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We prove a quantum version of the Sabine law from acoustics describing the location of resonances in
transmission problems. This work extends the work of the author to a broader class of systems. Our main
applications are to scattering by transparent obstacles, scattering by highly frequency-dependent delta
potentials, and boundary stabilized wave equations. We give a sharp characterization of the resonance-free
regions in terms of dynamical quantities. In particular, we relate the imaginary part of resonances, or
generalized eigenvalues, to the chord lengths and reflectivity coefficients for the ray dynamics, thus
proving a quantum version of the Sabine law.
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1. Introduction

In this paper we study scattering in systems where the metric or potential has a singularity along an interface.
Metric examples include scattering in media having sharp changes of index of refraction [Cardoso et al.
1999; 2001; Popov and Vodev 1999a], in dielectric microcavities [Cao and Wiersig 2015] and in fiber
optic cables [Elliott and Gilmore 2002]. Schrödinger operators with a distributional potential along a
hypersurface can be used to model quantum corrals, concert halls, and other thin barriers [Barr et al. 2010;
Crommie et al. 1995]. Such potentials are also used to understand leaky quantum graphs [Exner 2008].
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Mathematically, an abrupt change in the index of refraction corresponds to a discontinuity in the metric
along a hypersurface. Scattering in such situations has been studied in [Bellassoued 2003; Cardoso et al.
1999; 2001; Popov and Vodev 1999a; 1999b], while scattering by certain distributional potentials has
been studied in [Galkowski 2014; 2016; Galkowski and Smith 2015]. These types of problems have also
been studied from the point of view of propagation of singularities [Melrose and Taylor 2010; Miller
2000; Weiss and Hagedorn 1985] and quantum chaos [Jakobson et al. 2015].

For a Schrödinger operator, P, on L2(Rd) (d odd) it is often possible to prove that solutions, u, to

(∂2
t + P)u = 0

have expansions roughly of the form

u ∼
∑
λ∈Res

e−i tλuλ, (1)

where Res is the set of scattering resonances of P. Thus, the real and (negative) imaginary parts of a
scattering resonance correspond respectively to the frequency and decay rate of the associated resonance
state, e−i tλuλ. This expression is similar to the expansion in terms of eigenvalues that one obtains when
solving the wave equation on a compact manifold. Hence, for leaky systems, scattering resonances play
the role of eigenvalues in the closed setting.

To get a quantitative heuristic for the decay of waves (the imaginary part of resonances), we imagine that
the interface for our problem occurs at ∂� for some �b Rd. We then think of solving the wave equation

(∂2
t + P)u = 0, u|t=0 = u0, ut |t=0 = 0,

with initial data u0 a wave packet (that is, a function localized in frequency and space up to the scale
allowed by the uncertainty principle) localized at position x0 ∈ � and frequency ξ0 ∈ Sd−1. We also
assume that P creates waves with speed c. The solution, u, then propagates along the billiard flow starting
from (x0, ξ0). At each intersection of the billiard flow with the boundary, the amplitude inside of � will
decay by a factor, R, depending on the point and direction of intersection. Suppose that the billiard flow
from (x0, ξ0) intersects the boundary at (xn, ξn) ∈ ∂�× Sd−1, n > 0. Let ln = |xn+1− xn| be the distance
between two consecutive intersections with the boundary (see Figure 1). Then the amplitude of the wave
decays by a factor

∏n
i=1 Ri in time

∑n
i=1 c−1li , where Ri = R(xi , ξi ). The energy scales as amplitude

squared and since the imaginary part of a resonance gives the exponential decay rate of L2 norm, this
leads us to the heuristic that resonances should occur at

Im λ=
log |R|2

2c−1l̄
, (2)

where the map · is defined by f̄ = 1
N

∑N
i=1 fi . In the early 1900s, Sabine [1922] postulated that the

decay rate of acoustic waves in a region with leaky walls is determined by the average decay over billiards
trajectories. The expression (2) provides a precise statement of Sabine’s idea and, because resonances are
a spectral quantity, we refer to such an expression as a quantum Sabine law. We will show in Theorem 1.11
that such a Sabine law holds for many different types of transmission problems.
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Figure 1. Path of a wave packet along with the lengths between each intersection (li )
and the reflection coefficient at each point of intersection with the boundary (Ri ). After
each reflection with the boundary, the amplitude of the wave packet inside � decays by
a factor of Ri . If the speed of the wave is c, the time between reflections is given by
c−1li .

Although the appearance of scattering resonances in (1) is intuitive, a more mathematically useful
definition of a scattering resonance is as a pole of the meromorphic continuation of

(P − λ2)−1

from Im λ� 1. This description allows us to show that the existence of a scattering resonance at λ
corresponds to the existence of a nonzero λ-outgoing solution to

(P − λ2)u = 0.

By λ-outgoing we mean that there exists g ∈ L2
comp(R

d) and M ≥ 0 such that

u(x)= (R0(λ)g)(x), |x | ≥ M.

Here, R0(λ) is the meromorphic continuation of (−1− λ2)−1 from Im λ� 1 as an operator R0(λ) :

L2
comp(R

d)→ L2
loc(R

d). (For a more complete description of mathematical scattering and further refer-
ences, see [Dyatlov and Zworski 2018].)

We start by considering a few applications of our main theorem (see Theorem 1.11).

1A. Transparent obstacles. Our first application is to scattering by a transparent obstacle, that is, an
obstacle with different refractive index than the ambient medium. In particular, let � b Rd be strictly
convex with smooth boundary, c ∈R+ \ {1} be the speed of light in �, and ℵ> 0 be a coupling parameter.
In [Cardoso et al. 1999], Cardoso, Popov, and Vodev show that the set of scattering resonances in this
setting is given by λ such that there is a nonzero solution to

(−c21− λ2)u1 = 0 in �,
(−1− λ2)u2 = 0 in Rd

\�,

u1 = u2 on ∂�,
∂νu1−ℵ∂νu2 = 0 on ∂�,
u2 is λ-outgoing.

(3)

We denote the set of such λ by 3. Here, ν denotes the outward unit normal to ∂�.
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Let T ∗∂� be the cotangent bundle to ∂� and B∗∂� denote the coball bundle of ∂�. Let πx :T ∗∂�→∂�
be the projection to the base. Then define r, lN , rN ∈ C∞(B∗∂�) and

l ∈ C∞
(
T ∗∂�× T ∗∂� \ {(x, ξ ′, x, η′) ∈ T ∗∂�× T ∗∂�}

)
∩C(T ∗∂�× T ∗∂�)

by

r(x ′, ξ ′) :=

√
1− |ξ ′|2g −ℵ

√
c2− |ξ ′|2g

ℵ

√
c2− |ξ ′|2g +

√
1− |ξ ′|2g

, rN (q) :=

∑N
j=1 log |r(β j (q))|2

N
,

l(q1, q2) := |πx(q1)−πx(q2)|, lN (q) :=

∑N
j=1 l(β j−1(q), β j (q))

N
,

(4)

where β : B∗∂�→ B∗∂� denotes the billiard ball map (see Section 5) and |ξ ′|g denotes the norm induced
on the fibers of T ∗∂� by the metric on Rd. Then r is the reflectivity for the transparent obstacle problem.
Note that we take the branch of the square root such that

√
−1= i and place the branch cut on the negative

imaginary axis.

Remark 1.1. • We will use ξ ′ to denote coordinates in the fiber of T ∗∂� and q to denote points in T ∗∂�
throughout this paper.

• Note that the log in the definition of rN appears because we measure exponential rates of decay and the
reflection coefficient acts by multiplication.

Theorem 1.2. Let �b Rd be strictly convex with smooth boundary and suppose that 0< c 6= 1, ℵ> 0.
Then for all M, ε > 0 there exists λ0 > 0 such that for λ ∈3 with Re λ≥ λ0 and Im λ≥−M log Re λ,

sup
N>0

inf
|ξ ′|g≤1

rN

2c−1lN
− ε ≤ Im λ≤ inf

N>0
sup
|ξ ′|g≤1

rN

2c−1lN
+ ε.

Moreover, for every ℵ, c as above, and K > 0, this bound is sharp in the region Im λ ≥ −K when
�= B(0, 1)⊂ R2.

Remark 1.3. • The lower bound in Theorem 1.2 is nontrivial, i.e., |r(x ′, ξ ′)| > 0, if either c < 1 and
ℵ< c−1, or c > 1 and ℵ> c−1. This corresponds to transverse electric waves (TE). The opposite case,
when there is no lower bound, corresponds to transverse magnetic waves (TM). In the TM case, the angle
at which r(x ′, ξ ′)= 0 is called the Brewster angle [Ida 2000, Chapter 13]. At this angle, there is complete
transmission of the wave in the ray dynamics picture.

• The upper bound in Theorem 1.2 is nontrivial if c > 1. When c < 1, Popov and Vodev [1999b] show
that the presence of total internal reflection (see Figure 2) produces resonances {λn}

∞

n=1 with Re λn→∞

and Im λn = O((Re λn)
−∞).

• The bounds for resonances given in Theorem 1.2 match our prediction (2). (See also Figure 3 for
numerically computed resonances in the transmission problem.)

Theorem 1.2 improves upon the results of Cardoso, Popov and Vodev [Cardoso et al. 1999; 2001]
by giving sharp estimates on the sizes of the resonance-free regions, as well as expanding the range of
parameters, ℵ, for which we have only a band of resonances.
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Figure 2. Geometry of reflection and refraction at the boundary of an interface between
a medium with speed of light c and one with speed of light 1. Total internal reflection
occurs when the incoming ray does not project onto the ball of radius 1 in the ξ ′-variable.

1B. Highly frequency-dependent Delta potentials. Let 9∞(∂�) denote the set of semiclassical pseu-
dodifferential operators of all orders whose seminorms are bounded by a constant independent of h so
that h−N9∞(∂�) denotes those whose seminorms are bounded by h−N (see Section 2 for more details).

We next consider operators of the form

−h21+ h(hδ∂�⊗ V )=: −h21∂�,δ, (5)

where h ∈ (0, 1] is a semiclassical parameter that should be thought of as the wavenumber (i.e., the inverse
of the frequency), V ∈ h−N9∞(∂�), and for u, w ∈ C∞c (R

d)

〈(δ∂�⊗ V )u, w〉 :=
∫
∂�

(V u)(x)w(x) dσ(x) (6)

and σ is the surface measure of ∂�. (See [Galkowski and Smith 2015, Section 2.1] for the formal
definition of this operator.) These operators are used as models for quantum corrals [Barr et al. 2010;
Crommie et al. 1995], as well as concert halls, leaky quantum graphs [Exner 2008] and other thin barriers.

In a typical physical system, the interaction between a potential and a wave depends on the frequency
of the interacting wave. Therefore, we are motivated to consider h-dependent potentials V. Moreover,
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Figure 3. Numerically computed resonances for the transparent obstacle problem with
c= 2 and ℵ= 1 when �= B(0, 1)⊂R2. (See Figure 10 for other values of c and ℵ.) In
this case, we expand the solutions to (3) as ui (r, θ)=

∑
n ui,n(r)einθ and solve for some

of the resonances with Re λ ∼ 500. In the lower graph, the red circles show Im λ vs.
Re λ. The dashed black lines show the upper and lower bounds for Im λ (since ℵ is in the
TE range with have both an upper and lower bound) from Theorem 1.2. Notice that by
orthogonality of einθ and eimθ for m 6= n, the pair (u1,neinθ, u2,neinθ ) satisfies (3). In the
top graph, the red circles show Im λ vs. n/Re λ for such pairs. The dashed curve shows
a plot of (cr1/(2l1))(cξ ′), the decay rate predicted for a billiard’s trajectory traveling
with scaled tangent frequency cξ ′. See the table for the relationship between the points
(Im λ, n/Re λ) and (cr1/(2l1)(cξ ′), cξ ′) predicted by the quantum Sabine law.

if one considers the delta interaction in one dimension

−1+ δ(x1)⊗ 1

and rescales to y = hx , we obtain

−h212
y + δ(y1/h)⊗ 1=−h2∂2

y + hδ(y1)⊗ 1, (7)

which corresponds to V = h−1 in (5). The operator (7) describes the quantum point interaction [Miller
2000].

Another motivation for highly frequency-dependent delta potentials is the wave equation{
(∂2

t −1+ i(δ∂�⊗ (〈a(x), ∂x 〉+ a0(x)∂t))u = F in Rd ,

F ∈ L2
comp((0,∞)t ×Rd), u = 0 on t < 0,
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where a, a0 ∈ C∞(∂�;R), and the tensor product acts as in (6). Then, taking the time Fourier transform

Ft→λu(x, λ) :=
∫
∞

0
ei tλu(x, t) dt,

gives with λ= z/h

(−h21− z2
+ z(hδ∂�⊗ (〈z−1a, h Dx 〉+ a0))Ft→z/hu = Ft→z/h F.

Remark 1.4. Note that we have switched the usual convention for the Fourier transform in our definition
of Ft→λ so that the integral converges absolutely for Im λ > 0.

In [Galkowski and Smith 2015], Smith and the author show that the set of scattering resonances, 3(h),
is equal to the set of z such that there is a nonzero solution to

(−h21− z2)u1 = 0 in �,
(−h21− z2)u2 = 0 in Rd

\�,

u1 = u2 on ∂�,
∂νu1− ∂νu2+ V u1 = 0 on ∂�,
u2 is z/h outgoing.

Define
3log(h) := {z ∈3(h) : z ∈ [1−Ch, 1+Ch] + i[−Mh log h−1, 0]}. (8)

For V ∈ h−N9∞(∂�) with real-valued symbol, σ(V ), the reflectivity, r ∈ C∞(B∗∂�), is given by

r(x ′, ξ ′) :=
hσ(V )

2i
√

1− |ξ ′|2g − hσ(V )
,

with rN (q) and lN (q) as in (4). For a more general definition of r see (18) and for rN see (21).
Let 9m(∂�) denote the set of semiclassical pseudodifferential operators of order m (see Section 2)

and 3log(h) be as in (8). Next, let

Ai(s) :=
1

2π

∫
ei(st+t3/3) dt, A−(s) := Ai(e2π i/3s), 8−(s) := A′

−
(s)/A−(s),

0> ζ1 > ζ2 > . . . be the zeros of Ai(s).
(9)

Finally, let Q(x, ξ ′) ∈ C∞(T ∗∂�) be the symbol of the second fundamental form to ∂�. Then we have:

Theorem 1.5. Let � b Rd be strictly convex with smooth boundary, α ≥ −1, and suppose that V ∈
hα91(∂�) is self-adjoint with σ(V )≥ 0 and σ(V ) > c > 0 in a neighborhood of {|ξ ′|g = 1}.

(1) Suppose that α >− 5
6 . Then for all ε > 0, N1 > 0 there exist ε1 > 0, h0 > 0 such that for 0< h < h0

3log(h)⊂
{

Im z
h
≤ inf

N≤N1
sup

|ξ ′|<1−ε1

rN

2lN
+ ε

}
.

(2) Suppose that − 5
6 ≥ α ≥−1. Then for all ε > 0, M > 0, there exists h0 > 0 such that for 0< h < h0

3log(h)⊂
M⋃

j=1

{
Bmin − ε ≤

h1/2 Im z
Im8−(ζj )

≤ Bmax + ε

}
∪

{
h1/2 Im z

Im8−(ζM+1)
≥ Bmin − ε

}
,
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where

Bmax := sup
|ξ ′|g=1

21/2 Q(x, ξ ′)1/2

|σ(V )(x, ξ ′)|2
, Bmin := inf

|ξ ′|g=1

21/2 Q(x, ξ ′)1/2

|σ(V )(x, ξ ′)|2
.

Moreover, these estimates are sharp in the case of �= B(0, 1)⊂ R2 with V ≡ 1.

Theorem 1.5 verifies several conjectures from [Galkowski 2014] and generalizes the results from
[Galkowski 2016] to arbitrary convex domains. It also provides a second general class of examples that
may have resonances with − Im z/h ∼ chγ for some γ > 0, that is, resonances converging to the real
axis at a fixed polynomial rate, but no faster. Compared to the work in [Galkowski 2014, Theorem 5.4],
Theorem 1.5 allows for potentials that depend more strongly on frequency. When the dependence is
strong enough

(
α ≤−5

6

)
, the new phenomenon of a band structure appears. (See Figure 4 for a schematic

of the results of the theorem.)

Remark 1.6. • Under the pinching condition,

Bmin

Bmax
>

Im8−(ζj )

Im8−(ζ j+1)
,

there is a gap between the j-th and ( j+1)-th band of resonances given by Theorem 1.5 for α ≤− 5
6 . For

5 4 3 2 1

sup
rN

IN
g~[c~��d�1����G

 > � �
�

z

Im z

Re

α

5 4 3 2 1

sup
rN

IN
g~[c~��d�1����G

Im z

z

 d � �
�

Re

α

Figure 4. Schematic representation of the resonance-free regions from Theorem 1.5 for
α >− 5

6 on the top and α ≤−5
6 on the bottom. Resonances lie in the dark gray bands,

Bj := {Bmin − ε ≤ (h2/3 Im z)/(Im8−(ζj ))≤ Bmax + ε}, or the light gray shaded region,
but not in the white regions. Note that the bands start to group closer together as they
go deeper into the complex plane. Thus, there will be only a finite number of bands if
Bmax /Bmin 6= 1. See also Figures 6 and 7 for numerically computed resonances in the
case of the disk where Bmax /Bmin = 1 when V ≡ hα.
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Figure 5. Graphs of Im8− (solid) and −
√
−s (dashed). The black dots are placed at (ζj , Im8−(ζj )).

a plot of Im8−(s), see Figure 5.

• To see that the resonance bands in Theorem 1.5 for α ≤ −1
2 agree with those in [Galkowski 2016],

observe that

Im
A′
−
(ζj )

A−(ζj )
= Im

2π Ai ′(ζj )A′−(ζj )

e5π i/6 =−
2π Ai ′(ζj )Ai ′(ζj )

2|A−(ζj )Ai ′(ζj )|3(2π)3
=−

1
8π2|A−(ζj )3 Ai ′(ζj )|

.

1C. Boundary stabilization problem. Our final application of Theorem 1.11 is to a boundary stabilized
wave equation 

(∂2
t −1)u = F in �,

∂νu+ a(x)∂t u = 0 on ∂�,
u ≡ 0 on t <−1,
F ∈ L2

comp((0,∞)t ×�),

(10)

with 0≤ a(x) ∈ C∞(∂�;R). It is not hard to see that the energy

E(t) := 1
2(‖∂t u‖2+‖∇u‖2)

for the corresponding initial value problem is nonincreasing. The study of (10) has a long history; for
instance, see [Bardos et al. 1992], where Bardos, Lebeau, and Rauch give nearly sharp conditions on a to
guarantee exponential decay of the energy.

Here, we impose the strongly dissipative condition 0< a0 ≤ a and study the asymptotic (|Re λ| � 1)
spectral gap for the corresponding stationary problem. That is, taking the Fourier transform in time, we
study {

(−1− λ2)Ft→λu = Ft→λF in �,
(∂ν − iλa(x))Ft→λu = 0 on ∂�.

(11)

Cardoso and Vodev [2010] showed the existence of a spectral gap in a much more general, but still
strongly dissipative, situation. Here, we give estimates on the size of the gap. Let 3 denote the set of λ
such that (11) has a nonzero solution. The reflectivity, r ∈ C∞(B∗∂�), for this problem is given by

r(x ′, ξ ′) :=

√
1− |ξ ′|2g − a(x ′)

a(x ′)+
√

1− |ξ ′|2g
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Figure 6. Resonances for the delta potential on the circle with Re λ∼ 106, V ≡ (Re λ)−α

and several α. The plots show Im λ vs. Re λ in each case. The solid black line shows the
(logarithmic) bound for resonances coming from nonglancing trajectories and the dashed
black lines show the first few (polynomial) bands of resonances from near glancing
trajectories. Since the solid black line is above the dashed black lines at α =−5

6 , it is
necessary to go to still larger Re λ to see the transition to resonances with fixed-size
imaginary parts. However, at α <− 5

6 , we start to see better agreement with the bands of
resonances predicted in Theorem 1.5.

and lN , rN as in (4).

Theorem 1.7. Let � b Rd be strictly convex with smooth boundary and a(x) ≥ a0 > 0. Then for all
ε,M > 0 there exist λ0 > 0 such that for λ ∈3 with |Re λ|> λ0 and Im λ≥−M log|Re λ|,

sup
N>0

inf
|ξ ′|g≤1

rN

2lN
− ε ≤ Im λ≤ inf

N>0
sup
|ξ ′|g≤1

rN

2lN
+ ε. (12)
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Figure 7. Plot of resonances for the delta potential on the disk with V ≡ Re λ. In
particular, we show log(Re λ) vs. log(− Im λ) for Re λ ∼ 106. The bands predicted by
Theorem 1.5 are shown by the black dashed lines.

Theorem 1.7 can also be obtained from the results of [Koch and Tataru 1995]. Indeed, the result
contained there actually implies a stronger estimate than (12) in the case of (11). We include this
application to give a new proof of those results in this special case and to show that our analysis may be
applied even to nontransmission problems. Moreover, note that the operator a∂t can be replaced by a
much more general pseudodifferential operator and our methods still apply.

1D. The general setup: a generalized boundary damped wave equation. Theorems 1.2, 1.5, and 1.7
are a consequence of analysis of the boundary damped problem{

(−h21− z2)u = w in �,
h∂νu+ Bu = hv on ∂�,

(13)

with Re z ∼ 1. Here, the operator B plays the role of damping waves upon interaction with the boundary
and encodes the interaction with the exterior of � in the case of scattering problems.

Let N2(z/h) denote the outgoing Dirichlet-to-Neumann map for Rd
\�, that is, the map given by

C∞(�) 3 f 7→ −∂νu, where u solves
(−h21− z2)u = 0 in Rd

\�,

u|∂� = f,
u is z/h outgoing.

We assume that B = hN2(z/h)+ hV (z), where V is in a certain second microlocal class of pseudodiffer-
ential operators which we specify later.
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Remark 1.8. By replacing h̃ = hE , B(h)= E B(h̃/E), and z̃ = Ez we may work with Re z ∼ E . Notice
that z/h = z̃/h̃ so operators that are functions of z/h do not change under this rescaling.

We first introduce some notation. Let

DM(h) := [1− h, 1+ h] + i[−Mh log h−1,Mh log h−1
].

Let γ : H s(Rd)→ H s−1/2(∂�), s > 1
2 , be the restriction operator. Then the single-layer operator is

given by

G(z/h) := γ R0(z/h)γ ∗.

Recall that R0(λ) is the meromorphic continuation of (−1−λ2)−1. From [Galkowski 2014, Lemma 4.25;
Hassell and Zelditch 2004, Proposition 4.1] (see also Lemma 7.3), we have

G(z/h)= G1(z/h)+GB(z/h)+Gg(z/h)+OD′(∂�)→C∞(∂�)(h
∞),

where G1 is pseudodifferential, GB is a semiclassical Fourier integral operator associated to the billiard ball
map (see Section 2 for the definition of semiclassical Fourier integral operators), and Gg is microlocalized
near |ξ ′|g = 1. Let m ≥ 0 and 90,m

2/3 (|ξ
′
|g = E ′) denote the set of pseudodifferential operators that are

second microlocalized near |ξ ′|g = E (see Section 4).
We now introduce assumptions on V. Suppose a1 ∈ R, α ≥−1, E ′ ∈ R \ {1}, δ > 0, M,M1,M2 > 0,

0< ε < 1
2 . Let 〈 · 〉 ∈ C∞(T ∗∂�) be given by 〈ξ ′〉 := (1+ |ξ ′|2g)

1/2. We assume that

V = a1 N2(z/h)+ V1, V1 ∈ hα90,m
2/3 (|ξ

′
|g = E ′), V is elliptic on ||ξ ′|g − 1|< δ, (14)∣∣∣∣1+ hσ(V )

2
√
|ξ ′|2g − 1

∣∣∣∣≥ δ(〈 h1+α√
|ξ ′|2g − 1

〉
+〈ξ ′〉m−1

)
, |ξ ′|g > 1+M1h2/3,

∣∣∣∣1+ hiσ(V )

2
√

1− |ξ ′|2g

∣∣∣∣≥ δ〈 h1+α√
1− |ξ ′|2g

〉
, |ξ ′|g ≤ 1− hε,

(15)

V (z) is an analytic family of operators for z ∈ DM(h), (16)

log
(

1+
hσ(V )√
|ξ ′|2g − 1

)
exists and is smooth on T ∗∂� \ {|ξ ′|g ≤ M2}. (17)

We say that AV(a1, α, E ′,m, δ,M,M1,M2, ε) holds when (14)–(17) hold.
We now give a heuristic understanding of (14)–(17). The assumption (14) describes the structure of

the operator V in particular, allowing us to include copies of N2(z/(hE ′)), which encodes the exterior
behavior of waves at speed

√
E
−1

. We assume that V is elliptic on |ξ ′|g = 1, the glancing set for the
problem inside �, to simplify some of our analysis and guarantee that glancing effects play a nontrivial
role in the analysis. Notice in particular that if WFh(V )∩ {|ξ ′|g = 1} = ∅, then waves near glancing
escape � essentially without reflection. This ellipticity assumption is not necessary for our analysis, but
since the main advantage of the present paper over [Galkowski 2014] is the analysis near glancing, we
include it to simplify our presentation.
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Next, (15) guarantees that the problem is locally elliptic in the sense that if a singularity emerges from
(x ′, ξ ′)∈T ∗∂�, then there must be a singularity coming into (x ′, ξ ′). That is, the boundary cannot produce
singularities spontaneously. Furthermore, this guarantees that there are no solutions microlocalized in the
elliptic region |ξ ′|g > 1.

Finally, (16) and (17) are used to guarantee that the resolvent operator corresponding to (13) is
meromorphic and hence that it makes sense to discuss its poles.

Remark 1.9. • For the definition of ellipticity of V, see Sections 2C2 and 4A1.

• These are not quite the most general assumptions we can make on V, but in practice all situations we
have in mind fall into this category. For the most general assumptions, see (65) and for the statement of
the theorem in that case, see Theorem 9.11.

• We make the assumption that V is elliptic near glancing so there is no rapid loss of energy near
glancing. We could remove this assumption, but there would be no new phenomena and the analysis near
glancing would be more complicated.

• The final assumption (17) (used to prove that the underlying problem is Fredholm) is satisfied for
example when m < 1, or when m ≥ 1 and for some θ0 fixed and σ(Ṽ ) real-valued

σ(V )= eiθ0σ(Ṽ ), |ξ ′|g ≥ M2.

Lt χ ∈ C∞c (R) with χ ≡ 1 near 0, and define

χε ∈ C∞(T ∗∂�), χε(x, ξ ′) := 1−χ
(

1− |ξ ′|g
hε

)
,

R := −(I +G1/2
1 V G1/2

1 )−1G1/2
1 V G1/2

1 Oph(χε), (18)

T (z) := G−1/2
1 (z)GB(z)G

−1/2
1 (z), (19)

where GB is the Fourier integral operator component of G(z). (See Section 2 for an explanation of the
quantization procedure Oph.) Note also that the inverse (I +G1/2

1 V G1/2
1 )−1 makes sense microlocally on

suppχε by (15).
Let σ̃ denote the compressed shymbol (see [Galkowski 2014, Section 2.3] or Section 3). Then let

lN , rN (z) : B∗∂�→ R be

l(q, q ′) := |πx(q)−πx(q ′)|, lN (q) :=
1
N

N∑
k=1

l(βk−1(q), βk(q)), (20)

rN (q) :=
Im z

h
lN (q)+

1
2N

log σ̃ (((RT (z))∗)N (RT (z))N )(q) (21)

(recall that B∗∂� is the coball bundle of the boundary and β is the billiard ball map). The term (Im z/h)lN

in (21) serves to cancel the growth of T (z) in the definition of rN .

Remark 1.10. Note that we use the notion of the compressed shymbol instead of a variable order symbol
since we do not wish to make any a priori assumption on how the symbol of V varies from point to point.
Moreover, the order of the symbol will vary also as a function of Im z.
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In fact, for 0< N independent of h we have

rN (q)=
1

2N

N∑
n=1

log
∣∣(σ̃ (R) ◦βn(q)+O(h IR(q)+1−2ε))

∣∣2, (22)

where IR(q) is the local order of R at q (see [Galkowski 2014, Section 2.3] or Section 3). The expression
(22) illustrates that rN is the logarithmic average reflectivity over N iterations of the billiard ball map.

Let

P(z) :=
(
−h21− z2

∂ν + B

)
: H s+2

h (�)→ H s
h (�)⊕ H s+1/2−max(m−1,0)

h (∂�), (23)

where H m
h denotes the semiclassical Sobolev space with norm

‖u‖Hm
h
:= ‖〈h D〉mu‖L2 . (24)

(See [Zworski 2012, Section 7.1] for a more precise definition.) Let 8−(s) and ζj be as in (9) and
Q ∈ C∞(T ∗∂�) be the symbol of the second fundamental form to ∂� (as in Theorem 1.5), and define
f j ( · ; h) ∈ C∞(T ∗∂�) for j = 1, 2, . . . by

f j (q; h) :=
Q(q)

(
(2hQ(q))1/3(1+ a1) Im8−(ζj )+ σ(h Im V1)(q)

)
|σ(hV )(q)|2

.

Let S∗∂� denote the cosphere bundle of ∂� and

B j,±(ε,C; h) :=
{

z ∈ DM(h) : inf
S∗∂�

( f j (q; h)−Ch−α)(1∓ε)≤
Im z

h
≤ sup

S∗∂�
( f j (q; h)+Ch−α)(1±ε)

}
.

Then Theorems 1.2, 1.5, and 1.7 are a consequence of the following:

Theorem 1.11. Let � b Rd be strictly convex with smooth boundary. Fix ε > 0, M > 0, N1, N2 > 0,
m ≥ 0 and suppose that AV(a1, α, E ′,m, δ0,M,M1,M2, ε0) holds. Then there exist h0 > 0, C, c, N > 0,
so that if 0< h < h0, z ∈ DM(h),

Im z
h
≤ sup

N≤N1

inf
|ξ ′|g≤1−hε0

rN

2lN
(1− ε) or

Im z
h
≥ inf

N≤N1
sup

|ξ ′|g≤1−hε0

rN

2lN
(1+ ε), (25)

± Im z ≥ 0, z /∈
⋃N2

j=1 B j,±(ε,C; h), and

Im z
h
≥ sup

S∗∂�
( fN2+1(q; h)+Ch−α)(1± ε),

then P(z) is invertible, and if P(z)u =
(0
v

)
, then

‖u|∂�‖Hm
h
≤ ch−N

‖v‖L2 . (26)

Observe that Theorem 1.11 (in particular, (25)) takes the same form as (2). Thus, the poles of P(z)−1

are controlled by the average reflectivity in the hyperbolic region. To see that this continues up to the
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glancing set and hence that Theorem 1.11 is a quantum version of the Sabine law, observe that (2) matches
(25). Moreover, using Lemma 5.3, that V is elliptic near |ξ ′|g = 1 and

σ(R)=
σ(hV )

2i
√

1− |ξ ′|2− hV
,

we have that for q = (x, ξ ′) ∈ B∗∂� with
√

1− |ξ ′|2g � h1+α

log |R(β(q))|2

2l(q, β(q))
=
−Q(x, ξ ′)(

√
1− |ξ ′|2− Im hV )
|σ(hV )|2

+O(h−α−1
√

1− |ξ ′|2), (27)

where, as above, Q(x, ξ ′) is the symbol of the second fundamental form to ∂�. Now,

Im8−(s)∼−
√
−s, s→−∞ (see Figure 5).

Therefore (27) matches the bounds in Theorem 1.11 modulo:

(1) Modes cannot concentrate closer than h2/3 to {|ξ ′|g = 1} (the glancing set).

(2) A quantization involving the zeros of the Airy function happens at scale h2/3 near glancing.

(3) −
√
−s is replaced by Im8−(s).

1E. Outline of the proof. Proving Theorem 1.11 amounts to understanding the location of resonances,
which correspond to z such that P(z) is not invertible. We proceed by proving the estimate (26) on
solutions to (13), which implies an estimate on P(z)−1.

To avoid analyzing the microlocally complicated interior Dirichlet-to-Neumann map, we change the
boundary condition. In particular, we have

(I +GV )ψ = Gv. (28)

We then proceed similarly to [Galkowski 2014] and decompose the boundary microlocally into the
hyperbolic, glancing, and elliptic regions given respectively by

H= {(x, ξ ′) ∈ T ∗∂� : |ξ ′|g ≤ 1− hε},

G = {(x, ξ ′) ∈ T ∗∂� : ||ξ ′|g − 1| ≤ hε},

E = {(x, ξ ′) ∈ T ∗∂� : |ξ ′|g ≥ 1+ hε}.

Then, letting 1U be an operator microlocally equal to the identity on U and U ′ be a slight enlargement
of U, we have

(I −1U ′)G1U = O9−∞(h∞),

where U is any of H, G, or E . This allows us to work with each region separately.
For notational convenience, let ψ = u|∂� and recall that

P(z)u =
(0
v

)
, (29)
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where P(z) is as in (23). We first consider E . Here, G is a pseudodifferential operator and our assumptions
on V allow us to prove estimates on 1Eψ in terms of v. We then consider the hyperbolic region, H. Here
the situation is more complicated because G consists of two pieces: GB , a Fourier integral operator (FIO)
associated to the billiard ball map, and G1, a pseudodifferential operator. Using the calculus of FIO’s, we
are able to reduce estimating solutions to (28) microlocally in H to estimating solutions to

(I − (RT )N )u = Av

for some A. Then, again using the calculus of FIOs, we see that I − (RT )N is microlocally invertible
under the conditions given in (25).

Up to this point, the analysis in the present paper requires only minor changes from that in [Galkowski
2014]. However, the analysis near glancing is substantially different and heavily uses the microlocal
model for G and S` := 1�R0(z/h)γ ∗ near glancing given in [loc. cit., Section 4.5]. The analysis in
[loc. cit., Chapter 5] uses only the microlocal model for G and does so simply to obtain a norm bound on
G near glancing. Here we use the precise microlocal properties of G and S` near glancing.

We start by analyzing I +GV as a second microlocal pseudodifferential operator on

G+ := {(x, ξ ′) ∈ T ∗∂� : 1−Mh2/3
≤ |ξ ′|g ≤ 1+ hε},

which is the microlocal region closest to glancing. When α is sufficiently small
(
α <− 2

3

)
, we see that

I +GV is elliptic on G+ outside of a union of h2/3 thickened hypersurfaces given by

GN :=

N⋃
j=1

Gj , Gj :=

{
(x, ξ ′) ∈ T ∗∂� :

∣∣∣∣ |ξ ′|2g − 1
(2Q(x, ξ ′))2/3

− h2/3ζj

∣∣∣∣≤ δh2/3
}
.

Since we have microlocal invertibility on G+ off of GN , resonance states must concentrate on GN . This is
the quantization condition which occurs at scale h2/3.

To get this quantization property, we have used the microlocal structure of G. To obtain estimates the
remaining part of ψ , i.e., on ψg := (1GN + 1G−)ψ , where

G− := {(x, ξ ′) ∈ T ∗∂� : |ξ ′|g ≤ 1−Mh2/3
},

we will use the microlocal structure of S`.
We have that u solves (29). Integrating by parts in �, we have(

2 Re z Im z
h

‖u‖2L2 − Im〈Bψ,ψ〉
)
=− Im〈hv, ψ〉. (30)

Then, letting D` denote the double layer potential and using a classical boundary layer formula, together
with the boundary condition from (13), we have

u = h−1S`h ∂νu−D`u =−(h−1S`B+D`)ψ +S`v =−S`Vψ +S`v.

So, we can write u in terms of ψ via the boundary layer potential, S`. Another technical innovation in our
proof is to use the model for S` near glancing to identify S`∗S` as a second microlocal pseudodifferential
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operator on G. We are then able to apply the sharp Gårding inequality to obtain upper and lower bounds on(
2 Re z Im z

h
‖ug‖

2
L2 − Im〈Bψg, ψg〉

)
,

where ug =−h−1S`Vψg. Together with (30), this allows us to estimate ψg in terms of v.
Combining the estimates on E , G, and H, we are able to estimate ψ in terms of v. In order to prove

that condition (3) of Theorem 1.11, together with (25), implies (26), we refine our estimates on G when
|Im z| ≥ chN for some N > 0.

Because we have polynomial bounds on the interior Dirichlet-to-Neumann map, N1(z/h), in this
region and since (N1+ N2)G = I = G(N1+ N2), we are able to show that if

(I +GV )ψ̃ = w,

then there exists v = (N1+ N2)w such that (I +GV )ψ̃ = Gv and hence there exists ũ solving (13) with
v replaced by (N1+ N2)w = OL2→L2(h−N )w.

Returning to the original problem, (I +GV )ψ = Gv, we see that for δ small enough, Gj are separated
by δh2/3. Hence, we can find ψj microlocalized δh2/3-close to Gj such that

(I +GV )ψj = wj , ‖wj‖ ≤ Ch−M
‖v‖.

Therefore, we can find u j solving (13) with u j |∂� = ψj and v = vj = h(N1+ N2)wj and, repeating the
analysis above using boundary layer operators, we can obtain estimates on ψj . Together with knowledge
of the symbol of N2 and of S`∗S`, this finishes the proof of Theorem 1.11.

1F. Organization of the paper. The paper is organized as follows. We start by introducing the necessary
standard semiclassical tools as well as the shymbol from [Galkowski 2014] in Sections 2 and 3. Then in
Section 4, we introduce the second microlocal calculus from [Sjöstrand and Zworski 1999]. We conclude
the preliminary material with Section 5 where we introduce the billiard ball flow and map.

As a guide for the general case, Section 6 analyzes the single- and double-layer potentials, respectively

S`(λ) f (x) :=
∫
∂�

R0(λ)(x, y) f (y) d S(y), x ∈�,

D`(λ) f (x) :=
∫
∂�

∂νy R0(λ)(x, y) f (y) d S(y), x ∈�,
(31)

and operators, respectively

G(λ) f (x) :=
∫
∂�

R0(λ)(x, y) f (y) d S(y), x ∈ ∂�,

N (λ) f (x) :=
∫
∂�

∂νy R0(λ)(x, y) f (y) d S(y), x ∈ ∂�,

in the special case of the Friedlander model. Section 7 contains the analysis of the boundary layer potentials
and operators in the general strictly convex case. Next, Section 8 gives the proof of Theorem 1.11 including
the Fredholm property and meromorphy of the resolvent for P. Sections 10, 11, and 12 respectively contain
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the necessary material to deduce Theorems 1.2, 1.5, and 1.7 from Theorem 1.11. Finally, Section 13
gives the proof that Theorem 1.2 is sharp in the case of the unit disk.

2. Semiclassical preliminaries

In this section, we review the methods of semiclassical analysis which are needed throughout the rest of
our work. The theories of pseudodifferential operators, wavefront sets, and the local theory of Fourier
integral operators are standard and our treatment follows that in [Dyatlov and Guillarmou 2014; Zworski
2012]. We introduce the notion shymbol from [Galkowski 2014], which is a notion of sheaf-valued
symbol that is sensitive to local changes in the semiclassical order of a symbol.

2A. Notation. We review the relevant notation from semiclassical analysis in this section. For more
details, see [Dimassi and Sjöstrand 1999; Zworski 2012].

2A1. Big O notation. The O( · ) and o( · ) notations are used in this paper in the following ways: We
write u = OX (F) if the norm of u in the functional space X is bounded by the expression F times a
constant. We write u = oX (F) if the norm of u has

lim
s→s0

‖u(s)‖X
F(s)

= 0,

where s is the relevant parameter. If no space X is specified, then u = O(F) and u = o(F) mean

|u(s)| ≤ C |F(s)| and lim
s→s0

|u(s)|
F(s)

= 0 (32)

respectively.

2A2. Phase space. Let M be a d-dimensional manifold without boundary. Then we denote an element
of the cotangent bundle to M by (x, ξ), where ξ ∈ T ∗x M.

2B. Symbols and quantization. We start by defining the exotic symbol class f (h)Sm
δ (M).

Definition 2.1. Let a(x, ξ ; h) ∈ C∞(T ∗M × [0, h0)), f ∈ C∞((0, h0)), m ∈ R, and δ ∈
[
0, 1

2

)
. Then,

we say that a ∈ f (h)Sm
δ (T

∗M) if for every K b M and ς,$ multi-indices, there exists Cς$K such that

|∂ςx ∂
$
ξ a(x, ξ ; h)| ≤ Cς$K f (h)h−δ(|ς |+|$ |)〈ξ〉m−|$ |. (33)

We define S∞δ :=
⋃

m Sm
δ , S−∞δ :=

⋂
m Sm

δ and when one of the parameters δ or m is 0, we suppress it in
the notation.

We say that a(x, ξ ; h)∈ Scomp
δ (M) if a ∈ Sδ(M) and a is supported in some h-independent compact set.

This definition of a symbol is invariant under changes of variables (see for example [Zworski 2012,
Theorem 9.4] or more precisely, the arguments therein).
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2C. Pseudodifferential operators. We follow [Zworski 2012, Section 14.2] to define the algebra9m
δ (M)

of pseudodifferential operators with symbols in Sm
δ (M). (For the details of the construction of these

operators, see for example [loc. cit., Sections 4.4, 14.12]. See also [Hörmander 1985a, Chapter 18;
Grigis and Sjöstrand 1994, Chapter 3].) Since we have made no assumption on the behavior of our
symbols as x→∞, we do not have control over the behavior of 9k

δ (M) near infinity in M. However,
we do require that all operators A ∈ 9m

δ (M) are properly supported. That is, the restriction of each
projection map πx , πx ′ : M × M → M to the support of K A(x, x ′; h), the Schwartz kernel of A, is a
proper map. For the construction of such a quantization procedure, see for example [Hörmander 1985a,
Proposition 18.1.22]. An element in A ∈9m

δ (M) acts H s
h,loc(M)→ H s−m

h,loc (M), where H s
h,loc(M) denotes

the space of distributions locally in the semiclassical Sobolev space H s
h (M). The definitions of these

spaces can be found for example in [Zworski 2012, Section 7.1]. Finally, we say that a properly supported
operator, A, with

A : D′(M)→ C∞(M)

and each seminorm O(h∞) is O9−∞(h∞). We include operators that are O9−∞(h∞) in all pseudodifferen-
tial classes.

With this definition, we have the semiclassical principal symbol map

σ :9m
δ (M)→ Sm

δ (M)/h
1−2δSm−1

δ (M) (34)

and a noncanonical quantization map

Oph : Sm
δ (M)→9m

δ (M)

with the property that σ ◦Oph is the natural projection map onto Sm
δ (M)/h

1−2δSm−1
δ (M).

Henceforward, we will take σ(A) to be any representative of the corresponding equivalence class in
the right-hand side of (34). We do not include the subprincipal symbol because then the calculus of
pseudodifferential operators would be more complicated. With this in mind, the standard calculus of
pseudodifferential operators with symbols in Sm

δ gives for A ∈9m1
δ (M) and B ∈9m2

δ (M),

σ(A∗)= σ(A)+O
S

m1−1
δ (M)

(h1−2δ),

σ (AB)= σ(A)σ (B)+O
S

m1+m2−1
δ (M)

(h1−2δ),

σ ([A, B])=−ih{σ(A), σ (B)}+OSm1+m2−2(M)(h
2(1−2δ)).

Here { · , · } denotes the Poisson bracket and we take adjoints with respect to L2(M).

2C1. Wavefront sets and microsupport of pseudodifferential operators. In order to define a notion of
wavefront set that captures both h-microlocal and C∞ behavior, we define the fiber radially compactified
cotangent bundle, T ∗M, by T ∗M = T ∗M t S∗M , where

S∗M := (T ∗M \ {M × 0})/R+

and the R+ action is given by (t, (x, ξ)) 7→ (x, tξ). Let | · |g denote the norm induced on T ∗M by the
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Riemannian metric g. Then a neighborhood of a point (x0, ξ0) ∈ S∗M is given by V ∩ {|ξ |g ≥ K }, where
V is an open conic neighborhood of (x0, ξ0) ∈ T ∗M.

For each A ∈9m
δ (M) there exists a ∈ Sm

δ (M) with A = Oph(a)+O9−∞(h∞). Then the semiclassical
wavefront set of A, WFh,9(A) ⊂ T ∗M, is defined as follows. A point (x, ξ) ∈ T ∗M does not lie in
WFh,9(A) if there exists a neighborhood U of (x, ξ) such that each (x, ξ) derivative of a is O(h∞〈ξ〉−∞)
in U. As in [Alexandrova 2008], we write

WFh,9(A)=:WFf
h,9(A)tWFi

h,9(A),

where WFf
h,9(A)=WFh(A)∩ T ∗M and WFi

h,9(A)=WFh(A)∩ S∗M.
Operators with compact wavefront sets in T ∗M are called compactly microlocalized. These are

operators of the form
Oph(a)+O9−∞(h∞)

for some a ∈ Scomp
δ (M). The class of all compactly microlocalized operators in 9m

δ (M) is denoted by
9

comp
δ (M).
We will also need a finer notion of microsupport on h-dependent sets.

Definition 2.2. An operator A ∈9comp
δ (M) is microsupported on an h-dependent family of sets V (h)⊂

T ∗M if we can write A = Oph(a)+O9−∞(h∞), where for each compact set K ⊂ T ∗M, each differential
operator ∂ς on T ∗M, and each N, there exists a constant CςN K such that for h small enough,

sup
(x,ξ)∈K\V (h)

|∂ςa(x, ξ ; h)| ≤ CςN K hN.

We then write
MSh,9(A)⊂ V (h).

The change of variables formula for the full symbol of a pseudodifferential operator [Zworski 2012,
Theorem 9.10] contains an asymptotic expansion in powers of h consisting of derivatives of the original
symbol. Thus Definition 2.2 does not depend on the choice of the quantization procedure Oph. Moreover,
since we take δ < 1

2 , if A ∈9comp
δ is microsupported inside some V (h) and B ∈9m

δ , then AB, B A, and
A∗ are also microsupported inside V (h). This implies the following.

Lemma 2.3. Suppose that A, B ∈9comp
δ and MSh,9(A)∩MSh,9(B)=∅. Then

WFh,9(AB)=∅.

For A ∈ 9comp
δ (M), we know (x, ξ) /∈WFh(A) if and only if there exists an h-independent neigh-

borhood u of (x, ξ) such that A is microsupported on the complement of U. However, A need only
be microsupported on any h-independent neighborhood of WFh,9(A), not on WFh,9(A) itself. Also,
notice that by Taylor’s formula if A ∈9comp

δ (M) is microsupported in V (h) and δ′ > δ, then A is also
microsupported on the set of all points in V (h) which are at least hδ

′

away from the complement of V (h).

Remark 2.4. Notice that since we are working with A∈9comp
δ (M) for 0≤ δ< 1

2 we have a∈ Scomp
δ (T ∗M)

and a can only vary on a scale ∼ h−δ. This implies that the set MSh,9(A) will respect the uncertainty
principle.
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2C2. Ellipticity and L2 operator norm. For A ∈9m
δ (M), define its elliptic set ell(A)⊂ T ∗M as follows:

(x, ξ) ∈ ell(A) if and only if there exists a neighborhood U of (x, ξ) in T ∗M and a constant C such that
|σ(A)|≥C−1

〈ξ〉m in U∩T ∗M. The following statement is the standard semiclassical elliptic estimate; see
[Hörmander 1985a, Theorem 18.1.24′] for the closely related microlocal case and for example [Dyatlov
2012, Section 2.2] for the semiclassical case.

Lemma 2.5. Suppose that P ∈ 9m
δ (M) and A ∈ 9m′

δ (M) with WFh,9(A) ⊂ ell(P). Then for each
χ ∈ C∞c (M), there exist Qi ∈9

m′−m
δ (M) such that

χ A = χQ1 P +O9−∞δ (h∞)= χ P Q2+O9−∞(h∞).

In particular, for each s ∈ R and u ∈ H s+m′
h there exists C > 0 such that for all N > 0, and χ1 ∈ C∞(M)

with χ1 ≡ 1 on suppχ ,

‖χ Au‖H s
h
≤ C‖χ Pu‖H s+m′−m

h
+O(h∞)‖χ1u‖H−N

h
.

We also recall the estimate for the L2
→ L2 norm of a pseudodifferential operator (see for example

[Zworski 2012, Chapter 13]).

Lemma 2.6. Suppose that A ∈9δ(M). Then there exists C > 0 such that

‖A‖L2→L2 ≤ sup
T ∗M
|σ(A)| +Ch1−2δ.

2D. Semiclassical microlocalization of distributions and operators.

2D1. Semiclassical wavefront sets and microsupport for distributions. An h-dependent family u(h) :
(0, h0)→ D′(M) is called h-tempered if for each open U b M, there exist constants C and N such that

‖u(h)‖H−N
h (U ) ≤ Ch−N . (35)

For a tempered distribution u, we say that (x0, ξ0) ∈ T ∗M does not lie in the wavefront set WFh(u) if
there exists a neighborhood V of (x0, ξ0) such that for each A ∈ 9(M) with WFh,9(A) ⊂ V, we have
Au = OC∞(h∞). As above, we write

WFh(u)=WFf
h(u)tWFi

h(u)

where WFi
h(u)=WFh(u)∩ S∗M. By Lemma 2.5, (x0, ξ0) 6∈WFh(u) if and only if there exists compactly

supported A ∈ 9(M) elliptic at (x0, ξ0) such that Au = OC∞(h∞). The wavefront set of u is a closed
subset of T ∗M. It is empty if and only if u = OC∞(M)(h∞). We can also verify that for u tempered and
A ∈9m

δ (M), we have WFh(Au)⊂WFh,9(A)∩WFh(u).

Definition 2.7. A tempered distribution u is said to be microsupported on an h-dependent family of sets
V (h)⊂ T ∗M if for some δ ∈

[
0, 1

2

)
, for all A ∈9δ(M) with MSh,9(A)∩V =∅ we have WFh(Au)=∅.
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2D2. Semiclassical wavefront sets of tempered operators. An h-dependent family of operators A(h) :
S(M)→ S ′(M ′) is called h-tempered if for each U b M, there exists N ≥ 0 and k ∈ Z+ such that

‖A(h)‖H k
h (U )→H−k

h,loc(M
′) ≤ Ch−N . (36)

For an h-tempered family of operators, we write that the wavefront set of A is given by

WF ′h(A) := {(x, ξ, y, η) : (x, ξ, y,−η) ∈WFh(K A)},

where K A is the Schwartz kernel of A.

Definition 2.8. A tempered operator A is said to be microsupported on an h-dependent family of sets
V (h)⊂ T ∗M × T ∗M ′ if for all δ ∈

[
0, 1

2

)
and each B1 ∈9δ(M

′) and B2 ∈9δ(M) with

(MSh,9(B1)×MSh,9(B2))∩ V =∅,

we have WFh(B1 AB2)=∅. We then write

MSh
′(A)⊂ V (h).

Remark 2.9. With the definitions above, we have for A ∈9m
δ (M),

WF ′h(A)= {(x, ξ, x, ξ) : (x, ξ) ∈WFh,9(A)}.

In addition, we have that if A ∈9comp
δ , then MSh,9(A)⊂ V (h) if and only if

MS′h(A)⊂ {(x, ξ, x, ξ) : (x, ξ) ∈ V (h)}.

Since there is a simple relationship between WFh,9 and WFh, as well as MSh,9 and MSh, we will only
use the notation without 9 from this point forward and the correct object will be understood from context.

2E. Semiclassical Lagrangian distributions. In this subsection, we review some facts from the theory
of semiclassical Lagrangian distributions. See [Guillemin and Sternberg 1977, Chapter 6; Vũ Ngo. c 2006,
Section 2.3] for a detailed account, and [Hörmander 1985b, Section 25.1; Grigis and Sjöstrand 1994,
Chapter 11] for the microlocal case. We do not attempt to define the principal symbol as a globally
invariant object. Indeed, it is not always possible to do so in the semiclassical setting. When it is
possible to do so, i.e., when the Lagrangian is exact, we define the symbol modulo the Maslov bundle.
Taking symbols modulo the Maslov bundle makes the theory considerably simpler. We can make this
simplification since for all of our symbolic computations, we work only in a single coordinate chart and,
moreover, we always work with exact Lagrangians.

2E1. Phase functions. Let M be a manifold without boundary. We denote its dimension by d. Let
ϕ(x, θ) be a smooth real-valued function on some open subset Uϕ of M ×RL for some L; we call x the
base variable and θ the oscillatory variable. As in [Hörmander 1985a, Section 21.2], we say that ϕ is a
phase function if the differentials (∂θ1ϕ), . . . , d(∂θLϕ) on the critical set

Cϕ := {(x, θ) : ∂θϕ = 0} ⊂Uϕ (37)
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are independent. Note that

3ϕ := {(x, ∂xϕ(x, θ)) : (x, θ) ∈ Cϕ} ⊂ T ∗M

is an immersed Lagrangian submanifold (we will shrink the domain of ϕ to make it embedded).

2E2. Symbols. Let δ ∈
[
0, 1

2

)
. A smooth function a(x, θ; h) is called a compactly supported symbol of

type δ on Uϕ if it is supported in some compact h-independent subset of Uϕ , and for each differential
operator ∂ς on M ×RL, there exists a constant Cς such that

sup
Uϕ

|∂ςa| ≤ Cςh−δ|ς |.

As above, we write a ∈ Scomp
δ (Uϕ) and set Scomp

:= Scomp
0 .

2E3. Lagrangian distributions. Given a phase function ϕ and a symbol a ∈ Scomp
δ (Uϕ), consider the

h-dependent family of functions

u(x; h)= (2πh)−(d+2L)/4
∫

RL
eiϕ(x,θ)/ha(x, θ; h) dθ. (38)

We call u a Lagrangian distribution of type δ generated by ϕ and denote this by u ∈ I comp
δ (3ϕ).

By the method of nonstationary phase, if supp a is contained in some h-dependent compact set
K (h)⊂Uϕ , then

MSh(u)⊂ {(x, ∂xϕ(x, θ)) : (x, θ) ∈ Cϕ ∩ K (h)} ⊂3ϕ. (39)

Remark 2.10. We are using the fact that a ∈ Sδ(Uϕ) for some δ < 1
2 here.

2E4. Principal symbols. We define the principal symbol of a Lagrangian distribution independently of
the choice of ϕ. To do this, we will need to use half-densities on 3ϕ (see, for example [Zworski 2012,
Chapter 9] for a definition).

Following [Hörmander 1985b, Section 25.1], let

8=

(
ϕ′′xx ϕ′′xθ
ϕ′′θx ϕ′′θθ

)
.

Lemma 2.11. Modulo Maslov factors, and a factor ei A/h for some constant A ∈ R depending on ϕ, the
principal symbol

σ(u) ∈ Scomp
δ (3ϕ;�

1/2)/h1−2δScomp
δ (3ϕ;�

1/2)

is a half density given by

σ(u)(x, ξ)= |dξ |1/2a(x, θ)eiπ/4 sgn8
|det8|−1/2.

Remark 2.12. In the case that 3ϕ is exact, the factor ei A/h can be removed.

Definition 2.13. Let 3⊂ T ∗M be an embedded Lagrangian submanifold. We say that an h-dependent
family of functions u(x; h)∈C∞c (M) is a (compactly supported and compactly microlocalized) Lagrangian
distribution of type δ associated to 3 if it can be written as a sum of finitely many functions of the
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form (38), for different phase functions ϕ parametrizing open subsets of 3, plus an OC∞c (h
∞) remainder.

Denote by I comp
δ (3) the space of all such distributions, and put I comp(3) := I comp

0 (3).

The action of a pseudodifferential operator on a Lagrangian distribution is given by the following
lemma, following from the method of stationary phase:

Lemma 2.14. Let u ∈ I comp
δ (3) and P ∈9m

δ (M). Then Pu ∈ I comp
δ (3) and

σ(Pu)= σ(P)|3 · σ(u)+O(h1−2δ)Scomp
δ (3).

2F. Fourier integral operators. A special case of Lagrangian distributions are Fourier integral operators
associated to canonical graphs. Let M be a manifolds of dimension d . Consider a Lagrangian submanifold
3⊂ T ∗M × T ∗M given by

3= {(κ(y, η), y,−η)},

where κ is a symplectomorphism.
A compactly supported operator U : D′(M ′)→ C∞c (M) is called a (semiclassical) Fourier integral

operator of type δ associated to κ if its Schwartz kernel KU (x, x ′) lies in I comp
δ (3). We write U ∈ I comp

δ (C),
where

C = {(x, ξ, y, η) : (x, ξ, y,−η) ∈3}.

The numerology h−(d+2L)/4 in (38) is explained by the fact that the normalization for Fourier integral
operators is chosen so that

‖U‖L2(M)→L2(M) ∼ 1

when C is generated by a symplectomorphism.
We will need the following lemma from the calculus of Fourier integral operators.

Lemma 2.15. Let A ∈ I comp
δ (M ×M,C) and P ∈9comp

δ (M). Then, A∗P A ∈9comp
δ (M) and

σ(A∗P A)(q)= |σ(A)(q, κ(q))|2σ(P)(κ(q)).

3. The shymbol

It will be useful to calculate symbols of operators whose semiclassical order may vary from point to
point in T ∗M. One can often handle this type of behavior by using weights to compensate for the growth.
However, this requires some a priori knowledge of how the order changes and limits the allowable size in
the change of order. In this section, we will develop a notion of a sheaf-valued symbol, the shymbol, that
can be used to work in this setting without such a priori knowledge.

Let M be a compact manifold. Let T (T ∗M) be the topology on T ∗M. For s ∈ R, define the symbol
map

σs : hs9
comp
δ → hs Scomp

δ /hs+1−2δScomp
δ .

Suppose that for some N > 0 and δ ∈
[
0, 1

2

)
, we have A ∈ h−N9

comp
δ (M). We define a finer notion of

symbol for such a pseudodifferential operator. Fix 0 < ε � 1− 2δ. For each open set U ∈ T (T ∗M),
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define the ε-order of A on U

I εA(U ) := sup
s∈Sε

s+ 1− 2δ,

where

Sε :=
{
s ∈ εZ : there exists χ ∈ C∞c (T

∗M), χ |U = 1, σs(Oph(χ)A Oph(χ))|U ≡ 0
}
.

Then it is clear that for any V bU there exists χ ∈C∞c (U ) with χ = 1 on V such that Oph(χ)A Oph(χ)∈

h I εA(U )9
comp
δ (M).

Give T (T ∗M) the ordering that U ≤ V if V ⊂U with morphisms U→ V if U ≤ V. Notice that U ≤ V
implies I εA(U )≤ I εA(V ). Then define the functor FεA : T (T

∗M)→ Comm (the category of commutative
rings) by

FεA(U )=
{

h I εA(U )Scomp
δ (M)|U / h I εA(U )+1−2δScomp

δ (M)|U , I εA(U ) 6= ∞,
{0}, I εA(U )=∞,

FεA(U → V )=
{

h I εA(V )−I εA(U )|V , I εA(V ) 6= ∞,
0, I εA(V )=∞.

Then FεA is a presheaf on T ∗M. We sheafify FεA, still denoting the resulting sheaf by FεA, and say that
A is of ε-class FεA. We define the stalk of the sheaf at q by FεA(q) := lim

−−→q∈U FεA(U ).
Now, for every U ⊂ T (T ∗M), I εA(U ) 6= ∞, there exists χU ∈ C∞c (T

∗M) with χU ≡ 1 on U such that

σI εA(U )(Oph(χU )A Oph(χU ))|U 6= 0.

Then we define the ε-shymbol of A to be the section of FεA, σ̃ ε( · )(A) : T (T
∗M)→ FεA( · ), given by

σ̃ εU (A) :=
{
σI εA(U )(Oph(χU )A Oph(χU ))|U , I εA(U ) 6= ∞,
0, I εA(U )=∞.

Define also the ε-stalk shymbol, σ̃ ε(A)q to be the germ of σ̃ ε(A) at q as a section of FεA.
Now, define

I εA(q) := sup{I εA(U ) : q ∈U }.

Let Un ↓ {q} be a sequence of open sets. We then define the simpler compressed shymbol by

σ̃ ε(A) : T ∗M→
⊔

q

h I εA(q)C/h I εA(q)+1−2δC,

σ̃ ε(A)(q) :=

{
0, I εA(q)=∞,
lim

n
σ̃ εUn

(A)(q), I εA(q) <∞.

(40)

The limit in (40) exists since if I εA(q) <∞, then there exists U 3 q such that we have I εA(V )= I εA(U )
for all V ⊂ U. This also shows that the limit is independent of the choice of sequence of Un ↓ q. It is
easy to see from standard composition formulae that the compressed shymbol has

σ̃ ε(AB)(q)= σ̃ ε(A)(q)σ̃ (B)(q), A ∈ h−N9
comp
δ and B ∈ h−M9

comp
δ .
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Moreover,
σ̃ ε([A, B])(q)=−ih{σ̃ ε(A)(q), σ̃ ε(B)(q)}.

The following lemma follows from standard formulas for the composition of FIOs combined with the
definitions above:

Lemma 3.1. Suppose that A ∈9comp
δ and let T be a semiclassical FIO associated to the symplectomor-

phism κ with elliptic symbol t ∈ Sδ. Then for N > 0 independent of h,

(AT )N := (T ∗A∗)N (AT )N

has

σ̃ ε((AT )N )(q)=
N∏

i=1

(
|σ̃ ε(A)t |2 ◦ κ i (q)+O(h I εAi

(βk(q))+1−2δ
)
)
.

Proof. Fix q ∈ T ∗M. Let χk ∈ C∞c (T
∗M) have χk = 1 on B

(
q, 1

k

)
, the open ball of radius k−1 around q ,

and suppχk ⊂ B
(
q, 2

k

)
. Then let D := Oph(χk)(AT )N Oph(χk). We have

D = Oph(χk)(AN T AN−1T · · · A1T )∗(AN T AN−1T · · · A1T )Oph(χk)+O9comp
δ
(h∞),

where Ai = Oph(ψk,i )A Oph(ψk,i ) with C∞c (T
∗M) 3 ψk,i = 1 in some neighborhood of β i (q) and is

supported inside a neighborhood Uk,i of β i (q) such that Uk,i ↓ q . Then the result follows from standard
composition formulae in Lemma 2.15. �

Now, since ε > 0 is arbitrary, we define the semiclassical order of A at q by IA(q) := supε>0 I εA(q)
with the understanding that f = O(h IA(q)) means that for any ε > 0,

| f (q)| ≤ Cεh IA(q)−ε .

Furthermore, we suppress the ε in the notation σ̃ ε(A)(q) and denote the compressed shymbol by σ̃ (A)(q),
again with the understanding that for any ε > 0,

σ̃ (A)(q) ∈ h IA(q)−εC/h IA(q)+1−2δ−εC.

4. A second microlocal calculus

In the present work, it will be necessary to localize h2/3 near the glancing submanifold in T ∗∂�. In order
to do this, we present the second microlocal calculus from [Sjöstrand and Zworski 1999].

4A. The local model. We start by considering the model case of 60 = {ξ1 = 0} ⊂ T ∗Rd. Suppose that
U is a neighborhood of (0, 0) and a ∈ C∞c (U ). In that case, we write a = a(x, ξ, λ; h) with λ= h−δξ1.
Suppose that ε <min

( 1
2 , δ

)
, and ε+ δ ≤ 1. We say that a ∈ Sk1

δ,ε(60) if and only if

∂ςx ∂
$
ξ ∂

k
λa(x, ξ, λ; h)= O(h−ε(|ς |+|$ |)〈hελ〉k1−k). (41)

We will write
a = Õε(〈hελ〉k1) if and only if (41) holds.
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For such a, we define the exact quantization

Õph(a)u =
1

(2πh)d

∫
a
(

x + y
2

, ξ, h−δξ1; h
)

e(i/h)〈x−y,ξ〉u(y) dy dξ.

Lemma 4.1. Suppose that a = Õε(〈hελ〉k1) and b = Õε(〈hελ〉k2). Then

Õph(a) ◦ Õph(b)= Õph(a ] b),

where

a ] b = eih A(D)(a|λ=h−δξ1b|µ=h−δη1)
∣∣y=x
ξ=η
= Õε(〈hελ〉k1+k2),

where

A(D)= 1
2σ((Dx , Dξ ), (Dy, Dη))=:

1
2〈Q D, D〉.

Moreover if ε+ δ < 1,

a ] b =
∞∑

k=0

ikhk

k!
A(D)k(a|λ=h−δξ1b|µ=h−δη1)

∣∣y=x
η=ξ

mod h∞9−∞.

We say that a(x, ξ, y, η, λ, µ)= Õε(〈hελ〉k1〈hεµ〉k2) if

|∂ς1
x ∂

ς2
y ∂

$1
ξ ∂$2

η ∂
m1
λ ∂m2

µ a| ≤ Cς$mh−ε(|ς |+|$ |)〈hελ〉k1−m1〈hεµ〉k2−m2 .

The only part of this lemma that is nonstandard is the following. The rest follows from applying stationary
phase.

Lemma 4.2. eih A(D)
: Õε(〈hελ〉k1〈hεµ〉k2)→ Õε(〈hελ〉k1〈hεµ〉k2).

Proof. We start by considering the case of one dimension. Let w1 = (x ′1, ξ
′

1, y′1, η
′

1) and

ϕ1(w1)=
1
2(〈ξ

′

1, y′1〉− 〈η
′

1, x ′1〉).

Then, with z = (x1, ξ1, y1, η1),

c := (eih A(D)a)(z, µ)= Ch−2
∫

e−(i/h)ϕ1(w)a(w− z, λ− h−δξ1, µ− h−δη1) dw.

Then, rescale (x ′1, y′1)= (x̃1, ỹ1)h−(1−δ) and (ξ ′1, η
′

1)= (ξ̃1, η̃1)h−δ. We have that with w̃= (x̃1, ξ̃1, ỹ1, η̃1),

c = C
∫

e−iϕ1(w̃)
(
χ(w̃)a(x1− h1−δ x̃1, ξ1− hδ ξ̃1, y1− h1−δ ỹ1, η1− hδη̃1, λ− ξ̃1, µ− η̃1)

+ (1−χ(w̃))a(x1− h1−δ x̃1, ξ1− hδ ξ̃1, y1− h1−δ ỹ1, η1− hδη̃1, λ− ξ̃1, µ− η̃1)
)

dw̃

=: A+ B,

where χ ∈ C∞c (R
4) has χ ≡ 1 on B(0, 1) and suppχ ⊂ B(0, 2). Then

|∂ς A(z, λ, µ)| ≤ C sup
|w̃|≤2
|∂ςa(x1− h1−δ x̃1, ξ1− hδ ξ̃1, y1− h1−δ ỹ1, η1− hδη̃1, λ− ξ̃1, µ− η̃1)|
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and hence A = Õε(〈hελ〉k1〈hεµ〉k2). Letting

L :=
−〈∂ϕ(w̃), Dw̃〉

|∂ϕ(w̃)|2

and integrating by parts sufficiently many times shows also that B = Õε(〈hελ〉k1〈hεµ〉k2).
To obtain the general case, we simply observe that

eih A(Dx ,Dξ ,Dy ,Dη) = eih A(Dx ′ ,Dξ ′ ,Dy′ ,Dη′ )eih A(Dx1 ,Dξ1 ,Dy1 Dη1 )

and use that
eih A(Dx ′ ,Dξ ′ ,Dy′ ,Dη′ ) : Sε→ Sε . �

Now, rewriting the asymptotic expansion, and assuming that |ξ1| ≤ C so that

h1−2ε
≤ Ch1−δ−ε

〈hελ〉−1,

we have if ε+ δ < 1, taking p1 > (1− 2ε)/(1− δ− ε),

a ] b(x, ξ, λ; h)=
∞∑

k=0

ikhk

2kk!
(σ (Dx , Dξ1 + h−δDλ, Dξ ′, Dy, Dη1 + h−δDµ, Dη′))

kab
∣∣y=x, η=ξ

λ=µ

= ab+
1
2i

h1−δ(∂λb∂x1a− ∂λa∂x1b)+
h
2i
{a, b}

+

p1∑
k=2

ikhk(1−δ)

2kk!
(σ (Dx1, Dλ, Dy1, Dµ))

kab
∣∣y=x, η=ξ

λ=µ

+ Õε(h2−3ε−δ
〈hελ〉k1+k2−1).

4A1. Ellipticity and boundedness in the local model. We now present the analogs of microlocal elliptic
estimates and the sharp Gårding inequalities in the second microlocal setting. Suppose that ε + δ < 1
and a = Õε(〈hελ〉k1). We define the elliptic set of a, ell(a), by (x, ξ, λ) ∈ ell(a) if there exists a
neighborhood, U , of (x, ξ, λ) and c > 0 so that |a|> c〈hελ〉k1 on U.

Lemma 4.3. Suppose that p = Õε(〈hελ〉k1), b = Õε(〈hελ〉k2) and supp b ⊂ ell(p). Then there exists
ai = Oε(〈hελ〉k2−k1), i = 1, 2, so that

Õph(a1) Õph(p)= Õph(p) Õph(a2)+O9−∞(h∞)= Õph(b)+O9−∞(h∞).

Proof. By elementary analysis, one sees that

∂ς p−1
= p−1

|ς |∑
k=1

∑
ς=$ 1

+···+$ k

|$ j
|≥1

C$ 1,...,$ k

k∏
j=1

(p−1∂$j p)

(see for example the proof of [Zworski 2012, Theorem 4.32]). Thus, since |p| ≥ c〈hελ〉k1 on supp b,

q0 : bp−1
= Õε(〈hελ〉k2−k1).

So,
Õph(q0) Õph(p)= Õph(b)+ h1−δ−ε Õph(e1)+O9−∞(h∞),
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where e1 = Õε(〈hελ〉k2−1) with supp e1 ⊂ ell(p). Thus, setting r1 = h1−δ−εe1, letting q1 = −r1 p−1
=

h1−δ−ε Õε(〈hελ〉k2−k1−1), and continuing in this way, we obtain

qn = hn(1−δ−ε)Õε(〈hελ〉k2−k1−n)

so that with a1 ∼
∑

qi ,
Õph(a1) Õph(p)= Õph(b)+O9−∞(h∞).

A similar argument, yields a2. �

Lemma 4.4. Suppose that a = Õε(〈hελ〉k1). Then

‖ Õph(a)‖L2→L2 ≤ C〈h(ε−δ)k1〉.

Proof. The proof for h = 1 follows from for example [Zworski 2012, Theorem 4.23]. Suppose that
u(x) ∈ S. The proof follows that in [loc. cit., Theorem 5.1]. We have

‖ Õp(a)‖L2→L2 ≤ C sup
|ς |≤Md

|∂ςa|.

So, we rescale ξ̃ = h−(1+δ)/2ξ , x̃ = h−(1−δ)/2x and ũ(x̃)= h(1−δ)d/4u(h(1−δ)/2 x̃). Then,

Õph(a)u(x)= h−(d(1−δ))/4 Õp(ah)ũ(x̃),

where
ah(x̃, ξ̃ ) := a(h(1−δ)/2 x̃, h(1+δ)/2ξ̃ , h(1−δ)/2ξ̃1).

Therefore,
‖ Õph(a)u‖L2

x
= ‖ Õp(ah)ũ(x̃)‖L2

x̃
≤ ‖ Õp(ah)‖L2→L2‖ũ‖L2

x̃

≤ C sup
|ς |≤Md

|∂ςah|‖u‖L2
x

≤ C sup
|(ς,$,k)|≤Md

h(|ς |+|$ |+k)(1−δ)/2
|∂ςx ∂

$
ξ ∂

k
λa|

≤ C sup
|(ς,$,k)|≤Md

h(|ς |+|$ |+k)(1−δ)/2(1+〈hε−δ〉k1−k). �

We now prove an analog of the sharp Gårding inequality for the second microlocal operators.

Lemma 4.5. Suppose that a = Õ0(〈λ〉
0) and a ≥ 0. Then

〈Õph(a)u, u〉 ≥ −Ch1−δ
‖u‖2L2 .

Proof. We again follow the proof in the classical case. (See for example [Zworski 2012, Theorem 4.32]).
Fix h̃ sufficiently small and let γ = hε/h̃. We will show that q = (a+ γ )−1 satisfies

∂ςx ∂
$
ξ ∂

k
λq = O(h−ε h̃(h̃h)−(ε/2)(|ς |+|$ |+k)

〈λ〉−k). (42)

That is q ∈ h−ε h̃S0
δ+ε/2,ε/2(60). We will then be able to invert a+ γ when ε ≤ 1− δ.

First, since a ≥ 0 and a = Õ0(〈λ〉
0), we have |∂λa| ≤ C〈λ〉−1a1/2. (See for example [loc. cit.,

Lemma 4.31].) Moreover, |∂xa| + |∂ξa| ≤ Ca1/2. Then recall that
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∂ς (a+ γ )−1
= (a+ γ )−1

|ς |∑
k=1

∑
ς=$ 1

+···+$ k

|$ j
|≥1

C$ 1,...,$ k

k∏
j=1

((a+ γ )−1∂
$ j,1
x ∂

$ j,2
ξ ∂

$ j,3
λ a). (43)

Now,
|∂λa|(a+ γ )−1

≤ Cγ−1/2
〈λ〉−1

and for |$ | = 1
(|∂$x a| + |∂$ξ a|)(a+ γ )−1

≤ Cγ−1/2.

Moreover, for |(ς,$, k)| ≥ 2,

|∂ςx ∂
$
ξ ∂

k
λa|(a+ γ )−1

≤ Cγ−1
〈λ〉−k .

So, ∣∣∣∣ k∏
j=1

(a+ γ )−1∂
$ j,1
x ∂

$ j,2
ξ ∂

$ j,3
λ a

∣∣∣∣≤ C
∏
|$ |≥2

γ−1
〈λ〉−$ j,3

∏
|$ |=1

γ−1/2
〈λ〉−$ j,3 ≤ C〈λ〉−ς3γ−|ς |/2.

Plugging this into (43) gives (42).
We now choose ε = 1− δ. So, a + γ ∈ S0

δ,0(60) ⊂ S0
δ+ε/2,ε/2(60). Then, write a1(x, ξ, λ1) for the

function such that
Õph
δ

(a)= Õph
δ+ε/2

(a1).

Write also q1 = (a1 + γ )
−1. So we can define (a1 + γ ) ] q1 Then, using Taylor’s formula and letting

w = (x, ξ), z = (y, η),

(a1+ γ ) ] q1 = eih A(D)(a1+ γ )|λ=h−δ−ε/2ξ1q1|µ=h−δ−ε/2ξ1

∣∣
w=z

= 1+
∫ 1

0
(1− t)ei th A(D)(ih A(D))2(a1(w, h−δ−ε/2ξ1)q1(z, h−δ−ε/2η1))

∣∣
w=z dt

=: 1+ r(z).

Note that we have used {a1+ γ, (a1+ γ )
−1
} = 0. Now, (ih A(D))2(a1+ γ ) ] q1 ∈ h̃S0

δ+ε/2,ε/2(60). So,

‖ Õph
δ+ε/2

(r)‖L2→L2 ≤ Ch̃ ≤ 1
2

for h̃ small enough. Thus, Õph δ+ε/2(q) is an approximate right (and similarly left) inverse for Õph δ(a)+γ .
This implies that (Õph δ(a)+ γ + γ1)

−1 exists for any γ1 ≥ 0 Therefore,

Spec(Õph
δ

(a))⊂ [−γ,∞).

Thus, by [Zworski 2012, Theorem C.8]

〈Õph(a)u, u〉 ≥ −γ ‖u‖2L2 . �

Using the sharp Gårding inequality, it is not hard to prove:

Lemma 4.6. Suppose a = Õ(〈λ〉0). Then,

〈Õph(a)
∗ Õph(a)u, u〉 ≤ (sup |a| +Ch1−δ)‖u‖2L2 .
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4B. The global second microlocal calculus. Let 6 ⊂ T ∗M be a smooth compact hypersurface. Let Vi

denote vector fields tangent to 6 and Wi denote any vector fields. Let 0≤ δ < 1. We define the symbol
class Sk1,k2

δ (M;6) by a ∈ Sk1,k2
δ (M;6) if and only if

V1 · · · Vl1 W1 · · ·Wl2a = O(h−δl2〈h−δd(6, · )〉k1) near 6,

∂ςx ∂
$
ξ a(x, ξ ; h)= O(h−δk1〈ξ〉k2−|$ |) away from 6,

(44)

where d(6, · ) denotes the absolute value of any defining function of 6 that behaves like 〈ξ〉 near fiber
infinity. Then we have the following.

Lemma 4.7. For 0≤ δ < 1, there exists a class of operators, 9k1,k2
δ (M;6), acting on C∞(M) and maps

Oph,6 : S
k1,k2
δ (T ∗M;6)→9

k1,k2
δ (M;6),

σ6 :9
k1,k2
δ (M;6)→ Sk1,k2

δ (T ∗M;6)/h1−δSk1−1,k2−1
δ (T ∗M;6)

such that
σ6(A ◦ B)= σ6(A)σ6(B),

the sequence

0→ h1−δ9
k1−1,k2−1
δ (M;6)→9

k1,k2
δ (M;6) σ6

−→ Sk1,k2
δ (T ∗M;6)/h1−δSk1−1,k2−1

δ (T ∗M;6)→ 0

is a short exact sequence, and

σ6 ◦Oph,6 : S
k1,k2
δ (T ∗M;6)→ Sk1,k2

δ (T ∗X;6)/h1−δSk1−1,k2−1
δ (T ∗M;6)

is the natural projection map.

As in, [Sjöstrand and Zworski 1999] near 6 it is possible to reduce all computations to the case where
6 = 60 := {ξ1 = 0}. We then have analogs of all the properties from the model case for the global
calculus. We sometimes suppress M and T ∗M in our notation, writing only Sk1,k2

δ (6) and 9k1,k2
δ (6). We

also sometimes suppress the 6 in Oph,6 to simplify notation.

5. The billiard ball flow and map

Recall that �b Rd is an open set with smooth boundary ∂�. We need notation for the billiard ball flow
and billiard ball map. Write ν for the outward-pointing unit normal to ∂�. Then

S∗Rd
|∂� = ∂�+ t ∂�− t ∂�0,

where (x, ξ) ∈ ∂�+ if ξ is pointing out of � (i.e., ν(ξ) > 0), (x, ξ) ∈ ∂�− if it points inward (i.e.,
ν(ξ) < 0), and (x, ξ) ∈ ∂�0 if (x, ξ) ∈ S∗∂�. The points (x, ξ) ∈ ∂�0 are called glancing points. Let
B∗∂� be the unit coball bundle of ∂� and denote by π± : ∂�±→ B∗∂� and π : S∗Rd

|∂�→ B∗∂� the
canonical projections onto B∗∂�. Then the maps π± are invertible. Finally, write

t0(x, ξ)= inf{t > 0 : expt(x, ξ) ∈ T ∗Rd
|∂�},

where expt(x, ξ) denotes the lift of the geodesic flow to the cotangent bundle. That is, t0 is the first
positive time at which the geodesic starting at (x, ξ) intersects ∂�.
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We define the broken geodesic flow as in [Dyatlov and Zworski 2013, Appendix A]. Without loss of
generality, we assume t0> 0. Fix (x, ξ)∈ S∗Rd and set t0= t0(x, ξ). If expt0(x, ξ)∈ ∂�0, then the billiard
flow cannot be continued past t0. Otherwise there are two cases: expt0(x, ξ) ∈ ∂�+ or expt0(x, ξ) ∈ ∂�−.
We let

(x0, ξ0)=

{
π−1
− (π+(expt0(x, ξ))) ∈ ∂�−, if expt0(x, ξ) ∈ ∂�+,
π−1
+ (π−(expt0(x, ξ))) ∈ ∂�+, if expt0(x, ξ) ∈ ∂�−.

We then define ϕt(x, ξ), the broken geodesic flow, inductively by putting

ϕt(x, ξ)=
{

expt(x, ξ), 0≤ t < t0,
ϕt−t0(x0, ξ0), t ≥ t0.

We introduce notation from [Safarov 1987] for the billiard flow. Let K be the set of ternary fractions
of the form 0.k1k2, . . . , where kj = 0 or 1 and S denote the left shift operator

S(0.k1k2 . . . )= 0.k2k3 . . . .

For k ∈ K , we define the billiard flow of type k, G t
k : S

∗Rd
→ S∗Rd, as follows. For 0≤ t ≤ t0,

G t
k(x, ξ)=

{
ϕt(x, ξ) if k1 = 0,
expt(x, ξ) if k1 = 1.

(45)

Then, we define G t
k inductively for t > t0 by

G t
k(x, ξ)= G t−t0

Sk (G t0
k (x, ξ)). (46)

We call G t
k the billiard flow of type k. By [Safarov 1987, Proposition 2.1], G t

k is measure-preserving.

Remark 5.1. • In [Safarov 1987], geodesics could be of multiple types when total internal reflection
occurred. However, in our situation, the metrics on either side of the boundary match, so there is no total
internal reflection and geodesics are uniquely identified by their starting points and k ∈ K .

• In general, there exist situations where G t
k intersects the boundary infinitely many times in finite time.

However, since we work in convex domains, we need not consider this situation. For a proof of this fact,
see the proof of Lemma 5.3. Note of course that the number of possible reflections in a given time T
grows as one approaches glancing points.

Now, for k ∈ K and T > 0, we define the set OT,k ⊂ S∗Rd to be the complement of the set of (x, ξ)
such that one can define the flow G t

k for t ∈ [0, T ]. That is, OT,k is the set for which the billiard flow of
type k is glancing in time 0≤ t ≤ T. Last, define the set

OT =
⋃
k∈K

Ok,T . (47)

The billiard ball map reduces the dynamics of Gk
0 to the boundary. We define the billiard ball map as

in [Guillemin and Uhlmann 1981]. Let (x, ξ ′) ∈ B∗∂� and let (x, ξ)= π−1
− (x, ξ ′) ∈ ∂�− be the unique
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S∗πx (β(q))R
d

x ξ
S∗x Rd

Figure 8. How the billiard ball map is constructed. Let q= (x, ξ)∈ B∗∂�. The solid black
arrow on the left denotes the covector ξ ∈ B∗x ∂� and that on the right ξ(β(q))∈ B∗πx (β(q))∂�.
The center of the left circle is x and that of the right is πx(β(q)).

inward-pointing covector with π(x, ξ)= (x, ξ ′). Then, the billiard ball map β : B∗∂�→ B∗∂� maps
(x, ξ ′) to the projection onto T ∗∂� of the first intersection of the billiard flow with the boundary. That is,

β : (x, ξ ′) 7→ π(expt0(x,ξ)(x, ξ)). (48)

Remark 5.2. • Just like the billiard flow, the billiard ball map is not defined for (x, ξ ′)∈π(∂�0)= S∗∂�.
However, since we consider convex domains, β : B∗�→ B∗� and βn is well-defined on B∗∂�.

• Figure 8 shows the process by which the billiard ball map is defined.

The billiard ball map is symplectic. This follows from the fact that the Euclidean distance function
|x − x ′| is locally a generating function for β; that is, the graph of β in a neighborhood of (x0, ξ0, y0, η0)

is given by
{(x,−dx |x − y|, y, dy|x − y|) : (x, y) ∈ ∂�× ∂�}. (49)

We denote the graph of β by Cb. For strictly convex �, Cb is given globally by (49).
We also write

βE := (x(β(x, ξ/
√

E)),
√

Eξ(β(x, ξ/
√

E))) : B∗E∂�→ B∗E∂�,

where B∗E∂� is the coball bundle of radius
√

E .

5A. Dynamics in strictly convex domains. We are interested in the behavior of the billiard ball map,
β(q), when |ξ ′(q)|g is close to 1. Our interest in this region comes from a desire to understand how
the reflection coefficients R from (18) behave when a wave travels nearly tangent to a strictly convex
boundary.

Fix q = (x0, ξ0) ∈ B∗∂� so that ∂� is strictly convex near x0 and |ξ0|
2
g is sufficiently close to 1. Let

γ : [0, δ)→ ∂� be the unique length-minimizing geodesic connecting x0 and πx(β(q)). The existence
and uniqueness of such a geodesic is guaranteed for |ξ0|

2
g close enough to 1 by the strict convexity of ∂�.
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Indeed, this follows from the fact that l(q, β(q))→ 0 as |ξ0|
2
g→ 1 and the fact that the exponential map

is a diffeomorphism for small times.
Let s ∈ [0, δ) have γ (s) = πx(β(q)). We first examine how the normal component to ∂� changes

under the billiard ball map. Let 1ξd denote the change in the normal component under β. Then

1ξd =
((γ (s)− γ (0)) · ν(0)− (γ (0)− γ (s)) · ν(s))

|γ (s)− γ (0)|
=
(γ (s)− γ (0)) · (ν(0)+ ν(s))

|γ (s)− γ (0)|
.

Here | · | is the euclidean norm in Rd and ν is the inward-pointing unit normal.
First, note that

γ ′′(s)= κ(s)ν(s), ν ′(s) · γ ′(s)=−κ(s),

γ ′(s) · ν(s)= 0, ‖γ ′(s)‖ = ‖ν(s)‖ = 1,

where κ(s) is the curvature of the geodesic γ as a curve in Rd. Then, expanding in Taylor series gives

1ξd [s+O(s2)] = [γ ′(0)s+ γ ′′(0)1
2 s2
+ γ (3)(0) 1

6 s3
+O(s4)] · [2ν(0)+ ν ′(0)s+ ν ′′(0)1

2 s2
+O(s3)],

1ξd [1+O(s)] = 2γ ′(0) · ν(0)+ (γ ′ · ν)′(0)s+ (2γ (3)(0) · ν(0)+ 3(γ ′ · ν ′)′(0)) 1
6 s2
+O(s3)

and
1ξd = [2(κ

′(0)ν(0)− κ(0)ν ′(0)) · ν(0)− 3κ ′(0)]16 s2
+O(s3)

= (2κ ′(0)− 3κ ′(0))1
6 s2
+O(s3)=−κ ′(0)1

6 s2
+O(s3). (50)

Next observe that √
1− |ξ ′(q)|2g =

γ (s)− γ (0)
|γ (s)− γ (0)|

· ν(0)= 1
2κ(0)s+O(s2).

Now, using κ(0) > c > 0 for � strictly convex this implies

s =
2
√

1− |ξ ′(q)|2g
κ(0)

+O((1− |ξ ′|2g))

and therefore,

l(q, β(q))= |γ (s)− γ (0)| = s+O(s2)=
2
κ(0)

√
1− |ξ ′|2g +O(1− |ξ ′|2g).

Summarizing, we have:

Lemma 5.3. Let �⊂ Rd be strictly convex. Then, for q ∈ B∗∂� sufficiently close to S∗∂�√
1− |ξ ′(β(q))|2g =

√
1− |ξ ′(q)|2g +O(1− |ξ ′(q)|2g),

l(q, β(q))=
2
κ(0)

√
1− |ξ ′|2g +O(1− |ξ ′|2g).

This implies that set of O(hε) near glancing points is stable under the billiard ball map. This also
follows from the equivalence of glancing hypersurfaces [Melrose 1976].
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6. Boundary layer operators and potentials in the nonhomogeneous Friedlander model

Our goal is to give microlocal descriptions of the boundary layer operators and potentials near a glancing
point. We start by considering the nonhomogeneous Friedlander model problem

((h Dxd )
2
−µxd + h Dy1)u = 0, u(0, y)= f (y),

u|xd>0 outgoing, ‖u‖L2((−∞,0]×Rd−1) <∞.
(51)

Then, let Fh(u) denote the semiclassical Fourier transform in y,

Fhu(xd , η) :=
1

(2πh)d−1

∫
u(xd , y)e−(i/h)〈y,η〉 dy.

Rescaling w = h−2/3µ1/3xd gives

h2/3µ−1/3(D2
w −w+ h−2/3µ−2/3η1)Fh(u)(w, η)= 0, Fh(u)(0, η)= Fh( f )(η).

Hence, using (51)

Fh(u)(xd , η)=


Ai(−h−2/3µ1/3xd + h−2/3µ−2/3η1)

Ai(h−2/3µ−2/3η1)
Fh( f )(η), xd < 0,

A−(−h−2/3µ1/3xd + h−2/3µ−2/3η1)

A−(h−2/3µ−2/3η1)
Fh( f )(η), xd > 0.

So, the Dirichlet-to-Neumann map for the interior problem (xd < 0) is given by

Fh(N1 f )(η)=−h−2/3µ1/3 Ai ′(h−2/3µ−2/3η1)

Ai(h−2/3µ−2/3η1)
Fh( f )(η)

and that for the exterior problem (xd > 0) by

Fh(N2 f )(η)= h−2/3µ1/3 A′
−
(h−2/3µ−2/3η1)

A−(h−2/3µ−2/3η1)
Fh( f )(η).

Remark 6.1. Since the goal of this section is only to present a simple model where the calculations
are exact, we ignore the poles in N1. It is possible to find the single- and double-layer operators and
potentials without using the Dirichlet-to-Neumann map N1 (see [Galkowski 2014, Section 4.5]; see also
[Taylor 2011, Section 7.11] for a general introduction to layer potential methods), but it simplifies the
presentation to do so here.

So, letting 2h(η)= h−2/3µ−2/3η1, the single-layer operator is given by

Fh(G f )(η)= Fh((N1+ N2)
−1 f )(η)= h2/3µ−1/3 Ai(2h)A−(2h)

A′−(2h)Ai(2h)− Ai ′(2h)A−(2h)
Fh( f )(η)

= h2/3µ−1/32πeπ i/6 Ai(2h)A−(2h)Fh( f )(η)

and the double-layer operator is given by

Fh(N f )(η)= 1
2Fh( f )(η)−Fh(G N2 f )(η)=

( 1
2 − 2πeπ i/6 Ai(2h)A′−(2h)

)
Fh( f )(η).
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Therefore, since
γ+S`= G, γ+D`=− 1

2 I + N ,

and both solve the Friedlander model equation away from xd = 0,

Fh(S` f )= h2/3µ−1/32πeπ i/6 Ai(−h−2/3µ1/3xd +2h)A−(2h)Fh( f )(η),

Fh(D` f )=−2πeπ i/6 Ai(−h−2/3µ1/3xd +2h)A′−(2h)Fh( f )(η).

Now, consider the kernel of S`∗S`,

S`∗S`(x ′, y′)

=
4π2µ−2/3h4/3

(2πh)2d−2

∫∫ 0

−∞

Ai(−h−2/3µ1/3w1+2h(η))A−(2h(η))

× Ai(−h−2/3µ1/3w1+2h(ξ))A−(2h(ξ))e(i/h)(〈x ′−w′,η〉+〈w′−y′,ξ〉 dw1 dξ dw′ dη

=
4π2µ−1h2

(2πh)d−1

∫∫
∞

2h(ξ)

|Ai(s)|2 |A−(2h(ξ))|
2e(i/h)〈x ′−y′,ξ 〉 dξ

=
h2

µ

1
(2πh)d−1

∫
9S`(2h(ξ))e(i/h)〈x ′−y′,ξ〉 ds dξ.

Similarly,

S`∗D`(x ′, y′)=−
h4/3

µ2/3

1
(2πh)d−1

∫
9D`S`(2h(ξ))e(i/h)〈x ′−y′,ξ〉 dξ,

D`∗S`(x ′, y′)=−
h4/3

µ2/3

1
(2πh)d−1

∫
9D`S`(2h(ξ))e(i/h)〈x ′−y′,ξ〉 dξ,

D`∗D`(x ′, y′)=
h2/3

µ1/3

1
(2πh)d−1

∫
9D`(2h(ξ))e(i/h)〈x ′−y′,ξ 〉 dξ,

where

9S`(x) := 4π2
∫
∞

x
|Ai(s)|2 |A−(x)|2 ds = 4π2

|A−(x)|2 [(Ai ′(x))2− x(Ai(x))2],

9D`S`(x) := 4π2
∫
∞

x
|Ai(s)|2 A−(x)A′−(x) ds = 4π2 A−(x)A′−(x)[(Ai ′(x))2− x(Ai(x))2],

9D`(x) := 4π2
∫
∞

x
|Ai(s)|2 |A′

−
(x)|2 ds = 4π2

|A′
−
(x)|2 [(Ai ′(x))2− x(Ai(x))2],

(52)

since ∫
∞

x
(Ai(s))2 ds = (Ai ′(x))2− x(Ai(x))2.

Using the Wronskian we have 9S`(ζj ) = 1, where ζj is a zero of the Airy function, i.e., Ai(ζj ) = 0.
Moreover, using asymptotics for the Airy function, as x→−∞,

9S`(x)∼ 1, 9D`(x)∼−x, 9D`S` ∼ i(−x)1/2.

See Figure 9.
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Figure 9. We plot the symbols of S`∗S`, D`∗S` and D`∗D`. From top to bottom, the
graphs show 9S`, 9D`S`, 9D`. The bottom graph shows Ai for reference. In the graph
of 9D`S`, the imaginary part is shown in the solid line, and the real part in the dashed
line. The black dots in each graph show (ζj , f (ζj )), where ζj are the zeros of Ai(s) and
f is one of 9S`, 9D`S`, 9D` or Ai as described at the top of each graph.

7. Analysis of the boundary layer operators and potentials near glancing

Our next task is to show that analogs of all of the formulas for the boundary layer operators and potentials
from Section 6 hold in the general case.

7A. Preliminaries for the general case. In order to make an analysis similar to that for the model case,
we use the microlocal models for G, N , S`, and D` developed in [Galkowski 2014, Section 4.5]. We
recall the results here. The idea is to write a parametrix for the solution to the problem

(−h21− z2)u = L∗δ∂�⊗ g1+ δ∂�⊗ g2,

where fi are microlocalized near glancing and δ∂� denotes the surface measure on ∂�. The parametrix
for the problem will be a sum of oscillatory integrals of the form

H1 F = (2πh)−d+1
∫
( f0 Ai(h−2/3ρ)+ih1/3 f1 Ai ′(h−2/3ρ))A−(h−2/32)e(i/h)θFh(F)(ξ ′)dξ ′,

H2 F = (2πh)−d+1
∫
( f0 Ai(h−2/3ρ)+ih1/3 f1 Ai ′(h−2/3ρ))A′

−
(h−2/32)e(i/h)θFh(F)(ξ ′)dξ ′,

(53)
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where fi solve certain transport equations and ρ, θ certain eikonal equations. The boundary values of f0

and f1 are determined by the limiting behavior of D`g1 and S`g0 at ∂�.
Let z = 1+ iµ with |µ| ≤ Mh log h−1. Then let ε(h) :=max(h, |µ|). Let (x0, ξ0) ∈ S∗∂� and suppose

that in coordinates (x ′, xd) near x0, with ∂�= {xd = 0} and xd > 0 in �,

−h21=
∑

i j

ai j h Dxi h Dx j + h
(∑

i

bi h Dxi + c
)
.

Then there exist

ρ(x, ξ ′; h)= ρ0+
∑

j

ρjε(h) j , θ(x, ξ ′; h)= θ0+
∑

j

θjε(h) j

solving the eikonal equations {
z2
+O(h∞)= 〈adθ, dθ〉− ρ〈adρ, dρ〉,

O(h∞)= 2〈dθ, dρ〉

on ρ0 ≤ 0 and in Taylor series at ρ0 = 0, xd = 0. Here, ρ0, θ0 are real-valued solving{
1= 〈adθ0, dθ0〉− ρ〈adρ0, dρ0〉,

0= 2〈dθ0, dρ0〉

on ρ0 ≤ 0 and in Taylor series at ρ0 = 0, xd = 0. We need a few additional properties of ρ and θ . In
particular,

ρ0|∂� = ξ1, ∂xdρ0|∂� > 0, ∂2
x ′ξ ′θ0|∂� 6= 0 (54)

and θ0b := θ0|∂� has that

κ : (∂ξ ′θ0b(x ′, ξ ′), ξ ′) 7→ (x ′, ∂x ′θ0b(x ′, ξ ′)) (55)

is a symplectomorphism reducing the billiard ball map for the Friedlander-model case to that for �. We
also write θb = θ |∂�. Next, let

2 := ρ|∂� = ξ1+ iε(h), 20 := ρ0|∂� = ξ1.

Finally, there exist

fi ∼

∞∑
j=0

fi, j h j , i = 0, 1,

with f0b := f0|∂� having | f0b|> c > 0 and g1|∂� = 0 solving
2〈adθ0,d f0,n〉+2ρ0〈adρ0,d f1,n〉+〈b,d f0,n〉+〈adρ0,dρ0〉 f1,n

−P2θ0 f1,n−ρ0(P2ρ0) f1,n = F1,n(θ,ρ, fi,m<n,µ),

2〈adρ0,d f0,n〉−2〈adθ0,d f1,n−〈b,d f1,n〉〉−(P2ρ0) f0,n+(P2θ0) f1,n = F2,n(θ,ρ, fi,m<n,µ)

(56)

on ρ0 ≤ 0 and in Taylor series at ρ0= 0, xd = 0 so that for Hi as in (53) (−h21− z2)Hi F = O9−∞(h∞)F
whenever F is supported hε-close to ξ1= 0. If |µ| ≤Ch, then this also holds when F is supported δ-close
to ξ1 = 0 for δ small enough.
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7A1. Identification of ∂xdρ0|xd=0 and |∂y′θ0b|
2
g. It will be useful to have the values of ∂xdρ0|xd=0 and

|∂y′θ0b|
2
g. To obtain these, we simply write the eikonal equations in normal geodesic coordinates. Recall

that in normal geodesic coordinates (y′, xd) with xd > 0 in �,

−h21= (h Dxd )
2
+ R(y′, h Dy′)+ 2xd Q(xd , y′, h Dy′)+ hF(xd , y′)h Dxd ,

where

R(y′, Dy′)=−1∂� = ḡ−1/2
∑

i j

Dyi ḡ
1/2gi j Dyj , ḡ = (det(gi j ))−1/2,

Q(0, y′, Dy′)=
∑

i j

Dyj ḡ
1/2ai j Dyi ,

where Q(y′, ξ ′)=
∑

i j ai j (y′)ξiξj is the second fundamental form of ∂� lifted to T ∗∂�, gi j
= gi j (y′) is

the metric on T ∗∂�, and R(y′, ξ ′)=
∑

i j gi jξiξj is the symbol of −h21∂�.
Using the eikonal equations for ρ0 and θ0 in these coordinates,

1= (∂xd θ0)
2
+ R(y′, ∂y′θ0)+ 2xd(Q(y′, ∂y′θ0)+O(xd))]

− ρ0[(∂xdρ0)
2
+ R(y′, ∂y′ρ0)+ 2xd(Q(y′, ∂y′ρ0)+O(xd))],

0= 2(∂xd θ0∂xdρ0+ gi j∂yi θ0∂yjρ0+ 2xd(ai j∂yi θ0∂yjρ0+O(xd)).

Now, we know that ρ0|xd=0 = ξ1 and ∂xdρ0|xd=0 > 0. So, evaluation at xd = 0 shows

1= (∂xd θ0)
2
+ R(y′, ∂y′θ0)− ξ1(∂xdρ0)

2
= R(y′, ∂y′θ0)− ξ1(∂xdρ0)

2,

0= ∂xd θ0.

Moreover, differentiating the first equation in xd and the second in y′ and evaluating at xd = 0 shows

0= 2gi j∂2
xd yj
θ0∂yi θ0+ 2Q(y′, ∂y′θ0)− (∂xdρ0)

3
− 2ξ1∂

2
xd
ρ0∂xdρ0,

0= 2(∂2
y′xd
θ0∂xdρ0).

Hence,

(∂xdρ0)
3
|xd=0 = 2Q(y′, ∂y′θ0)− 2(ξ1∂

2
xd
ρ0∂xdρ0)|xd=0 = 2Q(y; ∂y′θ0b)+O(ξ1),

R(y′, ∂y′θ0b)= |∂y′θ0b|
2
g = 1+ ξ1(∂xdρ0)

2
|xd=0.

The implicit function theorem then implies that with ξ ′ = ∂y′θ0b,

ξ1 =
|ξ ′|2g − 1

(2Q(y, ξ ′))2/3
+O((|ξ ′|2g − 1)2), ∂xdρ = 2Q(y, ξ ′)+O(|ξ ′|2g − 1). (57)

Now, in coordinates (x, ξ)= κ−1(y, η), where κ is as in (55), we have

β(x, ξ)= (x1− 2
√
−ξ1, x ′, ξ)

since κ reduces the Friedlander model to the billiard ball map for �. Let ϕi be a partition of unity on
1− ε ≤ |ξ ′|g ≤ 1+ ε for some ε > 0 small enough so that on suppϕi κ

−1
i is defined, with κi given by
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(55). Let
4 :=

∑
i

ϕiξ1(κ
−1
i (x, ξ)). (58)

Then we have the following lemma given the existence of an approximate interpolating Hamiltonian for
the billiard ball map. In particular, the lemma follows from the equivalence of glancing hypersurfaces
[Melrose 1976] (see [Kovachev and Popov 1990, Proposition 3.1] for a proof; see also [Marvizi and
Melrose 1982]).

Lemma 7.1. Let 4 be as in (58). Then at S∗∂�, 4= 0, |d4|> 0 and 4< 0 in B∗∂�. Moreover,

4 ◦β(q)−4(q)= O((|ξ ′|2g − 1)∞),

β(q)− exp(−2
√
−4H4)(q)= O((|ξ ′|2g − 1)∞),

4(x ′, ξ ′)=
|ξ ′|2g − 1

(2Q(x ′, ξ ′))2/3
+O((|ξ ′|2g − 1)2).

7A2. Microlocal description of the boundary layer potentials and operators. We now recall the microlo-
cal descriptions of the boundary layer potentials and operators near glancing from [Galkowski 2014,
Section 4.5]. Let Ai , Ai ′, A−, and A′

−
denote the Fourier multiplier with multiplier Ai(2h), Ai ′(2h),

A−(2h), and A′
−
(2h), where for convenience we define

2h := h−2/32, 20h := h−2/320, ρh := h−2/3ρ, ρ0h := h−2/3ρ.

Next, let

J f := (2πh)−d+1
∫

f0be(i/h)(θ0+〈x ′−y′,ξ ′〉) f (y′) dy′ dξ ′,

JC f := (2πh)−d+1
∫

f0b(∂xdρ+ ih∂xd g1)|xd=0e(i/h)(θ0+〈x ′−y′,ξ ′〉) f (y′) dy′ dξ ′,

J B f := (2πh)−d+1
∫

f0b∂xd g0|xd=0e(i/h)(θ0+〈x ′−y′,ξ ′〉) f (y′) dy′ dξ ′.

Then J is an elliptic semiclassical Fourier integral operator quantizing the reduction of the Friedlander
glancing pair to the glancing pair ∂�, S∗Rd and it is not hard to check that B,C ∈9(∂�) so that for any
δ > 0,

σ(JC J−1)= (2Q(x, ξ ′))1/3+OSδ (h
1−2δ),

where Q is the second fundamental form lifted to the cotangent bundle, T ∗∂�. Thus C is elliptic.

Lemma 7.2. Suppose that (x0, ξ0)∈ S∗∂� and ζ ∈C∞c (R
d) have ζ ≡ 1 on [−1, 1] with supp ζ ⊂ [−2, 2].

Then there exists δ > 0 such that for any M, ε > 0 if |Im z| ≤ Mh log h−1,

G Xg = h2/3ω−1χ JAiA−C−1 J−1 Xg+O9−∞(h∞)g,

N Xg =
( 1

2 Id−ω−1χ J (AiA′
−
+ h2/3A−AiC−1 B)J−1)Xg+O9−∞(h∞)g,

(S`Xg)|� = ω−1h2/3 A1,g JC−1 J−1 Xg+OD′→C∞(h
∞)g,

(D`Xg)|� =−ω−1 A2,g Xg− h2/3ω−1 A1,g JC−1 B J−1 Xg+OD′→C∞(h
∞)g,
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where ω = e−π i/6/(2π),

χ := ζ((3δ)−1
|x − x0|), A1,g := χH1 J−1, A2,g := χH2 J−1,

X := Oph[ζ(δ
−1(|x − x0| + |ξ

′
− ξ0|g))ζ(h−εδ−1

||ξ ′|g − 1|)].

If we only allow |Im z| ≤ Mh, then we can set ε = 0.

A simple calculation shows that on −Mh2/3
≤ ξ1,

Ai A−(2h) ∈9
−1/2,−1/2
2/3 (ξ1 = 0),

and on −Chε ≤ ξ1 ≤−Mh2/3,

Ai A−(2h) ∈ h−1/4+ε/49
−1/2,−1/2
1−ε/2 (ξ1 = 0).

Moreover, for ξ1 ≥ Mh2/3,

2πeπ i/6 Ai A−(2h)=
h1/3

2
√
ξ1
(1+O(h(ξ1)

−3/2)).

So, using (57)

σ(Jh2/3ω−1χAiA−C−1 J−1 X)

=
h

2
√
ξ1(κ−1(q))

(1+O(h(ξ1)
−3/2))

1
∂xdρ(κ

−1(q))
ζ(δ−1(|x−x0|+|ξ

′
−ξ0|g))ζ(h−εδ−1

||ξ ′|g−1|)

=
h

2
√
|ξ ′|2g−1

(1+O(h(|ξ ′|2g−1)−3/2)) ζ(δ−1(|x−x0|+|ξ
′
−ξ0|g))ζ(h−εδ−1

||ξ ′|g−1|). (59)

Finally, we recall the decomposition of the boundary layer operators away from glancing from
[Galkowski 2014, Lemma 4.27]. For a similar decomposition when Im z = 0 see [Hassell and Zelditch
2004, Proposition 4.1].

Lemma 7.3. Let�⊂Rd be strictly convex with ∂�∈C∞. Then for all 1
2 >ε, γ >0, and z= E+O(h1−γ )

with Im z ≥−Ch log h−1. Then

G(z/h) := G1(z)+GB(z)+Gg(z)+OD′→C∞(h
∞),

N (z/h) := N1(z)+ NB(z)+ Ng(z)+OD′→C∞(h
∞),

∂νD`(z/h) := ∂νD`1(z)+ ∂νD`B(z)+ ∂νD`g(z)+OD′→C∞(h
∞),

where G1 ∈ h1−ε/29−1
ε , N1 ∈ h1−2ε9−1

ε , ∂νD`1 ∈ h−191
ε, and

GB ∈ h1−ε/2e(Im z)−d�/h I comp
δ (Cb),

NB ∈ e(Im z)−d�/h I comp
δ (Cb),

∂νD`B ∈ h−1e(Im z)−d�/h I comp
δ (Cb)

are FIOs associated to βE , where δ =max(ε, γ ). Moreover,
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MSh
′(( · )B)⊂

{
(q, p) ∈ B∗E∂�× B∗E∂� :min(E − |ξ ′(q)|g, E − |ξ ′(q)|g, l(q, p)) > chε

}
,

MSh
′(( · )g)⊂

{
(q, p) ∈ T ∗∂�× T ∗∂� :max(|E − |ξ ′(q)|g|, |E − |ξ ′(p)|g|, l(q, p)) < chε

}
,

σ (G1)=
ih

2
√

E2− |ξ ′|2g

, σ (∂νD`1)=
ih−1

√
E2− |ξ ′|2g

2
,

σ (GBe(Im z/h)Oph(l(q,βE (q))))=
he(i/h)Reω0l(q,βE (q))

2(E2− |ξ ′(βE(q))|2g)1/4(E2− |ξ ′(q)|2g)1/4
dq1/2,

σ (NBe(Im z/h)Oph(l(q,βE (q))))=
−ie(i/h)Reω0l(q,βE (q))(E2

− |ξ ′(q)|2g)
1/4

2(E2− |ξ ′(βE(q))|2g)1/4
dq1/2,

σ (∂νD`Be(Im z/h)Oph(l(q,βE (q))))=
h−1e(i/h)Reω0l(q,βE (q))(E2

− |ξ ′(βE(q))|2g)
1/4(E2

− |ξ ′(q)|2g)
1/4

2
dq1/2,

where we take
√

z =
√
|z|e(1/2)Arg(z) for −π2 < Arg(z) < 3π

2 .

Remark 7.4. The decomposition in [Hassell and Zelditch 2004] is slightly less precise than that in
[Galkowski 2014] because the glancing pieces are microlocalized to a neighborhood of S∗∂�× S∗∂�
rather than to a neighborhood of S∗∂�× S∗∂�∩1(T ∗∂�), where 1(T ∗∂�) denotes the diagonal.

In particular, Lemma 7.3, together with (59), implies that there exists M>0 such that for χ =χ(|ξ ′|g)∈
9

0,0
2/3(|ξ

′
|g = 1) with suppχ ⊂ {|ξ ′|g ≥ 1+Mh2/3

}, we have G Oph(χ) ∈ h2/39
−1/2,−1/2
2/3 (|ξ ′|g = 1) with

σ(G Oph(χ))=
hχ(|ξ ′|g)

2
√
|ξ ′|2g − 1

(1+O(h(|ξ ′|2g − 1)−3/2)). (60)

7B. Analysis of S`∗S`, D`∗D`, and D`∗S` near glancing. Our next goal is to understand S`∗S`,
D`∗D`, and D`∗S` microlocally near glancing points. To do this, we will use the microlocal description
of S` and D` from Lemma 7.2. In particular, let J1 be a microlocally unitary FIO quantizing κ , where κ
is as in (55). Then we prove:

Lemma 7.5. Fix z= 1+iµ with |µ| ≤Mh log h−1. Then for any ε > 0 and δ≤ 2
3 , for χ ∈90,0

2/3(|ξ
′
|g = 1)

self-adjoint with WFh(χ)⊂ {||ξ
′
|g − 1| ≤ hδ},

χ S`∗S`χ ∈ h2−ε9
0,0
1−δ/2({|ξ

′
|g = 1}), χD`∗S`χ, χ S`∗D`χ ∈ h3/2−δ/4−ε9

0,1/2
1−δ/2({|ξ

′
|g = 1}),

χD`∗D`χ ∈ h1−δ/2−ε9
0,1
1−δ/2({|ξ

′
|g = 1}).

Moreover,

σ(J ∗1 χ S`∗S`χ J1)=
h29S`(h−2/320(ξ

′))χ2(κ(x ′, ξ ′))
2Q(κ(x ′, ξ ′))

,

σ (J ∗1 χD`∗S`χ J1)=
h4/39D`S`(h−2/320(ξ

′))χ2(κ(x ′, ξ ′))
(2Q(κ(x ′, ξ ′)))2/3

,
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σ(J ∗1 χ S`∗D`χ J1)=
h4/39D`S`(h−2/320(ξ ′))χ

2(κ(x ′, ξ ′))
(2Q(κ(x ′, ξ ′)))2/3

,

σ (J ∗1 χD`∗D`χ J1)=
h2/39D`(h−2/320(ξ

′))χ2(κ(x ′, ξ ′))
(2Q(κ(x ′, ξ ′)))1/3

.

We prove this lemma using Lemma 7.2 to write a parametrix for S`∗S`. We then Taylor expand the
Airy functions around their values at the boundary of � and estimate each of the terms. The higher-order
terms in the expansion will turn out to be lower-order in h and the symbols will be found by computing
the first term. The operators D`∗S`, S`∗D` and D`∗D` are handled similarly.

7B1. Estimates on the remainder terms. We first give estimates on the size of terms that will be lower-
order. These terms arise from a Taylor expansion of the integrand when computing S`∗S` using the
microlocal model from Lemma 7.2. In particular, consider an operator with kernel given by

Ri jklmno = (2πh)−2d+2
∫∫

∞

0
b(w, x ′, y′, η, ξ ′)h−2/3( j+k)(ρ(w, η′)− ρ(w, ξ ′))k(2(η′)−2(ξ ′)) jwn

d

× Ai (l)(ρh(w, ξ
′))A(m)− (2h(ξ

′))Ai (o)(ρh(w, ξ ′))A
(i)
− (2h(ξ ′))

× e(i/h)(θ(w,ξ ′)−θ(w,η′)−θb(y′,ξ ′)+θb(x ′,η′)) dwd dξ ′ dη′ dw′,

where b ∈ Sδ(ξ1 = 0) is supported in |2(ξ ′)|, |2(η′)| ≤ Chδ. First, observe that since ∂xdρ0 > 0 and

Ai(t)≤ Ce−t3/2
for t � 1,

we may assume that b is supported on wd < ε for any ε > 0 by introducing an O(e−C/h) error. Next,
notice that

θ(w, ξ ′)− θ(w, η′)= θb(w
′, ξ ′)− θb(w

′, η′)+w2
d〈ξ
′
− η′, r(w, ξ ′, η′)〉.

So,
∂w′θ(w, ξ

′)− ∂w′θ(w, η
′)= (∂2

x ′ξ ′θb(w
′, η′)+w2

d∂w′r)(ξ
′
− η′)

and, using that ∂2
x ′ξ ′θb 6= 0, for wd small enough, the phase is stationary precisely at ξ ′ = η′.

We first change variables so that Wd=h−2/3ρ0(w, ξ
′). Then,wd=h2/3e(Wd ,w

′,ξ ′)(Wd−h−2/320(ξ
′)),

where e is elliptic. So, the kernel takes the form

Ri jklmno

= (2πh)−2d+2h2/3
∫∫

∞

h−2/320(ξ ′)

b1(h2/3Wd , w
′, x ′, y′, η, ξ ′)h−2/3( j+k−n)

×
(
ρ(wd(Wd , w

′, ξ ′), η′)− h2/3Wd − ε(h)ρ1
)k

× (2(η′)−2(ξ ′)) j (Wd − h−2/320(ξ
′))n

× Ai (l)(Wd + h−2/3ε(h)ρ1(w, ξ
′))A(m)− (2h(ξ

′))

× Ai (o)(Wd + h−2/3ε(h)ρ1(w, ξ ′))A
(i)
− (2h(ξ ′)) e

i
h0dWd dξ ′ dη′ dw′,

where

0 = θb(w
′, ξ ′)− θb(w

′, η′)− θb(y′, ξ ′)+ θb(x ′, η′)+ h4/3(Wd −20(ξ
′))2〈ξ ′− η′, r(Wd , w

′, x ′, ξ ′, η′)〉.
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Now, the integrand vanishes to order |ξ ′− η′| j+k , and the phase is stationary in w′ precisely at ξ ′ = η′.
Hence, integrating by parts j + k times in w′ and then applying stationary phase in the w′, η′variables
gives a finite sum of terms (possibly with additional positive powers of h) of the form

h2/3

(2πh)d−1

∫∫
∞

h−2/320(ξ ′)

b2(h2/3Wd , x ′+O((Wd − h−2/320(ξ
′))2h4/3), x ′, y′, ξ ′, ξ ′)

× h1/3( j+k+2(n−p−q))ε(h)p+q(Wd − h−2/320(ξ
′))n

× Ai (l+p)(Wd + h−2/3ε(h)ρ1)A
(m)
− (2h(ξ

′))

× Ai (o+q)(Wd + h−2/3ε(h)ρ1)A
(i)
− (2h(ξ ′))e(i/h)(θb(x ′,ξ ′)−θb(y′,ξ ′)) dWd dξ ′.

Note that we can apply stationary phase in the w′, η′variables since ∂2
x ′ξ ′θ0b 6= 0. Next, change variables

ξ ′ 7→4′(x ′, y′, ξ ′) so that

θ0b(x ′, ξ ′)− θ0b(y′, η′)= 〈x ′− y′, 4′(x ′, y′, ξ ′)〉.

To find such a change of variables, observe that 4(x ′, x ′, ξ ′)= ∂x ′θ0b and hence ∂ξ ′4= ∂2
ξ ′x ′θ0b 6= 0 so

we can apply the implicit function theorem. Then, integrating in Wd and using the fact that on supp b2,
|2(ξ ′)| ≤ Chδ, we obtain

Ri jklmno = (2πh)−d+1
∫

b3(x ′, y′, ξ ′; h)e(i/h)〈x ′−y′,ξ ′〉 dξ ′,

where, letting

r = 1
2(2n+ l + p+ o+ q +m+ i − 4)+ 1

4(δ
0
o+q + δ

0
l+p + δ

0
i + δ

0
m),

b3 ∈ h2/3+(1/3)( j+k+p+q+2n)(log h−1)p+qhmax(r,0)(1/3−δ/2)S0,r
1−δ/2(R

d−1
; {ξ1 = 0}).

Hence, the operator Ri jklmno with kernel Ri jklmno has for any ε > 0,

Ri jklmno
∈ h1/3( j+k−l−m−i−o+2)+δ/2(l+m+i+2n+o)−ε9

0,0
1−δ/2({ξ1 = 0}),

Ri jklmno
∈ h2/3+(1/3)( j+k+2n)hmax(r,0)(1/3−δ/2)9

0,r
1−δ/2(R

d−1
; {ξ1 = 0}).

7B2. The principal part. By the analysis above, we see that when microlocalized near glancing points
S`∗S`, D`∗D`, and D`∗S` are pseudodifferential in a second microlocal class. We just need to compute
the principal symbol of these operators. The symbols will turn out to be9S`,9D`, and9D`S`, respectively.

First, using the principle of stationary phase, we compute

J−1 f = (2πh)−d+1
∫

b0(y′, ξ ′)e(i/h)(〈x ′,ξ ′〉−θb(y′,ξ ′)) f (y′) dy′ dξ ′,

C−1 J−1 f = (2πh)−d+1
∫

b1(y′, ξ ′)e(i/h)(〈x ′,ξ ′〉−θb(y′,ξ ′)) f (y′) dy′ dξ ′,

where

b0 =
|det ∂2

x ′ξ ′θb(y′, ξ ′)|

g0b(y′, ξ ′)
+OS(h) and b1 =

b0(y′, ξ ′)
∂xdρ(y′, ξ ′)

+OS(h).
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Denote the kernels of S`∗S`, D`∗D`, and D`∗S` by KS`, KD`, and KD`S` respectively. We explicitly
consider S`∗S` and we record the end result for the others. The kernel of S` is given by

S`(x, y)=
2πeπ i/6h2/3

(2πh)d−1

∫ (
g0(x, ξ ′)Ai(ρh(x, ξ ′))+ ih1/3g1(x, ξ ′)Ai ′(ρh(x, ξ ′))

)
× A−(2h(ξ

′))b1(y′, ξ ′)e(i/h)(θ(x,ξ ′)−θb(y′,ξ ′)) dξ ′.

The kernel of S`∗S` is given by

KS` =
4π2h4/3

(2πh)2d−2

∫∫
∞

0

(
g0(w, ξ

′)Ai(ρh(w, ξ
′))+ ih1/3g1(w, ξ

′)Ai ′(ρh(w, ξ
′))
)

×
(
g0(w, η′)Ai(ρh(w, η′))− ih1/3g1(w, η′)Ai ′(ρh(w, η′))

)
× A−(2h(ξ

′))A−(2h(η′))b1(y′, ξ ′)b1(x ′, η′)

× e(i/h)(θb(x ′,η′)−θ(w,η′)+θ(w,ξ ′)−θb(y′,ξ ′)) dwd dw′ dξ ′ dη′.

Taylor expanding the Airy functions around ρh(w, ξ
′) and 2h(ξ

′) produces lower-order terms of the form
h4/3 R0 jk jk0, ( j, k) 6= (0, 0), h5/3 R0 jk( j+1)k10, h5/3 R0 jk jk11 and h2 R0 jk( j+1)k21. In particular, S`∗S`=
A+O91−δ/2({ξ1=0})(h2+δ/2−ε), where A has kernel

A(x, y)=
4π2h4/3

(2πh)2d−2

∫∫
∞

0
g0(w, ξ

′)Ai(ρh(w, ξ
′))g0(w, η′)Ai(ρh(w, ξ ′))A−(2h(ξ

′))A−(2h(ξ ′))

× b1(y′, ξ ′)b1(x ′, η′)e(i/h)(θb(x ′,η′)−θ(w,η′)+θ(w,ξ ′)−θb(y′,ξ ′)) dwd dw′ dξ ′ dη′.

Then, changing variables Wd 7→ h−2/3ρ0(w, ξ
′) and performing stationary phase as in the analysis of

R jklmno gives

A(x, y)=
4π2h2

(2πh)d−1

∫∫
∞

h−2/320(ξ ′)

a0(x ′, ξ ′)a0(x ′, ξ ′)+OS1−δ/2(h
1/3+δ/2−ε)

|det ∂2
x ′ξ ′θ(x

′ξ ′)|∂xdρ(x ′, ξ ′)

× |Ai(Wd + h−2/3ε(h)ρ1)|
2
|A−(2h(ξ

′))|2b1(y′, ξ ′)b1(x ′, ξ ′)

× e(i/h)(θb(x ′,ξ ′)−θb(y′,ξ ′)) dWd dw′ dξ ′ dη′.

Using that the phase is stationary at x ′ = y′ to integrate by parts in ξ ′ when terms of size |x ′− y′| appear,
using that for any ε > 0,

Ai(Wd + h−2/3ε(h)ρ1)=

{
Ai(Wd)+OS(h−2/3ε(h)〈Wd〉

1/4), Wd ≤ C,

Ai(Wd)+OS(h−2/3ε(h)〈Wd〉
1/4e−2/3W 3/2

d ), Wd ≥ C,

and using the definition of 9S`, gives for any ε > 0

A(x, y)=
h2

(2πh)d−1

∫
|a0(x ′, ξ ′)|2 |b1(x ′, ξ ′)|29S`(20h(ξ

′))+OS1−δ/2(h
δ/2−ε)

|det ∂2
x ′ξ ′θ0b(x ′, ξ ′)|∂xdρ(x ′, ξ ′)

e(i/h)(θb(x ′,ξ ′)−θb(y′,ξ ′)) dξ ′.

Now, let J1 be a microlocally unitary semiclassical FIO quantizing κ; i.e.,

J1 f = (2πh)−d+1
∫

c(x ′, ξ ′)e(i/h)(θ0b(x ′,ξ ′)−〈y′,ξ ′〉) dξ ′,
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where
c = |det ∂2

x ′ξ ′θ0b(x ′, ξ ′)|1/2+O(h).

Applying stationary phase gives

J ∗1 AJ1(x, y)

=
h2

(2πh)d−1

∫ c̄(w′, ξ ′)c(z′, ξ ′)|a0(w
′, ξ ′)|2 |b1(w

′, ξ ′)|29S`(20h(ξ
′))+OS1−δ/2(h

δ/2−ε)

|det ∂2
x ′ξ ′θ0b(w′, ξ ′)|2∂xdρ(w

′, ξ ′)|det ∂2
x ′ξ ′θ0b(z′, ξ ′)|

∣∣∣∣ y′=∂ξ ′θ0b(z′,ξ ′)
x ′=∂ξ ′θ0b(w

′,ξ ′)

× e(i/h)(〈x ′−y′,ξ ′〉+θ1b(w
′,ξ ′)−θ1b(z′,ξ ′)) dξ ′.

Again, using integration by parts on terms that are O(|x ′− y′|), we can assume that x ′= y′ in the amplitude
and hence have

J ∗1 AJ1(x, y)

=
h2

(2πh)d−1

∫ c̄(w′, ξ ′)c(w′, ξ ′)|a0(w
′, ξ ′)|2 |b1(w

′, ξ ′)|29S`(20h(ξ
′))+OS1−δ/2(h

δ/2−ε)

|det ∂2
x ′ξ ′θ0b(w′, ξ ′)|2∂xdρ(w

′, ξ ′)|det ∂2
x ′ξ ′θ0b(w′, ξ ′)|

∣∣∣∣
x ′=∂ξ ′θ0b(w′,ξ ′)

× e(i/h)〈x ′−y′,ξ ′〉 dξ ′.

So, plugging in the definitions of c and b1, we have

J ∗1 S`∗S`J1 =
h2

(2πh)d−1

∫
9S`(20h(ξ

′))+OS1−δ/2(h
δ/2−ε)

|∂xdρ(w
′, ξ ′)|2∂xdρ(w

′, ξ ′)

∣∣∣∣
x ′=∂ξ ′θ0b(w′,ξ ′)

e(i/h)〈x ′−y′,ξ ′〉 dξ ′. (61)

Similar computations give

J ∗1 D`∗S` J1=
h4/3

(2πh)d−1

∫ 9D`S`(20h(ξ
′))+OS0,1/2

1−δ/2
(h1/6+δ/4−ε)

(∂xdρ(w
′,ξ ′))2

∣∣∣∣
x ′=∂ξ ′θ0b(w′,ξ ′)

e(i/h)〈x ′−y′,ξ ′〉 dξ ′,

J ∗1 S`∗D` J1=
h4/3

(2πh)d−1

∫ 9D`S`(20h(ξ ′))+OS0,1/2
1−δ/2

(h1/6+δ/4−ε)

(∂xdρ(w
′,ξ ′))2

∣∣∣∣
x ′=∂ξ ′θ0b(w′,ξ ′)

e(i/h)〈x ′−y′,ξ ′〉 dξ ′,

J ∗1 D`∗D` J1=
h2/3

(2πh)d−1

∫ 9D`(20h(ξ
′))+OS0,1

1−δ/2
(h1/3−ε)

∂xdρ(w
′,ξ ′)

∣∣∣∣
x ′=∂ξ ′θ0b(w′,ξ ′)

e(i/h)〈x ′−y′,ξ ′〉 dξ ′.

(62)

Hence, all of the above operators are second microlocal pseudodifferential operators with respect to the
glancing surface {|ξ ′|g = 1}.

Plugging (57) into (61) and (62) gives

σ(J ∗1 S`∗S` J1)=
h29S`(h−2/320(ξ

′))

2Q(κ(x ′, ξ ′))
, σ (J ∗1 D`∗S` J1)=

h4/39D`S`(h−2/320(ξ
′))

(2Q(κ(x ′, ξ ′)))2/3
,

σ (J ∗1 S`∗D` J1)=
h4/39D`S`(h−2/320(ξ ′))

(2Q(κ(x ′, ξ ′)))2/3
, σ (J ∗1 D`∗D`J1)=

h2/39D`(h−2/320(ξ
′))

(2Q(κ(x ′, ξ ′)))1/3
,

where κ is as in (55).
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8. Preliminary analysis of the generalized boundary damped equation

We examine problems of the form 
(−h21− z2)u = w in �,
h∂νu+ Bu = hv on ∂�,
u|∂� = ψ,

(63)

z ∈ [1− ch, 1+ ch] + i[−Mh log h−1,Mh log h−1
]. (64)

We then assume that B = hN2(z/h)+ hV (z), with V analytic for z as in (64),

V ∈ hα(90,m
2/3 {|ξ

′
|g = E ′} ∪90,m

2/3 {|ξ
′
|g = 1})

for some α ≥−1 and m ∈ R.
Furthermore, suppose that for some δ > 0, M,M1 > 0, and 0< ε < 1

2

V is elliptic, on ||ξ ′|g − 1|< δ,∣∣∣∣1+ hσ(V )

2
√
|ξ ′|2g − 1

∣∣∣∣≥ δ(〈 h1+α√
|ξ ′|2g − 1

〉
+〈ξ ′〉m−1

)
, |ξ ′|g > 1+Mh2/3,∣∣∣∣1+ ihσ(V )

2
√

1− |ξ ′|2g

∣∣∣∣≥ δ〈 h1+α√
1− |ξ ′|2g

〉
, |ξ ′|g ≤ 1− hε,

log
(

1+
hσ(V )√
|ξ ′|2g − 1

)
exists and is smooth on T ∗∂� \ {|ξ ′|g ≤ M1}.

(65)

The problem (63) is a highly generalized version of a standard boundary damped equation which was
studied in the seminal work of Bardos, Lebeau and Rauch [Bardos et al. 1992]; see also [Koch and Tataru
1995]. In order to study this problem from the spectral point of view, we must see that the inverse operator
is meromorphic with finite rank poles. This is similar to the analysis in the case of the standard damped
wave equation (see for example [Zworski 2012, Chapter 5]).

8A. Meromorphy of the resolvent. For s >− 1
2 , let

P(z) :=
(
−h21− z2

γ ∂ν + h−1 B(z)γ

)
: H s+2(�)→ H s(�)⊕ H s+1/2−max(m−1,0)(∂�).

We will show that P(z)−1 is a meromorphic family of operators with finite-rank poles. Our analysis is
similar in spirit to that for potential and black box scattering; see for example [Dyatlov and Zworski 2018,
Chapters 2,3,4].

Then, when (I + V G)−1
: H s(∂�)→ H s+max(m−1,0)(∂�) exists,

(P−1)t =

(
[I −S`(I + V G)−1(γ ∂ν + h−1 Bγ )]h−21�R0(z/h)1�

S`(I + V G)−1

)
: H s(�)⊕ H s+1/2−max(m−1,0)(∂�)→ H s+2(�).
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To check that this is the inverse, we simply apply the jumps formulas from for example [Galkowski 2014,
Lemma 4.1 and Proposition 4.1.1]. For the Sobolev mapping properties of 1�R01�, S`, D`, see for
example [Epstein 2007, Theorems 9, 10]. Now,

(I + V G)−1
= I − V (I +GV )−1G, (I +GV )−1

= I −G(I + V G)−1V ;

therefore, I + GV is invertible if and only if I + V G is invertible. Thus, to check that P−1 has a
meromorphic continuation from Im z > 0, it is enough to check that (I +GV )−1 does. To see this, we
first show that I +GV is a holomorphic family of Fredholm operators with index 0 on the domain of R0.
The condition (65) and Lemma 7.3 imply that for M sufficiently large and 0≤ χ0 ∈ C∞c (R) with χ0 ≡ 1
on |x | ≤ M and suppχ0 ⊂ {|x | ≤ M + 1}, (I +GV )(1− χ(|h D′|g)) ∈ 9max(m−1),0)(∂�) is elliptic on
|ξ ′|g ≥ M + 1 with symbol

f := σ((I +GV )(1−χ0(|h D′|g)))=
(

1+
hσ(V )

2
√
|ξ ′|2g − 1

)
(1−χ0(|ξ

′
|g)).

Then, for k = 1, 2, let 0 ≤ χk ∈ C∞c (R) with χk ≡ 1 on |x | ≤ M + 1 and suppχk ⊂ suppχk+1 with
suppχ2 ⊂ {|x | ≤ M + 2}. Then, by assumption, log( f/| f |) is well-defined on suppχ2(|ξ

′
|g) and hence

for K > 0 large enough

q = f + Kχ2(|ξ
′
|g)

(
f
| f |

)1−χ1(|ξ
′
|g)

∈ Sm−1 has |q| ≥ c〈ξ ′〉m−1.

Now, Oph(q) : H
s+max(m−1,0)
h (∂�)→ H s

h (∂�) is invertible for h small enough and

Oph(q)(I +GV )= I + A1, (I +GV )Oph(q)= I + A2,

Oph(q)(I + V G)= I + A3, (I + V G)Oph(q)= I + A4,

with Ai : H s
h (∂�)→ H s−1

h (∂�). Therefore, both I + GV and I + V G are Fredholm with index 0.
The analysis below will show that there exists z0 with Im z > 0 so that I +GV is injective. Therefore,
(I +GV )−1 exists at z0 and by the analytic Fredholm theorem has a meromorphic continuation to C

when d is odd and to the logarithmic cover of C \ {0} when d is even.
Write

(I + V G)ϕ = v. (66)

Note that if ϕ has (66), then u = S`ϕ solves (67) with w = 0 and ψ = Gϕ. That is,
(−h21− z2)u = 0 in �,
h∂νu+ Bu = hv on ∂�,
u|∂� = ψ.

(67)

Similarly, if
(I +GV )ψ = Gv, (68)

then
u =−S`Vψ +S`v
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solves (67). Now, suppose that u solves (67). Then

u = h−1S`h ∂νu−D`u|∂� =−h−1S`Bu|∂�−D`u|∂�+S`v =−S`V u|∂�+S`v,

where we have used that in �,

S`N2+D`= 0 and hence (h−1S`B+D`)= S`V .

Therefore, taking x→ ∂� gives

u|∂� =−GV u|∂�+Gv =⇒ (I +GV )u|∂� = Gv.

That is, ψ := u|∂� solves (68). Finally, if ψ solves (68), then ϕ := v− Vψ solves (66).

Lemma 8.1. The following are equivalent:

(1) u solves (67).

(2) u = S`(v− V u|∂�).

(3) u|∂� = ψ solves (68).

(4) v− V u|∂� = ϕ solves (66).

Note also that since I + V G is Fredholm with index 0, it is not invertible if and only if there exists a
nonzero solution ψ to (I + V G)ψ = 0. Hence, together with Lemma 8.1, we have proved the following.

Lemma 8.2. The operator P−1 is meromorphic on the domain of R0(λ) and the following are equivalent:

(1) P−1(z) has a pole at z0.

(2) There exists a nonzero solution ψ to (I +G(z0)V (z0)ψ = 0.

(3) There exists a nonzero solution ϕ to (I + V (z0)G(z0)ϕ = 0.

(4) There exists a nonzero solution u to (67) with v = 0.

9. Microlocal analysis of the generalized boundary damped wave equation

We now proceed to study the poles of P(z)−1. It is convenient to study (68) because then the solution to
(67) has u|∂� = ψ . From now on, we do so without comment.

9A. Brief outline of the computations. The analysis in the next few sections proceeds as follows. We
first study the elliptic region where there is no propagation and hence the analysis is relatively simple.
Then, we study the hyperbolic region where standard propagation occurs. In this case, we use the
decomposition of G (Lemma 7.3) to rewrite (68) in terms of the reflectivity operator, R from (18) and
transition operator T from (19). We use the symbolic calculus of FIO’s to show that this new operator
has a microlocal inverse on the hyperbolic set. However, we must show that this inverse preserves the
hyperbolic set up to a small remainder. This is done in Lemma 9.3.

Putting these two regions together leaves the glancing region to be analyzed. Here, we apply the
microlocal models of G and S` near glancing from Lemmas 7.2 and 7.5. We start by using (68), together
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with the model for G near glancing, to further localize ψ near certain “almost glancing hypersurfaces”.
Using that S`Vψ solves (67) with v = 0, we obtain estimates on Im z from the description of S`∗S`
near glancing.

9B. Elliptic region. Fix 0< ε < 1
2 and 0< c1 < c2 < c. We first estimate solutions to (68) in the elliptic

region E := {|ξ ′|g ≥ 1+ chε}.
Let χ1 ∈ Sε(|ξ ′|g = 1) have χ1 ≡ 1 on |ξ ′|g ≥ {1+ c2hε} and suppχ1 ⊂ {|ξ

′
|g ≥ 1+ c1hε}. Also, let

χ2 ∈ Sε(|ξ ′|g = 1) have suppχ2 ⊂ {|ξ
′
|g ≥ 1+ c2hε} and χ2 ≡ 1 on {|ξ ′|g ≥ 1+ chε}. Let X1 =Oph(χ1)

and X2 = Oph(χ2).
Let ψ solve (68). Then, we have

(I +GV )X1ψ = [GV, X1]ψ + X1Gv.

Now, by Lemma 7.3, GV X1 = G1V X1 + O9−∞(h∞), where G1 ∈ h2/39
−1/2,−1
2/3 (|ξ ′|g = 1). By our

assumptions on V and Lemma 4.3, there exists

A ∈ hmax(−2/3−α,0)9
1/2,min(0,1−m)
2/3 (|ξ ′|g = 1)∪90,min(0,1−m)

2/3 (|ξ ′|g = E ′)

so that A(I +G1V )= X2 and MSh(A)⊂ {χ1 ≡ 1}. So,

X2ψ = A[G1V, X1]ψ + AX1Gv+O9−∞(h∞)(ψ + v)

and hence,

‖X2ψ‖Hm
h
≤ C(‖A[G1V, X1]ψ‖L2 +‖AX1G1v‖Hm

h
+O(h∞)(‖ψ‖H−N

h
+‖v‖H−N

h
)

≤ C(h1−ε/2
‖v‖L2 +O(h∞)‖ψ‖).

Summarizing:

Lemma 9.1. For all 0< ε < 1
2 , c> 0, and N > 0, there exists h0 = h0(ε, c) > 0 such that for 0< h < h0,

χ ∈ S0,0
ε (|ξ ′|g = 1) with suppχ ⊂ {|ξ ′|g ≥ 1+ chε}, and ψ solving (68)

‖Oph(χ)ψ‖Hm
h
≤ C(h1−ε/2

‖v‖L2 +O(h∞)‖ψ‖H−N
h
).

9C. Hyperbolic region. Recall from Lemma 7.3 that

G = G1+GB +Gg +OL2→C∞(h
∞).

First suppose that MSh(X)⊂ {|ξ ′|g ≤ 1− chε} for some 0< ε < 1
2 . Then, suppose that

(I +GV )Xψ = f

and let G−1/2
1 be a microlocal inverse for G1/2

1 on

H := {|ξ ′|g ≤ 1− rHhε},

where rH� c. Then

(I +GV )X1ψ = (I + (G1+GB)V )X1ψ +O(h∞)ψ

= (I +G1/2
1 (I +G−1/2

1 GB G−1/2
1 )G1/2

1 V )X1ψ +O(h∞)ψ = f.
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Thus, f is microlocalized on H and, following the formal algebra in [Zaletel 2010, Section 2] multiplying
by G1/2

1 V, we have

G1/2
1 V X1ψ =−G1/2

1 V G1/2
1 (I +G−1/2

1 GB G−1/2
1 )G1/2

1 V X1ψ +O(h∞)ψ +G1/2
1 V f.

Remark 9.2. By Lemma 5.3, a microlocal inverse on H will be a microlocal inverse on MSh(GB X1).

Writing ϕ = G1/2
1 V X1ψ and T = G−1/2

1 GB G−1/2
1 , we have

(I +G1/2
1 V G1/2

1 )ϕ =−G1/2
1 V G1/2

1 Tϕ+O(h∞)ψ +G1/2
1 V f.

Hence, letting
R := −(I +G1/2

1 V G1/2
1 )−1G1/2

1 V G1/2
1 ,

we have
ϕ = RTϕ+O(h∞)ψ − RG−1/2

1 f.

Here, T is an FIO associated to the billiard map such that

σ

(
exp

(
Im z

h
Oph(l(q, β(q)))

)
T
)
(β(q), q)= exp

(
i Reω0l(β(q), q)

h

)
e−iπ/4dq1/2

∈ Sε

and R ∈9ε ∪9
0,0
2/3(|ξ

′
|g = E ′) is as in (18).

Thus by the wavefront set calculus we have for N > 0 independent of h,

(I − (RT )N )ϕ = O(h∞)ψ −
N−1∑
m=0

(RT )m RG−1/2
1 f (69)

and by Egorov’s theorem (Lemma 2.15), we have

(RT )N := ((RT )∗)N (RT )N
= Oph(aN )+O9−∞(h∞), (70)

where aN ∈ Sε ∪ S0,0
2/3(|ξ

′
|g = E ′). Moreover, with δ =max

(
2ε, 2

3

)
for u with MSh(u)⊂H, by the sharp

Gårding inequality, Lemma 4.5, and Lemma 4.6,

inf
H

(
|σ̃ ((RT )N )(q)| +O(h I(RT )N (q)+1−δ)

)
‖u‖L2 ≤ ‖(RT )N u‖2L2,

‖(RT )N u‖2 ≤ sup
H

(
|σ̃ ((RT )N )(q)| +O(h I(RT )N (q)+1−δ)

)
‖u‖L2 .

Let
~1 := 1−

√
sup
H
σ̃ ((RT )N ), ~2 :=

√
inf
H
σ̃ ((RT )N )− 1.

Finally, let ~ =max(~1, ~2). Then, we have:

Lemma 9.3. Suppose that ~ > hγ1 , where γ1 < min
( 1

2 − ε,
1
6

)
. Let c > rH and g ∈ L2 have MSh(g) ⊂

{1−Chε ≤ |ξ ′|g ≤ 1− chε}. If
(I − (RT )N )u = g,

then for any δ > 0,
MSh(u)⊂ {1− (C + δ)hε ≤ |ξ ′|g ≤ 1− (c− δ)hε}.
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In particular, there exists an operator A with ‖A‖L2→L2 ≤ 2~−1,

A(I − (RT )N )= I microlocally on H,

and if MSh(g)⊂ {1−Chε ≤ |ξ ′|g ≤ 1− chε}, then

MSh(Ag)⊂ {1− (C + δ)hε ≤ |ξ ′|g ≤ 1− (c− δ)hε}.

Proof. In the case that ~2 > hγ1 , we write

(I − (RT )N )=−(RT )N (I − (RT )−N )

microlocally on H and invert by Neumann series to see that for any g, (I − (RT )N )u = g has a unique
solution modulo h∞ with ‖u‖ ≤ ~−1

‖g‖. On the other hand, if ~1 > hγ1 , then ‖(RT )N
‖ ≤ 1− ~1, and

we have that for any g, (I − (RT )N )u = g has a unique solution with ‖u‖ ≤ ~−1
1 ‖g‖.

We will consider the case of ~1 > hγ1, the case of ~2 < hγ1 being similar with (RT )N replaced
by (RT )−N. Inversion by Neumann series already shows that we can solve (I − (RT )N )u1 = g with
‖u1‖ ≤ ~

−1
‖g‖. To complete the proof of the lemma, we need to show that this inverse has the required

microsupport property. For this, we need a fine almost invariance result near the glancing set. In particular,
by Lemma 7.1, that there exists an approximate first integral 4(x, ξ) ∈ C∞(B∗∂�) so that 4 = 0,
|d4|> 0 on S∗∂�, 4< 0 in B∗∂� and

4(β(q))−4(q)= r(q), (71)

with r(q) ∈ C∞(B∗∂�) vanishing to infinite order at S∗∂�. (See also [Kovachev and Popov 1990;
Marvizi and Melrose 1982; Popov and Vodev 1999b].) In particular, we have that in neighborhood of
S∗∂�,

4(x ′, ξ ′)= e(x ′, ξ)(|ξ ′|2g − 1),

with e > c > 0.
For k ≥ 1, let χk = χk(ζ ) with χk+1 ≡ 1 on suppχk and χ1 ≡ 1 on MSh(g) so that

suppχk ⊂ {1− (C + δ)hε ≤ |ξ ′|g ≤ 1− (c− δ)hε}.

Let Xk = Oph(χk). Finally, let χ∞ ∈ Sε with χ∞ ≡ 1 on
⋃

k suppχk and

suppχ∞ ⊂ {1− (C + 2δ)hε ≤ |ξ ′|g ≤ 1− (c− 2δ)hε}.

Then (71) implies
|χk(β(q))−χk(q)| = O(h∞).

Suppose that u is the unique solution of

(I − (RT )N )u = g.

We will show that u is microlocalized as described in the lemma. Letting u1 = u, we have

(I − (RT )N )X1u1 = g+O(h∞)g+ [X1, (RT )N
]X∞u1 =: g+ g1.
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Let δ =max
(
2ε, 2

3

)
. Then

[X1, T ] = T (T−1 X1T − X1)= T h1−δB,

with B ∈9ε . In fact,

T−1 X1T = Oph(χ1(β(q))+O9ε (h
1−2ε). (72)

Hence, since X∞u is microlocalized hε-close to glancing,

MSh([X1, (RT )N
]X∞u1)⊂ {χ2 ≡ 1},

and g1 := [X1, (RT )N
]X∞u1 has

‖g1‖ ≤ Ch1−δ~−1
‖g‖L2 .

Now, let u2 have

(I − (RT )N )u2 =−g1, ‖u2‖ ≤ ~
−1
‖g1‖ ≤ Ch1−δ~−2

‖g‖.

So,

(I − (RT )N )(X1u+ u2)= g+O(h∞)g.

Continuing in this way, let

(I − (RT )N )uk =−gk−1, gk−1 = [Xk−1, (RT )N
]X∞uk−1.

Then,

‖uk‖ ≤ ~
−2k(hk(1−δ))‖g‖L2 .

Moreover, letting ũ ∼
∑

k Xkuk , we have X∞ũ = ũ+O(h∞)ũ and

(I − (RT )N )ũ = g+O(h∞)g,

which implies ũ−u=O(h∞) and hence that (I−(RT )N ) has a microlocal inverse, A, with the properties
claimed in the lemma. �

We now suppose that ψ solves (68) and use (69) to obtain estimates on ψ . Let χk ∈ Sε with χk ≡ 1 on
{|ξ ′|g ≤ 1− 2kchε} and suppχk ⊂ {|ξ

′
|g ≤ 1− (2k− 1)chε}. Then

(I +GV )X1ψ =−[X1,GV ]ψ + X1Gv =: ψ1+ ṽ,

where MSh(ψ1)⊂H∩ {|ξ ′|g ≥ 1− 3c/2hε}. Then with ϕ = G1/2
1 V X1ψ ,

(I − (RT )N )ϕ = O(h∞)ψ −
N−1∑
m=0

(RT )m RG−1/2
1 (ψ1+ ṽ),

and hence by Lemma 9.3, when ~ ≥ hγ1 for γ1 <min
( 1

2 − ε,
1
6

)
,

ϕ = O(h∞)ψ −
N1∑

m=0

A(RT )m RG−1/2
1 (ψ1+ ṽ)
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and, using the microsupport statement from Lemma 9.3,

X2ϕ =−

N−1∑
m=0

A(RT )m RG−1/2
1 ṽ+O9−∞(h∞)(ψ + v).

Hence,

‖X2ϕ‖L2 ≤ ~−1
∥∥∥∥N−1∑

m=0

(RT )m RG−1/2
1 X1Gv

∥∥∥∥+O(h∞)(‖ψ‖+‖v‖)

≤ C~−1eN D�(Im z)−/hh1/2−ε/2
‖v‖+O(h∞)‖ψ‖.

Then, since ϕ = G1/2
1 V X1ψ , we know V X1ψ = G−1/2

1 ϕ+O(h∞)ψ and

X3ψ =−X3GVψ + X3Gv =−X3GV X1ψ + X3Gv+O(h∞)ψ

=−X3GG−1/2
1 ϕ+ X3Gv+O(h∞)ψ =−X3GG−1/2

1 X2ϕ+ X3Gv+O(h∞)ψ.
Hence,

‖X3ψ‖ ≤ ‖X3GG−1/2
1 X2ϕ‖+‖X3Gv‖+O(h∞)‖ψ‖

≤ C(~−1h1−εe(N+1)D�(Im z)−/h
‖v‖+O(h∞)‖ψ‖).

Next, we examine when ~ ≥ chγ1. If this is not the case, then

lim inf
h→0

inf ||σ̃ ((RT )N )(q)| − 1|
hγ1

= 0.

So, let
|σ̃ (RT )N (q)| = ee(q).

Taking logs and renormalizing we have

2 Im z
h

NlN (q)−
2 Im z

h
NlN (q)+ log |σ̃ ((RT )N )(q)| = e(q).

This implies

−
Im z

h
=−l−1

N (q)
[

Im z
h

lN (q)+
1

2N
log |σ̃ ((RT )N )(q)| + e(q)

]
=−l−1

N (q)(rN (q)+ e(q)),

where rN as in (21). Thus, if ~ ≤ chγ1, for any c > 0,

inf
H
−l−1

N (rN + chγ1)≤−
Im z

h
≤ sup

H
−l−1

N (rN − chγ1).

Now, writing

RT =
[

R exp
(
−

Im z
h

Oph(l(q), β(q))
)][

exp
(

Im z
h

Oph(l(q), β(q))
)

T
]

and applying Lemma 3.1 shows that

rN (q) := σ̃ ((RT )N )(q)

= exp
(
−

2 Im z
h

N−1∑
n=0

l(βn(q), βn+1(q))
) N∏

i=1

(
|σ̃ (R)(β i (q))|2+O(h IR(β

i (q))+1−2ε)
)
.
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Summarizing the discussion, we have:

Lemma 9.4. Let 0<ε< 1
2 , γ1<min

(1
2−ε,

1
6

)
, c> 0, M > 0 and suppose that χ ≡ 1 on {|ξ ′|g≤ 1−Chε}

and suppχ ⊂ {|ξ ′| ≤ 1− chε}. Suppose further that ψ solves (68). Then there exists h0 > 0 small enough
so that if 0< h < h0 and

−
Im z

h
< inf

H
−l−1

N (rN + chγ1) or −
Im z

h
> sup

H
−l−1

N (rN − chγ1), (73)

where lN and rN are as in (20) and (21) respectively, then

‖Oph(χ)ψ‖L2 ≤ C(h1−ε−γ1e(N+1)D�(Im z)−/h
‖v‖L2 +O(h∞)‖ψ‖H−M

h
). (74)

9D. Glancing region. Let χ∈Sε(|ξ ′|g=1)with χ≡1 on {||ξ ′|g−1|≤chε} and suppχ⊂{||ξ ′|g−1|≤Chε}.
Then

(I +GV )Oph(χ)ψ = [GV,Oph(χ)]ψ +Oph(χ)Gv.

Let ϕi be a partition of unity on S∗∂�. We then use the microlocal model for G near glancing:∑
i

(I + h2/3 Jiω
−1A−AiC−1 J−1

i V )ϕi Oph(χ)ψ = Oph(χ)Gv+ [GV,Oph(χ)]ψ +O(h∞)(ψ).

First, observe that if α > − 2
3 , then our model shows that (I +GV ) is an elliptic pseudodifferential

operator on suppχ and hence:

Lemma 9.5. Suppose α >−2
3 . Then under the assumptions of Lemma 9.4, there exists N > 0 such that

‖ψ‖L2 ≤ Ch−N
‖v‖L2 .

Throughout the rest of our analysis near glancing, it will be convenient to use 4 from Lemma 7.1.
Then

4(x ′, ξ ′) := (|ξ ′|2g − 1)(2Q(x ′, ξ ′))−2/3
+O((|ξ ′|2g − 1)2).

Moreover, ξ1(κ
−1(x ′, ξ ′))=4(x ′, ξ ′)+O((|ξ ′|2g−1)∞), where κ is the symplectomorphism (55) reducing

the billiard ball map for the Friedlander model to that for � near (x ′, ξ ′) ∈ S∗∂�. In particular, notice
that if χ ∈ S0,0

ε (ξ1 = 1) with suppχ ⊂ {ahε1 ≤ 1− |ξ ′|2g ≤ bhε}, then

σ(Ji Oph(χ(4))J−1
i )= χ(ξ1),

MSh(i Oph(χ(4))J−1
i )⊂ {ahε1 ≤ ξ1 ≤ bhε2}.

Now, the assumption that on |ξ ′|g − 1> Mh2/3∣∣∣∣1+ hσ(V )

2
√
|ξ ′|2g − 1

∣∣∣∣≥ δ〈 h1+α√
|ξ ′|2g − 1

〉
(see (65)), together with Lemma 4.3 and (60), implies that I +GV is microlocally invertible on |ξ ′|g ≥
1+Mh2/3.



82 JEFFREY GALKOWSKI

When α <− 2
3 , we can localize further. In particular, fix M1 > 0. Then since V is elliptic and α <− 2

3 ,
I +GV is an elliptic pseudodifferential operator when for some δ > 0 and all 1≤ j ≤ M1,

|h−2/34(x ′, ξ ′)+ ζj | ≥ δ, h−2/34(x ′, ξ ′)+ ζM1+1 ≥ δ.

So, there exists C > 0 such that, letting χ2 ∈ S2/3(|ξ
′
|g = 0) have suppχ2 ⊂ |ξ1| ≤ Chε and

χ2 ≡ 1 on
{
|ξ1| ≤ C Mh2/3, α =− 2

3 ,

|ξ1h−2/3
+ ζj | ≤ δ, Chε ≤ ξ1 ≤ h2/3ζM1 + δh

2/3, α <− 2
3 ,

(75)

we have:

Lemma 9.6. Let χ2 be as in (75). Then

‖(1−Oph(χ2(4)))Oph(χ1)ψ‖ ≤ Ch−1/3+ε/2−α(‖Oph(χ)Gv‖+‖[GV,Oph(χ)]ψ‖+O(h∞)‖ψ‖,

and hence, under the assumptions of Lemma 9.4,

‖(1−Oph(χ2(4)))Oph(χ1)ψ‖ ≤ Ch−1/3+ε/2(h2/3
+ h1−ε−γ1e(N+1)D�(Im z)−/h)‖v‖+O(h∞)‖ψ‖.

9D1. Flux formula. With χ2 as in (75), define

ψng := (1−Oph(χ2(4))Oph(χ1))ψ

and ψg := ψ −ψng.
By an integration by parts, we have for a solution u to (67),(

2 Re z Im z
h

‖u‖2L2 − Im〈Bψ,ψ〉
)
=− Im〈hv, ψ〉. (76)

On the other hand,

u = h−1S`h ∂νu−D`u =−(h−1S`B+D`)ψ +S`v =−S`Vψ +S`v. (77)

Since we already have estimates for ψng, we write

u = (−S`Vψg)+ (S`(v− Vψng))=: ug + ung.

Now, [Han and Tacy 2015, Theorem 1.1], together with an application of the Phragmén–Lindelöf
principle, implies

‖S`(v− Vψng)‖ = ‖ung‖ ≤ h5/6eD�(Im z)−/h(‖v‖+ hα‖ψng‖Hm
h
),

‖S`Vψg‖ = ‖ug‖ ≤ Ch5/6+αeD�(Im z)−/h
‖ψg‖.

Then,
‖u‖2−‖ug‖

2
= 2 Re〈ug, ung〉+ ‖ung‖

2

≤ δ‖ug‖
2
+ (1+ 2δ−1)‖ung‖

2

≤ Cδh5/3+2αe2D�(Im z)−/h
‖ψg‖

2
+ (1+ 2δ−1)‖ung‖

2
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and ∣∣〈Bψ,ψ〉− 〈Bψg, ψg〉
∣∣= |〈Bψg, ψng〉+ 〈Bψng, ψg〉+ 〈Bψng, ψng〉|

≤ C(δ‖ψg‖
2
+C(1+ δ−1))‖ψng‖

2
Hm

h
.

Now, rewrite (76) as

2 Re z Im z
h

‖ug‖
2
−Im〈Bψg, ψg〉= Im〈hv, ψ〉+

2 Re z Im z
h

(‖ug‖
2
−‖u‖2)+Im(〈Bψg, ψg〉−〈Bψ,ψ〉).

Plugging our estimates in together gives∣∣∣∣2 Re z Im z
h

‖ug‖
2
+ Im〈−hN2ψg, ψg〉+ 〈−h Im Vψg, ψg〉

∣∣∣∣
≤ Ch(δ−1

1 ‖v‖
2
+ δ1‖ψ‖

2)+C |Im z|h−1(δ2h5/3+2αe2D�(Im z)−/h
‖ψg‖

2
+ (1+ δ−1

2 )‖ung‖
2)

+C(δ3‖ψg‖
2
+ (1+ δ−1

3 )‖ψng‖
2
Hm

h
)

≤ C(δ1h+ |Im z|h2/3+2αe2D�(Im z)−/hδ2+ δ3)‖ψg‖
2
L2

+C(hδ1+ δ
−1
3 + (1+ δ

−1
2 )|Im z|h2/3+2αe2D�(Im z)−/h)‖ψng‖

2
Hm

h

+C(hδ−1
1 + δ

−1
2 |Im z|h2/3+2αe2D�(Im z)−/h)‖v‖2L2 . (78)

In particular, we have:

Lemma 9.7. For all γ1 ∈ R, c > 0, there exists C > 0 so that if∣∣∣∣2 Re z Im z
h

‖ug‖
2
+ Im〈−hN2ψg, ψg〉+ 〈−h Im Vψg, ψg〉

∣∣∣∣≥ chγ1‖ψg‖
2, (79)

then

‖ψg‖
2
≤ C(hγ1 + h−γ1 + (1+ |Im z|h2/3+2α−γ1e2D�(Im z)−/h)|Im z|h2/3+2αe2D�(Im z)−/h)‖ψng‖

2
Hm

h

+C(h2−γ1 + |Im z|2h4/3+2α−γ1e4D�(Im z)−/h)‖v‖2L2 .

9D2. Estimates on the glancing set. We now obtain estimates of the form (79) using the description of
the single- and double-layer potentials from Section 7. First, observe that

‖ug‖
2
L2(�)
= 〈Bψg, ψg〉L2(∂�),

where by Lemma 7.5
B := V ∗S`∗S`V ∈ h2+2α91−ε/2(|ξ

′
|g = 1)

is elliptic and has symbol given by

σ(B)=
|σ(hV )|2

2Q
(9S`(α0h) ◦ κ

−1).

Take ε, ε1 > 0 small enough and let

Lα :=
{
{||ξ ′|g − 1| ≤ hε, |4+ h2/3ζj |< ε1h2/3 or 4≤−M1h2/3

}, α <− 2
3 ,

{||ξ |′g − 1| ≤ C Mh2/3, α ≥− 2
3 ,

(80)

where C and M are as in (75).
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Now, define

2 Re z Im z
h

‖ug‖
2
+ Im〈−hN2ψg, ψg〉+ 〈−h Im Vψg, ψg〉 = 〈Aψg, ψg〉,

where

A :=
2 Re z Im z

h
B− Im(hN2+ hV2).

Then, applying the sharp Gårding inequality (see Lemma 4.5) along with bounds on the norm of pseudo-
differential operators (see Lemma 4.6), we obtain

inf
Lα

(
2 Re z Im z

h
|σ(hV )|2

2Q
9S`(h−2/34)(1+O(hε/2))

− h(Im σ(N2)+ σ(Im V ))− ch1/3+ε/2
− ch4/3+α

)
‖ψg‖

2
≤ 〈Aψg, ψg〉 (81)

and

〈Aψg, ψg〉 ≤ sup
Lα

(
2 Re z Im z

h
|σ(hV )|2

2Q
9S`(h−2/34)(1+O(hε/2))

− h(Im σ(N2)+ σ(Im V ))+ ch1/3+ε/2
+ ch4/3+α

)
‖ψg‖

2. (82)

Notice that for all δ > 0, there exists M1 large enough and ε1 small enough so that

1− δ ≤9S`(h−2/34)≤ 1+ δ, (x, ξ) ∈ Lα
(
α <− 2

3

)
.

So, we have:

Lemma 9.8. For all δ > 0 there exists h0 > 0, N ,M > 0, C, c> 0 such that for 0< h < h0 if ± Im z ≥ 0
and one of

− Im z
h
≤ inf

Lα
−

h(Im σ(N2)+ σ(Im V )+ c(h1/3+α
+ h−1/3+ε/2))Q

|σ(hV )|29S`(h−2/34)
(1± δ),

− Im z
h
≥ sup

Lα
−

h(Im σ(N2)+ σ(Im V )− c(h1/3+α
+ h−1/3+ε/2))Q

|σ(hV )|29S`(h−2/34)
(1∓ δ),

(83)

holds, then

‖ψg‖L2 ≤ Ch−N (‖v‖L2 +‖ψng‖Hm
h
)+O(h∞)‖ψ‖H−M

h
. (84)

If α <−2
3 , we can replace the conditions (83) with

− Im z
h
≤ inf

Lα
−

h(Im σ(N2)+ σ(Im V )+ c(h1/3+α
+ h−1/3+ε/2)Q

|σ(hV )|2
(1± δ),

− Im z
h
≥ sup

Lα
−

h(Im σ(N2)+ σ(Im V )− c(h1/3+α
+ h−1/3+ε/2))Q

|σ(hV )|2
(1∓ δ).



THE QUANTUM SABINE LAW FOR RESONANCES IN TRANSMISSION PROBLEMS 85

9E. Further localization away from the real axis when α < −
2
3 . We now focus our attention on the

region |Im z| ≥ chN for some N > 0 and α < − 2
3 . In this region, we are able to decompose ψ = u|∂�

into pieces, ψj , concentrating at 4= ζj h2/3, that still have

(I +GV )ψj = Gvj ,

with the norm of vj controlled by the norm of v.
We again use the representation of G near glancing. With χ and ϕi as above(

I +
∑

i

h2/3 Jiω
−1AiAiC−1 J−1

i Vϕi

)
Oph(χ)ψ = Oph(χ)Gv+ [GV,Oph(χ)]ψ +O(h∞)ψ.

Fix ε1 > 0 small enough and let χj ≡ 1 on |ξ1+ ζj | ≤ ε1h2/3 with suppχj ⊂ |ξ1+ ζj | ≤ 2ε1h2/3 and let
L j = Oph(χj (4)). Then∑

i

(I + h2/3 Jiω
−1AiAiC−1 J−1

i V )ϕi L j Oph(χ)ψ

= L j Oph(χ)Gv+ L j [GV,Oph(χ)]ψ + [GV, L j ]Oph(χ)ψ +O(h∞)ψ.

Now, [GV, L j ] is a pseudodifferential operator with support on the complement of Lα. Therefore by
Lemma 9.6 there exists M > 0 so that

‖[GV, L j ]Oph(χ)ψ‖ ≤ h−M
‖v‖+O(h∞)‖ψ‖.

So,
(I +GV )L j Oph(χ)ψ = w,

with
‖w‖ ≤ h−M

‖v‖+O(h∞)‖ψ‖.

Now, G−1
= N1+ N2 and since |Im z| ≤ Mh log h−1,

‖h(N1+ N2)‖H1
h→L2 ≤

C
|Im z|

.

Hence, using that |Im z| ≥ chN, we have

(I +GV )L j Oph(χ)ψ = GG−1w = G(N1+ N2)w =: Gvj

so that for some M > 0,
‖vj‖ ≤ h−M

‖v‖+O(h∞)‖ψ‖.

So, formulas (76) and (77) hold with ψ replaced by L j Oph(χ)ψ and v replaced by vj . Let ψj =

L j Oph(χ)ψ ,
Lj := {|4(x ′, ξ)+ h2/3ζj |< 2ε1h2/3,

and u j be the solution to 
(−h21− z2)u j = 0 in �,
(h∂ν + B)u j = vj on ∂�,
u j |∂� = ψj .
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Next, fix δ > 0, take ε1 small enough, and let ± Im z ≥ 0. Then following the arguments above,

inf
Lj

(
2 Im z

h(1± δ)
|σ(hV )|2

2Q
− h(Im σ(N2)+ σ(Im V ))− ch1/3+ε/2

− ch4/3+α
)
‖ψj‖

2
≤ 〈Aψj , ψj 〉, (85)

〈Aψj , ψj 〉 ≤ sup
Lj

(
2 Im z

h(1∓ δ)
|σ(hV )|2

2Q
− h(Im σ(N2)+ σ(Im V ))+ ch1/3+ε/2

+ ch4/3+α
)
‖ψj‖

2 (86)

and
|〈Aψj , ψj 〉| ≤ C(δ−1

‖vj‖
2
+ δ‖ψj‖

2). (87)

In particular, using that

σ(hN2)= (2hQ)1/3
A′
−
(h−2/34)

A−(h−2/34)
,

we have:

Lemma 9.9. Suppose that ± Im z ≥ chM, α < −2
3 . Fix j > 0. Then there exist h0 > 0, N ,C > 0 such

that if one of

− Im z
h
≤ inf

Lj
−

h(h−2/3(2Q)1/3 Im(A′
−
(−ζj )/A−(−ζj ))+ σ(Im V )+ ch1/3+α)Q
|σ(hV )|2

(1± δ),

− Im z
h
≥ sup

Lj

−
h(h−2/3(2Q)1/3 Im(A′

−
(−ζj )/A−(−ζj ))+ σ(Im V )− ch1/3+α)Q
|σ(hV )|2

(1∓ δ)

holds then
‖ψj‖ ≤ Ch−N

‖v‖+O(h∞)‖ψ‖.

With these estimates in hand, for any M > 0, let

L′M := {−2hε ≤4≤ (−ζM+1+ 2ε)h2/3
} (88)

and let χ ′2 = χ
′

2(ξ1) ∈ S2/3 have χ2 ≡ 1 on

{−hε ≤ ξ1 ≤ (−ζM+1+ ε)h2/3
}

and suppχ2 ⊂ L′M . Then define
ψ ′g = Oph(χ2(4))Oph(χ1)ψ

and ψ ′ng = ψ −ψ
′
g. Thus (81) and (82) still hold with L replaced by L′M and we have:

Lemma 9.10. For all δ > 0 there exist h0 > 0, N ,M > 0, C > 0 such that for 0< h < h0 if ± Im z ≥ 0
and one of

− Im z
h
≤ inf

L′M
−

h(Im σ(N2)+ σ(Im V )+ ch1/3+α)Q
|σ(hV )|2

(1± δ),

− Im z
h
≥ sup

L′M

−
h(Im σ(N2)+ σ(Im V )− ch1/3+α)Q

|σ(hV )|2
(1∓ δ)

holds then
‖ψ ′g‖L2 ≤ Ch−N (‖v‖L2 +‖ψ ′ng‖Hm

h
)+O(h∞)‖ψ‖H−N

h
.
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So, combining Lemmas 9.1, 9.4, 9.5, 9.6, 9.8, 9.9, and 9.10 gives:

Theorem 9.11. Let ψ be a solution to (68). Fix δ > 0, 0 < ε < 1
2 , γ1 < min

( 1
2 − ε,

1
6

)
, M1,M2 > 0.

Then there exists h0 > 0 and N > 0 such that for 0< h < h0 if

−
Im z

h
< inf

H
−l−1

N (rN + chγ1) or −
Im z

h
> sup

H
−l−1

N (rN − chγ1),

± Im z ≥ 0, and one of

− Im z
h
≤ inf

Lα
−

h(Im σ(N2)+ σ(Im V )+ c(h1/3+α
+ h−1/3+ε/2))Q

|σ(hV )|29S`(h−2/34)
(1± δ),

− Im z
h
≥ sup

Lα
−

h(Im σ(N2)+ σ(Im V )− c(h1/3+α
+ h−1/3+ε/2))Q

|σ(hV )|29S`(h−2/34)
(1∓ δ)

(89)

holds then

‖ψ‖L2 ≤ Ch−N
‖v‖L2 (90)

and P(z) is invertible. Moreover, if α <−2
3 then (89) can be replaced by

− Im z
h
≤ inf

Lα
−

h(Im σ(N2)+ σ(Im V )+ c(h1/3+α
+ h−1/3+ε/2)Q

|σ(hV )|2
(1± δ),

− Im z
h
≥ sup

Lα
−

h(Im σ(N2)+ σ(Im V )− c(h1/3+α
+ h−1/3+ε/2))Q

|σ(hV )|2
(1∓ δ).

(91)

Finally, if ± Im z ≥ chM1 and α <−2
3 , then (90) holds and P(z) is invertible if

− Im z
h
≤ inf

L′M2

−
h(Im σ(N2)+ σ(Im V )+ ch1/3+α)Q

|σ(hV )|2
(1± δ),

− Im z
h
≥ sup

L′M2

−
h(Im σ(N2)+ σ(Im V )− ch1/3+α)Q

|σ(hV )|2
(1∓ δ),

and one of the following holds for 1≤ j ≤ M2:

− Im z
h
≤ inf

Lj
−

h(h−2/3(2Q)1/3 Im(A′
−
(−ζj )/A−(−ζj ))+ σ(Im V )+ ch1/3+α)Q
|σ(hV )|2

(1± δ),

− Im z
h
≥ sup

Lj

−
h(h−2/3(2Q)1/3 Im(A′

−
(−ζj )/A−(−ζj ))+ σ(Im V )− ch1/3+α)Q
|σ(hV )|2

(1∓ δ).

In particular, this implies Theorem 1.11.
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10. Application to transparent obstacles

In the case of transparent obstacles, we want to consider (3), repeated here for the reader’s convenience,

(−c21− λ2)u1 = 0 in �,
(−1− λ2)u2 = 0 in Rd

\�,

u1 = u2 on ∂�,
∂νu1−ℵ∂νu2 = 0 on ∂�,
u2 is λ-outgoing.

Thus, writing λ= cz/h, in the language of (67),

B = hN2(z/h)+ℵhN2(cz/h)− hN2(z/h),

where N2 is the outgoing Dirichlet-to-Neumann map for the exterior problem (see Section 1D).
Thus, V = ℵN2(cz/h)− N2(z/h) has

V ∈ h−2/3(91/2,1
2/3 (|ξ ′|g = c)∪91/2,1

2/3 (|ξ ′|g = 1)
)
⊂ h−1(90,1

2/3(|ξ
′
|g = c)∪90,1

2/3(|ξ
′
|g = 1)

)
.

In order to fit the transparent obstacle problem into the framework of Theorem 9.11 with α =−1, we
only need to check that V is elliptic near |ξ ′|g = 1 and that 1+ hσ(V )/(2

√
|ξ ′|2g − 1) has the required

properties. We start by calculating the symbols of B, B, and V. Let4E be the function given by Lemma 7.1
when we replace 1 by E in the eikonal equation for ρ0 and θ0. Set

gE(x, ξ ′) := (2Q(x, ξ ′))1/3
A′
−
(h−2/34E)

A−(h−2/34E)
.

Then,

σ(B)= σ(hℵN2(cz/h))=


−iℵ

√
c2− |ξ ′|2g, |ξ

′
|g ≤ c− hε,

ℵh1/3gc(x, ξ ′), ||ξ ′|g − c| ≤ hε,
ℵ

√
|ξ ′|2g − c2, |ξ ′|g ≥ c+ hε,

σ (hV )=



i(
√

1− |ξ ′|2g −ℵ
√

c2− |ξ ′|2g), |ξ
′
|g ≤min(1, c)− hε,

i
√

1− |ξ ′|2g +ℵ
√
|ξ ′|2g − c2, c+ hε ≤ |ξ ′|g ≤ 1− hε,

−iℵ
√

c2− |ξ ′|2g −
√
|ξ ′|2g − 1, 1+ hε ≤ |ξ ′|g ≤ c− hε,

ℵ

√
|ξ ′|2g − c2−

√
|ξ ′|2g − 1, |ξ ′|g ≥max(1, c)+ hε,

h1/3
ℵgc+ i

√
1− |ξ ′|2g, ||ξ ′|g − c| ≤ hε, |ξ ′|g ≤ 1− hε,

h1/3
ℵgc−

√
|ξ ′|2g − 1, ||ξ ′|g − c| ≤ hε, |ξ ′|g ≥ 1+ hε,

−iℵ
√

c2− |ξ ′|2g − h1/3g1, ||ξ ′|g − 1| ≤ hε, |ξ ′|g ≤ c− hε,

ℵ

√
|ξ ′|2g − c2− h1/3g1, ||ξ ′|g − 1| ≤ hε, |ξ ′|g ≥ c+ hε,

σ (B)=
ℵ

2
|c2
− |ξ ′|2g|

2Q
9S`(h−2/34)(1+ o(1)), ||ξ ′|g − 1| ≤ hε .
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Now, we compute

1+
hσ(V )

2
√
|ξ ′|2g − 1

=



1
2 +

1
2ℵ
√

c2− |ξ ′|2g/
√

1− |ξ ′|2g, |ξ ′|g ≤min(1, c)− hε,
1
2 + i 1

2ℵ
√
|ξ ′|2g − c2/

√
1− |ξ ′|2g, c+ hε ≤ |ξ ′|g ≤ 1− hε,

1
2 − i 1

2ℵ
√

c2− |ξ ′|2g/
√
|ξ ′|2g − 1, 1+Mh2/3

≤ |ξ ′|g ≤ c− hε,
1
2 +

1
2ℵ
√
|ξ ′|2g − c2/

√
|ξ ′|2g − 1, max(c+ hε, 1+Mh2/3)≤ |ξ ′|g,

1
2 + i 1

2ℵh1/3gc/
√

1− |ξ ′|2g, |c− |ξ ′|g| ≤ hε, |ξ ′|g ≤ 1− hε,
1
2 +

1
2ℵh1/3gc/

√
|ξ ′|2g − 1, |c− |ξ ′|g| ≤ hε, |ξ ′|g ≥ 1+Mh2/3.

Thus, we can see that V is elliptic near |ξ ′|g = 1 and the transparent obstacle problem fits into the
framework of Theorem 9.11.

In order to finish the proof of Theorem 1.2, we just need to check a few symbolic properties. First,
notice V = ℵN2(cz/h)− N2(z/h). Thus,

σ(N2(z/h)+ V )= ℵσ(N2(cz/h))=−ih−1
ℵ

√
c2− |ξ ′|2g,

where we take
√
−1= i . Putting this in (83) gives that (84) holds when c > 1 and

− Im z
h
≤ inf
|ξ ′(q)|g=1

−
Q

ℵ
√

c2− 1
(1± δ) or

− Im z
h
≥ sup
|ξ ′(q)|g=1

−
Q

ℵ
√

c2− 1
(1∓ δ)

or when c < 1 and
− Im z

h
≥ δ.

Next, observe that

σ(R)=


(−
√

1−|ξ ′|2g+ℵ
√

c2−|ξ ′|2g)/(
√

1−|ξ ′|2g+ℵ
√

c2−|ξ ′|2g), |ξ ′|g ≤min(1, c)−hε,

(iℵh1/3gc−
√

1−|ξ ′|2g)/(
√

1−|ξ ′|2g+iℵh1/3gc), |c−|ξ ′|g| ≤ hε, |ξ ′|g ≤ 1−hε,

(−
√

1−|ξ ′|2g+iℵ
√
|ξ ′|2g−c2)/(

√
1−|ξ ′|2g+iℵ

√
|ξ ′|2g−c2), c+hε ≤ |ξ ′|g ≤ 1−hε .

The following geometric lemma completes the proof of Theorem 1.2.

Lemma 10.1. Fix N > 0 and let (x0, ξ0) ∈ S∗∂� and suppose that {(xn, ξn)} ⊂ B∗∂� has (xn, ξn)→

(x0, ξ0). Then

l−1
N rN →

{
Q(x0, ξ0)/(ℵ

√
c2− 1), c > 1,

0, c < 1.

Proof. The conclusion for c < 1 is clear since for |ξ ′|g > c, we have log |σ(R)|2 = 0. So, we need only
consider the case c > 1. First, write

|σ(R)|2(x, ξ ′)= 1−
4
√

1− |ξ ′|2g√
1− |ξ ′|2g +ℵ

√
c2− |ξ ′|2g

+O(1− |ξ ′|2g).

So,

log |σ(R)|2(x, ξ ′)=−
4
√

1− |ξ ′|2g√
1− |ξ ′|2g +ℵ

√
c2− |ξ ′|2g

+O(1− |ξ ′|2g). (92)
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Now, by Lemma 5.3√
1− |ξ ′(β(q))|2g =

√
1− |ξ ′(q)|2g +O(1− |ξ ′|2g), l(q, β(q))=

2
κ(0)

√
1− |ξ ′|2g +O(1− |ξ ′|2g),

where κ(s) is the curvature of the unique length-minimizing geodesic, γ , in ∂� connecting πx(q) and
πx(β(q)) at the point γ (s). Thus, we have that for q sufficiently close to glancing,

log |σ(R)(β(q))|2

2l(q, β(q))
=−

κ(0)

ℵ

√
c2− |ξ ′|2g

+O(
√

1− |ξ ′|2g).

Moreover, since
√

1− |ξ ′(β(q))|2g =
√

1− |ξ ′|2g + O(1 − |ξ ′|2g) and κ(s) = κ(0) + O(s) = κ(0) +
O(
√

1− |ξ ′|2g), we have
rN

lN
=−

κ(0)

ℵ

√
c2− |ξ ′|2g

+O(1− |ξ ′|2g).

All that remains to prove is that κ(0)= Q(x, ξ ′)+ o(1) as |ξ ′|g→ 1. This follows from the fact that
the curvature of the geodesic on ∂� passing through x in the direction ξ ′ is Q(x, ξ ′) together with the
fact that

γ ′(0)−
ξ ′

|ξ ′|g
= o(1).

To see this we simply use the fact that a billiards trajectory approaches a geodesic as |ξ ′|g→ 1 (see for
example [Petkov and Stoyanov 1992]). �

Together, this discussion proves Theorem 1.2.

11. Application to δ potentials

For the application to δ potentials, we consider

(−h21+ h2V ⊗ δ∂�− z2)u = 0, u is z/h outgoing.

It is shown in [Galkowski and Smith 2015] that this is equivalent to u = u1⊕ u2, where u1 = u1� and
u2 = u1Rd\�, solving 

(−h21− z2)u = 0 in Rd
\ ∂�,

u1− u2 = 0 on ∂�,
h∂νu1− h∂νu2+ hV u1 = 0 on ∂�,
u2 is z/h-outgoing.

(93)

In this case, V = V (indeed this is the motivation for our notation). For our purposes, we will assume
that V ∈ hα91 is self-adjoint and hence Im V = 0. Moreover, we assume that α ≥−1 and σ(V )≥ chα

on |ξ ′|g = 1 and for any δ > 0, there exists c> 0 so that hσ(V )/(2
√
|ξ ′|2− 1) >−1+ c on |ξ ′|g ≥ 1+ δ.

This clearly implies all of the assumptions (65). Theorem 9.11 then yields Theorem 1.5 as a corollary.
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12. Application to boundary stabilization

The application to the boundary stabilization problem (11) is similar to that for the transmission problem.
In particular, note that

1+
iσ(hV )

2
√

1− |ξ ′|2g
=−

1
2
+

a

2
√

1− |ξ ′|2g

and the fact that a≥ a0> 0 imply the ellipticity of V. Finally, an argument identical to that in Lemma 10.1,
together with Theorem 9.11, gives Theorem 1.7.

13. Optimality for the transparent obstacle problem on the circle

For the optimality of Theorem 1.5, see [Galkowski 2016]. We now show that Theorem 1.2 is optimal in
the case of the unit disk in R2. In this case, (3) reads

(−c21− λ2)u1 = 0 in B(0, 1),
(−1− λ2)u2 = 0 in Rd

\ B(0, 1),
u1 = u2 on |x | = 1,
∂r u1−ℵ∂r u2 = 0 on |x | = 1,
u2 is λ−outgoing.

We now expand ui in Fourier series, writing

ui (r, θ)=
∑

n

ui,n(r)einθ .

Then, (
−c2∂2

r −
c2

r
∂r +

c2n2

r
− λ2

)
u1,n(r)= 0,

(
−∂2

r −
1
r
∂r +

n2

r
− λ2

)
u2,n(r)= 0.

Multiplying by r2 and rescaling by x1 = λc−1r for u1,n and x2 = λr for u2, we see that ui,n(xi ) solves
Bessel’s equation. Together with the outgoing condition for u2 and the fact that u1 is in L2, this implies

u1,n = Kn Jn(λc−1r), u2,n = Cn H (1)
n (λr).

Then, the boundary conditions imply that either Kn = Cn = 0 or Cn 6= 0 and

Kn

Cn
=

H (1)
n (λ)

Jn(c−1λ)
, Knc−1λJ ′n(λc−1)−CnℵλH (1)

n
′
(λ)= 0.

Rewriting this (and assuming λ 6= 0) we have

f (λ) := c−1 J ′n(c
−1λ)H (1)

n (λ)−ℵH (1)
n
′
(λ)Jn(c−1λ)= 0. (94)

See Figure 10 for numerically computed resonances, i.e., numerically computed solutions to (94).
Throughout this section we will refer to microlocalization of the Fourier modes einθ. Notice that for

a Fourier mode un = (u1,n(r)⊕ u2,n)einθ, the component of the frequency tangent to ∂B(0, 1) is given
by n and the rest of the oscillations are normal to the boundary. Naively taking the Fourier transform,
we see that if (−1− λ2)u = 0, then the Fourier support of u is contained in |ξ |2 = λ2. Therefore, since
|Im λ| � |Re λ| the total frequency of the mode is given by |Re λ| and the fraction of frequency tangent
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to the boundary is given by n/Re λ. This can be reinterpreted in terms of the semiclassical wavefront set
(with Re λ= h−1) of the mode as saying that

WFh(un|∂�)⊂ {|ξ
′
|g = hn}.

For this reason, we refer to modes with n� |Re λ| as normal to the boundary, those with ε|Re λ|< n <
(c−1
− ε)|Re λ| as transverse, and (c−1

− ε)|Re λ|< n as glancing.

13A. Asymptotics of Bessel and Hankel functions. We collect here some properties of the Airy and
Bessel functions that are used in the analysis for the unit disk. These formulae can be found in, for
example, [Olver et al. 2010, Chapters 9, 10].

Recall that the Bessel functions of order n are solutions to

z2 y′′+ zy′+ (z2
− n2)y = 0.

We consider the two independent solutions H (1)
n (z) and Jn(z).

We now record some asymptotic properties of Bessel functions. Consider n fixed and z→∞:

Jn(z)=
(

1
2π z

)1/2

(ei(z−nπ/2−π/4)
+ e−i(z−nπ/2−π/4)

+O(|z|−1e|Im z|)),

H (1)
n (z)=

(
2
π z

)1/2

(ei(z−nπ/2−π/4)
+O(|z|−1e|Im z|)),

J ′n(z)= i
(

1
2π z

)1/2

(ei(z−nπ/2−π/4)
− e−i(z−nπ/2−π/4)

+O(|z|−1e|Im z|)),

H (1)
n
′
(z)= i

(
2
π z

)1/2

(ei(z−nπ/2−π/4)
+O(|z|−1e|Im z|)),

J ′n(c
−1z)H (1)

n (z)=
i
√

c
π z

(ei((c−1
+1)z−nπ−π/2)

− e−i(c−1
−1)z
+O(|z|−1e(c

−1
+1)|Im z|)), (95)

Jn(c−1z)H (1)
n
′
(z)=

i
√

c
π z

(ei((c−1
+1)z−nπ−π/2)

+ e−i(c−1
−1)z
+O(|z|−1e(c

−1
+1)|Im z|)). (96)

Next, we record asymptotics that are uniform in n and z as n→∞. Let ζ = ζ(z) be the unique smooth
solution on 0< z <∞ to (

dζ
dz

)2

=
1− z2

ζ z2 , (97)

with
lim
z→0

ζ =∞, lim
z→1

ζ = 0, lim
z→∞

ζ =−∞.

Then
2
3(−ζ )

3/2
=

√
z2− 1− arcsec(z), 1< z <∞, (98)

2
3(ζ )

3/2
= log

(
1+
√

1− z2

z

)
−

√
1− z2, 0< z < 1,

1− z2

ζ z2 →
3
√

2, z→ 0. (99)
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Figure 10. Numerically computed resonances for the transparent obstacle problem with
various c and ℵ when �= B(0, 1)⊂ R2. In this case, we expand the solutions to (3) as
ui (r, θ)=

∑
n ui,n(r)einθ and solve for some of the resonances with Re λ∼ 800. In the

lower graphs of each of the four subfigures, the red circles show Im λ vs. Re λ. The dashed
black lines show the upper and lower bounds for Im λ when ℵ corresponds to TE waves
and the upper bounds on Im λ when ℵ corresponds to TM waves from Theorem 1.2.
Notice that by orthogonality of einθ and eimθ for m 6= n, the pair (u1,neinθ, u2,neinθ )

satisfies (3). In the top graph of each subfigure, the red circles show Im λ vs. n/Re λ for
such pairs. That is, we plot Im λ vs. the scaled tangent frequency of the resonance state.
The dashed curve shows a plot of (cr1/(2l1))(cξ), the decay rate predicted for a billiards
trajectory traveling with scaled tangent frequency cξ . The large spikes in the top graphs
occur at the Brewster angle when ℵ corresponds to TM waves.

Let

Ai(s)=
1

2π

∫
∞

−∞

ei((1/3)t3
+st) dt

for s ∈ R be the Airy function solving Ai ′′(z)− z Ai(z) = 0. Then, A−(z) = Ai(e2π i/3z) is another
solution of the Airy equation.
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For z fixed as n→∞

Jn(nz)=
(

4ζ
1− z2

)1/4( Ai(n2/3ζ )

n1/3 +O(Ei(5/3, 7/3))
)
,

H (1)
n (nz)= 2e−π i/3

(
4ζ

1− z2

)1/4( A−(n2/3ζ )

n1/3 +O(E−(5/3, 7/3))
)
,

J ′n(nz)=−
2
z

(
1− z2

4ζ

)1/4( Ai ′(n2/3ζ )

n2/3 +O(Ei(8/3, 4/3))
)
,

H (1)
n
′
(nz)=

4e2π i/3

z

(
1− z2

4ζ

)1/4( A′
−
(n2/3ζ )

n2/3 +O(E−(8/3, 4/3))
)
,

J ′n(c
−1nz)H (1)

n (nz)=
4e2π i/3c

z

(
(1− c−2z2)ζ(z)
ζ(c−1z)(1− z2)

)1/4( Ai ′(n2/3ζ(c−1z))
n2/3 +O(Ei(8/3, 4/3)(c−1z))

)
×

(
A−(n2/3ζ )

n1/3 +O(E−(5/3, 7/3)(z))
)

Jn(c−1nz)H (1)
n
′
(nz)=

4e2π i/3

z

(
(1− z2)ζ(c−1z)
ζ(z)(1− c−2z2)

)1/4( Ai(n2/3ζ(c−1z))
n1/3 +O(Ei(5/3, 7/3)(c−1z))

)
,

×

(
A′
−
(n2/3ζ(z))

n2/3 +O(E−(8/3, 4/3)(z))
)
,

where
E−(s, t)= |A′

−
(n2/3ζ )|n−s

+ |A−(n2/3ζ )|n−t ,

Ei(s, t)= |Ai ′(n2/3ζ )|n−s
+ |Ai(n−2/3ζ )|n−t .

(100)

We now record some facts about the Airy functions Ai and A−. For s ∈ R,

Ai(s)= e−π i/3 A−(s)+ eπ i/3 A−(s)
and hence

Im(e−5π i/6 A−(s))=− 1
2 Ai(s). (101)

Next, we record asymptotics for Airy functions as z→∞ in the sector |Arg z|< π
3 −δ. Many of these

asymptotic formulae hold in larger regions, but we restrict our attention to this sector. Let η = 2/3z3/2,
where we take principal branch of the square root. Then

A−(z)=
e−π i/6eη

2
√
π z1/4 (1+O(|z|−3/2)), A−(−z)=

eπ i/12eiη

2
√
π z1/4 ,

A′
−
(z)=

e−π i/6z1/4eη

2
√
π

(1+O(|z|−3/2)), A′
−
(−z)=

e−5π i/12z1/4eiη

2
√
π

,

Ai(z)=
z−1/4e−η

2
√
π

(1+O(|z|−3/2)), Ai(−z)=
z−1/4

2
√
π
(eiη−iπ/4

+e−iη+iπ/4
+O(|z|−3/2e|Imη|)),

Ai ′(z)=−
z1/4e−η

2
√
π
(1+O(|z|−3/2)), Ai ′(−z)=

z1/4

2i
√
π
(eiη−iπ/4

−e−iη+iπ/4
+O(|z|−3/2e|Imη|)).

(102)
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13B. Resonances normal to the boundary (fixed n). First, we fix n ≥ 0 and examine solutions with
Re λ→∞. We assume that ℵ 6= c−1. Consider (94) and apply the asymptotics (95) and (96) with Im λ≤ 0

(c−1
−ℵ)ei((c−1

+1)λ−nπ−π/2)
− (c−1

+ℵ)e−i(c−1
−1)λ
+O(|z|−1e(c

−1
+1)|Im z|)= 0.

So, ignoring the error term for now, we have

1−ℵc
1+ℵc

ei(2c−1λ0−nπ−π/2)
= 1.

So,

c−1 Im λ0 =
1
2

log
∣∣∣∣1−ℵc
1+ℵc

∣∣∣∣, c−1 Re λ0 =
2− sgn(1−ℵc)+ 2n+ 4k

4
π.

Taking λ0 as above, we have f (λ0)= O(|Re λ0|
−1), | f ′(λ0)| ≥ c, and | f ′′(λ)| ≤ C for |λ− λ0|< δ for

some δ > 0. We now recall Newton’s method (see for example [Galkowski 2016, Lemma 4.1]).

Lemma 13.1. Suppose that z0 ∈ C. Let � := {z ∈ C : |z− z0| ≤ ε} and suppose f :�→ C is analytic.
Suppose that

| f (z0)| ≤ a, |∂z f (z0)| ≥ b, sup
z∈�
|∂2

z f (z)| ≤ d.

Then if

a+ dε2 < εb < c < 1, (103)

there is a unique solution z to f (z)= 0 in �.

Using this, we have that there exists a unique solution λ1 to f (λ1)= 0 with |λ1− λ0| = O(|Re λ0|
−1).

13C. Resonances with nonzero tangent frequency (ε Reλ ≤ n ≤ (min(1, c)− ε)Reλ). In this case,
we write

f (λ) := c−1 J ′n

(
n

c−1λ

n

)
H (1)

n (λ)−ℵH (1)
n
′
(λ)Jn

(
n

c−1λ

n

)
= 0.

Write z = λ/n. Then taking n ≤ (c− ε)Re λ and ignoring error terms, f (λ0)= 0 implies

[(
1− c−2z2

0

1− z2
0

)1/2

−ℵ

]
e(4in/3)((−ζ(c−1z0))

3/2
−iπ/2

=

[(
1− c−2z2

0

1− z2
0

)1/2

+ℵ

]
− i

√
c−2z2

0− 1−ℵ
√

z2
0− 1√

c−2z2
0− 1+ℵ

√
z2

0− 1

= e−(4in/3)((−ζ(c−1z0))
3/2
. (104)

Fix max(c, 1)+ δ < r <∞ with δ < c2 so that√
c−2r2− 1−ℵ

√
r2− 1 6= 0.

Let

g(s, n, k) :=
√

c−2s2− 1− arcsec(c−1s)+
4k− sgn(

√
c−2s2− 1−ℵ

√
s2− 1)

4n
π.
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Then, fix q ∈ Z+, p ∈ Z and let n = qm and k = pm so that

g(s, qm, pm)=
√

c−2s2− 1− arcsec(c−1s)+
p
q
π −

sgn(
√

c−2s2− 1−ℵ
√

s2− 1)
4mq

π.

Then, for any ε > 0 small enough, there exist pε, qε so that

|g(r, qm, pm)|< ε+O(m−1),

∂s g(r, qεm, pεm)=

√
c−2r2− 1

r
≥ C
√
δ, ∂2

s g(r, qεm, pεm)=−
r−3

√
c−2− r−2

≤
C
√
δ
.

Therefore, taking ε small enough and m large enough (depending on r − c), there is a solution rm to
g(rm, qεm, pεm)= 0 with |r − rm |< Cε.

With this rm , let

λ0 = mqrm + i
rm

2
√

c−2r2
m − 1

log
∣∣∣∣
√

c−2r2
m − 1−ℵ

√
r2

m − 1√
c−2r2

m − 1+ℵ
√

r2
m − 1

∣∣∣∣
and z0 = λ0/mq. Let

H(z, n)= exp
(
−

4
3 in(−ζ(c−1z))3/2

)
+ i

√
c−2z2− 1−ℵ

√
z2− 1

√
c−2z2− 1+ℵ

√
z2− 1

.

Then, accounting for the errors omitted to obtain (104) there is a function a(z, n)= O(n−2/3), analytic
in z, such that nz is a resonance if and only if

H(z, n)= a(z, n)
[
1+ exp

(
−

4
3 in(−ζ(c−1z))3/2

)]
.

Now, using (98)

−
4
3 imq(−ζ(c−1z0))

3/2

=−2imq(
√

c−2z2
0− 1− arcsec(c−1z0))

=−2imq
(√

c−2r2
m − 1− arcsec(c−1rm)+ i

√
c−2r2

m − 1
rm

Im z0+O((Im z0)
2)

)
= i
(
2mpi − 1

2 sgn(
√

c−2r2
m − 1−ℵ

√
r2

m − 1)
)
π + log

∣∣∣∣
√

c−2r2
m − 1−ℵ

√
r2

m − 1√
c−2r2

m − 1+ℵ
√

r2
m − 1

∣∣∣∣+O((mq)−1).

So,

exp
(
−

4
3 imq(−ζ(c−1z0))

3/2)
=− sgn(

√
c−2r2

m − 1−ℵ
√

c−2r2
m − 1)i

∣∣∣∣
√

c−2r2
m − 1−ℵ

√
r2

m − 1√
c−2r2

m − 1+ℵ
√

r2
m − 1

∣∣∣∣(1+O((mq)−1)).

So, H(z0,mq)= O((mq)−1). Moreover, |z0− z| ≤ 1,

|∂z H(z,mq)| ≥ cmq.
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Hence, by the implicit function theorem, there exists a resonance z1 with

z1 = z0+O
(sup|z−z0|≤1

∣∣a(z,mq)[1+ exp(−(4imq/3)(−ζ(c−1z))3/2)]
∣∣

inf|z−z0|≤1 |∂z H(z,mq)|

)
= z0+O((mq)−5/3).

Thus, there is a resonance, λ1 with

λ1 = mqrm + i
rm

2
√

c−2r2
m − 1

log
∣∣∣∣
√

c−2r2
m − 1−ℵ

√
r2

m − 1√
c−2r2

m − 1+ℵ
√

r2
m − 1

∣∣∣∣+O((mq)−2/3).

Now, notice that if |ξ ′|−1
g c = r , then on B(0, 1), we have l((x, ξ ′), β(x, ξ ′))= 2

√
1− r−2c2. So,

l−1
N rN (x, ξ ′)=

1

4
√

1− r−2c2
log
∣∣∣∣
√

1− r−2c2−ℵ
√

c2− r−2c2
√

1− r−2c2+ℵ
√

c2− c2r−2

∣∣∣∣2
=

c−1r

2
√

c−2r2− 1
log
∣∣∣∣
√

c−2r2− 1−ℵ
√

r2− 1
√

c−2r2− 1+ℵ
√

r2− 1

∣∣∣∣.
Now, by construction for any r with max(1, c) < r <∞ such that

√
c−2r2− 1−ℵ

√
r2− 1 6= 0 and δ

small enough, we have |r − rm |< δ so, taking m large enough,

|c−1 Im λ− l−1
N rN (x, ξ ′)| ≤ Cδ.

This shows that Theorem 1.2 is sharp. Moreover, when c < 1, [Popov and Vodev 1999b] shows that there
are sequences of resonances converging to the real axis that have n ≈ c−1 Re λ.

Remark 13.2. Notice also that
mq

c−1 Re λ
= cr−1

m = |ξ
′
|g.

Thus, since (94) with parameter n corresponds to a resonant state with u|∂�= Aeinθ, the semiclassical tan-
gent frequency of the resonance state is cn/Re λ when we take Re z ∼ c. Plugging this into cl−1

N rN (x, ξ ′)
gives the decay rate of the resonance state. See also Figures 3 and 10 for numerically computed resonances
in this case.

Appendix: List of notation

For the convenience of the reader, we include a list of some of the notation used in this paper.

• �: strictly convex domain with smooth boundary — Section 1A.

• l(q1, q2): chord length — (20).

• lN (q): average chord length — (20).

• |ξ ′|g metric induced on T ∗∂�— Section 1A.

• β : B∗∂�→ B∗∂�: the billiard ball map — Section 5.

• 9m
δ (M): semiclassical pseudifferential operator classes — Section 2.

• Sm
δ (T

∗M): symbol classes — (33).
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• σ :9m
δ (M)→ Sm

δ (T
∗M): the symbol map — (34).

• Ai , Ai , 8−, ζi : Airy-related functions — Section 1B, (9).

• Q(x ′, ξ ′) ∈ C∞(T ∗∂�): the symbol of the second fundamental form — Section 1B.

• N2(z/h): the outgoing Dirichlet-to-Neumann Map — Section 1D.

• G(z/h): the single-layer operator — Section 1D.

• GB , G1: decomposition of G — Lemma 7.3.

• 9
k1,k2
δ (M;6), Sk1,k2

δ (M;6): second microlocal operators and symbols — Section 4.

• R: the reflection operator — (18).

• T : the transition operator — (19).

• Oph: quantization operator — Section 2.

• rN : the average reflectivity — (21).

• σ̃ : the compressed shymbol — Section 3.

• IA(q): the order of A at q — Section 3.

• H m
h : semiclassical Sobolev spaces — (24).

• S`, D`, respectively the single and double-layer operators — (31).

• O( · ) and o( · )— (32).

• WFh the semiclassical wavefront set — Definition 2.7.

• 9S`, 9D`S`, 9D` symbols of layer potentials — (52).
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