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We provide a homotopy theorist’s point of view on KK- and E-theory for C∗-algebras. We construct
stable∞-categories representing these theories through a sequence of Dwyer–Kan localizations of the
category of C∗-algebras. Thereby we will reveal the homotopic-theoretic meaning of various classical
constructions from C∗-algebra theory, in particular of Cuntz’ q-construction. We will also discuss operator
algebra K -theory in this framework.
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1. Introduction

We describe a construction of stable∞-categories representing KK- and E-theory for C∗-algebras through
sequences of localizations of the category C∗Algnu

sep of separable C∗-algebras followed by a left-Kan
extension along the inclusion of separable C∗-algebras into all C∗-algebras. In contrast to the previous
constructions of such an∞-category [Land and Nikolaus 2018], particularly in the case of KK-theory
[Bunke et al. 2021], the description presented here is independent of the classical group-valued KK-theory
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introduced in [Kasparov 1988; Cuntz 1987] which is described, e.g., in the textbooks [Blackadar 1998;
Higson 1990b]. A stable∞-category representing E-theory has not been considered so far.

The main goal of this note is to give a complete account of the basic categorical and functorial
properties of KK- and E-theory using only the basic elements of C∗-algebra theory. In this way we hope
to make these theories more accessible to readers with a homotopy theory background. The approach
to KK- and E-theory described here can easily be generalized to the case of G-C∗-algebras for discrete
groups G (see, for example, [Bunke and Duenzinger 2024] for E-theory) or to C0(X)-algebras. With more
modifications it should be possible to develop a similar approach to the algebraic version of KK-theory
[Cortiñas and Thom 2007; Garkusha 2014; 2016; Ellis 2014]. It is also an interesting task to provide a
homotopy-theoretic interpretation of the constructions from [Cuntz 1998] in the spirit of the present paper.

The starting point of our construction is the characterization of the stable ∞-category version of
KK-theory through a universal property.

Definition 1.1. The functor kk :C∗Algnu
→KK is initial for functors from C∗Algnu to cocomplete stable

∞-categories which are homotopy invariant, stable, semiexact and s-finitary.

This means that kk has these properties, described in detail in Definition 2.4, and that for any cocomplete
stable∞-category D the restriction along kk induces an equivalence

kk∗ : Funcolim(KK,D) ≃−→ Funh,s,se,sfin(C∗Algnu,D).

Here the superscripts colim and h, s, se, sfin stand for colimit-preserving and the corresponding properties
listed in Definition 1.1.

The characterization of KK-theory by Definition 1.1 was given in [Bunke et al. 2021] following
[Land and Nikolaus 2018]. A similar characterization of the group-valued KK-functor through universal
properties has been known for a long time [Higson 1988].

The characterization of the stable∞-category representing E-theory is similar and obtained by replacing
in Definition 1.1 the condition of semiexactness by exactness. The motivation comes from the universal
property of the classical E-theory stated in [Higson 1990a, Theorem 3.6].

Definition 1.2. The functor e : C∗Algnu
→ E is initial for functors from C∗Algnu to cocomplete stable

∞-categories which are homotopy invariant, stable, exact and s-finitary.

In this case we have an equivalence

e∗ : Funcolim(E,D) ≃−→ Funh,s,ex,sfin(C∗Algnu,D).

Our construction proceeds with the following steps which are designed to force the universal properties
stated above:

(1) Lh : C∗Algnu
→ C∗Algnu

h is a Dwyer–Kan localization which inverts the homotopy equivalences.
The resulting∞-category C∗Algnu

h is left-exact (see Section 3) and the functor Lh is Schochet-exact in
the sense that it sends Schochet fibrant cartesian squares to cartesian squares.
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(2) L K : C∗Algnu
h → L K C∗Algnu

h is a smashing left-Bousfield localization which inverts the left-upper-
corner inclusions and produces a semiadditive and left-exact∞-category (see Section 4).

(3) We restrict to the full subcategory of separable algebras and form a left-exact Dwyer–Kan localization
Lsep,! : L K C∗Algnu

sep,h→ L K C∗Algnu
sep,h,! for ! in {splt, se, ex} which forces split exact, semisplit exact or

exact sequences to induce fiber sequences (see Section 5).

(4) For ! in {se, ex} the two-fold loop functor �2
sep,! : L K C∗Algnu

sep,h,! → L K C∗Algnu
sep,h,!

group (where
Cgroup denotes the full subcategory of group objects in a semiadditive∞-category C) turns out to be the
right-adjoint of a right-Bousfield localization and has a stable target. The composition of the localizations
above gives functors

kksep :C∗Algnu
sep→KKsep := L K C∗Algnu

sep,h,se
group and esep :C∗Algnu

sep→Esep := L K C∗Algnu
sep,h,ex

group
.

(See Section 7.)

(5) We define the presentable stable ∞-categories KK and E as the Ind-completions of the stable
∞-categories KKsep and Esep and the functors

kk : C∗Algnu
→ KK and e : C∗Algnu

→ E

by left-Kan extending the compositions

C∗Algnu
sep

kksep
−−→ KKsep

y
−→ KK and C∗Algnu

sep
esep
−−→ Esep

y
−→ E

along the inclusion of separable C∗-algebras into all C∗-algebras (see Section 8). Theorem 8.5 states that
the functors constructed by this procedure indeed satisfy the conditions of Definitions 1.1 and 1.2.

One interesting consequence of the constructions is that the functors

kksep : C∗Algnu
sep→ KKsep and esep : C∗Algnu

sep→ Esep

are Dwyer–Kan localizations (see Proposition 7.5).
Our construction of KK- and E-theory for separable C∗-algebras via a sequence of localizations is

analogous to the construction of an additive category representing E-theory in [Higson 1990a]. The idea
of left-Kan extending KK-theory from separable C∗-algebras to all C∗-algebras also appears in [Skandalis
1988].

The category C∗Algnu has symmetric monoidal structures ⊗max and ⊗min. The kk- and e-theory
functors have symmetric monoidal refinements which are characterized by symmetric monoidal versions
of Definitions 1.1 and 1.2. We will discuss the universal properties of the symmetric monoidal refinements
in the main body of the present paper.

The categories KK and E whose construction is sketched above are stable∞-categories. For any two
C∗-algebras A and B we therefore have mapping spectra

KK(A, B) := mapKK(kk(A), kk(B)), E(A, B) := mapE(e(A), e(B)).
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Taking homotopy groups we get Z-graded KK- and E-theory groups

KK∗(A, B) := π∗KK(A, B), E∗(A, B) := π∗E(A.B).

The approach to KK- and E-theory taken in the present note turns the classical constructions of these
group-valued bifunctors into calculations. Our homotopy-theoretic construction of KK- and E-theory
is straightforward once one knows which universal property one would like to enforce. Composition,
homotopy invariance, stability and the respective exactness properties come for free. Also Bott periodicity
is just a property which holds because of the existence of the Toeplitz extension. The real problem in our
approach is to calculate the homotopy groups of the mapping spaces in order to see that they coincide
with the classical groups. The latter are defined in terms of Kasparov modules (see [Cuntz 1987; 1998;
Thomsen 1999; Dadarlat et al. 2018] for alternatives) in the case of KK-theory, or in case of E-theory,
by the one-categorical localization procedure as in [Higson 1990a] or asymptotic morphisms [Connes
and Higson 1990]. The comparison of the homotopy groups of the mapping spectra of the categories
constructed in the present note with the classical groups is not obvious at all just from the construction.
But it is crucial if one wants to use the models proposed in this note as a homotopy-theoretic replacement
of the classical analytic constructions.

In the case of KK-theory one could argue by a comparison of the universal properties that the functors
kksep for separable algebras constructed in the present paper and in [Land and Nikolaus 2018] are
canonically equivalent. Moreover, in [Bunke et al. 2021] we have shown that the composition

C∗Algnu
sep

kksep
−−→ KKsep

ho
−→ hoKKsep

is equivalent to the triangulated-category-valued KK-theory of [Meyer and Nest 2006], and that the
KK-groups KK0(A, B) for separable C∗-algebras A, B are canonically isomorphic to the KK-groups
introduced in [Kasparov 1988]. But this argument has a draw back. Though the classical definition of
KK-groups in terms of equivalence classes of Kasparov modules is not very complicated, this method
of comparison also relies on the construction of the composition (i.e., the Kasparov product) and the
verification of semiexactness in the classical theory which are deep theorems. It is therefore one of the
guiding challenges of the present paper to give an independent complete proof for the comparison.

From the perspective of the present notes it is natural to compare the KK- and E-theory functors of
the present paper with the classical ones by comparing their universal properties. This can be done in a
model-independent way by defining the classical functors

kkclass
sep : C

∗Algnu
sep→ KKclass

sep , eclass
sep : C

∗Algnu
sep→ Eclass

sep

as the universal homotopy invariant, stable and split exact or half-exact functors, respectively, to an
additive category in the sense of [Higson 1990a, Theorems 3.4 and 3.6]. These can directly be compared
with the compositions

hokksep : C∗Algnu
sep

kksep
−−→ KKsep

ho
−→ hoKKsep, hoesep : C∗Algnu

sep
esep
−−→ Esep

ho
−→ hoEsep.
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The following is a consequence of Theorem 13.16 and the Theorem 12.1 (which allows one to replace
kksep,q appearing in Theorem 13.16 by kksep).

Corollary 1.3. We have commutative squares

C∗Algnu
sep

kkclass
sep
//

kksep

��

KKclass
sep

KKsep
ho
// hoKKsep

≃

OO
C∗Algnu

sep

eclass
sep

//

esep

��

Eclass
sep

Esep
ho
// hoEsep

≃

OO

where the dashed arrows are equivalences of additive categories.

One could argue that in the case of KK-theory the proof of Corollary 1.3 has a similar problem
as the argument mentioned above since we must know that our preferred model of kkclass

sep has the
universal property stated in [Higson 1990a, Theorem 3.4]. We therefore will provide another, completely
independent comparison with Cuntz’ treatment of KK by showing (1-4) below. One could then read the
arguments also in a different direction as showing that the Cuntz model indeed has the universal property
[Higson 1990a, Theorem 3.4].

In our approach the enrichment of KK- and E-theory in spectra is a natural consequence of the stability
of the∞-categories KK or E. But point-set level constructions of spectral enrichments of KK-theory
have previously been considered in [Joachim and Stolz 2009; Mitchener 2002].

As can be seen from the description above our approach to a stable∞-category representing KK- and
E- theory is different from other attempts to produce such stable∞-categories which were guided by the
methods of motivic homotopy theory [Østvær 2010; Mahanta 2015]. There the idea was to start from
the category of presheaves Fun((C∗Algnu

sep)
op,Spc), to perform a series of left-Bousfield localizations

forcing homotopy invariance, stability and the desired version of exactness ! in {splt, se, ex}, and finally
to apply −⊗Sp in presentable∞-categories in order to stabilize. Let us denote the resulting presentable
stable∞-category by KKsep,!. It comes with a functor kksep,! :C∗Algnu

sep→KKsep,! which by construction
has the universal property that

kk∗sep,! : Funcolim(KKsep,!,D) ≃−→ Funh,s,!(C∗Algnu
sep,D)

for any presentable stable∞-category D. The main nontrivial question is then to understand the relation
between π∗mapKKsep,!

(kksep,!(A), kksep,!(B)) and the classical KK-groups KKclass
sep,∗(A, B) (for ! = se) or

E-theory groups Eclass
sep,∗(A, B) (for ! = ex). We will not pursue this direction.

As said above the advantage of the constructions in the present note is that they do not require previous
knowledge of KK- or E-theory. In contrast, in [Land and Nikolaus 2018; Bunke et al. 2021] the basic
idea was to construct the category KKsep as a Dwyer–Kan localization of C∗Algnu

sep at the kk-equivalences.
The latter notion was imported from the classical theory. In the present paper we do not have to know
from the beginning what a kk-equivalence is. The notion of a kk-equivalence comes out at the end as a
morphism which is sent to an equivalence by the functor kksep. The input for the construction of KKsep in
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the present paper are only simple C∗-algebraic notions such as homotopy of homomorphisms, compact
operators and semisplit exact sequences.

The construction of the∞-categories KK and E via localizations and Ind-completions is very suitable
for understanding functors out of these categories. This will be employed in some subsequent papers.
On the other hand, it is notoriously difficult to understand the homotopy types of the mapping spaces
in a Dwyer–Kan localization just from the definition. In Sections 9 and 10 we will, with some effort,
calculate the mapping spectra E(A, B) for A ∼= C or A ∼= S(C)∼= C0(R) explicitly.

We first define the commutative ring spectrum KU := E(C,C). We justify this notation by providing
a ring isomorphism π∗KU ∼= Z[b, b−1

] with deg(b) = −2 and comparing �∞KU with the classical
constructions of an infinite loop space with the same name. Since e(C) is the tensor unit of E this category
has a canonical enrichment over the category Mod(KU) of KU-module spectra. In Definition 9.3 we then
define the lax symmetric monoidal Mod(KU)-valued K -theory functor for C∗-algebras simply as

K (−) := E(C,−) : C∗Algnu
→Mod(KU). (1-1)

This gives an effortless construction of a highly structured version of a K -theory functor for C∗-algebras.
For previous constructions of spectrum-valued K -theory functors, see, for example, [Bunke et al. 2003;
Dell’Ambrogio et al. 2011; Joachim 2003; Dadarlat and Pennig 2015].

Recall that the classical constructions of C∗-algebra K -theory groups as described, for instance, in
[Blackadar 1998] employ equivalence classes of projections or components of unitary groups. In order to
connect our definition (1-1) with the classical ones and in order to show that it gives the correct group-valued
functors after taking homotopy groups, we relate the infinite loop-space valued functor �∞K with spaces
of projections or unitaries. Thereby we take care of the natural commutative monoid or groups structures.

Using that L K C∗Algnu
h is semiadditive we can define the commutative monoid (see Example 4.8)

Projs(B) := MapL K C∗Algnu
h
(C, B)

of stable projections and the commutative group (see Example 4.9)

U s(B) := MapL K C∗Algnu
h
(S(C), B)

of stable unitaries in B. The following result combines Proposition 9.4 and Corollary 10.8.

Corollary 1.4. (1) If B is unital, then there is a canonical morphism Projs(B) → �∞K (B) in
CMon(Spc) which presents its target as the group completion.

(2) We have a canonical equivalence U s(B)≃�∞−1K (B) in CGroups(Spc).

The canonical morphisms in Corollary 1.4 are induced by the steps (3)–(5) of the above sequence of
localizations. The standard modification of Corollary 1.4(1) for nonunital C∗-algebras will be stated as
Theorem 10.7.

If one goes over to connected components in (1) or homotopy groups in (2), and if one interprets
π∗K (B) as the classical version of K -theory of C∗-algebras, then the assertions of Corollary 1.4 are
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well-known. The main point of Corollary 1.4 is that K (B) is not given by the classical definitions but is
defined through mapping spectra of the category E which is constructed by a formal homotopy-theoretic
procedure of Dwyer–Kan localizations. It is only by Corollary 1.4 that we know that these mapping
spectra have the correct homotopy types to represent the classical K -theory of C∗-algebras.

An advantage of the definition of the K -theory functor for C∗-algebras in (1-1) is that it is homotopy
invariant, stable, exact, and s-finitary by construction. In addition, in Corollary 9.7 we show, using the
equivalence from Corollary 1.4(2), that it preserves filtered colimits. Of course, all these properties are
well-known propositions about the classical definition.

Following [Rosenberg and Schochet 1987] we define the UCT-class in KK as the localizing subcategory
generated by the tensor unit kk(C). Using Corollary 1.4(2) we will see in Corollary 9.16 that the natural
map KK(B,−)→ E(B,−) is an equivalence if B belongs to the UCT-class. Essentially by definition,
the K -theory functor induces a symmetric monoidal equivalence between the UCT-class and the stable
∞-category Mod(KU). This leads to a simple picture of the universal coefficient theorem and the Künneth
formula stated in Corollary 9.16.

Cuntz’ treatment [1987] of KK-theory is based on the q-construction which involves a functor and a
natural transformation

q : C∗Algnu
→ C∗Algnu, ι : q→ idC∗Algnu .

The goal of Section 11 is to study the homotopical features of the q-construction. This whole section is
essentially a translation of [Cuntz 1987] from abelian-group-valued functors to functors having values
in semiadditive or additive∞-categories. The main insight derived in this section is that inverting the
image of the set {ιA : q A→ A | A ∈ C∗Algnu

} in L K C∗Algnu
h (see step (2) above) yields the universal

homotopy invariant, stable, split exact and Schochet-exact functor

Lh,K ,q : C∗Algnu
→ L K C∗Algnu

h,q

with values in a left-exact additive ∞-category. By Proposition 11.6 it is a Dwyer–Kan localization.
Using the deep result [Cuntz 1987, Theorem 1.6] (reproduced in these notes as Theorem 11.13) we will
see in the separable case that the Dwyer–Kan localization Lsep,q : L K C∗Algnu

sep,h→ L K C∗Algnu
sep,h,q is

actually a right-Bousfield localization, and we obtain the very simple formula

ℓHom(q A, K ⊗ B)≃ MapL K C∗Algnu
sep,h,q

(A, B) (1-2)

for the mapping space between two separable C∗-algebras A and B in this localization. The left-hand side
of this equivalence is the space associated to the topological space of homomorphisms from q A to K ⊗ B.

By [Cuntz 1987] it is known that for two separable C∗-algebras A and B there is an isomorphism

π0Hom(q A, K ⊗ B)∼= KKclass
sep (A, B). (1-3)

It is probably the deepest challenge of these notes to provide an accessible proof of the analogue

π0Hom(q A, K ⊗ B)∼= KKsep,0(A, B) (1-4)
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of this formula with classical KK-theory replaced by the homotopy-theoretic version constructed in the
present paper. Note that in contrast to [Cuntz 1987], where (1-3) is essentially the definition of the
right-hand side, in our situation the group on the right-hand side of (1-4) is defined as the group of
components of the mapping space in a certain Dwyer–Kan localization. By (1-2) and the possibility to
replace B by suspensions Si (B) for i in N we see that (1-4) is equivalent to the fact that the functor
Lsep,h,K ,q : C∗Algnu

sep → L K C∗Algnu
sep,h,q is equivalent to the functor kksep : C∗Algnu

sep → KKsep. An
equivalent formulation of this latter fact is the automatic semiexactness theorem, Theorem 12.4, stating
that for any additive left-exact∞-category D, the natural inclusion

Funh,s,se+Sch(C∗Algnu
sep,D)→ Funh,s,splt+Sch(C∗Algnu

sep,D)

from homotopy invariant, stable, Schochet-exact and semiexact functors to homotopy invariant, stable,
Schochet-exact and split exact functors is an equivalence. The proof of the automatic semiexactness
theorem will be discussed in detail in Section 12.

Note that semiexactness of an exact sequence of C∗-algebras is defined in terms of the existence of a
completely positive contractive (cpc) split. Since this is an analytic condition which somehow has to be
exploited it is not surprising that the proof of the automatic semiexactness theorem in Section 12 is not
purely homotopy theoretic in nature but contains various analytic arguments. But since we will avoid using
Kasparov products or other deep results from the classical theory it might be quite accessible to homotopy
theorists. In particular note that our proof does not depend on (1-2), whose proof in Theorem 11.13
involves Pedersen’s derivation lifting.

But using (1-2) and the automatic semiexactness theorem together in Corollary 12.3 we can show in the
context of the present notes that KKsep admits countable colimits and is therefore idempotent complete.
In [Bunke et al. 2021, Lemma 2.19] this fact has been shown by using [Kasparov 1988, Theorem 2.9].1

The classical construction of KK-theory is based on the notion of Kasparov modules. Equivalence
classes of Kasparov modules are interpreted as elements of KK0(A, B). Kasparov modules in a certain
standard form can be captured by Cuntz’ work in terms of the q-construction. Essentially by definition,
the left-hand side of (1-2) can be interpreted as the space of Kasparov (A, B)-modules. So the mapping
spaces in L K C∗Algnu

sep,h,q are expressed in terms of spaces of Kasparov modules via (1-2), while the
automatic semiexactness theorem implies that these are also the mapping spaces in KKsep. We will not
discuss the alternative models for the group-valued KK-theory based on asymptotic morphisms [Thomsen
1999] or localization algebras [Dadarlat et al. 2018].

Recall that the classical concrete model of E-theory [Connes and Higson 1990] involves asymptotic
morphisms. In Section 14 we will show that asymptotic morphisms give rise to elements in E0(A, B) in
a way which is compatible with compositions.

We finally stress that these notes concentrate on the homotopy-theoretic and categorical aspects of
KK- and E-theory. The full power of KK-theory to applications, such as the classification programs

1Using the results from [Bunke and Duenzinger 2024] one can show that Esep admits countable coproducts.



KK- AND E -THEORY VIA HOMOTOPY THEORY 111

for C∗-algebras, only reveals itself if one employs the equivalence of different cycle-by-relation models
based on Kasparov modules. This aspect will not be considered at all in these notes. Other applications,
for instance, to the Baum–Connes or Novikov conjecture, require the ability to control the composition
of morphisms in KK-theory explicitly. If one uses the model based on Kasparov modules, then there
are well-developed methods serving this purpose, such as using connections. In the model given in the
present paper it is quite tricky to calculate compositions of morphisms which do not simply come from
morphisms between the C∗-algebras. We only give one nontrivial example of such a composition, which
is Proposition 12.12 and is already complicated enough. But this calculation is absolutely crucial since it
provides the last cornerstone for Theorem 12.1 which helps prove the comparison result Corollary 1.3.

2. C∗-algebras

We collect the basic facts from C∗-algebra theory which we will use. The material can be found in the intro-
ductory chapters of [Dixmier 1977; Pedersen 1979; Brown and Ozawa 2008; Williams 2007; Pisier 2020].

In order to fix set-theoretic size issues we choose three Grothendieck universes called the small, large,
and very large sets.

In Definition 2.4 we will introduce the notions appearing in Definitions 1.1 and 1.2.
We let C∗Algnu denote the large, but locally small category of small C∗-algebras and homomorphisms.

By C∗Alg we denote its subcategory of unital C∗-algebras and unit-preserving homomorphisms. As we
are interested in the categorical properties of the categories of C∗-algebras we will follow the approach in
[Bunke 2020]. We consider C∗Algnu as a full subcategory of the large locally small category of small
∗-algebras ∗Algnu

C over C. The latter is the category of small (possibly nonunital) algebras over C with an
antilinear involution ∗ and structure-preserving maps.

A C∗-seminorm on a ∗-algebra A is a submultiplicative seminorm satisfying the C∗-equality ∥a∗a∥ =
∥a∥2. For a in A we define the maximal seminorm of a by ∥a∥max := sup∥−∥∥a∥, where the supremum
runs over all C∗-seminorms on A.

We say that A is a pre-C∗-algebra if all its elements have a finite maximal seminorm. The inclusion
C∗preAlgnu

→
∗Algnu

C of the category of pre-C∗-algebras into the category of all ∗-algebras is the left-adjoint
of a right-Bousfield localization whose right-adjoint is the bounded elements functor Bd∞.

A C∗-algebra is a pre-C∗-algebra A with the property that (A, ∥−∥max) is a Banach space. The
inclusion C∗Algnu

→ C∗preAlgnu of the category of C∗-algebras into the category of pre-C∗-algebras is
the right-adjoint of a left-Bousfield localization whose left-adjoint is the completion functor compl.

In view of its algebraic description the category ∗Algnu
C is clearly complete and cocomplete in the sense

that it admits all small limits and colimits. As a consequence of the above characterization of C∗-algebras
the category C∗Algnu is complete and cocomplete, too. We obtain an explicit description of limits and
colimits in terms of their algebraic counterparts indicated by a superscript alg. If A : I → C∗Algnu is an
I -diagram of C∗-algebras for some small index category I , then

lim
I

A ∼= Bd∞(lim
I

alg A), colim
I

A ∼= compl(colim
I

alg A). (2-1)
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In particular, the coproduct of the C∗-algebras A0 and A1 is represented by the free product of C∗-
algebras A0∗ A1 := compl(A0∗

alg A1) together with the canonical morphisms ιi : Ai→ A0∗ A1. Similarly,
the product of A0 and A1 is represented by the (algebraic) sum A0 ⊕ A1 together with the canonical
projections pri : A0⊕ A1→ Ai . If (Ai )i∈I is a small infinite family of C∗-algebras, then (2-1) says that∏

i∈I Ai ∼= Bd∞
(∏alg

i∈I Ai
)

is the subalgebra of the algebraic product of families (ai )i∈I of elements ai in
Ai with supi∈I∥ai∥Ai <∞.

From now on we will suppress the size adjectives large and small as much as possible.
The category C∗Algnu is pointed by the zero algebra 0.
The category C∗Algnu has two canonical symmetric monoidal structures ⊗max and ⊗min. For C∗-

algebras A, B the maximal tensor product is defined by A⊗max B := compl(A⊗alg B), where we use
that the ∗-algebra A⊗alg B is actually a pre-C∗-algebra.

In order to define the minimal tensor product (also called the spatial tensor product) we equip A⊗alg B
with the minimal C∗-norm (not seminorm!) and form the closure. This minimal norm can alternatively be
characterized as the norm induced by the representation A⊗ B→ B(H ⊗ L) induced by any two faithful
representations A→ B(L) and B→ B(H) for Hilbert spaces L and H .

We always have a canonical morphism A⊗max B→ A⊗min B, and A is called nuclear if this morphism
is an isomorphism for all B. Its is known that commutative C∗-algebras and the C∗-algebra K of compact
operators on a separable Hilbert space are nuclear. If one of the tensor factors is nuclear we can safely
write ⊗ and omit the subscript specifying the choice.

Example 2.1. The commutative algebra objects CAlg(C∗Algnu) (say, with respect to ⊗max) are precisely
the unital commutative C∗-algebras. □

If X is a compact topological space, then by C(X)we denote the commutative C∗-algebra of continuous
C-valued functions on X . For C∗-algebras A and B we let Hom(A, B) denote the compactly generated
topological space characterized by the property that for every compact space X we have a natural bijection

HomTop(X, Hom(A, B))∼= HomC∗Algnu(A,C(X)⊗ B). (2-2)

The topology on Hom(A, B) is equivalent to the maximal compactly generated topology containing
the point-norm topology on HomC∗Algnu(A, B). In this way C∗Algnu becomes a category enriched in
topological spaces.

A homomorphism f : B → C between C∗-algebras is a homotopy equivalence if there exists a
homomorphism g : C→ B, called a homotopy inverse, such that f ◦ g is homotopic to idC in Hom(C,C)
and g ◦ f is homotopic to idB in Hom(B, B). Equivalently, one could require that the induced map

Hom(A, f ) : Hom(A, B)→ Hom(A,C)

is a homotopy equivalence of topological spaces for all C∗-algebras A.
A left-upper-corner inclusion A→ A⊗ K is a homomorphism of the form a 7→ a⊗ e where e is a

minimal nonzero projection in K .
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Remark 2.2. If one interprets K and A⊗ K as algebras of N-indexed matrices with entries in C or A,
respectively, then we can write this map as

a 7→


a 0 0 . . .

0 0 0 . . .

0 0 0 · · ·
...
...
...
. . .

 .
This picture explains the name left-upper-corner inclusion. □

An exact sequence
0→ I → B π

−→ Q→ 0

of C∗-algebras is called semisplit exact (or split exact), if π admits a completely positive contractive (cpc)
right-inverse (or a right-inverse homomorphism, respectively). It is known that the functor A⊗max−

preserves exact sequences and the condition of being semisplit exact or split exact. The functor A⊗min−

preserves semisplit exact sequences and split exact sequences. A cartesian square in C∗Algnu

E //

��

B

��

D // C

is called exact (semisplit) if the vertical maps are surjective (admit a cpc split). The functor A⊗max−

preserves exact cartesian squares and also semisplit cartesian squares, and A⊗min− preserves semisplit
ones. Note, the fact that B→C is surjective or admits a cpc split implies that E→D has the same property.

A C∗-algebra is called separable if it contains a countable dense subset. We let C∗Algnu
sep denote the

full subcategory of separable C∗-algebras. Note that C∗Algnu
sep is essentially small. For a C∗-algebra A

we let A′ ⊆sep A denote the poset of separable subalgebras of A. Then we have a canonical isomorphism

colim
A′⊆A

A′ ∼= A. (2-3)

Example 2.3. The algebra of compact operators K (H) on a separable Hilbert space H is separable. If
dim(H)=∞, then the algebra of bounded operators B(H) is not separable. If X is a separable metric
space, then C0(X) is a separable C∗-algebra. If X is not compact, then the C∗-algebra of bounded
continuous functions Cb(X) on X is not separable. □

Let F be a functor defined on C∗Algnu or C∗Algnu
sep.

Definition 2.4. (1) F is homotopy invariant if F sends homotopy equivalences to equivalences.

(2) F is stable if it sends left-upper-corner inclusions to equivalences.

(3) F is reduced if F(0) is a zero object.

(4) F is exact (semisplit exact or split exact) if F is reduced and F sends exact (semisplit exact or split
exact) sequences to fiber sequences.
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(5) If F is defined on C∗Algnu, then we say that F is s-finitary if for every C∗-algebra A the canonical
morphism colimA′⊆sep A F(A′)→ F(A) is an equivalence.

In (3) and (4) we implicitly assume that the target of F is pointed. In (5) we further assume that the
colimit exists.

Remark 2.5. In order to check that F is homotopy invariant it suffices to check F(A)→ F(C([0, 1])⊗A)
is an equivalence for every C∗-algebra A, where the map is induced by (C→ C([0, 1]))⊗ idA.

The functor F is s-finitary if and only if it represents the left-Kan extension of the restriction F|C∗Algnu
sep

along the inclusion C∗Algnu
sep→ C∗Algnu. By (2-3), a filtered colimit preserving functor is s-finitary. □

Remark 2.6. Many constructions in the present paper done for C∗Algnu have a version for separable
algebras. We will indicate this in the notation by adding subscripts sep to the categories or functors. If
everything goes through for separable algebras word by word, then we will simply state that we have a
separable version. At some places separability matters, and then we will be explicit. □

3. Inverting homotopy equivalences

We study the Dwyer–Kan localization of the category C∗Algnu at the set of homotopy equivalences. We
will show that the resulting ∞-category C∗Algnu

h is presented by the topological enriched version of
C∗Algnu so that we understand the mapping spaces in C∗Algnu

h explicitly. It will turn out that C∗Algnu
h is

a pointed left-exact∞-category.
We start with recalling the ∞-categorical background on Dwyer–Kan localizations. Let C be a
∞-category and W be a set of morphisms in C. Then we can form the Dywer–Kan localization

L : C→ C[W−1
]

of C at W . It is characterized by the universal property that

L∗ : Fun(C[W−1
],D) ≃−→ FunW (C,D) (3-1)

is an equivalence for every ∞-category D, where the superscript W on the right indicates the full
subcategory of functors which send the elements of W to equivalences [Lurie 2017, Definition 1.3.4.1 &
Remark 1.3.4.2]. We will apply this to∞-categories C, D in the universe of large sets so that C[W−1

]

also belongs to this universe.

Remark 3.1. The functor L is essentially surjective and in order to make formulas more readable we
will usually denote the image L(C) or L( f ) in C[W−1

] of an object or morphism in C simply by C
or f . This convention in particular applies when we insert them into functors defined on C[W−1

]. But
sometimes we need the longer, more precise notation in order to avoid confusion. □

If C is symmetric monoidal, then we say that the localization L admits a symmetric monoidal refinement,
if C[W−1

] has a symmetric monoidal structure, L has a symmetric monoidal refinement, and we have an



KK- AND E -THEORY VIA HOMOTOPY THEORY 115

equivalence

L∗ : Fun⊗/lax(C[W−1
],D) ≃−→ FunW

⊗/lax(C,D) (3-2)

for every symmetric monoidal∞-category D, where the notation ⊗/lax indicates two separate formulas,
one for symmetric monoidal functors and one for lax symmetric monoidal functors.

In order to check that L has a symmetric monoidal refinement, by [Hinich 2016, Proposition 3.3.2], it
suffices to check that the functor C ⊗− preserves W for every object C of C.

Definition 3.2. We let

Lh : C∗Algnu
→ C∗Algnu

h (3-3)

be the Dwyer–Kan localization of the category C∗Algnu at the homotopy equivalences.

By definition it is characterized by the universal property that pull-back along Lh induces for any
∞-category D an equivalence

L∗h : Fun(C∗Algnu
h ,D) ≃−→ Funh(C∗Algnu,D), (3-4)

where the superscript h indicates the full subcategory of Fun(C∗Algnu,D) of homotopy invariant functors
(see Definition 2.4(1)).

We consider the tensor product ⊗? on C∗Algnu for ? in {max,min}.

Lemma 3.3. For ? in {max,min} the localization Lh has a symmetric monoidal refinement.

Proof. It follows from the functoriality and associativity of ⊗? and (2-2) that for every C∗-algebra A
the functor A⊗? − : C∗Algnu

→ C∗Algnu is continuous for the topological enrichment and therefore
preserves homotopy equivalences. This implies that Lh has a symmetric monoidal refinement. □

Thus for every symmetric monoidal∞-category D we have an equivalence

L∗h : Fun⊗/lax(C∗Algnu
h ,D) ≃−→ Funh

⊗/lax(C
∗Algnu,D). (3-5)

Remark 3.4. Note that on C∗Algnu
h we have two symmetric monoidal structures ⊗?, one for ?=max

and one for ?=min which will be discussed in a parallel manner. In particular, (3-5) actually has two
versions. □

In contrast to general Dwyer–Kan localizations, in the present case we can understand the mapping
spaces in C∗Algnu

h explicitly. In fact, we will see that the topologically enriched category C∗Algnu directly
presents the localization. To this end we apply the singular complex functor sing to the Hom-spaces in
order to get a Kan-complex enriched category. Further applying the homotopy coherent nerve we get
an∞-category C∗Algnu

∞
together with a functor C∗Algnu

→ C∗Algnu
∞

given by the inclusion of the zero
skeleton of the mapping spaces.

Proposition 3.5. The functor C∗Algnu
→ C∗Algnu

∞
presents the Dwyer–Kan localization of C∗Algnu at

the homotopy equivalences.
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Proof. For every C∗-algebra B we define the path algebra

PB := C(11)⊗ B. (3-6)

By (2-2), defining a map of simplicial sets [n]→ sign(Hom(A, B)) is equivalent to specifying an element
in HomC∗Algnu(A,C(1n)⊗ B). We let hB : [1] → sign(Hom(P B, B)) correspond to the identity of PB.
One then checks that for any C∗-algebra A the canonically induced map

HomsSet([n], sing(Hom(A, P B)))→ HomsSet([1]× [n], sing(Hom(A, B)))

is a bijection. The assertion of Proposition 3.5 now follows from [Lurie 2017, Theorem 1.3.4.7]. □

Corollary 3.6. The∞-category C∗Algnu
h is locally small.

Remark 3.7. At various places in this note we will use that small topological spaces present objects in
the large∞-category of small spaces2 Spc. This is achieved by the functor

ℓ : Top→ Spc, (3-7)

which presents the∞-category Spc as the Dwyer–Kan localization of Top at the set of weak homotopy
equivalences. One of the fundamental principles, called Grothendieck’s homotopy hypothesis, states that
the∞-category Spc defined in this way is equivalent to the∞-category of∞-groupoids in which the
mapping spaces of locally small∞-categories naturally live. For a general large∞-category they belong
to the very large∞-category of large spaces which we will denote by SPC.

We will use that ℓ preserves coproducts, products and sends Serre fibrant cartesian squares to cartesian
squares, where a cartesian square

X //

��

Y

f
��

Z // U

in Top is called Serre fibrant if f is a Serre fibration. □

As an immediate corollary of Proposition 3.5 we get an explicit description of the mapping spaces in
C∗Algnu

h .

Corollary 3.8. For any two C∗-algebras A, B we have a natural equivalence of spaces

MapC∗Algnu
h
(A, B)≃ ℓHom(A, B). (3-8)

In the formula above we adopted the conventions from Remark 3.1.
We now discuss limits and colimits in C∗Algnu

h .

Proposition 3.9. The category C∗Algnu
h admits finite products and arbitrary small coproducts, and the

localization Lh preserves them.

2This name is changed to anima in recent literature.
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Proof. We start with finite products. Let (Bi )i∈I be a finite family of C∗-algebras and A be any C∗-algebra.
Then we must show that the map

MapC∗Algnu
h

(
A,
∏

i

Bi

)
→

∏
i∈I

MapC∗Algnu(A, Bi )

induced by the family of projections
(∏

i∈I Bi→ B j
)

j∈I is an equivalence. This follows from the fact that

Hom
(

A,
∏

i

Bi

)
→

∏
i∈I

Hom(A, Bi ) (3-9)

is actually a homeomorphism.
We now consider coproducts. Let (Ai )i∈I be a small family of C∗-algebras and B be any C∗-algebra.

Then we must show that the map

MapC∗Algnu
h

(∐
i∈I

Ai , B
)
→

∏
i∈I

MapC∗Algnu(Ai , B)

induced by the family of inclusions
(

A j→
∐

i∈I Ai
)

j∈I is an equivalence. This follows from the fact that

Hom
(∐

i∈I

Ai , B
)
→

∏
i∈I

Hom(Ai , B)

is actually a homeomorphism. □

Remark 3.10. In the case of products we assume that the index set I is finite. If it is not finite, then the
map (3-9) is no longer a homeomorphism. Let X be a compact topological space. Then the image under
(3-9) of HomTop

(
X, Hom

(
A,
∏

i Bi
))

in

HomTop

(
X,
∏
i∈I

Hom(A, Bi )

)
∼=

∏
i∈I

HomTop(X, Hom(A, Bi ))

consists of the families of maps (φi : X → Hom(A, Bi ))i∈I such that the family (φi (a) : X → Bi )i∈I is
equicontinuous for every a in A. □

Lemma 3.11. The functor Lh is reduced and C∗Algnu
h is pointed.

Proof. The zero algebra represents the initial and the final object of C∗Algnu
h . □

Example 3.12. Let A be any C∗-algebra. Then C0([0,∞))⊗ A represents the zero object in C∗Algnu
h . □

A morphism f : B→C in C∗Algnu is called a Schochet fibration if the map f∗ :Hom(A, B)→Hom(A,C)
is a Serre fibration of topological spaces for every C∗-algebra A [Schochet 1984].

Example 3.13. If i : Y → X is a map of compact spaces which has the homotopy extension property,
then the restriction map i∗ :C(X)→C(Y ) is a Schochet fibration which in addition admits a cpc split. □
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A cartesian square
A //

��

B

f
��

D // C

is called Schochet fibrant if f is a Schochet fibration. Note that a Schochet fibration is automatically
surjective. If D = 0, then we say that

0→ A→ B→ C→ 0

is a Schochet-exact sequence.

Definition 3.14. A functor C∗Algnu
→ C will be called Schochet-exact if it sends Schochet fibrant

cartesian squares to cartesian squares.

We will indicate Schochet-exact functors by a superscript as in FunSch.

Remark 3.15. In contrast to the other notions of exactness introduced in Definition 2.4(4), the notion of
Schochet exactness is formulated in terms of squares instead of exact sequences.

If C is pointed, then a reduced Schochet-exact functor sends Schochet exact sequences to fiber sequences.
If C is stable, then it is easy to see that the converse is also true. A functor which sends Schochet-exact
sequences to fiber sequences is reduced and Schochet-exact; see [Bunke et al. 2021, Lemma 2.14] for
analogous statements for semiexact functors and squares. □

Remark 3.16. For the proof of Proposition 3.17(5) below we need the mapping cylinder construction.
The mapping cylinder of a map f : B→C of C∗-algebras is defined by the Schochet fibrant and semisplit
cartesian square

Z( f ) //

h f

��

PC

ev0

��

B
f
// C

(3-10)

where PC is the path algebra as in (3-6). The maps h f : Z( f )→ B and ev0 are homotopy equivalences.
We write elements in Z( f ) as pairs (b, γ ) with b in B and γ in PC such that γ (0) = f (b). The map
f̃ : Z( f )→ C given by (b, γ ) 7→ γ (1) is a Schochet fibration and also admits a cpc split c 7→ (0, γc)

with γc(t) := tc. We further define the mapping cone of f by C( f ) := ker( f̃ ). An element of C( f ) is
thus a pair (a, γ ) of an element of A and a path in C with f (a)= γ (0) and γ (1)= 0.

The sequence

0→ C( f ) ι f
−→ Z( f ) f̃

−→ C→ 0 (3-11)

is Schochet- and semisplit exact. □

Recall that an∞-category is called left-exact if it admits all finite limits. A functor between left-exact
∞-categories is called left-exact if it preserves finite limits. We use the notation Funlex in order to denote
the full subcategory of left-exact functors.
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Proposition 3.17. (1) The∞-category C∗Algnu
h is left-exact.

(2) The functor Lh sends Schochet fibrant cartesian squares to cartesian squares.

(3) The pull-back along Lh induces for every left-exact∞-category D an equivalence

L∗h : Funlex(C∗Algnu
h ,D) ≃−→ Funh,Sch(C∗Algnu,D). (3-12)

(4) The pull-back along the symmetric monoidal refinement of Lh induces for every symmetric monoidal
left-exact∞-category D an equivalence

L∗h : Funlex
⊗,lax(C

∗Algnu
h ,D) ≃−→ Funh,Sch

⊗,lax(C
∗Algnu,D).

(5) For ? in {min,max} the functor −⊗?− : C∗Algnu
h ×C∗Algnu

h → C∗Algnu
h is bileft-exact.

Proof. We let W be the subcategory of homotopy equivalences in C∗Algnu and F be the subcategory of
Schochet fibrations. Then (C∗Algnu,W, F) is a category of fibrant objects in the sense of [Cisinski 2019,
Definitions 7.4.12 and 7.5.7]. The corresponding verifications are due to [Uuye 2013, Theorem 2.19].
The main point is to see that the pull-back of a Schochet fibration or of a homotopy equivalence is again
a Schochet fibration or a homotopy equivalence.

The assertions (1) and (2) then follow from [Cisinski 2019, Proposition 7.5.6]. For (2), in view of
Corollary 3.8 one could argue alternatively that Hom(A,−) sends Schochet fibrant cartesian squares to
Serre fibrant cartesian squares, and that ℓ sends Serre fibrant cartesian squares to cartesian squares.

We now show (3). By (2) it is clear that L∗h in (3-12) sends left-exact functors to Schochet-exact functors.
Since it is the restriction of the equivalence in (3-4) it is fully faithful. We argue that it also essentially
surjective. Let F be in Funh,Sch(C∗Algnu,D). Then by (3-4) there exists F̂ in Fun(C∗Algnu

h ,D) such
that L∗h F̂ ≃ F . We must show that F̂ is left-exact. Since it is reduced it suffices to show that it preserves
cartesian squares.

In view of Corollary 3.8 any diagram of the shape

B

f
��

D // C

in C∗Algnu
h is equivalent to the image under Lh of a diagram of this shape in C∗Algnu. We can replace

f by f̃ : Z( f )→ C without changing the image of the diagram under Lh up to equivalence. We now
complete the diagram to a cartesian square

P

f ′

��

// Z( f )

f̃
��

D // C

(3-13)

in C∗Algnu. It is Schochet fibrant and semisplit. Its image under Lh is then a cartesian square in C∗Algnu
h ,

and every cartesian square in C∗Algnu
h is equivalent to one of this form. The image under F̂ of Lh of
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the latter square is equivalent to the image under F of the original Schochet fibrant cartesian square and
hence is a cartesian square.

Assertion (4) follows from a combination of (3) and the equivalence (3-5).
In the following, ⊗ stands for ⊗max or ⊗min. Let A be a C∗-algebra. It follows from Proposition 3.9

that the endofunctor A⊗− : C∗Algnu
h → C∗Algnu

h is reduced and preserves finite products. So it suffices
to show that it preserves cartesian squares. As seen above every cartesian square in C∗Algnu

h is equivalent
to the image under Lh of a square of the form (3-13).

Using the exactness of A⊗max− or the semiexactness of A⊗min− we see that

A⊗ P

��

// A⊗ Z( f )

idA⊗ f̃
��

A⊗ D // A⊗C

(3-14)

is again cartesian. By analyzing the application of A⊗− to (3-10) we can obtain an isomorphism

A⊗ Z( f )
∼=
//

idA⊗ f̃
��

Z(idA⊗ f )
∼

idA⊗ f
��

A⊗C A⊗C

We conclude that the square (3-14) is again a Schochet fibrant cartesian square, and that its image under
Lh is a cartesian square in C∗Algnu

h . □

Example 3.18. The functor Lh sends the sequence (3-11) to a fiber sequence. Since the square

Z( f )
f̃
//

h f

��

C

B
f
// C

commutes up to a preferred homotopy it provides an equivalence between Lh( f̃ ) and Lh( f ). In particular,
the mapping cone C( f ) represents the fiber of Lh( f ). □

Example 3.19. A pointed left-exact∞-category C has a loop endofunctor � : C→ C. For an object C
of C, the object �C is determined by the pull-back

�C //

��

0

��

0 // C

(3-15)

The category C∗Algnu has the suspension endofunctor

S := C0(R)⊗− : C∗Algnu
→ C∗Algnu.
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The square of restriction maps

C0(R) //

��

C0((−∞, 0])

ev0

��

C0([0,∞))
ev0

// C

is a Schochet fibrant semisplit cartesian square by Example 3.13. Applying Lh(−⊗ A) we get a cartesian
square whose lower-left and upper-right corners are zero objects by Example 3.12. We therefore obtain

Lh ◦ S ≃� ◦ Lh : C∗Algnu
h → C∗Algnu

h , (3-16)

which is an equivalence of endofunctors. □

Example 3.20. We consider the Puppe sequence associated to a morphism f : A→ B. The latter gives
rise to the mapping cone sequence (3-11). Since C∗Algnu

h is left-exact we can form the diagram

�2Lh(B))

��

�Lh(∂ f )
// �Lh(C( f ))

�Lh(i f )

��

// 0

��

0 // �Lh(A)

��

�Lh( f )
// �Lh(B) //

∂ f

��

0

��

0 // Lh(C( f ))

��

Lh(i f )
// Lh(A)

Lh( f )
��

0 // Lh(B)

of pull-back squares in C∗Algnu
h . The lower square is cartesian by Example 3.18. We further use the

homotopy invariance of Lh applied to the homotopy equivalence h f in order to replace Lh(Z( f )) by
Lh(A), and we use (3-15) in order to identify the corners with iterated loops of the objects. For instance,
for the corner �Lh(A) just observe that the horizontal composition of the two middle squares is again
cartesian. By (3-16) we can express looping in terms of suspension. The sequence

· · ·→ Lh(S2(B))→ Lh(S(C( f )))→ Lh(S(A))→ Lh(S(B))→ Lh(C( f ))→ Lh(A)→ Lh(B) (3-17)

in C∗Algnu
h is called the Puppe sequence associated to f . Each consecutive pair of morphisms is a part of

a fiber sequence in C∗Algnu
h . □

Remark 3.21. If C is some∞-category with a set of morphisms WC, D is a full subcategory, and if we
set WD :=W ∩D, then we have a commutative square

D //

��

C

��

D[W−1
D ]

// C[W−1
C ]
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where the vertical functors are Dwyer–Kan localizations. In general the lower-horizontal map is not
fully faithful. But this is true if we specialize to the case where C = C∗Algnu, WC are the homotopy
equivalences, and D= C∗Algnu

sep. □

We write Lsep,h : C∗Algnu
sep→ C∗Algnu

sep,h for the corresponding Dwyer–Kan localization. Thus for any
∞-category D pull-back along Lsep,h induces an equivalence

L∗sep,h : Fun(C∗Algnu
sep,h,D) ≃−→ Funh(C∗Algnu

sep,D).

Note that C∗Algnu
sep,h is essentially small. Using Corollary 3.8, Proposition 3.17 and its separable version

and the fact that the tensor products preserve separable algebras we get the following statements.

Corollary 3.22. (1) We have a commutative square

C∗Algnu
sep

//

Lsep,h

��

C∗Algnu

Lh

��

C∗Algnu
sep,h

// C∗Algnu
h

whose vertical arrows are Dwyer–Kan localizations and whose horizontal arrows are fully faithful.

(2) The square in (1) has a refinement to a diagram of symmetric monoidal categories and symmetric
monoidal functors for⊗? with ?∈ {min,max} such that Lsep,h becomes a symmetric monoidal localization.

(3) C∗Algnu
sep,h is pointed and Lsep,h is reduced.

(4) C∗Algnu
sep,h admits finite products and countable coproducts, and Lsep,h preserves them.

(5) C∗Algnu
sep,h is left-exact and Lsep,h sends Schochet fibrant cartesian squares of separable algebras to

cartesian squares.

(6) The pull-back along Lsep,h induces for every left-exact∞-category D an equivalence

L∗sep,h : Funlex(C∗Algnu
sep,h,D) ≃−→ Funh,Sch(C∗Algnu

sep,D). (3-18)

(7) The pull-back along the symmetric monoidal refinement of Lsep,h induces for every symmetric monoidal
left-exact∞-category D an equivalence

L∗sep,h : Funlex
⊗/lax(C

∗Algnu
sep,h,D) ≃−→ Funh,Sch

⊗/lax(C
∗Algnu

sep,D).

(8) For ? ∈ {min,max} the functor −⊗− : C∗Algnu
sep,h ×C∗Algnu

sep,h→ C∗Algnu
sep,h is bileft-exact.

In order to ensure separability of the coproducts, in Corollary 3.22(4) we must restrict to countable
families.
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4. Stabilization

We consider the Dwyer–Kan localization of the∞-category C∗Algnu
h from (3-3) at the set of left-upper-

corner inclusions A→ K ⊗ A for all C∗-algebras A, where K denotes the algebra of compact operators
on a separable Hilbert space. It turns out that this localization is a left-Bousfield localization generated by
the tensor idempotent K . This fact makes it easy to understand the resulting category L K C∗Algnu

h . Its
main new feature is semiadditivity.

We start with recalling the∞-categorical background. Let C be an∞-category with an endofunctor
L : C→ C and a natural transformation α : idC→ L . If for every object C the morphisms

αL(C), L(αC) : L(C)→ L(L(C))

are equivalences, then L : C → L(C) is the left-adjoint of a left-Bousfield localization with unit α
(see [Lurie 2009, Proposition 5.2.7.4]). It is also a Dwyer–Kan localization at the set of morphisms
WL := {αC | C ∈ C}.

Let C be a left-exact∞-category with a set of morphisms W . We say that the Dwyer–Kan localization
L : C→ C[W−1

] is left-exact, if C[W−1
] is left-exact and the functor L is left-exact. In this case, in

addition to (3-1), we have an equivalence

L∗ : Funlex(C[W−1
],D) ≃−→ Funlex,W (C,D)

for any left-exact∞-category D.
In the present section we encounter a smashing left-Bousfield localization which is generated by an

idempotent object [Lurie 2017, Section 4.8.2]. An idempotent object in a symmetric monoidal∞-category
C with tensor unit 1 is an object (ϵ :1→ A) in the slice C1/ such that the map ϵ⊗idA : A≃1⊗A→ A⊗A
is an equivalence. The inverse of this map is the multiplication of an essentially unique refinement of this
object to a commutative algebra object in C.

The functor L A := A⊗− : C→ L AC together with the unit id ϵ⊗id−
−−−−→ L A satisfies the conditions

above ensuring that L A : C→ L AC is the left-adjoint of a left-Bousfield localization. The localization
L A :C→ L AC is also the Dwyer–Kan localization inverting the set WA of morphisms B ϵ⊗idB

−−−−→ A⊗ B
for all B. By associativity of the tensor product the set WA is preserved by the functor −⊗C for any
object C of C. It follows that the localization L A has a symmetric monoidal refinement.

If C has arbitrary coproducts, then by general properties of a left-Bousfield localization so does L AC.
Given a family (Bi )i∈I in C we have

L AC∐
i∈I

L A(Bi )≃ L A

( C∐
i∈I

Bi

)
.

Finally, if C is left-exact and ⊗ is bileft-exact, then L A is a left-exact localization, and the induced tensor
product −⊗− : L AC× L AC→ L AC is bileft-exact.
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We will apply the above constructions to the left-exact symmetric monoidal∞-category C∗Algnu
h with

one of the bileft-exact structures ⊗max or ⊗min and the tensor unit C.
Recall that K is the algebra of compact operators on a separable Hilbert space H . Let e be a minimal

nonzero projection in K and ϵ : C→ K be the homomorphism λ 7→ λe.

Lemma 4.1. (ϵ : C→ K ) is an idempotent object in C∗Algnu
h .

Proof. For completeness of the presentation we add an argument for this well-known fact from C∗-algebra
theory. For t in [0, 1] we define the isometry Ut : L2((−∞, 0])→ L2((−∞, 1]) by

Ut( f )(x) :=


f (x), x ∈ (−∞,−t),
1
√

2
f
( x−t

2

)
, x ∈ (−t, t),

0, x ∈ [t, 1].

Then t 7→Ut is strongly continuous and U1 is unitary.
We now construct a square

H
e⊗idH

//

v
��

H ⊗ H

w
��

L2((−∞, 0])
U0
// L2((−∞, 1])

of isometric maps between Hilbert spaces. For v we choose any unitary isomorphism. In order to construct
w we choose an isomorphism im(e)∼= C and a unitary isomorphism v′ : im(e)⊥⊗ H→ L2([0, 1]). Then
we get the isomorphism H ⊗ H ∼= im(e) ⊗ H ⊕ im(e)⊥ ⊗ H ∼= H ⊕ im(e)⊥ ⊗ H . We then define
w|H :=U0 ◦ v and w|im(e)⊥⊗H := v

′.
Then t 7→ φt :=w

∗Utv(−)v
∗U∗t w : K → K ⊗ K is a point-norm continuous homotopy from ϵ⊗idK

to an isomorphism. □

For every C∗-algebra A the map

κA : A ≃ C⊗ A ϵ⊗idA
−−−−→ K ⊗ A (4-1)

is a left-upper-corner inclusion.
We let L K C∗Algnu

h denote the image of the functor K⊗−. Since we have an isomorphism K⊗K ∼= K
in C∗Algnu, it consists precisely of the objects which are represented by K -stable C∗-algebras, i.e.,
algebras A satisfying A ∼= K ⊗ A (note that this isomorphism is not related with the left-upper-corner
inclusion).

Definition 4.2. We define the functor

L K : C∗Algnu
k → L K C∗Algnu

h , A 7→ K ⊗ A.

and the natural transformation κ : id→ L K with components (κA)A.
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Note that L K C∗Algnu
h is locally small by Corollary 3.6.

We define the functor

Lh,K : C∗Algnu Lh
−−→ C∗Algnu

h
L K
−−→ L K C∗Algnu

h . (4-2)

Corollary 4.3. (1) The functor L K is the left-adjoint of a left-Bousfield localization

L K : C∗Algnu
h ⇆ L K C∗Algnu

h : incl

unit κ .

(2) The localization L K is left-exact.

(3) L K C∗Algnu
h admits arbitrary small coproducts and L K preserves them.

(4) For ⊗? with ? ∈ {min,max} the localization L K has a symmetric monoidal refinement.

(5) The functor −⊗?− : L K C∗Algnu
h × L K C∗Algnu

h → L K C∗Algnu
h is bileft-exact.

For (3) we also used Proposition 3.9. The fact that L K is a left-Bousfield localization yields the
following formula for the mapping spaces in L K C∗Algnu

h . For A, B in C∗Algnu we have

MapL K C∗Algnu
h
(A, B)≃ MapC∗Algnu

h
(A, K ⊗ B)

(3-8)
≃ ℓHom(A, K ⊗ B). (4-3)

The pull-back along Lh,K induces for every∞-category D an equivalence

L∗h,K : Fun(L K C∗Algnu
h ,D) ≃−→ Funh,s(C∗Algnu,D), (4-4)

where the additional subscript indicates the full subcategory of Funh(C∗Algnu,D) of stable functors (see
Definition 2.4(2)). For any symmetric monoidal∞-category the pull-back along the symmetric monoidal
refinement of Lh,K induces an equivalence

L∗h,K : Fun⊗/lax(L K C∗Algnu
h ,D) ≃−→ Funh,s

⊗/lax(C
∗Algnu,D). (4-5)

For every left-exact∞-category D the pull-back along Lh,K induces an equivalence

L∗h,K : Funlex(L K C∗Algnu
h ,D) ≃−→ Funh,s,Sch(C∗Algnu,D). (4-6)

If D is in addition symmetric monoidal, then we have an equivalence

L∗h,K : Funlex
⊗/lax(L K C∗Algnu

h ,D) ≃−→ Funh,s,Sch
⊗/lax (C

∗Algnu,D).

If C is a pointed∞-category with products and coproducts, then for any two objects C and C ′ in C
we have a canonical morphism

(c 7→ (c, 0))⊔ (c′ 7→ (0, c′)) : C ⊔C ′→ C ×C ′.

A pointed∞-category C with products and coproducts is called semiadditive if this canonical map is an
equivalence for every two objects C and C ′; see [Lurie 2017, Definition 6.1.6.13].
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If C is semiadditive, then its mapping spaces MapC(C, D) have canonical refinements to commutative
monoids in Spc. In particular, every object of C naturally becomes a commutative monoid and a
commutative comonoid object in C [Lurie 2017, Remark 6.1.6.14].

Note that L K C∗Algnu
h is pointed and admits products and coproducts by Corollary 4.3.

Proposition 4.4. The∞-category L K C∗Algnu
h is semiadditive.

Proof. We consider two C∗-algebras A and B. We then have a canonical homomorphism

c : A ∗ B→ A⊕ B

induced via the universal property of the free product by the homomorphisms A→ A⊕ B, a 7→ (a, 0)
and B→ A⊕ B, b 7→ (0, b).

Lemma 4.5 [Cuntz 1987, Proposition 3.1; Meyer 2000, Proposition 5.3]. Lh,K (c) : Lh,K (A ∗ B)→
Lh,K (A⊕ B) is an equivalence in L K C∗Algnu

h .

A proof of Lemma 4.5 will be given below after the completion of the argument for Proposition 4.4.
We consider C∗-algebras A and B. Then the canonical map from the coproduct to the product of Lh,K (A)
and Lh,K (B) in L K C∗Algnu

h has the following factorization over equivalences:

Lh,K (A)⊔ Lh,K (B)≃ Lh,K (A ∗ B)

≃ Lh,K (A⊕ B)

≃ L K (Lh(A)× Lh(B))

≃ Lh,K (A)× Lh,K (B),

where the first, second, third and fourth equivalences are by Corollary 4.3(3), Lemma 4.5, Proposition 3.9,
Corollary 4.3(2), respectively. This finishes the proof of Proposition 4.4 assuming Lemma 4.5. □

Proof of Lemma 4.5. Since we need some details of the proof of Lemma 4.5 later we recall the argument.
We first observe, using that Lh,K ≃ Lh,K ◦ Mat2(−), that for any C∗-algebra C the left-upper-corner
inclusion C→ Mat2(C) is an equivalence in L K C∗Algnu

h .
In the following we consider the C∗-algebras A and B as subsets of A∗B. We define a homomorphism

f : A⊕ B (a,b) 7→(a,b)
−−−−−−→ (A ∗ B)⊕ (A ∗ B) incl

−−→ Mat2(A ∗ B), f (a, b) :=
(

a 0
0 b

)
.

Then f ◦ c : A ∗ B→ Mat2(A ∗ B) is determined by

a 7→
(

a 0
0 0

)
, b 7→

(
0 0
0 b

)
.

We consider the family of unitaries

Ut :=

(
cos π t

2 −sin π t
2

sin π t
2 cos π t

2

)
(4-7)
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in Mat2(M(A ∗ B)) and define ht : A ∗ B→ Mat2(A ∗ B) by

ht(a) :=
(

a 0
0 0

)
, ht(b)=U∗t

(
0 0
0 b

)
Ut .

Then h0 = f ◦ c and h1 is an upper-corner inclusion. We have

Mat2(c) ◦ f : A⊕ B→ Mat2(A⊕ B), (a, b) 7→
(
(a, 0) 0

0 (0, b)

)
.

We define the homotopy ht : A⊕ B→ Mat2(A⊕ B) by

ht(a, b) :=
( (

a, b sin2 π t
2

) (
0, b sin π t

2 cos π t
2

)(
0, b sin π t

2 cos π t
2

) (
0, b cos2 π t

2

) )
.

Then h0 = Mat2(c) ◦ f and h1 is an upper-corner inclusion. □

Remark 4.6. For two C∗-algebras A and B the mapping space MapL K C∗Algnu
h
(A, B) in the semiadditive

∞-category L K C∗Algnu
h is a commutative monoid in Spc. One is often interested in its group completion.

In this case the observation Corollary 10.13 might be helpful. □

Lemma 4.5 can be generalized to countable coproducts and sums as follows. Recall that L K C∗Algnu
h ad-

mits small coproducts by Corollary 4.3.(3). For a small family (Ai )i∈I of C∗-algebras we can form the sum⊕
i∈I

Ai := colim
F⊆I,|F |<∞

⊕
i∈F

Ai , (4-8)

which for infinite I should not be confused with the coproduct or product in C∗Algnu. We still have a
canonical map c : ∗i∈I Ai →

⊕
i∈I Ai .

Proposition 4.7. If I is countable, then the canonical map induces an equivalence

Lh,K (c) : Lh,K (∗i∈I Ai )→ Lh,K

(⊕
i∈I

Ai

)
.

Proof. For finite I this follows by a finite induction from Lemma 4.5. We now assume that I =N. We
define the map

f :
⊕
i∈I

Ai → K ⊗∗i∈I Ai , f ((ai )i ) := diag(a0, a1, a2, . . . ).

Note that limi→∞ ∥ai∥ = 0 so that this diagonal matrix really belongs to K ⊗∗i∈I Ai .
The composition f ◦ c : ∗i∈I Ai → K ⊗∗i∈I Ai is determined by ai 7→ diag(0, . . . , 0, ai , 0, . . . ) with

ai at the i-th place. We define a homotopy ht : ∗i∈I Ai → K ⊗∗i∈I Ai such that for t ∈
[
1− 1

i+1 , 1− 1
i+2

]
it rotates in the coordinates 0 and i as in the proof of Lemma 4.5. Then ht is continuous as a map
[0, 1] → Hom(∗i∈I Ai , K ⊗∗i∈I Ai ). Indeed, ht is continuous on the subalgebras ∗n

i=1 Ai for all n in N.
Since their union is dense and ht is uniformly bounded we conclude continuity. We have h0 = f ◦ c and
h1 is a left-upper-corner embedding. This implies that Lh,K ( f ) ◦ Lh,K (c)≃ Lh,K (id∗i∈I Ai ).
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The composition (idK ⊗ c) ◦ f :
⊕

i∈I Ai → K ⊗
⊕

i∈I Ai is determined by

(ai )i 7→ diag((a0, 0, . . . ), (0, a1, 0, . . . ), (0, 0, a2, . . . ), . . . ).

We define the homotopy lt :
⊕

i∈I Ai → K ⊗
⊕

i∈I Ai such that for t ∈
[
1− 1

i+1 , 1− 1
i+2

]
it rotates in

the coordinates (0, i) and (i, i) as in the proof of Lemma 4.5. Then lt is continuous as a map [0, 1] →
Hom

(⊕
i∈I Ai , L K

(⊕
i∈I Ai

))
. Indeed, lt is continuous on the subalgebras

⊕n
i=1 Ai for all n in N. Since

their union is dense and lt is uniformly bounded we can conclude continuity. We have l0 = (idK ⊗ c) ◦ f
and l1 is a left-upper-corner embedding. This implies that Lh,K (c) ◦ Lh,K ( f )≃ Lh,K (id⊕

i∈I Ai ). □

Example 4.8. For any C∗-algebra A we let Proj(A) denote the topological space of projections in A.
The functor Proj(−) : C∗Algnu

→ Top is corepresented by the C∗-algebra C. Indeed, for a C∗-algebra A
we have a homeomorphism

Hom(C, A) ∼=−→ Proj(A), f 7→ f (1).

We define the topological space of stable projections in A by

Projs(A) := Hom(C, K ⊗ A),

which becomes an H -space with respect to the block sum operations. Using the semiadditivity of
L K C∗Algnu its underlying space

Projs(A) := ℓProjs(A)
(4-3)
≃ MapL K C∗Algnu

h
(C, A)

has a refinement to an object of CMon(Spc), i.e., a commutative monoid object in spaces. It will be
called the monoid of stable projections in A.

We will see in Corollary 10.8 that for unital A the group completion of the commutative monoid
Projs(A) is equivalent to the K -theory space of A. □

Example 4.9. For any unital C∗-algebra A we let U (A) denote the topological group of unitaries in A.
The functor U : C∗Alg→Groups(Top) is corepresented by the C∗-algebra C(S1). Let u : S1

→ C be
the inclusion considered as an element of U (C(S1)). Then we have an isomorphism

Homu(C(S1), A) ∼=−→U (A), f 7→ f (u),

of topological groups, where the subscript u indicates that we consider the subspace of Hom(C(S1), A) of
unit-preserving homomorphisms.

Using the unitalization functor (−)u : C∗Algnu
→ C∗Alg we define the functor

U s
: C∗Algnu

→Groups(Top), A 7→ {U ∈U ((K ⊗ A)u) |U − 1(K⊗A)u ∈ K ⊗ A}, (4-9)

which associates to A the topological group of stable unitaries. The stable unitaries functor is corepresented
by the suspension S(C) of C. Indeed, using the split exact sequence

0→ S(C) i
−→ C(S1)

ev1
−−→ C→ 0, (4-10)
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we identify C(S1) with the unitalization of S(C). Then the unitalization functor induces an identification

Hom(S(C), K ⊗ A)∼=U s(A). (4-11)

By (4-3) we have an equivalence of spaces

U s(A) := MapL K C∗Algnu
h
(S(C), A)≃ ℓU s(A), (4-12)

which equips the commutative monoid on the left with a second group structure. These two structures
distribute and therefore coincide by an Eckmann–Hilton-type argument. It follows that the commutative
monoid U s(A) is already an object of CGroups(Spc), i.e., a commutative group object in spaces. It will
be called the group of stable unitaries.

Unfolding definitions we see that the monoid structure on U s(A) comes from the block sum of unitaries
in (K⊗A)u while the other group structures are given by the multiplication of unitaries. In Proposition 9.4
we will show that U s(A) is equivalent to a one-fold delooping of the K -theory space of A. □

Example 4.10. We consider two C∗-algebras A and B and homomorphisms f, f ′ : A→ B. We say
that im( f ) ⊥ im( f ′) if f (a) f ′(a′) = 0 = f ′(a′) f (a) for all a, a′ in A. In this case we can define a
homomorphism

f + f ′ : A→ B, a 7→ f (a)+ f (a′).

We then have an equivalence

Lh,K ( f )+ Lh,K ( f ′)≃ Lh,K ( f + f ′)

in MapL K C∗Algnu
h
(A, B), where the sum on the left is the monoid structure on the mapping space coming

from the semiadditivity of L K C∗Algnu
h (see Example 6.1). Indeed, this sum is represented by

A diag( f, f ′)
−−−−−−→ Mat2(B)→ K ⊗ B.

There is a rotation homotopy φt from diag(0, f ′) to diag( f ′, 0) such that im(φt) ⊥ im(diag( f, 0))
for all t . Hence diag( f, 0)+φt is a homotopy from diag( f, f ′) to diag( f + f ′, 0). This implies the
assertion. □

Since K is separable the functor L K restricts to

Lsep,K : C∗Algnu
sep,h→ L K C∗Algnu

sep,h

with an essentially small target. Together with Corollaries 3.22 and 4.3 and Proposition 4.4 this implies
the following statements:

Corollary 4.11. (1) We have a commutative square

C∗Algnu
sep,h

//

Lsep,K

��

C∗Algnu
h

L K

��

L K C∗Algnu
sep,h

// L K C∗Algnu
h
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of∞-categories where the vertical arrows are left-Bousfield localizations and the horizontal arrows are
fully faithful.

(2) The square in (1) has a refinement to a diagram of symmetric monoidal∞-categories and symmetric
monoidal functors for⊗? with ?∈{min,max} such that Lsep,K becomes a symmetric monoidal localization.

(3) The localization Lsep,K is left-exact.

(4) L K C∗Algnu
sep,h admits countable coproducts and Lsep,K preserves them.

(5) The functor −⊗?− : L K C∗Algnu
sep,h × L K C∗Algnu

sep,h→ L K C∗Algnu
sep,h is bileft-exact.

(6) L K C∗Algnu
sep,h is semiadditive.

The pull-back along Lsep,h,K := Lsep,K ◦ Lsep,h induces for every∞-category D an equivalence

L∗sep,h,K : Fun(L K C∗Algnu
sep,h,D) ≃−→ Funh,s(C∗Algnu

sep,D).

For any symmetric monoidal ∞-category the pull-back along the symmetric monoidal refinement of
Lsep,h,K induces an equivalence

L∗sep,h,K : Fun⊗/lax(L K C∗Algnu
sep,h,D) ≃−→ Funh,s

⊗/lax(C
∗Algnu

sep,D).

For every left-exact∞-category D the pull-back along Lsep,h,K induces an equivalence

L∗sep,h,K : Funlex(L K C∗Algnu
sep,h,D) ≃−→ Funh,s,Sch(C∗Algnu

sep,D).

If D is, in addition, symmetric monoidal, then we have the equivalence

L∗sep,h,K : Funlex
⊗/lax(L K C∗Algnu

sep,h,D) ≃−→ Funh,s,Sch
⊗/lax (C

∗Algnu
sep,D).

5. Forcing exactness

We describe left-exact Dwyer–Kan localizations

L ! : L K C∗Algnu
h → L K C∗Algnu

h,!

for ! in {splt, se, ex} designed such that the composition

Lh,K ,! := L ! ◦ Lh,K : C∗Algnu
→ L K C∗Algnu

h,!

(see (4-2) for Lh,K ) sends exact (for ! = ex) or semisplit exact (for ! = se) or split exact (for ! = splt)
sequences of C∗-algebras to fiber sequences. We further analyze the compatibility of L ! with the symmetric
monoidal structures.
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Given an exact sequence 0 → A → B f
−→ C → 0 of C∗-algebras, using the mapping cylinder

construction described in Remark 3.16 we can produce a diagram of exact sequences of C∗-algebras

0

��

0 // A //

ι f

��

B
f
//

h f
��

C //

s

��

0

0 // C( f ) //

π f

��

Z( f )
f̃
//// C //

s̃

WW
0

Q( f )

ŝ

88

��

0

(5-1)

We write elements of the mapping cone C( f ) of f as pairs (b, γ ) with b in B and γ in PC (see (3-6))
such that f (b)= γ (0) and γ (1)= 0 and consider A as a subset of B. With this notation the map ι f is
given by ι f (a) := (a, 0). This map is the inclusion of an ideal and the C∗-algebra Q( f ) is defined as the
quotient. We have an isomorphism

Q( f )∼= {(c, γ ) ∈ C ×PC | γ (0)= c, γ (1)= 0} ∼= C0([0, 1))⊗C,

which implies that Q is contractible. If f admits a cpc split s (or a split), then we get induced cpc splits
(or splits) s̃(c) := (s(c), constc) and ŝ(c, γ )= (s(c), γ ) as indicated.

We consider a functor F :C∗Algnu
→C to a pointed∞-category. Versions of the following observation

were basic to the approaches in [Higson 1990a; Cuntz and Skandalis 1986].

Proposition 5.1. We assume that F is homotopy invariant and reduced, and that it sends mapping cone
sequences to fiber sequences. Then the following statements are equivalent:

(1) F is exact (semiexact, or split exact, respectively).

(2) For every exact (semisplit exact, or split exact, respectively) sequence of C∗-algebras 0→ I i
−→

A π
−→ Q→ 0 with Q contractible the map F(i) is an equivalence.

Proof. We assume that F satisfies (1). Then F sends the exact (semisplit exact, or split exact) sequence
0→ I i

−→ A π
−→ Q→ 0 to a fiber sequence

F(I )→ F(A)→ F(Q)

with F(Q)≃ 0. Consequently, F(i) is an equivalence.
Conversely we assume that F satisfies (2). We consider a general exact (semisplit exact or split exact)

sequence 0→ A→ B f
−→C→0 and form the diagram (5-1). By assumption F sends the lower-horizontal
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sequence to a fiber sequence and F(ι f ) is an equivalence. By homotopy invariance of F also F(h f ) is
an equivalence. We can therefore conclude that F(A)→ F(B)→ F(C) is fiber sequence, too. □

Recall the Definition 3.14 of Schochet-exactness of a functor in terms of Schochet fibrant squares. By
our experience, Schochet-exactness is either obvious from the construction or very difficult to verify. The
following result shows that, for stable target categories, homotopy invariance and semiexactness together
imply Schochet-exactness. We consider homotopy invariance and semiexactness as properties which are
much closer to the usual C∗-algebraic business.

Lemma 5.2. A homotopy invariant and semiexact functor from C∗Algnu to a stable ∞-category is
Schochet-exact.

Proof. Let F :C∗Algnu
→D be a homotopy invariant and semiexact functor to a stable∞-category. Then

F is reduced. Since D is stable, in order to show Schochet exactness by Remark 3.15 it suffices to show
that F sends any Schochet-exact sequence 0→ A→ B→ C→ 0 to a fiber sequence.

We apply F to the diagram (5-1) and get a diagram

F(A)

F(ι f )

��

// F(B)

F(h f )

��

// F(C)

F(C( f )) //

��

F(Z( f )) // F(C)

F(Q( f ))

The middle-horizontal line is a fiber sequence since F is semiexact and the middle-horizontal sequence in
(5-1) is semisplit exact. The functor Lh sends both horizontal sequences in (5-1) to fiber sequences since
they are Schochet-exact. Since h f is a homotopy equivalence we see that Lh(h f ) and hence also Lh(ι f )

are equivalences. Since F is homotopy invariant it factorizes over Lh , and therefore F(ι f ) is also an equiva-
lence. We can now conclude that the upper-horizontal sequence in the diagram above is a fiber sequence. □

We consider exact sequences
0→ I i

−→ A π
−→ Q→ 0,

and define the following sets of morphisms in C∗Algnu:

Ŵsplt := {i | for all split exact sequences with Q contractible},

Ŵse := {i | for all semisplit exact sequences with Q contractible},

Ŵex := {i | for all exact sequences with Q contractible}.

(5-2)

We denote the closures in L K C∗Algnu
h under equivalences of their images by Lh,K by the same symbols.

Remark 5.3. A natural idea would be to form the Dwyer–Kan localizations of L K C∗Algnu
h at the sets Ŵ!

defined above. But there is no reason that these localizations are left-exact. In order to produce left-exact
localizations we must localize at the closures of the Ŵ! under pull-backs and the 2-out-of-3 property. □



KK- AND E -THEORY VIA HOMOTOPY THEORY 133

In the following a set W of morphisms in an ∞-category C is always assumed to be closed under
equivalences. The set W is closed under pull-backs if for every cartesian square

A //

g
��

B

f
��

D // C

in C with f in W also g belongs to W .
The set W has the 2-out-of-3 property if the fact that two out of f, g, g ◦ f belong to W implies that

the third also belongs to W .

Example 5.4. If F :C→D is a functor between∞-categories, then the set W of morphisms in C which
are sent by F to equivalences has the 2-out-of-3 property. If F is a left-exact functor between left-exact
∞-categories, then W is also closed under pull-backs. □

Let C be a left-exact∞-category with a set of morphisms W .

Lemma 5.5. If W has the 2-out-of-3 property and is closed under pull-backs, then the Dwyer–Kan
localization L : C→ C[W−1

] is left-exact.

Proof. The triple (C,W,C) is a category of fibrant objects in the sense of [Cisinski 2019, Definitions 7.4.12
and 7.5.7]. The assertion (1) therefore follows from Proposition 7.5.6 in the same reference. □

Let C be a left-exact ∞-category with a set of morphisms Ŵ , and let W be the minimal subset of
morphisms containing Ŵ which has the 2-out-of-3 property and is closed under pull-backs. Then for
every left-exact∞-category D the canonical inclusion

Funlex,W (C,D) ≃−→ Funlex,Ŵ (C,D) (5-3)

is an equivalence.
For ! in {ex, se, splt} we define W! as the smallest set of morphisms in L K C∗Algnu

h which is closed
under pull-backs and has the 2-out-of-3 property, and which contains Ŵ! from (5-2).

Definition 5.6. We define the Dwyer–Kan localization

L ! : L K C∗Algnu
h → L K C∗Algnu

h,!

at the set W!.

Note that by construction L K C∗Algnu
h,! is a large∞-category. As we localize at a large set of morphisms

we lose the property of being locally small at this point.
We define the functor

Lh,K ,! : C∗Algnu Lh
−−→ C∗Algnu

h
L K
−−→ L K C∗Algnu

h
L !
−−→ L K C∗Algnu

h,! .

We let Funh,s,!+Sch(C∗Algnu,D) denote the full subcategory of homotopy invariant and stable functors
which are Schochet-exact and exact for ! = ex (semiexact for ! = se or split exact for ! = splt, respectively).
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Proposition 5.7. (1) The localization L ! is left-exact.

(2) Pull-back along Lh,K ,! induces for every left-exact∞-category D an equivalence

L∗h,K ,! : Funlex(L K C∗Algnu
h,!,D) ≃−→ Funh,s,!+Sch(C∗Algnu,D). (5-4)

(3) L K C∗Algnu
h,! is semiadditive and L ! preserves coproducts.

Proof. The assertion (1) follows from Lemma 5.5.
We next show (2). For any∞-category D we have restriction functors

Fun(L K C∗Algnu
h,!,D)

L∗
!

≃ FunW!(L K C∗Algnu
h ,D) L∗h,K

−−→ Funh,s(C∗Algnu,D),

where the first is an equivalence by the universal property of the Dwyer–Kan localization L !. The second
functor is the restriction of the equivalence (4-4) and hence fully faithful. If D is left-exact, then by (1)
the first functor restricts to the first equivalence in

Funlex(L K C∗Algnu
h,!,D)

L∗
!

≃ Funlex,W!(L K C∗Algnu
h ,D)

(5-3)
≃ Funlex,Ŵ!(L K C∗Algnu

h ,D). (5-5)

Finally, by Proposition 5.1 the equivalence (4-6) restricts to an equivalence

Funlex,Ŵ!,(L K C∗Algnu
h ,D)

L∗h,K
≃ Funh,s,!+Sch(C∗Algnu,D).

The composition of these equivalences gives (5-4).
Assertion (3) is a general fact about left-exact localizations of left-exact ∞-categories which are

semiadditive. □

Next we consider the symmetric monoidal structures. We allow the following combinations of ! and ?:

! \ ? min max

splt yes yes
se yes yes
ex no yes

The combination (ex,min) is excluded since the minimal tensor product does not preserve exact
sequences.

Proposition 5.8. (1) The localization L ! has a symmetric monoidal refinement.

(2) The functor −⊗?− : L K C∗Algnu
h,!× L K C∗Algnu

h,!→ L K C∗Algnu
h,! is bileft-exact.

(3) Pull-back along Lh,K ,! induces for every left-exact∞-category an equivalence

L∗h,K ,! : Funlex
⊗/lax(L K C∗Algnu

h,!,D) ≃−→ Funh,s,!+Sch
⊗/lax (C∗Algnu,D) (5-6)

for any symmetric monoidal and left-exact∞-category D.
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Proof. We first observe that the functor

A⊗?− : L K C∗Algnu
h → L K C∗Algnu

h

preserves the set Ŵ! defined in (5-2). Indeed if ! = ex and ?=max, then we use that this functor preserves
exact sequences and contractible objects. It is at this point where we must exclude the combination ! = ex
and ?=min.

If ! is in {se, splt}, then this functor preserves semisplit exact or split exact sequences and contractible
objects for both ?=min and ?=max.

Let W̃! be set of morphisms in L K C∗Algnu
h which are sent to equivalences by L !. Then for every

left-exact∞-category D we have an equivalence

Funlex,Ŵ!(L K C∗Algnu
h ,D)

(5-3)
≃ Funlex,W!(L K C∗Algnu

h ,D)≃ Funlex,W̃!(L K C∗Algnu
h ,D). (5-7)

By Corollary 4.3(5) and Proposition 5.7(1) the composition

L ! ◦ (A⊗?−) : L K C∗Algnu
h → L K C∗Algnu

h,! (5-8)

is left-exact. By the discussion above it inverts Ŵ!. It then follows from (5-7) that A⊗? − preserves
the set W̃!. Since L ! is also the Dwyer–Kan localization of L K C∗Algnu

h at W̃! we conclude that the
localization L ! has a symmetric monoidal refinement, hence (1) is true.

For (2) we note that the induced functor

A⊗?− : L K C∗Algnu
h,!→ L K C∗Algnu

h,!

is left-exact since it is the preimage of (5-8) under the equivalence

L∗
!
: Funlex(L K C∗Algnu

h,!, L K C∗Algnu
h,!)

≃
−→ Funlex,W!(L K C∗Algnu

h , L K C∗Algnu
h,!)

(see Proposition 5.8(1)).
We finally show (3). Assertion (1) implies the first equivalence in

Fun⊗/lax(L K C∗Algnu
h,!,D)

L∗
!

≃ FunW!
⊗/lax(L K C∗Algnu

h ,D)→ Funh,s
⊗/lax(C

∗Algnu,D),

whose second arrow is a restriction of the equivalence (4-5) and hence fully faithful. We now restrict the
domain to (lax) symmetric monoidal functors which are in addition left-exact and get

Funlex
⊗/lax(L K C∗Algnu

h,!,D)
L∗
!

≃ FunW!,lex
⊗/lax (L K C∗Algnu

h ,D) ≃−→ Funh,s,!+Sch
⊗/lax (C∗Algnu,D).

The second arrow indeed takes values in the indicated subcategory by Proposition 5.7(2). To see that it is es-
sentially surjective consider a functor F in Funh,s,!+Sch

⊗/lax (C∗Algnu,D). Then by (4-5) there is an essentially
unique (lax) symmetric monoidal functor F̃ : L K C∗Algnu

h →D such that L∗h,K F̃≃ F . By Proposition 5.7(2)
the functor F̃ is left-exact and inverts W!. Thus F̃ belongs to FunW!,lex

⊗/lax (L K C∗Algnu
h ,D). □
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The constructions above have versions for the category of separable C∗-algebras. We let Ŵsep,! denote
the analogue of Ŵ! from (5-2) for separable algebras and Wsep,! be the smallest subset of morphisms
containing Ŵsep,! which has the 2-out-of-3 property and is closed under pull-backs. For ! in {ex, se, splt}
we define the Dwyer–Kan localization

Lsep,! : L K C∗Algnu
sep,h→ L K C∗Algnu

sep,h,! (5-9)

at Wsep,!. Since L K C∗Algnu
sep,h is locally small and essentially small, the set of equivalence classes in

Wsep,! is small. This implies that L K C∗Algnu
sep,h,! is still essentially small and locally small.

We define the composition

Lsep,h,K ,! := Lsep,! ◦ Lsep,h,K : C∗Algnu
sep→ L K C∗Algnu

sep,h,!. (5-10)

Then we have the following statements.

Proposition 5.9. (1) The localization Lsep,! is left-exact.

(2) L K C∗Algnu
sep,h,! is semiadditive and Lsep,! preserves finite coproducts.

(3) Pull-back along Lsep,h,K ,! induces for every left-exact∞-category D an equivalence

L∗sep,h,K ,! : Funlex(L K C∗Algnu
sep,h,!,D) ≃−→ Funh,s,!+Sch(C∗Algnu

sep,D). (5-11)

(4) The localization Lsep,! has a symmetric monoidal refinement.

(5) We have a commutative square of symmetric monoidal functors

L K C∗Algnu
sep,h

//

Lsep,!

��

L K C∗Algnu
h

L !
��

L K C∗Algnu
sep,h,!

// L K C∗Algnu
h,!

(5-12)

(6) The functor −⊗?− : L K C∗Algnu
sep,h,!× L K C∗Algnu

sep,h,!→ L K C∗Algnu
sep,h,! is bileft-exact.

(7) Pull-back along Lsep,h,K ,! induces for every left-exact∞-category an equivalence

L∗sep,h,K ,! : Funlex
⊗/lax(L K C∗Algnu

sep,h,!,D) ≃−→ Funh,s,!+Sch
⊗/lax (C∗Algnu

sep,D) (5-13)

for any symmetric monoidal and left-exact∞-category D.

Remark 5.10. In contrast to Corollary 4.3(3) we do no not know whether L K C∗Algnu
h,! admits infinite

coproducts.
In contrast to the upper-horizontal arrow in (5-12) the lower-horizontal arrow in this square is not

known to be fully faithful; see Remark 3.21. □

Remark 5.11. If the target category D is stable and we consider ! in {se, ex}, then by Lemma 5.2 (or its
separable version) we could remove the superscripts + Sch on the right-hand sides of (5-4), (5-6), (5-11),
and (5-13). □
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6. Bott periodicity

We analyze the Toeplitz extension

0→ K → T → C(S1)→ 0

from the homotopy-theoretic point of view. The section is essentially an∞-categorical version of [Cuntz
1984, Section 4]. The main result is Corollary 6.11.

We start with recalling some generalities on group objects in∞-categories. If C is an∞-category
admitting cartesian products, then we can consider the∞-category of commutative algebras in C for the
cartesian monoidal structure which will be called the∞-category of commutative monoids CMon(C).
Let C be a commutative monoid with multiplication map m : C ×C → C . It is called a commutative
group if the shear map

C ×C (c,c′) 7→(c,m(c,c′))
−−−−−−−−−−→ C ×C

is an equivalence. We let CGroups(C) denote the full subcategory of CMon(C) of commutative groups.
Note that we have used these notions already for C= Spc.

Dually, if C admits coproducts, then we can consider the∞-categories of cocommutative comonoids
coCMon(C) and its full subcategory cocommutative cogroups coCGroup(C).

Example 6.1. In a semiadditive∞-category C every object is naturally a commutative monoid and a
commutative comonoid. The functors forgetting the commutative monoid or comonoid structures are
equivalences:

CMon(C) ≃−→ C ≃
←− coCMon(C).

Let C be in an object of C. Then the multiplication and comultiplication maps of the corresponding
monoid or comonoid are given by

C ×C ≃
←− C ⊔C codiag

−−−→ C, C diag
−−−→ C ×C ≃

←− C ⊔C.

The conditions of being a group or a cogroup are equivalent.
For any two objects C , C ′ in C the mapping space MapC(C,C ′) has a natural refinement to an object

of CMon(Spc). The object C ′ is a group if and only if MapC(C,C ′) is a group for all objects C . □

Example 6.2. The last assertion in Example 6.1 reduces the verification of the group property for an
object in a semiadditive category to the case of monoids in spaces. In this case we have a simple criterion.
An object X in CMon(Spc) is a group if an only if the monoid π0 X is a group. □

Lemma 6.3. If C is semiadditive and left-exact, then � : C→ C (see Example 3.19) takes values in
commutative groups.

Proof. Let C ′ be an object of C. We must show that �C ′ is a group. To this end we will show that
MapC(C, �C ′) ≃ �MapC(C,C ′) is a group in Spc for any object C of C. We now use Example 6.2 in
order to reduce the problem to the set of components.
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Note that π0�MapC(C,C ′)∼= π1MapC(C,C ′) clearly has a group structure ♯ as a fundamental group.
This structure distributes over the commutative monoid structure + on π0MapC(C, �C ′) coming from
the semiadditivity in the sense that

(a+ b) ♯ (c+ d)= (a ♯ c)+ (b ♯ d).

The Eckmann–Hilton argument implies that both structures coincide. In particular, the commutative
monoid structure + is a commutative group structure. □

To every unital C∗-algebra A we functorially associate the topological space

I (A) := {v ∈ A | v∗v = 1A}

of isometries in A. By definition, the Toeplitz algebra T is the isometries classifier in C∗Alg. It contains
a universal isometry v such that

Homu(T , A) ∼=−→ I (A), f 7→ f (v),

is a homeomorphism for every unital C∗-algebra A.
Recall from Example 4.9 that C(S1) is the unitaries classifier in C∗Alg with the universal unitary u.

Since unitaries are in particular isometries we have a canonical unital homomorphism

π : T → C(S1), π(v)= u.

Since C(S1) is generated by u, the homomorphism π is surjective. We let K denote the kernel of π . We
thus have the Toeplitz exact sequence

0→ K → T π
−→ C(S1)→ 0. (6-1)

It is known that T is separable and nuclear. The projection e := 1T −vv∗ belongs to K , and the algebra K
is generated by the family of minimal pairwise orthogonal projections (vnev∗,n)n∈N. This provides an
identification of K with the algebra of compact operators on a separable Hilbert space and justifies the
notation. Note that e is a minimal projection in K .

Using the universal property of T and the unit we define homomorphisms

q : T → C, v 7→ 1, j : C→ T , 1 7→ 1T .

We consider a functor F : C∗Algnu
→ C to a semiadditive∞-category.

Proposition 6.4. If F is homotopy invariant, stable, split exact and takes values in group objects, then
F( j) and F(q) are mutually inverse equivalences.
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Proof. The equality j ◦q = idC implies that F( j)◦F(q)≃ idF(C). It remains to show that F(q)◦F( j)≃
idF(T ). To this end we construct the following diagram of C∗-algebras:

T

κ

��

0 // K ⊗ T ι
// T̄

r
��

p
// T //

α,φt

yy

τ

��

s,ψt
��

j◦q,idT
uu

0

0 // K ⊗ T // T ⊗ T
π⊗idT

// C(S1)⊗ T // 0

The lower-horizontal sequence is the tensor product of the Toeplitz sequence with T . The algebra T is
defined such that the right square is a pull-back. This determines the homomorphisms r and p. The maps
κ , τ and α are determined by the universal property of T and the relations

κ : v 7→ e⊗ v, α : v 7→ v(1− e)⊗ 1T , τ : v 7→ u⊗ 1T .

Since (π ⊗ idT ) ◦ α = τ we can define the map s by the universal property of the pull-back such that
r ◦ s = α and p ◦ s = idT . The last equality implies that the upper-horizontal sequence is split exact. By
the split exactness of F we get an equivalence

F(ι)⊕ F(s) : F(K ⊗ T )⊕ F(T ) ≃−→ F(T ).

In particular we can conclude that F(ι) is monomorphism.
Since im(r ικ)⊥ im(α) (see Example 4.10) we can define homomorphisms

φ0 := α+ r ικidT , φ1 := α+ r ικ( j ◦ q) (6-2)

from T to T ⊗ T . It has been shown in [Cuntz 1984, Section 4] (see [Fritz 2010] for a nice presentation,
reproduced in Remark 6.5 below) that φ0 and φ1 are homotopic by a homotopy φt : T → T ⊗T such that
(π⊗idT )◦φt(v)= τ for all t . By the universal property of the pull-back we get a homotopy ψt : T → T
from s+ ικidT to s+ ικ( j ◦ q) such that r ◦ψt = φt and p ◦ψt = idT . By the homotopy invariance of
F we get

F(s+ ικidT )≃ F(s+ ικ( j ◦ q)).

In view of Example 4.10 and the fact that by (5-4) for ! = splt the functor F has a left-exact, and hence
additive, factorization

C∗Algnu F
//

Lh,K ,!

&&

C

L K C∗Algnu
h,!

::

we conclude that
F(s)+ F(ικidT )≃ F(s)+ F(ικ( j ◦ q))
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as morphisms with target F(T ). Since F(T ) is a group object we can cancel F(s) and obtain the
equivalence

F(ικidT )≃ F(ικ( j ◦ q)).

Since, as seen above, F(ι) is a monomorphism, and F(κ) is an equivalence by stability of F (note that κ
is a left-upper-corner inclusion), we can conclude that

F(idT )≃ F( j ◦ q)≃ F( j) ◦ F(q)

as desired. □

Remark 6.5. For completeness of the presentation, following [Fritz 2010] we sketch the construction of
the homotopy between φ0 and φ1 from (6-2). These homomorphisms are determined via the universal
property of T by

φ0(v)= v(1− e)⊗ 1T + e⊗ v, φ1(v)= v(1− e)⊗ 1T + e⊗ 1T .

We will employ an explicit realization of T by bounded operators on L2(N). If (ξi )i∈N denotes the
standard basis, then v is the isometry given by vξi = ξi+1 for all i in N, and e is the projection onto the
subspace generated by ξ0.

We realize T ⊗ T correspondingly on L2(N×N) with basis (ξi, j )i, j∈N×N. We define the selfadjoint
unitaries

u0 := v(1− e)v∗⊗ 1T + ev∗⊗ v+ ve⊗ v∗+ e⊗ e

and

u1 := v(1− e)v∗⊗ 1T + ev∗⊗ 1T + ve⊗ 1T .

One then checks that

u0(v⊗ 1T )u∗0 = φ0(v), u1(v⊗ 1T )u∗1 = φ1(v)

in T ⊗ T . On basis vectors the unitary u0 is given by

ξi, j 7→


ξ0,0, (i, j)= (0, 0),
ξ1, j−1, i = 0, j ≥ 1,
ξ0, j+1, i = 1, j ≥ 0,
ξi, j , i ≥ 2.

We connect u0 by a homotopy u0,t with 1T ⊗T by a path in T ⊗ T which rotates (with constant speed) in
each of the two-dimensional subspaces C⟨ξ1, j−1, ξ0, j ⟩ for j ≥ 1 from flip to the identity. Similarly, the
action of u1 on basis vectors is given by

ξi, j 7→


ξ1, j , i = 0,
ξ0, j , i = 1,
ξi, j , i ≥ 2.
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We connect u1 by a homotopy u1,t with 1T ⊗T by a path in T ⊗ T which rotates (with constant speed) in
each of the two-dimensional subspaces C⟨ξ0, j , ξ1, j ⟩ for j ≥ 0 from the flip to the identity. Then u∗0,tφ0 u0,t

is a homotopy from φ0 to the map determined by v 7→ v⊗ 1T . Similarly, u∗1,tφ1u1,t is a homotopy from
φ1 to the same map. The concatenation of the first with the inverse of the second homotopy is the desired
homotopy φt . One checks from the explicit formulas that (π ⊗ idT ) ◦φt(v)= τ for all t .

Note that the selfadjointness of ui is not relevant here, but it would be important for a version for real
C∗-algebras. □

We now consider the split exact sequence

0→ T0→ T q
−→ C→ 0 (6-3)

defining T0 as an ideal in T . As above we consider a functor F : C∗Algnu
→ C to a semiadditive

∞-category.

Corollary 6.6. If F is homotopy invariant, stable, split exact and takes values in group objects, then
F(T0)≃ 0.

Proof. Since F is split exact it sends the split exact sequence (6-3) to a fiber sequence. Since F(q) is an
equivalence by Proposition 6.4 we conclude that its fiber F(T0) is a zero object. □

The Toeplitz sequence (6-1) is semisplit exact. This can be seen either by an application of the Choi–
Effros lifting theorem [1976] using that K is nuclear, or by an explicit construction of a cpc right-inverse
s of π ; see Remark 6.7.

Remark 6.7. For completeness of the presentation we provide a cpc split for the Toeplitz extension (6-1).
We consider L2(Z)with the standard basis (ξi )i∈Z and realize the Toeplitz algebra T on the subspace L2(N)

as in Remark 6.5. We let w be the unitary shift operator determined by ξi 7→ ξi+1 for all i in Z and
P : L2(Z)→ L2(N) be the orthogonal projection. Then we have v = PwP . Since C(S1) classifies
unitaries (see Example 4.9) we have a unique unital homomorphism φ : C(S1)→ B(L2(Z)) determined
by φ(u) := w. By an explicit calculation of its action on basis vectors one checks that [P, φ(un)] is
finite-dimensional and therefore belongs to K for all n in Z. Since u generates C(S1) we conclude that
[P, φ( f )] ∈ K for all f in C(S1). We define the linear map s : C(S1)→ B(L2(N)) by s( f )= Pφ( f )P .
Using the discussion above one checks that it takes vales in T . Moreover, since π(s(u))= π(v)= u we
conclude that

π ◦ s = idT .

Since it is the compression of a homomorphism it is completely positive. □

Remark 6.8. The Toeplitz extension does not admit a split. For this reason in the constructions below
we must assume that ! belongs to {se, ex} and exclude the case splt. □
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We consider the diagram of vertical exact sequence

0

��

0

��

K

��

K

��

T0 //

π0

��

T

π
��

S(C)

s0

AA

i
//

��

C(S1)

��

s

??

0 0

(6-4)

where the lower square is cartesian and the map i is as in (4-10). The cpc split s induces a cpc split s0 as
indicated.

We consider ! in {se, ex} and apply the semiexact functor Lh,K ,! to the left-vertical semisplit exact
sequence in order to get a fiber sequence

Lh,K ,!(S2(C))
β!,C
−−→ Lh,K ,!(C)→ Lh,K ,!(T0)→ Lh,K ,!(S(C)) (6-5)

defining β!,C, where we used Lh,K ,!(C)≃ Lh,K ,!(K ) by stability of Lh,K ,!.
Since we want to speak about the two-fold loop functor in different left-exact∞-categories we add

subscripts indicating which category is meant in each case. Note that for all k in N, by Example 3.19 and
the left-exactness of L ! ◦ L K , the k-fold loop functor �k

!
on L K C∗Algnu

h,! can be represented by the k-fold
suspension on the level of C∗-algebras:

�k
!
(−)≃ Lh,K ,!(Sk(C))⊗− : L K C∗Algnu

h,!→ L K C∗Algnu
h,!.

Recall the tensor unit constraint

idL K C∗Algnu
h,!
≃ Lh,K ,!(C)⊗− : L K C∗Algnu

h,!→ L K C∗Algnu
h,!.

The following definition implicitly uses these identifications.

Definition 6.9. We define a natural transformation of endofunctors

β! := β!,C⊗− :�
2
!
→ idL K C∗Algnu

h,!
: L K C∗Algnu

h,!→ L K C∗Algnu
h,!.

We consider a functor E : L K C∗Algnu
h,!→ C to a semiadditive∞-category and let A be an object of

L K C∗Algnu
h,!.

Corollary 6.10. If E is left-exact and E(−⊗A) takes values in group objects, then E(β!,A) : E(�2
!
(A))→

E(A) is an equivalence.
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Proof. We consider the functor F(−) := E(−⊗max A). Then F(β!,C)≃ E(β!,A). Using Proposition 5.8(2)
we observe that L∗h,K ,!F belongs to Funh,s,!(C∗Algnu,C). Since it also takes values in group objects we
can apply Corollary 6.6 in order to conclude that F(Lh,K ,!(T0))≃ 0.

The functor F sends the fiber sequence (6-5) to a fiber sequence

F(�2Lh,K ,!(C))
F(β!,C)
−−−−→ F(Lh,K ,!(C))→ F(Lh,K ,!(T0)).

Hence F(β!,C) is an equivalence. □

Recall that ! is in {se, ex}.

Corollary 6.11. If A is a group object in L K C∗Algnu
h,!, then β!,A :�2

!
(A)→ A is an equivalence.

Proof. We apply Corollary 6.10 to the identity functor in place of E . We further use that if A is a group
object, then so is B⊗ A for every B in L K C∗Algnu

h,!. □

The statements of Proposition 6.4 and Corollaries 6.6, 6.10, and 6.11 all have separable versions which
are obtained by adding subscripts sep appropriately.

7. Group objects and KKsep and Esep

We consider the full subcategories of group objects in the semiadditive∞-categories L K C∗Algnu
h,! for ! in

{se, ex} and their separable versions. They are the targets of the two-fold loop functor and turn out the be
stable∞-categories. This two-fold loop functor is the right-adjoint of a right-Bousfield localization. It is
the last step of the chain of localizations described in Section 1. In the separable case, the composition of
all four localizations yields the functors

kksep : C∗Algnu
sep→ KKsep and esep : C∗Algnu

sep→ KKsep

whose universal properties will be stated in (7-7) and (7-9).
Dually to the situation described at the beginning of Section 4 let C be an ∞-category with an

endofunctor R : C→ C and a natural transformation β : R→ idC. If for every object C the morphisms

βR(C), R(βC) : R(R(C))→ R(C)

are equivalences, then R is the right-adjoint of a right-Bousfield localization with counit β. The functor
R : C→ R(C) is also a Dwyer–Kan localization at the set of morphisms WR := {βC | C ∈ C}. If C is
left-exact, then the localization R is automatically left-exact.

If C is semiadditive, then we let Cgroup denote the full subcategory of group objects in C. A full subcat-
egory of a semiadditive∞-category which is closed under products is again semiadditive. A semiadditive
∞-category is called additive if all its objects are groups. If C is semiadditive, then Cgroup is additive.

Example 7.1. A stable∞-category is additive. □

We consider ! in {se, ex} and ? in {min,max} allowing the following combinations:
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! \ ? min max

se yes yes
ex no yes

We consider the two-fold loop endofunctor �2
!

on L K C∗Algnu
h,! and the natural transformation β! :

�2
!
→ idL K C∗Algnu

h,!
from Definition 6.9.

Proposition 7.2. (1) The essential image of �2
!

is L K C∗Algnu
h,!

group.

(2) The functor�2
!

is the right-adjoint of a right-Bousfield localization with counit β! :�2
!
→ idL K C∗Algnu

h,!
.

The localization �2
!

is left-exact.

(3) The∞-category L K C∗Algnu
h,!

group is stable.

(4) For every left-exact and additive∞-category D we have an equivalence

(�2
!
◦ Lh,K ,!)

∗
: Funlex(L K C∗Algnu

h,!
group

,D) ≃−→ Funh,s,!+Sch(C∗Algnu,D). (7-1)

(5) The localization �2
!

admits a symmetric monoidal refinement.

(6) The functor

−⊗?− : L K C∗Algnu
h,!

group
× L K C∗Algnu

h,!
group
→ L K C∗Algnu

h,!
group

is biexact.

(7) For every symmetric monoidal, left-exact and additive∞-category D we have an equivalence

(�2
!
◦ Lh,K ,!)

∗
: Funlex

⊗/lax(L K C∗Algnu
h,!

group
,D) ≃−→ Funh,s,!+Sch

⊗/lax (C∗Algnu,D). (7-2)

Proof. We start with (1). By Lemma 6.3 the functor �2
!

takes values in group objects. If A belongs to
L K C∗Algnu

h,!
group, then β!,A :�2

!
(A)→ A is an equivalence by Corollary 6.11. Hence the essential image

of �2
!

is precisely L K C∗Algnu
h,!

group.
For (2) we first note that β

!,�2
!
(A) is an equivalence again by Corollary 6.11. We furthermore employ

the symmetry of the tensor product and β!,A ≃ β!,C ⊗ A in order to see that �2
!
(β!,A) ≃ β!,�2

!
(A) is an

equivalence, too.
In order to show (3) we show that the loop functor

�! : L K C∗Algnu
h,!

group
→ L K C∗Algnu

h,!
group

is an equivalence. Indeed, by Corollary 6.11 the restriction of the natural transformation β! :�2
!
→ id

from Definition 6.9 to group objects is an equivalence which exhibits �! as its own inverse.
Assertion (4) follows from

Funlex(L K C∗Algnu
h,!

group
,D)

�
2,∗
!

≃ Funlex(L K C∗Algnu
h,!,D)

L∗h,K ,!
≃ Funh,s,!+Sch(C∗Algnu,D). (7-3)
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The functor �2,∗
!

preserves left-exact functors by (2). It is fully faithful and essentially surjective since
any left-exact functor from L K C∗Algnu

h,! to an additive category D automatically inverts by Corollary 6.10
the set W�2

!

:= {βA,! | A ∈ L K C∗Algnu
h,!} of generators of the Dwyer–Kan localization �2

!
. The second

equivalence in (7-3) is (5-4).
For (5) we observe that the equivalence idA⊗β!,B ≃ β!,A⊗B for all A and B in L K C∗Algnu

h,! implies
that the endofunctor A⊗− of L K C∗Algnu

h,! preserves the set W�2
!

. Consequently, �2
!

admits a symmetric
monoidal refinement. Furthermore, for A in L K C∗Algnu

h,!, the endofunctor A⊗− descends to a left-exact
endofunctor on L K C∗Algnu

h,!
group. This implies (6).

Finally, (7) follows from

Funlex
⊗/lax(L K C∗Algnu

h,!
group

,D)
�

2,∗
!

≃ Funlex
⊗/lax(L K C∗Algnu

h,!,D)
L∗h,K ,!
≃ Funh,s,!+Sch

⊗/lax (C∗Algnu,D),

where the first follows from the left-exactness of �2
!

shown in (5), and the second is (5-6). □

Proposition 7.2 has a separable version which we state for later reference.

Proposition 7.3. (1) The essential image of �2
sep,! is L K C∗Algnu

sep,h,!
group.

(2) The functor �2
sep,! is the right-adjoint of a right-Bousfield localization with counit βsep,! :�

2
sep,!→

idL K C∗Algnu
sep,h,!

. The localization �2
sep,! is left-exact.

(3) The∞-category L K C∗Algnu
sep,h,!

group is stable.

(4) For every left-exact and additive∞-category D we have an equivalence

(�2
sep,! ◦ Lsep,h,K ,!)

∗
: Funlex(L K C∗Algnu

sep,h,!
group

,D) ≃−→ Funh,s,!+Sch(C∗Algnu
sep,D). (7-4)

(5) The localization �2
sep,! admits a symmetric monoidal refinement.

(6) The functor

−⊗?− : L K C∗Algnu
sep,h,!

group
× L K C∗Algnu

sep,h,!
group
→ L K C∗Algnu

sep,h,!
group

is biexact.

(7) For every symmetric monoidal, left-exact and additive∞-category D we have an equivalence

(�2
sep,! ◦ Lsep,h,K ,!)

∗
: Funlex

⊗/lax(L K C∗Algnu
sep,h,!

group
,D) ≃−→ Funh,s,!+Sch

⊗/lax (C∗Algnu
sep,D). (7-5)

We note that L K C∗Algnu
h,!

group is a large∞-category while L K C∗Algnu
sep,h,!

group is essentially small and
locally small.

Remark 7.4. If D is stable, then by Lemma 5.2, in the right-hand sides of (7-1), (7-2), (7-4) and (7-5)
we can omit the superscript + Sch. □

Proposition 7.5. The functors

�2
!
◦ Lh,K ,! : C∗Algnu

→ L K C∗Algnu
h,!

group
, �2

sep,! ◦ Lsep,h,K ,! : C∗Algnu
sep→ L K C∗Algnu

sep,h,!
group

are Dwyer–Kan localizations.
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Proof. We write out the details in the separable case. The nonseparable case is analogous. The functor
Lsep,h,K ,! : C∗Algnu

sep→ L K C∗Algnu
sep,h,! is constructed as an iterated Dwyer–Kan localization at sets of

morphisms in C∗Algnu
sep. By definition, the last step �2

sep,! : L K C∗Algnu
sep,h,!→ L K C∗Algnu

sep,h,!
group is a

Dwyer–Kan localization at the set of morphisms βsep,!,A : Lsep,h,K ,!(S2(A))→ Lsep,h,K ,!(A) for all A in
C∗Algnu

sep. These morphisms only exist in the localization L K C∗Algnu
sep,h,!. But we can replace them by a

collection of images of morphisms in C∗Algnu
sep. For A in C∗Algnu

sep we have the commutative diagram

Lsep,h,K ,!(S2(A))

Lsep,h,K ,!(λA)

��

βsep,!,A
// Lsep,h,K ,!(A)

Lsep,h,K ,!(κA) ≃

��

Lsep,h,K ,!(C(πA)) Lsep,h,K ,!(A⊗ K )
Lsep,h,K ,!(ιπA )

≃
oo

in L K C∗Algnu
sep,h,!, where κA is the left-upper-corner inclusion (4-1), ιπA is the canonical inclusion that is

associated to the semisplit exact sequence

0→ A⊗ K → A⊗ T0
πA
−−→ S(A)→ 0

(the tensor product of the left column in (6-4) with A) as in (5-1), and λA : S2(A)→ C(πA) is the
canonical inclusion. Hence �2

sep,! is also the Dwyer–Kan localization at the collection of morphisms
(Lsep,h,K ,!(λA))A∈C∗Algnu

sep
. We can conclude that the composition �2

sep,! ◦ Lsep,h,K ,! is a Dwyer–Kan
localization. □

Definition 7.6. We define the KK-theory functor for separable C∗-algebras

kksep : C∗Algnu
sep→ KKsep (7-6)

to be the functor

�2
sep,se ◦ Lsep,h,K ,se : C∗Algnu

sep→ L K C∗Algnu
sep,h,se

group
.

So KKsep is a locally small and essentially small stable∞-category. The functor kksep has the universal
property that

kk∗sep : Funlex(KKsep,D) ≃−→ Funh,s,se+Sch(C∗Algnu
sep,D) (7-7)

for any left-exact and additive∞-category D. Since we know by Proposition 7.3(3) that KKsep is stable
the restriction of this universal property to stable∞-categories D (where by Remark 7.4 we can omit the
superscript + Sch) already characterizes the functor kksep : C∗Algnu

sep→ KKsep up to equivalence.

Remark 7.7. By [Bunke et al. 2021, Theorem 1.5] the functor denoted by the same symbol in [Bunke
et al. 2021, Definition 1.2] (for the trivial group G) has the same universal property and therefore is
canonically equivalent to the functor defined above. We can conclude by [Bunke et al. 2021, Theorem 1.3]
that the functor

ho ◦ kksep : C∗Algnu
sep→ hoKKsep
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with values in the triangulated category hoKKsep is canonically equivalent to the classical functor consid-
ered in [Meyer and Nest 2006] and the C∗-literature elsewhere. As explained in the introduction, we will
give an independent proof for this fact; see Corollary 1.3. □

Remark 7.8. Since KKsep is stable it admits all finite colimits. After some hard work, in Corollary 12.3
below we will see that KKsep admits countable colimits and is thus idempotent complete. We do not have
a direct proof of this fact just from the constructions. □

Definition 7.9. We define the E-theory functor for separable C∗-algebras

esep : C∗Algnu
sep→ Esep (7-8)

to be the functor

�2
sep,ex ◦ Lsep,h,K ,ex : C∗Algnu

sep→ L K C∗Algnu
sep,h,ex

group
.

So Esep is a locally small and essentially small stable∞-category. The functor in (7-8) is the initial
homotopy invariant, stable and exact functor to a left-exact and additive∞-category, i.e., for any left-exact
and additive∞-category D we have the equivalence

e∗sep : Funlex(Esep,D) ≃−→ Funh,s,ex+Sch(C∗Algnu
sep,D). (7-9)

Remark 7.10. The justification for calling the functor defined in Definition 7.9 the E-theory functor is
that it has an analogous universal property as the additive 1-category-valued E-theory functors considered
in [Higson 1990a; Connes and Higson 1990]. In fact, in Theorem 13.16 we show that after going to the
homotopy category the functor esep becomes equivalent to the classical E-theory functor for separable
algebras.

Asymptotic morphisms will be discussed in Section 14 below. □

Remark 7.11. Since KKsep and Esep are stable, at a first glance it looks more natural to formulate the
universal properties for stable targets D. But we will take advantage of the more general version for
left-exact additive∞-categories in Section 10 below. □

8. s-finitary functors

We extend the KK- and E-theory functors from separable to all C∗-algebras and characterize these
extensions by their universal properties.

To any essentially small and locally small stable∞-category C we can associate its Ind-completion

y : C→ Ind(C).

As a model, using that C has mapping spectra, one can take the Yoneda embedding

y : C→ Funlex(C,Sp). (8-1)
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The large stable∞-category Ind(C) is presentable, and the fully faithful and exact functor y has the
universal property that for any cocomplete stable∞-category D the pull-back along y is an equivalence

y∗ : Funcolim(Ind(C),D) ≃−→ Funlex(C,D), (8-2)

where the superscript colim indicates small colimit preserving functors. If C has a biexact symmetric
monoidal structure, then Ind(C) has a natural symmetric monoidal structure and y has a symmetric
monoidal refinement such that for any cocomplete bicocontinuous symmetric monoidal∞-category D
the pull-back along y∗ induces an equivalence

y∗ : Funcolim
⊗/lax (Ind(C),D) ≃−→ Funlex

⊗/lax(C,D). (8-3)

The inverse of the restriction is given by left-Kan extension. In the model (8-1) the symmetric monoidal
structure on the functor category is the Day convolution structure on the functor category.

Let ! be in {se, ex} and ? be in {min,max}. As before we allow the following combinations:

! \ ? min max

se yes yes
ex no yes

For the moment we use the abbreviations

KKsep,! := L K C∗Algnu
sep,h,!

group
, kksep,! :=�

2
♯,! ◦ Lsep,h,K ,! : C∗Algnu

sep→ KKsep,! (8-4)

instead of KKsep or Esep order to discuss KK- and E-theory in a parallel manner.

Definition 8.1. We define KK! := Ind(KKsep,!) and the functor

kk! : C∗Algnu
→ KK!

as the left-Kan extension

C∗Algnu
sep

incl

%%

kksep,!
// KKsep,!

y
// KK!

C∗Algnu

kk!
;;

of y ◦ kksep,! along incl.

Since the inclusion functor incl is fully faithful, the triangle commutes up to a natural equivalence.
The following properties of the functor kk! : C∗Algnu

→ KK! are immediate from the definition.

Corollary 8.2. (1) We have an equivalence kk! ◦ incl≃ y ◦ kksep,! : C∗Algnu
sep→ KK!.

(2) KK! is a large presentable stable∞-category compactly generated by the image of y.

(3) The functor kk! : C∗Algnu
→ KK! is s-finitary.
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(4) KK! admits a bicocontinuous symmetric monoidal structure ⊗? and y∗ has a symmetric monoidal
refinement such that

y∗ : Funcolim
⊗/lax (KK!,C)→ Fun⊗,lex

⊗/lax(KKsep,!,D)

is an equivalence for any cocomplete bicocontinuous symmetric monoidal∞-category with D.

(5) The tensor product with the image

b : kk!(S2(C))→ kk!(C) (8-5)

of the equivalence β!,C in KK! induces an equivalence �2 ≃
−→ idKK! of endofunctors of KK!

Remark 8.3. The main point of Corollary 8.2(5) is that the loop functor on KK! is two-periodic,
and that this periodicity is implemented by the product with an (necessarily invertible) element b in
π−2KK!(C,C)≃ π0KK!(S2(C),C), where KK!(C,C) is the commutative endomorphism ring spectrum
of the tensor unit of KK!. This will be used for the calculation of the ring spectrum in Remark 9.19. □

The following results prepare the verification of the universal property of the functor kk!. We consider
a functor Fsep : C∗Algnu

sep→ C and assume that it admits a left-Kan extension

C∗Algnu
sep

Fsep
//

incl
%%

C

C∗Algnu

F
<<

By Remark 2.5, the functor F is s-finitary. Recall the notions introduced in Definition 2.4.

Proposition 8.4. F inherits, from Fsep, the properties

(1) homotopy invariance,

(2) stability,

(3) !-exactness for ! in {splt, se, ex}, provided in C filtered colimits preserve fiber sequences.

Proof. This is shown in [Bunke et al. 2021, Lemma 3.2]; see also Remark 8.8. The case of ! = splt (not
discussed in the reference) is analogous to the case ! = se. □

Theorem 8.5. (1) The functor kk! is homotopy invariant, stable, and !-exact.

(2) The restriction along kk! induces for every cocomplete stable∞-category D an equivalence

kk∗
!
: Funcolim(KK!,D) ≃−→ Funh,s,!,sfin(C∗Algnu,D).

(3) kk! has a natural symmetric monoidal refinement such that restriction along kk! induces for every
cocomplete symmetric monoidal stable ∞-category D with bicocontinuous symmetric monoidal
structure an equivalence

kk∗
!
: Funcolim

⊗/lax (KK!,D) ≃−→ Funh,s,!,sfin
(⊗/lax (C∗Algnu,D).
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Proof. In order to see (1) note that kksep,! is homotopy invariant, stable, and !-exact by Proposition 7.2(4).
Since y is exact, the composition y ◦ kksep,! has these properties, too. The assertion now follows from
Proposition 8.4.

Assertion (2) follows from the commutativity of

Funcolim(KK!,D)
≃,(8-2)

y∗
//

kk∗
!

��

Funlex(KKsep,!,D)

kk∗sep,!≃,(7-1)
��

Funh,s,!,sfin(C∗Algnu,D)
≃

incl∗
// Funh,s,!(C∗Algnu

sep,D)

where by Proposition 8.4 the inverse of the lower-horizontal functor is the left-Kan extension functor
along incl.

The functor kk! is defined as a left-Kan extension of a symmetric monoidal functor y ◦ kksep,! along
another symmetric monoidal functor incl. It therefore (see [Bunke et al. 2021, Lemma 3.6]) has a lax
symmetric monoidal refinement. As shown in [Bunke et al. 2021, Proposition 3.8] this structure is actually
symmetric monoidal. Assertion (3) now follows from the commutativity of

Fun⊗/lax(KK!,D)
≃,(8-3)

y∗
//

kk∗
!

��

Funlex
⊗/lax(KKsep,!,D)

kk∗sep,!≃,(7-2)
��

Funh,s,!,sfin
⊗/lax (C∗Algnu,D)

≃

incl∗
// Funh,s,!

⊗/lax(C
∗Algnu

sep,D)

The inverse of the lower-horizontal morphism is the left-Kan extension functor. It preserves symmetric
monoidal functors by same argument as in [Bunke et al. 2021, Proposition 3.8]. □

Definition 8.6. (1) We define the KK-theory for C∗-algebras by

KK := KKse, kk := kkse : C∗Algnu
→ KK.

(2) We define the E-theory for C∗-algebras by

E := KKex, e := kkex : C∗Algnu
→ E.

Remark 8.7. The universal properties of KK- and E-theory are given by Theorem 8.5.
Thus kk : C∗Algnu

→ KK is the universal functor to a cocomplete stable ∞-category which is
homotopy invariant, stable, semiexact and s-finitary. The category KK has presentably symmetric
monoidal structures ⊗? for ? in {min,max}, and the functor kk has corresponding symmetric monoidal
refinements which have an analogous universal property for cocomplete stable test categories with
bicocontinuous symmetric monoidal structures.

The functor e : C∗Algnu
→ E is the universal functor to a cocomplete stable ∞-category which is

homotopy invariant, stable, exact and s-finitary. The category E has a presentably symmetric monoidal
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structure ⊗max, and the functor e has a corresponding symmetric monoidal refinement which has an anal-
ogous universal property for cocomplete stable test categories with bicocontinuous symmetric monoidal
structures.

Since exactness is a stronger condition than semiexactness we have a canonical comparison functor
fitting into a triangle

C∗Algnu

e

##

kk

zz

KK // E

which commutes up to a natural transformation. Under certain conditions it induces an equivalence on
mapping spaces; see Corollary 9.16 for a detailed statement.

If A, B are separable C∗-algebras, then we have equivalences

KKsep(A, B)≃ KK(A, B), Esep(A, B)≃ E(A, B), (8-6)

by Corollary 8.2(1). □

Remark 8.8. We apologize for introducing an incompleteness of the presentation by deferring the proof
of Proposition 8.4 to the reference [Bunke et al. 2021, Lemma 3.2]. But let us point out that the argument
for [Bunke et al. 2021, Lemma 3.2] only employs elementary facts about C∗-algebras and their tensor
products and not any deeper parts from KK-theory. It therefore should be directly accessible for readers
having reached this point of the present paper. The same applies to the argument that kk! is actually
symmetric monoidal (in contrast to being lax symmetric monoidal) which is deferred to [Bunke et al. 2021,
Proposition 3.8]. This argument is also by elementary C∗-algebra theory, but the case of the maximal
tensor product is more involved since it uses [Bunke et al. 2021, Lemma 7.18] which does not seem to be
so standard. □

9. K -theory and the stable group of unitaries

Using E-theory we can give a simple construction of a highly structured version of the topological
K -functor for C∗-algebras. The main goal of this section is to relate this K -theory functor with the stable
unitary group functor from (4-12).

In order to construct the K -theory functor we shall use the following general facts.

Remark 9.1. If C is a stable symmetric monoidal ∞-category with tensor unit 1, then the functor
mapC(1,−) : C→ Sp is lax symmetric monoidal. Since 1 is naturally a commutative algebra object in C
we get a commutative ring spectrum R := mapC(1,1). The∞-category C has then a natural R-linear
structure. In particular, its mapping spectra mapC(C, D) naturally refine to objects of Mod(R) such that
the composition is R-bilinear. □

We will apply this to the symmetric monoidal∞-category E. Its tensor unit is given by 1E := e(C).

Definition 9.2. We define the commutative ring spectrum KU := E(C,C) in CAlg(Sp).
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We refer to Remark 9.19 for a justification of the notation. The stable ∞-category E becomes a
KU-linear stable∞-category. In particular, its mapping spectra E(A, B) naturally belong to Mod(KU).

For the moment we consider the maximal tensor product on C∗Algnu. In order to incorporate the
minimal tensor product, see Corollary 9.14.

Definition 9.3. The lax symmetric monoidal topological K -theory functor for C∗-algebras is defined by

K := E(C,−) : C∗Algnu
→Mod(KU).

By construction, K is homotopy invariant, stable and exact. Since C is separable, the object e(C) in E
is compact. Hence, s-finitaryness of e : C∗Algnu

→ E implies that the K -theory functor is also s-finitary.
Recall the stable unitary group functor U s from (4-12).

Proposition 9.4. We have a canonical equivalence of functors

U s
≃�∞−1K : C∗Algnu

→ CGroups(Spc). (9-1)

Proof. Using Definition 9.3, stability of the∞-category E and Example 3.19 we get an equivalence

MapE(S(C),−)≃�
∞−1E(C,−)≃�∞−1K (−). (9-2)

We furthermore have a transformation of CGroups(Spc)-valued functors

U s
sep(−)

(4-12)
≃ MapL K C∗Algnu

sep
(S(C),−)

�2
sep,ex◦Lsep,ex
−−−−−−−→ MapEsep

(S(C),−)
(8-6)
≃ MapE(S(C),−)|C∗Algnu

sep
, (9-3)

where U s
sep is the restriction of U s to separable algebras. We now employ the following facts.

Lemma 9.5. The composition (9-3) is an equivalence.

Lemma 9.6. The functor U s preserves small filtered colimits and is in particular s-finitary.

Combining both results we get the desired equivalence (9-1) by left-Kan extending the equivalence (9-3)
along C∗Algnu

sep→ C∗Algnu and composing with (9-2). □

Corollary 9.7. The K -theory functor K : C∗Algnu
→ Sp preserves small filtered colimits.

Proof. We combine Lemma 9.6 with Proposition 9.4 and two-periodicity. □

Remark 9.8. Using that classical E-theory for separable C∗-algebras preserves countable sums [Guentner
et al. 2000, Proposition 7.1] one can show using Theorem 13.16 that esep preserves countable sums.
This implies by [Bunke and Duenzinger 2024, Proposition 3.17] that esep preserves all countable filtered
colimits. Since e(C) is a compact object of E this would give an alternative argument for the fact that K
preserves filtered small colimits. □

Remark 9.9. In the proof of Lemma 9.5 we will employ the following general fact about mapping spaces
in a Dwyer–Kan localization ℓ : C→ C[W−1

] of∞-categories. We call an object C of C colocal for W
if the functor MapC(C,−) sends the elements of W to equivalences. The following assertion is an easy
consequence of the Yoneda lemma. If C is colocal for W , then ℓ : MapC(C,−)→ MapC[W−1](ℓ(C), ℓ(−))
is an equivalence of functors from C to Spc. □
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Proof of Lemma 9.5. We must show that the composition

MapL K C∗Algnu
sep
(S(C),−) Lsep,ex

−−−−→ MapL K C∗Algnu
sep,h,ex

(S(C),−)
�2

sep,ex
−−−−→ MapEsep

(S(C),−)

is an equivalence. Since S(C) represents a group in L K C∗Algnu
sep,h,ex and �2

sep,ex is by Proposition 7.2 a
right-Bousfield localization at the groups the second morphism is an equivalence. By Remark 9.9, in order
to show that the Dwyer–Kan localization Lsep,ex induces an equivalence of mapping spaces it suffices
to show that Lsep,h,K (S(C)) is colocal for Wsep,ex. Since MapL K C∗Algnu

sep
(S(C),−) is left-exact, by (5-3)

it suffices to show that Lsep,h,K (S(C)) is colocal for Ŵsep,ex from (5-2). By Proposition 5.1 it suffices
to show that MapL K C∗Algnu

sep
(S(C),−) sends exact sequences to fiber sequences. In view of (4-12) this

follows from the following lemma since ℓ sends Serre fiber sequences to fiber sequences.

Lemma 9.10. If 0→ A→ B→ C → 0 is an exact sequence in C∗Algnu, then U s(B)→ U s(C) is a
Serre fibration with fiber U s(A).

Proof. This lemma is surely well-known in C∗-algebra theory. For completeness of the presentation we
add a proof.

It is clear from the definition (4-9) that U s(A) is the fiber of the map U s(B)→ U s(C). In order to
show that this map is a Serre fibration we will solve the lifting problem

X //

x 7→(0,x)
��

U s(B)

��

[0, 1]× X //

99

U s(C)

for all compact X . By (2-2) and (4-11) this lifting problem is equivalent to

{0} //

��

U s(C(X)⊗ B)

��

[0, 1] //

88

U s(C(X)⊗C)

It thus suffices to solve the path lifting problems

{0} u
//

��

U s(B)

��

[0, 1]
γ
//

γ̃
::

U s(C)

(9-4)

for all surjections B→ C .
We call a path σ : [0, 1] →U s(C) short if σ(0)= 1 and ∥σ(t)− 1∥< 1 for all t . For the moment we

assume that we can lift short paths to paths that start at 1 in U s(B).
Let γ : [0, 1] →U s(C) be a general path. Then we can find a natural number n such that the segment

γ
( i

n

)−1
γ|[i/n,(i+1)/n] is short for all i = 0, . . . , n− 1 (we implicitly reparametrize). We can now lift γ
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inductively. We are given the lift u of γ|[0,0]. Assume that have found a lift γ̃ of γ|[0,i/n]. We choose a
lift σ̃ of the short path γ−1

( i
n

)
γ|[i/n,(i+1)/n] and define an extension of γ̃ on

[ i
n ,

i+1
n

]
by γ̃

( i
n

)
σ̃ .

It remains to solve the lifting problem for short paths. We observe that the exponential map of (K⊗A)u

restricts to exp : i(K⊗A)sa
→U s(A)with the partial inverse log : {U ∈U s(A) | ∥U−1∥<1}→ i(K⊗A)sa.

Since the tensor product preserves surjections, the map C0((0, 1])⊗ K ⊗ B→ C((0, 1])⊗ K ⊗C and its
restriction to antiselfadjoint elements are surjective. We view log σ as an element in i(C0((0, 1])⊗K⊗C)sa

and can thus choose a lift
∧

log σ in i(C0((0, 1])⊗ K ⊗ B)sa. Then σ̃ := exp(
∧

log σ) : [0, 1] → U s(B) is
the desired lift of σ . We have thus shown Lemma 9.10. □

This finishes the proof of Lemma 9.5. □

Remark 9.11. Using that S(C) is a semiprojective C∗-algebra, we could deduce the path lifting in (9-4)
from [Blackadar 2016, Theorem 5.1]. □

Proof of Lemma 9.6. In view of Remark 2.5 it suffices to show that the functor U s
: C∗Algnu

→

CGroups(Spc) preserves small filtered colimits. Since the forgetful functor CGroups(Spc)→ Spc
preserves small filtered colimits and is conservative it suffices to show that the underlying Spc-valued
functor of U s preserves small filtered colimits.

Let I be a small filtered poset, (Bi )i∈I be an I -indexed family in C∗Algnu, and set B := colimi∈I Bi

in C∗Algnu. Then we must show that the canonical maps

πn(colim
i∈I

ℓU s(Bi ))→ πn(ℓU s(B))

are isomorphisms at all choices of base points and for all n in N. Since taking homotopy groups/sets on
Spc commute with filtered colimits it suffices to show that the canonical maps colimi∈I πn(U s(Bi ))→

πn(U s(B)) are isomorphisms. This will be an immediate consequence of Lemma 9.12 below applied to
the inclusions Sn

→ Dn+1 or ∅→ Sn .
For i , j in I with i ≤ j let φ j,i : (K ⊗ Bi )

u
→ (K ⊗ B j )

u and φi : (K ⊗ Bi )
u
→ (K ⊗ B)u denote the

connecting map and the canonical homomorphism.
Let X be any compact metrizable space and Y be a closed subspace. We fix i0 in I and assume that

we are given a square

Y
f
//

��

U s(Bi0)

φi0
��

X
g
// U s(B)

Lemma 9.12. There exists i in I with i ≥ i0 and h : X→U s(Bi ) such that h|Y = φi,i0 ◦ f and φi ◦ h is
homotopic to g rel Y .

Proof. For any C∗-algebra A we set Gs(A) := {a ∈GL1((K⊗A)u) |1−a ∈ K⊗A}. Then U s(A)⊆Gs(A)
and the polar decomposition provides a retraction W : Gs(A)→U s(A). There exists a c in (0, 1) such
that max{∥a∗a − 1∥, ∥aa∗ − 1∥} ≤ c implies ∥W (a)− a∥ ≤ 1

10 . We interpret a map X → Gs(A) as a
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point in Gs(C(X)⊗ A). We will write φi j and φi instead of idC(X)⊗φi j and idC(X)⊗φi . We use the
general fact that a filtered colimit in C∗Algnu is formed by taking the completion of the pre-C∗-algebra
given by the filtered colimit of underlying sets equipped with the induced algebraic structures; see (2-1).
We use that the (maximal) tensor product preserves filtered colimits, and that we can calculate norms in a
filtered colimit as limits of norms. The last statement says, e.g., that for h in C(X)⊗ K ⊗ Bi we have
∥φi (h)∥ = lim j∈I,i≤ j ∥φ j,i (h)∥.

We use Dugundji’s extension theorem in order to find an extension f0 of f in (C(X)⊗K ⊗ Bi0)
u such

that f0− 1 ∈ C(X)⊗ K ⊗ Bi0 . Then g0 := g−φu
i0
( f0) ∈ C0(X \ Y )⊗ K ⊗ B. We can now find i1 in I

such that there exists r in C0(X \ Y )⊗ K ⊗ Bi1 with ∥φi1(r)− g0∥ ≤
c

100 . We set f1 := φ
u
i1,i0
( f0)+ r .

Then ∥φi1( f1)− g∥ ≤ c
100 , and hence max{∥φi1( f1 f ∗1 )− 1∥, ∥φi1( f ∗1 f1)− 1∥} ≤ c

10 . We can then find
i in I with i ≥ i1 such that max{∥φi,i1( f1)φi,i1( f ∗1 ) − 1∥, ∥φi,i1( f ∗1 )φi,i1( f1) − 1∥} ≤ c

3 . We define
h := W (φi,i1( f1)) in U s(C(X)⊗ Bi ). Then h|Y = φi,i0( f ) and ∥φi (h)− g∥ ≤ 1

2 . We get a homotopy
(W ((1−s)φi0(h)+sg))s∈[0,1] from φi (h) to g rel Y in U s(B). This finishes the proof of Lemma 9.12. □

Remark 9.13. Using that S(C) is semiprojective, we could deduce Lemma 9.12 directly from the proof of
[Bunke and Duenzinger 2024, Proposition 3.8], in particular from the existence of the lift in equation (3.6)
of the same reference. □

We have now finished the proof of Lemma 9.6. □

The reason for using E-theory in order to construct the K -theory functor for C∗-algebras was that then
exactness of the latter is true by construction. We have a canonical transformation

�∞−1KK(C,−)→�∞−1E(C,−)≃�∞−1K (−).

The arguments above work equally well for KK-theory (just replace ex by se) and show that the canonical
transformation U s(−)→�∞−1KK(C,−) is an equivalence. Using Bott periodicity we can then conclude
an equivalence of functors

KK(C,−) ≃−→ K (−) : C∗Algnu
→ Sp. (9-5)

As a consequence, the stable∞-category KK also naturally acquires a KU-linear structure. We conclude:

Corollary 9.14. The K -theory functor for C∗-algebras K : C∗Algnu
→Mod(KU) has a lax symmetric

monoidal refinement for the minimal tensor product on C∗Algnu.

The following is true for both tensor products on KK. We have a limit-preserving symmetric monoidal
functor

K := KK(C,−) : KK→Mod(KU)

such that K ≃ K ◦ kk. Since kk(C) is compact in KK this functor also preserves colimits. It is the
right-adjoint of a symmetric monoidal right-Bousfield localization

B :Mod(KU)⇆ KK : K. (9-6)

Definition 9.15. The essential image of the left-adjoint B in (9-6) is called the UCT class.
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Equivalently, the UCT-class is the localizing subcategory of KK generated by the tensor unit kk(C).

Corollary 9.16. If B is in the UCT-class, then we have the following assertions:

(1) The natural transformation −⊗max B→−⊗min B of endofunctors on KK is an equivalence.

(2) The transformation KK(B,−)→ E(B,−) of functors C∗Algnu
→Mod(KU) is an equivalence.

(3) (UCT): We have an equivalence KK(B,−) ≃ mapMod(KU)(K(B),K(−)) of functors from KK to
Mod(KU).

(4) (Künneth formula): We have an equivalence K(−)⊗KU K(B)≃ K(−⊗ B) of functors from KK to
Mod(KU).

Proof. In all cases the equivalence is induced by an obvious natural transformation. One argues that the
full subcategory of objects B in KK for which is transformation is an equivalence is localizing, and that
it contains kk(C). □

Remark 9.17. The kk-functor from Definition 8.6(1) is not compatible with filtered colimits on the level
of C∗-algebras. It does not even preserve countable sums. The reason is that the functor y :KKsep→KK
does not preserve countable sums. One could improve on this point by observing that kksep preserves
countable sums Corollary 12.3(2), and then working with the ℵ1-Ind-completion instead of the Ind-
completion in Definition 8.1. We refer to [Bunke and Duenzinger 2024, Section 3.4] where the details of
such a construction have been worked out in the case of E-theory; see also [Bunke et al. 2021, Remark 3.4]

In the context of the present paper, in order to discuss the relation of the UCT-class with the classical
definition, it is better to consider the separable version UCTsep defined as a smallest countably cocomplete
stable∞-category of KKsep (which is known to be countably cocomplete by Corollary 12.3(1)) containing
the tensor unit; see also [Bunke et al. 2023, Section 5.5]. It is a famous question whether for every nuclear
separable algebra A we have kksep(A) ∈ UCTsep.

The analogues of the statements of Corollary 9.16 in the separable case hold true. □

Remark 9.18. In Corollary 9.16(1) we can replace the condition that B is in the UCT-class by the
condition that B is represented by a separable and nuclear C∗-algebra. Indeed, by definition of nuclearity,
the transformation −⊗max B→⊗min B of endofunctors of C∗Algnu

sep is an isomorphism.
Classically it is known that for separable algebras the map from KK- to E-theory is an isomorphism if

the first argument is a nuclear algebra [Higson 1990a, Theorem 3.5]. By stability and Theorem 13.16 we
can conclude that in Corollary 9.16(2) we can replace the UCT-condition on B by the condition that B is
represented by a separable and nuclear C∗-algebra. □

Remark 9.19. In this remark we justify Definition 9.2. By a similar argument as in the proof of Lemma 9.6
we get a weak equivalence

colim
n∈N

ℓU (n)∼= U s(C)

in Groups(Spc). The left-hand side is �∞−1 of one of the classical versions of the KU-spectrum.
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We continue the justification of Definition 9.2 by calculating the ring π∗KU. Since the homotopy
groups of U s(C)≃�∞−1K (C) are two-periodic, so are the homotopy groups on the left-hand side. We
thus deduce the classical Bott periodicity theorem. For an explicit calculation we use, from classical
topology, the additional information

πi (colim
n∈N

U (n))∼=


∗, i = 0,
Z, i = 1,
0, i = 2,

in order to conclude that

πi�
∞K (C)∼=

{
Z, i ∈ 2N,

0, i ∈ 2N+ 1.
(9-7)

We know further that π∗KU is a ring and that the Bott periodicity is implemented by the multiplication
with the invertible element b in π−2KU ≃ π0KK(S2(C),C) from (8-5). Consequently, b−1 must be a
generator of π2KU and we get a ring isomorphism

Z[b, b−1
]
∼=−→ π∗KU. □

10. K -theory and the group completion of the space of projections

For a unital C∗-algebra A the abelian group K0(A) is classically defined as the Grothendieck group of
the monoid of unitary equivalence classes of projections in K ⊗ A, where the unitaries belong to the
multiplier algebra U (K ⊗ A). Thereby the monoid operation is induced by the block sum. One then
observes that the relation of unitary equivalence between projections is equivalent to homotopy. Using
the notation from Example 4.8 we thus get an isomorphism

π0(Projs(A))group ∼= K0(A). (10-1)

We will show a space-level refinement of this isomorphism. Unfolding definitions we obtain a natural map

Projs(A)→�∞K (A)

of commutative monoids in spaces. Then Corollary 10.8 asserts that this map presents its target as a
group completion. Note that the unitality assumption on A is crucial for this statement; see Example 10.1.
The modification for general algebras is formulated as Theorem 10.7. Though it looks like an obvious
K -theoretic statement its detailed verification is surprisingly long.

Example 10.1. Let X be a locally compact Hausdorff space which is connected and not compact. Then
we have Projs(C0(X)) = {0}. Indeed, a projection p in Projs(C(X)) can be interpreted as a function
p : X→ Projs(C). The function x 7→ ∥p(x)∥ is continuous and takes values in {0, 1}. Since it vanishes
at infinity, the assumptions on X imply that it vanishes identically.

We know from Remark 9.19 that K0(C0(R
2))∼= Z, and this contradicts (10-1) whose left-hand side

would be the zero group. □
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The following two statements enable us to study the space of projections within the homotopy theory
developed in the present notes. They are the analogues of Lemmas 9.10 and 9.6. Recall from Example 4.8
that Proj(A) := Hom(C, A) denotes the topological space of projections in A and that Proj(A) := ℓProj(A)
is the associated space.

Proposition 10.2. For every surjective map B → C of C∗-algebras the map Proj(B)→ Proj(C) of
topological spaces is a Serre fibration.

Proposition 10.3. The functor Proj : C∗Algnu
→ Spc preserves small filtered colimits.

We defer the technical proofs of these statements to the end of the section.

Proposition 10.4. The functor Projs : C∗Algnu
→ CMon(Spc) is homotopy invariant, stable, Schochet-

exact, and s-finitary. It sends cartesian squares

A //

��

B

f
��

C // D

in C∗Algnu with the property that f is a surjection to cartesian squares.

Proof. The functor Projs(−)
(4-3)
≃ MapL K C∗Algnu

h
(C,−) is homotopy invariant and stable by definition. It

furthermore sends Schochet fibrant cartesian squares to cartesian squares since Lh,K does so.
Since the functor K ⊗− preserves filtered colimits, it follows from Proposition 10.3 that Projs(−)≃

Proj(K ⊗−) preserves filtered colimits and is in particular s-finitary.
Since

K ⊗ A //

��

K ⊗ B

K⊗ f
��

K ⊗C // K ⊗ D

is again cartesian and K ⊗ f is still surjective, the functor Proj := Hom(C,−) sends this square to a
cartesian square in Top which is in addition Serre fibrant by Proposition 10.2. We now apply ℓ and get
the desired cartesian square

Projs(A) //

��

Projs(B)

Projs( f )
��

Projs(C) // Projs(D) □

The group completion functor (−)group is defined as the left-adjoint of a Bousfield localization

(−)group
: CMon(Spc)⇆ CGroups(Spc) : incl. (10-2)

Recall that to any C∗-algebra A we can functorially associate the split unitalization sequence

0→ A→ Au
→ C→ 0. (10-3)
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Definition 10.5. We define the functor

∼Projs : C∗Algnu
→ CGroups(Spc), A 7→ Fib(Projs(Au)group

→ Projs(C)group). (10-4)

Remark 10.6. Observe that in the definition of
∼Projs we take the group completion first and then the fiber.

We cannot reverse the order since the group completion does not preserve fiber sequences in general. □

We define the natural transformation

eh : Projs(−)≃ MapL K C∗Algnu
h,K
(C,−)

�2
ex◦Lex
−−−−→ MapE(C,−)≃�

∞K (−) (10-5)

of functors from C∗Algnu to CMon(Spc). Since �∞K takes values in groups, by the universal property
of the group completion we get the dotted arrow in the commutative diagram of functors C∗Algnu

→

CMon(Spc)

Projs

%%

eh
// �∞K

Projs,group

êh

99

where the down-right arrow is the counit of the adjunction (10-2).
We next construct a natural transformation

ẽh :
∼Projs→�∞K . (10-6)

Applying the exact functor �∞K to the split exact unitalization sequence (10-3) we get the split fiber
sequence

�∞K (A)→�∞K (Au)→�∞K (C)

in CGroups(Spc). We now form the diagram of vertical fiber sequences of functors from C∗Algnu to
CGroups(Spc)

∼Projs(−)

��

ẽh
// �∞K (−)

��

Proj((−)u)group êh
//

��

�∞K ((−)u)

��

Proj(C)group êh
// �∞K (C)

(10-7)

defining ẽh as the natural extension of the lower square to a map of fibers.
The following is the main theorem of the present section.

Theorem 10.7. The natural transformation ẽh :
∼Projs→�∞K is an equivalence.

Before we start with the proof we consider the specialization to unital algebras.
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Corollary 10.8. For every unital C∗-algebra A the map

êh,A : Projs(A)→�∞K (A) (10-8)

presents its target as a group completion.

Proof. Since the composition

Projs(A)group
→ Projs(Au)group

→ Projs(C)group

vanishes, by the universal property of the fiber in (10-4) we get a canonical morphism

i A : Projs(A)group
→
∼Projs(A). (10-9)

If A is unital, then the identity of A canonically extends to a homomorphism Au
→ A. The composition

∼Projs(A) → Projs(Au)group
→ Projs(A)group provides an inverse of i A. The map in (10-8) is then

equivalent to

Projs(A)→ Projs(A)group i A
≃
∼Projs(A)

ẽh,A
≃ �∞K (A),

where the last equivalence is given by Theorem 10.7. This shows Corollary 10.8. □

All of the above has a version for separable algebras. The following is the separable version of
Theorem 10.7.

Proposition 10.9. The natural transformation ẽsep,h :
∼Projssep→�∞Ksep is an equivalence.

Proof of Theorem 10.7 assuming Proposition 10.9. We claim that
∼Projs is s-finitary. Since �∞K is also

s-finitary we then obtain the equivalence in Theorem 10.7 as a left-Kan extension of the equivalence in
Proposition 10.9 along the inclusion C∗Algnu

sep→ C∗Algnu.
In order to see the claim we note that (−)group in (10-2) is left-adjoint and preserves all colimits. By

Proposition 10.4 the functor Projs,group is also s-finitary. Finally we use that the fiber of a filtered colimit
of maps in CGroups(Spc) is the filtered colimit of the fibers. □

The following result prepares the proof of Proposition 10.9.

Proposition 10.10. The functor
∼Projs : C∗Algnu

→ CGroups(Spc) is homotopy invariant, stable and
exact.

Proof. Homotopy invariance and stability are obvious from the definition. Exactness is much deeper. It
cannot be concluded simply from the exactness properties of Projs stated in Proposition 10.4 since the
group completion functor does not preserve fiber sequences in general. The basic insight in our special
case is that for unital algebras A the group completion of Projs(A) can be expressed by a specific filtered
colimit.

We first recall some generalities on group completions following [Nikolaus 2017; Randal-Williams
2013]. We consider a commutative monoid X in CMon(Spc). For an element s in X we can form

Xs := colim(X +s
−−→ X +s

−−→ X +s
−−→ · · · )
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in X -modules. For any finite ordered set {s1, . . . , sn} of elements in X we define inductively X -modules

X{s1,...,sn} := (X{s1,...,sn−1})sn .

We choose a well ordering on π0(X) and a representative s in X for any component. We then define the
space

X∞ := colim
S⊆π0(X)

X S. (10-10)

Proposition 10.11 [Nikolaus 2017, Proposition 6]. If the fundamental group of every component of X∞
is abelian, then X→ X∞ is equivalent to the underlying map of X→ Xgroup.

An element t in π0(X) is called cofinal if for every s in π0(X) there exists s ′ in π0(X) and n in N such
that s+ s ′ = nt . One easily checks that if t is cofinal, then the canonical map X t→ X∞ is an equivalence.
In particular if the fundamental groups of all components of X t are abelian, then X→ X t is equivalent to
the underlying map of the group completion X→ Xgroup.

The following results enable us to apply Proposition 10.11 to our problem. For C∗-algebras A and B
we have the commutative monoid MapL K C∗Algnu

h
(A, B) and can form the space MapL K C∗Algnu

h
(A, B)∞ as

in (10-10).

Lemma 10.12. If π0MapL K C∗Algnu
h
(A, B) contains a cofinal element, then the fundamental groups of the

components of MapL K C∗Algnu
h
(A, B)∞ are abelian.

Proof. In the following we use that ℓHom(A, K ⊗ B)≃ MapL K C∗Algnu
h
(A, B). Let [t] be a cofinal element

in π0MapL K C∗Algnu
h
(A, B) represented by a map t in Hom(A, K ⊗ B). Then

MapL K C∗Algnu
h
(A, B)∞ ≃ colim(MapL K C∗Algnu

h
(A, B) [t]+−−−−→ MapL K C∗Algnu

h
(A, B) [t]+−−−−→ · · · ).

We consider a component x in π0MapL K C∗Algnu
h
(A, B)∞. Then there exists k in N and f in the topological

space Hom(A, K ⊗ B) contributing to MapL K C∗Algnu
h
(A, B) in the k-th stage of the N-indexed diagram

above which represents x .
We now consider elements [γ ] and [σ ] in π1(MapL K C∗Algnu

h
(A, B)∞, x). We must show that [γ ]◦[σ ] =

[σ ] ◦ [γ ]. After going further in the diagram we can assume that [γ ] and [σ ] are represented by loops γ
and σ at f in Hom(A, K ⊗ B), respectively.

By cofinality of [t] there is a map f ′ and an integer n such that [ f ]+[ f ′]=n[t] in π0MapL K C∗Algnu
h
(A, B).

The + sign in the following denotes choices of block sums. We know that γ + nt and σ + nt viewed as
points in Hom(A, K ⊗ B) contributing to MapL K C∗Algnu

h
(A, B) in the (k+n)-th stage of the diagram also

represent [γ ] and [σ ]. We now have homotopies γ + nt ∼ γ + f + f ′ and σ + nt ∼ σ + f + f ′. It thus
suffices to show that (γ + f ) ♯ (σ + f )∼ (σ + f ) ♯ (γ + f ), where ♯ denotes concatenation.

If we conjugate σ + f with a two-dimensional rotation of blocks, we get a homotopy between
(γ + f ) ♯ (σ + f ) and (γ + f ) ♯ ( f + σ). Now (γ + f ) ♯ ( f + σ) is homotopic to γ + σ . Using the
commutativity of + up to homotopy we get a homotopy γ + σ ∼ σ + γ . By reversing the first part we
finally get a homotopy from γ + σ to (σ + f ) ♯ (γ + f ). □
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Corollary 10.13. If π0MapL K C∗Algnu
h
(A, B) contains a cofinal element, then the map of spaces

MapL K C∗Algnu
h
(A, B)→ MapL K C∗Algnu

h
(A, B)∞

is equivalent to the underlying map of the group completion

MapL K C∗Algnu
h
(A, B)→ MapL K C∗Algnu

h
(A, B)group.

Let now A be a unital C∗-algebra with unit 1A. In the following we show that we can apply
Corollary 10.13 to Projs(A)≃ MapL K C∗Algnu

h
(C, A) by exhibiting a cofinal component. Let e be a minimal

projection in K . Then we define tA := [e⊗ 1A] in π0Projs(A). The following lemma is well-known.

Lemma 10.14. The element tA is cofinal.

Proof. We consider the separable Hilbert space H := L2(N) and let K := K (H). For n in N we let
en in K (H) denote the projection onto the n-th basis vector of H . We further consider the projection
Pn =

∑n
i=0 en .

We consider a component [p] in π0Projs(A) with p in Proj(K ⊗ A). Then there exists n in N such that
∥p−(Pn⊗1A)p(Pn⊗1A)∥<

1
2 . Using function calculus we get a homotopy between p and a projection p′

with p′ = (Pn ⊗ 1A)p′(Pn ⊗ 1A). We then have [p] = [p′] in π0Projs(A) and with q ′ := (Pn ⊗ 1A)− p′

we get [p′] + [q ′] = [Pn ⊗ 1A] = ntA. □

To any unital C∗-algebra A we can functorially (for unital morphisms) associate the N-indexed diagram

F̂(A) : Projs(A) −+tA
−−−→ Projs(A) −+tA

−−−→ Projs(A) −+tA
−−−→ Projs(A) −+tA

−−−→ · · ·

of spaces. We define the functor

F := colim
N

F̂ : C∗Alg→ Spc. (10-11)

We conclude that the natural transformation Projs(−)→ F(−) of Spc-valued functors is equivalent to
the transformation Projs→ Projs,group of CMon(Spc)-valued functors after forgetting the commutative
monoid structure.

We can now finally show the asserted exactness of the functor
∼Projs . We must show that this functor

sends an exact sequence
0→ A i

−→ B p
−→ C→ 0

of C∗-algebras to a fiber sequence in CGroups(Spc). We first form the square

Au π
//

iu

��

C

j
��

Bu pu
// Cu

(10-12)

in C∗Alg/C, where π is induced by the canonical projection of the unitalization sequence (10-3), the
homomorphism j :C→ Cu is induced by the identity of Cu , and we do not write the structure maps to C
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given by the projections of the unitalization sequences of A, B and C , respectively, and the identity of C.
This square is cartesian and pu is surjective. Applying the functor Projs we get a diagram in Spc/Projs(C),
and by Proposition 10.4 a cartesian square

Projs(Au)
Proj j (π)

//

Projs(iu)

��

Projs(C)

Projs( j)
��

Projs(Bu)
Projs(pu)

// Projs(Cu)

(10-13)

We now apply the functor F from (10-11) to the square (10-12). This amounts to forming a filtered
colimit of a diagram of squares of the form (10-13). Since a filtered colimit of cartesian squares in Spc
is again a cartesian square and since the forgetful functor CGroups(Spc)→ Spc detects limits we can
conclude that

Projs,group(Au)
Proj j (π)

//

Projs,group(iu)

��

Projs,group(C)

Projs,group( j)
��

Projs,group(Bu)
Projs,group(pu)

// Projs,group(Cu)

is a cartesian square in CGroups(Spc). Together with its unwritten structure maps it is also a diagram in
CGroups(Spc)/Projs,group(C). We finally take the fiber of the structure maps to Projs,group(C) and get the
desired cartesian square (or fiber sequence)

∼Projs(A) //

∼Projs(i)
��

0

��
∼Projs(B)

∼Projs(p)
//
∼Projs(C)

This finishes the proof of Proposition 10.10. □

Proof of Proposition 10.9. In order to define an inverse transformation�∞K→
∼Projs we plan to apply the

Yoneda lemma for Esep. We therefore need a factorization of
∼Projs through a functor Projs defined on Esep.

Since CGroups(Spc) is left-exact and additive, the universal property (7-9) of esep and Proposition 10.10
together provide the dotted arrow in

C∗Algnu
sep

∼Projssep
//

esep

$$

CGroups(Spc)

Esep

Proj

88

(10-14)

Furthermore, using Definition 9.3, the pull-back along esep induces an equivalence

e∗sep : Nat(Proj(−), MapEsep
(C,−)) ≃−→ Nat(

∼Projssep(−),�
∞Ksep(−)). (10-15)
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We define a point a∗ in Proj(C) as the image of idC under

MapL K C∗Algnu
sep,h
(C,C)≃ Projssep(C)→ Projssep(C)

group iC,(10-9)
−−−−−→
∼Projssep(C)

(10-14)
≃ Proj(C). (10-16)

Via the Yoneda lemma this point determines a natural transformation

ã : MapEsep
(C,−)→ Proj(−)

of functors from Esep to CGroups(Spc) characterized by ãC(esep(idC))≃ a∗. Its pull-back along esep is
a natural transformation

a := e∗sepã :�∞Ksep→
∼Projsep

of functors from C∗Algnu
sep to CGroups(Spc). We have already a natural transformation

b := ẽsep,h :
∼Projsep→�∞Ksep

defined by means of the diagram (10-7). In view of (10-15) there is an essentially unique natural
transformation

b̃ : Proj→ MapEsep
(C,−)

such that e∗sepb̃ ≃ b.
The following proposition implies Proposition 10.9 asserting that b is an equivalence.

Proposition 10.15. The natural transformations a and b are mutually inverse to each other.

Proof. The assertion follows from the following two lemmas.

Lemma 10.16. We have b ◦ a ≃ id�∞Ksep .

Proof. It suffices to show

b̃ ◦ ã : MapEsep
(C,−)→ MapEsep

(C,−)

is equivalent to the identity. Via the Yoneda lemma this map is determined by the point b̃C(a∗) in
MapEsep

(C,C). We therefore must show that b̃C(a∗)≃ esep(idC). In order to verify this equivalence we
consider the diagram

Projssep(C)
//

Projs( j)

idC 7→ã∗
++

Projssep(C)
group iC

// Projssep(C)

��

b̃C
// MapEsep

(C,C)

j∗
��

Projssep(C
u)group êsep,h,C

//

��

MapEsep
(C,Cu)

��

Projsep(C)
group êsep,h,C

// MapEsep
(C,C)

obtained by merging (10-7) with (10-16), where j : C→ Cu is the inclusion.
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The two upper-left-horizontal arrows send idC to a∗. We let ã∗ denote its image in Projssep(C
u)group.

Since êsep,h,C(ã∗)≃ j∗(esep(idC)) and j∗ is a monomorphism we can conclude that b̃C(a∗)≃ esep(idC). □

Lemma 10.17. We have a ◦ b ≃ id∼Projssep
.

Proof. It suffices to show for every A in C∗Algnu
sep that

π0
∼Projsep(A)

bA
−−→ π0�

∞Ksep(A)
aA
−−→ π0
∼Projsep(A)

is an isomorphism. In fact, in order to deduce the isomorphism for πi with i > 0 we apply this result for
A replaced by Si (A) and use the left-exactness of the functors and the fact that they take values in groups.

For the calculation in π0 introduce the simplified notation (borrowed from [Blackadar 1998, 5.3])

K0 := π0�
∞Ksep, K̃0 := π0

∼Projssep

and

V00 := π0Projssep, K̃00 := π0Projs,group
sep .

We form the commutative diagram

K̃0(A)
bA

//

��

K0(A)

��

aA
// K̃0(A)

��

V00(Au) //

(3)
��

K̃00(Au)

��

êh,sep
// K0(Au)

aAu
// K̃0(Au)

(2)
��

V00((Au
⊗ K )u)

(1)
// K̃00((Au

⊗ K )u) K̃00((Au
⊗ K )u)

The vertical maps are inclusions of summands and all cells except the lower right commute obviously.
We will show that this cell also commutes. We can then conclude that

aA ◦ bA = idK̃0(A).

The transformation V00→ K̃00 is the algebraic group completion. In view of its universal property it
suffices to show that the composition of the two lower cells commutes.

We consider a point [p] in V00(Au) given by a map p :C→ Au
⊗K . We first calculate its image krd under

the right-down composition. The horizontal map sends it to the point in K̃0(Au) given by aAu (esep(p))≃
K̃0(p)(a∗). The element krd is the image of K̃0(p)(a∗) in K̃00((Au

⊗K )u) under the map (2). As seen in
the proof of Lemma 10.16 the map K̃0(C)→ K̃00(C

u) sends a∗ to the image of iC : C→ Cu in V00(C
u)

under the group completion map V00(C
u)→ K̃00(C

u). The image krd of K̃0(p)(a∗) in K̃00((Au
⊗ K )u)

is then the image of pu
◦ iC : C→ Cu

→ (Au
⊗ K )u in V00((Au

⊗ K )u) under the map (1).
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We now calculate the image kdr of p under the down-right composition. The image of p under (3) is
i Au⊗K ◦ p in V00((Au

⊗ K )u). We now use that the following square commutes:

C
iC

//

p
��

Cu

pu

��

Au
⊗ K

i Au⊗K
// (Au
⊗ K )u

Consequently we have i Au⊗K ◦ p ≃ pu
◦ iC in V00((Au

⊗ K )u). This implies that krd ≃ kdr . □

This finishes the proof of Proposition 10.15. □

We finally have completed the proof of Proposition 10.9. □

We finish this section with the proofs of the two technical results Propositions 10.2 and 10.3.

Proof of Proposition 10.2. The statement of Proposition 10.2 is surely a known fact in C∗-algebra theory.
But for the sake of completeness we will provide an argument.

We start with two facts taken from [Blackadar 1998, Section 4.3]. We consider a C∗-algebra B and
a projection p in B. Note that projections are always assumed to be selfadjoint. Assume that b is an
invertible element in the multiplier algebra M(B) and b = ur is its polar decomposition.

Lemma 10.18. If bpb−1 is a projection, then bpb−1
= upu∗.

Proof. By assumption q := bpb−1 is a projection, so it is in particular selfadjoint. Writing q = ur pr−1u∗

we see that u∗qu = r pr−1 is selfadjoint, too. This implies r pr−1
= r−1 pr . We multiply with r on the

left and right and get the equality r2 p = pr2. We now use that r is positive and therefore r =
√

r2. We
conclude that also r p = pr holds, and this implies q = upu∗. □

In the following we let B(b, r) denote the open r -ball at b in B.

Lemma 10.19. There exists a constant c in
(
0, 1

2

)
and a map

wp : Proj(B)∩ B(p, c)→U (Bu)∩ B(1, 1)

such that

wp(q)pwp(q)−1
= q

for all q in Proj(B)∩ B(p, c).

Proof. We define vp(q) := 1
2((2q − 1)(2p − 1)+ 1) and note that vp(q) ∈ Bu . If ∥p − q∥ < 1

2 , then
∥vp(q) − 1∥ < 1 and vp(q) is invertible. Furthermore we have vp(p) = 1 and vp(q)pv−1

p (q) = q.
We now form the polar decomposition vp(q) = wp(q)rp(q) in Bu . By Lemma 10.18 we then have
wp(q)pwp(q)−1

= q. By continuity of wp and wp(p)= 1 we can find a constant c in (0, 1) such that
wp(B(p, c))⊆ B(1, 1). □
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We consider a surjection B→ C of C∗-algebras. We must show that the induced map Proj(B)→
Proj(C) is a Serre fibration. To this end we will solve the lifting problem

X //

x 7→(0,x)
��

Proj(B)

��

[0, 1]× X //

88

Proj(C)

for all compact spaces X . This problem is equivalent to the lifting problem

{0} //

��

Proj(C(X)⊗ B)

��

[0, 1] //

77

Proj(C(X)⊗C)

We must therefore solve the path lifting problem

{0} //

��

Proj(B)

��

[0, 1]
γ
//

γ̃
::

Proj(C)

for all surjections B→ C .
A path σ : [0, 1]→ Proj(C) is called short if ∥σ(t)−σ(0)∥< c and ∥wσ(0)(σ (t))−1∥< 1 for all t in
[0, 1] (with c and w−(−) from Lemma 10.19) . For the moment we assume that we have a solution for
the lifting problem

{0}
σ̃ (0)
//

��

Proj(B)

��

[0, 1] σ
//

σ̃
::

Proj(C)

(10-17)

for all short paths σ .
By continuity and compactness of the interval there exists n in N such that γ|[i/n,(i+1)/n] is short for all

i = 0, . . . , n− 1. We then solve the lifting problem inductively by solving the lifting problem for the
short paths γ|[i/n,(i+1)/n] with initial γ̃

( i
n

)
.

We finally solve the lifting problem (10-17) for short paths σ . We set u(t) := wσ(0)(σ (t)). Then
u(0)= 1, σ(t)= u(t)σ (0)u(t)∗, and ∥u(t)−1∥< 1. We get a path log u : [0, 1]→ iC sa with log u(0)= 0.
We interpret log u as an element i(C0((0, 1])⊗C)sa. Since C0((0, 1])⊗ B→C0((0, 1])⊗C is surjective
we can find a preimage b in i(C0((0, 1])⊗ B)sa. We then set v := exp(b) : [0, 1] → U (Bu). Then
σ̃ (t) := v(t)σ̃ (0)v(t)∗ is the desired lift of σ with initial σ̃ (0) in (10-17). □

Remark 10.20. Using that C is a semiprojective C∗-algebra, we could deduce the path lifting in (10-17)
from [Blackadar 2016, Theorem 5.1]. □
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Proof of Proposition 10.3. Similarly as in the proof of Lemma 9.6 we reduce the assertion to a consideration
of homotopy groups and eventually to the following lemma.

We consider a small filtered family (Bi )i∈I of C∗-algebras indexed by a poset and set B := colimi∈I Bi .
For i, j in I , i ≤ j we let φ j,i : Bi → B j be the structure map and φi : Bi → B be the canonical
homomorphism.

Let X be a compact metrizable space and Y be a closed subspace. Let i0 be in I and assume that we
are given a square

Y
f
//

��

Proj(Bi0)

φi0
��

X
g
// Proj(B)

Lemma 10.21. There exists i in I with i ≥ i0 and h : X→ Proj(Bi ) such that h|Y = φi,i0 ◦ f and φi ◦ h is
homotopic to g rel Y .

Proof. Let A be any C∗-algebra. For a selfadjoint element q in A we let σ(q) denote the spectrum of q .
We fix a number c in

(
0, 1

2

)
and consider the subspace

P(A) :=
{
q ∈ Asa

| d
(
σ(q), 1

2

)
> c

}
of selfadjoints in A with a spectral gap at 1

2 . We observe that it contains the space of projections Proj(A).
We fix a function χ ∈ C(R) with χ|(−∞,1/2−c] ≡ 0 and χ|[1/2+c,∞) ≡ 1. The map q 7→ χ(q) defined using
the function calculus is a retraction W : P(A)→ Proj(A). By continuity we can choose a constant c1 in
(0,∞) such that ∥q2

− q∥ ≤ c1 implies ∥W (q)− q∥ ≤ c.
We interpret f as a function Y → Bsa

i0
. Using Dugundji’s extension theorem we find an extension

h0 : X→ Bsa
i0

.
We then have g−φi0(h0) ∈ (C0(X \ Y )⊗ B)sa. We can thus find i1 in I with i1 ≥ i0 such that there

exists r in (C0(X \ Y )⊗ Bi1)
sa with ∥g − φi0(h0)− φi1(r)∥ ≤ c1/20. We set h1 := φi1,i0(h0)+ r in

(C(X)⊗ Bi1)
sa. Since g is a projection, we have ∥φi1(h1)

2
−φi1(h1)∥ ≤ c1/2. We now find i in I with

i ≥ i1 such that such that ∥h̃2
− h̃∥ ≤ c1, where h̃ := φi,i1(h1).

We finally define h := W (h̃) in Projs(C(X) ⊗ Bi ). By construction we have h|Y = φi,i0( f ) and
∥φi (h)− g∥ ≤ c. Then (W ((1− s)φi (h)+ sg))s∈[0,1] is a homotopy from φi (h) to g rel Y . This finishes
the proof of Lemma 10.21. □

Remark 10.22. Using that C is semiprojective we could deduce Lemma 10.21 directly from the proof of
[Bunke and Duenzinger 2024, Proposition 3.8], in particular from the existence of the lift in equation (3.6)
in the same reference. □

Hence we have completed the proof of Proposition 10.3. □
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11. The q-construction

The q-construction introduced by Cuntz [1987] is an effective tool to capture Kasparov modules in
terms of homomorphisms; see Remark 11.12. Using the q-construction one can express the classical
KK-theory groups in terms of homotopy classes of maps. The crucial formula states that for two separable
C∗-algebras A and B we have

π0Hom(q A, K ⊗ B)∼= KKclass
sep,0(A, B). (11-1)

In [Cuntz 1987, Definition 1.5] this isomorphism is actually the definition of the right-hand side. From
this formula the composition

KKclass
sep,0(A, B)⊗KKclass

sep,0(B,C)→ KKclass
sep,0(A,C)

is not obvious. However, one can show that the left-hand side in (11-1) is naturally isomorphic to
π0Hom(K ⊗ q A, K ⊗ q B) and this makes the composition obvious.

The final goal of the present section and Section 12 together is to give a selfcontained proof that, for
all separable C∗-algebras A and B,

π0Hom(q A, K ⊗ B)∼= π0KKsep(A, B). (11-2)

Remark 11.1. The comparison of (11-1) and (11-2) provides a proof of the KK-theory version of
Theorem 13.16 below which does not depend on the knowledge of the universal property of kkclass

sep . □

We will start this section with recalling the q-construction. We then continue to study those of its
homotopical properties that are easily accessible without going deeper into C∗-algebra theory. We shall
see that inverting the images in L K C∗Algnu

h of the canonical morphisms ιA : q A→ A for all separable
C∗-algebras produces a Dwyer–Kan localization of

Lq : L K C∗Algnu
h → L K C∗Algnu

h,q

which is equivalent to composition of the localizations Lsplt from Definition 5.6 (enforcing split exactness)
and the right-Bousfield localization at the subcategory of group objects; see Propositions 11.8 and 11.9.

All of the above has a separable version. At the end of the present section we go deeper into C∗-algebra
theory. In Theorem 11.13 we reproduce the proof of [Cuntz 1987, Theorem 1.6]. As a consequence, for
separable C∗-algebras A and B we can simplify the formula for the mapping spaces in L K C∗Algnu

sep,h,q to

ℓHom(q A, K ⊗ B)≃ MapL K C∗Algnu
sep,h,q

(A, B), (11-3)

which is already very close to (11-2). The final step towards this formula, discussed in Section 12, is
to show that the canonical functor L K C∗Algnu

sep,h,q → KKsep is an equivalence.
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We now start with the description of Cuntz’ q-construction. To every C∗-algebra A we can functorially
associate a diagram

0 // q A i
// A ∗ A d

// A // 0

0 // q A

σ̄

OO

ιA

##

i
// A ∗ A

p0

��

σ

OO

d
// A

ιi

��
// 0

A

(11-4)

where the horizontal sequences are exact. Recall that the free product A ∗ A together with the two
canonical maps ιi : A→ A∗ A, i = 0, 1 represents the coproduct in C∗Algnu. The map d (often called the
fold map) is determined via the universal property of the free product by d ◦ ιi = idA for i = 0, 1. The
C∗-algebra q A is defined as the kernel of d . The two maps ιi determine splits of the exact sequence. The
maps pi : A∗ A→ A are determined by the conditions pi ◦ ιi = idA and pi ◦ ι1−i = 0. We can then define
the map ιA := p0 ◦ i : q A→ A. The flip of the two factors of the free product defines an automorphism
σ : A ∗ A→ A ∗ A. Since d ◦σ = d it restricts to an involutive automorphism σ̄ : q A→ q A. In principle
we should add an index A also to the notation for the maps d, i, σ, . . . as they are all components of
natural transformations but we refrain from doing so in order to shorten the notation.

Since q A is an ideal in A ∗ A we have a canonical map m : A ∗ A→ M(q A), where M(q A) denotes
the multiplier algebra of q A. We define mi := m ◦ ιi .

Remark 11.2. Let B be any C∗-algebra. In order to give a map f : q A→ B we could give a map
f̂ : A∗ A→ M(B) and set f := f̂ ◦ i . We must ensure that this composition takes values in the ideal B of
M(B). To this end we consider the components f̂i := f̂ ◦ ιi of f̂ . We must require that f̂1(a)− f̂0(a) ∈ B
for all a in A. Under this condition f is a well-defined homomorphism with values in B. If f̂0 = f̂1, then
it follows that f = 0. We will call f̂ the associated homomorphism.

This construction can be reversed. Assume that f :q A→ B is a homomorphism. We define B ′ := f (q A)
and the map f̂ : A ∗ A→ M(q A) M( f )

−−−→ M(B ′), where we must restrict the codomain of f to B ′ in
order to apply the multiplier algebra functor M which is only functorial for nondegenerate morphisms.
The components of f̂ are then given by f̂i := f̂ ◦ ιi : A→ M(B ′). The datum

A⇒ f̂0

f̂1
M(B ′) ▷ B ′→ B

is called a prequasihomomorphism in [Cuntz 1987]. □

The functor q :C∗Algnu
→C∗Algnu is continuous with respect to the topological enrichment of C∗Algnu.

It therefore preserves homotopy equivalences and descends to a functor q : C∗Algnu
h → C∗Algnu

h . Since q
does not preserve K -stability we are led to define the functor

qs
: C∗Algnu

h → L K C∗Algnu
h , A 7→ K ⊗ q A. (11-5)
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In the following we use the notation

(−)s := L K (−) : C∗Algnu
h → L K C∗Algnu

h (11-6)

for the stabilization functor from Corollary 4.3(1). We define the natural transformation ιs : qs
→ (−)s

such that its component at A in C∗Algnu
h is given by

ιsA : q
s A = K ⊗ q A idK⊗ιA

−−−−→ K ⊗ A = As . (11-7)

Recall from Proposition 4.4 that L K C∗Algnu
h is semiadditive. By Example 6.1 every object in this

category is naturally a commutative monoid object. For A in C∗Algnu
h the object qs A= K ⊗q A is thus a

commutative monoid object of L K C∗Algnu
h . We define σ̄ s

:=idK⊗σ̄ :qs A→qs A, where σ̄ is as in (11-4).
The following is a version of [Cuntz 1987, Proposition 1.4].

Lemma 11.3. For A in C∗Algnu
h the object qs A is a commutative group in L K C∗Algnu

h whose inversion
map is given by σ̄ s .

Proof. We must show that idqs A+ σ̄
s
≃ 0. We have the following chain of equivalences:

MapL K C∗Algnu
h
(qs A, qs A)≃ MapC∗Algnu

h
(K ⊗ q A, K ⊗ q A)

≃ MapC∗Algnu
h
(q A, K ⊗ q A)

≃ ℓHom(q A, K ⊗ q A),

where the last line is by Corollary 3.8. The first reflects the definition of qs A and that L K is a left-Bousfield
localization; see Corollary 4.3.(1). The second equivalence is induced by left-upper-corner inclusion
q A→ K ⊗ q A which induces an equivalence since K ⊗ q A is a local object in this localization. Under
this equivalence the sum is determined by the block sum of morphisms q A→ K ⊗q A. Hence idqs A+ σ̄

s

is induced by the composition

diag(idq A, σ̄ ) : q A→ Mat2(q A)→ K ⊗ q A.

It suffices to show that diag(idq A, σ̄ ) : q A→ Mat2(q A) is homotopic to zero.
The composition m ◦ i : q A→ M(q A) is the inclusion; hence it has the associated homomorphism
∧

idq A = m : A ∗ A → M(q A) (using the notation introduced in Remark 11.2) and the components
∧

idq A i =mi : A→M(q A). Furthermore, the associated homomorphism ̂̄σ = i◦σ of σ̄ has the componentŝ̄σ i = m1−i . We identify M(Mat2(q A)) ∼= Mat2(M(q A)) in the natural way. Then diag(idq A, σ̄ ) has
the associated homomorphism
∧

diag(idq A, σ̄ )= diag(m,m ◦ σ) : A ∗ A→ M(Mat2(q A))

and the components
∧

diag(idq A, σ̄ )i = diag(mi ,m1−i ) : A→ Mat2(M(q A)).
For t in [0, 1] we consider the scalar unitary

Ut :=

(
cos π t

2 −sin π t
2

sin π t
2 cos π t

2

)
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in Mat2(M(q A)). Since m0(a)−m1(a) ∈ q A for all a in A we have

Utdiag(m1(a),m0(a))U∗t − diag(m0(a),m1(a)) ∈ Mat2(q A)

for all t in [0, 1]. Hence for every t in [0, 1], as explained in Remark 11.2, the pair

diag(m0,m1),Utdiag(m1,m0)U∗t : A→ Mat2(M(q A))

gives the components of a map ht : q A→ Mat2(q A). We have h0 = diag(idq A, σ̄ ) and h1 is the map
with equal components (ĥ1)i = diag(m0,m1) for i = 0, 1. Hence h1 = 0. □

Let E : L K C∗Algnu
h → C be a left-exact functor to a semiadditive∞-category. We say that E is split

exact if it sends the images under Lh,K of split exact sequences of C∗-algebras to fiber sequences.
The following lemma is a version of [Cuntz 1987, Proposition 3.1.b]. Let A be a K -stable C∗-algebra.

We will use the same symbol for the corresponding object of L K C∗Algnu
h , i.e., we will write A instead of

Lh,K (A) in order to simplify the notation.

Lemma 11.4. If E is split exact and E(A) is a group, then the map ιsA : q
s A→ As from (11-7) induces

an equivalence E(ιsA) : E(q
s A) ≃−→ E(As).

Proof. The middle-horizontal exact sequence in (11-4) is split and induces the fiber sequence

E(qs A) E(i s)
−−−→ E((A ∗ A)s) E(ds)

−−−→ E(As). (11-8)

Since A is K -stable we have A ≃ As , and hence E(A)≃ E(As). In view of our assumptions E(As) is a
group. Since qs A is a group by Lemma 11.3 and E preserves products (since it is split exact) we see that
also E(qs A) is a group. Finally, by Lemma 4.5 we have an equivalence

E((A ∗ A)s) E(ps
0)×E(ps

1)−−−−−−−→ E(As)× E(As)

whose inverse is E(ιs0) ◦ pr0+ E(ιs1) ◦ pr1. This implies that E((A ∗ A)s) is a group as well. Using that
the objects in the sequence (11-8) are commutative groups we see that

E(qs A)× E(As)
E(i s

A)+E(ι1)
−−−−−−−→ E((A ∗ A)s)

is an equivalence. Hence(
E(ιsA) 0

E(ps
1 ◦ i s) idE(As)

)
: E(qs A)× E(As)

E(i s)+E(ιs1)−−−−−−→ E((A ∗ A)s) E(ps
0)×E(ps

1)−−−−−−−→ E(As)× E(As)

is an equivalence. Again using that the factors are groups this implies that E(ιsA) is an equivalence. □

We consider the set of morphisms

Ŵq := {ι
s
A : q

s A→ As
| A ∈ C∗Algnu

h } (11-9)

in L K C∗Algnu
h .



KK- AND E -THEORY VIA HOMOTOPY THEORY 173

Definition 11.5. We define the Dwyer–Kan localization

Lq : L K C∗Algnu
h → L K C∗Algnu

h,q (11-10)

at the set Ŵq .

We consider the composition

Lh,K ,q : C∗Algnu Lh
−−→ C∗Algnu

h
L K
−−→ L K C∗Algnu

h
Lq
−−→ L K C∗Algnu

h,q . (11-11)

Proposition 11.6. The functor Lh,K ,q : C∗Algnu
→ L K C∗Algnu

h,q is a Dwyer–Kan localization.

Proof. This follows from the fact that Lh,K ,q is a composition of Dwyer–Kan localizations which are all
determined by images of collections of morphisms in C∗Algnu, namely homotopy equivalences, left-upper-
corner inclusions κA from (4-1), and the morphisms idK⊗ ιA : K⊗q A→ K⊗ A for all A in C∗Algnu. □

In Proposition 11.8(2) we will show that the mapping spaces in L K C∗Algnu
h,q can be easily understood

in terms of a calculus of fractions. In a sense this result is of intermediate nature since in Corollary 11.14
and Proposition 11.15 we will state a much better result at the cost of using more of C∗-algebra theory.

For every A in L K C∗Algnu
h we consider the diagram W (A) : Nop

→ L K C∗Algnu
h given by

· · ·

ιs
q3 A
−−−→ (q3 A)s

ιs
q2 A
−−−→ (q2 A)s

ιsq A
−−−→ (q A)s

ιsA
−−→ As . (11-12)

We furthermore let Wq be the subcategory of L K C∗Algnu
h generated by Ŵq . The diagram W (A) is a

putative right-calculus of fractions at A for Wq in the sense of [Cisinski 2019, Definition 7.2.2]. In fact,
A ≃ As is the final object of the diagram and all morphisms belong to Wq .

We fix A in L K C∗Algnu
h and consider the functor

HA : L K C∗Algnu
h → CGroups(Spc), B 7→ colim

n∈N
MapL K C∗Algnu

h
((qn A)s, B), (11-13)

i.e., we insert the diagram (11-12) into the first argument of the mapping space and take the colimit. The
following result is a version of [Cuntz 1987, Proposition 2.1].

Proposition 11.7. The functor HA is split exact.

Proof. We consider a split exact sequence

0→ I j
−→ B π

−→ Q→ 0 (11-14)

of C∗-algebras with split s : Q→ B. We must show that

HA(I s)⊕ HA(Qs)
HA( j s)+HA(ss)
−−−−−−−−→ HA(Bs)

is an equivalence, where the superscript s stands for K -stabilization as in (11-6).
We first observe that it suffices to show that this map induces an isomorphism of groups of connected

components. For i in N we write HA,i (−) :=πi HA(−) for the corresponding abelian-group-valued functor.
For every i in N we have a canonical isomorphism HA,i (−)∼= HA,0(Si (−)), where Si (−) :=C0(R

i )⊗−
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is the i-fold suspension functor. Using the fact that the functor Si (−) preserves exact sequences we see
that it suffices to show that

HA,0(I s)⊕ HA,0(Qs)
HA,0( j s)⊕HA,0(ss)
−−−−−−−−−−→ HA,0(Bs) (11-15)

is an isomorphism for all split exact sequences (11-14).
We now use that L K is a left-Bousfield localization and Corollary 3.8, or directly (4-3), in order see that

MapL K C∗Algnu
h
((qn A)s, (−)s)≃ MapC∗Algnu

h
(qn A, (−)s)≃ ℓHom(qn A, (−)s) (11-16)

as a functors from C∗Algnu to Spc. Combining this with (11-13) we get an equivalence

HA(B)≃ colim(ℓHom(A, Bs)
ι∗A
−−→ ℓHom(q A, Bs)

ι∗q A
−−→ ℓHom(q2 A, Bs)

ι∗
q2 A
−−−→ · · · ).

We define a map
ln : Hom(qn A, Bs)→ Hom(qn+1 A, I s)

as follows. Let f : qn A → Bs be an element of Hom(qn A, Bs). Then we get an associated map
( f, ssπ s f ) : qn A ∗ qn A→ Bs with the components as indicated; see Remark 11.2. We observe that

π s
◦ ( f, ssπ s f ) ◦ iqn A = 0,

where iqn A : qn+1 A→ qn A ∗ qn A is the canonical inclusion. Therefore we can define

ln( f ) := ( f, ssπ s f ) ◦ iqn A : qn+1 A→ I s .

For g : qn A→ I s we have ln( j s
◦ g) = g ◦ ιqn A. Finally, for h : qn A→ Qs we have ln(ss

◦ h) =
(ss
◦ h, ss

◦ h) ◦ iqn A = 0.
We next show that HA,0( j s) is injective. Let g : qn A→ I s represent an element [g] in HA,0(I s) such

that HA,0( j s)([g])= 0. Then there exists m in N with n ≤ m such that [ j s
◦ g ◦ ιqn A ◦ · · · ◦ ιqm−1 A] = 0

in π0Hom(qm A, Bs). But then

0= [lm( j s
◦ g ◦ ιqn A ◦ · · · ◦ ιqm−1 A)] = [g ◦ ιqn A ◦ · · · ◦ ιqm−1 A ◦ ιqm A]

in π0Hom(qm+1 A, I s). This implies that [g] = 0.
We now show that the family of maps (ln)n determines a well-defined map l : HA,0(Bs)→ HA,0(I s).

Let [ f ] in HA,0(Bs) be represented by a map f : qn A→ Bs . Then

HA,0( j s)([ln( f )])= [ f ] − HA,0(ss
◦π s)([ f ]).

The right-hand side does not depend on the choice of the representative. By the injectivity statement
above we conclude that [ln( f )] is well-defined.

We thus have

HA,0( j s) ◦ l + HA,0(ss) ◦ HA,0(π
s)= idHA,0(B),

l ◦ HA,0( j s)= idHA,0(I s), l ◦ HA,0(ss)= 0, HA,0(ps) ◦ HA,0(ss)= idHA,0(Qs).
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These equalities imply that (11-15) is an isomorphism. □

The putative right-calculus of fractions is called a right-calculus of fractions in the sense of [Cisinski
2019, Definition 7.2.6] if the functor HA(−) from (11-13) sends the morphisms from Wq to equivalences.

Proposition 11.8. (1) W (A) is a right-calculus of fractions.

(2) We have

HA(B)≃ MapL K C∗Algnu
h,q
(A, B). (11-17)

(3) The∞-category L K C∗Algnu
h,q is additive.

(4) The localization Lq is left-exact.

(5) We have an essentially unique commutative diagram

C∗Algnu

Lh,K

��Lh,K ,splt

~~

Lh,K ,q

��

L K C∗Algnu
h

Lq

''

Lsplt

ww

L K C∗Algnu
h,splt

L
// L K C∗Algnu

h,q

(11-18)

where L is a left-exact functor.

Proof. The assertion (1) follows from Proposition 11.7 and Lemma 11.4.
The assertion (2) follows from (1) and the general formula [Cisinski 2019, Definition 7.2.8] for the

mapping spaces in a localization in the presence of a right-calculus of fractions.
For (3) note that by (11-17) the mapping spaces in L K C∗Algnu

h,q are commutative groups.
Assertion (4) is a consequence of the formula (combine (11-13) and (11-17))

MapL K C∗Algnu
h,q
(A, B)≃ colim

N
MapL K C∗Algnu

h
((qn A)s, B) (11-19)

for the mapping space as a colimit over the filtered poset N and the fact that filtered colimits in Spc
commute with finite limits.

We finally show (5). The two upper triangles in (11-18) reflect the definitions of the maps. By (2) the
functor HA(−) represents the mapping space in L K C∗Algnu

h,q . Since it is split exact by Proposition 11.7
the localization Lq sends (the images under Lh,K of) split exact sequences to fiber sequences. The
composition Lh,K ,q is thus homotopy invariant, stable, Schochet-exact and split exact. By the universal
property of Lh,K ,splt stated in Proposition 5.7(2) we get the map L and the two-morphism filling of
the outer triangle in (11-18). We finally use the universal property (4-4) of Lh,K in order to define the
two-morphism filling the lower triangle. □
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Proposition 11.9. The functor L from (11-18) is equivalent to the right-adjoint of a right-Bousfield
localization

incl : L K C∗Algnu
h,splt

group⇆ L K C∗Algnu
h,splt : R.

Proof. We call a functor on L K C∗Algnu
h split exact if it sends the elements of Wsplt to equivalences. We

first show that Lsplt ◦ qs is split exact and left-exact and therefore by Proposition 5.7(1) descends to a
left-exact functor

R : L K C∗Algnu
h,splt→ L K C∗Algnu

h,splt.

The functor Lsplt : L K C∗Algnu
h → L K C∗Algnu

h,splt is split exact by definition, and it is left-exact by
Proposition 5.7(1). The functor Lsplt ◦ qs sends A in L K C∗Algnu

h to the fiber of Lsplt((A ∗ A)s) ds
A−→

Lsplt(As), where dA : A ∗ A → A is the fold map. Since Lsplt((A ∗ A)s) ≃ Lsplt(As)× Lsplt(As) by
semiadditivity we can identify Lsplt ◦ qs with the functor which sends A to the fiber of some natural map
Lsplt(As)× Lsplt(As)→ Lsplt(As) between split exact and left-exact functors. We conclude that Lsplt ◦qs

itself is split exact and left-exact.
As a consequence of Lemma 11.3 and the fact that Lsplt preserves products the functor R takes values

in L K C∗Algnu
h,splt

group. We have a natural transformation

κ := Lsplt(ι
s) : R→ idL K C∗Algnu

h,splt
: L K C∗Algnu

h,splt→ L K C∗Algnu
h,splt. (11-20)

If A in L K C∗Algnu
h has the property that Lsplt(A) is a group, then κLsplt(A) ≃ Lsplt(ι

s
A) is an equivalence

by Lemma 11.4 since Lsplt is split exact. Since Lsplt, being a Dwyer–Kan localization, is essentially
surjective we can conclude that the essential image of R is L K C∗Algnu

h,splt
group.

In particular we see that κR(A) is an equivalence for every A in L K C∗Algnu
h,splt. Since R◦Lsplt≃ Lsplt◦qs

is split exact and takes values in groups we can conclude again by Lemma 11.4 that R(κA) is also an
equivalence for every A.

As explained at the beginning of Section 7 this implies that R is the right-adjoint of a right-Bousfield
localization

incl : L K C∗Algnu
h,splt

group⇆ L K C∗Algnu
h,splt : R (11-21)

with counit κ .
The functor L inverts the morphisms κA since L(κA)≃ Lq(ι

s
A). This gives the factorization L ′ in the

diagram

L K C∗Algnu
h

Lq

((

Lsplt

vv

L K C∗Algnu
h,splt

L
//

R

((

L K C∗Algnu
h,q

L ′,−1
uu

L K C∗Algnu
h,splt

group

L ′ 33
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Since R ◦ Lsplt sends the morphisms ιsA to the equivalences R(κA) for all A in L K C∗Algnu
h we get an

inverse to L ′ from the universal property of Lq . □

Recall the definition (11-11) of Lh,K ,q : C∗Algnu
→ L K C∗Algnu

h,q .

Proposition 11.10. For any left-exact and additive∞-category D we have an equivalence

L∗h,K ,q : Funlex(L K C∗Algnu
h,q ,D) ≃−→ Funh,s,splt+Sch(C∗Algnu,D). (11-22)

Proof. This follows from the chain of equivalences

Funlex(L K C∗Algnu
h,q ,D)≃ Funlex(L K C∗Algnu

h,splt
group

,D)

≃ Funlex(L K C∗Algnu
h,splt,D)

≃ Funh,s,splt+Sch(C∗Algnu,D),

where the first, second and third equivalences are given by L ′,∗, R∗ and L∗h,K ,splt (defined in (5-4)),
respectively. In order to see that R∗ is an equivalence note that the components κA : R(A)→ A of the
natural transformation (11-20) generate the Dwyer–Kan localization R. As a consequence of Lemma 11.4
any left-exact functor L K C∗Algnu

h,splt → D to an additive ∞-category D sends these components to
equivalences. □

Proposition 11.11. For ? in {min,max} the localization Lq has a symmetric monoidal refinement and the
tensor product ⊗? on L K C∗Algnu

h,q is bileft-exact.

Proof. Since the localization Lsplt has a symmetric monoidal refinement with a bileft-exact tensor product
by Proposition 7.2 it suffices to show that the functor L has one. As seen in the proof of Proposition 11.9
we have a functor which sends A in L K C∗Algnu

h,splt to the diagram

R(A) //

κA

$$

A× A //

pr0
��

A

A

where the upper sequence is a fiber sequence. Since⊗ is biexact on L K C∗Algnu
h,splt, for B in L K C∗Algnu

h,splt

we get a similar diagram

R(A)⊗ B //

κA⊗B

''

(A× A)⊗ B //

pr0⊗B
��

A⊗ B

A⊗ B

We can conclude that κA⊗B ≃ κA⊗ B. In particular, −⊗ B preserves the generators of the Dwyer–Kan
localization L which therefore has a symmetric monoidal refinement. Furthermore, −⊗ B descends to a
left-exact functor on L K C∗Algnu

h,q . □
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For every symmetric monoidal additive∞-category we thus get an equivalence

L∗h,K ,q : Funlex
⊗/lax(L K C∗Algnu

h,q ,D) ≃−→ Funh,s,splt+Sch
⊗/lax (C∗Algnu,D). (11-23)

Remark 11.12. We provide the bridge to Kasparov modules. We refer to [Kasparov 1988; Blackadar
1998] for a detailed theory. Let f :q A→ B⊗K be a homomorphism with components f̂i : A→M(B⊗K ).
The corresponding (A, B)-bimodule (H, φ, F) is the Z/2Z-graded B-Hilbert C∗-module L2(B)⊕L2(B)
with the odd endomorphism

F :=
(

0 1
1 0

)
and

φ :=

(
f̂0 0
0 f̂1

)
: A→ Mat2(B(L2(B)), (11-24)

where in order to interpret (11-24) we identify B(L2(B))∼=M(B⊗K ) in the canonical way. For separable
C∗-algebras A, B we interpret Hom(q A, K ⊗ B) as the topological space of (A, B)-Kasparov modules in
the spirit of Cuntz. Its underlying space

ℓHom(q A, K ⊗ B)≃ MapL K C∗Algnu
sep,h
(q A, B)≃ MapL K C∗Algnu

sep,h
(qs A, B) (11-25)

has a natural refinement to a commutative monoid in spaces. This monoid structure reflects the direct sum
of Kasparov modules. Since groups and cogroups in a semiadditive∞-category coincide, Lemma 11.3 im-
plies that ℓHom(q A, K⊗B) is actually a commutative group. We have a natural map of commutative groups

ℓHom(q A, K ⊗ B)−→ MapL K C∗Algnu
sep,h,q

(A, B), (11-26)

given by the composition of (11-25) with the canonical map from the right-hand side of this equivalence
to the second stage of the colimit in (11-19). By Corollary 11.14 below we see that this map is actually
an equivalence presenting the commutative mapping groups in L K C∗Algnu

sep,h,q in terms of spaces of
Kasparov modules. □

For completeness of the presentation we now discuss [Cuntz 1987, Theorem 1.6]. All of the above
has a version for separable algebras which we will indicate by an additional subscript sep. Let A be a
separable C∗-algebra.

Theorem 11.13 [Cuntz 1987, Theorem 1.6]. There exists a homomorphism φ :q A→Mat2(q2 A) such that
Mat2(ιq A) ◦φ : q A→ Mat2(q A) and φ ◦ ιq A : q2 A→ Mat2(q2 A) are homotopic to the left-upper-corner
inclusions.

Before we sketch the proof we derive the consequences of Theorem 11.13.

Corollary 11.14. For separable C∗-algebras A and B the morphism (11-26) is an equivalence.

Proof. This is an immediate consequence of (11-19), (11-16) and Theorem 11.13 which implies that the
colimit in (11-19) stabilizes from n = 1 on. □
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Proposition 11.15. The functor qs
sep : L K C∗Algnu

sep,h→ qs
sepL K C∗Algnu

sep,h is the right-adjoint of a Bous-
field localization

incl : qs
sepL K C∗Algnu

sep,h ⇆ L K C∗Algnu
sep,h : q

s
sep

and
qs

sep : L K C∗Algnu
sep,h→ qs

sepL K C∗Algnu
sep,h

represents its target as the Dwyer–Kan localization at the set Ŵsep,q from the separable version of (11-9).

Proof. Let incl : qs
sepL K C∗Algnu

sep,h → L K C∗Algnu
sep,h denote the inclusion of the full subcategory of

L K C∗Algnu
sep,h on the image of qs

sep. We have a natural transformation

ιs : incl ◦qs
sep→ idL K C∗Algnu

sep,h
. (11-27)

For A in qs
sepL K C∗Algnu

sep,h and B be in L K C∗Algnu
sep,h the binatural transformation

Mapqs
sep L K C∗Algnu

sep,h
(A, qs

sep B) incl
−−→ MapL K C∗Algnu

sep,h
(incl A, incl(qs

sep B))
ιsB,∗
−−→ MapL K C∗Algnu

sep,h
(incl A, B)

is an equivalence. To this end we set A= qs
sep A′ for some A′ in L K C∗Algnu

sep,h and factorize the map as a
composition of equivalences

Mapqs
sep L K C∗Algnu

sep,h
(A, qs

sep B)≃ MapL K C∗Algnu
sep,h
(qs

sep A′, qs
sep B)

≃ MapL K C∗Algnu
sep,h,q

(A′, qs
sep B)

≃ MapL K C∗Algnu
sep,h,q

(A′, B)

≃ MapL K C∗Algnu
sep,h
(incl A, B),

where the first and third equivalences are incl and ιsB,∗, respectively, and the second and fourth equivalences
are by Corollary 11.14. We conclude that (11-27) is the counit of a right-Bousfield localization. Since the
right-Bousfield localization is a Dwyer–Kan localization at the set of the components of its counit we
conclude the second assertion by a comparison with (11-9). □

Recall the construction (4-8) of a sum of a family of C∗-algebras.

Corollary 11.16. The category L K C∗Algnu
sep,h,q admits countable coproducts which are represented by

the free product and also by the sum in C∗Algnu
sep.

Proof. Since L K C∗Algnu
sep,h,q is a right-Bousfield localization of L K C∗Algnu

sep,h it inherits all colimits
from the latter category and the inclusion functor, being a left-adjoint, preserves them. The assertion now
follows from Corollary 4.11(4). □

Theorem 11.13 is crucial for understanding the nature of the localization Lq which in turn implies the
important categorical property of L K C∗Algnu

sep,h,q of being countably cocomplete and of course the simple
formula (11-3) for the mapping spaces. Because of its relevance, for completeness of the presentation we
decided to repeat the proof of Theorem 11.13 from [Cuntz 1987].

Proof of Theorem 11.13. We will use as a fact:
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Lemma 11.17. If I → B is the inclusion of an ideal, then I ∗ I → B ∗ B is injective.

We abbreviate Q A := A∗ A. By Lemma 11.17 the map q A∗q A→ Q A∗Q A is injective. We construct
the diagram of exact sequences

0 // Mat2(q Q A) // Mat2(Q2 A) // Mat2(Q A) // 0

0 // J //

::

D π
//

77

S

77

// 0

0 // Mat2(q2 A)

ee

// Mat2(Qq A) //

ee

Mat2(q A)

ee

// 0

0 // J

::

// R

88

77

// Mat2(q A)

77

// 0

All vertical maps are injective. The C∗-algebra R is defined as the subalgebra of Mat2(Qq A) generated
by matrices of the form (

η0(q A) η0(q A)η1(q A)
η1(q A)η0(q A) η1(q A)

)
,

where we use the notation η0 and η1 for the canonical inclusions ι0 and ι1 of q A into Qq A. We observe
that the projection R→ Mat2(q A) is surjective and defines the ideal J as its kernel. We let D be the
subalgebra of Mat2(Q2 A) generated by the image of R and the elements(

η0(ι0(a)) 0
0 η1(ι0(a))

)
, a ∈ A.

One checks by an explicit calculation that R is an ideal in D, and hence J is also an ideal in D. Then
S is the subalgebra of Mat2(Q A) generated by Mat2(q A) and the diagonal elements(

ι0(a) 0
0 ι0(a)

)
, a ∈ A.

We let Ut be the rotation matrix from (4-7). We note that conjugation by Ut on Mat2(Q A) preserves the
subalgebra S. The derivative of this action is a bounded derivation δ̄ of S.

By Pedersen’s derivation lifting theorem [1976; 1979, Theorem 8.6.15] there exists a derivation δ of D
such that π ◦ δ = δ̄ ◦π . It is at this point where separability of A is important. There are counterexamples
to the derivation lifting theorem for nonseparable algebras.

We define the family σt := etδ of automorphisms of D and set σ := σ1.
We define φ : q A→ Mat2(q2 A) as the homomorphism with the components φ̂i : A→ Mat2(Qq A)→

M(Mat2(q2 A)) given by

φ̂0 :=

(
ccη0 ◦ ι0 0

0 η1 ◦ ι0

)
, φ̂1 := σ

(
ccη0 ◦ ι1 0

0 η1 ◦ ι0

)
. (11-28)
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In order to see that the application of σ is well-defined we rewrite(
η0 ◦ ι1 0

0 η1 ◦ ι0

)
=

(
η0 ◦ ι0 0

0 η1 ◦ ι0

)
−

(
η0 ◦ (ι1− ι0) 0

0 0

)
,

which obviously takes values in D. Using in addition a similar rewriting of φ̂0 one then checks that
φ̂0− φ̂1 takes values in Mat2(q2 A).

The homotopy γt from the left-upper-corner inclusion q2 A→ Mat2(q2 A) to φ◦ιq A has the components
γ̂i : q A→ Mat2(Q2 A) given by the map (again given by a pair of components)

γ̂0 :=

((
ccη0 ◦ ι0 0

0 η1 ◦ ι0

)
, σt

(
η0 ◦ ι1 0

0 η1 ◦ ι1

))
and the map

γ̂1 :=

((
η1 ◦ ι0 0

0 η1 ◦ ι1

)
,Ut

(
η1 ◦ ι1 0

0 η1 ◦ ι0

)
U∗t

)
.

Similarly, a homotopy λt from the left-upper-corner inclusion q A → Mat2(q A) to ιq A ◦ φ has the
components Mat2(p0) ◦ λ̃t : q A→ Mat2(q A), where p0 : Qq A→ q A and λ̃t : q A→ R→ Mat2(Qq A)
is given by ((

η0 ◦ ι0 0
0 η1 ◦ ι1

)
, σt

(
η0 ◦ ι1 0

0 η1 ◦ ι0

))
.

We leave the justifications for these formulas to the interested reader or refer to the proof of [Cuntz 1987,
Theorem 1.6]. □

12. The automatic semiexactness theorem

Since the symmetric monoidal functor kksep is homotopy invariant, stable and split exact, it belongs to the
right-hand side of the separable version of the equivalence (11-23) describing the universal property of
Lsep,h,K ,q for D := KKsep. Its preimage under this equivalence is the left-exact and symmetric monoidal
functor h depicted by the lower-horizontal arrow in the commutative triangle

C∗Algnu
sep

Lsep,h,K ,q

ww

kksep

$$

L K C∗Algnu
sep,h,q

h
// KKsep

(12-1)

The functor h will be called the comparison functor.
In Theorem 12.1 we claim that this comparison functor is an equivalence. We will give two immediate

proofs which at least implicitly assume the formulas (11-1), (11-2) and Theorem 13.16. They therefore
involve more than just the simple homotopy-theoretic considerations from the present notes. In order to
provide a selfcontained proof we will formulate two equivalent statements: Theorems 12.4 and 12.5. Note
that Theorem 12.4 is just an assertion about functors defined on the category of separable C∗-algebras
and does not require any K -theoretic element at all. On the other hand, the argument for Theorem 12.5 is
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quite accessible to the methods developed here so that we write out the details of the argument for this
version. This finally verifies (11-2) in a noncircular manner.

The fact that the comparison functor is an equivalence has the important consequence that KKsep

admits countable colimits and is idempotent complete; see Corollary 12.3. We do not have a direct proof
of this fact just from the construction of KKsep.

We start with formulating the main result of the present section.

Theorem 12.1. The comparison functor h : L K C∗Algnu
sep,h,q → KKsep is an equivalence.

As said above, we will give two proofs which should convince the reader that the assertion is true. On
the other hand both involve deep facts from the classical KK-theory which are not easily provable on the
basis of the approach taken in the present paper.

1. Proof via universal properties. We will show that kksep : C∗Algnu
sep→ KKsep has the same universal

property as Lsep,h,K ,q :C∗Algnu
sep→ L K C∗Algnu

sep,h,q stated in the separable version of (11-22). It appears as
the upper-horizontal equivalence in the diagram below, where D is any left-exact and additive∞-category:

Funlex(KKsep,D) ≃

kk∗sep

//

��

Funh,s,splt+Sch(C∗Algnu
sep,D)

��

Fun
∐
(KKsep,D)

��

kk∗sep

≃
// Funh,s,splt(C∗Algnu

sep,D)

!

��

Fun(KKsep,D)
kk∗sep

≃
// FunW̃sep,se(C∗Algnu

sep,D)

, (12-2)

where the superscript
∐

indicates finite coproduct preserving functors. The lower square has been
discussed in the proof of [Bunke et al. 2021, Theorem 2.23]; see (2.31) in the same reference. The lower-
horizontal equivalence reflects the fact (see Proposition 7.5) that kksep is the Dwyer–Kan localization
at the set W̃sep,se of morphisms in C∗Algnu

sep inverted by kksep. The crucial point is the existence of the
arrow marked by !. To see that it exists in [Bunke et al. 2021] we used the comparison of hoKKsep with
the classical theory and the fact that the latter has a universal property involving the condition of split
exactness [Bunke et al. 2021, Corollary 2.4]. The middle-horizontal equivalence has been discussed in
the proof of [Bunke et al. 2021, Theorem 2.23]. For our present purpose we need the dashed equivalence
which is obtained by an analogous argument explained in the subsequent paragraph.

All vertical arrows in the diagram above are fully faithful functors. Since kksep is homotopy invariant, sta-
ble, Schochet-exact and semiexact, it is Schochet-exact and split exact. Therefore the dashed arrow exists.
We must show that it is essentially surjective. Thus consider a functor F in Funh,s,splt+Sch(C∗Algnu

sep,D).
It gives rise to a functor F̂ in Fun(KKsep,D) such that kk∗sep F̂ ≃ F . It remains to show that F̂ is left-exact.
It is clearly reduced. Every cartesian square in KKsep can be represented as the image under kksep of a
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Schochet fibrant cartesian square, and by assumption F sends this square to a cartesian square in D. This
implies left-exactness of F̂ . See the proof of Proposition 3.17(3) for an analogous argument. □

2. Proof based on (11-2). For any two separable C∗-algebras A and B the comparison map induces the
second map in

π0Hom(q A, K ⊗ B)≃ π0MapL K C∗Algnu
sep,h,q

(A, B) h
−→ KKsep,0(A, B),

where the equivalence is by Corollary 11.14. In view of (11-2) it is a bijection. Using the left-exactness
of the comparison functor we can upgrade this to obtain an isomorphism between the higher homotopy
groups of mapping spaces by inserting the suspension Si (B) in the place of B for i in N. Since the
comparison functor is clearly essentially surjective it is an equivalence. □

Remark 12.2. We note that the two proofs are not independent. In order to obtain the marked arrow in
(12-2) we used [Bunke et al. 2021, Corollary 2.4] which is based on the universal property of hoKKsep

as the initial functor to an additive category which is homotopy invariant, stable and split exact. The
verification of this universal property [Higson 1987, Theorem 4.5] also uses the formula (11-2). □

Corollary 12.3. (1) The category KKsep admits all countable colimits.

(2) For a countable family of separable C∗-algebras (Bi )i∈I we have an equivalence⊔
i∈I

kksep(Bi )≃ kksep

(⊕
i∈I

Bi

)
.

(3) KKsep is idempotent complete and the inclusion KKsep→ KK identifies KKsep with the full subcate-
gory of compact objects of KK.

Proof. Since KKsep is stable by Proposition 7.2(3) it admits all finite colimits. For (1), it thus suffices
to show that KKsep admits countable coproducts. But this immediately follows from Theorem 12.1 and
Corollary 11.16.

The same results imply (2).
Assertion (3) is a general fact about Ind-completions of stable ∞-categories admitting countable

colimits and thus an immediate consequence of Definition 8.1 and (1). □

By comparing the universal properties of kksep and Lsep,h,K ,q stated in the separable version of (11-22)
and (7-7) we see that Theorem 12.1 is equivalent to the automatic semiexactness theorem.

Theorem 12.4. For every left-exact and additive∞-category D the canonical inclusion is an equivalence

Funh,s,se+Sch(C∗Algnu
sep,D) ≃−→ Funh,s,splt+Sch(C∗Algnu

sep,D).

A priori semiexactness is a much stronger condition than split exactness.
Recall from (5-1) that for every exact sequence of C∗-algebras

0→ A→ B f
−→ C→ 0 (12-3)
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we have defined a map ι f : A→ C( f ) from A to the mapping cone C( f ) of f . The following theorem
was shown in [Cuntz and Skandalis 1986].

Theorem 12.5. For every semisplit exact sequence (12-3) of separable C∗-algebras the morphism
Lsep,h,K ,q(ι f ) in L K C∗Algnu

sep,h,q is an equivalence.

In view of Proposition 5.1, Theorem 12.5 is equivalent to Theorem 12.4 and hence to Theorem 12.1.
Since the automatic semiexactness theorem is absolutely crucial in order to see that our construction of
KKsep coincides with the classical constructions, and the proof of Theorem 12.5 in [Cuntz and Skandalis
1986] implicitly already uses this comparison, we must give an independent argument in order to avoid a
circularity.

The remainder of the present section is devoted to the proof of Theorem 12.5. We will closely follow
the outline given in the appendix of [Cuntz and Skandalis 1986]. We reduce the argument to a single
calculation, namely Proposition 12.12, in MapL K C∗Algnu

sep,h,q
(C,C) verifying that the composition of two

explicit candidates for the Bott element and its inverse is really the identity. We use this argument also as a
chance to present a calculus which allows us to manipulate morphisms in L K C∗Algnu

sep,h,q by constructions
with semisplit exact sequences.

In the following discussion it is important to remember in which categories the morphisms live. We
will therefore be more precise with the notation. We will abbreviate L := Lsep,h,K ,q . In contrast to the
conventions in the rest of the text, e.g., a C∗-algebra considered as an object of L K C∗Algnu

sep,h,q will be
denoted by L(A) instead of simply by A. By abusing the notation, for a morphism f : q A→ K ⊗ B we
will also use the notation L( f ) for the induced element in MapL K C∗Algnu

sep,h,q
(A, B) under the map (11-26).

Following [Skandalis 1985, Section 1] and the appendix of [Cuntz and Skandalis 1986] we start with a
construction which associates to every semisplit exact sequence

S : 0→ I → A q
−→ Q→ 0 (12-4)

of separable C∗-algebras a morphism

fS : L(Q)→ L(S(I )) (12-5)

in L K C∗Algnu
sep,h,q . This construction is necessarily of analytic nature since it must take the existence

of the cpc split and separability into account. We provide the details since we merge the approaches of
[Skandalis 1985, Section 1] and [Cuntz and Skandalis 1986]. In particular we want to work out in detail
that the morphism fS is independent of the choices.

Construction 12.6. We fix a cpc split s : Q→ A. By Kasparov’s version of Stinespring’s theorem there
exists a countably generated Au-Hilbert C∗-module E0 and a homomorphism φ : Q→ B(Au

⊕ E0) such
that s(x)= Pφ(x)P for all x in Q, where P in B(Au

⊕ E0) is the projection onto Au and we consider A
as a subset of B(Au

⊕ E0) in the canonical way. The point of taking Au instead of A is that P becomes a
compact operator on Au

⊕ E0.
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After making E0 smaller if necessary we can assume that E0 is generated as an Au-Hilbert C∗-module
by the elements of the form (1− P)φ(x)Pa for all x in Q and a in Au . We refer to Remark 12.7 for
a sketch of a direct construction of E0 and φ which explains the essence of the proof of Stinespring’s
theorem mentioned above.

The pair (E0, φ) is uniquely determined up to canonical isomorphism. Let (E ′0, φ
′) be another choice.

Then we define a map E0→ E ′0 sending the generator (1− P)φ(x)Pa to the generator (1− P ′)φ′(x)P ′a.
In order to see that this map is well-defined we note that〈∑

i

(1− P)φ(xi )Pai ,
∑

j

(1− P)φ(x j )Pa j

〉
=

∑
i, j

a∗i Pφ(xi )
∗(1− P)φ(x j )Pa j

=

∑
i, j

a∗i (s(x
∗

i x j )− s(xi )
∗s(x j ))a j (12-6)

does only depend on the split s, but not on E0 and φ. In addition we observe that the right-hand side
takes values in the ideal I . Hence the Au-Hilbert C∗-module E0 becomes an I -Hilbert C∗-module E0|I

when we restrict the right Au-action to I .

Remark 12.7. Here is a direct construction of E0 and φ starting from the datum of the split s. One can
consider the right Au-module Q⊗ Au with the Au-valued (actually I -valued) scalar product

⟨x ⊗ a, x ′⊗ a′⟩ := a∗(s(x∗x ′)− s(x)∗s(x ′))a′.

Using that s is completely positive one checks that this is nonnegative. We then let E0 be the completion
of Q⊗ Au with respect to the induced seminorm. Note that this involves factoring out vectors with zero
norm. We write suggestively (1− P)φ(x)Pa for the image of x ⊗ a in E0. For y in Q we then define
φ(y) in B(Au

⊕ E0) by

φ(y)
(

a
(1−P)φ(x)Pb

)
=

(
s(y)a+s(yx)b−s(y)s(x)b

(1−P)φ(y)Pa+(1−P)φ(yx)Pb+(1−P)φ(y)Ps(x)b

)
.

One checks that this is a ∗-homomorphism. □

We let B denote the unital subalgebra of B(Au
⊕ E0) generated by φ(Q) and P . We further let J

denote the ideal in B generated by [φ(Q), P]. We finally let E1 be the sub-Au-Hilbert C∗-module of
Au
⊕ E0 generated by J (Au

⊕ E0). We then have a canonical homomorphism B→ M(J )→ B(E1).
Note that [φ(x), P] = (1− P)φ(x)P − Pφ(x)(1− P). Combining this formula with (12-6) we see

that for j in J and all e and e′ in Au
⊕ E0 we have ⟨ je, e′⟩ ∈ I . Hence the scalar product of E1 takes

values in I , and E1 becomes an I -Hilbert C∗-module E1|I after restricting the right-module structure
to I . Furthermore, since J ⊆ K (Au

⊕ E0) (because P was compact), we can conclude that J ⊆ K (E1|I ).
In detail, consider an element j in J . It can be approximated by finite sums

∑
i θξi ,ηi of one-dimensional

operators on Au
⊕ E0. We can find members u and u′ of an approximate identity of J such that u ju′

approximates j . But then j is also approximated by the finite sums
∑

i θuξi ,u′,∗ηi of one-dimensional
operators on E1|I .
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Below, we identify the suspension S(A) of a C∗-algebra with C0(S1
\ {1}, A) and Cb(S1

\ {1},M(A))
with a subalgebra of the multiplier algebra M(S(A)). We consider the family F : S1

7→ B(E1|I ) given by
F(u) := P + u(1− P). Since φ takes values in B we can consider φ as a homomorphism Q→ B(E1|I ).
We then define a homomorphism

f : q Q→ S(K (E1|I )) (12-7)

whose associated homomorphism (see Remark 11.2) has the components

f̂0, f̂1 : Q→ Cb(S1
\ {1}, B(E1|I ))⊆ M(S(K (E1|I )))

given by

f̂0(x)(u) := φ(x), f̂1(x)(u) := F(u)φ(q)F(u)∗.

Then f̂0(x)(u)− f̂1(x)(u) belongs to K (E1|I ) for every u and f̂0(x)(1)− f̂1(x)(1)=0. Thus f̂0(x)− f̂1(x)
belongs to S(K (E1|I )) and f is well-defined. This homomorphism does not yet take values in the desired
target S(K ⊗ I ). We will employ Kasparov’s stabilization theorem in order to produce a homomorphism
K (E1|I )→ K ⊗ I which is unique up to homotopy.

We let HI :=
⊕

N I denote the standard I -Hilbert C∗-module. We then have a canonical isomorphism
K (HI ) ∼= K ⊗ I . Using that E1|I is countably generated (it is here where we use separability) and
Kasparov’s stabilization theorem [1980, Theorem 2] we can choose an isomorphism E1|I ⊕ HI ∼= HI

which is unique up to homotopy since the unitary group of B(HI ) is connected, even contractible. Using
this isomorphism we get an embedding E1|I→ HI of I -Hilbert C∗-modules which is also well-defined up
to homotopy. It induces a homomorphism K (E1|I )→K (HI )∼=K⊗ I , and hence S(K (E1|I ))→ S(K⊗ I ).
Postcomposing (12-7) with this map we get a map

f ′S : q Q→ S(K ⊗ I ), (12-8)

which represents the desired map (12-5). Up to homotopy it only depends on choice of the cpc split. We
finally see that fS is independent of the choice of the cpc split since any two splits can be joined by a
path. □

We now interpret the pre- or post-composition of fS with a homomorphism in C∗Algnu
sep and its tensor

product with an auxiliary C∗-algebra in terms of operations with semisplit exact sequences [Skandalis
1985, Lemma 1.5]. We consider a map of semisplit exact sequences of separable C∗-algebras

S̃ : 0 // I // Ã
q̃
//

��

Q̃

e
��

// 0

S : 0 // I // A
q
// Q // 0

where the right square is a pull-back.

Lemma 12.8. We have an equivalence fS̃ ≃ fS ◦ L(e).
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Proof. The split s : Q→ A canonically induces a split s̃ : Q̃→ Ã. Working with this split, by an inspection
of the constructions we see that the resulting I -Hilbert C∗-module Ẽ1|I is canonically isomorphic to E1|I .
With this identification we get an equality f ◦ q(e) = f̃ : q Q̃→ S(K (E1|I )) of maps in (12-7). This
implies the desired equivalence. □

We now consider a diagram of semisplit exact sequences

S : 0 // I //

h
��

A //

h̃
��

Q // 0

S̃ : 0 // Ĩ // Ã // Q // 0

Lemma 12.9. We have an equivalence fS̃ ≃ L(S(h)) ◦ fS .

Proof. The split s : Q → A induces a split s̃ := h̃ ◦ s : Q → Ã. Working with this split we get
a canonical isomorphism Ẽi | Ĩ := Ei |I ⊗I Ĩ . Then the resulting map q Q → S(K (Ẽ1| Ĩ )) in (12-7) is
q Q→ S(K (E1|I ))

id⊗ Ĩ
−−−→ S(K (Ẽ1| Ĩ )). This implies the desired equivalence. □

In the following ⊗ can be the minimal or the maximal tensor product. Recall that S denotes a semisplit
exact sequence (12-4). If B is any C∗-algebra, then

S⊗ B : 0→ I ⊗ B→ I ⊗ A→ Q⊗ B→ 0

is semisplit exact again.

Lemma 12.10. We have an equivalence fS⊗B ≃ fS ⊗ L(B).

Proof. The split s induces a split s⊗ B. With this choice the composition

q Q⊗ B can
−−→ q(Q⊗ B) !

−→ S(K ⊗ I ⊗ B)∼= S(K ⊗ I )⊗ B

with the marked map constructed from S ⊗ B is equal to the map f ⊗ B constructed from s, and the
morphism can induces an equivalence in L K C∗Algnu

sep,h,q since L is symmetric monoidal. This implies
the assertion. □

The semisplit exact sequence

R : 0→ S(C)→ C(C)→ C→ 0 (12-9)

gives rise to a map fR : L(C) → L(S2(C)) in L K C∗Algnu
sep,h,q . The crucial fact is that it admits a

left-inverse, a posteriori even an inverse. This left-inverse L(β) : L(S2(C))→ L(C), called the Bott
element, will be given by an explicit homomorphism β : q S2(C)→ Mat2(K ) in Construction 12.17.

Remark 12.11. In [Cuntz and Skandalis 1986] the map fR is called the Bott element. We prefer to
call β the Bott element because of its role in Proposition 7.2. It is actually the crucial point that the
Bott element β constructed in Definition 6.9 in the semiexact situation has a lift to the split exact world
considered in the present section. This fact is the heart of the automatic semiexactness theorem. □
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Proposition 12.12. We have L(β) ◦ fR ≃±idL(C).

Remark 12.13. Proposition 12.12 is shown in [Cuntz and Skandalis 1986] by calculating a Kasparov
product. This argument is therefore not part of the theory developed in the present note.

Of course, the obvious approach would be to calculate the composition of the two representatives
explicitly. This would result in a map q2C → K ⊗ C which would have to be compared with the
composition of a left-upper-corner inclusion C→ K with ιC ◦ ιqC : q2C→ C. To go this path seems to
be quite tricky.

Further below we will therefore provide argument for Proposition 12.12 which avoids going through
Kasparov products or making the homomorphism φ in Theorem 11.13 explicit. □

For the moment we assume Proposition 12.12. For simplicity we will adjust the sign of β such that
L(β) ◦ fR ≃ idL(C).

Proof of Theorem 12.5. We reproduce the argument from the appendix of [Cuntz and Skandalis 1986].
We consider a semisplit exact sequence

S : 0→ I → A q
−→ Q→ 0

and the map ιq : I → C(q) as in (5-1). We want to show that L(ιq) is an equivalence.
We have a semisplit exact sequence

T : 0→ S(I )→ C(A)→ C(q)→ 0,

where the second map sends an element of C(A) given by a path σ in A with σ(1) = 0 to the pair
(σ (0), q◦σ) in C(q); see Remark 3.16. The kernel of the map consists of paths σ in I with σ(0)=0=σ(1)
and is hence isomorphic to S(I ). We let fT : L(C(q))→ L(S2(I )) be the associated morphism. Then
we define

u := (L(β)⊗ L(I )) ◦ fT : L(C(q))→ L(I ). (12-10)

We now calculate the composition u ◦ L(ιq) : L(I )→ L(I ). Using (12-9) we have a map of exact
sequences

R⊗ I : 0 // S(I ) // C(I ) //

��

I

ιq

��

// 0

T : 0 // S(I ) // C(A) // C(q) // 0

where the right square is a pull-back. Then by Lemmas 12.8 and 12.10 we have

fT ◦ L(ιq)≃ fR⊗I ≃ fR⊗ L(I ) : L(I )→ L(S2(I )). (12-11)
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Using Proposition 12.12 we conclude that

u ◦ L(ιq)≃ (L(β)⊗ L(I )) ◦ fT ◦ L(ιq)

≃ (L(β)⊗ L(I )) ◦ ( fR⊗ L(I ))

≃ (L(β) ◦ fR)⊗ L(I )

≃ idL(I ),

where the first, second and fourth equivalences are by (12-10), (12-11) and Proposition 12.12, respectively.
Hence ιq is a split monomorphism with left-inverse u.
We have the semisplit exact sequence

U : 0→ C(ιq)→ C(C(q)) φ
−→ C(Q)→ 0.

Using Remark 3.16 recall that C(C(q)) consists of pairs (σ, γ ) with σ a path in A, γ = (γ (−, t))t a
path of paths in Q such that γ (s, 1) = 0 for all s, γ (1, t) = 0 for all t , q(σ (s)) = γ (s, 0) for all s and
σ(1)= 0. The map φ sends (σ, γ ) to γ (0,−). Its kernel consists of pairs (σ, γ ) where σ is a path in A
with σ(0) ∈ I and σ(1)= 0, and γ is path of paths in Q with γ (0, t)= 0, γ (1, t)= 0, q(σ (s))= γ (s, 0),
and γ (s, 1)= 0 for all s, t . This is precisely the description of a point in C(ιq).

Applying the above to the semisplit exact sequence U we conclude that L(ιφ) : L(C(ιq))→ L(C(φ)) is
a split monomorphism. Since L is Schochet-exact we see that L(C(φ))≃ 0 since it is the fiber of a map
between objects which are equivalent to zero (cones are contractible). This implies that L(C(ιq))≃ 0.

Again using that L is Schochet-exact we can conclude that L(S(ιq)) : L(S(I ))→ L(S(C(q))) is an
equivalence. Then also L(S2(ιq)) is an equivalence. But L(ιq) is a retract of L(S2(ιq)) by

L(I )

idL(I )

((fR⊗L(I )
//

L(ιq )
��

L(S2(I ))
β⊗L(I )

//

L(S2(ιq ))
��

L(I )

L(ιq )
��

C(q)

idL(C(q))

66

fR⊗L(C(q))
// L(S2(C(q)))

β⊗L(C(q))
// L(C(q))

and hence an equivalence, too. □

Assume that
S : 0→ I → A q

−→ Q→ 0

is semisplit exact. By semiexactness of kksep we get a boundary map ∂kk
S : kksep(S(Q))→ kksep(I ). By

the automatic semiexactness theorem we know that there is a boundary map ∂S : L(S(Q))→ L(I ) such
that h(∂S) ≃ ∂kk

S , where h is the left-exact comparison functor in (12-1). The following proposition
clarifies its relation with fS : L(Q)→ L(S(I )) stated in the last sentence of [Cuntz and Skandalis 1986].
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Recall the exact sequence (12-9).

Proposition 12.14. We have an equivalence

fS ≃ S(∂S) ◦ fR⊗ L(Q) : L(Q)→ L(S(I )).

Proof. We consider the following diagram

S : 0 // I

ιq

��

// A
q
//

��

Q // 0

U : 0 // C(q) // Z(q)
q̃
// Q // 0

R⊗ Q : 0 // S(Q)

∂q

OO

// C(Q) //

OO

Q // 0

It implies by Lemma 12.9 that

L(S(ιq)) ◦ fS ≃ fU ≃ L(S(∂q)) ◦ ( fR⊗ L(Q)).

We now use that L(ιq) is an equivalence and that L(ιq) ◦ ∂S ≃ L(∂q) in order to deduce the desired
equivalence. □

We now prepare the proof of Proposition 12.12. We will freely use results from Sections 9 and 10. We
start with showing a partial case of Theorem 12.1.

Lemma 12.15. For any separable C∗-algebra B the comparison functor h in (12-1) induces an equiva-
lence

MapL K C∗Algnu
sep,h,q

(C, B) h
−→�∞KKsep(C, B).

Proof. Replacing e : C∗Algnu
→ E by Lsep,h,K ,q : C∗Algnu

sep → L K C∗Algnu
sep,h,q and correspondingly

�∞K (−) by MapL K C∗Algnu
sep,h,q

(C,−) we can construct a natural transformation

q̃sep,h :
∼Projssep(−)→ MapL K C∗Algnu

sep,h,q
(C,−)

in complete analogy to the construction of ẽh in (10-6). We start from

qh := Lsep,q : Projs(−)→ MapL K C∗Algnu
sep,h,q

(C,−)

in place of eh in (10-5), use that Lsep,h,K ,q is split exact and that the unitalization sequence (10-3) is split
exact, and that MapL K C∗Algnu

sep,h,q
(C,−) takes values in groups. The proof of Proposition 10.9 goes through

word by word and shows that q̃sep,h is an equivalence. Here instead of (7-9) we use, of course, the universal
property of Lsep,h,K ,q given by the separable version of (11-22) in order to construct the factorization
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Proj : L K C∗Algnu
sep,h,q → CGroups(Spc) in a way analogous to (10-14). The commutativity of

∼Projssep(B)

≃

ẽsep

''
≃

q̃sep,h

vv

MapL K C∗Algnu
sep,h,q

(C, B) h
// �∞KKsep(C, B)

implies that h is also an equivalence. □

Example 12.16. By the calculation of the spectrum KU≃ KKsep(C,C) in Remark 9.19 (and implicitly
using Corollary 9.16(2) in order to go from E- to KK-theory) we know that, for any i in N,

π0MapL K C∗Algnu
sep,h,q

(C, Si (C))≃ KKsep,0(C, Si (C))∼= πi KU≃
{

Z, i ∈ 2N,

0, else,

where the first and third equivalences are by Lemma 12.15 and (9-7), respectively. The proof of
Lemma 12.15 together with the fact that π0 sends the homotopy-theoretic group completion to the
algebraic group completion implies that

π0MapL K C∗Algnu
sep,h
(C,C)→ π0MapL K C∗Algnu

sep,h,q
(C,C)

is the algebraic group completion. This will let us detect elements in the group π0MapL K C∗Algnu
sep,h,q

(C,C)

represented by maps C→ K or qC→ K in a simple manner.
We identify maps p :C→ K with the projections p in K given by the image of 1. A map p :C→ K is

determined up to homotopy by the dimension dim(p) of the range of p. We therefore have an isomorphism
of monoids

π0MapL K C∗Algnu
sep,h
(C,C)→ N, p 7→ dim(p).

We now consider a map (p0, p1) : qC→ K given in terms of an associated map with components
pi : C→ M(K )= B for i = 0, 1 such that p0− p1 ∈ K . Then p1 p0 : im(p0)→ im(p1) is a Fredholm
operator and we can define the relative index

I (p0, p1) := index(p1 p0 : im(p0)→ im(p1)).

If pi is compact for i = 0, 1, then I (p0, p1)= dim(p0)− dim(p1).
We now show that the relative index is homotopy invariant for homotopies of pairs (p0,t , p1,t) such

that p0,t − p1,t is norm continuous. In particular there is no continuity condition on the families pi,t

separately. We follow [Avron et al. 1994] and define the norm continuous families of selfadjoint operators
At := p0,t − p1,t and Bt := 1− At . Then A2

t + B2
t = 0 and At Bt + Bt At = 0 (see [Avron et al. 1994,

Theorem 2.1]). Since At is selfadjoint and compact the spectrum of At away from 0 is discrete and
consists of eigenvalues of finite multiplicity. The relations above imply that for λ ̸= 1 the operator Bt

induces an isomorphism between ker(At − λ) and ker(At + λ). By [Avron et al. 1994, Proposition 3.1]
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we have the first equality in

index(p0,t , p1,t)= dim(ker(At − 1))− dim(ker(At + 1))

= dim(E At ((1− ϵ, 1+ ϵ)))− dim(E At ((−1− ϵ,−1+ ϵ)))

for any ϵ in (0, 1), where E At is the family of spectral projections for At . In order to see the second
equality note that the contributions of the eigenspaces to the eigenvalues different from ±1 cancel out
by the consideration above. The right-hand side is continuous in t and hence constant. To this end, we
consider a point t0 in [0, 1]. Then we choose ϵ such that 1±ϵ do not belong to the spectrum of At0 . By the
norm continuity of t 7→ At there exists δ in (0,∞) such that for all t in [t0− δ, t0+ δ] ∩ [0, 1] the points
1±ϵ do not belong to the spectrum of At . But then the right-hand side is constant on [t0−δ, t0+δ]∩[0, 1].

Using the homotopy invariance and the additivity of the relative index for block sums we can conclude
that the map (p0, p1) 7→ I (p0, p1) induces a group homomorphism

∼

dim : π0Hom(qC, K )→ Z such that
the bold part of

π0Hom(C, K )

π0 L

((

∼=

dim
//

ι∗
C

��

N

i
��

π0Hom(qC, K )
˜dim

//

! (11-26)
��

Z

π0MapL K C∗Algnu
sep,h,q

(C, K )

∼=

77

commutes. The dashed arrow is obtained from the universal property of the arrow denoted by π0L as a
group completion, since the right-down map i ◦ dim is a homomorphism to a group. It remains to show
that the lower triangle commutes.

We claim that the arrow marked by ! is an isomorphism. Assuming the claim we know that ι∗
C

also
represents a group completion. We can then argue that the two ways to go from π0Hom(qC, K ) to Z must
agree since group completions are initial in homomorphisms to groups.

To see the claim we can appeal to Corollary 11.14. But as this implicitly uses Theorem 11.13 one could
alternatively show directly that

∼

dim is an isomorphism and then conclude that ! is an isomorphism. □

Construction 12.17. We describe the Bott element L(β) in the mapping space MapL K C∗Algnu
sep,h,q

(S2(C),C).
Instead of reproducing the construction from [Cuntz and Skandalis 1986] we describe a version which is
more amenable to explicit calculations.

We consider the closed smooth manifold CP1∼= S2. It will be equipped with a constant scalar curvature
Riemannian metric and the orientation determined by the complex structure. We consider CP1 as a
Riemannian spin manifold and let /D be the spin Dirac operator. It acts as a first-order elliptic differential
operator on the sections of the Z/2Z-graded spinor bundle S ∼= S+⊕ S− which is odd with respect to the
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grading and therefore represented by a matrix(
0 /D−

/D+ 0

)
. (12-12)

The Schrödinger–Lichnerowicz formula states that /D2
= 1+ s

4 , where 1 is the canonical Laplacian
on the spinor bundle associated to the connection and s is the scalar curvature. Since the Laplacian is
nonnegative and s is positive we see that /D2 is positive and hence invertible as an unbounded operator on
H := L2(CP1, S) with domain C∞(CP1, S). Using function calculus we obtain the odd- and zero-order
pseudodifferential unitary operator

U := /D | /D|−1

in B(H). The principal symbol of U is the unitary part of the polar decomposition of the principal symbol
of /D. If f in C(CP1) acts as multiplication operator on H , then [ f,U ] is compact. Indeed, let f be
smooth for the moment and consider it as a zero-order pseudodifferential operator. Then the principal
symbols of f and U commute and the commutator is a pseudodifferential operator of order −1 and hence
compact. Since C∞(CP1) is dense in C(CP1) in the norm and the compact operators are closed in norm
we see that [ f,U ] is compact for all f in C(CP1).

The grading of S gives a decomposition H = H+⊕ H− and we represent U as a matrix(
0 U−

U+ 0

)
.

We have two homomorphisms φ̂± : C(CP1)→ B(H±) such that for f in C(CP1) the operator φ̂±( f ) is
the multiplication operator by f on H±.

We define two homomorphisms φ̂i : C(CP1)→ B(H+) for i = 0, 1 by

φ̂0 := φ̂+, φ̂1 :=U−φ̂−U+ . (12-13)

Then we have φ̂0( f )− φ̂1( f ) ∈ K (H+) for all f in C(CP1). The homomorphisms φ̂i for i = 0, 1 are
therefore the components of the associated homomorphism of a homomorphism

β̂ : qC(CP1)→ K (H+).

It represents a point L(β̂) in MapL K C∗Algnu
sep,h,q

(C(CP1),C).

We fix a base point ∗ in CP1. Using an orientation-preserving diffeomorphism R2 ∼= CP1
\ {∗}

we identify S2(C) with the subalgebra C0(CP1
\ {∗}) of C(CP1) of functions vanishing at ∗. We let

ι : S2(C)→ C(CP1) denote the inclusion. We define the Bott element as the composition

β : q S2(C)
q(ι)
−−→ qC(CP1)

β̂
−→ K (H+).

Then L(β)≃ L(β̂) ◦ L(ι) is a point in π0MapL K C∗Algnu
sep,h,q

(S2(C),C) which is our candidate for the Bott
element. □
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Proof of Proposition 12.12. We have the commutative diagram

MapL K C∗Algnu
sep,h,q

(S2(C),C)× MapL K C∗Algnu
sep,h,q

(C, S2(C))
◦
//

��

MapL K C∗Algnu
sep,h,q

(C,C)

≃

��

�∞KKsep(S2(C),C)×�∞KKsep(C, S2(C))
◦

// �∞KKsep(C,C)

(12-14)

where the vertical morphisms are induced by h and the horizontal morphisms are given by composition.
The right-vertical morphism is an equivalence by Lemma 12.15.

We have KKsep,0(S2(C),C)) ∼= π−2KU ∼= Z. We furthermore know that under the identification
KKsep,0(Si (C), S j (C))∼= π j−i KU the composition

KKsep,0(S j (C), Sk(C))×KKsep,0(Si (C), S j (C))→ KKsep,0(Si (C), Sk(C))

is identified with the multiplication in the ring π∗KU∼= Z[b, b−1
].

So in order to show that L(β) is a left-inverse of fR up to sign it suffices to show that the images h(L(β))
and h( fR) of these elements in π−2KU and π2KU are generators. This is the content of Lemmas 12.18
and 12.19.

Lemma 12.18. The class h(L(β)) in KKsep,0(S2(C),C)∼= Z is a generator.

Proof. It suffices to provide an element L(p) in MapL K C∗Algnu
sep,h,q

(C, S2(C)) such that L(β) ◦ L(p)
represents a generator of π0MapL K C∗Algnu

sep,h,q
(C,C)∼= Z.

We keep the conventions from Construction 12.17. We have a tautological line bundle L→CP1 which
is naturally a subbundle of the trivial bundle CP1

×C2. We let L⊥ be the orthogonal complement so
that L ⊕ L⊥ ∼= CP1

×C2. We consider the projection P in Mat2(C(CP1)) such that the value Px is the
orthogonal projection onto the fiber of L⊥x of L⊥ for all x in CP1. We interpret P as a homomorphism
P : C→ Mat2(C(CP1)) such that 1 7→ P . We get L(P) in MapL K C∗Algnu

sep,h,q
(C,C(CP1)). We can now

calculate the composition L(β̂) ◦ L(P) which is represented by

qC
q P
−−→ qMat2(C(CP1))

Mat2(β̂)
−−−−→ Mat2(K (H+)), (12-15)

where Mat2(β̂) is the map whose associated homomorphism has the components Mat2(φ̂i ) with φ̂i

as in (12-13). We set Ĥ := H+ ⊗ C2 and identify Mat2(K (H+)) ∼= K (Ĥ). The components of the
map (12-15) are then given by the projections Qi := Mat2(φ̂i )(P) in B(Ĥ). Note that the difference
Q0−Q1 is compact. By Example 12.16 the class of the composition in (12-15) is detected by the relative
index I (Q0, Q1) on Z, i.e., the index of the Fredholm operator Q1 Q0 : Q0 Ĥ → Q1 Ĥ . We note that
Q0 = P+ and Q1 = Mat2(U−)P−Mat2(U+), where we consider P± as a multiplication operator P on
H±⊗C2∼= L2(CP1, S±⊗C2). Multiplying with the unitary Mat2(U−) from the left we can thus identify
the Fredholm operator Q1 Q0 with

P−Mat2(U+)P+ : L2(CP1, S+⊗C2)→ L2(CP1, S−⊗C2).
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This is a zero-order pseudodifferential operator whose symbol is the symbol of the twisted Dirac opera-
tor /D+L (see (12-12)) made unitary. In particular we have I (Q0, Q1)= index( /D+L ). By the Atiyah–Singer
index theorem we have

index( /D+L )=
∫

CP1
Â(S2)ch(L⊥)=−

∫
CP1

c1(L⊥)= 1.

The base point of CP1 gives a decomposition L∗⊕ L⊥
∗
∼= CP1

⊗C2. We let P∗ in Mat2(C(CP1)) be
the corresponding constant projection onto L⊥

∗
. The same calculations as above show that the composition

L(β̂) ◦ L(P∗) represented by

qC
q P∗
−−→ qMat2(C(S2))

Mat2(β̂)
−−−−→ Mat2(K (H+))

represents the zero element.
The projections P and P∗ in Mat2(C(S2)) ∼= M(Mat2(S2(C))) can be considered as components of

the associated homomorphism of a homomorphism p : qC→ Mat2(S2(C)) since P − P∗ ∈ Mat2(S2(C)).
The composition

qC
p
−→ Mat2(S2(C))

Mat2(ι)
−−−−→ Mat2(C(S2))

represents the difference, i.e., L(ι) ◦ L(p)≃ L(P)− L(P∗). This implies that

L(β) ◦ L(p)≃ L(β̂) ◦ L(ι) ◦ L(p)≃ L(β̂) ◦ (L(P)− L(P∗))≃ L(β̂) ◦ L(P)≃ L(idC)

is a generator. □

Lemma 12.19. The class h( fR) in KKsep,0(C, S2(C))∼= Z is a generator.

Proof. We first make Construction 12.6 explicit in order to describe an explicit representative of the
map fR. Let t be the coordinate on [0, 1]. We identify the cone over C as C(C)∼= C0((0, 1]). We define
the cpc map s : C→ C(C) such that s(1)= t , where t is the coordinate function of the interval acting by
multiplication on C0((0, 1]). We consider E0 := S(C)∼= C0((0, 1)) as a C(C)u-Hilbert C∗-module. We
use the identification C(C)u ∼= C([0, 1]) and define φ : C→ B(C([0, 1])⊕ E0) such that

φ(1)=
(

t
√

t (1−t)
√

t (1−t) 1−t

)
.

Note that the right-hand side is a projection. We set

P :=
(

1 0
0 0

)
.

Then (1− P)φ(1)Pa = a
√

t (1− t) for a in C([0, 1]). These elements span a dense subset of E0. The
unital algebra B spanned by P and φ(1) is given by(

C([0, 1]) S(C)
S(C) C(S1)

)
⊆ B(C([0, 1])⊕ S(C)).
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The ideal J generated by [P, φ(1)] is Mat2(S(C)), and E1 = S(C) ⊕ S(C). We get a map qC →

S(Mat2(S(C))) whose associated map has the components

f̂0(1)(u)=
(

t
√

t (1−t)
√

t (1−t) 1−t

)
, f̂0(1)(u)=

(
t u−1√t (1−t)

u
√

t (1−t) 1−t

)
.

This map represents fR.
In order to check that h( fR) is a generator, using Swan’s theorem we will translate the problem into

a calculation in usual topological K -theory of compact spaces defined in terms of vector bundles. We
interpret t and u as longitude and latitude coordinates on S2 such that t = 0 is the south pole and t = 1 is the
north pole. By Swan’s theorem we have an isomorphism between KKsep,0(C,C(S2))∼= K0(C(S2)) and
the K -theory K 0(S2) of the sphere defined in terms of vector bundles as usual. Under this isomorphism
and with S2(C)∼=C0(S2

\{n}) we identify KKsep,0(C, S2(C)) with the reduced K -theory K̃ 0(S2) relative
to the north pole {n}.

Since f̂0(1) does not depend on u it is obviously a projection P0 in Mat2(C(S2)). We now observe
that f̂1(1) does not depend on u if t = 0 or t = 1. We can therefore also interpret f̂1(1) as a projection P1

in Mat2(C(S2)). Identifying projections with vector bundles (actually subbundles of the trivial bundle
S2
×C2) we get a class [P0]− [P1] in K 0(S2). Since P0 and P1 coincide at the north pole this difference

is actually a reduced class in K̃ 0(S2)∼= Z. Our task is to show that it is a generator.
Since P0 does not depend on the u-coordinate, it comes from a projection in C([0, 1]). Since [0, 1] is

contractible we can conclude that P0 is homotopic to a constant projection and the corresponding vector
bundle can be trivialized. The matrix function

(t, u) 7→U (t, u) :=
(

1 0
0 u

)
defines an isomorphism of vector bundles P0→ P1 (considered as subbundles of the two-dimensional
trivial bundle) on the subspace {t ̸= 0}. Since

P0,n = C

(
1
0

)
this isomorphism extends across the north pole. Away from the north pole this isomorphism sends the
section

(u, t) 7→
(√

t (1−t)
(1−t)

)
of P0 to the section

(u, t) 7→
(√

t (1−t)
u(1−t)

)
.

Note that if t becomes small this is essentially multiplication by u. So P1 is obtained from the trivial
bundle by cutting at the equator S1

⊆ S2 and regluing with a map S1
→U (1) of degree one. This implies

that [P0] − [P1] generates K̃ 0(S2). □

This finishes the proof of Proposition 12.12. □
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13. Half-exact functors

In classical KK- and E-theory universal properties are formulated in terms of half-exact functors to
ordinary additive categories. We will recall this language and state the universal properties of the
homotopy category versions of the functors constructed in the previous sections in these terms. This will
be used to show that they are equivalent to the classical KK- and E-theory functors. This comparison is
the main objective of this section. For simplicity we will restrict to separable algebras.

Recall that an additive 1-category is an ordinary category which is pointed, admits finite coproducts and
products such for any two objects D, D′ the canonical morphism D ⊔ D′→ D× D′ is an isomorphism,
and which has the property that the commutative monoids HomD(D, D′) are abelian groups for all objects
D, D′. An additive category is automatically enriched in abelian groups. A functor D→ D′ between
additive categories is additive if it preserves coproducts and products. It is then compatible with the
enrichments in abelian groups. We let Funadd(D,D′) be the category of additive functors.

Example 13.1. If C is an additive∞-category, its homotopy category hoC is an additive 1-category. □

We next introduce the notion of a half-exact additive category. A half-exact structure looks like a
glimpse of a triangulated structure. We will use this notion mainly in order to match the formulation of
the universal properties of KK- and E-theory in the classical literature, in particular in [Higson 1990a].

Let A→ B→ C be a sequence of maps in an additive 1-category D and S be a set of objects of D.

Definition 13.2. We say that this sequence is half-exact with respect to S if the induced sequences

HomD(D, A)→ HomD(D, B)→ HomD(D,C)

and

HomD(C, D)→ HomD(B, D)→ HomD(A, D)

of abelian groups are exact for every D in S.

Definition 13.3. A marking on an additive 1-category is a subset of objects S which is closed under
isomorphisms. A half-exact additive category is an additive 1-category with a marking and a collection
of distinguished sequences which are required to be half-exact with respect to the given marking.

Let D and D′ be half-exact additive categories with markings S and S ′, respectively.

Definition 13.4. A half-exact functor φ : D→ D′ is an additive functor such that φ(S)⊆ S ′ and φ sends
the distinguished half-exact sequences in D to distinguished half-exact sequences in D′.

We let Funadd,(1/2)ex(D,D′) be the category of half-exact additive functors between half-exact additive
categories.

Example 13.5. Every additive category has the canonical half-exact structure with S = Ob(D) and the
collection of all sequences which are half-exact with respect to this marking. In this case we denote the
half-exact additive category by Dcan. □
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Example 13.6. Recall that a sequence A i
−→ B p

−→ C in an additive 1-category D is split exact if p
admits a left-inverse s :C→ B such that (i, s) : A⊕C→ B is an isomorphism. The split exact sequences
are half-exact for the maximal marking. We write Dsplt for D equipped with the maximal marking and
the collection of split exact sequences. An additive functor D→ D′ automatically preserves split exact
sequences. It therefore belongs to Funadd,(1/2)ex(Dsplt,D′splt). □

Remark 13.7. Let D be a half-exact additive category with marking S. Then a sequence

D0→ D1→ D2→ D3→ D4

in D is called half-exact if each segment Di−1→ Di → Di+1 is half-exact. If D0→ D1 and D3→ D4

are isomorphisms and D2 belongs to S, then we can conclude that D2 ∼= 0 by showing that idD2 = 0.
If D1 ∼= 0 and D4 ∼= 0 and D2 and D3 belong to S, then we can conclude that D2 → D3 is an

isomorphism by constructing left- and right-inverses. □

Example 13.8. In order to have a nontrivial half-exact structure at hand consider the category of abelian
groups and let S be the set of uniquely divisible abelian groups. We distinguish all sequences which are
half-exact with respect to S. Then, e.g., the sequence 0→ Z

5
−→ Z→ 0 is half-exact. Note that in this

case we cannot conclude that 5 is an isomorphism since Z does not belong to the marking. □

Let D be a half-exact additive category. A functor F : C→ D from a left-exact∞-category will be
called half-exact if the marking of D contains F(Ob(C)) and F sends fiber sequences to distinguished
half-exact sequences.

Definition 13.9. A functor F : C∗Algnu
sep→ D is called half-exact (half-semiexact) if the marking of D

contains F(Ob(C∗Algnu)), and if F sends exact (semisplit exact) sequences to distinguished half-exact
sequences. A functor C∗Algnu

sep→ D is split exact if it sends split exact sequences of C∗-algebras to split
exact sequences.

We indicate such functors by superscripts 1
2 ex, 1

2 se, or splt.

Example 13.10. If C is a stable ∞-category, then hoC is a triangulated 1-category. The sequences
A→ B→C for any distinguished triangle A→ B→C→6A are half-exact with respect to the maximal
marking. We call the half-exact structure consisting of the maximal marking and these sequences the
triangulated half-exact structure. The corresponding half-exact additive category will be denoted by hoC1.

If we consider C as a left-exact∞-category, then according to our conventions the functor ho : C→
hoC1 is half-exact. □

We consider ! in {ex, se, q}. For ! ∈ {ex, se} the functor kksep,! : C∗Algnu
sep→KKsep,! is as in (8-4). For

! = q we set
kksep,q := Lsep,h,K ,q : C∗Algnu

sep→ KKsep,q := L K C∗Algnu
sep,h,q

using the separable versions of (11-11). We note that the targets of these functors are a left-exact
additive∞-category for ! = q (separable version of Proposition 11.8(3)) or even stable∞-categories
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(Proposition 7.3(3)) for ! ∈ {ex, se}. In particular, their homotopy categories are additive 1-categories. We
consider the functor

hokksep,! := ho ◦ kksep,! : C∗Algnu
sep→ hoKKsep,!.

We will equip the additive 1-category hoKKsep,! with the triangulated half-exact structure in case !∈{ex, se},
and the split half-exact structure if ! = q. In all cases the marking is the maximal one.

Corollary 13.11. The functor hokksep,! is homotopy invariant and stable. It is split exact in the case ! = q ,
half-semiexact in the case ! = se, and half-exact in the case ! = ex.

Proof. Homotopy invariance and stability are clear by construction.
In the case ! = ex (! = se) we use that kksep,! sends exact (semisplit exact) sequences of C∗-algebras to

fiber sequences, and the half-exactness of ho.
In the case ! = q we use that kksep,q and ho preserve split exact sequences. □

In order to make uniform statements in all three cases we will call a functor F : C∗Algnu
sep→ D to a

half-exact additive category !-exact if it is split exact in the case ! = q , half-semiexact in the case ! = se,
or exact in the case ! = ex. We call the functor suspension stable if for every morphism f : A→ B in
C∗Algnu

sep the fact that F( f ) is an isomorphism is equivalent to the fact that F(S( f )) is an isomorphism.

Example 13.12. For ! in {se, ex} the functors hokksep,! : C∗Algnu
sep→ hoKKsep,! are suspension stable.

This fact is due to the triangulated structure on hoKKsep,! which is a consequence if the stability of KKsep,!.
We further use Example 3.19 in order to identify looping in KKsep,! with suspension on the level of
algebras. □

We let W̃sep,! denote the set of morphisms in C∗Algnu
sep which are sent to equivalences by kksep,!.

We consider a half-exact additive category D and a functor F : C∗Algnu
sep→ D.

Proposition 13.13. If F is homotopy invariant, stable, (suspension stable in the cases ! ∈ {ex, se)}), and
!-exact, then F sends W̃sep,! to isomorphisms.

Proof. We first consider the cases ! ∈ {se, ex}. In order to show that F sends W̃sep,! to equivalences it
suffices to show that it admits a sequence of factorizations

C∗Algnu
sep

F

))

Lh,K

��

kksep,!

$$

L K C∗Algnu
sep,h

F̄
//

Lsep,!

��

D

L K C∗Algnu
sep,h,!

F̃

55

�sep,!

��

L K C∗Algnu
sep,h,!

group

<<
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Since F is homotopy invariant and stable, it has a factorization F̄ as indicated. The !-exactness of F
implies that the functor F̄ is actually half-exact. We now claim that F̄ sends the morphisms in the
separable version Ŵsep,! of (5-2) to equivalences. In the case ! = ex this is precisely [Blackadar 1998,
Proposition 21.4.1]. In the case ! = se the proof of [Blackadar 1998, Proposition 21.4.1] goes though
word by word since all exact sequences used in that proof are then semisplit exact.

We now claim that F̄ also inverts the closures Wsep,! of Ŵsep,! under 2-out-of-3 and pull-back. It
suffices to show that the collection of morphisms inverted by F̄ is preserved by pull-backs. We will use
[Blackadar 1998, Theorem 21.4.4] saying that F admits long half-exact sequences

· · · → F(S(I ))→ F(S(A)) F(S( f ))
−−−−→ F(S(B))→ F(I )→ F(A) F( f )

−−−→ F(B) (13-1)

associated to exact (or semisplit exact, respectively) sequences 0→ I → A→ B→ 0. For the semiexact
case again note that all exact sequences appearing in the proof are semisplit exact. Alternatively in both
cases, this also follows from the half-exactness of F̄ by applying it to the image under L K of the Puppe
sequence (3-17) associated to the map A→ B. Here we use that F(I ) ∼=−→ F(C( f )), which follows from
the fact that F inverts Ŵsep,!, and the analogue of Proposition 5.1 for half-exact functors.

We consider the case ! = se. The case of ! = ex is simpler and obtained from the ! = se case by removing
all mentions of cpc-splits. We consider a diagram

Lsep,h,K (A)

f̄
��

Lsep,h,K (B ′)
ḡ
// Lsep,h,K (B)

in L K C∗Algnu
sep,h . We can assume (see, e.g., the proof of Proposition 3.17) that up to equivalence the

diagram is the image under Lsep,h,K of the bold part of a cartesian diagram

A
g′
//

f ′
��

A

f
��

B ′
g
// B

in C∗Algnu
sep where f admits a cpc split. The map f ′ again admits a cpc split. We can extend the vertical

maps to exact sequences

0→ I → A f
−→ B→ 0, 0→ I ′→ A′ f

−→ B ′→ 0

in C∗Algnu
sep such that the induced map I → I ′ is an isomorphism. Since F( f ) is an isomorphism,

F(S( f )) and F(S2( f )) are isomorphisms by suspension stability. By the long half-exact sequence (13-1)
for f we conclude that F(I ) ∼= 0 and F(S(I )) ∼= 0; see Remark 13.7. Using the version of this long
half-exact sequence for f ′ and F(S2(I ′)) ∼= 0 and F(S(I ′)) ∼= 0 we conclude (again by Remark 13.7)
that F(S( f ′)) is an isomorphism. Finally, again using suspension stability we see that F( f ′)= F̄( f̄ ′) is
an isomorphism.
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We thus get a factorization F̃ . In L K C∗Algnu
sep,h,! we have the morphisms

βsep,!,A : Lsep,h,K ,!(S2(A))→ Lsep,h,K ,!(A).

Since F takes values in groups, using similar arguments as for Corollary 6.10 (replacing left-exactness by
the existence of the long half-exact sequences) we know that F̃(βsep,!,A) is an isomorphism. In detail, we
consider the functor FA(−) := F(−⊗max A). By Corollary 6.6 we can conclude that FA(T0)∼= 0. Then
the boundary map FA(S2(C))→ FA(C) of the long half-exact sequence for 0→ K → T0→ S(C)→ 0
is an isomorphism. But this map is precisely F̃(βsep,!,A).

Consequently we get the last factorization as indicated. This finishes the proof in the cases ! = se and
! = ex.

In the case of ! = q we construct a sequence of factorizations

C∗Algnu
sep

F

((

Lh,K

��

kksep,q

''

L K C∗Algnu
sep,h

F̄
//

Lsep,!

��

D

L K C∗Algnu
sep,h,q

66

Since F is split exact and takes values in groups, by Lemma 11.4 the functor F̄ sends the morphisms
ιsA :q

s A→ As to isomorphisms for all A in L K C∗Algnu
sep,h . This yields the last factorization in this case. □

In the following we remove the assumption of suspension stability in Proposition 13.13. Consider a
half-exact additive category D.

Proposition 13.14. A homotopy invariant, stable, and half-exact (or half-semiexact) functor F :
C∗Algnu

sep→ D inverts W̃sep,ex (or W̃sep,se, respectively).

Proof. We start with the case ! = ex. We consider the classical E-theory functor eclass
sep → Eclass

sep constructed
in [Higson 1990a], where we equip the additive 1-category Eclass

sep with the canonical half-exact structure
from Example 13.5. The functor eclass

sep is homotopy invariant, stable, half-exact, and suspension stable. In
view of Proposition 13.13 the functor eclass

sep inverts W̃sep,ex.
Let now F : C∗Algnu

sep→ D be a homotopy invariant, stable and half-exact functor. By the universal
property of eclass

sep stated in [Higson 1990a, Theorem 3.6] we get a factorization

C∗Algnu
sep

eclass
sep

$$

F
// D

Eclass
sep

F̂

>>

This implies that F also inverts W̃sep,ex.
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We now consider the case ! = se. It would be natural to argue as in the exact case using a corresponding
universal property of KKclass

sep involving half-semiexactness. But since we do not know a reference for this
we will argue differently invoking the automatic semicontinuity theorem. Being a half-semiexact functor,
F is in particular split exact. By Proposition 13.13 it inverts W̃sep,q . As a consequence of the automatic
semicontinuity result Theorem 12.1 we have W̃sep,q = W̃sep,se. □

We can now state the universal property of hokksep,!.

Proposition 13.15. Pull-back along hokksep,! induces an equivalence

Funadd,(1/2)ex(hoKKsep,!,D) ≃−→ Funh,s,(1/2)!(C∗Algnu
sep,D), ! ∈ {ex, se},

for any additive half-exact category D or

Funadd(hoKKsep,q ,D) ≃−→ Funh,s,splt(C∗Algnu
sep,D), ! = q,

for any additive 1-category.

Proof. It follows from Corollary 13.11 that the pull-back along hokksep,! takes values in the indicated
category of functors.

We first discuss the case ! ∈ {ex, se}. We consider the diagram

Funadd,(1/2)ex(hoKKsep,!,D)
(2)
//

��

Funh,s,(1/2)!(C∗Algnu
sep,D)

��

Fun(KKsep,!,D)

∼=

kk∗sep,!

;;

ho∗

≃

// Fun(hoKKsep,!,D)
(1)

≃

// FunW̃sep,!(C∗Algnu
sep,D)

The lower functor is an equivalence by the universal property of the Dwyer–Kan localization kksep,!; see
Proposition 7.5. The lower-left equivalence is the universal property of ho. As a consequence we see that
the functor marked by (1) is an equivalence.

The vertical functors are fully faithful. Therefore the functor marked by (2) is fully faithful, too. It
remains to show that it is essentially surjective. If F is any functor in Funh,s,(1/2)!(C∗Algnu

sep,D), then by
Proposition 13.14 there exists a functor F̂ in Fun(KKsep,!,D) such that F̂ ◦ kksep,! ≃ F . We furthermore
have a functor F̄ in Fun(hoKKsep,!,D) such that ho∗ F̄ ≃ F̂ . It remains to show that F̄ is additive and
half-exact.

Since F sends finite sums to products we can conclude that F̄ is additive. Since all triangles in hoKKsep,!

come from exact (semisplit exact) sequences in C∗Algnu
sep and F is half-exact (or half-semiexact) the

functor F̄ sends the half-exact sequences in hoKKsep,! (with the triangulated half-exact structure) to
half-exact sequences in D. Hence F̄ is also half-exact.
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In the case ! = q we argue similarly with

Funadd(hoKKsep,q ,D)
(2)
//

��

Funh,s,splt(C∗Algnu
sep,D)

��

Fun(KKsep,q ,D)

∼=

kk∗sep,q

<<

ho∗

≃

// Fun(hoKKsep,q ,D)
q

≃

// FunW̃sep,q (C∗Algnu
sep,D)

□

Let kkclass
sep : C

∗Algnu
sep→KKclass

sep denote the classical additive-category-valued functor described by the
universal property [Higson 1990a, Theorem 3.4]. We equip KKclass

sep with the split half-exact structure.
Then kkclass

sep is split exact. Since kkclass
sep is also homotopy invariant and stable, by Proposition 13.13 we

get a dotted factorization

C∗Algnu
sep

kkclass
sep
//

kksep,q

��

KKclass
sep

KKsep,q
ho
//

88

hoKKsep,q

ψ

OO

The dashed factorization is induced by the universal property of ho since KKclass
sep is an ordinary category.

Since kkclass
sep is split exact, the dotted arrow is half-exact, and the dashed arrow is additive.

Since eclass
sep inverts W̃sep,ex (as seen in the proof of Proposition 13.14) we also have a factorization

C∗Algnu
sep

eclass
sep

//

esep

��

Eclass
sep

Esep //

::

hoEsep

ψ

OO

Since eclass
sep is half-exact we can conclude that the dashed arrow is additive and half-exact.

Theorem 13.16. The comparison functors ψ : hoKKsep,q → KKclass
sep and ψ : hoEsep→ Eclass

sep are equiva-
lences.

Proof. By Propositions 7.5 or 11.6, respectively, we know that esep and kksep,q are Dwyer–Kan localizations.
The composition of a Dwyer–Kan localization with the canonical functor to the homotopy category is
again a localization, in this case in the sense of ordinary categories. We conclude that hoesep and hokksep,q

are localizations. Note that such a localization is determined uniquely up to equivalence under C∗Algnu
sep,

and that two choices of such equivalences under C∗Algnu
sep are isomorphic by a unique isomorphism.



204 ULRICH BUNKE

Since the universal properties of kkclass
sep [Higson 1990a, Theorem 3.4] and eclass

sep [Higson 1990a,
Theorem 3.6] are formulated in terms of equalities of functors (instead of isomorphisms), it will be useful
to choose hokksep,q and hoesep such that these functors are bijective on objects.

We write down the details of the argument for KK-theory. Since hokksep,q is homotopy invariant, stable
and split exact, the universal property [Higson 1990a, Theorem 3.4] provides an additive factorization

C∗Algnu

kkclass
sep

$$

hokksep,q
// hoKKsep,q

KKclass
sep

φ
99

which strictly commutes.
The pull-back along hokksep,q of the composition hoKKsep,q

ψ
−→ KKclass

sep
φ
−→ hoKKsep,q is equivalent

to hokksep,q . Therefore by Proposition 13.15 this composition φ ◦ψ itself is an equivalence.
We now show that the composition ψ ◦φ is also an equivalence invoking the uniqueness statement of

[Higson 1990a, Theorem 3.4]. This requires an equality ψ ◦φ ◦kkclass
sep = kkclass

sep . By the construction of φ
using [Higson 1990a, Theorem 3.4] we have an equality φ ◦ kkclass

sep = kksep,q . But the construction of ψ
only ensures a natural isomorphism f :ψ ◦hokksep,q

∼=−→ kkclass
sep which is not necessarily an equality. We

now use the freedom to replace ψ by an isomorphic functor and our special choice of hokksep,q to be
bijective on objects.

For every A in C∗Algnu
sep we have an isomorphism f A : ψ(hokksep,q(A))

∼=−→ kkclass
sep (A). We define

ψ ′ : hoKKsep,q→KKclass on objects such that ψ ′(hokksep,q(A)) := kkclass
sep (A). For a morphism h : A→ B

in hoKKsep,q we then define ψ ′(h) := fBφ(h) f −1
A . The family ( f A)A also implements an isomorphism

ψ ∼= ψ ′. Now ψ ′ ◦φ ◦ kkclass
sep = kkclass

sep which implies that ψ ′ ◦φ = id.
In particular, φ has a right- and a left-inverse equivalence and is hence itself an equivalence. But then

also ψ is an equivalence.
The case of E-theory is completely analogous. We use the universal property [Higson 1990a, Theo-

rem 3.6] of eclass
sep . □

Note that the proof of Theorem 13.16 does not use the case of Proposition 13.14 for ! = se and is
therefore independent of the automatic semicontinuity theorem.

14. Asymptotic morphisms in E-theory

The first construction of an additive 1-category representing E-theory was given in [Higson 1990a]
by enforcing universal properties. This construction was the blueprint for the ∞-categorical version
considered in the present note. Shortly after in [Connes and Higson 1990] the E-theory groups were
represented as equivalence classes of asymptotic morphisms; see also [Guentner et al. 2000]. Recall
that we construct KK-theory for separable algebras by a sequence of Dwyer–Kan localizations applied
to C∗Algnu

sep. In view of [Connes and Higson 1990; Guentner et al. 2000] a natural idea would be to
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apply a similar construction to the category of C∗-algebras and asymptotic morphisms. The first obstacle
one encounters in this approach is that the composition of asymptotic morphisms is only well-defined
after going over to homotopy classes. By now3 we think that the correct way to relate E-theory with
asymptotic morphisms is the one worked out recently in [Bunke and Duenzinger 2024, Section 3.5]. It is
based on the shape theory of [Blackadar 1985; Dădărlat 1994] and goes beyond the scope of the present
paper. We will therefore just show that asymptotic morphisms also give rise to morphisms in our version
E-theory in a way which is compatible with the composition.

We consider the endofunctors

T, F : C∗Algnu
→ C∗Algnu

defined by

T (A) := Cb([0,∞), A), F(A) := Cb([0,∞), A)/C0([0,∞), A).

We have a natural transformation α : T → F such that αA : T (A)→ F(A) is the projection onto the
quotient. We have the natural transformations

β : idC∗Algnu → T, ev0 : T → idC∗Algnu

such that βA : A→ T (A) sends a in A to the constant function with value a, and ev0,A : T (A)→ A
evaluates the function t 7→ f (t) in T (A) at t = 0. We finally define the natural transformation

γ := α ◦β : idC∗Algnu → F(A).

Note that the sequence

0→ C0([0,∞), A)→ T (A) αA
−−→ F(A)→ 0

is exact and that C0([0,∞), A) is contractible. Since e : C∗Algnu
→ E is reduced, homotopy invariant

and exact we see that e(αA) is an equivalence for every A in C∗Algnu. We define a natural transformation
δ : e ◦ F→ e by

δA := e(ev0,A) ◦ e(αA)
−1
: e(F(A))→ e(A).

Following [Guentner et al. 2000, Section 2] we adopt the following definition.

Definition 14.1. For n in N an asymptotic morphism f : A⇝n B is a morphism f : A→ Fn(B) in
C∗Algnu.

Remark 14.2. Note that asymptotic morphisms for n = 0 are the usual morphisms, and the case of n = 1
corresponds to the notion of an asymptotic morphism in [Connes and Higson 1990]. As in [Guentner et al.
2000, Section 2] we include the case of bigger n in order to have a simple definition of a composition of
asymptotic morphisms which also works for nonseparable algebras. □

32024.
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If f : A⇝n B is an asymptotic morphism, then we define

en( f ) := δB ◦ · · · ◦ δFn−1(B) ◦ e( f ).

If n = 0, then this formula is interpreted as e0( f ) := e( f ).
Let f ′ : A⇝n+1 B be given by γFn(B) ◦ f . Then we say that f ′ and f are related.

Lemma 14.3. If f ′ is related to f , then en( f )≃ en+1( f ′).

Proof. This follows from e(γFn(B))≃ e(αFn(B)) ◦ e(βFn(B)) and e(ev0) ◦ e(βFn(B))≃ ide(Fn(B)). □

The argument implies that e1(γA)≃ idA for every C∗-algebra A.
We define the composition of two asymptotic morphisms f : A⇝n B and g : B⇝m C as g♯ f : A⇝n+m C

given by Fn(g) ◦ f .

Lemma 14.4. We have en+m(g ♯ f )≃ em(g) ◦ en( f ).

Proof. We consider the diagram

e(Fn+m(C))
δFm (C)···δFn+m−1(C)

''

e(Fn(B))

e(Fn(g))
77

δB ···δFn−1(B)

''

e(Fm(C))
δC ···δFm−1(C)

%%

e(A)

e( f )
99

en( f )
// e(B)

e(g)
77

em(g)
// e(C)

The square commutes since δ is a natural transformation. The lower triangles reflect the definitions of the
lower-horizontal arrows. □

We say f0, f1 : A⇝n B are homotopic if there exists f : A⇝n C([0, 1], B) such that Fn(evi )◦ f = fi .

Lemma 14.5. If f0 and f1 are homotopic, then en( f0)≃ en( f1).

Proof. We have en( fi ) ≃ e0(evi ) ♯ en( f ). The assertion now follows since e0 = e and e is homotopy
invariant. □

In the remainder of this section we relate the E-theory constructed in the present note with the version
from [Guentner et al. 2000], called the classical E-theory Eclass. In [Guentner et al. 2000, Definition 2.13]
(even in the equivariant case) a homotopy category A of asymptotic morphisms is introduced. Its objects are
C∗-algebras, and its morphisms are equivalence classes of asymptotic morphisms, where the equivalence
relation is generated by the relations of being related and homotopy introduced above. The results above
show that the functor ho ◦ e : C∗Algnu

→ hoE factorizes over A.

Corollary 14.6. We have a commutative triangle

C∗Algnu

ho◦e

$${{
A

c
// hoE
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Proof. The down-left arrow sends a morphism f : A → B to the equivalence class represented by
f ⇝0 B, and the lower-horizontal comparison arrow c sends the C∗-algebra A to e(A) and the class of
an asymptotic morphism f ⇝n B to en( f ). □

In [Guentner et al. 2000, Definition 2.13] the classical E-theory category Eclass is defined as the
category whose objects are C∗-algebras, and whose morphisms are given by

HomEclass(A, B) := HomA(K ⊗ S(A), K ⊗ S(B)). (14-1)

It should not be confused with the separable version Eclass
sep from [Higson 1990a]. There is a canonical

functor
i : A→ Eclass,

which is the identity on objects and sends the class of an asymptotic morphism f : A⇝n B to the class
of i( f ) : K ⊗ S(A)⇝n K ⊗ S(B) given by the composition

K ⊗ S(A) f
−→ K ⊗ S(Fn(B))→ Fn(K ⊗ S(B)).

(Note that the second map is not an isomorphism.)

Corollary 14.7. We have a commutative triangle

A
c

!!

i

}}

Eclass ĉ
// hoE

(14-2)

Proof. The lower-horizontal map sends a C∗-algebra A to e(A) and the class of a morphism f :K⊗S(A)→
Fn(K ⊗ S(B)) to the image under

HomA(K ⊗ S(A), K ⊗ S(B)) c
−→ E0(K ⊗ S(A), K ⊗ S(B))∼= E0(A, B),

where we use stability of the functor e and stability of the∞-category E for the second isomorphism. □

Remark 14.8. The functor ĉ in (14-2) is not an equivalence. In fact the classical E-theory functor
preserves countable sums by [Guentner et al. 2000, Proposition 7.1]. In contrast, the functor e does not
preserve countable sums, since y : Esep→ E does not preserve countable sums.

But note that it is shown in [Bunke and Duenzinger 2024] that the restriction of ĉ to the full subcategory
of separable algebras induces an equivalence ĉsep : Eclass

sep → hoEsep. In particular the formula (14-1) gives
an explicit description of the morphism groups in hoEsep in terms of homotopy classes of asymptotic
morphisms. □

Remark 14.9. Let
S : 0→ A→ B→ C→ 0 (14-3)

be an exact sequence of separable C∗-algebras. The E-theory analogue of Construction 12.6 is [Guentner
et al. 2000, Proposition 5.5], where a morphism σS in HomA(S(C), A) was constructed. It follows from
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[Guentner et al. 2000, Proposition 5.15] (this is an analogue of Proposition 12.14) that the image of σS in
E0(S(C), A) is the boundary map ∂S of the fiber sequence in E associated to the exact sequence (14-3).
This shows that the comparison functor ĉ is compatible with the long exact sequences associated to exact
sequences of separable C∗-algebras. □
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