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We describe several geometric interpretations of H2(X) when X is a trisected
4-manifold. The main insight is that, by analogy with Hodge theory and sheaf
cohomology in algebraic geometry, classes in H2(X) can be usefully interpreted
as “(1,1)”-classes. First, we reinterpret work of Feller, Klug, Schirmer and Zemke
and of Florens and Moussard on the (co)homology of trisected 4-manifolds in
terms of the Čech cohomology of presheaves on X , in both the case of singular and
de Rham cohomology. We then discuss complex line bundles, almost-complex
structures, spin structures and SpinC-structures on trisected 4-manifolds.

1. Introduction

A motivating question in 4-manifold topology is the following:

Question 1.1. To what extent are general 4-manifolds similar to projective complex
surfaces?

Donaldson showed that, like projective surfaces, every closed symplectic man-
ifold admits a Lefschetz pencil [4]. Later, Auroux, Donaldson and Katzarkov
showed that near-symplectic manifolds admit so-called broken Lefschetz pen-
cils1 [1]. Baykur then proved that every closed, oriented, smooth 4-manifold admits
a broken Lefschetz fibration over S2 [2]. This gives one sense in which all such
4-manifolds are similar to projective surfaces.

It is a classical fact, known as Theorem B, that over a Stein domain, coherent
sheaves have no higher cohomology. That is, if Z is Stein and F is a coherent sheaf,
then H i (Z;F) = 0 for i > 0. A consequence is that if X is a complex manifold,
F is a coherent sheaf, and Z = {Zi } is an open cover of X by Stein domains, then
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1The term “singular Lefschetz pencil” was used in [1].
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the sheaf cohomology of F can be computed by the Čech complex with respect to
the open cover Z:

H∗(X;F)∼= Ȟ∗(Z;F).

On a projective surface, Hodge theory implies that Dolbeault cohomology refines
de Rham cohomology. Specifically, there is an isomorphism

H k(X; C)∼=

⊕
i+ j=k

H i, j
∂̄
(X; C).

In addition, Dolbeault’s theorem states that Dolbeault cohomology is isomorphic to
the cohomology of the sheaf of holomorphic differential forms:

H i, j
∂̄
(X; C)∼= H i (X;� j ).

Moreover, applying Serre duality to the constant sheaf C shows that there is an
isomorphism

H i, j
∂̄
(X; C)∼= H n−i,n− j

∂̄
(X; C),

where n is the complex dimension of X.
Interestingly, trisections of 4-manifolds reveal similar results for singular and

de Rham cohomology. The four-dimensional handlebody ♮k S1
× B3 admits a Stein

structure. Thus, since every closed 4-manifold admits a trisection, it can be covered
by three domains that admit Stein structures. In addition, by slightly enlarging the
sectors of trisection, we get an open cover T = {U1,U2,U3}, where

(1) Ui is diffeomorphic to ♮ki S1
× B3,

(2) Ui ∩ U j is diffeomorphic to ♮g S1
× B3, and

(3) U1 ∩ U2 ∩ U3 is diffeomorphic to 6g × D2.

Let Ci denote the presheaf on X defined as

Ci (U ) := H i (U ; Z).

It is clear that Ci is a presheaf. However, in general it is not a sheaf as it satisfies
the gluing axiom but not the locality axiom. In particular, it is not separated.
Nonetheless, we can compute the Čech cohomology Ȟ∗(T , Ci ) of the presheaf Ci

with respect to the open cover T .
Methods to compute the homology of 4-manifolds from a trisection have been

given by Feller, Klug, Schirmer and Zemke [5] and by Florens and Moussard [6].
Reinterpreting their results, we get the following theorems:

Theorem 1.2 (Hodge/Dolbeault theorem). There is an isomorphism

H k(X; Z)∼=

⊕
i+ j=k

Ȟ i (T , C j ).
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Moreover, we have the following “Hodge diamond” for the cohomology of a
trisected 4-manifold:

H 4(X; Z)

0 H 3(X; Z)

0 H 2(X; Z) 0

H 1(X; Z) 0

H 0(X; Z)

In particular, the Čech complex Č∗(T , C1)— representing the middle diagonal
of the Hodge diamond — is essentially given in [6, Section 2.1] but not described
as such.

We can also interpret the symmetry of the Hodge diamond as Serre duality.

Theorem 1.3 (Serre duality). There is an isomorphism

Ȟ i (T , C j )⊗ R ∼= Ȟ 2−i (T , C2− j )⊗ R.

1A. Second cohomology as (1, 1)-classes. By analogy with complex geometry,
we refer to any class in Ȟ 1(T , C1)∼= H 2(X; Z) as a (1, 1)-class. On a projective
surface, the Lefschetz theorem states that the integral (1,1)-classes are precisely
those that can be represented by a divisor. The proof of Theorem 1.2 further implies
that every class of is a (1,1)-class.

Theorem 1.4. Every class in H 2(X; Z) is a (1,1)-class with respect to the trisec-
tion T . Specifically,

H 2(X; Z)∼= Ȟ 1(T , C1).

Unpacking the definition of Čech cohomology, this means that every element
of H 2(X) is represented by a triple (β1, β2, β3) where βλ is a 1-dimensional co-
homology class on the handlebody Hλ of the trisection. We will describe several
geometric interpretations of this.

(1) De Rham cohomology: Every class ω ∈ H 2
DR(X) can be represented by a triple

(β1, β2, β3) where βλ is a closed 1-form on Hλ.

(2) C-line bundles. Recall that isomorphism classes of C-line bundles over X are
classified by H 2(X; Z) and homotopy classes of maps from Hλ to S1 are classified
by H 1(Hλ; Z). Take a C-line bundle E with first Chern class c1(E). Then E
can be trivialized over each sector Zλ of the trisection and the triple (β1, β2, β3)

corresponding to c1(E) determines the transition maps (up to homotopy).
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(3) SpinC-structures. The set of SpinC-structures on X is an affine copy of
H 2(X; Z). Following Gompf, we show how to interpret a SpinC-structure as
an almost-complex structure on the spine of the trisection. Then, the action of
H 2(X; Z) can be described in terms of “Lutz twists” along a collection of curves
representing homology classes in H1(Hλ) that are hom-dual to (β1, β2, β3).

2. Singular cohomology

2A. Sheaves. We first review the basics of sheaves and Čech cohomology. Let X
be a topological space and let R be a commutative ring.

Definition 2.1. A presheaf of R-modules F on X consists of

(1) an R-module F(U ) for each open set U, and

(2) a restriction map ρU,V : F(U )→ F(V ) if V is contained in U.

Furthermore, the restriction maps satisfy the relations

(1) ρU,U : F(U )→ F(U ) is the identity homomorphism, and

(2) ρU,W = ρV,W ◦ ρU,V if W ⊂ V ⊂ U.

If s ∈ F(U ) and V ⊂ U, then we will denote ρU,V (s) by s|V .

Exercise 2.2. Suppose that X is a smooth manifold. Check that the following are
presheaves:

(1) R is the constant presheaf, where R(U ) = R and the restriction map is the
identity.

(2) Ci is a presheaf of Z-modules, where Ci (U ) = H i (U ; Z) and the restriction
maps are given by the inclusion map.

(3) DRi is a presheaf of R-modules, where DRi (U )= H i
DR(U,R) and the restric-

tion maps are given by the inclusion map.

(4) �p is a sheaf of R-modules, where �p(U ) is the set of p-forms on U and the
restriction maps are given by the inclusion map.

Definition 2.3. A sheaf of R-modules is a presheaf of R-modules that satisfy the
further conditions:

(1) (locality) If {Ui }i∈I is an open covering of U and if s, t ∈ F(U ) satisfy s|Ui =

t |Ui for all i ∈ I, then s = t .

(2) (gluing) Let {Ui }i∈I be an open covering of U and let {si ∈ F(Ui )}i∈I be a
collection of local sections such that

si |Ui ∩U j = s j |Ui ∩U j

for all i, j ∈ I. Then there is a section s ∈F(U ) such that s|Ui = si for all i ∈ I.
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Exercise 2.4. Show that R and �p are sheaves, but Ci and DRi are not sheaves in
general.

2B. Čech cohomology. We refer the reader to [3] for a discussion of Čech coho-
mology in general. To simplify the exposition, we restrict to open covers consisting
of at most three open sets.

Let X be a smooth manifold, let F be a presheaf of R-modules, and let U =

{U1,U2,U3} be an open cover of X. The Čech cochain groups are defined to be

Č0(U,F)= F(U1)⊕F(U2)⊕F(U3),

Č1(U,F)= F(U1 ∩ U2)⊕F(U1 ∩ U3)⊕F(U2 ∩ U3),

Č2(U,F)= F(U1 ∩ U2 ∩ U3).

For 1 ≤ i < j ≤ 3, denote the restriction maps by

ρi,i j : F(Ui )→ F(Ui ∩ U j ),

ρi j,123 : F(Ui ∩ U j )→ F(U1 ∩ U2 ∩ U3).

The Čech coboundary map is defined to be

δ−1
= 0,

δ0
= (ρ1,12 − ρ2,12)⊕ (ρ1,13 − ρ3,13)⊕ (ρ2,23 − ρ3,23),

δ1
= ρ12,123 − ρ13,123 + ρ23,123,

δ2
= 0.

The Čech cohomology Ȟ∗(U,F) of the presheaf F with respect to the open cover U
is defined to be

Ȟ i (U, F)=
ker(δi )

Im(δi−1)
.

Exercise 2.5. Find open covers U = {U1,U2,U3} and compute the Čech cohomol-
ogy of the sheaf R for the following topological spaces:

(1) S1.

(2) S1
∨ S1.

(3) S2.

2C. Notational setup. Let X = Z1 ∪ Z2 ∪ Z3 be a trisection of X, let Yλ = ∂Zλ
and let Hλ = Zλ−1 ∩ Zλ. Let 6 be the central surface. The inclusion

ιλ :6 → Hλ

induces two maps

(ιλ)∗ : H1(6)→ H1(Hλ), (ιλ)
∗
: H 1(Hλ)→ H 1(6).
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Define subspaces

Lλ := ker((ιλ)∗)⊂ H1(6), Mλ := Im((ιλ)∗)⊂ H 1(6).

We can use the intersection pairing ⟨−,−⟩6 on H1(6) to define an isomorphism
π : H1(6)→ H 1(6) by setting

π(x)= ⟨−, x⟩6.

Furthermore, we have inclusion maps κi, j : H j ↪→ Yi and ρi : Yi → Zi for i = 1, 2, 3
and j = i − 1, i . These induce maps

(κi, j )∗ : H1(H j )→ H1(Yi ), (ρi )∗ : H1(Yi )→ H1(Zi ),

(κi, j )
∗
: H 1(Yi )→ H 1(H j ), (ρi )

∗
: H 1(Zi )→ H 1(Yi ).

2D. Hodge diamond. The results in [5; 6] compute homology. In particular, we
have the following expression for H∗(X).

Theorem 2.6 [6]. The homology of X with Z-coefficients is the homology of the
complex

0→Z
0

−→(L1∩L2)⊕(L2∩L3)⊕(L3∩L1)
ζ

−→ L1⊕L2⊕L3
ι

−→ H1(6)
0

−→Z→0,

where ζ(a, b, c)= (c − a, a − b, b − c) and ι(a, b, c)= a + b + c.

The middle terms of this complex are essentially the Čech complex.

Proposition 2.7. There is a chain complex isomorphism

0 //

0
��

(L1 ∩ L2)⊕ (L2 ∩ L3)⊕ (L3 ∩ Lα)
ζ
//

φ1
��

Lα ⊕ L2 ⊕ L3
ι
//

φ2
��

H1(6)

π

��

// 0

0
��

0 //
⊕

λ H 1(Zλ)
δ1

//
⊕

λ H 1(Hλ)
δ2
// H 1(6) // 0

The second complex of this proposition is exactly the Čech complex of C1 with
respect to T , thus by applying Poincaré duality we obtain the following corollary.

Corollary 2.8. For i = 1, 2, 3, there are isomorphisms

H4−i (X; Z)∼= H i (X; Z)∼= Ȟ i−1(T , C1).

Proof of Proposition 2.7. By definition, Zλ= ♮kλS1
× B3 and Yλ= ∂Zλ= #kλS1

×S2.
In particular,

H1(Zλ)∼= H1(Yλ)∼= Zkλ .
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We can apply the Mayer–Vietoris sequence to the Heegaard splitting Yλ= Hλ∪Hλ+1

to get the sequence

→ H2(Hλ)⊕ H2(Hλ+1)→ H2(Yλ)→ H1(6)

→ H1(Hλ)⊕ H1(Hλ+1)→ H1(Yλ)→ H0(6).

Since H2(Hλ)= H2(Hλ+1)= 0, we see that

H 1(Yλ)∼= H2(Yλ)∼= ker(H1(6)→ H1(Hλ)⊕ H1(Hλ+1))∼= Lλ ∩ Lλ+1,

where the first isomorphism follows by Poincaré duality. This defines φ1.
Using the long exact sequence of the pair (Hλ, 6) we obtain

H2(Hλ)→ H2(Hλ, 6)→ H1(6)→ H1(Hλ)→ .

Since H2(Hλ)= 0, we see that

H 1(Hλ)∼= H2(Hλ, 6)∼= ker(H1(6)→ H1(Hλ))= Lλ.

This defines φ2. □

The remaining cohomology groups are straightforward to calculate.

Proposition 2.9. The cohomology groups of C0 are

Ȟ 0(T , C0)∼= Z, Ȟ 1(T , C0)∼= 0, Ȟ 2(T , C0)∼= 0.

Proof. Each open set Ui and each double and triple intersection is connected and so

H 0(Ui ; Z)∼= H 0(Ui ∩ U j ; Z)∼= H 0(U1 ∩ U2 ∩ U3)∼= Z.

The Čech complex is therefore

0 → Z3
→ Z3

→ Z → 0.

If {a, b, c} is a chain in Č0(T , C0) then

δ0
{a, b, c} = {a − b, b − c, c − a}.

Thus, this chain is coclosed if and only if a = b = c. Thus, Ȟ 0(T , C0) ∼=

Z⟨{a, a, a}⟩ ∼= Z. If {a, b, c} is a chain in Č1(T , C0), then

δ1
{a, b, c} = {a + b + c}.

The chain is coclosed if and only if it has the form

{a, b,−a − b} = a{1, 0,−1} + b{0, 1,−1}.

Both elements {1, 0,−1} and {0, 1,−1} are in the image of δ0, so Ȟ 1(T , C0)∼= 0.
Finally, the differential δ1 is surjective so Ȟ 1(T , C0)∼= 0 as well. □
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Proposition 2.10. The cohomology groups of C2 are

Ȟ 0(T , C2)∼= 0, Ȟ 1(T , C2)∼= 0, Ȟ 2(T , C2)∼= Z.

Exercise 2.11. Prove the proposition. [Hint: what is the rank of Č i (T , C2)?]

3. De Rham

Let DRi denote the presheaf on X defined as

DRi (U ) := H i
DR(U ; R)

3A. De Rham to Čech isomorphism.

Theorem 3.1. There are isomorphisms

H 1
DR(X; R)∼= Ȟ 0(T ,DR1), H 0

DR(X; R)∼= Ȟ 0(T ,DR0),

H 2
DR(X; R)∼= Ȟ 1(T ,DR1), H 4

DR(X; R)∼= Ȟ 2(T ,DR2),

H 3
DR(X; R)∼= Ȟ 2(T ,DR1).

We break up the proof by the degree of the cohomology group:

Degree 0: The cohomology group H 0
DR(X; R) consists of constant functions. Given

a constant function C : X → R, its restriction to Uλ is also a constant function
C : Uλ → R and therefore an element of H 0

DR(Uλ; R). The isomorphism from
de Rham to Čech is given by C 7→ (C,C,C).

Conversely, an element of Ȟ 0(T ,DR0) is a triple (C1,C2,C3) of constant
functions whose restrictions to the pairwise intersections agree. In other words,
C1 = C2 = C3 = C . The inverse isomorphism is therefore (C,C,C) 7→ C .

Degree 1: The map from de Rham to Čech is identical to the degree 0 case above.
Given some closed 1-form β, the corresponding element in Čech cohomology is
given by restricting β to each Uλ.

The inverse isomorphism is more complicated. In particular, an element of
Ȟ 0(T ,DR1) is a triple ([β1], [β2], [β3]) of cohomology classes, not specific closed
forms. Choose representative closed 1-forms β1, β2, β3. By assumption, the restric-
tions satisfy

[βλ−1] = [βλ] ∈ H 1
DR(Uλ−1 ∩ Uλ; R).

Therefore, βλ −βλ−1 = dgλ for some function gλ : Uλ−1 ∩ Uλ → R.

Exercise 3.2. Show that there exist functions fλ : Uλ → R such that, on Uλ−1 ∩Uλ,

βλ−1 + d fλ−1 = βλ + d fλ.
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Consequently, we can represent our original Čech class by the triple

(β1 + d f1, β2 + d f2, β3 + d f3)

and these 1-forms glue into a global 1-form β.

Degree 2: In this case, the maps in both directions are more complicated and
we need to check that they are in fact isomorphisms. First, choose a class [ω] ∈

H 2
DR(X; R) and represent it by a closed 2-form ω. The restriction ω|Uλ

is exact
since H 2

DR(Uλ; R)= 0, thus we can choose a primitive αλ for ω|Uλ
. Over the double

intersection Uλ−1 ∩ Uλ, the restrictions αλ−1 and αλ are both primitives for ω,
therefore their difference αλ−αλ−1 is closed. Consequently, the map from de Rham
to Čech is given by

ω 7→ (α1 −α3, α2 −α1, α3 −α2).

There were three sources of indeterminancy:

(1) We could replace αλ by αλ + d fλ for some function fλ : Uλ → R.

(2) We could replace ω by ω+ dµ for some global 1-form µ.

(3) We could replace the primitive αλ with αλ + ρλ, where ρ is a closed 1-form
on Uλ.

Exercise 3.3. (1) Show that modifying the primitives {αλ} by exact 1-forms results
in the same Čech cochain.

(2) Show that we can choose primitives for ω+ dµ that result in the same Čech
cochain.

(3) Show that modifying the primitives {αλ} by closed 1-forms {ρλ} changes the
Čech cochain by a Čech coboundary.

Conversely, given a class in Ȟ 0(T,DR1), choose a fixed cochain ([β1], [β2], [β3])

and fixed closed 1-forms {β1, β2, β3} to represent this class.

Exercise 3.4. (1) There exists a triple of 1-forms {αλ} on the open sets {Uλ} such
that αλ −αλ−1 = βλ.

(2) The 2-forms {dα1, dα2, dα3} glue together to give a global 2-form ω.

(3) Modifying the choices — modifying the Čech cochain by a coboundary, modi-
fying the closed 1-forms {βλ} by exact 1-forms, and modifying the choices
of {αλ} — results in a cohomologous 2-form ω′.

Degree 3: Given a class [µ] ∈ H 3
DR(X; R), represent it by a closed 3-form µ. Since

H 3
DR(Uλ; R)= 0, we can choose a primitive ωλ for µ over each Uλ. The differences

ωλ−ωλ−1 are closed and represent elements of H 3
DR(Uλ∩Uλ−1; R)=0. In particular,

these forms are also exact and we can choose further primitive 1-forms {βλ}.
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Restricting to the triple intersection U1 ∩U2 ∩U3 we get a 1-form β = β1 +β2 +β3

that is closed since

dβ = dβ1 + dβ2 + dβ3 = (ω1 −ω3)+ (ω2 −ω1)+ (ω3 −ω2)= 0.

Thus, [µ] is sent to an element [β] ∈ H 1
DR(U1 ∩ U2 ∩ U3; R) and therefore represents

a Čech 2-cocycle.

Exercise 3.5. (1) Show that changing ωλ by a closed 2-form results in the same
Čech 2-cocycle

(2) Show that changing βλ by a closed 1-form modifies the resulting Čech 2-
cocycle by a Čech 2-coboundary.

The inverse map can be constructed by an argument similar to the degree 2 case;
we leave it as an exercise.

Exercise 3.6. Construct the inverse map Ȟ 2(T , C1)→ H 3
DR(X; R) and show that

it is well defined.

Degree 4: The isomorphism is constructed in a analogous method to the degree 3
case and we leave it as an exercise to the reader.

Exercise 3.7. Construct the isomorphism H 4
DR(X; R)∼= Ȟ 2(T , C2).

3B. Intersection pairing. The intersection pairing on de Rham cohomology can
also be expressed in terms of the Čech cohomology of the de Rham presheafs. In
particular, we can describe the pairings

H 2
DR(X)× H 2

DR(X)→ R,

H 3
DR(X)× H 1

DR(X)→ R.

Moreover, we can describe the pairing obtained by integrating a closed p-form over
a closed p-dimensional submanifold:

H 2
DR(X)× H2(X; Z)→ R,

H 3
DR(X)× H3(X; Z)→ R,

H 4
DR(X)× H4(X; Z)→ R.

Theorem 3.8 (intersection pairing). Let X be a trisected 4-manifold.

(1) Let ω1, ω2 be a pair of closed 2-forms. Suppose that under the de Rham–Čech
isomorphism we have

[ω1] 7→ (α1, α2, α3), [ω2] 7→ (β1, β2, β3).

Then ∫
X
ω1 ∧ω2 =

∫
6

α1 ∧β2 =

∫
6

α2 ∧β3 =

∫
6

α3 ∧β1.
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(2) Let µ be a closed 3-form and α be a closed 1-form. Suppose that under the
de Rham–Čech isomorphism, we have that [µ] 7→ [β]. Then∫

X
µ∧α =

∫
6

β ∧α|6.

Exercise 3.9. Prove these statements. [Hint: use Stokes’ theorem combined with
the arguments in the previous subsection.]

To describe the integration pairing, we first fix some notation.

(1) Let K be an embedded, oriented closed surface in general position with respect
to the trisection. Let τKλ denote the tangle K ⋔ Hλ. We orient τλ as follows:
since K is oriented, the intersection Fλ=K∩Zλ is oriented. The boundary ∂Fλ
inherits an orientation from Fλ; the tangle τKλ is a subset of this boundary and
inherits an orientation.

(2) Let M be an embedded, oriented, closed hypersurface in general position with
respect to the trisection. In particular, the intersection M ⋔ 6 is a simple
closed curve γM.

Theorem 3.10 (integration pairing). Let X be a trisected 4-manifold.

(1) Let ω be a closed 2-form on X that maps to (β1, β2, β3) under the de Rham–
Čech isomorphism and let K be an embedded, oriented closed surface. Then,∫

K
ω =

∑
λ=1,2,3

∫
τKλ

βλ.

(2) Let µ be a closed 3-form on X that maps to β ∈ H 1
DR(6) under the de Rham–

Čech isomorphism and let M be an embedded, oriented, closed hypersurface.
Then, ∫

M
µ=

∫
γM

β.

(3) Let � be a closed 4-form on X that maps to ω ∈ H 2
DR(6) under the de Rham–

Čech isomorphism. Then, ∫
X
�=

∫
6

ω.

Exercise 3.11. Prove these statements [Hint: again, use Stokes’ theorem].

4. Complex line bundles

4A. Algebraic topology. First, we recall some facts from algebraic topology.

(1) The circle S1 is a K (Z, 1). In particular, there is a one-to-one correspondence
between classes in H 1(X; Z) and homotopy classes of maps f : X → S1.
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(2) The space CP∞ is a K (Z, 2). In particular, there is a one-to-one correspondence
between classes in H 2(X; Z) and homotopy classes of maps f : X → CP∞. The
cohomology ring of CP∞ is Z[α], where α has degree 2, and the identification
between maps and cohomology classes is given by

f ↔ f ∗(α).

(3) The space CP∞ is the classifying space for U (1) (equivalently C-line) bundles.
In particular, there is a one-to-one correspondence between C-line bundles on X,
up to isomorphism, and homotopy classes of maps f : X → CP∞. There is a
tautological line bundle E → CP∞ and the correspondence between maps and
C-bundles is given by

f ↔ f ∗(E).

(4) The first Chern class is a complete invariant of C-line bundles and connects (2)
and (3) above. In particular, for the tautological bundle E on CP∞ we have

c1(E)= α.

Moreover, since Chern classes are characteristic, they are natural with respect to
pullbacks and therefore

c1( f ∗(E))= f ∗(c1(E))= f ∗(α).

4B. Chern classes of C-line bundles. Using a trisection T of X, we can explicitly
see the equivalence

{C-line bundles on X}/{equivalence} = Ȟ 1(T , C1)∼= H 2(X; Z),

where an element of Ȟ 1(T , C1) is a “(1, 1)-class”.

Line bundles to (1, 1)-classes. Take a line bundle E on X. Since each sector Zλ of
a trisection is a 1-handlebody, we can choose a trivialization sλ of E over Zλ. Up to
homotopy, the potential choices of trivializations are in one-to-one correspondence
with elements of H 1(Zλ; Z)∼= Zkλ . Over the double intersection Hλ, we have two
trivializations sλ−1, sλ. Taking their quotient, we obtain a map

gλ :=
sλ

sλ−1
→ C∗.

Composing this with the homotopy equivalence C∗
≃ S1, the map gλ determines a

homotopy class of maps from Hλ to S1. In other words, the transition function gλ
determines a unique element βλ of H 1(Hλ; Z). Moreover, since

g1g2g3 =
s1

s3

s2

s1

s3

s2
= 1,

the resulting triple (β1, β2, β3) is a Čech 1-cocycle in Č∗(T , C1). Modifying the
trivialization sλ by some element of H 1(Zλ; Z) changes the resulting cocycle
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by a Čech coboundary. In particular, we obtain a well-defined element c1(E) ∈

Ȟ 1(T , C1).

(1, 1)-classes to line bundles. Given a (1,1)-class (β1, β2, β3)∈ Ȟ 1(T , C1), we can
represent βλ ∈ H 1(Hλ; Z) by a map gλ : Hλ → S1. Moreover, given the cocycle
condition β1 +β2 +β3 = 0 we can assume that g1g2g3 = 1. In particular, the triple
{g1, g2, g3} determines a triple of transition functions that allow us to construct a
C-bundle over X.

5. Almost-complex structures

An almost-complex structure J on X is a fiberwise homomorphism J : T X → T X
such that J 2

= −I. This turns every fiber Tx X into a complex vector space, where
J is multiplication by i . Consequently, the almost-complex structure determines
Chern classes ci (T X, J ) ∈ H 2i (X; Z). The goal of this section is to describe
almost-complex structures on the spine of a trisection.

5A. Field of complex tangencies. Let Y 3
⊂ X4 be a smooth hypersurface and let J

be an almost-complex structure. The field of J -complex tangencies is defined to be

ξ := J (T Y )∩ T Y

Exercise 5.1. Show that ξ has rank 2 at every point. [Hint: ξx is a J -complex line
in Tx X.] In particular, ξ is an oriented plane field.

Exercise 5.2. Let φ : X → R be a function such that Y = φ−1(0). Show that the
field of J -tangencies is the kernel of the 1-form dCφ = dφ(J−), restricted to Y.

Proposition 5.3. Let Y be a 3-manifold. Homotopy classes of almost-complex
structures on Y ×[0, 1] are in one-to-one correspondence with homotopy classes of
(coorientable) 2-plane fields on Y.

Proof. Let J be an almost-complex structure on Y × [0, 1] and let ξt denote the
field of J -tangencies along Y × {t}. It is immediately clear that {ξt } is a homotopy
of 2-plane fields. Furthermore, let Js be a family of almost-complex structures and
let ξs,t denote the field of Js-tangencies along Y × {t}. Again, this clearly gives a
2-parameter homotopy of plane fields on Y.

Now let ξ be an oriented, coorientable 2-plane field and choose a fiberwise metric
g on ξ . We can define an almost-complex structure J : ξ → ξ using the metric as
follows. Locally, we can choose an oriented, orthonormal frame {e1, e2} and define

J (e1)= e2 and J (e2)= −e1

and extend linearly.

Exercise 5.4. Show that, up to homotopy, this J does not depend on the metric g
or the local orthonormal frame.
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Next, let 3 be an oriented line field that coorients ξ . After choosing a metric h
on3, we get a unit-length section σ of3 and can extend J from ξ to T X by defining

J (∂t)= σ and J (σ )= −∂t .

Exercise 5.5. Show that, up to homotopy, this J does not depend on the homotopy
class of J |ξ , the homotopy class of 3, or the metric h.

Finally, we have to check that every J on Y × [0, 1] can be constructed in this
way. Choose some J and define E = ⟨∂t , J (∂t)⟩ and 3 = T Y ∩ E . Choose a
nonvanishing section σ of 3. Then,

J (∂t)= f ∂t + gσ

for some functions f, g. By assumption, {∂t , J∂t } is an oriented basis for E and
therefore g > 0. Since J preserves ξ , we can define a family Js of almost-complex
structures for s ∈ [0, 1] by defining

Js |ξ = J and Js(∂t)= s f ∂t + gσ.

After scaling the metric so that |gσ | = 1, we have that J0 is an almost-complex
structure of the form constructed above and J1 is our original J. □

Exercise 5.6. Show that 6 × D2 admits an almost-complex structure J with
c1(J )= 0. [Hint: embed 6 in C2.]

Lemma 5.7. The spine of a trisection admits an almost-complex structure J.

Proof. By the previous exercise, we can choose some J on a tubular neighborhood of
the central surface 6. The remaining task is to extend it across each handlebody Hλ.
The almost-complex structure J determines a hyperplane field ξλ in a neighborhood
of ∂Hλ =6.

Exercise 5.8. Show ⟨e(ξλ), [6]⟩ = ⟨c1(J ), [6]⟩ = 0. [Hint: Choose a section σ of
ξλ and a normal vector field ν to Hλ. Then det(ν, σ )= 0 precisely where σ = 0.]

Consequently, it is possible to extend ξλ across Hλ and by Proposition 5.3, this
determines a homotopy class of J in a neighborhood of Hλ. □

5B. First Chern class of J. Given some J on the spine of a trisection, we can
construct a 1-complex CJ in the spine that represents the Poincaré dual to c1(T X, J ).

The central surface 6 is canonically framed. In particular, we can choose
coordinates (s, t) on D2 such that pulling back the coordinates by the projection

π : ν(6)∼=6× D2
→ D2

we have that

6 = π−1(0), H2 = π−1(0, t) for t ≥ 0,

H1 = π−1(s, 0) for s ≤ 0,H3 = π−1(−x, x) for x ≥ 0.
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Consider the conormal sequence for the central surface 6:

0 → N ∗6 → T ∗X → T ∗6 → 0.

A coframing of 6 is a trivialization of its conormal bundle. Since N ∗6 is an
R2-bundle, a coframing is determined by a single, nowhere-vanishing section.
Moreover, it is clear from the conormal sequence that such a section is given by
a nowhere-vanishing 1-form whose restriction to 6 is identically 0. An almost-
complex structure J determines a dual almost-complex structure J t

: T ∗X → T ∗X.
Inserting this, we get a (nonexact) sequence

N ∗6 → T ∗X J t
−→ T ∗X → T ∗6.

Given a section α of N ∗6, we can push it through this sequence to get a 1-form α̃

on 6, defined to be
α̃ = α(J−)|6.

Exercise 5.9. A complex point of 6 is a point x ∈ 6 such that J (Tx6) = Tx6.
Show that α̃ vanishes at precisely the complex points of 6.

Exercise 5.10. By a C∞-small perturbation of 6, we can assume that 6 has
finitely many complex points [Hint: what are the dimensions of the Grassmannians
GrR(2, 4) and GrC(1, 2)?]

Recall the normal coordinates (s, t) on 6× D2. The pair ds, dt of 1-forms gives
a coframing of 6. Define

β1 := d̃s, β2 := d̃t, β3 = −d̃s − d̃t .

Exercise 5.11. Show that β1 ∧ β2 ̸= 0, except at the complex points of 6. In
particular, β1 vanishes at x ∈6 if and only if β2 vanishes at x .

Exercise 5.12. Suppose that β1, β2, viewed as sections of T ∗6, are transverse to
the 0-section. Show that at each complex point x ∈6, the indices of the vanishing
of β1 and β2 at x agree.

Exercise 5.13. Show that βλ extends to a 1-form on the handlebody Hλ of the
trisection such that ker(βλ) is the field of J -complex tangencies along Hλ.

Choose vector fields {v1, v2} on 6 such that

β1(v1)= 0, β2(v1)= β1(v2)≥ 0, β2(v2)= 0

and set v3 = −v1 −v2 ∈ ker(β3). Since vλ ∈ ker(βλ), we can extend vλ to a section
of ξλ over Hλ.

For notational purposes, let νλ be a normal vector fields to Hλ such that near 6,
we have

u1 = ∂s, u2 = ∂t , u3 = −∂s − ∂t .
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Exercise 5.14. Show that the pairs

{u1, v1}, {u2, v2}, {u3, v3}

determine the same section of det(T X, J ) over 6.

Proposition 5.15. Let J be an almost-complex structure on the spine of a trisection
T of X. Choose vector fields {vλ ⊂ ξλ} as above and let τλ = v−1

λ (0). The 1-complex

CJ = τ1 ∪ τ2 ∪ τ3

is the intersection of PD(c1(J )) with the spine of the trisection T .

Proof. The bivector uλ ∧ vλ determines a section of the determinant line bundle
over Hλ. The vector uλ is everywhere normal to Hλ and nonvanishing, while vλ
is tangent and vanishes along τλ. By the previous exercise, we obtain a section
of the determinant bundle on the entire spine that vanishes precisely along the
1-complex CJ . □

6. SpinC-structures

A standard interpretation of a spin structure on a manifold X is a trivialization of T X
over the 1-skeleton that extends across the 2-skeleton. A similar interpretation of
SpinC-structures, due to Gompf, is an almost-complex structure over the 2-skeleton
that extends across the 3-skeleton.

6A. Handle decompositions. Every trisection T of X determines an inside-out
handle decomposition as follows.

(1) Start with a neighborhood ν(6) of the central surface. This is diffeomorphic to
6× D2 and can be built in the standard way using a 0-handle, 2g 1-handles, and a
2-handle. The boundary of this neighborhood is 6× S1.

(2) Next, attach a neighborhood ν(Hλ) of each 3-dimensional piece of the trisection.
The solid handlebody Hλ is built from a single 3-dimensional 0-handle and g 3-
dimensional 1-handles. Upside-down, this becomes g 2-handles and a single
3-handle. Fix some distinct angular points θ1, θ2, θ3 ∈ S1 in positive cyclic order.
Then attaching ν(Hλ) is equivalent to the following. Attach g 2-handles along a
cut system of curves on 6 × {θλ} with surface framing. After this surgery, the
surface 6× {θλ} is now an essential 2-sphere and the 4-dimensional 3-handle is
attached along this 2-sphere. The resulting boundary of the 4-manifold has three
components Y1, Y2, Y3 with Y3 ∼= #ki S1

× S2.

(3) Last, attach the 4-dimensional sectors. These are 4-dimensional 1-handlebodies;
upside-down they consist of ki 3-handles and a single 4-handle. The 3-handles are
attached along the essential spheres in #ki S1

× S2. The resulting boundary is three
copies of S3, which is where the 4-handles are attached.
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The outside-in handle decomposition determined by T is the handle decomposi-
tion obtained by turning the inside-out handle decomposition upside-down.

6B. Spin structures. A standard interpretation of a spin structure on a manifold X
is a trivialization of T X over the 1-skeleton that extends across the 2-skeleton. Now,
consider the inside-out handle decomposition of X determined by a trisection T . The
1-skeleton of X is contained in the 1-skeleton of ν(6). Thus, every spin structure
of X restricts to a spin structure on ν(6); moreover, since spin structures are stable,
every spin structure of X restricts to a spin structure on the central surface 6.

Recall that there exist two spin structures on S1 and exactly one extends across D2.
The spin structures on a closed, oriented surface 6 are classified by maps

q : H1(6; Z/2Z)→ Z/2,

where q(γ )= 0 if the spin structure, restricted to a curve representing γ , is the spin
structure that extends across the disk. This map is a quadratic enhancement of the
intersection form on H1(6); in particular, it satisfies the relation

q(x + y)= q(x)+ q(y)+ ⟨x, y⟩ mod 2. (1)

Let α = {αi } be a cut system of curves on 6. We say that q(α) = 0 if q(αi ) = 0
for every αi ∈ α. Note that by the relation in (1), if q(α) = 0, then for every cut
system α′ obtained by handlesliding some curves in α, we also have q(α′)= 0.

Proposition 6.1. Let T be a trisection of X with trisection diagram (6,α,β, γ ).
Then X admits a spin structure if and only if there exists a quadratic enhancement
q : H1(6; Z/2Z)→ Z/2Z such that

q(α)= q(β)= q(γ )= 0.

Moreover, the set of spin structures is in one-to-one correspondence with such
quadratic enhancements.

Proof. Each q corresponds to a spin structure on 6 and therefore a trivialization
of T X over its 1-skeleton. In the inside-out handle decomposition, we have 3g + 1
2-handles. One 2-handle corresponds to the 2-handle of 6; by assumption the
trivialization extends over this handle. The remaining 2-handles are attached along
the curves of α,β, γ with surface framing. Consequently, the trivialization of T X
extends across such a handle if and only if the spin structure, restricted to the
attaching circle, is the spin structure on S1 that extends across the disk. □

6C. Lutz twists. A Lutz twist is a method for modifying a 2-plane field ξ along an
embedded curve γ .

Fix a metric and orthonormal framing of T Hλ. Let ξ be a 2-plane field on Hλ.
Then ξ determines a map ψ : Hλ → S2, by sending the unit normal vector to ξ to its
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direction in R3 using the framing of T Hλ. Now let γ be an embedded curve in Hλ.
The image ψ(γ ) is a closed loop S2, which is contractible and therefore this path is
homotopic to a constant path at the north pole. Consequently, we can homotope ξ
and assume that ψ(γ ) is the constant map to the north pole. Geometrically, this
means that tangent vector γ ′ is perpendicular to ξ at every point along γ .

Definition 6.2. A Lutz twist of ξ consists of the following operation. Choose a
framed neighborhood of γ , with coordinates (r, θ, t). Assume that ξ = ker(dt).
Now, choose smooth functions f, g such that

(1) f : [0, 2ϵ] → R is identically 0 near the endpoints and nonnegative,

(2) g : [0, 2ϵ] → R is increasing, identically −1 near 0, identically 0 near ϵ, and
identically 1 near 2ϵ.

Replace ξ with
ξ̂ = ker(gdt + f dθ).

Exercise 6.3. (1) Show that applying two Lutz twists along γ is homotopic to the
identity.

(2) We have described a left-handed Lutz twist; i.e., the planes make a single
left-handed turn along every diameter of the normal disk to γ . We could
alternatively do a right-handed Lutz twist by choosing f to be nonpositive.
Show that left-handed and right-handed Lutz twists result in homotopic plane
fields.

A Lutz twist changes the relative Euler class of the plane field ξλ. Let τ denote
a fixed trivialization of ξλ along 6 and define the relative Euler class e(ξλ, τ ) ∈

H 2(Hλ, 6)∼= H1(Hλ).

Lemma 6.4. For a Lutz twist along γ , the relative Euler classes satisfy

e(ξ, τ )− e(̂ξ , τ )= 2[γ ] ∈ H1(Hλ).

Proof. We can extend τ to a framing that is {∂r , ∂θ } in a tubular neighborhood of γ .
This framing must vanish along γ and so e(ξλ, τ )= A +[γ ] for some A ∈ H1(Hλ).
However, after the Lutz twist, we can use the same framing, which still vanishes
along γ , except with opposite sign. Thus e(ξ̂λ, τ )= A − [γ ]. □

6D. Action of H2(X; Z). The set of SpinC-structures on X is an affine copy of
H 2(X; Z). This means that H 2(X; Z) acts freely and transitively on the set of SpinC-
structures. That is, given a SpinC-structure s and some nonzero A ∈ H 2(X; Z),
there is a distinct SpinC-structure s′

= s+ A. Furthermore, the first Chern classes
satisfy

c1(s+ A)= c1(s)+ 2A.
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To describe the action of H 2(X; Z) on the set of SpinC-structures, we interpret
H 2(X) by dualizing the complex in Proposition 2.7. This is a complex

0 → H1(6)→

⊕
λ

H1(Hλ)→

⊕
λ

H1(Zλ)→ 0

whose middle homology group is isomorphic to H 2(X; Z). In particular, it consists
of triples (a, b, c) ∈

⊕
λ H1(Hλ) such that

a − b = 0 ∈ H1(Z1), b − c = 0 ∈ H1(Z2), c − a = 0 ∈ H1(Z3)

modulo the image of H1(6).
In order to move from almost-complex structures to SpinC-structures, we need

the following facts.

Lemma 6.5. Let X be a closed 4-manifold with a handle decomposition. Let J
be an almost-complex structure on the 2-skeleton X2 and let ξ be the field of J -
tangencies along the boundary Y2 := ∂X2. In particular, ξ is the 2-plane field
T Y2 ∩ J (T Y2). Then J extends across a 3-handle attached along a 2-sphere S ⊂ Y2

if and only if ⟨e(ξ), [S]⟩ = 0.

Proof. One direction is obvious: if a 3-handle is attached along S then [S] = 0 in
H2(X; Z). Thus ⟨e(ξ), [S]⟩ = ⟨c1(J ), [S]⟩ = 0.

Conversely, suppose that ⟨e(ξ), [S]⟩ = 0. There is a homotopy {ξt } of 2-plane
fields from ξ = ξ0 to ξ1 such that ξ1 is the standard, negative tight contact structure
in a neighborhood of S. There is an almost-complex structure J on Y ×[0, 1] whose
restriction to Y × {t} is precisely ξt .

Finally, we can attach a 3-handle by turning a Stein 1-handle upside-down. A
1-handle addition is cobordism from S0

× B3 to B1
× S2; when S0

× B3 has the
standard tight contact structure, the almost-complex structure can be extended
across the cobordism and induces the standard tight (positive) contact structure on
B1

× S2. Turning this upside-down, the induced contact structure is negative on the
neighborhood of S2. Therefore, the almost-complex structure extends across the
3-handle. □

Choose a thickening of the spine and let {Ŷλ} denote its boundary components.
If J is an almost-complex structure on the spine, let {̂ξλ} denote the fields of
J -complex tangencies.

Corollary 6.6. An almost-complex structure J on the spine of the trisection T
of X is a SpinC-structure if and only if the plane field ξ̂λ satisfies e(̂ξλ)= 0 for all
λ= 1, 2, 3.

We can now define the action of H 2(X; Z) on a SpinC-structure s.
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(1) We can view s as an almost-complex structure on the spine such that the Euler
classes e(̂ξλ) all vanish.

(2) Given A ∈ H 2(X; Z), represent it by a triple (a, b, c) in
⊕

λ H1(Hλ). We can
represent each element a, b, c, by an embedded collection of curves {γλ ⊂ Hλ}.

(3) Modify J by a Lutz twist on every component of γλ for λ= 1, 2, 3.

Exercise 6.7. Show that after the Lutz twists, we still have that e(̂ξλ)= 0 for each
λ= 1, 2, 3.

Consequently, the resulting almost-complex structure also extends across the
3-handles and determines a SpinC-structure.

Exercise 6.8. Show that modifying a SpinC-structure s by the Lutz twist along
A ∼ (a, b, c), the first Chern classes satisfy

c1(s+ A)= c1(s)+ 2A.

[Hint: how does the Lutz twist affect the 1-complex CJ from Proposition 5.15?]
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