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64 MARTIN GALLAUER

0. Introduction

The main goal of these lectures is to touch upon the following questions regarding
six-functor formalisms:

(1) Why care about them?
(2) What are they?

(3) How to construct them?

Needless to say, our answers are far from complete. (We will try to give references
for the reader who wants to venture further but they will certainly not be exhaustive
either.) In short, they are:

(1) Why? 1If one cares about cohomology then one should care about the six
operations because the latter enhance the former. Grothendieck’s relative point
of view is baked into the formalism, connecting it well with modern algebraic
geometry. And, finally, the formalism has proven highly successful in the last
decades. (This is particularly apparent in motivic homotopy theory, the other main
topic of the summer school. Unfortunately, we will treat this last point only briefly
and leave much to the other talks.)

(2) What? First the confession: there will be no definition of six-functor formalisms
in these lectures. Just as ‘cohomology’ is arguably not a precisely defined term
and varies from context to context, we cannot expect its enhancement to admit
a definition pleasing everyone. Instead we will try to give a glimpse of the six
functors in action, and we will describe a convenient and precise framework to
think about them. This framework consists of coefficient systems which encode
a minimal set of structure and axioms one would like a six-functor formalism to
enjoy.

(3) How? Given the power of the formalism it is unsurprising that all known
examples required major efforts, often by many mathematicians, until they were
established. (And in several areas, a ‘complete’ formalism is still very much
a work in progress.) We will focus on arguably the most common and serious
stumbling block, the construction of the exceptional functoriality. In a slightly
different direction, such difficulties can be circumvented altogether by constructing
six-functor formalisms out of already-established ones. And finally, we will discuss
by way of illustration, an example (from rigid-analytic geometry) of a recent new
addition to the list of six-functor formalisms.

We assume that the reader is familiar with basic scheme theory and has seen
derived categories before. Section 1 is written in the language of triangulated
categories although the axioms are barely used. In Sections 2 and 3 we use the
language of stable co-categories but some help is provided and much of it can also
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be understood just at the level of underlying triangulated categories. We imagine
that the more exposition to the various cohomology theories for schemes (or for
other geometric objects) the reader has had, the easier it will be to follow the text.

1. Why?

Here we will try to motivate the study and development of six-functor formalisms.
The point of view we will try to convey is that

six-functor formalisms enhance cohomology.

Interspersedly, we will also make comments about the related question why six-
functor formalisms arose historically in the first place although this is not our focus.
There is little rigorous mathematics to be found here — for that we ask the reader
to wait until Sections 2 and 3.

Remark 1.1. Another natural way to answer the question in the title would be to
list applications of the theory and thereby argue for its importance. We will not do
that here and, in any case, compiling an even approximately complete list would
seem a daunting task. Indeed, the language and theory of six-functor formalisms
permeates much of modern algebraic geometry and beyond, and has spawned entire
fields of research. The development of, for example, étale cohomology, perverse
sheaves, or motivic homotopy theory is quite unthinkable in the absence of the six
operations.

1A. A hierarchy of invariants.

Example 1.2. If you are studying a topological space X, a useful invariant to know
about is the sequence of Betti numbers b, (X), the latter measuring the number of
n-dimensional holes in X. Famously, Noether explained how these numbers are just
shadows of the homology of X, these being a sequence of abelian groups H,(X)
measuring the difference between cycles and boundaries on X. Thus homology is a
richer invariant than the Betti numbers since there is a way to go from the former
to the latter but no way (in general) to reverse this process:

H,(X)

i} 4

b (X)

Example 1.3. Now imagine instead a variety X over a finite field k = [, (of
cardinality g = p", say). If you are an arithmetic geometer, chances are you would
like to know the number of rational points, that is, solutions to the polynomial
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equations defining X, possibly over finite extensions of k. The ¢-function of X
conveniently packages this information:

#X (F,»
ex(T) = exP< > %T”) c Q[TT.

n>1

If X is smooth and proper, Weil [49] predicted that this function is very nicely
behaved: it should be a rational function, satisfy a certain functional equation,
and one should have tight control over the zeroes and poles. (Weil also proved
this for curves.) He suggested that these desirable properties would follow from a
well-behaved cohomology theory for varieties over finite fields, a suggestion which
was eventually realized by the concerted effort of many mathematicians, including
Grothendieck, Serre and Deligne: the theory of £-adic cohomology was at least
partly developed to settle the Weil conjectures.

Here then we find a similar situation as in topology in that cohomology groups
are richer invariants than individual numbers and that a certain behavior of the
former implies a certain behavior of the latter:

H* (X5 Qp)
traces of (iterated) Frobenii g

¢x(T)
What is of interest to us in this historical example is that the ‘good behavior’ of
these cohomology groups H" (Xj; Q) was in turn deduced from properties of an
even richer invariant, the £-adic constructible derived category:
DE(X o Q) category-level invariant
hom -groups g
H*(Xg; Q) set-level invariant
trace of Frobenius g

¢x(T) element-level invariant

Summarizing, in order to prove certain things about element-level invariants mathe-
maticians in this case have found themselves proving things about category-level
invariants two levels up and deducing the former from the latter.

Remark 1.4. Jumping ahead of ourselves for a moment, we can say that
six-functor formalisms govern the behavior of certain category-level invariants.

Therefore we can expect that this formalism will be useful in proving things about
certain set-level invariants, namely the cohomology of ‘spaces’ (these could be
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topological spaces or spaces appearing in algebraic geometry and even further
beyond). To say something more precise we have to appreciate one important
feature which arises in set-level and category-level invariants but is absent at the
lower end of the hierarchy. This we will try to do in Section 1B.

Remark 1.5. The Weil conjectures (Example 1.3) are discussed from this point
of view in an unpublished note of Voevodsky [47]. In the same note (from the
year 2000) he expresses the view that the development of the six-functor formalism
would become one of the main technical tools in advancing motivic homotopy
theory: a view which over the last 20 years has certainly materialized!

1B. Relative point of view. Grothendieck famously stressed the ‘relative point of
view’, replacing, for example, schemes by morphisms of schemes as the fundamental
object of study. This shift is also apparent in the development of £-adic cohomology
and the proof of the Weil conjectures (Example 1.3).

Remark 1.6. Even if one is ultimately interested in the cohomology of a single
variety X it is often necessary to invoke other, related varieties and their cohomolo-
gies in the process, for example, in arguments that proceed by induction on the
dimension, or when covering X by simpler pieces. It then becomes important to
study the cohomology groups not in isolation but together with the maps

F*LH(Y) — H*(Y)) (1.7)

for all morphisms f:Y' — Y.

And even if not passing through other varieties, the action of a morphism on
cohomology provides additional, often very interesting information about the vari-
eties involved. In the discussion of the Weil conjectures (Example 1.3) we already
saw an example of this phenomenon: the action of the Frobenius endomorphism is
used to express the number of rational points in terms of cohomology.

Remark 1.8. For the same reason, even if one is interested in proper varieties it
is sometimes necessary to invoke nonproper varieties and their cohomologies in
the process. The latter are typically less well behaved and to make up for that, the
notion of cohomology with compact support was developed. Thus in addition to
cohomology groups, we also want to study the groups H?(X) and their dependence
on X.

1C. The six functors in topology. In Section 1A we saw that moving up along the
hierarchy of invariants, cohomology is replaced by sheaves, and in Section 1B we
stressed the need to adopt a relative point of view. Putting the two together one
arrives at the study of assignments

spaces — categories,
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which send a space to some category of sheaves on that space, and where morphisms
of spaces induce functors between the corresponding categories of ‘sheaves’. (As
we saw in Example 1.3, these are not necessarily literally sheaves but something
related, such as derived categories of sheaves.) The latter are examples of the
functors giving ‘six-functor formalisms’ their name. Sometimes they are also called
operations since they operate on sheaves.

For Weil and Grothendieck, a good cohomology theory for varieties over finite
fields was to behave similarly to the cohomology of topological spaces. It is
therefore prudent to look at the topological situation first. This we do briefly here.
References that include much more detail include [16; 27; 28].

Example 1.9. Let us go back to the topological Example 1.2. For a nice enough!
space X the cohomology H*®(X) coincides with the sheaf cohomology of the
constant sheaf on X. The most familiar operations on (abelian) sheaves associated
with a continuous map f : X — Y are the inverse image (or pull-back) and direct
image (or push-forward), respectively:

Sh(Y) (L_’ Sh(X)

Recall that f,% is the sheaf whose sections on an open subset U C Y are given
by I'(f~1(U), F). The functor f* is left adjoint to f,, and takes 4 € Sh(Y) to a
sheaf satisfying (f*9), = 9y for all x € X. More explicitly, f*4 is the sheaf
associated to the presheaf V + colimy)cy 9(U), where U runs over the open
neighborhoods of f (V).

Note that if ¥ = = is just a point, the functor f, : Sh(X) — Sh(x) >~ Mod(Z)
coincides with the global sections functor. We deduce that the right-derived functor
coincides with sheaf cohomology:

R" fu(F) = H"(X; ). (1.10)

Thus we may view the derived push-forward as a relative and enhanced version of
cohomology.

Example 1.11. Continuing with Example 1.9, another familiar operation is the
direct image with compact support (or compactly supported push-forward). It is
defined as a subfunctor of the direct image functor:

LW, iF)={sel'(U, fi%F) = F(f_l(U), %) | s has compact support}.

Note that again, for ¥ = % a point, the direct image with compact support recovers
cohomology with compact support:

R (F) = H'(X; F). (1.12)

IFor example, cohomologically locally connected in the sense of [40].
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Remark 1.13. The functor fi: Sh(X)— Sh(Y) does not admit an adjoint in general.
This together with the fact that we are ultimately interested in derived functors
leads us to consider derived categories of sheaves instead. It turns out that at least
for locally compact Hausdorff spaces, the functor acquires a right adjoint:

D(Sh(X)) (R—i> D(Sh(Y))
/!

The functor f' is called the exceptional inverse image (or pull-back). Accordingly,
fi is sometimes also called the exceptional direct image (or push-forward).?

Remark 1.14. Together with the tensor product and internal hom of sheaves we
have collected all six functors:

(®", RHom)
D(Sh(X))

Lf{ [Rf RA|| S

D(Sh(Y))

It is customary to drop the symbols R and L for derived functors as the context
usually makes it clear when derived functors are intended.

1D. Enhancing cohomology: structure.

Convention 1.15. Let us now abstract from the specific topological situation and
instead assume that with each ‘space’ (topological space, scheme, stack, ...) X
we are given a closed tensor triangulated category (C(X), ®, Hom) and with each
morphism of spaces f : X — Y two adjunctions f* - f,, fi - f' of exact functors:

(®, Hom)
C(X)

1 fss f)]f

Cc(Y)

The arrow <« indicates a natural transformation f; = f, (which, in topology, is
induced by the inclusion of sections with compact support). We also assume that

2 Another common name is f-upper-shriek for f "and f-lower-shriek for fi.
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f* is endowed with a symmetric monoidal structure. As a first approximation, the
category C(X) may be thought of as a ‘derived category of sheaves on X’ although
we don’t want to assume that this is literally the case. To have more neutral language
we will refer to objects in C(X) as coefficients, just as one speaks of cohomology
with coefficients.

While we won’t stress this aspect, it is important that the dependence on X
and f is ‘pseudofunctorial’. For example, we should in addition be given natural
isomorphisms g* f* = ( fg)* satisfying familiar cocycle conditions, and id* = id.
For a precise formulation we refer to [15, Definition 2.2].

Remark 1.16. We will now discuss how this basic setup allows us to recover
structure present in cohomology. In Section 1E we will see some properties of the
six functors and how these properties govern the behavior of cohomology.

Remark 1.17. The identifications in (1.10) and (1.12) show how the sheaf opera-
tions allow us to recover cohomology of spaces. In the basic setup of Convention 1.15
we may take this as our definition. Let p : X — B be a morphism of spaces, where
we think of B as a ‘base space’, fixed by the context. For any coefficient ¥ € C(X),
the cohomology (resp. with compact support) is

H*(X; %) :=p.FeC(B) (resp. HJ(X; F) = pF € C(B)).

When & =1 is the tensor unit we denote these coefficients simply by H*(X) and
HZ(X), respectively.

In order to obtain actual cohomology groups one may take appropriate homo-
morphism groups:

H"(X; %) :=homcp)(1, p«F[n]) (resp. H!(X; F) :=homc(p) (1, p1F[n]))

Remark 1.18. One can also define homology and Borel-Moore homology, general-
izing these theories from topology, like so:

cohomology p«p*1l H°*

cohomology with compact support pip*l H?

homology pp'l H,
Borel-Moore homology pep'l HEM

Example 1.19. Let £ be a field in which the prime ¢ is invertible and such that
cdy (k) < 00. Then one has a structure as described in Convention 1.15 which sends
each finite-type k-scheme (or even algebraic stack) X to the ¢-adic constructible
derived category D2(X; Q) (see, for example, [35], although much of it goes back
to SGA, particularly [44; 45]). In this case the cohomology (resp. with compact
support) as defined in Remark 1.17 recovers £-adic cohomology (resp. with compact
support).



AN INTRODUCTION TO SIX-FUNCTOR FORMALISMS 71

Here are some more examples:3

coefficients cohomology groups
DE(X ; Q) constructible ¢-adic sheaves £-adic cohomology
DB(X (©); Z) constructible analytic sheaves Betti cohomology
DE(QB x) holonomic %-modules de Rham cohomology
DP(Coh(X)) coherent sheaves coherent cohomology
DP(MHM(X)) mixed Hodge modules absolute Hodge cohomology
DM(X) Voevodsky motivic sheaves (weight-0) motivic cohomology
SH(X) stable motivic homotopy sheaves | stable motivic (weight-0)
cohomotopy groups

Remark 1.20. Consider now a relative situation

f

X ——— 7Y

N

The unit of the adjunction f* - f, induces a morphism
N:qe = qufuf" = puf”
and thus a morphism in cohomology
H*(Y, %) — H*(X, [*%).
If % = 1x one recovers the action of f on the cohomology of X as in (1.7).

Remark 1.21. With compactly supported cohomology the situation is more subtle.
In the topological context, a natural map

C.(Y,F)—> To(X, f*F)

is defined when f : X — Y is proper. Namely, in that case pulling back sections
restricts to those with compact support. This map is in turn induced by the same
unit of the adjunction,

niq = qfif*=poft
using that fy = f, as f is proper:
H!NY, %) — H! (X, f*F).
Similar functoriality exists for proper morphisms of schemes and other ‘spaces’.
Exercise 1.22. Describe the functoriality of homology.

3Some of these are only partial examples, in others certain technical assumptions are required.
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Remark 1.23. Let p : X — B be a morphism and recall that the inverse image p™* :
C(B) — C(X) is symmetric monoidal. It follows formally that its right adjoint p, :
C(X) — C(B) sends commutative algebras to commutative algebras. In particular,
the cohomology H*(X) = p.1 € C(B) has the structure of a commutative algebra.
We may view this as an enhancement of the cup product in cohomology. Indeed,
evaluating the multiplication through appropriate hom-groups home () (1, —[n])
one obtains a cup product at the level of cohomology groups:

U: HY(X) x H*(X) = H T’ (X)

Remark 1.24. Needless to say, this section does not exhaust all structures of interest
in cohomology. For example, vanishing and nearby cycles are additional concepts
of interest. Another example will play a more important role in Section 2. The
classical theorem of de Rham and its algebraic geometry version of Grothendieck
identifies cohomology groups associated with different theories (de Rham and
singular cohomology). Relatedly, Chern classes and regulator maps may be seen as
morphisms from certain cohomology groups of one theory to those of another. We
want to think of these as underlying ‘(iso)morphisms of six-functor formalisms’. For
example, the Beilinson regulator maps algebraic K -theory classes to absolute Hodge
cohomology, and this should arise from a family of Hodge realization functors

pi(X) : DMS(X) — DY (MHM(X))

from categories of (constructible) motivic sheaves that ‘realize’ the underlying
Hodge cohomology of motives. Ideally we would like these functors to be suitably
compatible with the six operations.*

1E. Enhancing cohomology: properties. We now turn to properties of the six
functors and related properties in cohomology. We will discuss here only some of
the many possibilities. Our selection is geared towards the approach to six-functor
formalisms described in Section 2.

Remark 1.25. To avoid a possible confusion let us stress: the point is not (at least,
not always) that results about a given cohomology theory come for free using six-
functor formalisms. But the difficulty can sometimes be shifted from establishing
them directly to establishing that the cohomology theory underlies a six-functor
formalism. We will return to this in Sections 2 and 3.

1E1. Proper push-forward. We already mentioned in the topological context that
fi = f« whenever f is proper. The same is true for six-functor formalisms in
general: whenever f is ‘proper’ (for example, a proper morphism of schemes), the
transformation f; — f is an isomorphism.

4This particular example is taken up again in Example 3.19.
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1E2. Duality. An important impetus for developing the six-functor formalism was
what is now sometimes called Grothendieck duality, as, for example, in [23; 24]. In
a very limited sense, in our setup this can be viewed as the computation of f'1 for
f : X — % smooth.

Example 1.26 (topology). Let X be a smooth manifold of dimension d and let
f : X — * be the unique map. For a ring A, one finds that f!A = wx ald] is
the (shifted) A-orientation sheaf. Thus X is orientable if and only if wyx 7 is the
constant sheaf with value Z. In that case, wy A is constant for every ring A.

Example 1.27 (coherent). Let X be a smooth k-variety of dimension d. If the map
f : X — Spec(k) denotes the structure morphism then f'k = wyx[d] is the (shifted)
canonical sheaf on X.

Example 1.28 (¢-adic). Let X be a smooth k-variety of dimension d and ¢ a prime
invertible in k. Then f '‘Q¢ = Qy(d)[2d] where (d) denotes the d-th Tate twist.

Corollary 1.29. With the assumptions of Examples 1.26—1.28, respectively, one
has:

(a) Poincaré duality (topology): If X is orientable, H! (X; Q)* = H d=n(X; Q).
(b) Poincaré duality (£-adic): H!'(X; Qg)* = H?* (X Qe(d)).
(¢) Serre duality: If X is proper, H"(X; Ox)* = HY™ (X wy).
Proof. This follows from the adjunction isomorphisms
H(X)* =hom(f f*1[n], 1) = hom(1, f, f'1[—n])
together with the computations reported in Examples 1.26-1.28. U

Remark 1.30. The coefficient f'1 tries to be a dualizing object. Verdier duality is
concerned with the functors D = Hom(—, f '1) and asks under which conditions
one has isomorphisms such as

id=>DoD, Dg —=>gD, g'D—=>Dg.

It provides a relative version and generalization of duality phenomena such as the
ones of Corollary 1.29.

Exercise 1.31 (Atiyah duality). Let f : X — B be a smooth and proper morphism.
Show that the coefficient H*(X) = H?(X) is rigid, with ®-dual given by H,(X) =
HBM(x)?

You will want to use the following two fundamental properties:

SWe use ‘rigid’ instead of ‘strongly dualizable’. Recall that an object a in a symmetric monoidal

category is rigid if there is an object a* (called its ®-dual) and morphisms 1 — a® a* and a* @ a — 1
satisfying the identities familiar from adjunctions; see [17].
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(a) (Proper projection formula) For arbitrary f,
f(f*F®G) = F® fiG.
(b) If f is smooth then
f*F® f'H > f(F® H).

Note that the two morphisms are related by adjunction. The second one is a form
of relative purity, to which we now turn.

1E3. Relative purity.

Remark 1.32. Previously we ‘computed’ f'1 in the case where f : X — x is
smooth. It is natural to want to generalize this to arbitrary smooth morphisms
f: X — Y.% and this is provided by relative purity. It implies:

(1) The difference between f' and f* is measured yet again by f'1:
f1® f*F = f'F.
(This is equivalent to Exercise 1.31(b).)
(2) The coefficient f "1 is ®-invertible.

The coefficient f'1 arises from the Thom construction (see below) applied to the
relative tangent bundle 7'y, and this information is very useful in computations.
We interpret the equivalence f'1® (—) =: {Tr} as a ‘twist’ by the relative tangent
bundle and may therefore rewrite

(T f* =~ fh (1.33)

Example 1.34. In the ¢-adic setting’ the Thom construction depends only on
the rank of the vector bundle and the relative purity isomorphism reads as (see
Example 1.44 below)

Fr@2dl =~ f. (1.35)

Note how (1.35) generalizes Poincaré duality in £-adic cohomology discussed in
Section 1E2.

One often abbreviates the operation (d)[2d] by {d} and this is our inspiration
for the notation in (1.33).

SIn the topological context, this should be interpreted as a topological submersion [28, Defini-
tion 3.3.1].

TThis is more generally true for orientable theories (that is, those with a good notion of Chern
classes). Implicitly, we also used the canonical isomorphism f*{d} >~ {d} f* which, in the notation
introduced in Remark 1.38, is a particular instance of f*{V} >~ {f -1 V}f* for any vector bundle V
onY.
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Before discussing the Thom construction, let us note some important conse-
quences of relative purity.

Remark 1.36. As a consequence we note that for f smooth, the inverse image
functor f* admits a left adjoint
fo= T} A S
It satisfies the (Smooth projection formula):
[(ffFR®G = F® fi4,
which arises, by adjunction, from the composite
ffFRG— f"FQf 4= ["(FQ f;9
of the unit of the adjunction f; 4 f* and the monoidality of f*.
Example 1.37. Note that for f : X — B smooth, the homology of X may be
expressed alternatively as
Ho(X) = fif'1= fy f*1.

Remark 1.38. In terms of this left adjoint we can describe the Thom construction
as follows. Let p : V — X be a vector bundle with zero section s : X < V. The
V-twist is defined as

{V} = pss.: C(X) — C(X).

Then the Thom construction applied to V is defined as the evaluation of this functor
at the unit, that is,
Th(V) = 1{V} = pss.1.

Example 1.39. As mentioned in Remark 1.32, for f smooth we have
f'1 = Th(Ty).

If f is étale then the relative tangent bundle 7'y = X is of rank zero hence Th(7y) >~ 1,
and one deduces that f' ~ f*. (Whatever ‘étale’ means in contexts other than
schemes, we would expect this last property to hold.)

Exercise 1.40. Explain as a consequence that Borel-Moore homology is contravari-
antly functorial with respect to étale morphisms.

Remark 1.41. The Thom construction yields a morphism from the monoid (with
respect to direct sums) of isomorphism classes of vector bundles on X to the Picard
group of C(X), which can be extended to virtual vector bundles [14; 41], perfect
complexes and that passes to the level of K-theory. In particular, there is a group
homomorphism

Ko(X) 222 pic(c(x)).
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For a modern approach to this construction, see, for example, [7, §16], and for a
more general discussion of purity we refer to [12; 13].

Remark 1.42. Continue with the setup of Remark 1.38 and denote by j: VAX — V
the inclusion of the complement of the zero section. From the localization property
discussed just below in Section 1E4 we deduce an exact triangle

peja Pl — psp*l — pys.sTp*l (1.43)

in C(X) which exhibits Th(V') as the cone of the canonical morphism between
homologies relative to X,

H,(V\X) = H,(V).

These are the analogues of the sphere and disk bundle associated with V in topology,
respectively, and this justifies labeling the construction ‘“Thom construction’.

Locally every vector bundle is trivial so we better understand these first. By
Remark 1.41, it is enough to understand the rank-1 case.

Example 1.44. Let V = A}( be the trivial vector bundle of rank 1 on X. A
fundamental property of the six-functor formalisms in algebraic geometry that we
are interested in here is the contractibility of the affine line:

(Al-homotopy) p.p* == id.

This implies that H, (A;) = H,(X). By Exercise 1.45 below, the exact triangle (1.43)
in C(X) becomes
1®1{1}[—1] — 1 — Th(AL)

so that Th(A}) = 1{1}.
Exercise 1.45. Show that the homology of G,, = A\0 splits:
Hu(Gn) = 1@ Hu(G)

for some coefficient H, (Gy,) (which we think of as the reduced homology of G,,).
We define the Tate twists (and shifts thereof)

1(1) = H(Gu[-1], U1} :=H(Gu[1].*
Using that open covers give rise to Mayer—Vietoris exact triangles,” show also that
H,(P") =1®1{1}.
Remark 1.46. We deduce from the preceding discussion the property

8There is a monoid morphism N — Ko (X) that takes 7 to the class of the trivial vector bundle A’ .
Then this notation becomes compatible with the previous one; cf. Remark 1.41.
9This is a particular instance of Exercise 1.64 below.
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(Tate stability) 1{1} = Th(A!) is ®-invertible.
We may then define, for any coefficient F and n € Z, F{n} = F ® 1{n}.

Remark 1.47. As soon as we have discussed smooth base change (Remark 1.61)
we can establish that the Thom construction is Zariski local in a suitable sense.
Together with the localization property we are about to discuss (Remark 1.51),
(Tate stability) therefore is seen to imply the ®-invertibility of all Thom coefficients.
In the same vein, (A!-homotopy) is enough to imply the contractibility of any vector
bundle.

1E4. Localization. Leti: Z — X be a closed immersion with open complement
jiX\Z < X.

Convention 1.48. One defines the cohomology of X with support in Z to be
Hy(X) :=ii'le C(X).
(In other words, it is the homology of Z relative to X.)

Example 1.49. Applying homcx)(1, —[n]) this recovers the corresponding notion
in topology and in £-adic cohomology. In the coherent context, these groups may
be better known under the name of local cohomology (with respect to Z).

Remark 1.50. There is a so-called localization triangle of functors C(X) — C(X):
ii' = id — j.j",
which we may apply to the tensor unit 1 to obtain (with base X)
H;(X)— H*(X) > H*(X\Z).
The associated long exact sequence is a well-known cohomological tool:
= H;(X) - H"(X) - H"(X\Z) — H;“(X) — e

Remark 1.51. The localization triangle is in turn a consequence of the localization
property of six-functor formalisms:

(Localization) The sequence of triangulated categories
C(2) ‘= cx) L5 c)
is a localization sequence.

This means that one is in the situation of a recollement [8, § 1.4], and in particular
that

(1) iy 2y, js. ju are fully faithful,

(2) the composites j*i, i'j, and i* j, all vanish,
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(3) the pairs (i*, j*) and (i*, j') are each conservative,
(4) one has another localization sequence jij' — id — i,i* =7,

Remark 1.52. The last triangle may also be written as (with base space X)
HX(X\Z)— H(X) — H(Z)

and gives rise to the usual long exact sequence of pairs in compactly supported
cohomology. This follows from the identifications j* = j' (Example 1.39) and
i, =1 (Section 1E1).

Example 1.53. (1) By (Localization), C(&) ~0 (take i =id: & — ).

(2) Now let X,q be X with the reduced scheme structure, and i : X — X
the obvious closed immersion. It follows from (Localization) together with
part (1) that iy : C(Xreq) —> C(X) is an equivalence. In other words, six-
functor formalisms are insensitive to nilpotent thickenings.

Remark 1.54. In the ¢-adic setting, localization is an easy property. In other
contexts, however, it can be a substantial theorem. For example, for %-modules
fully faithfulness of i, is known as Kashiwara’s lemma. In motivic homotopy
theory, the localization sequence is a fundamental result of Morel and Voevodsky
which they call the glueing theorem.

1ES. Blow-up. The relation between the cohomology of a variety X and its blow-up
X = Blz(X) is as simple as one might hope but it encodes a fundamental property
of six-functor formalisms, namely proper base change.

Convention 1.55. We place ourselves in a more general situation, with a commuta-
tive diagram of the following shape:

j

v VA |» |- (1.56)
Z — X < X\Z

J

We assume that p is proper and i a closed immersion, both squares are Cartesian
and the right vertical arrow is an isomorphism. In this situation, the left part of the
diagram is called an abstract blow-up square.

We now want to explain why there is an exact triangle (the blow-up exact triangle)

H*(X)— H*(Z)® H*(X) > H*(Z). (1.57)

“Proof”. The functoriality of cohomology easily gives the two morphisms in (1.57)
so that the composite is zero (this involves introducing a sign, as usual). We will
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cheat a little bit and assume that cones are functorial so we get a canonical morphism
from the cone of the first map to H*(Z) and it suffices to show this map is invertible.
By (Localization), this in turn can be checked after applying each of i* and j*.
The upshot of this little game is that we may prove i*(1.57) and j*(1.57) are exact
triangles.
Let us write the two candidate triangles in terms of the six operations:
"l — i i 1@ i* pp*l — i*w,w™1,
J 1= j5 "1 j pep™l - jJrfw,w*l.
By (Localization), i, is fully faithful, j*i, =0, and j*w, = j*i.p, = 0. Taking
this into account the candidate triangles look as follows:
1-1@i*pl— plitl,
1— j*p.l—0.

It is clear that what remains to do is to ‘commute’ p, with i* and j*, respectively.
This is precisely the content of proper base change (Remark 1.58). (]

Remark 1.58. Let
V — X
kl ¥ (1.59)
w s>y

be a Cartesian square. Using the unit and counit of the adjunctions between inverse
and direct image functors we deduce a canonical Beck—Chevalley (or, push-pull)
transformation:

& fu = kikg" fi 2 k™ [ fi — ki (1.60)
We note:
(Proper base change) If f is proper then (1.60) is invertible: g* f, >~ k.h*.

Remark 1.61. Another instance in which the Beck-Chevalley transformation is
invertible is:

(Smooth base change) If g is smooth then (1.60) is invertible: g* f, >~ k.h*.

Exercise 1.62. Recall that by relative purity, the inverse image along a smooth
morphism admits a left adjoint (—)3. Construct analogously a transformation

hsk* — f*g. (1.63)

and show that it is invertible if and only if (1.60) is. (This is a general phenomenon
in 2-category theory: The transformations (1.60) and (1.63) are “mates”.)
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Exercise 1.64. Consider again the diagram (1.56). Assume now instead that p is
étale, that i is an open immersion, and that the right vertical arrow is an isomorphism
on the associated reduced schemes. The left part of the diagram in this case is called
a distinguished Nisnevich square. Prove in a similar way that there is an associated
exact triangle (1.57). (We might call this a Nisnevich—Mayer—Vietoris triangle.)

Exercise 1.65. Sometimes, proper and smooth base change instead refer to the
following isomorphisms:

(a) Proper base change: g* fi >~ kih*.
(b) Smooth base change: g' f. >~ k.h'.

At least morally, these are nothing but reformulations of (Proper base change)
and (Smooth base change), respectively. More exactly, using properties discussed
previously (for example, localization and relative purity):

(a) Assume f factors as an open immersion followed by a proper morphism (for
example, f is separated and of finite type). Construct a zig-zag of push-pull
transformations between g* fi and k/h*. Show that it is an isomorphism if
(Proper base change) holds.

(b) Assume g factors as a closed immersion followed by a smooth morphism (for
example, g is quasiprojective). Construct a zig-zag of push-pull transformations
between g' f, and k,h'. Show that it is an isomorphism if (Smooth base change)
holds.

What can you say about the converse statements?

2. What?

What is a six-functor formalism? As mentioned in the introduction, we will not
try to give a definition. However, our main goal in this section is to describe an
axiomatization of a convenient ‘stand-in’. It encodes a minimal set of structure
and properties a six-functor formalism is commonly expected to enjoy. And we
show how powerful this notion yet is. For example, most properties discussed in
Section 1E are consequences, and the few remaining ones (related to duality) can
still be studied within this framework.

This section’s results rely on the work of many mathematicians; see Remark 2.18.

2A. A convenient framework. From now on we officially restrict to schemes as
our ‘spaces’. (But see Section 3C.)
Convention 2.1. Throughout we fix

» B: a base scheme, assumed Noetherian and finite dimensional,

e Schy: B-schemes, assumed separated and of finite type over B.
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If B is clear from the context or doesn’t play a role, we will refer to B-schemes
as just schemes and write Sch instead of Sch. Note that all schemes considered
are Noetherian and finite dimensional, and all morphisms are separated and of finite
type. This will come in handy although more general setups are certainly possible.

Remark 2.2. For our framework to be flexible enough it is better to replace tri-
angulated categories by a suitable enhancement. We saw a hint of this at a very
basic level in the proof of the blow-up triangle (1.57). More serious uses of an
enhancement will be made throughout Sections 2 and 3. We will work with stable
oo-categories as developed extensively in [38]. Nevertheless, a reader who is not
familiar with this theory may replace them by triangulated categories (or another
suitable enhancement) and still get the gist of the text. Most statements would still
make sense and might even be true.

Convention 2.3. The oco-category of stable co-categories and exact functors is
denoted by Cat’. . This has a symmetric monoidal structure for which the tensor prod-
uct 6 ® ¥ is the universal recipient of biexact functors from the Cartesian product
€ x 9. We identify commutative algebra objects therein with symmetric monoidal
stable co-categories, and we write Cat®:® for the co-category of these. (Note that by
our convention, the tensor product is exact in both variables.) They are an enhance-
ment of tensor-triangulated categories, where our coefficients lived in Section 1.

Here is the main definition. While a coefficient lives on a single B-scheme we are
now interested in the system of all coefficients on all B-schemes. It seems natural to
call this data a coefficient system. This terminology was introduced in [18]. Others
have used different terms; see Section 2C.

Definition 2.4. A coefficient system (over B) is a functor C : Sch%p — CatL®
satisfying the following axioms (where we write f* = C(f) for f a morphism of
B-schemes).

(1) (Left) For each smooth morphism p : ¥ — X contained in Schy, the functor
p*: C(X) — C(Y) admits a left adjoint py, and:

(Smooth base change) For each Cartesian square

y P x

7| | s

y 25 x

in Schy, the Beck—Chevalley transformation pé( f)* — f*ps is an equivalence.
(Smooth projection formula) The canonical transformation

p:(p* (=) ®—) = —® ps(—)

is an equivalence.
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(2) (Right) For every X € Schy and every f:Y — X:

(Internal hom) The symmetric monoidal structure on C(X) is closed.
(Push-forward) The pull-back functor f* admits a right adjoint f, : C(Y) — C(X).

(3) (Localization) The oo-category C (&) = O is trivial. And for each closed
immersion i : Z < X in Sch, with complementary open immersion j : U — X,
the square (see Remark 2.6 below)

C(Z) - cx)
| I 2.5)
0 CU)

is Cartesian in Cat},.

(4) For each X € Schy, if p: A; — X denotes the canonical projection with zero
section s : X — AL, then:

(A!-homotopy) The functor p* : C(X) — C(A}) is fully faithful.

(Tate stability) The composite pys, : C(X) — C(X) is an equivalence.

Remark 2.6. Let us comment on these axioms and relate them to what we’ve seen
in Section 1.

(1) The existence of left adjoints f; to inverse images along smooth morphisms is a
consequence of relative purity, and we also discussed (Smooth projection formula)
in this context. The (Smooth base change) is another fundamental property although
typically formulated as base change of inverse images (along smooth morphisms)
against direct images. It was shown in Exercise 1.62 that these two formulations
are equivalent.

(2) The structure of a coefficient system encodes only inverse images and tensor
products. The axiom (Right) ensures that direct images and internal homs exist as
well.

(3) By applying (Smooth base change) to the Cartesian square (for i, j as in
(Localization))

g 1> 7z

/| ;

v -1 x

we obtain the equivalence jé (i")* = i*j; and the former composite is null-
homotopic since C (&) = (. Taking right adjoints provides the homotopy j*i, >~ 0
that is used in (2.5).!° In the presence of (Push-forward), the square (2.5) is

10pm grateful to Ryomei Iwasa for pointing out that an explanation of the axiom was required.
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Cartesian if and only if the sequence of underlying triangulated categories
Ho(C(Z)) > Ho(C (X)) > Ho(C(U))

is a localization sequence so we recover the condition discussed in Section 1E4.

(4) The functor p* in (Al—homotopy) is fully faithful if and only if the counit
psp* — id is an equivalence. As observed in Example 1.37, pyp* = p p', and

pip F=p:(1Qp"F) = p:1QF =p:p"l®F

by (Smooth projection formula). From which one deduces that (A!-homotopy) is
equivalent to the A'-homotopy property considered in Section 1 (namely that the
homology of the affine line is trivial).

(5) Recall that the functor pys, in (Tate stability) was denoted by {1} in Section 1.

Example 2.7. All theories mentioned in Section 1 ‘should’ be examples of coef-
ficient systems. This has been established for some of them, partially for others.
The only exception to that statement is the bounded derived category of coherent
sheaves as usually conceived. It is not invariant with respect to the affine line, and
it does not admit #-functoriality. Nevertheless, there is work in this direction too;
see [43].

In fact, all these examples fall into two important special cases:

Convention 2.8. A coefficient system C is small (resp. presentable) if the functor
takes values in symmetric monoidal small (resp. presentable) oo-categories (resp.
and symmetric monoidal left-adjoint functors).

Remark 2.9. Stable presentable co-categories can be viewed as the co-categorical
version of well-generated triangulated categories. They satisfy a convenient adjoint
functor theorem: a functor between presentable co-categories is a left adjoint if
and only if it preserves colimits. The oo-category of presentable co-categories and
left adjoint functors is denoted by Pr’. It is antiequivalent to the co-category of
presentable co-categories and right adjoint functors, denoted PrR.

It follows that a functor Schf — Pry;® automatically satisfies (Right)."!

Definition 2.10. (1) Let C, D : Schyy — Cat:® be two coefficient systems. A
natural transformation ¢ : C — D is a morphism of coefficient systems if, for each
smooth morphism f of B-schemes, the induced transformation f:¢ — ¢f: is an
equivalence.

llBy convention, symmetric monoidal presentable oco-categories are presentably symmetric
monoidal, that is, the tensor product commutes with colimits in each variable separately. (A better
way of saying this is prl® = CAlg(PrL) for a suitable symmetric monoidal structure on piL, namely
the Lurie tensor product.)



84 MARTIN GALLAUER

(2) We can then define the co-category of coefficient systems (over B) as a sub-oo-
category of the functor category:

CoSyp € Fun(Schy, CatiL®).
One has obvious variants for small and presentable coefficient systems, denoted
CoSy;™ and CoSyy', respectively.
Exercise 2.11. Let C: Sch%p — Cat}y satisfying both (Smooth base change) and

(Push-forward). Show that the following are equivalent:
(1) C satisfies (Localization).

(i1) C satisfies the following three conditions:

(1) C(w)=0.

(2) For each closed immersion i, the functor i, is fully faithful.

(3) If j denotes the open immersion complementary to a closed immersion i
then the pair (i*, j*) is conservative.

2B. Main result. The main result comes in two parts: The first wants to say that
coefficient systems underlie six-functor formalisms,
and the second wants to say that
morphisms of coefficient systems underlie morphisms of six-functor formalisms.
We refer to Remark 2.17 for the fine print.

Remark 2.12. If T is a small stable co-category then there is an associated pre-
sentable stable co-category Ind(T), its Ind-completion. As we will discuss in more
detail below (Proposition 2.26), this process turns a small coefficient system into a
presentable one. So while the main results in this section are stated in the presentable
context, they are equally true for small, and therefore for ‘all’, coefficient systems
(see Corollary 2.31).

Theorem 2.13. Let C be a presentable coefficient system over B. Then there are
functors (which are equal on objects)

C =C*:Sch} — Pk, C:Schy — Pry,

st?

with global right adjoints
C, :Schy — PrX, c': Sch‘l);,p — PrR,

and for each morphism f of B-schemes, a transformation f,:= C,(f) — C.(f) =:
[« which is invertible when f is proper, satisfying the projection formulae, smooth
and proper base change, relative purity and ‘the rest’.
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Remark 2.14. We refer to [1, Scholie 1.4.2] or [11, Theorem 2.4.50] for more
extensive (but still incomplete) lists of properties. Notably not included in this list
is everything on duality, for which see Remark 2.17 and Section 2D3. Some aspects
of the proof of Theorem 2.13 will be discussed in Section 3.

Theorem 2.15. Let ¢ : C — D be a morphism of presentable coefficient systems.
Then there are natural transformations

i == ¢f*, d(—) @d(—) = ¢((—) ® (—)), fio = ¢f,
ofs — fud,  ¢Hom(—, —) — Hom(p(—), #(-)), of — f'o,

the first three of which are always equivalences, and the last three of which are so
‘in good cases’.

Remark 2.16. For example, ¢ commutes with direct image along proper mor-
phisms, and with exceptional inverse image along smooth morphisms. Further
‘good cases’ will be discussed in Section 2D3.

Remark 2.17. Theorems 2.13 and 2.15 are our main justification for viewing
coefficient systems as a stand-in for six-functor formalisms. Let us repeat the
caveats already alluded to:

(1) The results are on the face of it about presentable coefficient systems only. But
analogous statements can be deduced for small coefficient systems (Corollary 2.31).
And all known examples are either small or presentable.

(2) Theorem 2.13 does not say anything about duality, an important topic in the
context of six-functor formalisms (as briefly discussed in Section 1). This is a
consequence of our goal to be as encompassing as possible. For general coefficient
systems, duality cannot be expected unless one restricts to coefficients that are
‘small’ in a certain sense. This will be taken up again in our short discussion of
constructibility (Section 2D3).

(3) The last caveat is related. Namely, Theorem 2.15 does not quite say that a
morphism of coefficient systems ‘commutes’ with the six operations. However, in
good cases it does so when restricted to ‘constructible coefficients’; see Section 2D3.

Remark 2.18. It is clear that in Theorem 2.13 the extension of a coefficient system
C = C* to C) is essentially unique (see, for details, Section 3A). The importance
of the axioms (Localization) and (A'-homotopy) in constructing the exceptional
functoriality was first observed by Voevodsky and was formalized in his notion
of cross-functors [15]. A version of Theorem 2.13 was first proved by Ayoub [1].
He worked at the level of triangulated categories and restricted to quasiprojective
morphisms. The latter restriction was removed by Cisinski and Déglise [11] albeit
with an additional axiom. The homotopy-theoretic difficulties in lifting these results
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to oo-categories were addressed by another host of mathematicians, including Liu
and Zheng [36; 37], Robalo [42] and Khan [31].

Many consequences can be deduced from Theorems 2.13 and 2.15. We refer to
[1; 2; 11] for comprehensive treatments. As an example, we mention the following
result. It can be viewed as a distillation of the properties discussed in Section 1E5
and in the language of co-categories it becomes arguably even more powerful.

Corollary 2.19. Let C be a presentable coefficient system. The underlying functor

C : Schy — Cateo

is a cdh-sheaf.

Remark 2.20. For the precise meaning of this statement for general topologies we
refer to [18, §2] or [6, Definition 2.3.1]. In the particular case of the cdh-topology,
there is a very convenient criterion, however, for which see the proof below.

In practice, this means that C can be studied locally for the cdh-topology. For
example, if B = Spec(k) with k a characteristic-zero field, then C is uniquely
determined by its restriction to Smy, the category of smooth k-varieties.

Proof. By (Localization), the oo-category C(©) is final. It then remains to check
that C takes distinguished Nisnevich (resp. abstract blow-up) squares to Cartesian
squares in Cat,,. This amounts essentially to the existence of Nisnevich—Mayer—
Vietoris triangles and (abstract) blow-up triangles, which we deduced in Section 1E5
from localization and smooth and proper base change. All of these hold in C, by
Theorem 2.13.

For similar proofs, see [11, §3.3.a—b; 26, §6.3]. O

2C. Other approaches. The framework of coefficient systems is closely related to
others in the literature. Let us summarize some of these relations, without trying to
be exhaustive.

Remark 2.21. (1) A functor C : Sch)y — Cat:® is a coefficient system if and
only if passing to homotopy categories gives a closed symmetric monoidal stable
homotopy 2-functor Ho(C) : Sch(;p — TrCat® in the sense of [1]. Similarly, a natural
transformation ¢ : C — D between coefficient systems is a morphism of coefficient
systems if and only if passing to homotopy categories produces a morphism of
symmetric monoidal stable homotopy 2-functors.

(2) A functor C : Sch;;p — Cat®.® is a coefficient system if and only if passing to
homotopy categories gives a motivic triangulated category Ho(C) : Sch%p — TrCat®
in the sense of [11]. This is not completely obvious since in loc. cit. an additional
axiom (Adj) is assumed. It follows from Theorem 2.13 that this axiom is automatic.
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(3) It follows from this last observation that presentable coefficient systems also
have been considered before, under the name of motivic categories of coeffi-
cients [31].

(4) Ultimately, a more complete and thus satisfying framework for six-functor
formalisms might be provided by the technology of [21], using the (co, 2)-category
of correspondences. However, some of this technology rests on assumptions that
are — as far as we are aware — not yet verified in the literature.!'?

2D. Internal structure of framework. From a bird’s-eye view, the framework of
coefficient systems consists of cohomology theories and their manifold relations.
For example, Grothendieck’s comparison isomorphism between algebraic de Rham
cohomology and Betti cohomology should be reflected in an isomorphism of
coefficient systems over Spec(C),

D°®C~Dh,

that is, by an enhanced version of the Riemann—Hilbert correspondence between
(derived) constructible sheaves and regular holonomic %-modules (cf. Remark 1.24).
In particular, extending scalars at the level of cohomology groups is thus reflected
by an operation at the level of coefficient systems.

This and many more phenomena should, in other words, be reflected in a rich
internal structure of the co-category CoSy. We will be able to provide just a glimpse
of this structure if only because mathematicians have barely started to investigate it
systematically.

2D1. Initial object. Let’s say we wanted to construct the ‘universal’ coefficient
system, that is, the initial object of CoSy. We would probably start with the initial
required structure and then try to freely enforce the axioms of coefficient systems
one by one. As we will see, this can in fact be done, more or less, and the resulting
coefficient system turns out to be SH, (stable) motivic homotopy theory!

Remark 2.22. One might find this result remarkable. Without mentioning SH in
the definition, the oo-category of coefficient systems knows about it in a strong
sense. It is probably less remarkable once one remembers that the approach to
six-functor formalisms axiomatized in the notion of coefficient systems goes back
to Voevodsky’s study of the functoriality of SH(X) in X.

We now put this into practice, trying to construct the universal coefficient system.
For more details and generalizations, see [19].

Construction 2.23. The construction proceeds in several steps.

121 any case, presentable coefficient systems should extend uniquely to this framework; see [31,
§4.2].
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(1) Coefficient systems encode the ()*- and ®-structure. The initial (as well as
final) functor doing so is
% : Sch®? — Cat®,

that sends every scheme to the final category with the only possible symmetric
monoidal structure. '3

(2) This is not the initial coefficient system because morphisms of coefficient
systems are required to commute with ff-push-forwards. For example, given a
coefficient system C and smooth morphism p : P — X, we have an object

H,(P):=pl e C(X)

and by (Smooth base change) and (Smooth projection formula) we have canonical
equivalences
H,(P)® H,(P') = H,(P xx P’)

in C(X). With some work one can show that
H, :Smy — C(X)

defines a functor, symmetric monoidal with respect to the Cartesian structure on
smooth X-schemes, and this suggests that the functor

X + (Smy)* € Cat®

is worth a closer look. In fact, with more work one can show that it is the initial
functor satisfying (Left).

(3) Passing to the next axiom we see that (Right) is not satisfied by this functor.
The only way we know of producing right adjoints in this context is to pass to
presentable oo-categories in order to invoke adjoint functor theorems. Thus,

X > P (Smy),

the category of presheaves on Smy with the pointwise symmetric monoidal structure
(which is the Day convolution in this case). This forces us to work in the context of
presentable co-categories from now on though. (Or at least co-categories admitting
small colimits.)

(4) It is unclear how one would go about freely enforcing (Localization). On the
other hand, the axiom seems to be saying that many questions about a coefficient
system can be studied locally for the Zariski topology. And indeed, we saw that
it plays an integral role in proving cdh-descent (Corollary 2.19). This suggests
that we could get some way towards the axiom by restricting to sheaves for the

3Note that stability is a condition in the co-categorical world so we will not restrict to stable
oo-categories initially but rather enforce it eventually. (In fact, it will come for free.)
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cdh-topology. And this ‘works’ except for the fact that the cdh topology isn’t a very
natural topology on smooth schemes.'* It turns out that the Nisnevich topology,
lying between the Zariski and the cdh-topology, works even better and eventually
gives the ‘same’ result:

X — LNis@(Smx).

Here we write Ly, for the (accessible) localization of presentable oo-categories
with respect to Nisnevich-Cech covers.

(5) Enforcing the next two axioms, (A!'-homotopy) and (Tate stability), seems
comparatively straightforward: we formally invert the canonical projection A }3 — P
for each smooth P — X, and we formally ®-invert the cofiber of P = [P’},. To
make sense of the cofiber it is necessary to pass freely to pointed co-categories. !>
This doesn’t bother us in the least since in the end we want to end up in stable
oo-categories anyway. Thus we set

X = (Latunis® (Smx) [P, 00)® 1.

The co-category on the right is SH(X), the stable motivic (or A'-Yhomotopy cate-
gory on X. It is a presentable symmetric monoidal co-category. Note that since
(P!, 00) = (G, 1) ® S! (see Exercise 1.45), the oo-category is automatically stable.

Remark 2.24. It follows that the resulting functor SH : Sch®? — Pr?t’® has the
required shape and it remains to verify the axioms of a coefficient system. All
of them are formal except for (Localization). The latter is proved by Morel and
Voevodsky [39] under the name of the glueing theorem.

Remark 2.25. Summarizing, there are at least three ways of thinking about stable
motivic homotopy theory:

(a) Explicitly, the oo-category SH(X) can be constructed as
(Latonis? (Smy) )LP', 00)® '],

(b) Robalo [42] shows that this symmetric monoidal presentable co-category also
admits a characterization: any ®-functor Smy — D into a stable presentable
oo-category factors uniquely through SH(X) as soon as it satisfies Nisnevich-
excision, A!-invariance, and ®@-inverts (P!, co).

(c) By the discussion above [19], the coefficient system SH is the initial object of
CoSy™.

This ties back to Section 1A: While the second point concerns cohomology theories
(at the set-level), the third point is the exact analogue at the category-level and
concerns six-functor formalisms.

l4gee [32] for how to circumvent this problem.
15There are also subtle technical difficulties related to the ®-structure for which we refer to [42].
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2D2. Ind-completion. Since Theorems 2.13 and 2.15 apply to presentable coeffi-
cient systems only, but many of the coefficient systems considered in Section 1 are
small, it is very useful to have a process that takes a small coefficient system and
outputs a presentable one. This process is simply Ind-completion (see Remark 2.12).

Proposition 2.26. There is a functor
Ind : CoSyy" — CoSyj',

which takes a small coefficient system C to the functor X — Ind(C (X)), the target
being endowed with the Day convolution product. ([

Exercise 2.27. Prove this result. (A useful fact is that if f - g is an adjunction
between small stable oo-categories, then their unique colimit-preserving extensions
Ind(f) 4 Ind(g) again form an adjunction between their Ind-completions.)

Remark 2.28. So, given a small coefficient system C, we apply Theorem 2.13 to
Ind(C) and obtain the full six operations on the system of co-categories Ind(C (X)).
However, at this point we do not know whether the exceptional functoriality restricts
to the subsystem C(X) C Ind(C(X)). It turns out that it does and the proof is not
difficult.

Lemma 2.29. Let f : X — Y be a morphism of B-schemes, let M € C(X) and
N e C(Y). Then

fAM eC(Y), f'NeCX).

Proof sketch. For the first statement we factor f as an open immersion followed by
a proper morphism and reduce to proving each case separately. In the latter case we
have fiM = f,M € C(Y) and we win. In the former we have iM = fuM € C(Y)
and we win again.

For the second statement we use (Localization) to show that an object L €
Ind(C (X)) belongs to C(X) if (and only if) L|y, € C(U;) for some open cover
(U;) of X. In other words, the question is local on X. In particular, we can assume
that f is quasiprojective, and factor it as a closed immersion followed by a smooth
morphism. The first case then follows from (Localization) and the second case
follows from relative purity. ([

Exercise 2.30. Fill in the details of this proof sketch.

Corollary 2.31. Theorems 2.13 and 2.15 admit analogues for small coefficient

systems.'©

160f course, in this case the four functors ()*, ()x, ()1, ()! take values in small stable
oo-categories.
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2D3. Constructibility. Let C be a coefficient system.

Convention 2.32. Denote by C#™(X) C C(X) the smallest full sub-co-category
that
(1) contains f:1{n} for f : ¥ — X smooth, n € Z, and

(2) is stable and closed under direct factors (we call such subcategories thick).
This defines the subfunctor C&™ C C of geometric origin (see Lemma 2.33).

Lemma 2.33. C&" C C:Sch®® — Catl:® is a subfunctor and the inclusion C&™ — C
commutes with fy for f smooth.

Proof. This follows immediately from the axioms (Smooth base change) and
(Smooth projection formula). ([

Example 2.34. (1) For C = SH, the geometric part coincides with the compact
part: the objects of SHE™(X) are precisely the compact objects in SH(X).!” Also,
SH is compactly generated so that Ind(SH#™) = SH.

(2) The same is true for C = DMy, Beilinson motives in the sense of [11] (or
rather, their co-categorical enhancement). That is, DM%m is the compact part and
Ind(D M%m) = DMg. If £ is a field there is a canonical equivalence

DME" (Spec(k)) = DME™ (k; )

with (the co-categorical enhancement of) Voevodsky’s category of geometric mo-
tives with rational coefficients [48].

(3) In the ¢-adic setting, ‘of geometric origin’ is close to ‘bounded-constructible’;
see [10].

Remark 2.35. Let C be a presentable (or just cocomplete) coefficient system. By
Section 2D1, there is a unique morphism of coefficient systems SH — C, and
Ce&™ C C is exactly the thick subfunctor generated by the image of SH&™.

We should now address the question whether C&#™ is a coefficient system as well.
We will not state sufficient conditions here and refer to the literature instead:

Theorem 2.36 [3, §3; 11, §4.2]. In ‘good cases’, C&™ is a coefficient system.

Example 2.37. An example to which the theorem applies is Beilinson motives
(Example 2.34). In particular one obtains, in this case, a very satisfying picture

17Recall that in an oo-category ‘6 with filtered colimits, an object M is compact if Mapq (M, —) :
% — T to the co-category of spaces preserves filtered colimits. If 6 is a stable co-category, this can
be tested at the level of homotopy categories and is equivalent to M being compact in the sense of
triangulated categories: homyq¢) (M, —) preserves direct sums.
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translating between small and compactly generated coefficient systems:

Ind

T~

CoSy"™ > DM{" DMg € CoSy™"

(-

Corollary 2.38. In the same ‘good cases’ assume ¢ : C — D is a morphism of
coefficient systems. Then

@|cem : CE™ — D
commutes with all six functors.
Remark 2.39. This improves on Theorem 2.15 in ‘good cases’.

Remark 2.40. There is a more general notion of constructibility for coefficient
systems over B. Instead of the generating set { f;1{n}} one may consider the
set { fxp* F} where F runs through a specified set of coefficients on the base B,
f:Y — X is smooth, and p : Y — B is the structure morphism. We recover the
geometric part by allowing only Tate twists as coefficients on B.

The more general notion is useful in the study of duality phenomena, one of the
topics of Section 1 which wasn’t addressed by the notion of coefficient systems
alone. We refer again to [3, §3; 11, §4.2] for in-depth discussions.

2D4. Miscellanea. Many other topics could be discussed in the framework of
coefficient systems, for example:

(1) We saw in Corollary 2.19 that coefficient systems satisfy cdh-descent. Some
of them satisfy descent with respect to stronger topologies, however, such as étale
descent (and therefore eh-descent) or h-descent [11, §3]. This can be useful in
extending coefficient systems from schemes to algebraic stacks via an atlas, say.

(2) It makes sense to consider linear coefficient systems and scalar extension. For
example, in some cases being Q-linear implies h-descent [11, §3.3.d]. A general
discussion of scalar extension can be found in [18, §8], and we will discuss one
application of this technique in Section 3B.

(3) Orientable coefficient systems are somewhat simpler to work with in the sense
that ‘all Thom twists are Tate twists’ (see Example 1.34 and [11, §2.4.c]).

In these and many other cases there should be corresponding initial objects (similarly
to Section 2D1).

Let us mention just two instances of possibly more surprising phenomena. As
remarked at the beginning of this section, clearly, a lot remains to be explored!
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Example 2.41. There is a functor
exp : CoSyp — CoSyp

which ‘exponentiates’ a coefficient system, and whose study we initiated in [22].
When applied to DMg it produces a new coefficient system DM%Xp that should
enhance Fresan and Jossen’s theory of exponential motives [20].'"® And when
applied to mixed Hodge modules, it should produce an enhancement of Kontsevich
and Soibelman’s exponential mixed Hodge structures [34]. An interesting aspect
of this construction is that every exponentiated coefficient system comes with an
additional ‘seventh’ operation, the Fourier transform familiar from the £-adic theory
as well as @-modules (see, for example, [29; 30]).

Example 2.42. Let [, be a finite field and choose an algebraic closure F. If C is a
coefficient system on [F-schemes, one can define a functor

W . g hOP SL®
C" :Schg” — Catyg

by the formula, for any [,-scheme X,
% . Fr
CY(X) =1lim(C(X x;, ) —= C(X xg, P)),
id

where Fr denotes the g-Frobenius on X and the limit is taken in Cat®y®. The super-
script is in honor of Weil since in the case of £-adic cohomology, the co-category
CV(X) can be seen as a derived category of Weil sheaves [25]. With some work
(see Exercise 2.43 below) one shows that this underlies a functor

LS CoSYspecr) = COSYspecr,) 19

Exercise 2.43. The goal of this extended exercise is to prove C" of Example 2.42
is a coefficient system. This can be done as follows:

(1) Let w : C — D be a natural transformation of functors Sch} — Cat3:® and
assume that

(1.1) D is a coefficient system,

(1.2) C admits left adjoints p; for smooth morphisms p, and @ commutes with
them,

(1.3) wx : C(X) — D(X) is conservative for each X € Sch;;p.

Show the functor C satisfies (Smooth base change), (Smooth projection formula),
(Al—homotopy) as well as items (1) and (3) of Exercise 2.11.

18More precisely, DMeBXP (k) bears to their theory the same relation as DMy (k) to Nori motives,
for k C C a field.
19This example was brought to my attention by Joshua Lieber.
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(2) Assume in addition that C satisfies (Right) and that « commutes with f, for
all immersions f. Then C also satisfies (Localization) and (Tate stability), hence
is a coefficient system.

(3) Use the previous point to show that CV of Example 2.42 is a coefficient system.
Hint: for any diagram F : [ — Catf;o the canonical functor lim; F — [] F@)is
conservative.

iely

3. How?

The question alluded to in the title can be understood in at least two ways:
(A) How to construct six-functor formalisms in general?

(B) How to obtain six-functor formalisms from coefficient systems? That is, how
to prove Theorem 2.137?

The two are related. Often the ®-structure and *-functoriality is produced without
much effort and it is the !-functoriality that poses the most serious difficulties.
Below we will focus on the problem of constructing exceptional direct and inverse
images, and we will refer to the literature for the problem of proving the expected
properties.

3A. Exceptional functoriality for coefficient systems. We start with question (B)
and for this we want to follow the strategy employed by Deligne to produce
exceptional functoriality in £-adic cohomology [45, §XVIL3, 5.1]. As we will
see, working in the generality we do, additional difficulties arise that need to be
addressed.

Remark 3.1. Let f be a morphism of B-schemes. Since f is separated and of finite
type (Convention 2.1), we may use Nagata compactification to find a factorization

f
SNoAT G2

with j an open immersion and p a proper morphism. We would then like to set

Jri=paJs
but this definition poses several difficulties:
(1) Well-definedness: Is it ‘independent’ of the factorization?
(2) Right-adjoint: Why is there a right adjoint f'?
(3) Functoriality: In what sense is it functorial in f?

We will address each of these difficulties in turn.
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3A1. Well-definedness. Consider the category Comp( f) of compactifications of f:
its objects are factorizations as in (3.2), with morphisms (necessarily proper) making

the obvious diagram commute:
LN

r

NI

The category Comp( f) is easily seen to be cofiltered. In comparing (p1)«(j1)s
with (p2)«(j2)y we may therefore assume a morphism r as above. We then find

(P00 = (P2)er (D = (P2 (o),

where the last identification would follow if we could ‘commute’ j;’s with p,’s.
This is known as the support property:

(Support) Given a Cartesian square

with r; proper and j, an open immersion, the induced transformation (j2)z(r2)s —
(r1)«(j1)¢ 1s an equivalence.

Exercise 3.3. Show that (Proper base change) = (Support).

Remark 3.4. As a consequence of Exercise 3.3 it is natural to try to establish
(Proper base change). We sketch the main ideas that go into deducing it from the
axioms of a coefficient system. The same strategy will be employed in Section 3A2.

(1) Recall that we are given (1.59) with f proper, and would like to show the
transformation g* f, — k,.h* from (1.60) to be an equivalence. By (Localization)
and Chow’s lemma we reduce to f projective, f = pi where i is a closed immersion
and p: [P"}i, — Y is the canonical projection. This reduction step is written out in
detail in [6, 4.1.1.(1)].

(2) The case of i, (‘closed base change’) follows easily from (Localization) so we
further reduce to the case of p,.

(3) Hence, in addition to being projective, p is also smooth of relative dimension d
so we expect to observe Atiyah duality (Exercise 1.31). In other words, one ought
to be able to show a canonical equivalence

P = pe{—Tp}. (3.5)
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Although this is a rather explicit problem, the proof is long and involved. Moreover,
constructing a candidate for the equivalence also involves proving some form of
purity. We refer to [1, Théoréme 1.7.9] for details.

(4) Having established the equivalence (3.5), we are reduced to show that both
pz and {T},} ‘commute with inverse images’. This is exactly (Smooth base change)
and closed base change (recall Remark 1.38).

3A2. Right-adjoint. It is clear that the functor j; admits a right adjoint, namely j*.
To show that p, does as well (for p proper) we will use the adjoint functor theorem
for presentable oco-categories. In other words we will show that p, preserves
colimits. The advantage of this formulation of the problem is that it becomes
amenable to the same attack as the one employed in proving (Proper base change)
above: one reduces to projective and further to smooth projective morphisms and
then obtains the identification (3.5). Both of the functors on the right are left adjoints
and we conclude.

3A3. Functoriality. Well-definedness discussed in Section 3A1 is only one aspect
of the problem that is posed by functoriality. Recall that we want to construct a
functor Cy: Schy — Prl. Deligne achieved this at the level of triangulated categories
by setting, for f: X — Y,

fri= lim PxJts (3.6)
(p.j)eComp(f)*

using that Comp( f) is cofiltered and the functor
xof : Comp(f)°® - Hom(C(X), C(Y))

sends morphisms to isomorphisms, by (Support). But even constructing such a
functor * o § is a daunting task in the context of co-categories as it would involve
providing, in addition to the homotopies of (Support), homotopies between these
and so on ad infinitum.

Remark 3.7. One solution to this homotopy theoretic problem was developed
in [36], based on multisimplicial sets. It is very general but unfortunately rather
complicated. We would like to describe a more elementary solution specific to the
given problem. It is based on our recent collaboration with Ayoub and Vezzani [6].

Remark 3.8. The basic idea is very simple. Let f : X — Y be a morphism of
B-schemes which admits a compactification f:

x L.y

i ‘ (3.9)

X—f>

-

=~
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Here, the square commutes, j and k are open immersions and X and Y are proper
B-schemes. We obtain a diagram of solid arrows
S
cx) s C)
jnl lkn

C(X) —> C(Y)

and as f is proper we would like to define f; so that the square ‘commutes’. Again,
this is not a tenable strategy in the context of co-categories. Being commutative is
not a property but a structure and we are back to the exact same issue as before.

However, we can avoid this issue with the following trick. Define a full sub-oo-
category C (X, X), of C(X) as the essential image of Jg» and similarly for k. (In
particular, we have an equivalence C(X)~C(X, X)) (Support) implies that f*
restricts to a morphism C (X, X), — C(Y,Y),. The gain is that the functor f* is
already part of a functor C, : Schy — PrR which encodes these higher homotopies.

After outlining the basic idea we can now summarize the construction of the
functor C,.

Construction 3.10. We will use the diagram

Compyp

S

Schy, Schi;*P

in which Comp denotes the category whose objects are palrs (X, X) as above and
whose morphisms are pairs (f, f) as in (3.9). Forgetting X (resp. X) defines the
functor w (resp. m). (Here, Sch% P denotes the category of B-schemes and proper
morphisms.)

Starting with C and passing to C, as above we obtain the functor Cy o 7 :
Comp, — Pr® that informally can be described as

X, X)> CX), (f, ) fu

In fact, this functor takes values in Pr" as well, by Section 3A2.
If C(—, —):Compy — Pr! denotes the full subfunctor of C, o 7 considered in
Remark 3.8 then we define

Cy:=LKE,C(—, —);: Schy — Pr",

the left-Kan extension along w. This last step thus removes the dependency of the
factorization in a similar way as in (3.6).
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Remark 3.11. It is not difficult to prove that C\(f) recovers p, j: up to homotopy
for any factorization as in (3.2). For details, we refer to [6, §4.3]. From there, one
can go on and prove the expected properties of this six-functor formalism; see [1]
or [11].

3B. Motivic coefficient systems. Once one has Theorem 2.13 at one’s disposal, of
course, question (A) becomes: how to construct coefficient systems? In this brief
section we will describe an elegant and powerful procedure that has been employed
in the literature to produce ‘motivic’ coefficient systems. This topic would have
just as well fit in with Section 2D.

Remark 3.12. Let C € CoSygr be a coefficient system, say presentable to fix
our ideas. As we saw in Section 2D1, there is an essentially unique morphism
p¢ : SH — C from the initial object which can be viewed as the (homological)
C-realization: For any B-scheme X, the functor pf(X) : SH(X) — C(X) sends
a smooth X-scheme Y to its homology coefficient H,(Y) in C(X). This functor
admits a right adjoint ,o*C (X) : C(X) — SH(X) that has a canonical lax symmetric
monoidal structure (since pg(X) underlies a symmetric monoidal functor). In
particular we see that p*c (B)1 € CAlg(SH(B)) is a motivic ring spectrum which
we denote by 6.

This object represents C-cohomology in the sense that for any smooth B-
scheme X, we have by adjunction

7o Mapsyyg) (X, 6(m)[n]) = moMape gy (He(X), 1(m)[n]) = H" (X; 1(m)).
The observation we want to make now is that every motivic ring spectrum represents
some cohomology theory.

Convention 3.13. Let o € CAlg(SH(B)) be a motivic ring spectrum and denote
(abusively) by A x := f*sd € CAlg(SH(X)) its pull-back to any B-scheme f: X — B.
The association X +— Modg, (SH(X)) =: SH(X; s{) underlies a functor

SH(—; s4) : Sch — Pry® (3.14)
that—in anticipation of the next theorem — we call the motivic coefficient system
represented by .

Theorem 3.15. The functor SH(—; A) of (3.14) is a presentable coefficient system
and the canonical ‘free functor’ p} : SH — SH(—; o) is a morphism of presentable
coefficient systems.

A proof of this result can be found in [18, Theorem 8.10]; see also [11, §7.2, 17.1].

Remark 3.16. We may now combine the constructions of Remark 3.12 and
Convention 3.13. That is, in the situation of Remark 3.12 we obtain a factorization
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of p¢ : SH — C through the motivic coefficient system associated with C:
0% 2%
SH — SH(—; %) — C.

The induced functor p;. factors further through the localizing subfunctor Cof C
generated by the part of geometric origin (Section 2D3). By a tilting argument, the
resulting morphism

pe SH(—;€) — C
is in fact an equivalence in some cases of interest; see [11, Theorem 17.1.5].

Remark 3.17. In summary, we have procedures which can be upgraded to functors:

SH(—;-)
™
CAIlg(SH(B)) CoSyE'
\/
p«(B)1

Example 3.18 [11, 17.1.7]. Consider the Betti realization functor
Pp : SH(Spec(C)) — D(Q)

that sends a smooth complex scheme X to the rational singular chain complex
Sing(X*") ® Q on the underlying complex analytic space. It is naturally symmetric
monoidal —in fact, it is part of a morphism of coefficient systems on complex
schemes [3]:

SH — D((—)™; Q).

The associated motivic ring spectrum % := pf Q € CAIg(SH(©)) is the (rational)
Betti spectrum that represents Betti cohomology. We will now describe the resulting
coefficient system SH(—; 3B) more explicitly, following [5, §1.6].

First, observe that for a general complex scheme X, the functor

P (X) : SH(X; B) — D(X*; Q)
is far from an equivalence. Instead, it factors through
SH(X; B) — Ind(D2(X; @)) — D(X™; @),

where the second arrow is the colimit-preserving functor extending the identity on
DE(X ; Q). The first functor in this factorization is in fact fully faithful, and the
image is generated under colimits, desuspensions and truncations (with respect to
the canonical t-structure) by sheaves of the form f, (D, where f : Y — X is proper;
see [5, Theorem 1.93].
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Example 3.19 [18]. Saito’s derived categories of mixed Hodge modules do not,
in an obvious way, admit an enhancement to a coefficient system. (As a result,
the Hodge realization functors are not known to commute with the six functors on
compact objects.) On the other hand, there is a Hodge realization functor

piy - SH(Spec(C)) — D(Ind(MHS%))

with values in the derived co-category of Ind-completed polarizable mixed Hodge
structures over @. The associated motivic ring spectrum ¥ := pl@Q(0) is the
absolute Hodge spectrum that represents absolute Hodge cohomology. Drew calls
the resulting coefficient system SH(—; #) motivic Hodge modules, and they satisfy
many of the properties expected of a coefficient system that should capture mixed
Hodge modules of geometric origin. In line with this, he conjectures that for each
complex scheme X, the triangulated category of compact objects in Ho(SH(X; 7))
embeds fully faithfully into Saito’s D°(MHM(X)).

Example 3.20 [46]. As in Example 3.19, until recently there was no known en-
hancement of Voevodsky’s category of motives over a field, DM&™ (Spec(k); Z) to a
coefficient system in mixed characteristic. (The situation was better understood with
rational coefficients and/or in equal characteristic.) Spitzweck constructs a motivic
ring spectrum Jl € SH(Spec(Z)) that represents Bloch—Levine motivic cohomology
and then defines

SH(—; ) : Sch®? — P1r];t’®

that can be seen as a coefficient system of integral motivic sheaves. Over a field k
the compact part of SH(Spec(k); M) is equivalent to DME™ (Spec(k); Z), while with
rational coefficients and for any scheme X one recovers Beilinson motives:

SH(X; M ® Q) ~ DMp(X).

3C. Exceptional functoriality for RigSH. We have two goals for this last section.
First, we want to say something regarding question (A) at the beginning of Section 3.
And secondly, we want to give an example of a six-functor formalism outside the
world of schemes (and topological spaces) that have dominated the discussion so far.

Remark 3.21. In the context of schemes, Theorem 2.13 provides a very useful
criterion for recognizing six-functor formalisms. In contexts that are not too different
from schemes one can hope to establish a similar criterion; see, for example, [33]
for (certain) algebraic stacks. However, in general one shouldn’t expect the axioms
of coefficient systems—even if interpreted appropriately —to be sufficient to
guarantee the existence of !-functoriality.

Rigid (or ‘nonarchimedean’) analytic geometry is arguably an example of a
theory that is too different for a successful transfer. In the following pages we
want to describe how a different kind of transfer allows one to construct !-functors
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(and prove the expected properties) on the ‘universal’ rigid-analytic theory, namely
rigid-analytic stable motivic homotopy theory RigSH. This is a report on the work
with Ayoub and Vezzani [6] already mentioned in Section 3A3.

Remark 3.22. Rigid-analytic geometry is the analogue of complex-analytic ge-
ometry over nonarchimedean fields, e.g., p-adic fields. The theory retains both
algebraic and analytic aspects, and it has found many applications in arithmetic
algebraic geometry, particularly in the wake of Scholze’s work on perfectoid spaces
and p-adic geometry.

Rigid-analytic spaces in the sense this term is used in [6] form a category RigSpc
that encompasses both Tate’s rigid-analytic varieties (and Berkovich spaces) as well
as a large class of adic spaces (e.g., all ‘stably uniform’ ones [9]) in the sense of
Huber. While ridding the treatment of unnecessary Noetherianity assumptions was
a goal of [6], these technical details will not concern us in this short outline.

Remark 3.23. The construction of RigSH is originally due to Ayoub [4] and mod-
eled on Morel and Voevodsky’s construction of SH (see Section 2D1). In fact, the
two are entirely parallel according to the ‘dictionary’

Sch «~ RigSpc,
Al «rs B,
G e~ T.

Here B' is the closed unit ball and T B! the annulus.

Unsurprisingly and in a completely parallel fashion, RigSH comes with a closed
symmetric monoidal structure and x-functoriality. However, there is no analogue
of Theorem 2.13 available, and Ayoub was able to construct the !-functoriality only
for morphisms that arise as the analytification of algebraic morphisms (that is, those
coming from Sch).2 The original goal of [6] was to remedy this.

Remark 3.24. Let us explain why an analogue of Theorem 2.13 is not available
and in fact might not be expected. Indeed, in following the strategy of Section 3A
one encounters the following problems in the rigid-analytic world:

(a) The analogue of Exercise 3.3 does not hold (a priori), that is, proper base
change does not imply the support property. The underlying reason is that
while (Localization) holds for RigSH, it is of limited use since the complement
of an open immersion is not, typically, a rigid-analytic space.

(b) At several places in Section 3A we used Chow’s lemma to reduce questions
about proper morphisms to projective ones. However, an analogue of Chow’s
lemma is not available in rigid-analytic geometry, thus making this strategy
infeasible.

201y fact, he obtained this as an application of a version of Theorem 2.13.
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Remark 3.25. On the other hand, morphisms locally of finite type between rigid-
analytic spaces are still weakly compactifiable, at least locally. More precisely,
every f : X — Y locally of finite type is, locally on X, the composition of a locally
closed immersion followed by a proper morphism. Therefore, once one knows
(Support) and the existence of right adjoints to proper push-forwards one can then
follow essentially the same strategy in constructing the exceptional functoriality as
in Section 3A3. The existence of the required right adjoints follows easily from the
fact that the co-categories RigSH(X) are compactly generated and that the inverse
image functors along proper morphisms preserve compact objects.

In the remainder of this section we will sketch how to prove (Support).

Remark 3.26. The proof still employs a transfer from algebraic to rigid-analytic
geometry albeit in a very different way. It is based on Raynaud’s approach to
rigid-analytic geometry that can be roughly described by the picture

FSch

V X (3.27)

Sch RigSpc

Here, formal schemes sit at the top and admit two functors: the ‘special fiber’ that
associates to & its underlying topological space with the reduced scheme structure
o (X), and the ‘generic fiber’ p that is a categorical localization. More precisely, the
category RigSpc is, as a first approximation, the localization of FSch with respect
to so-called ‘admissible blow-ups’: blow-ups with center ‘contained in the special
fiber’. This approximation becomes correct if one imposes finiteness conditions on
the formal schemes involved (adic with finitely generated ideals of definition) and
if one allows rigid-analytic spaces to be glued along open immersions.

Remark 3.28. Passing to stable motivic homotopy theory in the three contexts in
parallel gives rise to a roof like so,

FSH
o* p
HU* p* %

where the components of the natural transformations (—)* are symmetric monoidal
functors with right adjoints (—),, and where o* - o, is an adjoint equivalence, by
localization for FSH. We continue to denote by p* (resp. p.) the functors at the
bottom that make the triangle commute.
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The basic idea in proving (Support) for RigSH is to apply p. to the morphism
(j2)2(r2)« — (r1)«(j1)z and use (Support) for SH to show it is an equivalence. This
requires two inputs:

(a) The functor p, needs to be sufficiently conservative. While it isn’t on the nose,
it is still true (and easy to prove) that the family (for fixed §)

(RigSH(S) 1> RigSH(X) 2> SH(o (1)) ,,

is jointly conservative, where f : X — S runs through smooth morphisms of
rigid-analytic spaces and & is a chosen formal model of X.

(b) Itis clear that f* (resp. p,) commutes with the (j;); and the (p;) (resp. with
the (p;)«) so it remains to prove that p, commutes with the (j;)z.

This last point turns out to be quite involved and required a systematic study of
RigSH. We will not go into the details here and refer to [6, Theorem 4.1.3] instead.
On the other hand, this systematic study leads to other results of independent interest
which we do want to mention.

Theorem 3.29 [6, Theorem 3.3.3]. (1) The components of the natural transforma-
tion SH(o (=), ps«1) — RigSH(p(—)) are fully faithful.

(2) The natural transformation SH (o (—), pQ) — RigSH(p(—), Q) exhibits
the latter as the rig-étale sheafification of the former.

Here, the natural transformations in the statement are between PrL-valued func-
tors on RigSpc® (viewed as having the same objects as FSch; see Remark 3.26).
The notation SH(X, A) already employed in Section 3B is a shorthand for the
oo-category of A-modules, A being a commutative algebra object in SH(X). The
first part of Theorem 3.29 can be read as saying that a whole chunk of RigSH admits
a completely algebraic description. We call this chunk the part of good reduction
and denote it by RigSH®". In fact, in good cases the commutative algebra p,1 can be
computed. For example, over the p-adic integers pf "1~ H*(G,,) and we deduce
that

SH"(F ) = RigSHE'(Q,,),

where the domain denotes the unipotent motivic spectra, that is, the localizing
sub-oo-category of SH(Gn r,) generated by the constant motivic spectra.

Finally, the second part of Theorem 3.29 gives a precise measure of the failure
of all rigid-analytic motives to be of good reduction. In comparison to the first part,
some additional hypotheses are necessary, for example étale-(hyper)sheafification
and Q-linearity are enough. All in all, Theorem 3.29 is a vast generalization of [4,
Scholie 1.3.26.(1)] which inspired the strategy in the first place.
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