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Pinwheel solutions to Schrödinger systems

Mónica Clapp and Angela Pistoia

We establish the existence of positive segregated solutions for competitive nonlinear Schrödinger systems
in the presence of an external trapping potential, which have the property that each component is obtained
from the previous one by a rotation, and we study their behavior as the forces of interaction become very
small or very large.

As a consequence, we obtain optimal partitions for the Schrödinger equation by sets that are linearly
isometric to each other.

1. Introduction

Consider the nonlinear Schrödinger system

−1ui+Vi (x)ui =|ui |
2p−2ui+

ℓ∑
j=1
j ̸= i

βi j |u j |
p
|ui |

p−2ui , ui ∈ H 1(RN ), ui >0, i =1, . . . , ℓ, (1-1)

where N ≥ 2, p > 1 and p < N/(N − 2) if N ≥ 3, βi j = β j i ∈ R, and Vi ∈ C0(RN ).
For the cubic nonlinearity (p = 2) in dimensions N = 2, 3 this system arises in the study of Bose–

Einstein condensation for a mixture of ℓ different states which overlap in space. It has been widely studied
in the last two decades. Most work has been done in the autonomous case (i.e., for constant Vi ). We refer
the reader to the recent paper [Li et al. 2022], where the authors provide an exhaustive list of references.
The nonautonomous case turns out to be much more difficult. Some results have been recently obtained
by Peng and Wang [2013], Pistoia and Vaira [2022], and Li, Wei and Wu [Li et al. 2022].

The system (1-1) for a more general subcritical nonlinearity in higher dimensions has been much less
studied. Even if it does not have an immediate physical motivation, finding a solution in this general setting
is a quite interesting and challenging problem from a mathematical point of view. Besides, Schrödinger
equations in higher dimensions have been widely studied in applications; see for instance [Dong 2011]. To
our knowledge, the only result for the system (1-1) in higher dimensions is that by Gao and Guo [2020],
who proved the existence of infinitely many solutions for only two equations (ℓ = 2) when the coupling
parameter β12 is negative, and both equations have a common potential V1 = V2 which does not enjoy
any symmetry properties, but satisfies suitable decay assumptions at infinity. However, nothing is said
about the sign of the solutions.
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Here we study (1-1) in a fully symmetric setting, namely we consider the nonlinear Schrödinger system

−1ui +V (x)ui =|ui |
2p−2ui +β

ℓ∑
j=1
j ̸= i

|u j |
p
|ui |

p−2ui , ui ∈ H 1(RN ), ui > 0, i = 1, . . . , ℓ, (1-2)

where N ≥ 4, 1 < p < N/(N − 2), β < 0, and V ∈ C0(RN ) satisfies the following assumptions for
some n ∈ N:

(V1) V is radial.

(V2) 0 < infx∈RN V (x) and V (x) → V∞ > 0 as |x | → ∞.

(V n
3 ) There exist C0, R0 > 0 and λ ∈

(
0, 2 sin π

ℓn

)
such that

V (x) ≤ V∞ − C0e−λ
√

V∞|x | for every x ∈ RN with |x | ≥ R0.

We look for fully nontrivial solutions to (1-2), i.e., solutions with all components ui different from
zero. Set

∥u∥
2
V :=

∫
RN

(|∇u|
2
+ V (x)u2).

We prove the following results.

Theorem 1.1. Let n ∈ N and assume that V satisfies (V1), (V2) and (V n
3 ). Then the system (1-2) has a

fully nontrivial solution u = (u1, . . . , uℓ) satisfying, for every (z, y) ∈ C × RN−2
≡ RN ,{

u1(e2π i/nz, θy) = u1(z, y) for every θ ∈ O(N −2),

u j+1(z, y) = u1(e2π i j/ℓnz, y) for every j = 1, . . . , ℓ − 1.
(1-3)

This solution has least energy among all nontrivial solutions satisfying (1-3). Furthermore, the energy of
each component satisfies

p − 1
2p

∥ui∥
2
V < nc∞,

where c∞ is the ground state energy of the Schrödinger equation

−1u + V∞u = |u|
2p−2u, u ∈ H 1(RN ). (1-4)

As usual, O(N −2) denotes the group of linear isometries of RN−2. The symmetries (1-3) of the
solutions given by Theorem 1.1 suggests calling them pinwheel solutions. For an autonomous system of
two equations in dimensions 2 and 3, solutions of this kind were found by Wei and Weth [2007].

Since the potential V is assumed to be radial, using the compactness of the embedding of the subspace
of radial functions in H 1(RN ) into L2p(RN ) and following the argument given in [Clapp and Szulkin
2019, Theorem 1.1], it is easy to see that the system (1-2) has a solution all of whose components are
radial. Note however that if u = (u1, . . . , uℓ) satisfies (1-2) and (1-3) and some component ui is radial,
then u1 = · · · = uℓ =: u and u is a nontrivial solution of the equation

−1u + V (x)u = (1 + (ℓ − 1)β)|u|
2p−2u, u ∈ H 1(RN ).
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Therefore, if 1 + (ℓ− 1)β ≤ 0, a nontrivial solution to the system (1-2) satisfying (1-3) cannot be radial.
In fact, more can be said. The following result, combined with Theorem 1.1, yields multiple positive
nonradial solutions when the assumption (V n

3 ) is satisfied for large enough n.

Proposition 1.2. Let β ≤ −1/(ℓ − 1), and for some m, q ∈ N, let um and uq be solutions to (1-2)
satisfying (1-3) with n = ℓm and n = ℓq respectively. If m ̸= q , then um ̸= uq .

One may wonder if the solution given by Theorem 1.1 for β ∈ (−1/(ℓ− 1), 0) is radial or not. The
following result gives a partial answer in terms of the nonautonomous Schrödinger equation (1-5). Namely,
if the least energy solutions to this equation that satisfy (1-6) are nonradial, then the solutions to the
system (1-2) satisfying (1-3) are nonradial for β close enough to 0.

Theorem 1.3. Let n ∈ N and assume that V satisfies (V1), (V2) and (V n
3 ). Let uk = (uk,1, . . . , uk,ℓ)

be a least energy fully nontrivial solution to (1-2) and (1-3) with β = βk . Assume that βk < 0 and
βk → 0 as k → ∞. Then, after passing to a subsequence, uk, j → u0, j strongly in H 1(RN ), u0, j ≥ 0,
u0 = (u0,1, . . . , u0,ℓ) satisfies (1-3), u0, j is a nontrivial solution to the equation

−1u + V (x)u = |u|
2p−2u, u ∈ H 1(RN ), (1-5)

and u0, j has least energy among all solutions to (1-5) satisfying

u(e2π i/nz, θy) = u(z, y) for every θ ∈ O(N −2), (z, y) ∈ RN . (1-6)

Furthermore,
p − 1
2p

∥u0, j∥
2
V < nc∞.

Next, we describe the behavior of the solutions given by Theorem 1.1 as β → −∞. As shown by
Conti, Terracini and Verzini [Conti et al. 2002; 2005] and Chang, Lin, Lin and Lin [Chang et al. 2004],
there is a connection between variational elliptic systems with strong competitive interaction and optimal
partition problems.

We shall call an ℓ-tuple (�1, . . . , �ℓ) of nonempty open subsets of RN an (n, ℓ)-pinwheel partition
of RN if �i ∩ � j = ∅ whenever i ̸= j and it satisfies following two symmetry conditions:

(S1) � j+1 = {(z, y) ∈ C × RN−2
: (e2π i j/ℓnz, y) ∈ �1} for each j = 1, . . . , ℓ − 1.

(S2) If (z, y) ∈ �1, then (e2π i/nz, θy) ∈ �1 for every θ ∈ O(N −2).

We denote the set of all (n, ℓ)-pinwheel partitions by Pn
ℓ . If � is an open subset of RN satisfying (S2),

a minimizer for
inf

u∈M�

p − 1
2p

∥u∥
2
V =: c�

on the Nehari manifold

M� :=

{
u ∈ H 1

0 (�) : u ̸= 0, ∥u∥
2
V =

∫
RN

|u|
2p, and

u(e2π i/nz, θy) = u(z, y) for all θ ∈ O(N −2) and (z, y) ∈ �

}
(1-7)
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is a least energy solution to the problem{
−1u + V (x)u = |u|

2p−2u, u ∈ H 1
0 (�),

u(e2π i/nz, θy) = u(z, y) for every θ ∈ O(N −2), (z, y) ∈ �.
(1-8)

We say that (�1, . . . , �ℓ) is an optimal (n, ℓ)-pinwheel partition for (1-5) if c� j is attained on M� j and
ℓ∑

j=1

c� j = inf
(21,...,2ℓ)∈Pn

ℓ

ℓ∑
j=1

c2 j .

Theorem 1.4. Let n ∈ N and assume that V satisfies (V1), (V2) and (V n
3 ). Let uk = (uk,1, . . . , uk,ℓ) be a

least energy fully nontrivial solution to (1-2) and (1-3) with β = βk . Assume that βk → −∞ as k → ∞.
Then, after passing to a subsequence:

(i) uk, j →u∞, j strongly in H 1(RN ), u∞, j ≥0, u∞, j ̸=0, u∞,i u∞, j = 0 if i ̸= j , u∞ = (u∞,1, . . . , u∞,ℓ)

satisfies (1-3), and ∫
RN

βku p
k, j u

p
k,i → 0 as k → ∞ whenever i ̸= j.

(ii) u∞, j ∈ C0(RN ), the restriction of u∞, j to the open set � j := {x ∈ RN
: u∞, j (x) > 0} is a least energy

solution to the problem (1-8) in � j , and (�1, . . . , �ℓ) is an optimal (n, ℓ)-pinwheel partition for (1-5).

(iii) RN ∖
⋃ℓ

j=1 � j = R ∪S , where R ∩S = ∅, R is an (m−1)-dimensional C1,α-submanifold of RN

and S is a closed subset of RN with Hausdorff measure ≤ m − 2. Furthermore, if ξ ∈ R, there exist i, j
such that

lim
x→ξ+

|∇ui (x)| = lim
x→ξ−

|∇u j (x)| ̸= 0,

where x → ξ± are the limits taken from opposite sides of R, and if ξ ∈ S , then

lim
x→ξ

|∇u j (x)| = 0 for every j = 1, . . . , ℓ.

(iv) If ℓ = 2, then u∞,1 − u∞,2 is a sign-changing solution to (1-5) satisfying (1-6).

Note that (iii) implies that the partition exhausts RN , i.e., RN
=
⋃ℓ

j=1 � j . Thus, every � j is unbounded.
The regularity properties of optimal partitions have been established, in different settings, for instance,

in [Caffarelli and Lin 2008; Clapp et al. 2021b; Noris et al. 2010; Soave et al. 2016; Tavares and Terracini
2012].

Theorem 1.4 establishes the existence of optimal partitions having an additional property: each set
of the partition is obtained from any other by means of a linear isometry. Pinwheel partitions are an
example of this type of partition, but others are conceivable. In Section 2 we present a general symmetric
variational setting for the system (1-2) that produces other examples.

The existence of sign-changing solutions to (1-5) having the additional property that their negative part
is obtained from the positive one by means of a linear isometry and a change of sign has been established
in [Clapp and Salazar 2012]. This includes those given by Theorem 1.4(iv). The tool for producing this
type of solution is a homomorphism from some group of linear isometries of RN onto the group with two
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elements. As shown in Section 2 this tool also serves to get positive solutions of the system (1-2) for ℓ = 2
with the property that each component is obtained from the other by composition with a linear isometry.
The general tool for obtaining a similar result for the system (1-2) of ℓ equations is a homomorphism into
the group of permutations of a set of ℓ elements.

Rather than search for results in the general setting of Section 2, we decided, for the sake of clarity, to
look at pinwheel solutions only. The solutions found in [Peng and Wang 2013; Pistoia and Vaira 2022] for
N = 2, 3 and p = 2 were of this type. Peng and Wang [2013] focused on the case where the potential V
is greater than its limit at infinity, and for a system of two equations, they established the existence of
pinwheel solutions for β sufficiently negative. Pistoia and Vaira [2022] raised the question of whether
solutions exist when V is below its limit at infinity and showed in that case that the system (1-2) has a
solution satisfying (1-3) for β close enough to 0. The energy of each component approaches nc∞ as β → 0.

Our results can be easily extended to dimension N = 2. In contrast, the dimension N = 3 requires a
more delicate analysis because compactness can also be lost by the presence of solutions to the autonomous
system (with V = V∞) that travel to infinity; see Remark 3.3.

In Section 2 we present the general variational framework and in Section 3 we study the behavior of
minimizing sequences of pinwheel solutions for the system (1-2). In Section 4 we prove Theorem 1.1
and Proposition 1.2. Section 5 is devoted to the proofs of Theorems 1.3 and 1.4.

2. The symmetric variational setting

Let G be a closed subgroup of the group O(N ) of linear isometries of RN , and for ℓ ≥ 2, let Sℓ be the
group of permutations of the set {1, . . . , ℓ} acting on Rℓ in the obvious way, i.e.,

σ(u1, . . . , uℓ) = (uσ(1), . . . , uσ(ℓ)) for every σ ∈ Sℓ, (u1, . . . , uℓ) ∈ Rℓ.

Let φ : G → Sℓ be a continuous homomorphism of groups. A function u : RN
→ Rℓ will be called

φ-equivariant if
u(gx) = φ(g)u(x) for all g ∈ G, x ∈ RN . (2-1)

Note that if u : RN
→ Rℓ is φ-equivariant, then u is Kφ-invariant, where Kφ := ker(φ).

These data define a G-action on H := (H 1(RN ))ℓ as follows:

(gu)(x) := φ(g)u(g−1x) for every g ∈ G, u = (u1, . . . , uℓ) ∈ H.

For u, v ∈ H 1
0 (RN ) we set

⟨u, v⟩V :=

∫
RN

(∇u · ∇v + V (x)uv) and ∥u∥V :=
√

⟨u, u⟩V .

The solutions to the system (1-2) are the positive critical points of the functional J : H → R given by

J (u) :=
1
2

ℓ∑
i=1

∥ui∥
2
V −

1
2p

ℓ∑
i=1

∫
RN

|ui |
2p

−
β

2p

ℓ∑
i, j=1
i ̸= j

∫
RN

|ui |
p
|u j |

p,
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which is of class C1. Its i-th partial derivative is

∂iJ (u)v = ⟨ui , v⟩V −

∫
RN

|ui |
2p−2uiv − β

ℓ∑
j=1
j ̸= i

∫
RN

|u j |
p
|ui |

p−2uiv

for any u ∈ H, v ∈ H 1(RN ). The functional J is G-invariant, i.e.,

J (gu) = J (u) for every g ∈ G, u = (u1, . . . , uℓ) ∈ H.

So, by the principle of symmetric criticality [Willem 1996, Theorem 1.28], the critical points of the
restriction of J to the G-fixed point space of H,

Hφ
:= {u ∈ H : gu = u for all g ∈ G} = {u ∈ H : u is φ-equivariant},

are critical points of J , i.e., they are the solutions to the system (1-2) satisfying (2-1). We denote by J φ

the restriction of J to Hφ . Note that

(J φ)′(u)v = J ′(u)v =

ℓ∑
i=1

∂iJ (u)vi for any u, v ∈ Hφ.

The fully nontrivial critical points of J φ belong to the set

N φ
:= {u ∈ Hφ

: ui ̸= 0 and ∂iJ (u)ui = 0 for all i = 1, . . . , ℓ}.

Observe that

J φ(u) =
p − 1
2p

ℓ∑
i=1

∥ui∥
2
V if u ∈ N φ.

Set
cφ

:= inf
u∈N φ

J φ(u).

We consider also the single equation

−1u + V (x)u = |u|
2p−2u, u ∈ H 1(RN )G, (2-2)

where H 1(RN )G
:= {u ∈ H 1(RN ) : u is G-invariant}, and we denote by J : H 1(RN )G

→ R and MG the
energy functional and the Nehari manifold associated to it, i.e.,

J (u) :=
1
2
∥u∥

2
V −

1
2p

∫
RN

|u|
2p (2-3)

and

MG
:=

{
u ∈ H 1(RN )G

: u ̸= 0, ∥u∥
2
V =

∫
RN

|u|
2p
}
.

Similarly, we denote by J∞ : H 1(RN ) → R and M∞ the energy functional and the Nehari manifold
associated to (1-4). Set

c∞ := inf
u∈M∞

J∞(u) and cG
:= inf

u∈MG
J (u). (2-4)

We shall focus our attention on the following example.
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Example 2.1. Let Zm := {e2π i j/m
: j = 0, . . . , m − 1} act on C by complex multiplication, and let

Gm := Zm × O(N −2) act on RN as

αx := (αz, y) for all α ∈ Zm,

θx := (z, θy) for all θ ∈ O(N −2) and x = (z, y) ∈ C × RN−2
≡ RN .

Let σ1 ∈ Sℓ be the cyclic permutation σ1(i) := i + 1 mod ℓ, and let φn : Gℓn → Sℓ be the homomorphism
given by φn(e2π i/ℓn, θ) := σ1 for any θ ∈ O(N −2). Then u : RN

→ Rℓ is φn-equivariant if and only if(
u1(e2π i/ℓnz, θy), . . . , uℓ(e2π i/ℓnz, θy)

)
=
(
u2(z, y), . . . , uℓ(z, y), u1(z, y)

)
for every (z, y) ∈ C × RN−2 and θ ∈ O(N −2), i.e., if and only if (1-3) holds. Note that every u j is
Gn-invariant.

3. The behavior of minimizing sequences

From now on, we fix n, and we take Gn and φn : Gℓn → Sℓ as in Example 2.1. Then, for any u, v ∈ Hφn ,

(J φn )′(u)v =

ℓ∑
i=1

∂iJ (u)vi = ℓ∂ jJ (u)v j for any j = 1, . . . , ℓ, (3-1)

and the set N φn is the usual Nehari manifold associated to the functional J φn : Hφn → R, i.e.,

N φn = {u ∈ Hφn : u ̸= 0, (J φn )′(u)u = 0}.

It has the following properties.

Proposition 3.1. (a) N φn ̸= ∅.

(b) cφn ≥ ℓcGn > 0.

(c) N φn is a closed C1-submanifold of codimension 1 of Hφn , and a natural constraint for J φn .

(d) If u ∈ Hφn is such that, for each i = 1, . . . , ℓ,∫
RN

|ui |
2p

+

ℓ∑
j=1
j ̸= i

β

∫
RN

|ui |
p
|u j |

p > 0,

then there exists a unique su ∈ (0, ∞) such that suu ∈ N φn . Furthermore,

J φn (suu) = max
s∈(0,∞)

J φn (su).

(e) cφn ≤ ℓnc∞.

Proof. The proof is easy. We give the details for the sake of completeness.

(a) Let ϕ ∈ C∞
c (RN ) be a nontrivial radial function with ∥ϕ∥

2
V =

∫
RN |ϕ|

2p. Set ξi, j := (e2π i(i+ℓj)/ℓn, 0) ∈

C × RN−2
≡ RN and define

u R,i+1(x) :=

n−1∑
j=0

ϕ(x − Rξi, j ), i = 0, . . . , n − 1,
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where R > 0 is taken large enough that u R,i and u R, j have disjoint supports for every i ̸= j . Then
uR := (u R,1, . . . , u R,1) ∈ N φn .

(b) Let u = (u1, . . . , uℓ) ∈ N φn . As β < 0, we have

0 < ∥ui∥
2
V = ∥u1∥

2
V ≤

∫
RN

|u1|
2p

=

∫
RN

|ui |
2p for all i = 2, . . . , ℓ.

Hence, there exists s ∈ (0, 1] such that sui ∈ MGn for every i = 1, . . . , ℓ. Therefore,

ℓcGn ≤

ℓ∑
i=1

J (si ui ) =
p − 1
2p

ℓ∑
i=1

∥si ui∥
2
V ≤

p − 1
2p

ℓ∑
i=1

∥ui∥
2
V = J φ(u).

It follows that ℓcGn ≤ cφn .

(c) The function 9 : Hφn ∖ {0} → R given by 9(u) := (J φn )′(u)u is of class C1, and N φn = 9−1(0). It
follows from (b) that N φn is a closed subset of Hφn . As

9 ′(u)u = (2 − 2p)ℓ∥u1∥
2
V ̸= 0,

we have that 0 is a regular value of 9. This shows that N φn is a C1-submanifold of codimension 1 of Hφn .
It also shows that u ̸∈ ker 9 ′(u) =: TuN φn , the tangent space of N φn at u. Hence,

Hφn = TuN φn ⊕ Ru.

Since, by definition, (J φn )′(u)u = 0 for every u ∈ N φn , we infer that a critical point of the restriction
of J φn to N φn is a critical point of J φn .

(d) The proof is straightforward. The number su is

su =

(
∥u1∥

2
V∫

RN |u1|2p +

ℓ∑
j=2

β
∫

RN |u1|p|u j |
p

)1/(2p−2)

.

(e) Let ω be the least energy positive radial solution to (1-4). Set ξi, j = (e2π i(i+ℓj)/ℓn, 0)∈ C×RN−2
≡ RN .

Define

wR,i+1(x) :=

n−1∑
j=0

ω(x − Rξi, j ), i = 0, . . . , n − 1.

Then wR = (wR,1, . . . , wR,ℓ) ∈ Hφn . If R is sufficiently large, statement (d) yields sR ∈ (0, ∞) such that
sRwR ∈ N φn and sR → 1 as R → ∞. Using assumption (V2) we obtain

cφn ≤ J φn (sRwR) =
p − 1
2p

ℓ∑
i=1

∥sR,iwR,i∥
2
V → ℓnc∞ as R → ∞.

This shows that cφn ≤ ℓnc∞, as claimed. □
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Lemma 3.2. Let (xk) be a sequence in RN , where N ≥ 4. After passing to a subsequence, there exists a
sequence (ξk) in RN and a constant C0 > 0 such that

|xk − ξk | ≤ C0 for all k ∈ N,

and one of the following statements holds true:

• ξk = 0 for all k, or

• ξk = (ζk, 0) ∈ C × RN−2 and |ζk | → ∞, or

• for each m ∈ N there exist γ1, . . . , γm ∈ O(N −2) such that |γiξk − γ jξk | → ∞ if i ̸= j .

Proof. See [Clapp et al. 2021a, Lemma 3.1]. □

Remark 3.3. This lemma is not true in dimension N = 3, because O(1) = {1, −1}.

Theorem 3.4. Let uk = (uk,1, . . . , uk,ℓ) ∈ N φn be such that J φn (uk) → cφn and uk,i ≥ 0. Then, after
passing to a subsequence, either uk → u strongly in Hφn with ui ≥ 0, or there are points (zk, 0) ∈

C × RN−2
≡ RN such that |zk | → ∞,

lim
k→∞

∥∥∥∥uk,1 −

n∑
j=0

ω( · − (e2π i j/nzk, 0))

∥∥∥∥= 0,

and cφn = ℓnc∞, where ω is the least energy positive radial solution to (1-4).

Proof. Invoking Ekeland’s variational principle [Willem 1996, Theorem 8.5] we may assume that
(J φn )′(uk) → 0 in (Hφn )′.

Since β < 0, Proposition 3.1(b) yields c0 > 0 such that∫
RN

|uk,1|
2p > c0 for all k ∈ N.

By Lions’ lemma [Willem 1996, Lemma 1.21] there exist δ > 0 and xk ∈ RN such that, after passing to a
subsequence, ∫

B1(xk)

|uk,1|
2p > δ for all k ∈ N.

For (xk) we fix a sequence (ξk) and a constant C0 > 0 such that |xk − ξk | ≤ C0 for all k ∈ N, satisfying
one of the alternatives stated in Lemma 3.2. Then∫

BC0+1(ξk)

|uk,1|
2p

≥

∫
B1(xk)

|uk,1|
2p > δ for all k ∈ N. (3-2)

It follows that either ξk = 0, or ξk = (ζk, 0) ∈ C × RN−2 and ζk → ∞. Otherwise, by Lemma 3.2, for
each m ∈ N there would exist γ1, . . . , γm ∈ O(N −2) such that |γiξk − γ jξk | ≥ 2(C0 + 1) if i ̸= j for
large enough k ∈ N, and as uk,1 is Gn-invariant, we would have that∫

RN
|uk,1|

2p
≥

m∑
i=1

∫
BC0+1(γi ξk)

|uk,1|
2p

= m
∫

BC0+1(ξk)

|uk,1|
2p > mδ

for all m ∈ N. This is impossible because (uk,1) is bounded in L2p(RN ).
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Next, we distinguish two cases.

Case 1: ξk = 0 for all k ∈ N.
Since the sequence (uk,1) is bounded in H 1(RN ), passing to a subsequence, we have that uk,1 ⇀ u1

weakly in H 1(RN ), uk,1 → u1 in L2p
loc(R

N ) and uk,1 → u1 a.e. in RN . Hence, u1 ≥ 0 and it follows
from (3-2) that u1 ̸=0. Note that, as uk,1 ∈ H 1(RN )Gn , u1 ∈ H 1(RN )Gn . Set u j+1(z, y) :=u1(e2π i j/ℓnz, y)

for (z, y) ∈ C × RN−2 and j = 1, . . . , ℓ − 1, and set u = (u1, . . . , uℓ). Then uk, j+1 ⇀ u j+1 weakly
in H 1(RN ), and as (J φn )′(uk) → 0 in (Hφn )′, we derive from (3-1) that

0 = lim
k→∞

∂1J (uk)ϕ = ∂1J (u)ϕ for every ϕ ∈ C∞

c (RN )Gn .

Hence, u ∈ N φn and

cφn ≤ J φn (u) =
p − 1
2p

ℓ∑
i=1

∥ui∥
2
V ≤ lim inf

k→∞

p − 1
2p

ℓ∑
i=1

∥uk,i∥
2
V = lim

k→∞

J φn (uk) = cφn .

Therefore, uk → u strongly in Hφn . This shows that, in Case 1, the first alternative stated in Theorem 3.4
holds true.

Case 2: ξk = (ζk, 0) ∈ C × RN−2 and ζk → ∞.
Set

wk,i (x) := uk,i (x + ξk), i = 1, . . . , ℓ.

Note that wk,i is O(N −2)-invariant. Since the sequence (wk,i ) is bounded in H 1(RN ), a subsequence
satisfies wk,i ⇀ wi weakly in H 1(RN )O(N−2), wk,i → wi in L2p

loc(R
N ) and wk,i → wi a.e. in RN . Hence,

wi ≥ 0. To simplify notation, set α := e2π i/n . Note that, as |α jξk − αmξk | → ∞ if j ̸= m, we have that

wk,i ◦ α−m
−

n−1∑
j=m+1

(wi ◦ α−m)( · −α jξk + αmξk) ⇀ wi ◦ α−m

weakly in H 1(RN ). Hence, setting Vk(x) := V (x + ξk), Lemma A.1 gives

∥wi ◦ α−m
∥

2
V∞

=

∥∥∥∥wk,i ◦ α−m
−

n−1∑
j=m+1

(wi ◦ α− j )( · −α jξk + αmξk)

∥∥∥∥2

Vk

−

∥∥∥∥wk,i ◦ α−m
−

n−1∑
j=m

(wi ◦ α− j )( · −α jξk + αmξk)

∥∥∥∥2

Vk

+ o(1).

Since uk,i is Gn-invariant, the change of variable y = z − αmξk yields∥∥∥∥uk,i −

n−1∑
j=m+1

(wi ◦ α− j )( · −α jξk)

∥∥∥∥2

V
=

∥∥∥∥uk,i −

n−1∑
j=m

(wi ◦ α− j )( · −α jξk)

∥∥∥∥2

V
+ ∥wi∥

2
V∞

+ o(1),

and iterating this identity we obtain

∥uk,i∥
2
V =

∥∥∥∥uk,i −

n−1∑
j=0

(wi ◦ α− j )( · −α jξk)

∥∥∥∥2

V
+ n∥wi∥

2
V∞

+ o(1). (3-3)
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On the other hand, for any given v ∈ H 1(RN )O(N−2) set vk(y) := v(y − ξk) and

v̂k(y) :=

n−1∑
j=0

vk(α
j y).

Recalling that uk,i is Gn-invariant and performing the translation y = x + ξk , we obtain

∂iJ (uk)v̂k =

n−1∑
j=0

∂iJ (uk)(vk ◦α j ) = n∂iJ (uk)vk

=n
(∫

RN
(∇wk,i ·∇v+Vk(x)wk,iv)−

∫
RN

|wk,i |
2p−2wk,iv−β

ℓ∑
j=1
j ̸= i

∫
RN

|wk, j |
p
|wk,i |

p−2wk,iv

)
.

Note that v̂k is Gn-invariant. As (J φn )′(uk) → 0, invoking (3-1) and assumption (V2), and passing to the
limit as k → ∞, we get

0 =

∫
RN

(∇wi · ∇v + V∞wiv) −

∫
RN

|wi |
2p−2wiv − β

ℓ∑
j=1
j ̸= i

∫
RN

|w j |
p
|wi |

p−2wiv (3-4)

for every v ∈ H 1(RN )O(N−2) and i = 1, . . . , ℓ. Since, by (3-2),∫
BC0+1(0)

|wk,1|
2p

≥

∫
BC0+1(ξk)

|uk,1|
2p

≥ δ > 0,

we see that w1 ̸= 0. Furthermore, (3-4) implies that

∥w1∥
2
V∞

=

∫
RN

|w1|
2p

+ β

ℓ∑
j=2

∫
RN

|w j |
p
|w1|

p
≤

∫
RN

|w1|
2p, (3-5)

so there exists t ∈ (0, 1] such that ∥tw1∥
2
V∞

=
∫

RN |tw1|
2p. It follows that tw1 ∈ M∞, and from (3-3) and

Proposition 3.1(e) we derive

nc∞ ≤
p − 1
2p

n∥tw1∥
2
V∞

≤
p − 1
2p

n∥w1∥
2
V∞

≤ lim
k→∞

p − 1
2p

∥uk,1∥
2
V =

1
ℓ

cφn ≤ nc∞.

Therefore, t = 1, w1 ∈ M∞ and J∞(w1) = ((p − 1)/(2p))∥w1∥
2
V∞

= c∞, i.e., w1 is a least energy
solution of (1-4). Moreover, from (3-3) we get that

lim
k→∞

∥∥∥∥uk,1 −

n−1∑
j=0

(w1 ◦ α− j )( · −α jξk)

∥∥∥∥2

V
= 0.

Since the positive least energy solution to (1-4) is unique up to translation and w1 is O(N −2)-invariant,
there exists ξ = (ζ, 0) ∈ C × RN−2 such that w1(x) = ω(x + ξ). Hence, (w1 ◦ α− j )(x − α jξk) =

ω(α− j x − ξk − ξ) = ω(x − α j (ξk + ξ)). So, setting zk := ζk + ζ , we obtain

lim
k→∞

∥∥∥∥uk,1 −

n∑
j=0

ω( · − (e2π i j/nzk, 0))

∥∥∥∥= 0.

This shows that, in Case 2, the second alternative stated in Theorem 3.4 holds true. □
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Corollary 3.5. If cφn < ℓnc∞, the system (1-2) has a least energy fully nontrivial solution satisfying (1-3).

4. Existence of a solution

We define the set of weak (n, ℓ)-pinwheel partitions as

Wn
ℓ := {(u1, . . . , uℓ) ∈ Hφn : ui ̸= 0, ∥ui∥

2
V = |ui |

2p
2p, ui u j = 0 in RN if i ̸= j},

and set

ĉφn := inf
(u1,...,uℓ)∈Wn

ℓ

p − 1
2p

ℓ∑
i=1

∥ui∥
2
V .

Our next goal is to give an upper estimate for ĉφn . To this end, we choose ε ∈
(
0, (dℓn − λ)/(dℓn + λ)

)
and a radial function χ ∈ C∞(RN ) satisfying 0 ≤ χ ≤ 1, χ(x) = 1 if |x | ≤ 1 − ε and χ(x) = 0 if |x | ≥ 1.
Let ω be the positive least energy radial solution to (1-4). For each r > 0 define

ωr (x) := χ
( x

r

)
ω(x).

Lemma 4.1. As r → ∞,∣∣∥ω∥
2
− ∥ωr∥

2∣∣= O(e−2(1−ε)
√

V∞r ) and
∣∣|ω|

2p
2p − |ωr |

2p
2p

∣∣= O(e−2p(1−ε)
√

V∞r ),

where | · |2p denotes the norm in L2p(RN ).

Proof. These statements follow easily from the well-known estimates |ω(x)| = O(|x |
−

1
2 (N−1)e−

√
V∞|x |)

and |∇ω(x)| = O(|x |
−

1
2 (N−1)e−

√
V∞|x |), as in [Clapp and Weth 2004, Lemma 2]. □

Set ϱ :=
1
4(dℓn + λ), and for R > 1 define

ŵ1,R(x) :=

n−1∑
j=0

ωϱR(x − R(e2π i j/n, 0)) and w1,R := tRŵ1,R,

where tR ∈ (0, ∞) is such that ∥w1,R∥
2
V = |w1,R|

2p
2p. Note that tR → 1 as R → ∞, w1,R is Gn-invariant

and

supp
(
ωϱR( · − R(e2π i j/ℓn, 0))

)
⊂ BϱR(R(e2π i j/ℓn, 0)).

Set w j+1,R(e2π i j/ℓnz, y) := w1,R(z, y) for (z, y) ∈ C × RN−2 and j = 1, . . . , ℓ − 1. Since ϱ < 1
2 dℓn we

have that supp(wi,R) ∩ supp(w j,R) = ∅ if i ̸= j . Hence, wR = (w1,R, . . . , wℓ,R) ∈ Wn
ℓ .

Lemma 4.2. There exist C1, R1 > 0 such that

p − 1
2p

ℓ∑
i=1

∥wi,R∥
2
V = J φn (wR) ≤ ℓnc∞ − C1e−λ

√
V∞ R for all R ≥ R1.

Proof. Because wR = (w1,R, . . . , wℓ,R) ∈ Wn
ℓ , the equality holds true. To prove the inequality note
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that tR ∈
[ 1

2 , 2
]

for R large enough. Assumption (V n
3 ) yields∫

RN
(V (x) − V∞)

∣∣tRωϱR(x − R(1, 0))
∣∣2 dx =

∫
|x |≤ϱR

(
V (x + R(1, 0)) − V∞

)
|tRωϱR(x)|2 dx

= −
1
4

C0

∫
|x |≤ϱR

e−λ
√

V∞ |x+R(1,0)|
|ω(x)|2 dx

≤ −
1
4

C0

(∫
RN

e−λ
√

V∞|x |
|ω(x)|2 dx

)
e−λ

√
V∞ R

=: −2Ce−λ
√

V∞ R.

Using Lemma 4.1, for R large enough we get

J φn (wR) =
1
2

ℓ∑
i=1

∥wi,R∥
2
V −

1
2p

ℓ∑
i=1

∫
RN

|wi,R|
2p

−
β

2p

ℓ∑
i, j=1
i ̸= j

∫
RN

|wi,R|
p
|w j,R|

p

= ℓn
(

1
2
∥tRωϱR( · − R(1, 0))∥2

V −
1

2p

∣∣tRωϱR( · − R(1, 0))
∣∣2p
2p

)
= ℓn

(
1
2
∥tRωϱR∥

2
V∞

+
1
2

∫
RN

(V − V∞)
∣∣tRωϱR( · − R(1, 0))

∣∣2 −
1

2p
|tRωϱR|

2p
2p

)
= ℓn

(
1
2
∥tRω∥

2
V∞

− Ce−λ
√

V∞ R
−

1
2p

|tRω|
2p
2p + O(e−2(1−ε)

√
V∞ϱR)

)
≤ ℓnc∞ − C1e−λ

√
V∞ R,

because 2(1 − ε)ϱ > 1
2(dℓn + λ)

(
1 − (dℓn − λ)/(dℓn + λ)

)
= λ. □

Proof of Theorem 1.1. Note that Wn
ℓ ⊂ N φn . Hence, from Lemma 4.2 we get

cφn ≤ ĉφn < ℓnc∞,

and Corollary 3.5 yields the result. □

Proof of Proposition 1.2. Arguing by contradiction, assume that u is a solution to (1-2) satisfying (1-3) with
n = ℓm and with n = ℓq , respectively, and that 1 ≤ m < q . Then, for k = ℓq−m−1 j with j = 1, . . . , ℓ− 1,

u1(x) = u1(e2π ik/ℓq
x) = u1(e2π i j/ℓmℓx) = u j+1(x),

and as 1 + β(ℓ − 1) ≤ 0, we obtain

∥u1∥
2
V =

∫
RN

|u1|
2p

+ β

ℓ−1∑
j=1

|u j+1|
p
|u1|

p
= (1 + β(ℓ − 1))

∫
RN

|u1|
2p

≤ 0,

a contradiction. □

5. The limit profiles of the solutions

We start with the case β → 0.
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Proof of Theorem 1.3. We write J φn
k and N φn

k for the functional and the Nehari set associated to the
system (1-2) with β = βk , and we define

cφn
k := inf

N φn
k

J φn
k .

As Wn
ℓ ⊂ N φn

k for every k ∈ N, invoking Lemma 4.2 we see that

p − 1
2p

ℓ∑
i=1

∥uk,i∥
2
V = cφn

k ≤ ĉφn < ℓnc∞ for all k ∈ N. (5-1)

After passing to a subsequence, we have that uk,i ⇀ u0,i weakly in H 1(RN ), uk,i → u0,i strongly in
L2

loc(R
N ) and uk,i →u0,i a.e. in RN , for each i =1, . . . , ℓ. Hence, u0,i ≥0 and u0 = (u0,1, . . . , u0,ℓ)∈Hφn .

We claim that

u0,i ̸= 0 for all i = 1, . . . , ℓ.

To prove this claim assume, arguing by contradiction, that u0,i = 0. Following the argument in the proof of
Theorem 3.4 we see that, after passing to a subsequence, there exist ξk ∈ RN , C0 > 0 and δ > 0 such that∫

BC0+1(ξk)

|uk,i |
2p > δ > 0 for all k ∈ N, (5-2)

where either ξk = 0, or ξk = (ζk, 0) ∈ C × RN−2 and ζk → ∞. Since uk,i → 0 strongly in L2
loc(R

N ),
(5-2) implies that ξk ̸= 0. Now, as in Case 2 of Theorem 3.4, we set

wk,i (x) := uk,i (x + ξk), i = 1, . . . , ℓ,

and we take a subsequence satisfying wk,i ⇀ wi weakly in H 1(RN ), wk,i → wi in L2p
loc(R

N ) and
wk,i → wi a.e. in RN . Hence, wi ∈ H 1(RN )O(N−2), wi ≥ 0 and following the proof of (3-3) we obtain

∥uk,i∥
2
V =

∥∥∥∥uk,i −

n−1∑
j=0

(wi ◦ α− j )( · −α jξk)

∥∥∥∥2

V
+ n∥wi∥

2
V∞

+ o(1). (5-3)

Furthermore, following the proof of (3-4) we derive∫
RN

(∇wi · ∇v + V∞wiv) =

∫
RN

|wi |
2p−2wiv + βk

ℓ∑
j=1
j ̸= i

∫
RN

|w j |
p
|wi |

p−2wiv

for every v ∈ H 1(RN )O(N−2), and taking v = wi we get

∥wi∥
2
V∞

=

∫
RN

|wi |
2p

+ βk

ℓ∑
j=1
j ̸= i

∫
RN

|w j |
p
|wi |

p
≤

∫
RN

|wi |
2p.

Since, by (5-2), ∫
BC0+1(0)

|wk,i |
2p

≥

∫
BC0+1(ξk)

|uk,i |
2p

≥ δ > 0,
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we see that wi ̸= 0. Hence, there exists t ∈ (0, 1] such that ∥twi∥
2
V∞

=
∫

RN |twi |
2p, and (5-3) yields

nc∞ ≤ n
p − 1
2p

∥twi∥
2
V∞

≤ n
p − 1
2p

∥wi∥
2
V∞

≤
p − 1
2p

∥uk,i∥
2
V .

As a consequence,

ℓnc∞ ≤
p − 1
2p

ℓ∑
i=1

∥uk,i∥
2
V ,

contradicting (5-1). This shows that u0,i ̸= 0, as claimed.
As (J φn

k )′(uk) = 0, uk,i ≥ 0, u0,i ≥ 0 and βk < 0, we have that

⟨uk,i , u0,i ⟩V =

∫
RN

|uk,i |
2p−2uk,i u0,i + βk

ℓ∑
j=1
j ̸= i

∫
RN

|uk, j |
p
|uk,i |

p−2uk,i u0,i

≤

∫
RN

|uk,i |
2p−2uk,i u0,i ,

and passing to the limit we obtain ∥u0,i∥
2
V ≤ |u0,i |

2p
2p. Hence, there exists s ∈ (0, 1] such that ∥su0,i∥

2
V =

|su0,i |
2p
2p and we have that

cGn ≤
p − 1
2p

∥su0,i∥
2
V ≤

p − 1
2p

∥u0,i∥
2
V ≤ lim inf

k→∞

p − 1
2p

∥uk,i∥
2
V , (5-4)

with cGn as in (2-4). We claim that these are equalities.
To prove this claim, let vk ∈ MGn be such that J (vk) = ((p − 1)/(2p))∥vk∥

2
V → cGn . Set uk,1 := vk

and define uk, j+1 as in (1-3) for j = 1, . . . , ℓ − 1. Set uk = (uk,1, . . . , uk,ℓ). Because (vk) is bounded
in H 1(RN ) and βk → 0, we have that

lim
k→∞

βk

∫
RN

|uk, j |
p
|uk,i |

p
= 0 for every i, j,

so, by Proposition 3.1(d), for k large enough there exists sk ∈ (0, ∞) such that sk uk ∈ N φn
k and sk → 1

as k → ∞. Thus,

cφn
k ≤ J φn (sk uk) =

p − 1
2p

ℓ∑
i=1

∥skuk,i∥
2
V =

p − 1
2p

ℓs2
k ∥vk∥

2
V −→ ℓcGn . (5-5)

Combining (5-4) and (5-5) we see that s =1, thus u0,i ∈MGn , that uk,i →u0,i strongly in H 1(RN ) and that

J (u0,i ) = cGn =
1
ℓ

cφn
k < nc∞.

This completes the proof. □

Now we turn to the case β → −∞. For the proof of Theorem 1.4 we need the following result.

Lemma 5.1. Let βk < 0 and (uk,1, . . . , uk,ℓ) be a solution to (1-2) with β = βk such that uk,i → u∞,i

strongly in H 1(RN ) for every i = 1, . . . , ℓ. Then (uk,i ) is uniformly bounded in L∞(RN ).
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Proof. Let s ≥ 0 and assume that uk,i ∈ L2(s+1)(RN ) for every k ∈ N. Fix L > 0 and define wk,i :=

uk,i min{us
k,i , L}. Then∫

RN
|∇wk,i |

2
≤ (1 + s)

∫
RN

∇uk,i · ∇(uk,i min{u2s
k,i , L2

})

= (1 + s)
(∫

RN
|uk,i |

2p−2w2
k,i + β

ℓ∑
j=1
j ̸= i

∫
RN

|uk, j |
p
|uk,i |

p−2w2
k,i −

∫
RN

V w2
k,i

)

≤ (1 + s)
∫

RN
|uk,i |

2p−2w2
k,i . (5-6)

On the other hand, for any K > 0 we have that∫
RN

|uk,i |
2p−2w2

k,i ≤

∫
RN

(|uk,i |
2p−2

− |u∞,i |
2p−2)w2

k,i +

∫
|u∞,i |2p−2≥K

|u∞,i |
2p−2w2

k,i + K
∫

RN
w2

k,i

≤
∣∣|uk,i |

2p−2
− |u∞,i |

2p−2∣∣2p−2
2p |wk,i |

2
2p +

(∫
|u∞,i |2p−2≥K

|u∞,i |
2p
)(p−1)/p

|wk,i |
2
2p

+ K |wk,i |
2
2.

As uk,i → u∞,i strongly in H 1(RN ), choosing k0 > 0 and K sufficiently large, we get that∫
RN

|uk,i |
2p−2w2

k,i ≤
1
2 |wk,i |

2
2p + K |wk,i |

2
2 for every k ≥ k0. (5-7)

Because H 1(RN ) is continuously embedded into L2p(RN ), we derive from (5-6) and (5-7) that, for
every k ∈ N,

|wk,i |
2
2p ≤ Ks |wk,i |

2
2,

for some constant Ks independent of L , and letting L → ∞ we get

|uk,i |
2(s+1)
2p(s+1) = |us+1

k,i |
2
2p ≤ Ks |us+1

k,i |
2
2 = Ks |uk,i |

2(s+1)
2(s+1).

As (uk,i ) is uniformly bounded in L2(RN ), iterating this inequality starting with s = 0 and using
interpolation, we conclude that (uk,i ) is uniformly bounded in Lq(RN ) for any q ∈ [2, ∞) and each
i = 1, . . . , ℓ. This implies that

fk,i := |uk,i |
2p−2uk,i + β

∑
j ̸= i

|uk, j |
p
|uk,i |

p−2uk,i

is uniformly bounded in Lq(RN ) for any q ∈ [2, ∞). Then, by the Calderón–Zygmund inequality, (uk,i )

is uniformly bounded in W 2,q(RN ) for every q ∈ [2, ∞), and choosing q large enough, we derive from
the Sobolev embedding theorem that (uk,i ) is uniformly bounded in L∞(RN ), as claimed. □
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Proof of Theorem 1.4. (i) As before, we write J φn
k and N φn

k for the functional and the Nehari set
associated to the system (1-2) with β = βk , and set

cφn
k := inf

N φn
k

J φn
k .

Arguing as in the proof of Theorem 1.3, we see that, after passing to a subsequence, uk,i ⇀ u∞,i weakly
in H 1(RN ), uk,i → u∞,i strongly in L2

loc(R
N ) and uk,i → u∞,i a.e. in RN , for each i = 1, . . . , ℓ. Hence,

u∞,i ≥ 0 and u∞ = (u∞,1, . . . , u∞,ℓ) ∈ Hφn , so u∞ satisfies (1-3). We also get that

u∞,i ̸= 0 and ∥u∞,i∥
2
V ≤ |u∞,i |

2p
2p for all i = 1, . . . , ℓ.

Furthermore, as (J φn
k )′(uk) = 0, we have that, for every j ̸= i ,

0 ≤

∫
RN

|uk, j |
p
|uk,i |

p
≤

|uk,i |
2p
2p

−βk
≤

C
−βk

.

As βk → −∞, passing to the limit and using Fatou’s lemma, we obtain

0 ≤

∫
RN

|u∞, j |
p
|u∞,i |

p
≤ lim inf

k→∞

∫
RN

|uk, j |
p
|kn,i |

p
= 0.

This implies that u∞, j u∞,i = 0 a.e. in RN whenever i ̸= j .
Let s ∈ (0, 1] be such that ∥su∞,i∥

2
V = |su∞,i |

2p
2p. Then su∞ ∈ Wn

ℓ , and using (5-1) we get

ĉφn ≤
p − 1
2p

ℓ∑
i=1

∥su∞,i∥
2
V ≤

p − 1
2p

ℓ∑
i=1

∥u∞,i∥
2
V ≤

p − 1
2p

ℓ∑
i=1

lim inf
k→∞

∥uk,i∥
2
V ≤ ĉφn .

This proves that s = 1, u∞ ∈ Wn
ℓ , uk,i → u∞,i strongly in H 1(RN ) and

ĉφn =
p − 1
2p

ℓ∑
i=1

∥u∞,i∥
2
V . (5-8)

Finally, as lim
k→∞

∥uk,i∥
2
V = ∥u∞,i∥

2
V = |u∞,i |

2p
2p = lim

k→∞

|uk,i |
2p
2p, from

lim
k→∞

∥uk,i∥
2
V = lim

k→∞

|uk,i |
2p
2p + lim

k→∞

βk

ℓ∑
j=1
j ̸= i

∫
RN

|uk, j |
p
|uk,i |

p,

we obtain ∫
RN

βku p
k, j u

p
k,i → 0 as k → ∞ whenever i ̸= j.

(ii) It follows from Lemma 5.1 and [Clapp et al. 2021b, Theorem B.2] that (uk,i ) is uniformly bounded
in C0,α(K ) for each compact subset K of RN and α ∈ (0, 1). So from the Arzelà-Ascoli theorem we
get that u∞,i ∈ C0(RN ). Therefore �i := {x ∈ RN

: u∞,i (x) > 0} is open. Because u∞,i u∞, j = 0
if i ̸= j and u∞ satisfies (1-3), we have that �i ∩� j = ∅ if i ̸= j and the ℓ-tuple (�1, . . . , �ℓ) satisfies
(S1) and (S2). Thus, it is an (n, ℓ)-pinwheel partition.
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Since u∞ ∈ Wn
ℓ , we have that u∞,i belongs to the Nehari manifold M�i defined in (1-7). Therefore,

((p − 1)/(2p))∥u∞,i∥
2
V ≥ c�i . Equality must hold true as, otherwise, there would exist v1 ∈ M�1 such

that ((p −1)/(2p))∥u∞,1∥
2
V > ((p −1)/(2p))∥v1∥

2
V ≥ c�i , and defining v j+1 as in (1-3), we would have

that (v1, . . . , vℓ) ∈ Wn
ℓ and

p − 1
2p

ℓ∑
i=1

∥vi∥
2
V <

p − 1
2p

ℓ∑
i=1

∥u∞,i∥
2
V = ĉφn

by (5-8), which is a contradiction. This shows that u∞,i is a least energy solution of (1-8) in �i . Now,
since ((p − 1)/(2p))∥u∞,i∥

2
V = c�i , we get

inf
(21,...,2ℓ)∈Pn

ℓ

ℓ∑
j=1

c2 j ≤

ℓ∑
j=1

c� j = ĉφn ≤ inf
(21,...,2ℓ)∈Pn

ℓ

ℓ∑
j=1

c2 j .

This shows that (u∞,1, . . . , u∞,ℓ) is an optimal (n, ℓ)-pinwheel partition.

(iii) This is a local statement. Recall that (uk,i ) is uniformly bounded in C0,α(�) for each open subset �

compactly contained in RN and α ∈ (0, 1). So, from the Arzelà-Ascoli theorem, we get that uk,i → u∞,i

in C0,α(�). Thus, all hypotheses of [Clapp et al. 2021b, Theorem C.1] are satisfied and (iii) follows.

(iv) Let G2n be the group defined in Example 2.1 with ℓ = 2, and let τn : G2n → Z2 := {1, −1} be the
homomorphism given by τn(e2π i/2n) = −1 and τn(θ) = 1 for every θ ∈ O(N −2). A solution to the
Schrödinger equation (1-5) satisfying

u(gx) = τn(g)u(x) for all g ∈ G2n, x ∈ RN (5-9)

is a critical point of the functional J : H 1(RN )τn → R defined by (2-3) on the space

H 1(RN )τn := {u ∈ H 1(RN ) : u satisfies (5-9)}.

The nontrivial ones belong to the Nehari manifold

Mτn := {u ∈ H 1(RN )τn : u ̸= 0, ∥u∥
2
V = |u|

2p
2p},

which is a natural constraint for J . Note that every nontrivial function satisfying (5-9) is nonradial and
changes sign.

There is a one-to-one correspondence

Wn
2 → Mτn , (u1, u2) 7→ u1 − u2,

whose inverse is u 7→ (u+, −u−), with u+
:= max{u, 0} and u−

:= min{u, 0}, satisfying

p − 1
2p

(∥u1∥
2
V + ∥u2∥

2
V ) = J (u1 − u2).

Therefore,

J (u∞,1 − u∞,2) =
p − 1
2p

(∥u∞,1∥
2
V + ∥u∞,2∥

2
V ) = inf

(u1,u2)∈Wn
2

p − 1
2p

(∥u1∥
2
V + ∥u2∥

2
V ) = inf

u∈Mτn
J (u).

This shows that u∞,1 − u∞,2 is a least energy solution to (1-5) and (5-9). □
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Appendix: An auxiliary result

Lemma A.1. Assume vk ⇀ v weakly in H 1(RN ), ξk ∈ RN satisfies |ξk | → ∞ and V ∈ C0(RN ) satisfies
assumption (V2). Set Vk(x) := V (x + ξk). Then

lim
k→∞

∥vk∥
2
Vk

− lim
k→∞

∥vk − v∥
2
Vk

= ∥v∥
2
V∞

.

Proof. As vk ⇀ v weakly in H 1(RN ), one has

∥v∥
2
V∞

+ o(1) = ∥vk∥
2
V∞

− ∥vk − v∥
2
V∞

= ∥vk∥
2
Vk

− ∥vk − v∥
2
Vk

+ 2
∫

RN
(V∞ − Vk)vkv −

∫
RN

(V∞ − Vk)v
2.

Given ε > 0, choose R > 0 large enough that∫
RN∖BR

|V∞ − Vk ||v|
2
≤ 2 sup

x∈RN
V (x)

∫
RN∖BR

|v|
2 < 1

2ε.

Now take k0 such that

|V∞ − V (x + ξk)| <
ε

2|v|
2
2

=: δ for every x ∈ BR and k ≥ k0.

Then, for k ≥ k0, ∫
RN

|V∞ − Vk ||v|
2
≤

∫
BR

|V∞ − Vk ||v|
2
+

∫
RN∖BR

|V∞ − Vk ||v|
2 < ε

and ∫
RN

|(V∞ − Vk)vkv| ≤

(∫
RN

|V∞ − Vk ||vk |
2
)1

2
(∫

RN
|V∞ − Vk ||v|

2
)1

2

≤ C
√

ε.

This completes the proof. □
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