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Counting compatible indexing systems for Cpn

Michael A. Hill, Jiayun Meng and Nan Li

We count the number of compatible pairs of indexing systems for the cyclic group Cpn . Building on work
of Balchin, Barnes, and Roitzheim, we show that this sequence of natural numbers is another family of
Fuss–Catalan numbers. We count this two different ways: showing how the conditions of compatibility
give natural recursive formulas for the number of admissible sets and using an enumeration of ways to
extend indexing systems by conceptually simpler pieces.

1. Introduction

Recent work in equivariant algebra has studied the beautiful variety of different multiplicative structures
that can arise when we mix in the action of a finite group. Blumberg and Hill [2015] showed that this is a
fundamentally combinatorial structure. The various multiplicative norms or additive transfers are entirely
governed by certain particularly well-behaved subcategories of finite G-sets.

This classification was reformulated in independent work of Balchin, Barnes, and Roitzheim [Balchin
et al. 2021] and of Rubin [2021], in which they further underscored the combinatorial structure by showing
the norms and transfers are encoded in “transfer systems”, certain refinements of the poset of subgroups
of G under inclusion.

Definition 1.1 [Rubin 2021, Definition 3.4; Balchin et al. 2021, Definition 7]. A transfer system for a
finite group G is a partial order → relation on the set Sub(G) of subsets of G such that

(1) if K → H , then K ≤ H (so this is a “weak subposet”),

(2) if K → H and g ∈ G, then gK g−1
→ gHg−1, and

(3) if K → H and J ≤ H , then K ∩ J → J .

Let Tran(G) denote the set of transfer systems for G.

The set of all transfer systems for G itself has a partial order: we say O ≤ O′ if the identity map is
order-preserving.

Example 1.2. For G = Cpn , the subgroup lattice is order-isomorphic to the linear order

{1 ≤ 2 · · · ≤ n + 1} = [n + 1].
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The conjugation condition is always satisfied, and the restriction condition here can be rephrased as saying
that if Cpi → Cp j and i ≤ k ≤ j , then Cpi → Cpk .

Balchin, Barnes, and Roitzheim [Balchin et al. 2021, Theorem 25] showed that the poset of transfer
systems for Cpn is order-isomorphic to the Tamari lattice.

In this paper, we will focus on the groups Cpn . Example 1.2 stresses that we could equivalently look at
“transfer systems for the poset [n + 1]” in the sense of Franchere, Ormsby, Osorno, Qin, and Waugh.

Definition 1.3 [Franchere et al. 2022, Definition 4.1]. A transfer system on

[n] = {1 ≤ · · · ≤ n}

is a weak subposet of [n] with partial order → that contains all the elements and which satisfies the
“restriction condition”: if i → j and i ≤ k ≤ j , then i → k.

It is helpful to view these as a graded set in which we allow n to vary, as this will help encode certain
natural operations.

Definition 1.4. For each n ∈ N, let

Tn =

{
Tran([n]) n ≥ 1,

{∅} n = 0.

Balchin, Barnes, and Roitzheim counted the number of transfer systems for Cpn :

Theorem 1.5 [Balchin et al. 2021, Theorem 20]. For each n ∈ N,

|Tn| =
1

2n+1

(2n+1
n

)
= Cat(n).

The numbers Cat(n) are the Catalan numbers. These are ubiquitous in combinatorics, parametrizing
structures from binary rooted trees to Dyck paths. This sequence fits into a bivariant family of sequences.

Definition 1.6. The Fuss–Catalan numbers are defined by

An(p, r) =
r

np+r

(np+r
n

)
for nonnegative n and positive p and r .

The Catalan numbers arise here:

Cat(n) = An(2, 1).

In this paper, we show the next term of the sequence is also related to equivariant algebra.
Blumberg and Hill [2022] studied what kind of compatibility conditions arise if we allow both the

additive transfers and multiplicative norms to each be structured by various transfer systems. As a slogan,
“the presence of certain multiplicative norms forces some additive transfers”. These conditions were
simplified by Chan [2022], who gave a definition internal to transfer systems. When the conditions are
satisfied, we say that (Oa,Om) is compatible. Counting these for Cpn is the main result of this paper.
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Theorem 1.7. For Cpn−1 , there are
An(3, 1)

compatible pairs of transfer systems.

We present two proofs of this theorem in Sections 4 and 5, each of which underscores a different
combinatorial feature of the number of compatible pairs. The mathematics in this paper arose from an
REU project in Summer 2021. The two junior coauthors each came up with a distinct solution to this
counting problem, so we include here both of their solutions.

A third proof by Henry Ma will appear separately. This proof uses a direct bijection between compatible
pairs of transfer systems and Kreweras pairs. Recent work of Balchin, MacBrough, and Ormsby [Balchin
et al. 2022] shows that Kreweras pairs are equinumerous with composition-closed premodel structures
on the poset [n]. We do not see a direct connection between compatible pairs and composition-closed
premodel structures, however.

2. Operations on transfer systems

Concatenation. A key piece of structure on transfer systems for [n] is the ability to “concatenate” a
transfer system for [k] and one for [n − k] to build one for [n]. This makes computations with the entire
graded set easier to understand.

Definition 2.1. Let OL be a transfer system for [k] and OR be a transfer system for [n − k]. Then we
define a relation O = OL ⊕OR on [n] by saying i O

−→ j if and only if

(1) j ≤ k and i OL
−→ j or

(2) i ≥ (k + 1) and (i − k)
OR
−→ ( j − k).

We call O the direct sum or concatenation of OL and OR .

Remark 2.2. As a poset, this is just the disjoint union of the two posets OL and OR . The additional data
is the map to [n] in this case.

Proposition 2.3. The concatenation of transfer systems is a transfer system.

Proof. The definition of O is that of the disjoint union of posets, so O is a poset, and it visibly maps to
the usual inclusions.

We need only check the restriction condition, and here, it suffices to check the restriction of i+k → j +k
along m ≤ j + k for some m ≤ k. In this case, both the source and target are m. □

The direct sum is a graded operation here:

Tn × Tm
⊕

−→ Tn+m .

We extend this to T0 by declaring
∅⊕O = O⊕∅ = O

for any transfer system O or the empty set.
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1 2 3 4 5 6 7

OL OR

OL ⊕OR

Figure 1. Example of concatenation of OL and OR .

Restriction. Given a transfer system for [n], we have two natural ways to build transfer systems for
smaller natural numbers. These both arise from the inclusion of subposets.

Definition 2.4. If k ≤ n, then let
ι : [k] → [n]

be the map sending i → i , and let
φ : [n − k] → [n]

be the map sending i to i + k.

We can restrict a transfer system on [n] along either of these inclusions.

Definition 2.5. Let O be a transfer system for [n], and let k ≤ n.
Let i∗

kO be defined by saying for all i ≤ j ≤ k,

i
i∗

k O
−−→ j if and only if i O

−→ j.

Let 8kO be defined by saying for all i ≤ j ≤ (n − k),

i 8kO
−−→ j if and only if (i + k)

O
−→ ( j + k).

Proposition 2.6. For a transfer system on O, i∗

kO is a transfer system on [k] and 8kO is a transfer system
on [n − k].

Proof. The construction gives wide, weak subposets of [k] and [n − k] respectively, by observation. Since
the two inclusions ι and φ are interval inclusions, the restriction condition is easily checked. □

The two restrictions can be visualized as simply throwing away any transfers that start or end outside
of the given range. An example picture of this is shown in Figure 2.

Remark 2.7. The maps i∗

k and 8k have topological meaning. Recall that the subgroup lattice of Cpn−1 is
isomorphic to [n] via the map that sends a subgroup H to logp(|H |) + 1. The inclusion of the subgroups
of Cpk−1 into those of Cpn−1 corresponds via this identification to the inclusion ι : [k] ↪→ [n]. Similarly,
the subgroups of Cpn−1 which contain Cpk correspond to the inclusion φ : [n − k] ↪→ [n].

Using these, the map i∗

k on transfer systems is just the ordinary restriction of transfer systems for Cpn−1

to transfer systems for the subgroup Cpk−1 . The map 8k also has a direct topological meaning. Blumberg
and Hill [2015, Lemma B.1] showed that for any N∞-operad O for G and for any normal subgroup N
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1 2 3 4 5 6 7
i∗

4O 84O

Figure 2. Example of i∗

kO and 8kO. The dashed transfers are forgotten to form i∗

4O and 84O.

of G, the N -fixed points of O are an N∞-operad for G/N . The corresponding operation on transfer
systems is 8k .

Wrapped and saturated systems. We single out two families of transfer systems useful for our counts.

Definition 2.8. A transfer system O for [n] is wrapped if 1 O
−→ n.

Example 2.9. The transfer systems OL and OR from Figure 1 are wrapped; the transfer system OL ⊕OR

is not.

Example 2.10. The transfer system O in Figure 2 is wrapped, as is i∗

4O. The transfer system 84O is not.

By the restriction condition, in a wrapped transfer system, we have 1 → j for all j , and we think of
the largest transfer as “wrapping” the rest of the transfer system. Additionally, we can always “wrap” any
given transfer system, using the circle-dot product of [Balchin et al. 2021]. We use a single case of their
construction here.

Definition 2.11. If O ∈ Tn , let w(O) be the transfer system for [n + 1] with

(1) for all j , 1 → j in w(O), and

(2) 81(w(O)) = O.

This is implicit in Balchin, Barnes, and Roitzheim’s “circle-dot product” and their decomposition
theorem.

Theorem 2.12 [Balchin et al. 2021, Corollary 21]. Any transfer system for [n] with n ≥ 1 decomposes
uniquely as

O⊙O′
= O⊕ w(O′)

for some transfer systems O ∈ Tm and O′
∈ Tn−m−1.

Corollary 2.13. Any transfer system O for [n] can be written uniquely as

O = w(O1) ⊕ · · · ⊕w(Ok)

for some transfer systems O1, . . . ,Ok .

A special case of wrapped transfer systems is given by complete ones.
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Definition 2.14. The complete transfer system for [n] is the one for which i → j for all i ≤ j . Denote it
by Ocpt

n .

Remark 2.15. The complete transfer system for [n] is one for which the partial order is just the inclusion.
This means that complete transfer systems are maximal elements in the poset of transfer systems.

These complete transfer systems will be especially useful building blocks for us.

Definition 2.16 [Rubin 2021, Definition 3.4]. A transfer system O is saturated if whenever i → j and
i ≤ k ≤ j , then k → j .

Remark 2.17. The saturation condition is equivalent to a 2-out-of-3 property for the transfer system,
since i → j with i ≤ k ≤ j always implies i → k by the restriction condition. This formulation has been
used by Hafeez, Marcus, Ormsby, and Osorno [Hafeez et al. 2022, Definition 2.5] in their study of the
saturation conjecture.

Proposition 2.18. A saturated transfer system on [n] is a direct sum of complete ones.

Proof. Complete transfer systems and direct sums of these are visibly saturated. For the other direction,
write O as a direct sum of wrapped transfer systems:

O = On1 ⊕ · · · ⊕Onk .

The transfer system O is saturated if and only if each of the pieces is, since there are no transfers
connecting the individual summands. It suffices to then show that a wrapped saturated transfer system is
complete. This however follows by downward induction on n. □

Given any transfer system on [n], there is a minimal saturated transfer system that contains it. This is
immediate from the observation that the intersection of two saturated transfer systems is again a saturated
transfer system. For concreteness, we spell this out directly here.

Proposition 2.19. If O is any transfer system, then there is a minimal saturated transfer system that
contains O.

Proof. Write O as a direct sum of wrapped transfer systems O = On1 ⊕ · · ·⊕Onr , with Oni ∈ Tni . Then
the minimal saturated transfer system containing it is simply

Ocpt
n1

⊕ · · · ⊕Ocpt
nr

,

where we replace each summand with the complete one of that size. □

Definition 2.20. If O is a transfer system for [n], let hull(O) denote the minimal saturated transfer system
that contains it. This is the saturated hull.

For transfer systems for [n], there is a kind of dual notion of a maximal saturated transfer systems
inside any given transfer system.



COUNTING COMPATIBLE INDEXING SYSTEMS FOR Cpn 43

1 2 3 4 5 6 7

Figure 3. Core of O from Figure 2.

Complete transfer systems have two useful properties:

(1) Whenever i → j , we also have k → j for all i ≤ k ≤ j .

(2) They are generated as a poset as the transitive closure of the relation i → i + 1 for all 1 ≤ i ≤ n − 1.

These two properties give us two different ways to repackage the condition of being saturated.

Proposition 2.21. A transfer system O for n is saturated if and only if whenever i → j with i < j , we
have ( j − 1) → j .

Proof. If O is saturated, then, by definition of the direct sum, if i → j , then i and j correspond to
subgroups from the same direct summand. By completeness, we therefore have all intermediate transfers.

Using the decomposition of a transfer system into wrapped ones (Corollary 2.13), we see that it suffices
to show that if a wrapped transfer system that has the property that i → j implies ( j − 1) → j , then
the transfer system is complete. This follows from downward induction on n, using that 1 → n by the
wrapped assumption, and hence 1 → j for all j by restriction. □

Corollary 2.22. A transfer system O is saturated if and only if it is generated as a partial order by
relations i → (i + 1) for some collection of positive i at most n − 1.

The possibly surprising part here is that we only need the partial order: the other parts of being a
transfer system come along for free in this case, since we are generating by a covering condition. This
gives us a second kind of structural result.

Definition 2.23. If O is a transfer system, let the core of O, denoted by coreO, be the partial order
generated by i → (i + 1), where i ranges over the integers from 1 to n − 1 such that i → (i + 1).

Example 2.24. In Figure 3, we see the core of the transfer system O from Figure 2.

3. Compatible pairs

Our main object of study is the notion of compatible pairs. Blumberg and Hill [2022] defined these to
describe “compatibility” between equivariant norms and transfers in an abstract, categorical way. Chan
[2022, Theorem 4.10] reformulated this in the language of transfer systems, giving a purely combinatorial
formulation. We use that here for the special case of Cpn .

Notation 3.1. Given a pair of transfer systems (Oa,Om), let i a
−→ j be i Oa

−→ j , and similarly for m
−→.

Definition 3.2 [Chan 2022, Definition 4.6]. A pair of transfer systems (Oa,Om) for [n] is compatible if
for whenever i m

−→ j , we have k a
−→ j for all i ≤ k ≤ j .
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Note here that the conditions are asymmetrical: arrows in Om force those in Oa . Moreover, this is a
kind of relative saturation condition, with an arrow in Om actually forcing Oa to look saturated in a range.
This gives us two equivalent forms.

Proposition 3.3. A pair (Oa,Om) is compatible if and only if the following equivalent comparisons hold:

(1) Om ≤ core(Oa),

(2) hull(Om) ≤ Oa , and

(3) hull(Om) ≤ core(Oa).

Proof. The conditions of Definition 3.2 are a restatement of the condition that the saturated hull of Om is
less than or equal to Oa . For the equivalence of the three conditions, we use that the core of O is the
largest saturated transfer system less than or equal to O and the hull is the smallest saturated transfer
system greater than or equal to O. □

Corollary 3.4. Let (Oa,Om) be a compatible pair of transfer systems for [n]. If for some 1 ≤ k ≤ n − 1,
we have k a↛ (k + 1), then, for all j ≤ k and ℓ ≥ (k + 1), we must have j m↛ ℓ.

Put another way, we see that Om must break apart at k, and this must be compatible with Oa .

Corollary 3.5. Let (Oa,Om) be a compatible pair of transfer systems for [n]. If for some 1 ≤ k ≤ (n −1),
we have k a↛ (k + 1), then

(1) Om = i∗

kOm ⊕ 8kOm , and

(2) the pairs
(i∗

kOa, i∗

kOm) and (8kOa, 8
kOm)

are compatible.

Definition 3.6. Let
D(0)

n = {(Oa,Om) | compatible} ⊂ Tn × Tn.

We have projection maps
pa, pm : D(0)

n → Tn

which take a pair (Oa,Om) to Oa or Om respectively. Our main goal is to find the cardinality of D(0)
n for

all n. We solve this in several different ways using different aspects of Proposition 3.3.

4. Solving the recurrence relations

Decomposition and recurrence relation. The wrapping map w defines a natural filtration on the collection
of transfer systems. We can use this to build a recursive relation describing compatible pairs.

Definition 4.1. For each i ≥ 0, let
(F i T )n = Im(w◦i ) ⊂ Tn,

viewed as a graded subset.
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Definition 4.2. Let
D(i)

n = p−1
a ((F i T )n)

be the set of composable pairs with Oa ∈ F i T .
Let d(n, i) = |D(i)

n | be the corresponding cardinality.

We deduce our recursive formulae from the Balchin, Barnes, and Roitzheim decomposition theorem
(Theorem 2.12). We restate the result here to set up our decomposition.

Proposition 4.3. If O is a transfer system in (F i T )n , then there is

(1) a unique natural number 1 ≤ j ≤ n − i ,

(2) a unique wrapped transfer system wOR in T j , and

(3) a unique transfer system OL in Tn−i− j

such that
O = wi (OL ⊕ wOR).

Notation 4.4. Let (F i T )n, j be the set of transfer systems in (F i T )n which decompose as

O = wi (OL ⊕ wOR)

with wOR ∈ T j a wrapped transfer system.

Proposition 4.5. The map ( n−i−1⊔
j=1

D(i)
n− j ×D(1)

j

)
⊔D(i+1)

n → D(i)
n

given on D(i)
n− j ×D(1)

j by(
(wiO′

a,O
′

m), (wO′′

a ,O′′

m)
)
7→

(
wi (O′

a ⊕ wO′′

a),O′

m ⊕O′′

m
)
,

and on the last summand by the natural inclusion, is a bijection.

Proof. We use Proposition 4.3 to further break up D(i)
n , since the decomposition here gives a disjoint

union decomposition

(F i T )n =

n−i⊔
j=1

(F i T )n, j .

This decomposition induces a decomposition of D(i)
n :

D(i)
n, j = p−1

1 (F i T )n, j .

Since T0 = {∅}, the unit for ⊕, we have

D(i)
n,n−i = D(i+1)

n ,

given by the usual inclusion. Now let 1 ≤ j < n − i , and consider an element (Oa,Om) in D(i)
n, j . By

definition, we have
Oa = wi (Oa,L ⊕ wOa,R),
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with Oa,L ̸= ∅ and wOa,R wrapped, and hence we are missing the transfer

(i + n − j) → (i + n − j + 1)

in Oa . This means that Om breaks up into a direct sum

O′

m ⊕O′′

m,

where O′
m ∈ Ti+n− j and O′′

m ∈ T j , by Corollary 3.5. Moreover, we know that the pairs

(i∗

i+n− jOa,O′

m) and (8i+n− jOa,O′′

m)

are compatible. The result follows, since

i∗

i+n− jOa = wiOa,L and 8i+n− jOa = wOa,R. □

Corollary 4.6. We have a recursive formula

d(n, i) = d(n, i + 1) +

n−i−1∑
j=1

d(n − j, i)d( j, 1).

The base case here is actually D(n)
n , which is p−1

a (Ocpt
n ). Every transfer system is compatible with the

complete additive transfer system. Note also that we have an important edge case:

(Fn−1T )n = (FnT )n,

since both correspond to the unique complete transfer system on [n].

Proposition 4.7 [Balchin et al. 2021, Theorem 20]. For each n, we have

d(n, n) = d(n, n − 1) = Cat(n).

Rewriting the recurrence relation. We now can solve the recurrence relation, giving our first proof of
the main theorem. Recall the definition of the Fuss–Catalan numbers:

An(p, r) =
r

np+r

(np+r
n

)
.

We begin with some helpful properties of the Fuss–Catalan number.

Proposition 4.8. For any positive integer p and positive n, r , the following properties hold:

(1) An(3, r) =
∑n

j=0 A j (2, 1)An− j (3, j + r − 1).

(2) An(p, r) = An(p, r − 1) + An−1(p, p + r − 1).

(3) An+1(p, 1) = An(p, p).

(4) An(p, s + r) =
∑n

j=0 A j (p, r)An− j (p, s).

(5) An(3, 2) =
∑n

j=1 A j+1(2, 1)An− j (3, j).
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Proof. Four of these are from work of Młotkowski. Formula (1) is a special case of Proposition 2.1
in [Młotkowski 2010]. Formula (2) is Equation 2.2 there, (3) is Equation 2.3, and (4) is Equation 2.4.

We will only prove (5). It can be done by induction on n. The base case n = 1 is a straightforward
check. Take n ≥ 2.

Write

s =

n∑
j=1

A j+1(2, 1)An− j (3, j).

Replacing j with j + 1, we can rewrite this as

s =

n+1∑
j=2

A j (2, 1)An− j+1(3, j − 1).

Applying (2) twice, we have

An− j+1(3, j + 1) = An− j+1(3, j) + An− j (3, j + 3)

=
(

An− j+1(3, j − 1) + An− j (3, j + 2)
)
+ An− j (3, j + 3).

With the help of (1), we can expand An+1(3, 2) to

An+1(3, 2) = An+1(3, 1) + An(3, 2) +

n+1∑
j=2

An− j+1(3, j + 1)A j (2, 1),

and substituting in for An− j+1(3, j + 1), we can rewrite this as

An+1(3, 2) = An+1(3, 1) + An(3, 2) + s +

n∑
j=2

An− j (3, j + 2)A j (2, 1) +

n∑
j=2

An− j (3, j + 3)A j (2, 1).

The last two sums also show up in the expansions of An(3, 3) and An(3, 4), respectively, by (1):
n∑

j=2

An− j (3, j + 2)A j (2, 1) = An(3, 3) − An(3, 2) − An−1(3, 3),

n∑
j=2

An− j (3, j + 3)A j (2, 1) = An(3, 4) − An(3, 3) − An−1(3, 4).

This gives an equality

An+1(3, 2) = An+1(3, 1) + An(3, 2) + s +
(

An(3, 3) − An(3, 2) − An−1(3, 3)
)

+
(

An(3, 4) − An(3, 3) − An−1(3, 4)
)
. (4.9)

We can use (3) to rewrite (4.9) as

An+1(3, 2) = An+1(3, 1) + An(3, 4) +
(
s − An(3, 1) − An−1(3, 4)

)
.

However, applying (2) to An+1(3, 2), we get exactly

An+1(3, 2) = An+1(3, 1) + An(3, 4),
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d(k, l)

d( j, j − 1)

Figure 4. Contributions to each term: d(k, l) is a linear combination of d( j, j −1) from
the blue shaded region, and a given d( j, j − 1) contributes only in the orange region.

so we deduce

s = An(3, 1) + An−1(3, 4).

By (2) again, we get s = An(3, 2). □

Theorem 4.10. For any n ∈ N, An−1(3, 2) is d(n, 1).

Before proving the theorem, we first discuss the strategy of the proof. Instead of focusing on the
recurrence steps for a specific n, we put all d(k, j) together, forming a triangle as follows:

d(2, 1)

d(3, 1)

d(4, 1)

d(5, 1)
...

d(3, 2)

d(4, 2)

d(5, 2)

d(4, 3)

d(5, 3) d(5, 4)

Recall Corollary 4.6. For i ∈ N+, the elements in the set {d( j + i, j) : j ≥ 1} share the same recursive
formula. In fact, we can generate the above triangle hypotenuse-by-hypotenuse from outside to inside. To
begin with, we generate the second outermost hypotenuse d(3, 1), d(4, 2), d(5, 3), . . . by the outermost
hypotenuse d(2, 1), d(3, 2), d(4, 3) . . . according to the recursive formula for d(n, n−2). In other words,
d(n, n −2) is a linear combination of d( j, j −1) with coefficients 1 or d(1, 1). Similarly, we can generate
the third outermost hypotenuse by the outermost and the second outermost hypotenuse according to the
recursive formula for d(n, n−3). Now the coefficients are from the space spanned by d(2, 1), d(1, 1) and 1.

As the whole triangle can be generated hypotenuse-by-hypotenuse, we can conclude that any d(k, l) in
the triangle can be written as a linear combination of d( j, j −1) where l +1 ≤ j ≤ k with coefficients from
the space spanned by 1 and d(i, 1) where 1 ≤ i ≤ k − l − 1. Graphically, d(k, l) is a linear combination
of d( j, j − 1) in the blue area of Figure 4.

Proof of Theorem 4.10. This is easy to check for d(2, 1). Then, by induction, it suffices to show the
theorem is true for d(n, 1) if the theorem holds for d(i, 1) for any 2 ≤ i ≤ n − 1.
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Fix j such that 2 ≤ j ≤ n. For our convenience, we denote the coefficient of d( j, j − 1) for d(k, l)
as c(k, l). Our goal is to determine c(n, 1). We will achieve this by induction.

First, we figure out the coefficients of d( j, j −1) for the vertical line d( j +l, j −1) where 0 ≤ l ≤ n− j .
We know c( j, j − 1) = 1 = A0(3, 1) and for 0 ≤ l ≤ n − j ,

c( j + l, j − 1) =

l∑
i=1

d(i, 1)c( j + l − i, j − 1).

As d(i, 1) is Ai−1(3, 2) for 2 ≤ i ≤ n − 1, we get c( j + l, j − 1) = Al(3, 1) by (4) of Proposition 4.8 and
the equality An(3, 3) = An+1(3, 1) for 0 ≤ l ≤ n − j inductively.

In fact, we claim that for 1 ≤ i ≤ j − 1, c( j + l, j − i) = Al(3, i) for 0 ≤ l ≤ n − j . We have shown
the case for i = 1. Now it is sufficient to show the case i = k provided the claim holds for 1 ≤ i ≤ k − 1.
Similarly, we know c( j, j − k) = 1 = A0(3, k) and for 0 ≤ l ≤ n − j ,

c( j + l, j − k) = c( j + l, j − (k − 1)) +

l∑
i=1

d(i, 1)c( j + l − i, j − k).

As d(i, 1) is Ai−1(3, 2) for 2 ≤ i ≤ n−1, we get c( j +l, j −k)= Al(3, k) by (2) and (4) of Proposition 4.8
for 0≤ l ≤n− j inductively. Thus, we get c(n, 1)= An− j (3, j−1). As d(n, 1) depends only on d( j, j−1)

for 2 ≤ j ≤ n,

d(n, 1) =

n∑
j=2

An− j (3, j − 1)d( j, j − 1) =

n∑
j=2

An− j (3, j − 1)A j (2, 1),

where the last equality is Proposition 4.7. By (5) of Proposition 4.8, we conclude d(n, 1) = An−1(3, 2). □

Theorem 4.11. There are An(3, 1) compatible transfer systems for [n].

Proof. We will prove this by induction. It is easy to check the case for [1]. Assume the theorem is true
for [i] where 1 ≤ i < n. We want to show it is true for [n].

Corollary 4.6 shows that the number of compatible systems for [n] is

d(n, 0) = d(n, 1) +

n−1∑
j=1

d( j, 0)d(n − j, 1).

Theorem 4.10 and the inductive hypothesis let us rewrite this as

d(n, 0) = An−1(3, 2) +

n−1∑
j=1

A j (3, 1)An− j−1(3, 2) =

n−1∑
j=0

A j (3, 1)An− j−1(3, 2).

By (4) of Proposition 4.8, we deduce

d(n, 0) = An−1(3, 3),

which, by (3) of Proposition 4.8, equals An(3, 1). □
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5. Extensions of saturated systems

Counting using additive cores. Instead of using the filtration by powers of w on the additive indexing
system, we can use the first part of Proposition 3.3. This says that compatibility of (Oa,Om) is the same
question as compatibility of (coreOa,Om), since both reduce to the comparison

Om ≤ coreOa.

Since the core breaks up as a direct some of complete transfer systems, this last condition is really the
same as asking that if

coreOa = Ocpt
n1

⊕ · · · ⊕Ocpt
nm

,

then we have a direct sum decomposition

Om = O′

n1
⊕ · · · ⊕O′

nm
,

where O′
ni

∈ Tni for all i . This is the only condition here, so we deduce the following proposition.

Proposition 5.1. If Oa is a transfer system with

coreOa = Ocpt
n1

⊕ · · · ⊕Ocpt
nm

,

then there are m∏
j=1

Cat(n j )

transfer systems Om such that the pair (Oa,Om) is compatible.

This reduces our question of the number of compatible pairs to two parts:

(1) Enumerate all of the transfer systems with a fixed core.

(2) Then evaluate the corresponding sum.

Notation 5.2. Let k⃗ = (k1, . . . , km) be a sequence of positive integers. For each 1 ≤ s ≤ m, let

Ks = k1 + · · · + ks .

Let
Osat

k⃗
= Ocpt

k1
⊕ · · · ⊕Ocpt

km
.

Definition 5.3. For a sequence k⃗ = (k1, . . . , km) with n = k1 + · · · + km , let

Ek⃗ = {O ∈ Tk | coreO = Osat
k⃗

},

and let
ek⃗ = |Ek⃗ |.

Proposition 5.4. The number of admissible pairs of transfer systems for [n] is∑
k⃗

ek⃗

∏
j

Cat(k j ),

where k⃗ in the first sum ranges over the partitions of n.
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Proof. We partition the set of transfer systems by their core:

Tn =

⊔
k⃗

Ek⃗,

where k⃗ ranges over the partitions of n. This induces a partition of the set of compatible pairs:

D(0)
n =

⊔
k⃗

{(Oa,Om) | compatible,Oa ∈ Ek⃗}.

The first part of Proposition 3.3 shows that

{Om | (Oa,Om) compatible}

is constant for Oa ∈ Ek⃗ , and Proposition 5.1 identifies the cardinality as∏
j

Cat(k j ).

Putting this all together, we find there are ∑
k⃗

ek⃗

∏
j

Cat(k j )

compatible pairs of transfer systems. □

Catalan tuples. The enumeration and exact sum were analyzed by de Jong, Hock, and Wulkenhaar
[de Jong et al. 2022] in a slightly different guise. They consider certain sequences which they call Catalan
tuples.

Definition 5.5 [de Jong et al. 2022, Definition 3.1]. For each positive integer n, a Catalan tuple of length n
is a sequence of nonnegative integers

s⃗ = (s0, . . . , sr )

with three properties:

(1) For all j , we have
j∑

i=0

si > j.

(2) At the end of the sequence,
r∑

i=0

si = n.

(3) If n > 0, then sr > 0.

Let Sn be the set of all Catalan tuples of length n.

Remark 5.6. We have slightly modified the definition here to ignore trailing zeros. This removes our
ability to predict the length of the string, but it will better connect with the extensions.
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We can restate the conditions in Definition 5.5 slightly to start connecting with extensions.

Definition 5.7. The excess of a Catalan tuple s⃗ = (s1, . . . , sr ) of length n is

e(s⃗) := n − r − 1.

Remark 5.8. Note that the edge condition in Definition 5.5 of j = r implies the inequality n > r . This
means the excess is always nonnegative.

Proposition 5.9. Let s⃗ be a Catalan tuple of length n and excess e = n − r − 1. Then, for any k > 0, the
sequence

s⃗k(ℓ) = (s0, . . . , sr , 0, . . . , 0︸ ︷︷ ︸
ℓ

, k)

is a Catalan tuple if and only if

0 ≤ ℓ ≤ e.

Proof. For 0 ≤ j ≤ r , the Catalan tuple condition holds since it does for s⃗. If ℓ = 0, then we have
r∑

i=0

si + k = n + k > r + 1,

since n > r and k ≥ 1. Assume now that ℓ > 0, and consider a 1 ≤ j ≤ ℓ. We have
r+ j∑
i=0

si = n = r + e + 1.

On the other hand, this is greater than r + j if and only if j < e + 1. This gives the bounds on ℓ. Finally,
note that the analysis for the case ℓ = 0 now also implies the case j = ℓ + 1. □

Proposition 5.10. Let s⃗ be a Catalan tuple of length n and excess e = n − r − 1. Then, for any k > 0
and 0 ≤ ℓ ≤ e, the excess of the Catalan tuple

s⃗k(ℓ) = (s0, . . . , sr , 0, . . . , 0︸ ︷︷ ︸
ℓ

, k)

is

e(s⃗k(ℓ)) = k − 1 + e − ℓ = n + k − (r + ℓ + 2).

Proof. The Catalan tuple given has length n + k. The sequence s⃗ has length (r + 1), and we added ℓ + 1
new terms to form s⃗k(ℓ). □

This lets us rewrite Catalan tuples using only the nonzero entries.

Definition 5.11. If s⃗ is a Catalan tuple, then let core(s⃗) be the subsequence of nonzero entries of s⃗. Given
a partition k⃗ of k, let Sk⃗ be the subset of Sk of Catalan tuples with core k⃗:

Sk⃗ := {s⃗ ∈ Sk | core s⃗ = k⃗}.
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Corollary 5.12. Catalan tuples with core k⃗ are those sequences of the form

k1, 0, . . . , 0︸ ︷︷ ︸
ℓ1

, k2, 0, . . . , 0︸ ︷︷ ︸
ℓ2

, k3, . . . , kn−1, 0, . . . , 0︸ ︷︷ ︸
ℓn−1

, kn

such that for all 1 ≤ j ≤ n − 1, we have
j∑

i=1

(ki − ℓi ) ≥ j.

The excess of such a sequence is

(kn − 1) +

n−1∑
i=1

(ki − 1 − ℓi ).

In their work, de Jong, Hock, and Wulkenhaar consider certain collections of Catalan tuples.

Definition 5.13 [de Jong et al. 2022, Definition 4.1]. A nested Catalan tuple of length n is a sequence of
Catalan tuples (s⃗i1, . . . , s⃗ir ) such that s⃗i j ∈ Si j and the sequence

(i1 + 1, i2, . . . , ir )

is a Catalan tuple of length n.

A key result in [de Jong et al. 2022] is the cardinality of the number of nested Catalan tuple that begin
with (0). For this, we need a straightforward lemma.

Lemma 5.14. The map 6 : Sn → Sn+1 given by

(s0, . . . , sr ) 7→ (1, s0, . . . , sr )

is an injection with image those sequences which begin with 1.

Proposition 5.15 [de Jong et al. 2022, Corollary 4.6]. The number of nested Catalan tuples of length (n+1)

with first term (0) is ∑
s⃗∈Sn

∏
i

Cat(si ) =
1

2n+1

(3n
n

)
=

1
3n+1

(3n+1
n

)
= An(3, 1).

We will produce an explicit bijection
σ : Tn → Sn

by building bijections between Ek⃗ and Sk⃗ .

Enumerating extensions by a complete transfer system. It is helpful to think of elements of Ek⃗ also as
various “extensions” of the complete transfer systems Ocpt

k1
,. . . , Ocpt

kn
. For our count, it is easier to instead

consider a more general class.

Definition 5.16. An extension of O′
∈ Tm by O′′

∈ Tk is a transfer system O ∈ Tm+k such that

(1) i∗
mO = O′,

(2) 8mO = O′′,
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and an extension O of O′ by O′′ is core-preserving if, moreover,

coreO = coreO′
⊕ coreO′′.

Note that since by assumption we have specified i∗
m and 8m in an extension, we need only determine

the transfers with source i ≤ m and target j > m.

Definition 5.17. Any transfer i → j with i ≤ m and j > m in an extension of O′
∈ Tm by O′′ is a crossing

transfer.

Proposition 5.18. Let O be an extension of O′
∈ Tm by O′′

∈ Tk . Then following are equivalent:

(1) The extension is core-preserving.

(2) If there is a transfer m → j , then j = m.

Proof. Note that the existence of a nontrivial transfer m → j is equivalent to the existence of a transfer
m → (m + 1), by the restriction axiom. If we have

coreO′
= Ocpt

n1
⊕ · · · ⊕Ocpt

n j
and coreO′′

= Ocpt
m1

⊕ · · · ⊕Ocpt
mi

,

then, by construction of the core, the existence of the transfer m → (m+1) is equivalent to coreO satisfying

coreO = Ocpt
n1

⊕ · · · ⊕Ocpt
n j−1

⊕Ocpt
n j +m1

⊕Om2 ⊕ · · · ⊕Omi .

The result follows. □

Because we want to enumerate transfer systems with a fixed core, we now restrict attention to
core-preserving extensions of O by a complete transfer system O′. This significantly simplifies our
combinatorics.

Lemma 5.19. Let O be a core-preserving extension of O′
∈ Tm by Ocpt

k . Then, for each i ≤ m, the
following are equivalent:

(1) We have a crossing transfer i → m + j for some j > 0.

(2) We have crossing transfers i → m + j for all 0 ≤ j ≤ k.

Proof. One direction is immediate. For the other, if we have a transfer i → m + j , then, by the restriction
axiom, we have transfers i → m and i → m + 1. Since Ocpt

k is complete, in our extension, we have
transfers m + 1 → m + j for any 1 ≤ j ≤ k, which gives the second result. □

Remark 5.20. We singled out the transfer i → m since this constrains the number of possible sources for a
transfer from [m] up to [k]. Any crossing transfer has source an element of [m] that transfers up to m in O′.

Definition 5.21. If O ∈ Tm , then let

τ(O) = {d ∈ [m] | d → m}

be the set of elements which transfer up to m in O.

The element m always transfers to m, so τ(O) is always nonempty.
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Definition 5.22. If O ∈ Tm , then let
e(O) = |τ(O)| − 1

be the number of elements of {1, . . . , m − 1} which transfer up to m in O.

As a subset of the totally ordered set [m], the set τ(O) inherits a total order:

τ(O) = {d1, d2, . . . , de(O)+1},

where by assumption, we always will have that if i < j , then di < d j . The crossing transfers have a kind
of “nondecreasing” property for this order.

Lemma 5.23. Let O be a core-preserving extension of O′
∈ Tm by Ocpt

k . In O, if we have a transfer

d → m + k,

for some d ∈ τ(O′), then, for all d ′
∈ τ(O′) such that d ′

≤ d , we have transfers

d ′
→ m + k.

Proof. By the restriction axiom, whenever d ′
≤ d, we have a transfer d ′

→ d. The result follows from
transitivity. □

Definition 5.24. Let O′
∈ Tm , let e = e(O′), and write

τ(O′) = {d1, . . . , de+1}.

For each k > 0 and for each 0 ≤ ℓ ≤ e, define a relation →ℓ on [m + k] that refines the partial order ≤ by
saying that

(1) if i ≤ j ≤ m, then i →ℓ j if and only if i → j in O′,

(2) if m < i ≤ j , then i →ℓ j , and

(3) if i ≤ m < j , then i →ℓ j if and only if i = ds for some 1 ≤ s ≤ r − ℓ.

The following proposition is a straightforward application of the definition of a transfer system.

Proposition 5.25. The relation →ℓ is a transfer system on [n + k] that is a core-preserving extension
of O′ by Ocpt

k .

Definition 5.26. Let OO′,k(ℓ) denote the transfer system →ℓ on [n + k].

Remark 5.27. There is a special case of the extensions: ℓ = e. In this case, we have the direct sum
O′

⊕Ocpt
k .

There is a crucial observation about the number of transfers to [m + k] here.

Proposition 5.28. Let O′ be a transfer system on [m] with e(O′) = e, and let 0 ≤ ℓ ≤ e. Then

e(OO′,k(ℓ)) = (k − 1) + (e − ℓ).
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Proof. All of the k elements of [k] transfer up, and by construction, the r − ℓ elements d1, . . . , dr−ℓ are
the only elements from [m] which also transfer up to m + k. This gives

τ(OO′,k(ℓ)) = {d1, . . . , dr−ℓ, m + 1, . . . , m + k},

and the result follows. □

Putting these together gives a complete classification of the core-preserving extensions.

Theorem 5.29. Let O′
∈ Tm be a transfer system, and let e = e(O′). Then there are (e+1) core-preserving

extensions of O′ by Ocpt
k given by OO′,k(ℓ) for 0 ≤ ℓ ≤ e.

Proof. Lemmas 5.19 and 5.23 show that any core-preserving extension has this form. The converse is the
content of Proposition 5.25. □

Enumerating transfer systems with a fixed core. Now let O be a transfer system with

coreO = Osat
k⃗

.

Write k⃗ = (k1, . . . , kn). We can immediately identify O inductively as a type considered in the last section.

Proposition 5.30. The transfer system O is a core-preserving extension of i∗

Kn−1
O by Ocpt

kn
.

This turns our problem into an inductive one, working down on the number of summands in the
partition of k. We can now build our bijection.

Definition 5.31. Let
σ : Ek⃗ → Sk⃗

be defined inductively by the following procedure. If k⃗ = (k), then O = Ocpt
k , and we define

σ(Ocpt
k ) = k.

For a general k⃗ = (k1, . . . , kn) with n > 1 and O ∈ Ek⃗ , let ℓn−1 be the unique number 0 ≤ ℓn−1 such that

O = OO′,kn (ℓn−1),

where O′
= i∗

KO, and define
σ(O) = (σ (O′), 0, . . . , 0︸ ︷︷ ︸

ℓn−1

, kn).

Example 5.32. For O the transfer system in Figure 2, we have

σ(O) = (4, 0, 1, 2).

We need to verify that σ actually lands in the set Sk⃗ .

Proposition 5.33. For any O with coreO = k⃗,

(1) σ(O) ∈ Sk⃗ , and

(2) e(σ (O)) = e(O), that is, the excess of σ(O) is the number of elements j between 1 and Kn − 1 that
transfer up to Kn in O.
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Proof. We show this by induction on n. The base case of n = 1 is immediate by the definitions of σ and
the excess, so assume this is true for partitions with fewer than n terms.

Let O′
= i∗

Kn−1
O, and let r be the number of j < Kn−1 which transfer up to Kn−1 in O′. By the

inductive hypothesis, σ(O′) is a Catalan tuple with core (k1, . . . , kn−1) and we also have

e(σ (O′)) = r.

Now if 0 ≤ ℓn ≤ r is such that O = OO′,kn (ℓn−1), then, since ℓn−1 ≤ e(σ (O′)), the first claim is
Proposition 5.9. For the second part, Proposition 5.10 shows that the excess of σ(O) is

e(σ (O)) = e − ℓn−1 + (kn − 1).

Proposition 5.28 shows this is exactly the number of elements smaller than Kn which transfer up to Kn . □

This gives us the final piece for our argument.

Corollary 5.34. The map σ is a bijection Ek⃗ → Sk⃗ .

Proof. By induction on n, we see that there are exactly as many extensions of i∗

Kn−1
O by Okn as there

are extensions of the Catalan tuple σ(i∗

Kn−1
O) to a Catalan tuple ending with kn , and the map σ gives a

bijection between these. □

We close by completing a proof of Theorem 1.7 using these extensions.

Second proof of Theorem 1.7. Proposition 5.15 says that we have

An(3, 1) =

∑
s⃗∈Sn

∏
i

Cat(si ).

The set Sn of Catalan tuples of length n is partitioned by the cores:

Sn =

⊔
k⃗

Sk⃗ .

So we can rewrite the sum from Proposition 5.15 as∑
s⃗∈Sn

∏
i

Cat(si ) =

∑
k⃗

∑
s⃗∈Sk⃗

∏
i

Cat(si ).

Since Cat(0) = 1, only terms in the core of s⃗ contribute in a nontrivial way to the product:∏
i

Cat(si ) =

∏
j

Cat(k j ),

where in the second product, we are running over the entries of k⃗ = core s⃗. In particular, we can again
rewrite the sum from Proposition 5.15:∑

k⃗

∑
s⃗∈Sk⃗

∏
i

Cat(si ) =

∑
k⃗

|Sk⃗ |
∏

j

Cat(k j ),

since all Catalan tuples with the same core contribute the same product to the sum. Corollary 5.34 shows

|Sk⃗ | = |Ek⃗ | = ek⃗,
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the number of transfer systems with core Osat
k⃗

. Proposition 5.4 identifies this last sum with the number of
compatible pairs, completing the proof. □
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