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A note on thickness of knots
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We introduce a numerical invariant β(K ) ∈ N ∪ {0} of a knot K ⊂ S3 which
measures how nonalternating K is. We prove an inequality between β(K ) and
the (knot Floer) thickness th(K ) of a knot K. As an application we show that all
Montesinos knots have thickness at most one.

1. Introduction

A knot K ⊂ S3 is alternating if it admits a diagram with the property that when
traversing through the diagram, we alternate between over- and under-crossings.
(An intrinsic definition of alternating knots has been recently found by Greene and
Howie [5; 6].) A diagram of K partitions the plane into domains (the connected
components of the complement of the projection), and the alternating property can
be rephrased by saying that on the boundary of each domain each edge connects
an under-crossing with an over-crossing. Indeed, this observation provides a way
to measure how far a knot is from being alternating. We introduce the following
definition:

Definition 1.1. Suppose that D is the diagram of a given knot K ⊂ S3. A domain d
of D is good if any edge on the boundary of d connects an over- and an under-
crossing. The domain d is bad if it is not good. The number of bad domains of the
diagram D is denoted by B(D).

Clearly, the diagram D is alternating if and only if B(D) = 0. Indeed, by taking
β(K ) = min{B(D) | D is a diagram for K },

we get a knot invariant, which satisfies β(K ) = 0 if and only if K is an alternating
knot. As it is typical for knot invariants given by minima of quantities over all
diagrams, it is easy to find an upper bound on β(K ) (by determining B(D) for a
diagram of K ), but it is harder to actually compute its value.
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As it turns out, knot Floer homology provides a lower bound for β(K ) through the
thickness of K. Recall that ĤFK(K ), the hat-version of knot Floer homology of K,
is a finite-dimensional bigraded vector space over the field F of two elements. By
collapsing the Maslov and Alexander gradings M and A on ĤFK(K ) to δ = A− M,
we get a graded vector space ĤFKδ

(K ). The thickness th(K ) of K is the largest
possible difference of δ-gradings of two homogeneous (nonzero) elements of this
vector space. It is known that for an alternating knot K the δ-graded Floer homology
is in a single δ-grading (determined by the signature of the knot); hence if K is
alternating, then th(K ) = 0. (Knots satisfying th(K ) = 0 are called thin knots,
hence alternating knots are thin.)

With this definition in place, the main result of this paper is as follows:

Theorem 1.2. Suppose that K ⊂ S3 is a nonalternating knot. Then

th(K ) ≤
1
2β(K ) − 1. (1-1)

While the thickness of K can be used to estimate how nonalternating K is,
(1-1) can also be used to estimate th(K ) by finding appropriate diagrams of K. In
particular, the formula can be applied to show the following:

Corollary 1.3 (Lowrance [7]). Suppose K is a Montesinos knot. Then, th(K ) ≤ 1.

Remark 1.4. • A quantity similar to β(K ) has been introduced by Turaev [10],
now called the Turaev genus gT (K ). An inequality similar to (1-1) for the Turaev
genus and the (knot Floer) thickness th(K ) was shown by Lowrence in [7]. As the
Turaev genus of nonalternating Montesinos knots is known to be equal to 1 [1; 2],
our Corollary 1.3 also follows from [7].
• Indeed, a simple argument (due to Adam Lowrence (personal communication,
2020)) shows that

gT (K ) ≤
1
2β(K ) − 1,

since by [7, Theorem 4.1] for a diagram D of K we have gT (D) = th(Cδ
D,p) (with

the notation of Section 2).
• Similar observations regarding the relation between the Turaev genus gT and β

have been communicated to us by Homayun Karimi and Seungwon Kim (2020).

The formula (1-1) can be used in a further way: by a recent result of Zibrow-
ius [11], mutation does not change ĤFKδ

(K ), and hence leaves th(K ) unchanged.
Consequently, besides isotopies, we can change a diagram by mutations to get better
estimates for th(K ) through B(D) for a diagram D of a mutant.

The paper is organized as follows. In Section 2, we recall basics of knot Floer
homology and prove the theorem stated above. In Section 3, we give the details of
the proof of Corollary 1.3, and finally in Section 4, we list some further properties
and questions regarding β.
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Figure 1. The local contributions for A, M and δ = A − M at a
crossing. The Kauffman state distinguishes a corner at the crossing,
and we take the value in that corner as a contribution of the crossing
to A, M or δ of the Kauffman state at hand.

2. The knot Floer homology thickness of knots

Suppose that V =
∑

a Va is a finite-dimensional graded vector space, where Va ⊂ V
is the subspace of homogeneous elements of grading a ∈ R. The thickness th(V )

of V is by definition the largest possible difference between gradings of (nonzero)
homogeneous elements:

th(V ) = max{a ∈ R | Va ̸= 0} − min{a ∈ R | Va ̸= 0}.

Suppose now that the graded vector space V is endowed with a boundary oper-
ator ∂ of degree 1; then the homology H(V, ∂) also admits a natural grading from
the grading of V. As H(V, ∂) is the quotient of a subspace of V, it is easy to see that

th(H(V, ∂)) ≤ th(V ).

The hat version of knot Floer homology (over the field F of two elements) of a knot
K⊂S3 is a finite-dimensional bigraded vector space ĤFK(K )=

∑
M,AĤFKM(K , A).

By collapsing the two gradings to δ= A−M, we get the δ-graded invariant ĤFKδ
(K ).

The thickness of ĤFKδ
(K ) is by definition the thickness th(K ) of K.

Knot Floer homology is defined as the homology of a chain complex, which we
can associate to a diagram of the knot (and some further choices). Indeed, for a
given diagram D of a knot K , fix a marking, that is, a point of D which is not a
crossing. Consider the bigraded vector space CD,p (graded by the Alexander and
the Maslov gradings A and M) associated to the marked diagram (D, p), which is
generated over F by the Kauffman states of the marked diagram, a concept which
we recall below.

Suppose that for the marked diagram (D, p) of the knot K , the set of crossings is
denoted by Cr(D), the set of domains by Dom(D), and Dom p(D) denotes the set
of those domains which do not contain p on their boundary. A Kauffman state κ is
a bijection κ : Cr(D) → Dom p(D) with the property that for a crossing c ∈ Cr(D)

the value κ(c) is one of the (at most four) domains meeting at c. The Alexander,
Maslov and δ-gradings of a Kauffman state are computed by summing the local
contributions at each crossing, as given by the diagrams of Figure 1.
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According to [8] there is a boundary map ∂ : CD,p → CD,p of bidegree (−1, 0)

(in the bigrading (M, A)) with the property that H(CD,p, ∂) is isomorphic to the
knot Floer homology ĤFK(K ) of K (as a bigraded vector space). By collapsing
the two gradings A and M to δ = A− M, we get the graded vector spaces (Cδ

D,p, ∂)

and its homology ĤFKδ
(K ). As ĤFKδ

(K ) is the quotient of a subspace of Cδ
D,P ,

we have that
th(ĤFKδ

(K )) ≤ th(Cδ
D,p, ∂).

Proposition 2.1. Suppose that D is a diagram of the knot K. If D is not an
alternating diagram, then

th(Cδ
D,p) ≤

1
2 B(D) − 1.

Proof. Fix a marked point p on D, and consider the δ-graded chain complex
(Cδ

D,p, ∂) generated by the Kauffman states of (D, p).
The δ-grading at a positive crossing is either 0 or 1

2 , and at a negative crossing it
is either 0 or −

1
2 . So we can express the δ-grading of a Kauffman state κ as the sum

1
4 wr(D) +

∑
c∈Cr

f (κ(c)),

where wr is the writhe of the diagram, and f is a function on the Kauffman corners,
which is either 1

4 or −
1
4 (depending on the chosen quadrant at the crossing c).

Simple computation shows that for a good domain each corner in the domain
gives the same f -value; hence for different Kauffman states the contributions from
this particular domain are the same. This is no longer true for a bad domain, but
the difference of two contributions is at most 1

2 . When determining the possible
maximum of δ(x) − δ(x ′) for two homogeneous elements x, x ′

∈ Cδ
D,p, the con-

tributions from the writhe cancel, and so do the contributions from good domains,
while bad domains contribute at most 1

2 . This shows that th(Cδ
D,p) ≤

1
2 B(D).

By assumption, D is not alternating; hence there is a bad domain, with an edge
showing that it is bad. Choose the marking p on such an edge. Since this edge
guarantees that the two domains having it on their boundary are both bad, while these
two bad domains do not get Kauffman corners, we get that th(CD,p) is bounded by

1
2(B(D) − 2) =

1
2 B(D) − 1,

concluding the proof. □

Proof of Theorem 1.2. Suppose that K is not alternating. Then any diagram D of K
is nonalternating; hence we have that

th(K ) ≤ th(Cδ
D,p) ≤

1
2 B(D) − 1.

Since β(K ) is computed from the minimum of the right-hand side of this inequality,
the proof follows at once. □
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Figure 2. The Montesinos knot M(r1, . . . , rn). The box containing
ri denotes the algebraic tangle determined by the rational number
ri = βi/αi (cf. Figure 3). In order to have a knot, at most one of
the αi can be even.

3. Montesinos knots

Montesinos knots are straightforward generalizations of pretzel knots; a diagram
involving rational tangles defining the Montesinos knot M(r1, . . . , rn) is shown
by Figure 2. (A box with a rational number ri in it symbolizes the tangle shown
by Figure 3.) We allow any of the ri to be equal to ±1. Notice that the order of
(r1, . . . , rn) is important; those ri which are equal to ±1 can be commuted with
any other parameter through a simple isotopy of the diagram.

Lemma 3.1. Consider the diagram of the Montesinos knot M(r1, . . . , rn) given by
Figure 2. It can be isotoped to a diagram with at most four bad domains.
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Figure 3. The rational tangle corresponding to r ∈ Q. The ratio-
nal number r determines the coefficients ci through its continued
fraction expansion. The boxes with ci ∈ Z on the right denote |ci |

half twists (right-handed for positive, left-handed for negative ci ).
Depending on the parity of n (the number of ci ’s) we have two
different finishing forms. The tangle is alternating (as part of a
knot or link) if the ci alternate in sign.
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Figure 4. The introduction of cancelling twists to turn domains
between tangles to be good.

Proof. Recall that a rational tangle has the form given by Figure 3. Adapting the
isotopies described in [4], we can achieve that all tangles are alternating; hence the
potentially bad domains are the ones between the tangles, together with the central
and the unbounded domains. The number of bad domains between the tangles can be
reduced by the following observation. The domain between two tangles is bad if the
first coefficients c1

1 and c2
1 of the two rational numbers determining the tangles have

opposite signs, say c1
1 > 0 and c2

1 < 0. Then by Reidemeister-II moves we can intro-
duce canceling twistings, as shown by Figure 4, and then commute the first twisting
(in the figure given by the box with 2 in it) between the first and second tangles of
the Montesinos knot. All domains between the boxes will become good, except the
ones connecting the first tangle with the newly introduced twists and the second
tangle also connecting it with the newly introduced twists. After these alterations,
make sure that (by the adaptation of [4]) all tangles are isotoped to be alternating.
In total the new diagram then has four bad domains, concluding the proof. □

Proof of Corollary 1.3. For a Montesinos knot M(r1, . . . , rn), an appropriate isotopy
of the diagram of Figure 2 (as given by Lemma 3.1) gives a diagram with at most
four bad domains. The application of Theorem 1.2 concludes the argument. □

Remark 3.2. Using the mutation invariance of th(K ), Lemma 3.1 can be avoided:
by mutations, any Montesinos knot M(r1, . . . , rn) can be moved to M(q1, . . . , qn)

with the same rational parameters in a different order so that qi and qi+1 have the
same sign with at most one exception. Isotoping the diagram so that the tangles are
alternating, the mutated diagram then has at most 4 bad domains. Using the result
of [11, Theorem 0.1] then the corollary follows as before.

4. Further properties

It is a standard fact that the knot Floer homology of the connected sum of two knots
is the tensor product of the knot Floer homologies:

ĤFK(K1#K2) ∼= ĤFK(K1) ⊗ ĤFK(K2).



A NOTE ON THICKNESS OF KNOTS 305

B

B

B

B

(a) (b)

−3

−3

−3

−3

5 5

5

5

5

5

5

5

...

Figure 5. The knot Kn . In (a) the pretzel knot P(−3, 5, 5) is
shown. The B symbols signify the bad domains. (A box containing
the integer n denotes |n| half twists, right-handed for n > 0 and
left-handed for n < 0.) In (b) we provide a diagram of Kn , where
the connected sum is taken at bad domains.

From this (bigraded) isomorphism it follows that

th(K1#K2) = th(K1) + th(K2).

The behaviour of β(K ) is less clear under connected summing. Suppose that K1, K2

are both nonalternating knots. By taking the connected sum of two diagrams D1, D2

for these knots at bad edges (i.e., arcs on the boundary of bad domains verifying
that the domains are bad), we get that

B(D1#D2) = B(D1) + B(D2) − 2,

immediately implying that

β(K1#K2) ≤ β(K1) + β(K2) − 2.

Motivated by the equality for the thickness th, we arrive at the following conjecture:

Conjecture 4.1. If K1, K2 are two nonalternating knots, then

β(K1#K2) = β(K1) + β(K2) − 2.

Sharpness. It is not hard to find knot diagrams for which (1-1) is sharp. In-
deed, the standard diagram of the pretzel knot P(−3, 5, 5) admits four bad do-
mains (see Figure 5(a)), while an explicit calculation of ĤFK(P(−3, 5, 5)) shows
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Figure 6. The planar weighted tree defining the knot Cn . The
central vertex is of framing 0, and has n + 1 neighbours, all with
framing 0. The first of these vertices is connected to two leaves of
framings 3 and −3, while the further vertices are connected to two
leaves with framings 3 and −2.

that th(P(−3, 5, 5)) = 1. Consider the n-fold connected sum Kn = #n P(−3, 5, 5);
connect summing the diagrams at bad edges (in the above sense) we get a se-
quence of knots Kn and diagrams Dn for them with the properties that th(Kn) = n
and B(Dn) = 2n + 2; see Figure 5(b). The nonalternating knots Kn then satisfy
n = th(Kn) =

1
2β(Kn) − 1.

Arborescent examples. A family of knots (and links) can be specified by combina-
torial means as follows. Consider a planar tree (a graph with no circles), with an
integer attached to each vertex. An embedded surface can be constructed from the
tree by the following algorithm: for each vertex consider a twisted band, with the
integer attached to the vertex prescribing the number of half-twists introduced. (The
boundary of such a band is the T2,n torus knot or link, where n ∈ Z is the decoration
of the vertex.) If two vertices are connected in the tree by an edge, plumb the two
surfaces together. The boundary of the resulting surface is an arborescent knot
(or link). To make the definition precise (i.e., to get a well-defined knot or link)
further information is needed, prescribing the location of the plumbing on each
band, relative to the twisting; see [3]. We will not make this distinction here for two
reasons: (a) the different choices one can make for a given graph result in mutation
equivalent knots, and since the thickness is mutation invariant, different choices
make no effect on our calculations, and (b) in the example we will show below,
the nodes (i.e., vertices of degree more than 2) have framing 0, hence the above
mentioned choice makes no difference.

It is easy to see that pretzel knots (and more generally Montesinos knots) are
all arborescent; these knots correspond to graphs with a single node. (Such graphs
are called star-shaped.) Consider the family of knots Cn defined by the graph of
Figure 6. (For diagrams of the knots Cn , see Figure 7.) Computer calculations [9]
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Figure 7. The knot Cn in general and C1 in particular.

show that Cn has thickness n once n ≤ 4. (For n = 1 the knot C1 is a pretzel knot
having thickness equal to 1, while for n = 0 the knot C0 is the connected sum of
a right-handed and a left-handed trefoil; hence it is thin.) These cases lead us to
expect that th(Cn) = n holds in general. Indeed, it is not hard to find a diagram
for Cn with 2n + 2 bad domains; hence th(Cn) ≤ n follows from our main result,
and the above mentioned calculations suggest that we have equality here. More
generally, it would be interesting to see if there is a simple relation between the
number of nodes of a (weighted) tree and the thickness of a corresponding knot;
maybe the thickness is at most the number of nodes.
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