
tB ′

2
tA′

0
tA′

1
tA′

2
= 1, (47)

where ψ is the image of the mapping class φ under this homomorphism.
Let (Xφ, fφ) denote the symplectic genus-3 Lefschetz pencil corresponding to

the positive factorization Wφ . We claim that each Xφ is a symplectic Calabi–Yau
surface.

The Euler characteristic of Xφ is easily calculated as

e(Xφ)= 4 − 4g + ℓ− b = 4 − 4 · 3 + 12 − 4 = 0,

where g and b are the genus and the number of base points of the pencil, and ℓ is
the number of critical points, which is equal to the number of Dehn twists in the
positive factorization Wφ .

As we have an explicit positive factorization (47) for the pencil (Xφ, fφ), the
signature of Xφ can be once again easily calculated using the work of Endo and
Nagami in [24]. The signature of the relation (44) we used as our main building
block, which corresponds to a pencil on a minimal ruled surface, is zero, and so is
the signature of any embedding of this relation into a higher genus surface. Since
Hurwitz moves, conjugations and cancellations of positive–negative Dehn twist
pairs have no effect on the signature, the signature of the final relation (47) is also
zero. Therefore σ(Xφ)= 0.
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A1

A0

B2

B1

B0

C

A2

C ′

B′
0

A′
1

A′
0

B′
2

B′
1

A′
2

Figure 7. The curves Bj , Aj , B ′

j , A′

j of the genus-3 pencil (X, f ).
On the left are the curves coming from the factorization P and
on the right are those coming from P ′, which correspond to the
two different embeddings of the factorization in Mod(62

2) into
Mod(63). (Dotted lines are the identified images of δ1 and δ2

under these two embeddings.)

The only rational or ruled surfaces that have the same Euler characteristic and
signature as Xφ are T 2

× S2 and T 2 ∼
×S2. However, by Lemma 5 they do not admit

pencils with b = 2g −2 base points. Hence, we can apply Proposition 1 to conclude
that κ(Xφ) = 0. Since Xφ clearly does not have the same rational homology as
the K3 surface or the Enriques surface, we can already tell that it is a symplectic
Calabi–Yau surface with b1 > 0.

5.2. Homeomorphism and homology types. We will first calculate the fundamental
group of Xφ in the extremal case: when φ is the identity and b1(Xφ)= 4. We will
show that the 4-manifold we simply denote by X in this case has π1(X)= H1(X)∼=
Z4, and we will in fact conclude that X is homeomorphic to the 4-torus. After this de-
tailed calculation, we will calculate H1(Xφ) for a certain family of φ ∈ Mod(64

3, S),
where S = {C1,C2,C ′

1,C ′

2}, to cover all rational homology types of symplectic
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Calabi–Yau surfaces with b1 > 0. For any choice of φ, one can easily derive a
presentation for π1(Xφ) from that of π1(X), which we will leave to the reader.

Let (X̃ , f̃ ) be the Lefschetz fibration we obtain by blowing-up the base points
of the pencil (X, f ). Let {aj , bj } be the standard generators of π1(6g) as shown in
Figure 4. Once again, we have a finite presentation for π1(X̃) of the form

⟨a1, b1, a2, b2, a3, b3 | [a1, b1][a2, b2][a3, b3], R1, . . . , R12⟩,

where each {Rk}
12
k=1 is a relation obtained by expressing the Dehn twist curves in

the positive factorization (47) in the basis {aj , bj }
3
j=1.

So we have the following relations induced by B0, B1, B2, A0, A1, A2, B ′

0, B ′

1,
B ′

2, A′

0, A′

1, A′

2 (see Figure 7), in the same order:
a1a3 = 1, (48)

a1b̄1a2b2ā2a3b̄3 = 1, (49)

b̄1a2b2ā2b̄3 = 1, (50)

a1[b3, a3]b2a3b̄2[a3, b3] = 1, (51)

a3b̄3b̄2[a3, b3]a2
1 b̄1ā1[b3, a3]b2[b3, a3]b2 = 1, (52)

a1b̄1ā1[b3, a3]b2[b3, a3]b2b̄3b̄2[a3, b3] = 1, (53)

ā2a1a2a3 = 1, (54)

a1b̄1a2a2
3 b̄3ā3b2ā2 = 1, (55)

b1a2b̄2a3b3ā3ā2 = 1, (56)

a1a2b̄2a3b2ā2 = 1, (57)

a1b̄1a2b̄2a2
3 b̄3ā3b2

2ā2 = 1, (58)

b̄1a2b̄2a3b̄3ā3b2
2ā2 = 1. (59)

First observe that, when abelianized, the relations coming from each triple
{B0, B1, B2}, {A0, A1, A2}, {B ′

0, B ′

1, B ′

2}, {A′

0, A′

1, A′

2} yield the same three rela-
tions

a1 + a3 = 0,

a1 − b1 + b2 + a3 − b3 = 0,

b1 − b2 + b3 = 0,

where we identified the abelianized images of the π1 generators with the same
letters. Any two of these relations imply the third. Since a1 = −a3 and b1 = b2 −b3,
we can eliminate a1 and b1 (and these relations) from the presentation, and we get
a free abelian group of rank 4, generated by a2, b2, a3 and b3.

Now, going back to the presentation we had for π1(X̃), we see that it is also gen-
erated by a2, b2, a3, b3, for a1 = ā3 by (48) and b1 = a2b2ā2b̄3 by (50). Therefore, to
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conclude that π1(X̃)= Z4, it suffices to show that a2, b2, a3 and b3 all commute with
each other, which is what do next: Replacing a1 with ā3 in (54) gives [a2, a3] = 1.
From (50) we have b̄1a2b2ā2 = b3. Substituting this in (49), and replacing a1

with ā3, we get [a3, b3] = 1. With a1 = ā3 and [a3, b3] = 1, the relation (51)
simplifies to [b2, a3] = 1. So a3 commutes with a2, b2 and b3, and therefore, with
everything. Since a1 = ā3, the surface relation [a1, b1][a2, b2][a3, b3] = 1 becomes
[a2, b2] = 1. Recall that b1 =a2b2ā2b̄3, which now becomes b1 =b2b̄3. Substituting
a1 = ā3 and b1 = b2b̄3 into (53), and then simplifying it using all the commutativity
relations we have so far, we get [b2, b3] = 1. Finally, commuting and canceling the
a1 and a3 terms in the relation (55) we get b̄1a2b̄3b2ā2 = 1, which, we can rewrite
as b3b̄2a2b̄3b2ā2 = 1 by substituting b1 = b2b̄3. Since b2 commutes with both a2

and b3, we can simplify the last relation to get [a2, b3] = 1.
Hence π1(X)= π1(X̃)= Z4, generated by a2, b2, a3 and b3.
Since π1(X)= Z4 is a virtually poly-Z group, the Borel conjecture holds in this

case by the work of Farrell and Jones [26]. As observed by Friedl and Vidussi,
this implies that a symplectic Calabi–Yau surface with π1 = Z4 is unique up to
homeomorphism [31]. So X is homeomorphic to the 4-torus.

Lastly, we will show that for suitable choices of φ, we can get Xφ realizing all
possible rational homology types of symplectic Calabi–Yau surfaces with b1 > 0,
which are precisely the rational homology types of torus bundles over tori [48]. In
fact, we will get an infinite family realizing all integral homology types of torus
bundles over tori. Because the Euler characteristic and the signature are fixed (both
zero), the first homology groups determine all the others. Therefore, it will suffice
to show that we can get Xφ with H1(Xφ)= Z2

⊕(Z/m1Z)⊕(Z/m2Z) for any given
m1,m2 ∈ N.

Let us take φ = t−m1
b1

tm2
a3

, where b1 and a3 are as in Figure 4. Note that b1

and a3 are disjoint from C1,C2,C ′

1,C ′

2, so φ fixes this set of curves pointwise. For
m = (m1,m2) any pair of nonnegative integers, let us denote the genus-3 pencil we
obtain this way by (Xm, fm) and its positive factorization by Wm = PφP ′, where
φ = t−m1

b1
tm2
a3

. Note that X(0,0) = X .
Recall that, every triple of vanishing cycles

{B0, B1, B2}, {A0, A1, A2}, {B ′

0, B ′

1, B ′

2}, {A′

0, A′

1, A′

2}

yield the two linearly independent relations

a1 + a3 = 0, (60)

b1 − b2 + b3 = 0. (61)

There are two conclusions to draw: first, the Dehn twist curves coming from
the nonconjugated factor P ′ induce exactly these relations in H1(Xm). Second,
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the vanishing cycles coming from the conjugated factor Pφ induce the following
relations, which we can easily derive using the Picard–Lefschetz formula:

a1 + m1b1 + a3 = 0, (62)

b1 − b2 + m2a3 + b3 = 0. (63)

We can now easily see that (60) and (62) together imply m1b1 = 0, whereas (61)
and (63) imply m2a3 = 0. From the relations a3 = −a1 and b3 = b2 − b1, we
then conclude that H1(Xm) is generated by a1, b1, a2, b2 with only two relations:
m1b1 = 0 and m2a1 = 0. Hence, H1(Xm)= Z2

⊕ (Z/m1Z)⊕ (Z/m2Z), as claimed.
Note that when m1 = m2 = ±1, we get symplectic Calabi–Yau surfaces with the

same integral homology type as T 2
× S2, but obviously not diffeomorphic to it, as

they have different Kodaira dimensions.

5.3. The theorem and final remarks. For {(Xφ, fφ)} symplectic genus-3 pencils
prescribed by the positive factorizations Wφ , for φ ∈ Mod(64

3, S), we have now
proved that:

Theorem 13. The {(Xφ, fφ)} are symplectic genus-3 Lefschetz pencils whose to-
tal spaces are symplectic Calabi–Yau surfaces that realize all integral homology
types of torus bundles over tori, and they include a symplectic Calabi–Yau surface
homeomorphic to the 4-torus and fake symplectic T 2

× S2s.

We finish with a few observations and comparisons regarding our examples.

Remark 14. The most curious question about our examples is whether every Xφ
is a torus bundle over a torus, as they are commonly conjectured to exhaust all
the diffeomorphism types of symplectic Calabi–Yau surfaces with b1 > 0. After
the first version of our paper was publicized, Hamada and Hayano succeeded in
proving that our symplectic Calabi–Yau surface that is homeomorphic to the 4-
torus [38], is in fact diffeomorphic to it, by comparing the pencil we described on
it with a pencil described by Ivan Smith on the standard 4-torus [59] (more on this
below). This is so far the only example we know to be standard within this infinite
family of examples.5 If for any conjugation φ ̸= 1, it turns out that π1(Xφ) is not a
4-dimensional solvmanifold group [31; 42], this would imply that Xφ is not a torus
bundle over a torus, and is a new symplectic Calabi–Yau surface. As our arguments
in the proof of Theorem 13 show, more generally, if any partial conjugation along
any Hurwitz equivalent factorization to the positive factorization Wφ results in a
pencil with a fundamental group which is not a solvmanifold group, we can arrive

5It might be possible to use the recent works of W. Chen in [18; 17] to conclude that some other
Xφ are also standard by finding finite symplectic symmetries on them. In the special case of trivial
φ, one can in fact see that the monodromy of the pencil (X, f ) with b1(X)= 4 has a Z2–symmetry
under cyclic permutation, which gives rise to a symplectic involution on X .
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at a similar conclusion. So far, a handful of examples we examined seem to have
the same group theoretic properties as their infrasolvmanifold counter-parts; e.g.,
they are poly-Z of Hirsch length 4. In particular, we don’t know at this point if any
of the fake symplectic T 2

× S2 we get has π1 = Z2 so that it would be exotic.

Remark 15. In [59], Ivan Smith constructed genus-3 pencils on torus bundles
over tori admitting sections (not all do), by generalizing the algebraic geometric
construction of holomorphic genus-3 pencils on abelian surfaces. It is natural to
ask whether our examples overlap with Smith’s. As Hamada and Hayano showed
in [38], this is the case for our 4-torus example, but we don’t know much about
it beyond that. There are however reasons to think that our family of genus-3
pencils (Xφ, fφ) is at least larger than Smith’s examples. For comparison, note
that any torus bundle over a torus with a section would admit a second disjoint
section as well; for any section of a surface bundle over a torus has self-intersection
zero [15] and can be pushed off itself. So the family of genus-3 pencils of Smith are
determined by a pair φ1, φ2 ∈ Mod(62

1) subject to the relation [φ1, φ2] = 1. On the
other hand, our family of genus-3 pencils are parametrized by φ ∈ Mod(64

3, S)},
where S := {C1,C2,C ′

1,C ′

2}, which has a proper subgroup that consists of mapping
classes which fix each one of the curves C1, C2, C ′

1, C ′

2. Any φ in the latter stabilizer
group has disjoint support in two copies of 62

1 embedded in 64
3 (the left and the

right sides of the surface in Figure 5). So a subset of our family of examples are also
parametrized by φ1, φ2 ∈ Mod(62

1), but with no relation to each other whatsoever.

Remark 16. The subfamily of pencils {(Xm, fm) | m = (m1,m2) ∈ N2
} we studied

in the proof of Theorem 13 have the following property: they can all be obtained
from the 4-torus pencil (X, f ) through fibered Luttinger surgeries [6; 9]. To see
this, first observe that for φ = t−m1

b1
tm2
a3

, we have the positive factorizations

Wm = (t−m1
b1

tm2
a3

Pt−m2
a3

tm1
b1
)P ′

= (t−1
b1

· · · t−1
b1

ta3 · · · ta3 Pt−1
a3

· · · t−1
a3

tb1 · · · )tb1 P ′

which are obtained by a sequence of partial conjugations by tb1 and ta3 . Since
b1 and a3 are disjoint from C1,C ′

1,C2,C ′

2, they are stabilized by P , which, as a
mapping class, is equal to t−1

C1
t−1
C2

tC ′

1
tC ′

2
. So each conjugation by a factor of t±1

b1

or t±1
a3

amounts to performing a Luttinger surgery along a Lagrangian torus swept
off by b1 or a3 on the regular fibers, over a loop on the base [6; 9]. One can easily
see how this observation generalizes to more general conjugations (but perhaps
requiring Luttinger surgeries along Lagrangian Klein bottles). With this in mind,
we see that if {(Xφ, fφ)} contains all the torus bundles over tori, then one would
immediately get a proof of an improved version of a conjecture by Ho and Li: that
every torus bundle over a torus admits a symplectic structure so that it is obtained via
Luttinger surgeries along tori from the 4-torus equipped with the standard product
symplectic structure [43, Conjecture 4.9], or, we add, Klein bottles.
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