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We consider the canonical contact structures on links of rational surface singular-
ities with reduced fundamental cycle. These singularities can be characterized by
their resolution graphs: the graph is a tree, and the weight of each vertex is no
greater than its negative valency. The contact links are given by the boundaries
of the corresponding plumbings. In a joint work with L. Starkston, we have
previously shown that if the weight of each vertex in the graph is at most −5, the
contact structure has a unique symplectic filling (up to symplectic deformation and
blow-up); the proof was based on a symplectic analog of de Jong and van Straten’s
description of smoothings of these singularities. Here, we give a short self-
contained proof of the uniqueness of fillings, via analysis of positive monodromy
factorizations for planar open books supporting these contact structures.

1. Introduction

In this note, we consider links of complex surface singularities, equipped with their
canonical contact structures. Let X ⊂ CN be a singular complex surface with an
isolated singularity at the origin. For small r > 0, the intersection Y = X ∩ S2N−1

r
with the sphere S2N−1

r = {|z1|
2
+ |z2|

2
+ · · · + |zN |

2
= r} is a smooth 3-manifold

called the link of the singularity (X, 0). The induced contact structure ξ on Y is
the distribution of complex tangencies to Y, and is referred to as the canonical or
Milnor fillable contact structure on the link. The contact manifold (Y, ξ), which we
will call the contact link, is independent of the choice of r , up to contactomorphism.

Our main result, Theorem 1, states that for a certain class of singularities, the
canonical contact structure on the link has a unique symplectic filling (up to blow-up
and symplectic deformation). This theorem was originally proved in [23]; here, we
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will give a new proof, from a different perspective. The sufficient condition will be
stated in terms of the dual resolution graph of the singularity. Recall that for a normal
surface singularity (X, 0), this graph is defined as follows. Consider a resolution
of the singularity, i.e., a proper birational morphism π : X̃ → X such that X̃ is
smooth. We can assume that the exceptional divisor π−1(0) has normal crossings.
This means that π−1(0) =

⋃
v∈G Ev, where the irreducible components Ev are

smooth complex curves that intersect transversally at double points only. The
(dual) resolution graph encodes the topology of the resolution: the vertices E ∈ G
correspond to the exceptional curves and are weighted by the self-intersection E · E
of the corresponding curve, while the edges of G record intersections of different
irreducible components. Up to contactomorphism, the link of the singularity with
its canonical contact structure can be reconstructed from the graph G and the data of
self-intersections and genera of exceptional curves, as the boundary of the plumbing
of symplectic disk bundles over surfaces according to G.

In this paper, we only work with rational singularities; then G is always a tree,
and each exceptional curve has genus 0. The following assumption plays the key
role in this paper: for every exceptional curve E , we require that the self-intersection
E · E and the valency a(E) of the corresponding vertex in G satisfy the inequality

a(E) ≤ −E · E . (1)

Plumbing graphs with this property are sometimes referred to as “graphs with
no bad vertices” in low-dimensional topology; a bad vertex, by definition, has
valency greater than its negative weight. (The boundary of the corresponding
plumbing is a Heegaard Floer L-space [21].) If the dual resolution graph is a tree
with the above property, (X, 0) is a rational singularity with reduced fundamen-
tal cycle. In the literature, singularities of this type are also known as minimal
singularities [13].

We will give a direct new proof of the following theorem, first established in [23]:

Theorem 1 [23]. Suppose that (X, 0) is a rational surface singularity with reduced
fundamental cycle, and assume additionally that every exceptional curve in its
resolution has self-intersection at most −5. Then the contact link (Y, ξ) of (X, 0)

has a unique minimal weak symplectic filling, which is Stein.

In the special case where the resolution graph is star-shaped with three legs, this
fact is proved in [5, Theorem 2.7, Remark 2.8], by a different method.

Symplectic and Stein fillings of links of surface singularities are of interest
because of the connection to algebrogeometric questions, namely to the smoothings
of the singularity. The Milnor fiber of each smoothing of (X, 0) gives a Stein filling
of its link (Y, ξ); another Stein filling can be provided by the minimal resolution of
the singularity, after deforming the symplectic form. (Rational surface singularities
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are always smoothable, with an “Artin smoothing component” whose Milnor fiber
gives the same Stein filling as the resolution. In particular, for the singularities
in Theorem 1, the filling can be viewed as the resolution or as the Milnor fiber
for the Artin smoothing.) An important question is whether all Stein fillings of
a given surface singularity arise in this way [16]. Although this correspondence
breaks down when the singularity is sufficiently complicated [1; 2; 23], the answer
is positive for certain simple classes of singularities. Namely, all Stein fillings come
from Milnor fibers or the minimal resolution for (S3, ξstd) [6], for links of simple
and simple elliptic singularities [19; 20], for lens spaces (links of cyclic quotient
singularities) [15; 17], and in general for quotient singularities [4; 22]. Theorem 1
significantly extends this list.

Our interest in the question of Theorem 1 was motivated by a (very special
case of) a conjecture of Kollár on deformations of rational surface singularities [14].
The conjecture asserts that every exceptional curve has self-intersection at most −5
in the resolution of a rational singularity, then the base space of a semiuniversal
deformation of this singularity has a unique component. For the case of rational
singularities with reduced fundamental cycle, the conjecture was established by
de Jong and van Straten [12]; in particular, it follows that under the hypotheses of
Theorem 1, the singularity has a unique smoothing component. Our Theorem 1
gives the symplectic analog of this statement.

The proof we gave in [23] comes as a side product of the theory developed in
that article, where we describe symplectic fillings of the corresponding class of
singularities via a symplectic analog of de Jong and van Straten’s construction.
Fillings are encoded by certain configurations of symplectic disks in C2; we were
then able to apply a lemma of de Jong and van Straten to establish “combinatorial
uniqueness” of the corresponding disk arrangements, and then finish the argument
via topological considerations.

In this paper, we will instead give a direct proof of Theorem 1, working with open
book factorizations. As a corollary, we get a symplectic proof that all smoothings
of the corresponding singularity are diffeomorphic. We will assume that the reader
is familiar with the basics of open book decompositions for contact 3-manifolds;
see [7] for a survey. Under the hypotheses of the theorem, the canonical contact
structures on the links of singularities admit planar open books. (This follows from a
construction of Gay and Mark [10]; see Section 2. Planarity was also a key ingredient
that allowed us to build an analog of the de Jong–van Straten theory in [23].) In
the planar case, symplectic fillings can be studied via theorems of Wendl and
Niederkruger [18; 25]: every minimal symplectic filling is symplectic deformation
equivalent to a Lefschetz fibration over a disk with the same planar fiber P. The
classification of fillings then reduces to enumerating positive factorizations of the
monodromy of the given open book.
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In general, finding all positive factorizations of the monodromy is a daunting
task, even in the planar case. The question is much easier if one only seeks to
determine the image of the Dehn twists of the factorization in the abelianization of
the mapping class group of the page. This is equivalent to finding the homology
classes of the curves about which the Dehn twists are performed; we also disregard
the order of the twists. This easier question can be studied by counting how many
times the Dehn twists enclose each hole in the planar page, and how many times
they enclose each pair of holes. (The planar page is a disk with holes, and we
say that a simple closed curve in a disk with holes encloses a hole if the curve
separates the hole from the outer boundary component of the disk.) If P is planar,
any two factorizations of the boundary-fixing monodromy φ : P → P can be
connected by a sequence of lantern relations, and it follows that the number of
Dehn twists enclosing a given hole (or a given pair of holes) is independent of the
factorization of φ. Thus, we can introduce the multiplicity m(v) of a hole v with
respect to the monodromy φ, and similarly the joint multiplicity m(v1, v2) of a pair
of holes v1, v2. Knowing these multiplicities, one can attempt to describe possible
other factorizations of φ, by examining the combinatorics of how the Dehn twists
can enclose the holes. This method was introduced in [24] to classify fillings of
certain lens spaces.

Once we understand the Dehn twists in the factorization at the level of homology
classes of the curves, additional information is needed to find the isotopy classes of
the curves. In the case at hand, this step is possible because the given monodromy
admits a positive factorization into Dehn twists about disjoint curves.

In [23], the combinatorial part of the proof was based on the description of
fillings via a symplectic analog of the de Jong–van Straten construction. We then
used the result of [12] asserting uniqueness of a combinatorial solution for a certain
curve arrangement problem. For the second part of the proof, we gave a direct
mapping class argument. The purpose of the note is to give a direct multiplicity-
count argument for the first part; see Lemma 2. For the second part, we essentially
repeat the reasoning from [23]; this argument, based on right-veering properties, is
given in Lemma 3 for completeness.

It is interesting to note that our direct argument for the combinatorics of Dehn
twists follows the strategy of [12, Theorem 6.23]: we translate their proof from the
incidence matrices to multiplicities of holes, and provide some extra details where
needed.

2. Proof of Theorem 1

To begin, we recall the construction of the open books supporting the canonical
contact structures for the class of singularities that satisfy (1) [10, Theorem 1.1].
Starting with the plumbing graph G, the construction given by Gay and Mark
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Figure 1. The Gay–Mark open book supporting the canonical contact
structure on the link of the singularity with dual resolution graph shown
on the right. The page of the open book has genus 0 and is constructed
from the spheres with holes corresponding to the vertices of the graph.
Each sphere is connected to the other spheres by necks that correspond
to the edges; the total number of holes and necks for each sphere equals
the negative self-intersection of the vertex. The monodromy is the
product of the positive Dehn twists about the boundaries of the holes
and the meridians of the necks; these curves are shown in red.

produces a planar Lefschetz fibration compatible with the symplectic resolution
of a rational singularity (X, 0) with reduced fundamental cycle. (The symplectic
structure on the plumbing can be deformed to the corresponding Stein structure.)
We describe the induced planar open book on the link (Y, ξ). To construct the
page of the Gay–Mark open book, take a sphere SE for each vertex E ∈ G and cut
−a(E) − E · E ≥ 0 disks out of this sphere. (As before, a(E) is the valency of the
vertex E ; the number of disks is nonnegative by (1).) Next, make a connected sum
of these spheres with holes by adding a connected sum neck for each edge of G. For
a sphere SE corresponding to the vertex E , the number of necks equals the number
of edges adjacent to E , i.e., its valency a(E). The resulting surface S has genus 0
because G is a tree. See Figure 1 for an example. The open book monodromy is
given by the product of positive Dehn twists around each of the holes and around
the meridians of the necks. We will call this product the standard factorization of
the Gay–Mark monodromy.

To examine positive factorizations of this open book, we first we put the resolution
graph in the following special form, as in [12]. We choose the vertices E1, E2, . . . Ek

and partition the remaining vertices into subsets R2, . . . , Rk as shown in Figure 2,
so that for any vertex F ∈ Rj , the length l(E j , F) of the chain from F to E j satisfies
l(E j , F)≤ j −1. Here, the length of chain means the number of edges; for example,
the statement means that every vertex in R2 is directly connected to E2 by a single
edge. This can always be achieved via the following procedure. We choose E1

to be the endpoint of a longest chain C in the graph; then E1 is necessarily a leaf
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.

E1 E2 E3 E4

R2

R3
R4

Figure 2. A graph with conveniently arranged vertices: after re-
moving E1, E2, . . ., the remaining vertices are partitioned into
subsets R2, R3, . . . . Every vertex in the set Rj connects to the
vertex E j by a chain with fewer than j edges.

vertex of G. Let E2 be its adjacent vertex, and let E3 be the vertex on the chain C
that is adjacent to E2. Removing E2 from G, we get one connected component
consisting of E1, another that contains E3, and possibly a number of other vertices
in the remaining components. Let R2 be the set of these remaining vertices. Each
vertex F ∈ R2 must be a leaf vertex connected to E2 (otherwise we can build a
chain longer than C by going to R2 instead of E1); thus the condition l(E2, F) ≤ 1
is satisfied. If E3 is a leaf vertex, it can be included in R2, and the procedure is over.
If E3 is not a leaf vertex, and every other vertex in G \ (E1 ∪ R2) is connected to E3

by a path of at most 2 edges, then all remaining vertices can be included in E3.
Otherwise we consider the vertex E4 preceding E3 on the path C . Removing E3,
we set aside the two components of G \ E3 that contain E1 resp. E4 and let E3

be the set of all remaining vertices. Again, since no chain in the graph G can
be longer than C , every vertex F ∈ R3 must be connected to E3 by a path of no
more than 2 edges, satisfying l(F, E3) ≤ 2. We continue this process to define
E5, R4, etc., stopping when we reach k such that all the remaining vertices in G can
be connected to Ek by a path no longer than (k − 1) edges, and thus placed in Rk .
See Figure 2. We will say that vertices of the graph are conveniently arranged if
they are partitioned into subsets as above.

For the resolution graph G with conveniently arranged vertices, we build the
Gay–Mark open book as in Figure 1. We will identify the planar page of this open
book with a disk with holes, so that the outer boundary of the disk corresponds to
the boundary of one of the holes associated to the vertex E1. This identification
and the choice of the outer boundary component of the disk will be fixed from now
on, for the statement and the proof of Lemma 2. In the standard factorization of
the Gay–Mark monodromy, there is a sequence of the Dehn twists D1, D2, . . . , Dk

around a nested collection of curves γ1, . . . , γk , such that
(i) D1 is the twist around the outer boundary component γ1 of the page, and

therefore D1 encloses all the holes;
(ii) Dj is the twist around the neck γj between E j−1 and E j for j =2, . . . , k, so that

Dj encloses all the holes corresponding to E j , Rj , E j+1, R j+1, . . . , Ek, Rk .
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k
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k
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Figure 3. Property F1 (left) and Property F2 (right) for a chosen
subset of holes v1

1, v
2
1, v

3
1, . . . v

1
k , v

2
k , v

3
k and the Dehn twists that

enclose them in a factorization. Note that we only require that the
homology classes of the curves are as schematically shown; isotopy
classes may look different from the picture.

The curves {γj }
k
j=1 cut the disk page into annular domains {Vj }

k−1
j=1 such that Vj is

bounded by γj , γ j+1 for j = 1, . . . , k − 1, and a disk Vk bounded by γk . It follows
that the joint multiplicity of any two holes from Vj is at least j. In the Gay–Mark
construction, the holes from Vj are associated to vertices E j , Rj of the graph G.

We now make a choice of a certain ordered subset of holes in the page. Because
the valency of E1 is one, and the self-intersection E1 · E1 is at most −5, the
corresponding annular domain V1 contains −E1 · E1 − 2 ≥ 3 holes. We label three
of these holes as v1

1 , v2
1 , v3

1 . Next, again because self-intersections of vertices are
at most −5, we can pick three holes v1

2, v
2
2, v

3
2 in the domain V2. We require that

v1
2, v

2
2, v

3
2 satisfy an additional condition m(vr

2, v
s
2) = 2: if R2 is nonempty, we

make sure that no two holes are in the same branch of R2 to avoid higher joint
multiplicities. For j = 3, . . . k, we proceed to pick v1

j , v
2
j , v

3
j in the domain Vj ,

choosing different branches of Rj if Rj is nonempty, so that m(vr
j , v

s
j ) = j for any

pair of indices r, s = 1, 2, 3. By construction, we have
m(vr

i , v
s
j ) = min(i, j) (2)

for any two chosen holes vr
i , v

s
j .

The choice of the holes v1
1, v

2
1, v

3
1, . . . , v

1
k , v

2
k , v

3
k will be fixed. By construction,

the standard factorization of the Gay–Mark open book satisfies the following:

Property F1. The factorization includes Dehn twists D1, . . . , Dk such that

• the Dehn twist Dj encloses the holes v1
i , v

2
i , v

3
i for all i ≥ j.

This is illustrated in Figure 3. Note that we have only listed the Dehn twists that
correspond to the edges of the chain E1, . . . , Ek . The Dehn twists that correspond
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to edges the sets Rj are not listed above; for each Rj , the corresponding Dehn
twists enclose holes in the domain Vj . While these Dehn twists may be nested, the
hypothesis that chains of edges in Rj connecting to E j have length at most j − 1
gives a bound on a number of twists enclosing any hole w in Vj in the standard
factorization: there are at most j nested Dehn twists inside Vj (including the Dehn
twist around the boundary of w), in addition to D1, . . . , Dj . This means that in φ,
the multiplicity of the hole w is at most 2 j.

For an inductive step in our proof, we will consider graphs G satisfying a weaker
hypothesis: when the vertices of G are conveniently arranged, we require that
the self-intersection Ek · Ek be less than or equal to −4, whereas E · E ≤ −5 for
every other vertex E ∈ G. Note that in the case where Ek · Ek = −4, we can still
choose a labeled collection of holes v1

1, v
2
1, v

3
1, . . . , v

1
k , v

2
k , v

3
k as above. Because

Ek · Ek = −4, we can use the lantern relation to replace the product of Dk and three
other Dehn twists (around holes or necks in the sphere corresponding to Ek) by
three Dehn twists D1

k , D2
k , D3

k . For this new factorization, we have:

Property F2. The factorization includes Dehn twists D1, . . . , Dk−1, D1
k , D2

k , D3
k

such that:

• Dj encloses the holes v1
i , v

2
i , v

3
i for all i ≥ j, for each for each j = 1, . . . , k−1.

• D1
k encloses v2

k , v
3
k but not v1

k .

• D2
k encloses v1

k , v
3
k but not v2

k .

• D3
k encloses v1

k , v
2
k but not v3

k .

Under the hypotheses of the following lemma, we will show that an arbitrary
factorization of the monodromy of the Gay–Mark open book must have Property F1
or Property F2. This will be a step in the argument showing that any monodromy
factorization must be standard if the self-intersection of each vertex of G is at
most −5.

Lemma 2. Suppose that the vertices of the graph G are conveniently arranged,
with distinguished vertices E1, E2, . . . , Ek , and the corresponding sets R2, . . . , Rk .
Assume that the self-intersections of all vertices in the graph are at most −5, except
possibly Ek , which has self-intersection at most −4. Suppose also that there is a
collection of holes {v1

j , v
2
j , v

3
j }

k
j=1, chosen as above. Then:

(1) If Ek · Ek = −4, then every monodromy factorization includes

(a) the Dehn twist around the outer boundary component of the page,
(b) a collection of Dehn twists (containing the twist around the outer boundary)

that has Property F1 or Property F2.

(2) If Ek · Ek ≤ −5, then every monodromy factorization is homologically equiva-
lent to the standard one.
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Proof. We will build an inductive argument, with double induction on k and the
number of vertices in the graph.

The base of induction is given by k = 1 and k = 2. The case of k = 1 corresponds
to lens spaces and was treated in [24]. (This is an easy exercise on computing
multiplicities.) The case k = 2 is straightforward but more tedious; we check it
after explaining the induction step.

For now, assume that k ≥ 2, and that the statement of the lemma is established
for all graphs where the chain of distinguished vertices E1, E2, . . . has length at
most k. Consider the graph G with convenienly arranged vertices with a longer chain
E1, . . . , Ek+1, and the remaining vertices partitioned into the sets R2, . . . , Rk+1.
Take a new graph G ′, obtained from G by removing all vertices of Rk+1 and Ek+1,
increasing by 1 the self-intersection of Ek , and keeping the same self-intersection
for all other vertices. The Gay–Mark open books (P, φ) and (P ′, φ′), representing,
respectively, the contact links of singularities with graphs G and G ′, are related as
follows. To obtain the page P ′ from P, we cap off all the holes in P associated to
Ek+1 and Rk+1; the boundary-fixing diffeomorphism φ then induces φ′. (Note that
Ek · Ek increases by 1 in the graph G ′ since the corresponding subsurface in the
page has fewer boundary components now: removing Ek+1, Rk+1 is the same as
pinching off the neck connecting the Ek-sphere to the Ek+1-sphere.)

Fix an arbitrary factorization 8 of the Gay–Mark open book for G. When the
holes in P are capped off to obtain P ′, 8 induces the factorization 8′ for the open
book (P ′, φ′). Since by assumption Ek · Ek ≤ −5 in G, the self-intersection of the
corresponding vertex is at most −4 in G ′. The induction hypothesis applies to the
graph G ′, and therefore, the conclusion of the lemma holds for the factorization 8′

of the monodromy φ′. In particular, there is a Dehn twist T ′
= T ′

1 around the
outer boundary component of P ′ in the factorization 8′, and moreover, there are
Dehn twists T ′

2, T ′

3, . . . , T ′

k−1, and T ′

k (or T ′

k,1, T ′

k,2, T ′

k,3) that have Property F1 (or,
respectively, Property F2). These Dehn twists must be induced by the corresponding
Dehn twists T = T1, T2, . . . , Tk−1 and Tk (or Tk,1, Tk,2, Tk,3) in the factorization 8

of φ : P → P.
To show that 8 has a Dehn twist around the outer boundary component of P,

we need to check that T encloses all the holes corresponding to Ek+1 and Rk+1

that were removed from P to obtain P ′; we already know that T encloses all the
holes that P inherits from P ′. For the sake of contradiction, let v = vs

k+1 be a hole
associated to Ek+1 or Rk+1, and suppose that it is not enclosed by T. First assume
that the factorization 8′ has property F1, so that the factorization 8 includes Dehn
twists T = T1, T2, . . . , Tk−1, Tk as above. We examine the multiplicities of the
selected holes. Because these multiplicities can be computed from the standard
factorization of φ : P → P, by (2) we know that the joint multiplicity m(v, vs

j ) = j
for i = 1, 2, 3 and j = 1, . . . , k.
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If T = T1 does not enclose v, the holes v and vs
j are enclosed together by at

most j − 1 of the Dehn twists T1, T2, . . . , Tk−1, Tk . Even if v is enclosed by all of
T2, . . . , Tk−1, Tk , it follows that there must be an additional Dehn twist τ s

j enclosing
both v and vs

j . Observe that the Dehn twists τ i
j must be all distinct (that is, τ s

j = τ r
i

only if i = j, r = s): the joint multiplicity m(vs
j , v

r
i ) of any two distinct holes vs

j , v
r
i

is already realized by T1, T2, . . . , Tk−1, Tk , so no additional Dehn twist can enclose
them both. It follows that the hole v must be enclosed by at least 3k distinct Dehn
twists τ 1

1 , τ 2
1 , τ 3

1 , . . . , τ 1
k , τ 2

k , τ 3
k in the factorization 8, in addition to k − 1 Dehn

twists T2, . . . , Tk−1, Tk . It is not hard to see that if v is not enclosed by some of the
twists among T2, . . . , Tk−1, Tk , then each missing twist will need to be replaced
by several individual twists to achieve m(v, vs

j ) = j. It follows that v is enclosed
by at least 3k + k − 1 = 4k − 1 twists. To obtain a contradiction, we compute the
multiplicity m(v) in the monodromy φ. The hole v is associated to Ek+1 or to some
vertex E in Rk+1; in the standard factorization of φ, it is enclosed by the small
twist around the hole v, by the outer boundary twist, as well as by the Dehn twists
corresponding to the edges in the chain in G from E1 to Ek+1 and then the chain
from Ek+1 to E , if the latter chain is present. Since E ∈ Rk+1, and by construction
the length of the chain from Ek+1 to any vertex in Rk+1 is at most k, we see that
m(v) ≤ 2k + 2. This is a contradiction since 2k + 2 < 4k − 1 for k ≥ 2.

Similar reasoning leads to the same conclusion in the case where the factor-
ization 8′ has Property F2 instead of Property F1. As above, we see that if v

is not enclosed by T = T1, there must be at least 3(k − 1) distinct Dehn twists
τ 1

1 , τ 2
1 , τ 3

1 , . . . , τ 1
k−1, τ

2
k−1, τ

3
k−1 in the factorization 8 to achieve m(v, vs

j ) = j for
j = 1, . . . , k − 1, s = 1, 2, 3. The holes v1

k , v
2
k , v

3
k need a bit more attention.

Indeed, when v is not enclosed by T = T1, there are at most k − 2 twists among
T2, . . . , Tk−1 enclosing v and vs

k for each s = 1, 2, 3. The joint multiplicity
m(v, vs

k) = k can be achieved if v is enclosed by all three twists Tk,1, Tk,2, Tk,3, in
addition to all of T2, . . . , Tk−1 and τ 1

1 , τ 2
1 , τ 3

1 , . . . , τ 1
k−1, τ

2
k−1, τ

3
k−1. This would give

m(v)≥ 3k+(k−1) as before. Another case is when one of the twists Tk,1, Tk,2, Tk,3

(say Tk,3) does not enclose v. In that case, two additional twists, distinct from all of
the above, enclosing, respectively, v and v1

k (but not v2
k or v3

k ) and v and v2
k (but not

v1
k or v3

k ), are needed (again for the reason of joint multiplicities). This would still
yield m(v)> 3k+(k−1). As in the case of Property F1, the multiplicity of v will be
even higher if v is not enclosed by some of the twists among T2, . . . , Tk−1, Tk . As
above, we get a contradiction since m(v) ≤ 2k + 2, as computed from the standard
factorization of 8.

At this point, we have shown that the Gay–Mark open book for the resolution
graph G must have an outer boundary twist T in any factorization 8, assuming
that the smaller graph G ′ satisfies the conclusion of the lemma. To prove the other
statements of the lemma for G, we will now reduce to a different smaller graph G̃.
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In the page P, consider all the holes associated to the vertex E1 ∈ G. We know
that these holes have joint multiplicity 1 with any other hole in P, thus they cannot
be enclosed by any twists other than T that involve several holes. Since there is one
boundary Dehn twist δi around each of these holes in the standard factorization,
so that the multiplicity of each hole is 2, these boundary twists must be present
in 8 as well. It follows that the factorization 8 has the form 8 = T δ1δ2 · · · δm ◦ 8̃,
where 8̃ is supported in P̃ = P \ V1, the part of the page P associated to G \ E1.
Remove the vertex E1 and its connecting edge from the graph G, and consider the
resulting graph G̃, keeping the same self-intersections of vertices. Clearly, 8̃ gives
a factorization of the Gay–Mark open book associated to G̃. If self-intersections
of all vertices of G are at most −5, the same holds for G̃. The graph G̃ has fewer
vertices, so by the induction hypothesis, the factorization 8̃ must be standard. It
follows that the factorization 8 of the Gay–Mark open book for G is standard as
well, proving part (2) of the lemma.

To make the induction step work for part (1), assume that in G, the vertex Ek+1

has self-intersection at most −4, while all the other vertices have self-intersection
at most −5. When we remove E1 to form the graph G̃, the vertices of G̃ may no
longer be conveniently arranged; after vertices are rearranged, we need to have
the (−4) vertex at the appropriate position to apply the induction hypothesis. We
must rearrange the vertices of G̃ to have a chain Ẽ1, Ẽ2, . . . , with the other vertices
partitioned into the sets R̃1, R̃2, . . . , so that the length of any chain in E j , Rj is at
most j − 1. Consider the vertex E2 in G. If R2 is not empty in G, we can pick a
vertex of R2 to play the role Ẽ1 in G̃, let R̃2 be the remaining vertices of R2, and
set Ẽ2 = E2, Ẽ3 = E3, . . . , R̃3 = R3, R̃4 = R4, . . . . In this case, the (−4) vertex
Ek+1 in G becomes the vertex Ẽk+1 at the end of the chain Ẽ1, Ẽ2, . . . in G̃, as
required. If R2 is empty in G, we check if R3 has a chain of (maximum possible)
length 2. If so, we rearrange the vertices: let Ẽ3 = E3, pick Ẽ1 and Ẽ2 forming a
length 2 chain in R3 (with Ẽ1 being the leaf vertex). Let R̃2 consist of all vertices
other than Ẽ1, Ẽ3, and let R̃3 consist of all remaining vertices of R3, together with
the old vertex E2. For j ≥ 4, we have Ẽ j = E j , R̃j = Rj , so the (−4) vertex
remains in the right place for the graph G̃, which is now conveniently arranged.
See Figure 4. If there are no chains of length 2 in R3, we similarly examine R4

to see if there are chains of length 3. If so, we flip the graph to put this length 3
chain into the position of vertices Ẽ1, Ẽ2, Ẽ3, make the vertices E2, E3 and all of
R3 be part of the new set R4; the graph is now conveniently arranged, and the (−4)

vertex does not move. If there are no length 3 chains in R4, we look at R5, etc.
To summarize, the above procedure means that we can conveniently rearrange the
vertices of G̃ without moving the (−4) vertex whenever for some j = 2, . . . , k, the
set Rj in G has a chain of the maximum possible length j −1. If such a chain does
not exist, we check if Rk+1 has a chain of length k. If so, this chain will become the



280 OLGA PLAMENEVSKAYA

.

G

G̃

E1 E2 E3 E4 Ek+1

R3
R4

Rk+1

Ẽ1 Ẽ2 Ẽ3 Ẽ4 Ẽk+1

R̃2
R̃3

R̃4
R̃k+1

Figure 4. After removing the vertex E1 from G, we flip a chain in
the graph to make the new graph G̃ conveniently arranged, while
keeping in place the vertex Ek . The graph G is shown at the top,
the new graph G̃ at the bottom. The picture illustrates the situation
where R2 is empty, and we flip a length 2 chain in R3, together
with all the edges and vertices attached to this chain in R3. The
vertex E2 becomes part of the new set R̃3.

new chain Ẽ1, Ẽ2, . . . , the old vertices E2, . . . , Ek as well as the sets R2, . . . , Rk

will all be in R̃k+1, and the graph will be conveniently rearranged without moving
the (−4) vertex Ek+1 = Ẽk+1. Lastly, if each chain Rj , j = 2, . . . , k + 1 has
length at most j − 2 in G, we can set Ẽ1 = E2, Ẽ2 = E3, . . . , Ẽk = Ek+1 and
R̃2 = R3, . . . , R̃k = Rk+1, so that the graph G̃ will be conveniently arranged, and
the vertex Ẽk ∈ G̃ will have self-intersection −4.

With the rearrangement in place, part (1) follows by induction: if the factoriza-
tion 8 of the Gay–Mark open book for G has the form 8 = T δ1δ2 · · · δm ◦8̃, where
8̃ is the factorization of the Gay–Mark open book for G̃, and part (1) of the lemma
holds for 8̃, then clearly the same is true for 8.

We now return to the base of induction and check the case k = 2. In this case,
the graph is star-shaped with legs of length 1, with E2 in the center. As above,
the page P is identified with the disk whose outer boundary corresponds to one
of the holes associated to E1; there are at least three holes v1

1, v
2
1, v

3
1 in V1. First,

we claim that any factorization has a Dehn twist enclosing all of these holes. If
not, we must have two distinct Dehn twists τ1 and τ2, τ1 enclosing v1

1, v
1
3 and τ2

enclosing v1
2, v

1
3 , because m(vr

1, v
s
1) = 1. Since m(v1

3) = 2 and there are at least 4
holes in P having joint multiplicity 2 with v1

3 , one of these Dehn twists, say τ1,
contains an additional hole w. But then there must be two additional Dehn twists
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in the factorization, enclosing, respectively, v1
2, v

1
1 and v1

2, w, which is impossible
since m(v2

2) = 2. Thus, there is a Dehn twist τ enclosing v1
1, v

2
1, v

3
1 . We would

like to show that τ encloses all the holes in P. Suppose not, and let w be a hole
not enclosed by τ . Then there must be distinct Dehn twists τ1, τ2, τ3, enclosing,
respectively, w, v1

1 , w, v2
1 , and w, v3

1 . Since m(v1
1) = m(v2

1) = m(v3
1) = 2, there

cannot be any other Dehn twists enclosing v1
1, v

2
1, v

3
1, and since m(vr

1, v) = 1 for
r = 1, 2, 3 and any other hole v, every hole v must be either in τ or in each of
τ1, τ2, τ3 (but not simultaneously in τ and τi , i = 1, 2, 3). For the hole w, two
cases are possible: (1) w belongs to E2, in which case m(w) = 3, so there are
no Dehn twists except τ1, τ2, τ3 enclosing w; or (2) w belongs to R2, in which
case m(w) = 4, and there is exactly one additional Dehn twist τ ′. In either case,
there must exist another hole w′ such that m(w, w′) = 2; however, we can only
get m(w, w′) = 3 (if w′ is in all three of τ1, τ2, τ3) or m(w, w′) = 1 (if w′ is in τ

and τ ′). It follows that the Dehn twist τ must enclose all holes in P.
We conclude that the factorization includes Dehn twists around the curves that

are homologous, and therefore isotopic, to the boundaries of all the holes associated
to E1. As above, these can be removed from consideration. The same argument
works for any leaf vertex of the graph, reducing the question to the situation of only
one vertex, E2. This is the case k = 1 representing an open book for a lens space as
in [24]; if E2 · E2 ≤ −5, there is a unique factorization, and if E2 · E2 = −4, then
the only other option for the homology classes of curves comes from the lantern
relation. □

By Lemma 2, we now know that under the hypotheses of Theorem 1, the Dehn
twists in every positive factorization are performed about the curves in the same
homology classes as the Dehn twists in the standard factorization. We now show
that the curves are in the same isotopy classes.

Lemma 3. Let (P, φ) be a planar open book whose monodromy φ admits a fac-
torization 8 into a product of positive Dehn twists about disjoint simple closed
curves in P. Suppose that 8′ is another positive factorization of φ, such that 8 is
homologically equivalent to 8′. Then the factorizations 8 and 8′ are the same, up
to the order of Dehn twists.

Proof. After reordering, we can write 8 = D1 D2 · · · Dlδ1δ2 · · · δn , where the δi ’s
are Dehn twists about the boundary-parallel curves, and D1, D2, . . . , Dl are the
Dehn twists around disjoint curves γ1, . . . , γl in P that are not boundary parallel.

Then, again after reordering, we have 8′
= T1T2 · · · Tlδ1δ2 · · · δn , where the

Dehn twists Dj and Tj are performed about homologous curves in P : indeed, every
boundary-parallel curve γj is determined by its homology class, uniquely up to
isotopy. We can thus remove the Dehn twists δ1, δ2, . . . , δn from consideration.
We will use the same notation, 8 = D1 D2 · · · Dl and 8′

= T1T2 · · · Tl for the two
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η1 η2

P P ′

Dl Dl

Figure 5. After cutting P along arcs η1, η2, . . ., the Dehn twist
Dl becomes boundary-parallel in the new surface P ′.

factorizations of the diffeomorphism

φ = D1 D2 · · · Dl = T1T2 · · · Tl . (3)

We will prove the lemma by induction on the number l of the nonboundary
parallel Dehn twists. Identifying P with a disk with holes, we can assume that γl is
an innermost curve in the collection γ1, γ2, . . . , γl . Suppose that γl encloses r holes.
Choose a collection of arcs η1, η2, . . . , ηr−1 connecting these holes and disjoint
from γl , so that after cutting along these arcs, the holes become a single hole,
and the domain enclosed by γl becomes an annulus (which deformation retracts
to γl). See Figure 5. By construction, the arcs η1, η2, . . . , ηr−1 are disjoint from
the support of each of the Dehn twists D1, D2, . . . , Dl , thus the diffeomorphism
φ = D1 D2 · · · Dl fixes each of these arcs. As in [3, Proposition 3] and [9, Section 2],
we now make the following key observation: after an isotopy removing nonessential
intersections, all arcs η1, . . . , ηr−1 must be also disjoint from the support of each
of the Dehn twists T1, T2, . . . , Tl . To see this, we recall that each right-handed
Dehn twist is a right-veering diffeomorphism of the oriented surface P [11]. If
α and β are two arcs with the same endpoint x ∈ ∂S, we say that β lies to the
right of α if the pair of tangent vectors (β̇, α̇) at x gives the orientation of P. The
right-veering property of a boundary-fixing map τ : P → P means that for every
simple arc α with endpoints on ∂ P, the image τ(α) is either isotopic to α or lies to
the right of α at both endpoints, once all nonessential intersections between α and
τ(α) are removed. Now, suppose that the support of the Dehn twist Tj essentially
intersects one of the arcs, say η1. Then the curve Tj (η1) is not isotopic to η1 (see,
e.g., [8, Proposition 3.2]), so Tj (η1) lies to the right of η1. Since the composition
of right-veering maps is right-veering, we can only get curves that lie further to the
right of η1 after composing with the other Dehn twists T1, . . . , Tl . However, the
composition φ = T1T2 · · · Tj · · · Tl fixes η1, a contradiction.

Once we know that the support of all the Dehn twists is disjoint from all of
the arcs η1, . . . , ηr−1, we can cut the page P along these arcs, and consider the



UNIQUENESS OF SYMPLECTIC FILLINGS OF LINKS OF SURFACE SINGULARITIES 283

image of the relation (3) in the resulting cut-up surface P ′. In P ′, we have that (the
induced diffeomorphisms) Tl and Dl are Dehn twists around the curve homologous
to the boundary of the same hole, and therefore, Tl = Dl as Dehn twists in P ′. It
follows that for the Dehn twists (induced by) D1, . . . , Dl−1 and T1, . . . , Tl−1 in P ′,
we have

D1 D2 · · · Dl−1 = T1T2 · · · Tl−1.

By the induction hypothesis, we can conclude that for each j = 1, . . . , l − 1, the
Dehn twists Dj and Tj are performed about isotopic curves in P ′. It follows that
each pair Dj , Tj gives the same Dehn twists in P, for each j = 1, . . . , l. □

Proof of Theorem 1. Under the hypotheses of Theorem 1, the contact 3-manifold
(Y, ξ) is supported by an open book with planar page P. Theorems of Wendl and
Niederkruger then imply that up to blow-up and deformation of the symplectic
form, every weak symplectic filling has a Lefschetz fibration whose fiber is given
by P; the monodromy of the fibration is the monodromy of the open book. The
Lefschetz fibration is described by its vanishing cycles, or, equivalently, by a positive
factorization of the monodromy. Lemmas 2 and 3 show that the positive monodromy
factorization is unique. □
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