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We observe that quantum Hochschild homology is a composition of two familiar
operations, and give a short proof that it gives an invariant of annular links, in
some generality. Much of this is implicit in Beliakova, Putyra and Wehrli’s work.

Beliakova, Putyra and Wehrli studied various kinds of traces, in relation to
annular Khovanov homology [2]. In particular, to a graded algebra and a graded
bimodule over it, they associate a quantum Hochschild homology of the algebra
with coefficients in the bimodule, and use this to obtain a deformation of the annular
Khovanov homology of a link. A spectral refinement of the resulting invariant was
recently given by Akhmechet, Krushkal and Willis [1].

Before giving our reformulation, we recall Beliakova, Putyra, and Wehrli’s
definition.

Definition 1 [2, Section 3.8.5]. Let A be a graded ring, M a chain complex of
graded A-bimodules (so M is bigraded), and q ∈ A an invertible central element
with grading 0. The quantum Hochschild complex of A with coefficients in M and
parameter q has chain groups qCHn(A; M) = M ⊗Z A⊗Zn and differential

∂(m⊗a1⊗· · ·⊗an)=ma1⊗a2⊗· · ·⊗an+

n−1∑
i=1

(−1)i m⊗a1⊗· · ·⊗ai ai+1⊗· · ·⊗an

+(−1)nq−|an |anm ⊗ a1 ⊗ · · · ⊗ an−1.

The homology of this complex is the quantum Hochschild homology qHH•(A; M)

of A with coefficients in M and parameter q.
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The goal of this note is to reformulate this operation and deduce that it often
leads to annular link invariants. The data of A and q specifies a ring homomorphism
fq : A → A defined on homogeneous elements a of A by

fq(a) = q−|a|a,

where |a| denotes the grading of a. We can twist the left action on the A-bimodule M
by fq to obtain a new bimodule fq M which is equal to M as a right A-module and
has left action given by the composition A ⊗Z fq M fq⊗I

−−→ A ⊗Z M m
−→ M = fq M.

This operation is a special case of tensor product:

fq M ∼= fq A ⊗A M

(compare [2, Section 3.8.3]).
Our first observation is:

Proposition 2. The quantum Hochschild homology of A with coefficients in M is
isomorphic to the ordinary Hochschild homology of A with coefficients in fq M.

Proof. This is immediate from the definitions. □

Call a chain complex of graded A-bimodules M weakly central if for any graded
A-bimodule N there is a quasi-isomorphism M ⊗

L
A N ≃ N ⊗

L
A M.

Lemma 3. The bimodule fq A is weakly central.

Proof. The isomorphism M ⊗A fq A → fq A ⊗ M sends m to q−|m|m. □

We turn next to annular link invariants. Consider the category Tan with one
object for each even integer and Hom(2m, 2n) given by the set of isotopy classes
of (2m, 2n)-tangles (embedded in D2

×[0, 1]). Given a (graded) algebra A, a very
weak action of Tan on the category of A-modules is a choice of quasi-isomorphism
class of chain complex of (graded) A-bimodules C(T ) for each T ∈ Hom(2m, 2n)

so that C(T2 ◦ T1) is quasi-isomorphic to C(T2) ⊗
L
A C(T1). For example, if we

take A to be the direct sum of the Khovanov arc algebras [4] then Khovanov defined
a very weak action of Tan on AMod, and if we define A to be the direct sum of the
Chen–Khovanov algebras [3] then Chen and Khovanov defined a very weak action
of Tan on AMod. (In fact, in both cases, they did more; cf. Remark 6.)

Any (2n, 2n)-tangle T ⊂ D2
× [0, 1] has an annular closure in D2

× S1.

Proposition 4. Fix a very weak action of Tan on AMod and fix a weakly cen-
tral A-bimodule P. Then, for any (2n, 2n)-tangle T, the isomorphism class of
HH∗(A; C(T ) ⊗

L
A P) is an invariant of the annular closure of T.

(Compare [2, Corollary 3.23].)
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Proof. This is immediate from the definitions and the trace property of Hochschild
homology, i.e., that, given A-bimodules M and N,

HH∗(A; M ⊗
L
A N ) ∼= HH∗(A; N ⊗

L
A M). □

The following is part of Beliakova, Putyra and Wehrli’s Theorem B [2]:

Corollary 5. Up to isomorphism, the quantum Hochschild homology of the Chen–
Khovanov bimodule associated to a (2n, 2n)-tangle T is an invariant of the annular
closure of T.

Proof. This is immediate from Lemma 3, Proposition 4, and the fact that the Chen–
Khovanov bimodules induce a very weak action of Tan [3]. □

Remark 6. To keep this note short, we have not discussed functoriality of these
annular link invariants under annular cobordisms. To do so, one replaces Tan by an
appropriate 2-category of tangles and weak centrality by a notion keeping track of
the isomorphisms. See Beliakova, Putyra and Wehrli [2] for further discussion.
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This volume is a proceedings of the 2020 BIRS workshop Interactions of gauge theory with
contact and symplectic topology in dimensions 3 and 4. This was the 6th iteration of a
recurring workshop held in Banff. Regrettably, the workshop was not held onsite but was
instead an online (Zoom) gathering as a result of the Covid-19 pandemic. However, one
benefit of the online format was that the participant list could be expanded beyond the usual
strict limit of 42 individuals. It seemed to be also fitting, given the altered circumstances
and larger than usual list of participants, to take the opportunity to put together a conference
proceedings.

The result is this volume, which features papers showcasing research from participants at the
6th (or earlier) Interactions workshops. As the title suggests, the emphasis is on research
in gauge theory, contact and symplectic topology, and in low-dimensional topology. The
volume contains 16 refereed papers, and it is representative of the many excellent talks and
fascinating results presented at the Interactions workshops over the years since its inception
in 2007.
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