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ABOUT SMALL EIGENVALUES OF THE WITTEN LAPLACIAN

LAURENT MICHEL

We study the low-lying eigenvalues of the semiclassical Witten Laplacian associated to a Morse function '.
Compared to previous works we allow general distributions of critical values of ', for instance allowing
all the local minima to be absolute. The motivation comes from metastable dynamics described by the
Kramers–Smoluchowski equation.
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1. Introduction

1A. Motivation. The Witten Laplacian, �' was introduced by Witten [1982] to give an analytic proof of
Morse inequalities. Its study led to many mathematical developments, most notably the Helffer–Sjöstrand
theory [1985] of potential wells in the semiclassical limit. It is defined by twisting the operator d (acting
on forms) by a Morse function ':

�' WD d
�
' d' C d'd

�
' ; d' WD e

�'=hhde'=h: (1-1)

It takes a simple form on functions and for the Euclidean metric on Rd we then have

�' D�h
2�Cj@x'j

2
� h�': (1-2)

Even in that case using the action on 1-forms is highly beneficial — see [Michel and Zworski 2018] for
an introduction in the simple one-dimensional setting.

MSC2010: 35P20.
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More recently the Witten Laplacian appeared in quantitative studies of metastability for kinetic
equations — see for instance [Hérau and Nier 2004; Helffer, Klein and Nier 2004; Hérau, Hitrik and
Sjöstrand 2011; Di Gesù, Lelièvre, Le Peutrec and Nectoux 2017].

Other interesting developments also include connecting the “Arrhenius rates” (exponential widths S
of small eigenvalues �h in (1-8)) with barcodes of the Morse–Barannikov complex in [Le Peutrec, Nier
and Viterbo 2013] and showing that (in the case of compact manifolds) the eigenvalues of the Witten
Laplacian converge, as h! 0, to the Ruelle resonances of the gradient flow of ' in [Dang and Rivière
2017].

This paper continues the study of the Witten Laplacian by considering functions ' with general
distributions on critical values, in particular functions with several equal minima and equal values at
saddle points. (In works related to Morse theory it is natural to assume that all critical values are distinct.)
As emphasized in [Michel and Zworski 2018] such functions lead to interesting effective dynamics
for the Kramers–Smoluchowski equation (1-6) — see Figure 2 and Section 1B. This, and more general
situations in which equal critical values are allowed (see Figure 4 for a schematic illustration of an allowed
landscape), leads to new subtle difficulties.

To explain metastable dynamics consider a particle evolving in an energy landscape ' and submitted to
random forces. The position Xt of such a particle at time t satisfies the over-damped Langevin equation

PXt D�2r'.Xt /C
p
2h PBt ; (1-3)

where h is the temperature of the system and Bt is a Brownian force. This equation appears for instance
in physics to describe the microscopic evolution of a charged gas assuming the mass of the particles is
negligible.

Assuming that the potential ' has several wells, a particle starting at a local minimum of the function '
can, due to the presence of the random force, move over a saddle point and reach another energy well —
see Figure 1 for a schematic illustration.

The celebrated Eyring–Kramers law describes the average time it takes to escape from a well, in the
regime of low temperature, h! 0. In his pioneering work, Kramers [1940] considered a one-dimensional
model, see Figure 1, and predicted that the average transition time, �' , from a local minimum A to the

A

S

B

Figure 1. Metastable dynamics: random force allows a state localized near one minimum
A to reach another minimum B passing a saddle point (a local maximum in dimension 1).
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nearest saddle point S is exponentially large with respect to h�1:

�' ' a'e
�'=h; �' D '.S/�'.A/; a' D 2�j'

00.A/'00.B/j�1=2: (1-4)

Hence, for h small this average transition time is large and this explains the terminology of A being a
metastable state. (Once we get past S , the transition time to B is bounded and hence �' is effectively the
transition time from the state A to the state B .)

The Eyring–Kramers law has important applications in which the trajectory (1-3) is used to imple-
ment computational algorithms. Roughly speaking it proceeds as follows: in order to compute some
thermodynamical quantities

E�.f /D

Z
Rd
f .x/ d�.x/ (1-5)

associated with a measure � and an observable f , we introduce a random dynamics Xt which is ergodic
with respect to �. We then use the Monte Carlo method to approximate E�.f / by the long-time average of
f along any trajectory — see [Lelièvre, Rousset and Stoltz 2010] for an introduction. In many situations
d�.x/DZhe

�'.x/=h for some potential ' and the over-damped Langevin dynamics (1-3) can be used
as Xt . The time needed for the process Xt to explore the whole space Rd (which ensures the validity
of the Monte Carlo approximation method) is directly linked to the metastable properties discussed
previously. Understanding this metastable behavior is then of interest if, for instance, we need to evaluate
the stopping time or to accelerate the convergence.

The mathematical proof of Eyring–Kramers law in a generic setting was first obtained by a potential-
theory approach in [Bovier, Gayrard and Klein 2005] and then by semiclassical methods in [Helffer, Klein
and Nier 2004]. The semiclassical point of view and connection to the Witten Laplacian can be seen by
considering the Langevin equation (1-3) at the macroscopic level. In that case statistical distributions
�.t; x/ of particles are governed by the Kramers–Smoluchowski equation

@t�� h��� 2 div.�r'/D 0: (1-6)

This is equivalent to

h@t Q�C�' Q�D 0; Q� WD e'=h�;

where �' is the Witten Laplacian (1-2) associated to '. In view of (1-1), �' is nonnegative and under a
confining assumption on the function ', it has a nontrivial kernel corresponding to the global equilibrium
of (1-6). (Confining assumption means that ' grows fast enough so that e�'=h 2 L2.) As a consequence,
the behavior of Q� when t !1 is determined by the small eigenvalues of �' . In particular, any state
associated to a small eigenvalue is stable for exponentially long times. These are the metastable states,
and the inverses of the corresponding eigenvalues yield their lifetimes. Helffer, Klein and Nier [2004]
obtained a full description of the small eigenvalues of the Witten Laplacian in a general setting. For the
Kramers–Smoluchowski equation, their result implies that if the initial probability distribution �0 belongs
to L2.e2'=h dx/, then the solution � of (1-6) converges exponentially fast to the equilibrium probability
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distribution c�2
h
e�2'=h (where ch is a normalizing factor)

k�.t/� c�2h e�2'=hkL2.e2'=h dx/ � e
��ht=hk�0kL2.e2'=h dx/: (1-7)

Moreover, the rate of convergence

�h=hD b.h/e
�2S=h; �h WDmin �.�'/ n f0g; (1-8)

is described by the Eyring–Kramers law, that is:

� S is the biggest height a particle has to pass in order to reach the unique global minimum.

� The prefactor b.h/ has an asymptotic expansion with respect to the parameter h, b.h/�
P
k bkh

k

and its leading term is given by an explicit formula in terms of the Hessian of '.

More precisely, the assumptions made in [Helffer, Klein and Nier 2004] imply that there exist a unique
minimumm and a unique saddle point s of ' such that S D'.s/�'.m/. Then, the leading term of b.h/ is

b0 D
j�1.s/j

�

s
det Hess.'/.m/
jdet Hess.'/.s/j

; (1-9)

where �1.s/ denotes the negative eigenvalue of Hess.'/.s/. In the case of a double well, this formula
is exactly the one predicted by Kramers [1940]. In view of (1-7) the transmission time is approximately
the inverse of �h of (1-8). Hence the result of [Helffer, Klein and Nier 2004] is in agreement with (1-4).
(Note that in dimension 1, '00.s/D �1.s/.)

The method developed in [Helffer, Klein and Nier 2004] to compute the small eigenvalues of the
Witten Laplacian was successfully used on bounded domains in [Helffer and Nier 2006; Le Peutrec 2010]
and in the study of semiclassical random walks [Bony, Hérau and Michel 2015].

The range of potential ' covered by these papers does not include many cases which are important in
practice. Roughly speaking, Helffer, Klein and Nier [2004] make an assumption on the relative position
of minima and saddle points that ensures that the small eigenvalues are all of different size. Among the
limitations of this assumption is the fact that the potential ' cannot have saddle points or minima with the
same value. In many physical applications the energy landscape may not satisfy that assumption. Also,
the energy potential may have symmetries which again are not allowed by the assumptions in [Helffer,
Klein and Nier 2004]. For instance this is the case of some homogeneous systems such as Lennard-Jones
clusters — see [Wales 2006] for an example and a discussion.

The aim of this paper is to study the spectral properties of �' in the case where ' is a general Morse
function without restrictions on the relative positions of the critical values.

1B. An example. A motivating example is given by ' W Rd ! R which has n0 minima all at the same
level and n1 saddle points all at the same level — see Figure 2, where the x represent minima and the
o local maxima. Denote by S D '.s/�'.m/ the difference of the value at the saddle points and at the
minima. To simplify the setting further, we assume also that the function Hess.'/.x/ has eigenvalues ˙1
when x belongs to the set of minima and saddle points.
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X

Figure 2. Left: the sublevel set f' < �g (shaded region) associated to a potential '
having a unique saddle value � . The x’s represent local minima, the o’s, local maxima.
Right: the graph associated to the potential on the left.

This case is not allowed under the assumptions of [Helffer, Klein and Nier 2004] yet it displays some
interesting phenomena. More precisely, in the very simplified case discussed in this section, a consequence
of Theorem 7.1 below is the following:

Theorem 1.1. Under the assumptions of this subsection, there exist �0 > 0 and h0 > 0 such that for
all h 2 �0; h0�, �' has exactly n0 eigenvalues �k , k D 1; : : : ; n0, in the interval Œ0; �0h�. The lowest
eigenvalue is �1 D 0 and

�k D hbk.h/e
�2S=h; k D 2; : : : ; n0:

The prefactors bk.h/ satisfy bk.h/�
P1
jD0 h

j bk;j and the terms bk;0 are given by the nonzero eigenvalues
of the graph Laplacian for the graph G whose vertices are the minima of ' and whose edges are the saddle
points joining two minima (see Figure 2).

In terms of the Kramers–Smoluchowski equation (1-6), Theorem 1.1 exhibits metastable states whose
lifetimes (given by the inverse of the above eigenvalues) are described by the graph G. At the level of
particles, these new rules of computation can be understood as follows. Since all the minima are at
the same level, the equilibrium state is equidistributed among all the minima. Moreover, since all the
saddle points are at the same level, an ergodic trajectory of (1-3) will visit all the minima in the same
time scale, by traveling along the edges of the graph G. Hence, the effective long-time dynamics of
the Kramers–Smoluchowski equation is given by the heat equation for the graph Laplacian of G — see
[Michel and Zworski 2018, Theorem 3].

Earlier results, in dimension 1 and for finite times, on effective dynamics were obtained in [Peletier,
Savaré and Veneroni 2012] using �-convergence, in [Herrmann and Niethammer 2011] using Wasserstein
gradient flows and in [Evans and Tabrizian 2016]. We also remark that the same graph Laplacian was
constructed in [Landim, Misturini and Tsunoda 2015] in a discrete setting.

Under our special assumptions the coefficients bk do not depend on the second derivative of ' as in
the usual case. In the more general case of arbitrary Hessians, G has to be replaced by a weighted graph
with weights depending on the Hessians in an explicit way — see Theorem 7.1.

To motivate objects introduced in the next section, we now discuss what happens if we modify the
potential ' in the following way: suppose that ' has the structure shown in Figure 2 but one of the minimal
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X
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A

Figure 3. Left: the sublevel set f' < �g (shaded region) associated to a potential '
having a unique saddle value � . The x’s represent local minima, the o’s, local maxima.
Right: the two hypergraphs associated to the potential on the left (the missing vertex
corresponds to the minimum A).

values is made higher or lower. In Figure 3, the modified minimum is denoted by A. Then, we can
associate to this potential the two hypergraphs corresponding to minima at the same level and linked by a
saddle value (see Figure 3). If A is an absolute minimum, then equilibrium distribution is concentrated
in A and the prefactor bk.h/ will be given by the smallest nonzero eigenvalue of the two hypergraphs
introduced above (roughly speaking this represents the maximum time needed to reach A). In the opposite
case, A is no longer a global minimum and the equilibrium state is uniformly distributed among all
the absolute minima. In order to visit each site of the equilibrium state, a particle will necessarily pass
through the point A. This heuristic explains why the computation of the prefactor bk.h/ will involve a
more complicated procedure describing the interaction between the two hypergraphs via the well A.

The main contribution of this paper is to describe these phenomena in a quantitative way.

2. Framework and results

Let X be either Rd or a compact manifold of dimension d without boundary and let ' W X ! R be a
smooth Morse function. Consider the semiclassical Witten Laplacian associated to ':

�' D�h
2�Cjr'j2� h�'; (2-1)

where h 2 �0; 1� denotes the semiclassical parameter.
If X is a compact manifold, the operator �' is selfadjoint with domain H 2.X/ and its resolvent is

compact. In the case X D Rd we make the additional assumption that there exist C > 0 and a compact
K � Rd such that for all x 2 Rd nK, we have

jr'.x/j �
1

C
; jHess.'.x//j � C jr'j2 and '.x/� C jxj: (2-2)

Then, �' is essentially selfadjoint on C1c .Rd / and thanks to (2-2), there exist h0 > 0 and c0 > 0 such
that for all h 2 �0; h0�, we have

�ess.�'/� Œc0;1Œ:

In both situations X compact or X DRd, it is well known that �' is nonnegative. Hence �.�'/� Œ0;1Œ
and it follows from the above remarks that �.�'/\ Œ0; c0Œ is made of eigenvalues with no accumulation
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point except maybe c0. Moreover e�'=h is clearly in the kernel of �' and belongs to L2.Rd / thanks to
(2-2), so that the lowest eigenvalue of �' is clearly 0.

Since ' is a Morse function (and thanks to assumption (2-2) in the case X D Rd ), the set U of critical
points is finite. In the following, for p D 0; : : : ; d , we will denote by U .p/ the set of critical points of
' of index p. Hence, U .0/ is the set of minima and U .1/ the set of saddle points of '. Throughout the
paper, we will write nj D #U .j /.

From the pioneering work [Witten 1982], it is well known that for small h, there is a correspondence
between the small eigenvalues of �' and the critical points of '. More precisely, by standard localization
arguments one can show that there exists �0 > 0 such that for h > 0 small enough, �' has exactly
n0 eigenvalues in the interval Œ0; �0h�, which we denote by 0D �1 � �2 � � � � � �n0 . This result is easily
proved in [Cycon, Froese, Kirsch and Simon 1987] with �0h replaced by h3=2. The proof with �0h can be
found in [Helffer and Sjöstrand 1985, Proposition 1.7] (see also [Michel and Zworski 2018, Proposition 1]
for a self-contained proof). Moreover, these eigenvalues are actually exponentially small; that is, they live
in an interval Œ0; e�C=h� for some C > 0 (see [Helffer 1988] for a proof). From a topological point of
view, this information (together with the equivalent estimates for the Witten Laplacian �.p/' acting on
p-forms) is sufficient to establish a correspondence between the small eigenvalues of �.p/' and the critical
points of ' of index p (this was the key point in the Witten’s proof of Morse inequalities). However, for
applications to the description of metastable dynamics, it is important to get some accurate description
of the �j . Our main theorem will give some asymptotic of these eigenvalues for any Morse function ',
without any assumption on the relative position of minimal and saddle values of '.

Before going further, we introduce notation used in this paper. For x0 2X and r > 0, introduce the
geodesic ball B.x0; r/D fx 2X W d.x; x0/ < rg.

Throughout, we will say that s is a saddle point if it is a critical point of index 1.
Given a.h/; b.h/ > 0, two functions of the semiclassical parameter, we say that a.h/� b.h/ if there

exists some constant c1; c2 > 0 such that for all h > 0 small we have c1b.h/� a.h/� c2b.h/. We say
that a family of vectors .a.h//h2�0;1� in a normed vector space V admits a classical expansion if there
exists a sequence of vectors .an/n2N independent of h and such that for all N 2 N, there exists some
constant CN > 0 such that



a.h/� NX

nD0

hnan






V

� CNh
NC1 for all h 2 �0; 1�:

We set a.h/�
P1
nD0 h

nan.
As we shall see later, we will have to analyze carefully some finite-dimensional matrices which are

strongly related to the critical points of '. Given any subsets B1;B2 of U , it will be convenient to
introduce the finite-dimensional vector space F .Bj / of real-valued functions on Bj . We shall then denote
by M .B1;B2/ the vector space of linear operators from F .B1/ into F .B2/.

2A. Labeling of minima. Let us now recall the general labeling of minima introduced in [Helffer, Klein
and Nier 2004] and generalized in [Hérau, Hitrik and Sjöstrand 2011]. The main ingredient is the notion
of separating saddle point, which is defined as follows. Given a saddle point s of ', and r > 0 small
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E1;1

m1;1

E2;1 E2;3E2;2

m2;1

m2;2

m2;3

E3;1E3;2 E3;3

E4;1

m4;1

m3;2m3;1

m3;3

�2

�3

�4

�1 D1

E3;4

m3;4

Figure 4. Labeling procedure.

enough, the set
fx 2 B.s; r/ W '.x/ < '.s/g

has exactly two connected components Cj .s; r/, j D 1; 2. The following definition is taken from [Hérau,
Hitrik and Sjöstrand 2011, Definition 4.1].

Definition 2.1. We say that s 2X is a separating saddle point (ssp) if it is a saddle point and if C1.s; r/
and C2.s; r/ are contained in two different connected components of fx 2 X W '.x/ < '.s/g. We will
denote by V.1/ the set of separating saddle points.

We say that � 2 R is a separating saddle value (ssv) if it is of the form � D '.s/ with s 2 V.1/. We
denote by †D '.V.1// the set of separating saddle values.

We say that E �X is a critical component if there exists � 2† such that E is a connected component
of f' < �g and if @E \V.1/ ¤∅. We denote by C the set of critical components.

Let us now describe the labeling procedure of [Hérau, Hitrik and Sjöstrand 2011]. Since ' is a Morse
function, it has finitely many critical points and so † is finite. We denote by �2 > �3 > � � � > �N its
elements and for convenience we also introduce a fictive infinite saddle value �1 D C1 and write
†D†[f�1g. Starting from �1, we will recursively associate to each �i a finite family of local minima
.mi;j /j and a finite family of critical components .Ei;j /j (see Figure 4):

� Let X�1 D fx 2X W '.x/ < �1 D1gDX. We let m1;1 be any global minimum of ' (not necessarily
unique) and E1;1 DX.

� Next we consider X�2 D fx 2 X W '.x/ < �2g. This is the union of its finitely many connected
components. Exactly one of these components contains m1;1 and the other components are denoted by
E2;1; : : : ; E2;N2 . In each component E2;j , we pick up a pointm2;j which is a global minimum of 'jE2;j .

� Suppose now that the families .mk;j /j and .Ek;j /j have been constructed until rank k D i � 1. The
set X�i D fx 2 X W '.x/ < �ig has again finitely many connected components and we label by Ei;j ,
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j D 1; : : : ; Ni , those that do not contain any mk;l with k < i . In each Ei;j we pick a point mi;j which
is a global minimum of 'jEi;j . Observe that for all i � 2, the components Ei;j are all critical.

We run the procedure until all the minima have been labeled.

Remark 2.2. The above labeling satisfies the following property. For any �i 2 † and any connected
component Ai of f' < �ig, there exists a unique .k; l/ such that k � i and mk;l 2 Ai .

Proof. Let us start with the existence part of the result. If Ai is one of the Ei;j for some j , then take
k D i and l D j . Otherwise, this means that in the labeling procedure, Ai already contained a minimum
mk;l with k < i .

Let us prove the uniqueness part. Assume thatmk;l ;mk0;l 0 2Ai with k � k0� i . Then Ai \Ek0;l 0 ¤∅
and since Ai is a connected component of f' < �ig with �i � �k0 it follows that Ai � Ek0;l 0 . Since
mk;l 2 Ai , it follows that mk;l 2Ek0;l 0 which is impossible unless .k; l/D .k0; l 0/. �

Using the above labeling, Hérau, Hitrik and Sjöstrand [2011] made some significant progress (in the
more general situation of Kramers–Fokker–Planck operators, but this applies to Witten Laplacian). First,
they showed in Theorem 7.1 of that paper that the exponentially small eigenvalues .�m.h//m2U.0/ of �'
(indexed by the sequence of local minima) satisfy �m.h/� he�2S.m/=h for the sequence of Arrhenius
numbers .S.m//m2U.0/ defined by S.mi;j / D �i � f .mi;j / with the above notation. However, their
method does not work to prove that h�1�m.h/e2S.m/=h admits a limit when h! 0. In order to compute
the asymptotic expansion of the eigenvalues �m.h/, they need to make some additional assumption on
the interaction between minima and saddle points (see Assumption 5.1 in [Hérau, Hitrik and Sjöstrand
2011]). This hypothesis, which is a generalization of the one made in [Helffer, Klein and Nier 2004], can
be formulated as follows with the notation of the preceding section:

Generic Assumption. For all i D 1; : : : ; N , j D 1; : : : ; Ni , the following hold true:

(i) mi;j is the unique global minimum of the application 'jEi;j .

(ii) If E is a connected component of f' < �ig such that E \V.1/ ¤∅, there exists a unique s 2 V.1/

such that '.s/D sup'.E \V.1//. In particular, '�1.��1; '.s/Œ/\E is the union of exactly two
different connected components.

Throughout the paper, we denote this assumption by (GA).

Under this assumption, there exists a bijection between U .0/ and V.1/ [ fs1g, where s1 is a fictive
saddle point associated to �1 D 1 and for which by convention '.s1/ D 1. Using this one-to-one
correspondence, the authors exhibit some labeling U .0/Dfm1; : : : ;mn0g and V.1/[fs1gD fs1; : : : ; sn0g
such that the small eigenvalues �i .h/ are of the form hbi .h/e

�2Si=h with Si D '.si /�'.mi /. Moreover,
they prove that the bi .h/ have a classical expansion and compute the leading term of this expansion; see
[Hérau, Hitrik and Sjöstrand 2011, Theorem 5.10].

As it is stated above, (GA) is not exactly Assumption 5.1 stated in [Hérau, Hitrik and Sjöstrand
2011]. Indeed, it is supposed in that paper that (ii) holds true only for E being a critical component.
However, as indicated by the anonymous referee, we can easily construct some function ' satisfying
this assumption for which there is no bijection between U .0/ and V.1/. To see this, first consider in
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dimension 1 a potential ' with four minima mj , j D 1; : : : ; 4, and three saddle points sj , j D 1; : : : ; 3,
such that m1 < s1 < m2 < s2 < m3 < s3 < m4 and such that '.m1/ < '.m4/ < '.m2/ D '.m3/

and '.s1/ D '.s2/ < '.s3/. Since the component of f' < '.s3/g containing m1 is not critical, this
function satisfies Assumption 5.1 in [Hérau, Hitrik and Sjöstrand 2011]. It doesn’t satisfy (GA) as stated
above. In higher dimensions, one can easily generalize this construction to obtain potentials satisfying
Assumption 5.1 in [Hérau, Hitrik and Sjöstrand 2011], with a fixed number of minima and an arbitrarily
large number of separating saddle points (think for instance of many saddle points between the well
containing m1 and the well containing m2). This shows that Assumption 5.1 is not sufficient to ensure a
bijection between minima and separating saddle points.

Let us emphasize that the above remark doesn’t affect the rest of the work done in [Hérau, Hitrik and
Sjöstrand 2011], where we can easily use the above corrected version of Assumption 5.1.

Let us observe that the Generic Assumption allows some degeneracy in the sequence .Sj /; that is,
there may exist j such that Sj D SjC1. However, (GA) remains restrictive for the following reasons:

� It permits only potentials ' for which U .0/ and V.1/[fs1g have the same cardinality.

� The eventual degenerate heights are associated to weakly interacting eigenstates in the following
sense. Assume for instance that Sj D SjC1 for some j D 1; : : : ; n0 � 1 and modify slightly the
function ' near the minimummj . Then the coefficient bj is modified, whereas the classical expansion
of bjC1 remains unchanged.

Figures 6 and 7 below present some examples of potentials where (GA) is not satisfied. These examples,
as well as an example in higher dimensions, are discussed in detail in Section 7C.

In the present paper, we obtain an asymptotic expansion for the �i .h/ for general Morse functions '
without any additional assumptions on the relative position of minima and ssp’s.

2B. Main result. In order to state our main result, we introduce some notation that will be used throughout
the paper. First, using the above labeling, we define � WU .0/!† by � .mi;j /D�i and S WU .0/! �0;C1�

by S.m/D � .m/�'.m/. We let S D S.U .0//; then with the notation of the preceding section, we have

S D f�i �'.mi;j / W i D 1; : : : ; N; j D 1; : : : ; Nig: (2-3)

Throughout the paper, we denote by mDm1;1 the (not necessarily unique) absolute minimum of ' that
was chosen at the first step of the labeling procedure, and we let

U .0/ D U .0/ n fmg: (2-4)

Using again the above labeling, we can associate a critical component to any local minimum. More
precisely, we define

E W U .0/! C [fXg (2-5)

by E.mi;j / D Ei;j . Observe that by definition, this application is injective. Using this map, we can
associate to each minimum m 2 U .0/ a boundary set given by �.m/D @E.m/. Thanks to the fact that '
is a smooth Morse function, for any m 2 U .0/, the set �.m/ is a finite union of compact submanifolds
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of X of dimension d �1 with conic singularities at the saddle points. For our construction of quasimodes,
we also need to introduce the set

H.m/ WD fm0 2E.m/\U .0/ W '.m0/D '.m/g: (2-6)

Given m 2 U .0/, we have � .m/D �i for some i � 2. Moreover, since �i�1 > �i , there exists a unique
connected component of f' < �i�1g that contains m (observe that this component is not necessarily
critical). We denote that component by E�.m/, and by

E� W U .0/!�.X/ (2-7)

the corresponding application, where �.X/ is the collection of connected open subsets of X. Thanks to
Remark 2.2, we know that for any m 2 U .0/, there exists a unique m0 2E�.m/\U .0/, denoted by Om.m/,
such that � .m0/ > � .m/. In particular,

for all m 2 U .0/; '. Om.m//� '.m/; (2-8)

and we denote by yE.m/ the connected component of f' < �.m/g containing Om.m/. It holds additionally
yE.m/�E�.m/ and we can easily see that yE.m/ is always a critical component. Throughout, we denote by

yE W U .0/! C ; (2-9)

Om W U .0/! U .0/ (2-10)

the corresponding applications. The fact that the inequality in (2-8) is large or strict plays an important
role in our analysis.

Definition 2.3. Let m 2 U .0/. We say that m is of type I if '. Om.m// < '.m/. If '. Om.m//D '.m/, we
say that m is of type II. We define

U .0/; I D fm 2 U .0/ Wm is of type Ig;

U .0/; II D fm 2 U .0/ Wm is of type IIg:

We have clearly the disjoint union U .0/ D U .0/; I[U .0/; II.

Example 2.4. Let us compute the preceding object in the case of the potential ' represented in Figure 4.
The results are presented in Figure 5.

� Let us start with the object associated to �2. By definition, yE.m2;1/ D yE.m2;2/ D yE.m2;3/ D zE2,
where zE2 is the connected component of f' < �2g that contains m1;1. Then we have Om.m2;1/ D
Om.m2;2/D Om.m2;3/Dm1;1.

Since '.m1;1/D '.m2;1/ < '.m2;3/ < '.m2;2/, we know m2;1 is of type II, whereas m2;2 and m2;3
are of type I.

� Consider now the level �3. We have E�.m3;1/ D E�.m3;2/ D zE2 and E�.m3;3/ D E�.m3;4/ D
E2;3. Therefore, yE.m3;1/ D yE.m3;2/ D zE3, where zE3 is the connected component of f' < �3g that
contains m1;1. Similarly, we have yE.m3;3/D yE.m3;4/D zE 03, where zE 03 is the connected component of
f' < �3g that contains m2;3. From these computations, it follows that Om.m3;1/D Om.m3;2/Dm1;1 and
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E1;1

m1;1

E2;1 E2;3E2;2

m2;1

m2;2

m2;3

E3;1E3;2 E3;3

E4;1

m4;1

m3;2m3;1

m3;3

�2

�3

�4

�1 D1

E3;4

m3;4

zE3

zE2

zE 03

zE4

Figure 5. Computations of Example 2.4.

since '.m1;1/ < '.m3;1/D '.m3;2/ it follows that m3;1 and m3;2 are both of type I. On the other hand,
Om.m3;3/D Om.m3;4/Dm2;3 and since '.m2;3/D '.m3;3/ < '.m3;4/ it follows that m3;3 is of type II

and m3;4 is of type I.

� Finally, E�.m4;1/ D zE3, yE.m4;1/ D zE4 as represented on Figure 5 and Om.m4;1/ D m1;1. Since
'.m1;1/D '.m4;1/, it follows that m4;1 is of type II.

The points of type II play an important role in our analysis. Given � 2†, let �� D�0� [ y�� , with

�0� D fE.m/ Wm 2 �
�1.�/g (2-11)

and y�� be defined by y�� D∅ if � D �1 and

y�� D f yE.m/ Wm 2 �
�1.�/\U .0/; IIg (2-12)

if � 2†.

Definition 2.5. We define an equivalence relation R on U .0/ by mRm0 if and only if�
� .m/D � .m0/D �;

9!1; : : : ; !K 2�� such that m 2 !1;m0 2 !K and 8k D 1; : : : ; K � 1; N!k \ N!kC1 ¤∅: (2-13)

Throughout the paper, we denote by Cl.m/ the equivalence class of m for the relation R. Observe that
since m is the only minimum such that � .m/D1, we have Cl.m/D fmg.

Let us denote by .U .0/˛ /˛2A the equivalence classes of R with A a finite set. We have evidently

U .0/ D
G
˛2A

U .0/˛ : (2-14)

We need also to consider the set A defined by ADA n f˛g, where U .0/˛ D fmg is the equivalence class
of the absolute minimum chosen for '. Throughout, we will write q˛ D #U .0/˛ . We will also use the
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following partition of U .0/˛ for any ˛ 2A:

U .0/; I˛ WD U .0/˛ \U .0/; I; U .0/; II˛ WD U .0/˛ \U .0/; II: (2-15)

Proposition 2.6. Let ˛ 2A. The applications � ; E�; yE and Om are constant on U .0/˛ .

Proof. For � , it is a direct consequence of the definition. Suppose now that m;m0 2 U .0/ satisfy mRm0

and m ¤ m0. Then, m and m0 belong to the same connected component of f' � �.m/g. Hence, the
uniqueness part in the definition ofE� shows thatE�.m/DE�.m0/. SinceE�.m/DE�.m0/, the identity
Om.m/D Om.m0/ follows directly from the definition of Om. This implies automatically yE.m/D yE.m0/. �

Thanks to the above proposition, given ˛ 2A, we will write respectively � .˛/; E�.˛/; yE.˛/ and Om.˛/
instead of � .m/; E�.m/; yE.m/, Om.m/ for some m 2 U .0/˛ .

Definition 2.7. We say that

� ˛ is of type I if '. Om.˛// < '.m/ for all m 2 U .0/˛ ,

� ˛ is of type II if there exists m 2 U .0/˛ such that '. Om.˛//D '.m/.

Recall that the height function S W U .0/! R and the set of heights S D S.U .0// were defined by (2-3)
and above. For any ˛ 2A, we let

S˛ D S.U .0/˛ / and p.˛/D #S˛: (2-16)

There exist some integers �˛1 < �
˛
2 < � � �< �

˛
p.˛/

such that

S˛ D fS�˛1 ; : : : ; S�˛p.˛/g:

In the theorem below, proved in Sections 5 and 6, we sum up in a rather vague way the description of
the small eigenvalues that we obtained.

Theorem 2.8. There exist c > 0 and some symmetric positive definite matrices M˛, ˛ 2 A, such that
counted with multiplicity, we have �.�'/ n f0g D

S
˛2A �.M˛/.1CO.e�c=h//, with

�.M˛/D

p.˛/[
jD1

he
�2h�1S�˛

j �.M ˛;j /

for some symmetric positive definite matrices M ˛;j having a classical expansion with invertible leading
term given in Theorem 5.8. Moreover 0 is a multiplicity-1 eigenvalue.

Let us make a few comments on this theorem.
First, observe that since M ˛;j has a classical expansion with invertible leading term M

˛;j
0 , its eigen-

values �˛;jr , r D 1; : : : ; r˛;j , have a classical expansion

�˛;jr .h/�
X
k

hk�
˛;j

r;k
;

with �˛;jr;0 eigenvalue of the matrix M ˛;j
0 .
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Compared to previous results obtained under the Generic Assumption, the main difference is that
the prefactors �˛;j

r;k
are more difficult to compute since they are obtained as the eigenvalues of the

matrices M ˛;j. When (GA) is satisfied, the M ˛;j are 1� 1 matrices whose spectrum is direct to obtain.
In the general case, this is not true anymore and the construction of the matrices M ˛;j is more involved.
In particular, it depends dramatically on the number p.˛/D #S.U .0/˛ /. Observe that this number is also
equal to the number of different values taken by ' on the equivalence class U .0/˛ .

If p.˛/D 1, the coefficients of M ˛;j depend only on the pairs .m; s/ for which '.s/�'.m/D S�˛
j

.
Except for the fact that the different eigenvalues �˛;jr , r D 1; : : : ; r˛;j, are linked together, the situation is
similar to that encountered in the generic case. Actually, we prove in Appendix B that if (GA) is satisfied
then Cl.m/ is reduced to one point for any m, and in particular p.˛/D 1 for all ˛.

In the case where p.˛/� 2, the matrix is more difficult to compute. It comes from an application of
the Schur complement method and it depends on some pairs .m; s/ for which the height '.s/�'.m/ is
smaller than S�˛

j
. In other words, the lifetime of the metastable state m is not entirely described by the

height that is needed to jump over in order to reach the nearest lower-energy position. It depends also on
some interactions with some higher-energy states that are not present in the classical Eyring–Kramers
formula. To our knowledge, this is the first time that such a phenomena is exhibited.

Let us now compute p.˛/ on explicit examples. Let us fix nD 2 and consider the potentials ' given
respectively by Figures 6 and 7. In both cases, Om.m2;1/ D Om.m2;2/ D Om.m2;3/ D m1;1, which we
denote by Om for short. Since '. Om/ < '.m2;j / for all j , there is no point of type II, U .0/; IID∅ and hence
��2 D fE2;1; E2;2; E2;3g. Therefore, we can compute easily the equivalence classes of R in both cases:

� In the case of Figure 6, we have three equivalence classes: c1 D fm1;1g, c2 D fm2;1;m2;2g and
c3 D fm2;3g. The potential ' is constant on each equivalence class, and hence p.c1/D p.c2/D
p.c3/D 1.

m1;1 D Om

m2;1 m2;2

m2;3

�2

�1 D1

'.m2;3/

'.m2;1/D '.m2;2/

'. Om/

E2;1 E2;2 zE2 E2;3

Figure 6. A potential with p.˛/D 1.
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m1;1 D Om

m2;1 m2;2

m2;3

�2

�1 D1

'.m2;3/

'.m2;1/D '.m2;2/

'. Om/

E2;1 E2;2 zE2E2;3

Figure 7. A potential with p.˛/D 2.

m1;1 D Omm2;1 m2;2

m2;3

�2

�1 D1

'.m2;3/

'.m1;1 D '.m2;1/D '.m2;2/

E2;1 E2;2 zE2 E2;3

Figure 8. An example with points of type II.

� In the case of Figure 7, we have two equivalence classes: c1 D fm1;1g and c2 D fm2;1;m2;2;m2;3g.
The potential ' takes two different values on c2: p.c2/D 2.

We will come back to these examples at the end of the paper and compute explicitly the spectrum of �'
in both cases.

Let us finish this discussion with an example where U .0/; II ¤ ∅. Consider the potential given by
Figure 8. In that case Om.m2;1/D Om.m2;2/D Om.m2;2/Dm1;1, which we denote by Om for short. Since
'. Om/ D '.m2;1/ D '.m2;2/ < '.m2;3/, we know m2;1 and m2;2 are of type II and m2;3 is of type I.
We still have �0�2 D fE2;1; E2;2; E2;3g but contrary to the previous case y��2 D f zE2g is nonempty. It
follows that ��2 D fE2;1; E2;2; E2;3; zE2g and R admits two equivalence classes: c1 D fm1;1g and
c2 D fm2;1;m2;2;m2;3g. The potential ' takes two different values on c2 and hence p.c2/D 2.
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2C. General strategy of the proof. Let us recall the general strategy followed in [Helffer, Klein and Nier
2004]. The starting point is to use the supersymmetric structure of the Witten Laplacian. For 0� k� n, let
�k.X/D C1.X;ƒkT �X/ be the space of k-differential forms and denote by d W�k.X/!�kC1.X/

the exterior derivative and by d� W�k.X/!�k�1.X/ its adjoint for the natural pairing. The Witten
complex associated to the function ' is defined by the semiclassical weighted de Rham differentiation

d';h D e
�'=h

ı hd ı e'=h D hd C d'^

and its adjoint
d�';h D e

'=h
ı hd� ı e�'=h D hd�C d'⌟:

Then the semiclassical Witten Laplacian is defined on the forms of any degree by

�' D d
�
';h ı d';hC d';h ı d

�
';h: (2-17)

When restricted to the space of p-forms we denote this operator by �.p/' (observe that in the case p D 0,
the above formula yields easily (2-1)). Then, we have the intertwining relation

d';h�
.p/
' D�

.pC1/
' d';h (2-18)

and its analogue for the coderivative

d�';h�
.pC1/
' D�.p/' d�';h: (2-19)

For any p D 0; : : : ; d , it follows from (2-2) that �.p/' (as an unbounded operator on L2) is essentially
self-adjoint on the space of compactly supported smooth forms. We still denote by �.p/' its unique
self-adjoint extension. Then �.p/' is nonnegative and thanks to (2-2), there exists c0 > 0 such that
�ess.�

.p/
' /� Œc0;C1Œ for any h > 0 small enough (in the case where X is a compact manifold, �.p/'

has actually compact resolvent). Moreover, there exists �p > 0 such that for h > 0 small enough, it has
exactly np eigenvalues in the interval Œ0; �ph�, where np denotes the number of critical points of index p
of '. We shall denote by E.p/ the spectral subspace associated to these small eigenvalues of �.p/' . Then
dimE.p/ D np and relations (2-18), (2-19) show that

d';h.E
.p//�E.pC1/ and d�';h.E

.pC1//�E.p/: (2-20)

This shows in particular that d';h acts from E.0/ into E.1/ and we shall denote by L this operator.
Similarly �.0/' acts on E.0/ and we denote by M this operator. By (2-17), we get

MD L�L:

The general strategy used in [Helffer, Klein and Nier 2004] (that we will follow in the present work), is to
construct appropriate bases of E.0/ and E.1/ in which one can compute handily the singular values of L.
The main idea to construct such bases is to build accurate quasimodes for �' and to project them on the
spaces E.j /. The construction of the quasimodes is performed in Section 3. The quasimodes for 1-forms
are the ones constructed in [Helffer and Sjöstrand 1985]. The main properties of these quasimodes will
be recalled in Section 3C. Concerning the quasimodes on 0-forms, we cannot use the ones constructed in
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[Helffer, Klein and Nier 2004] since many important properties that are required for our analysis fail to be
true in the present situation (for instance, the quasiorthogonality). In Section 3B, we use the partition of
U .0/ into equivalence classes of R to construct a family of quasimodes on 0-forms adapted to our setting.
Each quasimode will be associated to a minimum m 2 U .0/.

In Section 4, we compute the matrix L in the above basis. One arrives at a block diagonal matrix
diag.L˛; ˛ 2A/ whose singular values are the singular values of each block.

Section 5 is devoted to the computation of singular values of the above blocks. The main difficulty is
that given two minima m;m0 in the same equivalence class, we do not necessarily have S.m/D S.m0/.
For equivalence classes satisfying this property (that is, p.˛/D 1), each block L˛ of the matrix L has a
typical size e�S.˛/=h and the situation could be handled quite easily. But more complicated cases may
arise where quasimodes yielding different heights S.m/ are interacting. In order to treat the full general
case, we use the Schur complement method combined with an induction on p.˛/. Running the induction
step requires exhibiting a specific structure of the matrices under consideration (see Sections 5A and 5B).
In Section 5C, we prove a general result for such matrices, which we use to conclude in Section 5D.

In Section 6, we prove Theorem 2.8.
In the Appendices, we collect several results linear algebra. We also provide a list of notation used in

the paper.

3. Construction of adapted quasimodes

3A. Gathering minima by equivalence class. Let us start this section with a proposition collecting some
elementary facts about E;E� and yE.

Proposition 3.1. Letm;m0 2 U .0/ such thatm¤m0. Then, we have the following:

(i) If �.m/D �.m0/, then

(i.a) E.m/\E.m0/D∅,
(i.b) either E�.m/DE�.m0/ or E�.m/\E�.m0/D∅,
(i.c) if E�.m/DE�.m0/ then yE.m/D yE.m0/; otherwise yE.m/\ yE.m0/D∅.

(ii) If �.m/ > �.m0/, then

(ii.a) either E.m/\E.m0/D∅ or E�.m0/�E.m/,
(ii.b) either E�.m/\E�.m0/D∅ or E�.m0/�E�.m/.

Proof. Let m ¤ m0 be two minima. Assume first that �.m/ D �.m0/ D � . Since m ¤ m0 and
��1.1/ D fmg, we have necessarily m;m0 2 U .0/. In particular, E�.�/; yE.�/, � D m;m0, are well-
defined. Moreover, since E.m/ and E.m0/ are two connected components of f' < �g, we have either
E.m/D E.m0/ or E.m/\E.m0/D∅. Since m¤m0 and E is injective, E.m/\E.m0/D∅, which
proves (i.a).

Since E�.m/ and E�.m0/ are two connected component of the same set f' < �g for some � > �.m/,
(i.b) is obvious.

Suppose now that E�.m/ D E�.m0/. Since �.m/ D �.m0/, we have Om.m/ D Om.m0/. Moreover,
since yE.m/ is the unique connected component of f' < �.m/g containing Om.m/, we get yE.m/D yE.m0/.
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If E�.m/ and E�.m0/ are disjoint, then yE.m/ and yE.m0/ are also disjoint since yE.m/ � E�.m/ and
yE.m0/�E�.m

0/. This completes the proof of (i.c).
Let us now prove (ii) and assume that �.m/ > �.m0/. Once again, since ��1.1/D fmg, we have

m02U .0/. IfE.m0/\E.m/¤∅, thenE�.m0/\E.m/¤∅. Moreover,E�.m0/ is a connected component
of f' < �g for some � � �.m/. Since E.m/ is a connected component of f' < �.m/g � f' < �g, we
have E�.m0/�E.m/ which proves (ii.a).

The point (ii.b) is proved by similar arguments. �

Let us now decompose the set of separating saddle points according to the equivalence classes. Given
˛ 2A, introduce the closed set

G.˛/D
[

m2U.0/˛

E.m/ (3-1)

and for any ˛ 2A let
V.1/˛ D fs 2 V

.1/
W '.s/D � .˛/g\G.˛/: (3-2)

For any ˛ 2A, let
uU .0/˛ D U .0/˛ [f Om.˛/g (3-3)

and define an application �˛ from uU .0/˛ into the closed subsets of X by�
�˛.m/D �.m/ if m 2 U .0/˛ ;

�˛. Om.˛//D @ yE.˛/;
(3-4)

where � is defined below (2-5).

Remark 3.2. Since yE.m/¨E. Om/, the application �˛ is slightly different from the application � defined
in below (2-5). Observe also that for all m 2 uU .0/˛ , �˛.m/ is the boundary of the connected component
of f' < '.s/g that contains m.

Lemma 3.3. The collection .V.1/˛ /˛2A is a partition of V.1/. Moreover, for all ˛ 2A and s 2 V.1/˛ , there
existsm1.s/ 2 U

.0/
˛ andm2.s/ 2 uU .0/˛ such that

s 2 �˛.m1/\�˛.m2/: (3-5)

One can chosem1;m2 in order that S.m1/� S.m2/ (that is, '.m1/� '.m2/). Up to permutation, the
pair .m1.s/;m2.s// is unique.

Proof. Let s 2 V.1/; then '.s/ 2† and there exists k � 2 such that '.s/D �k . By definition, there exist
two different connected components E1; E2 of f' < �kg such that s 2E1\E2. From the existence part
of Remark 2.2 there exist ml;i 2 E1 and ml 0;i 0 2 E2 with l 0 � l � k. Moreover, one has necessarily
l D k. Otherwise � .ml;i / > �k and since E1\E2 ¤∅, this would imply that ml 0;i 0 2E.ml;i /, which
is impossible since l 0 � l . Hence we have l D k. Therefore E1 is equal to E.ml;i / with ml;i 2 U .0/˛ ,
which proves that s 2 V.1/˛ . Moreover, E2 is either of the form E2 D E.ml 0;i 0/ with ml 0;i 0 2 U .0/˛ (if
l 0 D k) or E2 D yE.ml;i / (if l 0 < k). Setting m1.s/Dml;i 2 U .0/˛ and m2.s/Dml 0;i 0 2 uU .0/˛ , one has
s 2 �˛.m1/\�˛.m2/ and since l � l 0 one has also '.m1/� '.m2/.
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Let us now prove that the union of the V.1/˛ for ˛ 2A is disjoint. Suppose that s 2 V.1/˛ \V.1/
ˇ

. Then
�.˛/D '.s/D �.ˇ/. Moreover, there exist m 2 U .0/˛ and m0 2 U .0/

ˇ
such that s 2E.m/\E.m0/. This

proves that mRm0 and hence ˛ D ˇ.
The uniqueness of .m1;m2/ up to permutation is obvious. �

Let us now introduce an extra partition that will be useful in the sequel.

Lemma 3.4. For all ˛ 2A there exists a partition V.1/˛ D V.1/;b˛ tV.1/;i˛ such that the following hold true:

(i) For any s 2 V.1/;i˛ , m1.s/ andm2.s/ belong to U .0/˛ .

(ii) The set V.1/;b˛ is nonempty and for all s 2 V.1/;b˛ one hasm1.s/ 2 U
.0/
˛ ,m2.s/D Om.˛/ and

s 2 �˛.m1.s//\�˛. Om.˛//:

Proof. Define V.1/;i˛ Dfs 2V.1/˛ Wm1.s/;m2.s/2U
.0/
˛ g. Then (i) is true by definition. Moreover, defining

V.1/;b˛ D V.1/˛ nV
.1/;i
˛ , one has automatically the partition property and it remains to prove (ii).

Since ˛ 2A, the set yE.˛/\
�S

m2U.0/˛
E.m/

�
is nonempty and contained in V.1/;b˛ . This proves that

V.1/;b˛ is not empty. Suppose now that s 2 V.1/;b˛ . It follows from Lemma 3.3 that m1.s/ 2 U .0/˛ and
m2.s/ 2 yU

.0/
˛ . But by the definition of V.1/;b˛ , m2.s/ cannot belong to U .0/˛ , which implies by definition

that m2.s/D Om.˛/. This completes the proof of (ii). �

3B. Quasimodes for 0-forms. In this section we construct a family of quasimodes of �.0/' associated to
the minima of '. Each of these quasimodes will be of the form x 7! h�d=4�m.x/e

�.'.x/�'.m//=h with
some suitable cut-off functions �m associated to a minimum m 2 U .0/.

Following [Helffer, Klein and Nier 2004], we can associate to each minimum m 2 U .0/ a cut-off
function �m in the following way. For mDm, we simply take �mD 1. For m 2 U .0/ we introduce some
small parameters �; Q�; ı > 0 with Q� < � and we define

E�;Q�;ı.m/D

��
E.m/ n

[
s2V.1/\�.m/

B.s; �/

�
CB.0; Q�/

�
[

� [
s2.U.1/nV.1//\�.m/

B.s; ı/

�
: (3-6)

Proposition 3.5. Let �m be any function in C1c .E�;2Q�;2ı.m// such that �m D 1 on E�;Q�;ı.m/. There
exist �0 > 0, ı0 > 0 and C > 0 such that for all 0 < ı < ı0, all 0 < � < �0 and all 0 < Q� < �=4, the
following hold true:

(a) If x 2 supp.�m/ and '.x/ < �.m/, then x 2E.m/.

(b) There exists c� > 0 such that for all x 2 supp.r�m/, we have

� either x …
S
s2V.1/\�.m/B.s; �/ and

�.m/C c�1� < '.x/ < �.m/C c�;

� or x 2
S
s2V.1/\�.m/B.s; �/ and

j'.x/� �.m/j � C�:
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(c) For all s 2 U .1/ n .V.1/ \ �.m//, one has dist.s; suppr�m/ � ı. If moreover s 2 supp.�m/ then
s 2E.m/ and �m D 1 near s.

(d) Suppose that m 2 U .0/˛ , ˛ 2 A, and let s 2 V.1/ \ supp.�m/. Then, there exists ˇ 2 A such that
� .ˇ/ < � .˛/, s 2 V.1/

ˇ
and

S
m02U.0/

ˇ

E.m0/� fx 2X W �m.x/D 1g.

Proof. Observe that the construction of the cut-off functions �m is slightly different to that of the �k;� in
Proposition 4.2 in [Helffer, Klein and Nier 2004] (in particular because there can exist more than one
separating saddle point on @E.m/).

Let ı1 D minfjs � s0j W s; s0 2 U .1/; s ¤ s0g and ı2 D minfdist.s; �.m// W s 2 E.m/ \ U .1/g. Let
0 < ı < 1

4
min.ı1; ı2/ and �0 > 0 such that there exists C > 0 such that for all 0 < � < �0 and all s 2 V.1/,

one has

j'.x/�'.s/j< C� for all x 2 B.s; �/:

This is possible since ' is a smooth function. Then (a) and (b) above can be proved much as Proposition 4.2
in [Helffer, Klein and Nier 2004] and (c) is a direct consequence of our choice of ı.

Let us now prove (d). By definition, if s 2 V.1/\ supp.�m/, then s 2E.m/ (here we use the condition
0 < Q� < �=4). Hence, there exists ˇ ¤ ˛ such that s 2 V.1/

ˇ
and one has additionally � .ˇ/ < � .˛/. By

definition of the sets E.m/, this implies that[
m02U.0/

ˇ

E.m0/�E.m/ n
[

s02V.1/\�.m/

B.s0; �/

for any � 2 �0; �0Œ with �0 > 0 small enough independent of ı. This implies the results. �

We are now in position to define the quasimodes in a recursive way on the values of � .˛/.

� We start with the quasimode associated to m. We set

f
.0/
m .x/D c.m; h/h�d=4e.'.m/�'.x//=h; (3-7)

where c.m; h/ is a normalizing constant such that kfmkL2 D 1. Due to the fact that ' may have several
global minima, the function f .0/m does not concentrate only on m but on the reunion of all global minima.
Hence the normalizing factor c.m; h/ is computed by adding the contributions coming from each of
these minima via quadratic approximation. More precisely, it follows from the Laplace method that
c.m; h/�

P1
kD0 h

k
k.m/ with the function 
0 given by


0.m/
�2
D �d=2

X
m02H.m/

jdet Hess'.m0/j�1=2; (3-8)

where by definition (2-6) one has

H.m/ WD fm0 2E.m/\U .0/ W '.m0/D '.m/g:

Finally, observe that f .0/m is an exact quasimode: �'f
.0/
m D 0.
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� Suppose now that k 2 f2; : : : ; Kg and that the quasimodes f .0/m have been constructed for m 2S
˛02A;� .˛0/��k�1 U

.0/
˛ , and let us define f .0/m for m 2 U .0/˛ with � .˛/D �k . The form of the quasimode

associated to m depends on the type of m as introduced in Definition 2.3.

� If m is of type I, then we define f .0/m as in [Helffer, Klein and Nier 2004] by

f
.0/
m .x/D c.m; h/h�d=4�m.x/e

.'.m/�'.x//=h; (3-9)

where �m is the cut-off function associated to m defined in Proposition 3.5 and c.m; h/ is again a
normalizing constant such that kf .0/m kL2 D 1. As before, we have to add all the contributions of minima
in E.m/ at the same height as m. We get c.m; h/�

P1
kD0 h

k
k.m/ with 
0.m/ given by (3-8).

� Let us now construct quasimodes associated to minima m of type II. We assume here that U .0/; II ¤∅
and we define

yU .0/; II˛ D U .0/; II˛ [f Omg; (3-10)

where for short, we write OmD Om.˛/ and qII
˛ D #U .0/; II˛ .

Let us introduce an additional cut-off function around Om that we define as follows. Recall that yE.˛/
denotes the connected component of fx 2E�.m/ W'.x/<�.m/g that contains Om. As before, we introduce
some parameters �; Q�; ı > 0 with Q� < � and we define

yE�;Q�;ı.˛/D

��
yE.˛/ n

[
s2V.1/\@ yE.˛/

B.s; �/

�
CB.0; Q�/

�
[

� [
s2.U.1/nV.1//\@ yE.˛/

B.s; ı/

�
:

Then, we let O� Om be any function in C1c . yE�;2Q�;2ı.˛// such that O� Om D 1 on yE�;Q�;ı.˛/. For m 2 U .0/; II˛ ,
we let O�m D �m, with �m defined in Proposition 3.5. We want to construct the quasimode as a
linear combination of the O�me�'=h, m 2 yU

.0/; II
˛ . In order to chose the coefficients, let us introduce

F˛DF .yU .0/; II˛ /, the finite vector space of functions from yU .0/; II˛ into R. This space has dimension qII
˛C1

and is endowed with the usual Euclidean structure

h�; � 0iF˛ D
X

m2yU.0/; II
˛

�.m/� 0.m/:

We denote by N the associated norm. Eventually, we define �˛0 2 F˛ by

�˛0 .m/D
c˛0 .h/

c.m; h/
; (3-11)

where c.m; h/ is the unique positive constant such that the function

Qfm WD c.m; h/h
�d=4

O�me
.'.m/�'.x//=h

satisfies k QfmkL2 D 1 and c˛0 .h/ is defined by N.�˛0 / D 1. Let us now extend the definition of the set
H.m/ in the following way. Given ˛ 2A and m 2 yU .0/; II˛ we define

yH˛.m/D

�
H.m/ if m 2 U .0/˛ ;

fm0 2 yE.˛/\U .0/ W '.m0/D '. Om/g if m 2 yU .0/; II˛ nU .0/˛ :
(3-12)
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Observe that if ˛ is of type II, since E. Om.˛// is larger than yE.˛/, the sets H. Om.˛// and yH˛. Om.˛//
may be different. From the preceding definition, it follows that for all m 2 yU .0/; II˛ , the normalizing factor
c.m; h/ admits a classical expansion c.m; h/D

P
k h

k
k.m/ with


0.m/
�2
D �d=2

X
m02 yH˛.m/

jdet Hess'.m0/j�1=2: (3-13)

Therefore, we can compute the constant c˛0 .h/, and we get

c˛0 .h/D �
�d=4

� X
�2yU.0/; II

˛

X
m02 yH˛.�/

jdet Hess'.m0/j�1=2
��1=2

CO.h/:

Here the index ˛ is used to indicate that the function is associated to U .0/; II˛ .

Lemma 3.6. There exist some functions �˛1 ; : : : ; �
˛
qII
˛
2 F˛ such that the following hold true:

(i) f�˛j ; j D 0; : : : ; q
II
˛g is an orthonormal basis of F˛.

(ii) The functions �˛j admit a classical expansion

�˛j D
X
k�0

hk�
˛;k
j

and for all j � 1, the leading terms �˛;0j are orthogonal to the function �˛;00 .m/D c˛0 .0/=
0.m/.

Proof. First observe that �˛0 admits a classical expansion �˛0 �
P
j�0h

j �
˛;j
0 with �˛;00 .m/Dc˛0 .0/=
0.m/.

Since .�˛;00 /? is a qII
˛ -dimensional subspace of F˛, it admits an orthonormal basis . Q�˛;0j / independent

of h. Then the functions Q�˛j defined by

Q�˛j WD
Q�
˛;0
j � h Q�

˛;0
j ; �˛0 i�

˛
0

form a basis of .�˛0 /
?. Moreover, the Q�˛j admit a classical expansion and since h Q�˛;0j ; �˛0 i D O.h/ for

any j , they satisfy
h Q�˛j ;

Q�˛k i D ıjkCO.h2/:

Defining the .�˛j / as the Gram–Schmidt orthonormalization of the . Q�˛j /, we get the desired result. �

Observe that since U .0/; II˛ has qII
˛ elements, the functions �˛1 ; : : : ;�

˛
qII
˛

can also be indexed by U .0/; II˛ using
any arbitrary bijection. We end up with a family of functions .�˛m/m2U.0/; II

˛
and for convenience we will

also write �˛
Om
D �˛0 . Then, we define the qII

˛ quasimodes associated to the m 2 U .0/; II˛ by

f
.0/
m .x/D h�d=4

X
m02yU.0/; II

˛

�˛m.m
0/c.m0; h/ O�m0.x/e

.'.m/�'.x//=h; (3-14)

where the normalization factor c.m0; h/ is defined above and ensures that

kc.m0; h/h�d=4 O�m0.x/e
.'.m/�'.x//=h

kL2 D 1:
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Before going further and as a preparation for the final analysis we would like to write the quasimode
given by (3-9) and (3-14) in the same fashion. For this purpose, we define yU .0/˛ by

yU .0/˛ D U .0/; I˛ [ yU .0/; II˛ ; (3-15)

with the convention that yU .0/; II˛ D∅ if U .0/; II˛ D∅ (observe that yU .0/˛ is equal to the set uU .0/˛ defined in
(3-3) if and only if U .0/; II˛ ¤∅). Then, we define �˛m.m

0/ for any m 2 U .0/˛ , m0 2 yU .0˛ / in the following
way:

� If m 2 U .0/; II˛ and m0 2 yU .0/; II˛ , we keep the above definition.

� Otherwise, we set
�˛m.m

0/D ım;m0 : (3-16)

Then the formulas in (3-9) and (3-14) can be summarized in

f
.0/
m .x/D h�d=4

X
m02yU.0/˛

�˛m.m
0/c.m0; h/ O�m0.x/e

.'.m/�'.x//=h; (3-17)

with yU .0/˛ and �˛ as above.

Definition 3.7. For any ˛ 2A, let us denote by T ˛ 2M .U .0/˛ ; yU .0/˛ / the matrix given by

T ˛
D .�˛m.m

0//
m02yU.0/˛ ;m2U

.0/
˛

Let us remark that if all points of U .0/˛ are of type I, then T ˛ is just the q˛�q˛ identity matrix, whereas
if U .0/; II˛ ¤∅, it is a .q˛C 1/� q˛ matrix. Observe also that the partitions U .0/˛ D U .0/; I˛ tU .0/; II˛ and
yU .0/˛ D U .0/; I˛ t yU .0/; II˛ induce decompositions of the corresponding vector spaces:

F .U .0/˛ /DF .U .0/; I˛ /˚F .U .0/; II˛ /; (3-18)

F .yU .0/˛ /DF .U .0/; I˛ /˚F .yU .0/; II˛ /: (3-19)

From the above construction, one deduces that in a suitable basis the matrix T ˛ is block diagonal with Id
on the upper-left corner and a certain orthogonal matrix in the lower-right corner. More precisely, there
exists an orthogonal matrix uT

˛
2M .U .0/; II˛ ; yU .0/; II˛ / such that for any f D f ICf II with f I 2F .U .0/; I˛ /

and f II 2F .yU .0/; II˛ /, one has

T f .m/D f I.m/C . uT
˛
f II/.m/: (3-20)

Moreover, the matrix uT
˛ is just the matrix .�˛m.m

0//
m2U.0/; II

˛ ;m02yU.0/; II
˛

whose coefficients are given by
Lemma 3.6. In particular, Ran uT

˛
D .R�˛0 /

?, where �˛0 is defined by (3-11).
For any m 2 U .0/, let us introduce the set F.m/, defined as follows. If m D m, let F.m/ D X. If

m 2 U .0/; I WD U .0/\U .0/; I, let F.m/DE.m/ and if m 2 U .0/; II WD U .0/\U .0/; II, let

F.m/D

� [
m02U.0/; II

˛

E.m0/

�
[ yE.m/; (3-21)

where ˛ is such that m 2 U .0/˛ . Observe that we always have E.m/� F.m/.



172 LAURENT MICHEL

Proposition 3.8. Letm;m0 2 U .0/ be such thatm¤m0. The following hold true:

(i) If mRm0 then

(i.a) if m orm0 is of type I, then F.m/\F.m0/� V.1/,
(i.b) if m andm0 are both of type II, then F.m/D F.m0/.

(ii) If m0 … Cl.m/, then

(ii.a) if �.m/D �.m0/, then F.m/\F.m0/D∅,
(ii.b) if �.m/ > �.m0/, then either F.m/\F.m0/D∅ or F.m0/� VF .m/.

Proof. Let mRm0 with m ¤ m0. As in the proof of Proposition 3.1, one has necessarily m;m0 ¤ m.
Assume first that m is of type I. Then F.m/ D E.m/. If m0 is also of type I, then F.m0/ D E.m0/.
Moreover since m ¤ m0, it follows from (i.a) of Proposition 3.1 that E.m/\E.m0/ D ∅. Therefore,
F.m/\F.m0/ is either empty or is reduced to a union of saddle points which are separating by definition.
If m0 is of type II, the same proof works. This completes the proof of (i.a).

Suppose now thatm andm0 are both of type II. SincemRm0, it follows that yE.m/D yE.m0/ and hence
F.m/D F.m0/ which shows (i.b).

Suppose now thatm0 …Cl.m/. Consider first the case where �.m/D �.m0/. Then, one has necessarily
F.m/\F.m0/D∅; otherwise we would have mRm0.

Suppose now that �.m/ > �.m0/ and that F.m/\F.m0/¤ ∅. If mDm, then F.m/D X and the
conclusion is obvious. Suppose now thatm2U .0/ and consider first the case wherem andm0 are of type I.
Then F.m/DE.m/ and F.m0/DE.m0/ and since �.m/ > �.m0/, it follows that E.m/\E.m0/¤∅.
Hence (ii.a) of Proposition 3.1 shows that E�.m0/�E.m/ which yields F.m0/�E.m/D VF .m/. Ifm is
of type I andm0 is of type II, then one has E.m/\ zE ¤∅ with either zE DE.m00/ for somem00 2Cl.m0/
or zE D yE.m0/. As before, E.m/ contains the connected component of f' < � .m/g that contains zE and
the same proof works.

Let us now suppose thatm is of type II andm0 is of type I. ThenE.m0/\ zE¤∅ with either zEDE.m00/
for some m00 2 Cl.m/ or zE D yE.m/. In both cases one sees easily that E�.m0/� zE, which proves the
result.

The case where both m and m0 are of type II is left to the reader. �

Let us now give some information on the support of the quasimodes. For m 2 U .0/, let us introduce the
set

F�;Q�;ı.m/D

��
F.m/ n

[
s2V.1/\@F .m/

B.s; �/

�
CB.0; Q�/

�
[

� [
s2.U.1/nV.1//\@F .m/

B.s; ı/

�
: (3-22)

If m is of type I, it is clear that F�;Q�;ı.m/DE�;Q�;ı.m/ and if m is of type II, one has

F�;Q�;ı.m/D yE�;Q�;ı.˛/[

� [
m02U.0/; II

˛

E�;Q�;ı.m/

�
:

From the above construction one deduces the following proposition.
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Proposition 3.9. There exists �0; ı0 > 0 such that for all 0 < ı < ı0 and all 0 < Q� < �=4 < �0=4, the
following hold true:

(i) For anym;m0 2 U .0/

F.m/\F.m0/D∅ D) F�;Q�;ı.m/\F�;Q�;ı.m
0/D∅:

(ii) For any ˛ 2A andm 2 U .0/˛ , one has supp.f .0/m /� F�;2Q�;2ı.m/ and

for all s 2 U .1/ n .V.1/\ @F.m//; d'f
.0/
m D 0 in B.s; ı/:

Proof. Observe that

F�;2Q�;2ı.m/� F.m/CB.0; 2max.ı; Q�//:

Since F.m/ and F.m0/ are compact, the first point of the proposition immediately follows. The second
point of the proposition is a direct consequence of (c) of Proposition 3.5. �

Recall that the functions f .0/m , m 2 U .0/, depend on �; Q�; ı via the definition of the cut-off function �m.
This family is quasiorthonormal in the following sense.

Proposition 3.10. There exist �0; ı0; ˇ > 0 such that for all 0 < ı < ı0, 0 < Q� < �=4 < �0=4 and all
m;m0 2 U .0/, one has

hf
.0/
m ; f

.0/
m0 i D ım;m0 CO.e�ˇ=h/:

Proof. Throughout the proof, we assume that 0 < ı < ı0 and 0 < Q� < �=4 < �0=4 as in Proposition 3.5
and we decrease �0; ı0 if necessary.

Let m;m0 be two minima.

� Consider first the case where mRm0. If mDm, one has necessarily m0 Dm and hence

hf
.0/
m ; f

.0/
m0 i D kf

.0/
m k

2
D 1

by construction. Consider now the case where m;m0 ¤m and suppose first that m or m0 is of type I. If
mDm0, the definition of c.m; h/ shows that kfmkD 1. If m¤m0, it follows from (ii) of Proposition 3.9
that f .0/m and f .0/m0 are supported in F�;2Q�;2ı.m/ and F�;2Q�;2ı.m0/ respectively. Moreover, thanks to (i)
of Proposition 3.8, one has F.m/\F.m0/� V.1/\ @F.m/. Hence, one can choose �0 sufficiently small,
so that F�;2Q�;2ı.m/\F�;2Q�;2ı.m0/D∅. Therefore, supp.f .0/m /\ supp.f .0/m0 /D∅ and hence f .0/m and
f
.0/
m0 are orthogonal.

Suppose now that m and m0 are both of type II. Then, we can write

f
.0/
m .x/D h�d=4

X
�12yU

.0/
˛

�m.�1/c.�1; h/ O��1.x/e
.'. Om.m//�'.x//=h;

f
.0/
m0 .x/D h

�d=4
X

�22yU
.0/
˛

�m0.�2/c.�2; h/ O��2.x/e
.'. Om.m//�'.x//=h:
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Since, for �2 ¤ �1, O��1 and O��2 have again disjoint support for �0; ı0 > 0 small enough, we get

hf
.0/
m ; f

.0/
m0 i D h

�d=2
X
�2yU.0/˛

�m.�/�m0.�/jc.�; h/j
2

Z
X

j O��.x/j
2e2.'. Om.m//�'.x//=h dx

D h�m; �m0iF˛ D ım;m0 :

This shows in particular that kf .0/m kL2 D 1 for all m 2 U .0/.

� Suppose now, that m0 … Cl.m/ (in particular m ¤ m0). If �.m0/ D �.m/ then F.m/\ F.m0/ D ∅
thanks to (ii.a) of Proposition 3.8, and (i) of Proposition 3.9 implies that F�;2Q�;2ı.m/\F�;2Q�;2ı.m0/D∅.
Then, the first part of (ii) of Proposition 3.9 proves that f .0/m and f .0/m0 are orthogonal.

Consider now the case where �.m/¤ �.m0/; say, �.m/ > �.m0/. From (ii.b) of Proposition 3.8, we
know that either F.m0/ is disjoint from F.m/ or F.m0/� VF .m/. In the first case, we get immediately
hf

.0/
m ; f

.0/
m0 i D 0 by the same argument as before. Suppose we are in the second situation, that is

F.m0/� VF .m/. By definition, we have '.m/ � '.m0/, and by taking �0; ı0 > 0 small enough we can
ensure that F�;2Q�;2ı.m0/� VF �;2Q�;2ı.m/.

Suppose first that '.m/ < '.m0/. A priori we don’t know if m;m0 are of type I or II. However, since
F�;2Q�;2ı.m

0/� VF �;2Q�;2ı.m/,

hf
.0/
m ; f

.0/
m0 i D

Z
F�;2Q�;2ı.m0/

f
.0/
m .x/f

.0/
m0 .x/ dx

and

.f
.0/
m /jF�;2Q�;2ı.m0/ D Qc.m; h/h

�d=4e.'.m/�'.x//=h; (3-23)

where the constant Qc.m; h/ is uniformly bounded with respect to h. This is clear if m is of type I. If
m is of type II and, say, m 2 U .0/˛ , then F.m0/ � VF .m/ implies that there exists � 2 yU .0/˛ such that
F.m0/ � E.�/ (or yE.�/). Then the general formula (3-14) shows (3-23). Moreover, by construction,
there exists a cut-off function  2 C1c .

VF �;2Q�;2ı.m// independent of h such that infsupp ' D '.m
0/ and

jf
.0/
m0 .x/j � h

�d=4 .x/e.'.m
0/�'.x//=h

and it follows that

jhf
.0/
m ; f

.0/
m0 ij � Ch

�d=2

Z
 .x/e.'.m

0/C'.m/�2'.x//=h dx � C 0h�d=2e.'.m/�'.m
0//=h:

Since '.m0/ > '.m/, this proves the result.
It remains to study the case where '.m/D '.m0/. Let ˛; ˛0 2A be such that m 2 U .0/˛ and m0 2 U .0/˛0 .

From the above assumption, we also have �.m/ > �.m0/ and F.m0/� VF .m/. Since �.m/ > �.m0/ and
'.m/D '.m0/, we know f

.0/
m0 is necessarily of type II. It has the form (3-14) and since F�;2Q�;2ı.m0/�

VF �;2Q�;2ı.m/, (3-23) still holds true. Hence, we get

hf
.0/
m ; f

.0/
m0 i D Qc.m; h/h

�d=2
X

�2yU.0/; II
˛0

�m0.�/c.�; h/

Z
O��.x/e

2.'.x/�'.m//=h dx: (3-24)
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On the other hand, by a standard argument based on the Laplace method, we know that there exist r > 0
and ˇ > 0 such that for all � 2 yU .0/; II˛0 , we have

h�d=2c.�;h/

Z
O��.x/e

2.'.x/�'.m//=hdxD h�d=2c.�;h/
X

�02H.�/

Z
B.�0;r/

e2.'.x/�'.m//=hdxCO.e�ˇ=h/

D h�d=2c.�;h/

Z
j O��.x/j

2e2.'.x/�'.m//=hdxCO.e�ˇ=h/

D
1

c.�;h/
CO.e�ˇ=h/:

Plugging this in (3-24), we get

hf
.0/
m ; f

.0/
m0 iD Qc.m; h/

X
�2yU.0/; II

˛0

�m0.�/
1

c.�; h/
CO.e�ˇ=h/D

Qc.m; h/

c˛
0

0 .h/
h�m0 ; �

˛0

0 iF˛0CO.e�ˇ=h/: (3-25)

Since �m0 is orthogonal to �˛
0

0 by construction, the first term of the right-hand side above vanishes and
we get hf .0/m ; f

.0/
m0 i DO.e�ˇ=h/. �

We end this section by giving an exponential estimate of the action of d';h on the quasimodes.

Lemma 3.11. There exists C > 0 such that for all � > 0 small enough, we have

d';hf
.0/
m DO.e�.S.m/�C�/=h/

for allm 2 U .0/.

Proof. The result is classical, but since the quasimodes f .0/m are slightly different from the usual ones, we
have to check the estimates. Let m 2 U .0/ and let us compute d';hf

.0/
m .

If mDm, then d';hf
.0/
m D 0 and there is nothing to do.

Suppose now that m¤m. From (3-17), one has

d';hf
.0/
m .x/D h1�d=4

X
m02yU.0/˛

�m.m
0/c.m0; h/r O�m0.x/e

.'.m/�'.x//=h:

All terms of the above sum corresponding to m 2 U .0/˛ are O.e�.S.m/�C�/=h/ by (b) of Proposition 3.5.
The only new term is the one corresponding to Om.m/. Since O� Om 2 C1c . yE�;2Q�;2ı/ and is equal to 1 on
yE�;Q�;ı , we have again

'.x/�'. Om/D '.x/�'.m/� S.m/�C�

on supp.r O� Om/ and the proof is complete. �

3C. Quasimodes for 1-forms. This section is devoted to the quasimodes associated to low-lying eigen-
values of �.1/' . The construction of these quasimodes was done in [Helffer and Sjöstrand 1985] and we
refer to that paper for all the proofs. Here, we just describe the main properties of these functions. In this
section !s denotes a small neighborhood of s 2 U .1/ that may be chosen as small as needed independently
of �0 fixed in previous sections.



176 LAURENT MICHEL

Given any saddle point s 2 U .1/, and any appropriate open neighborhood !s of s, let P';s denote the
operator�.1/' restricted to !s with Dirichlet boundary conditions. Let us denote a normalized fundamental
state of P';s. The quasimodes f .1/s are then defined by

f
.1/
s .x/ WD �0k susk

�1 s.x/us.x/; (3-26)

where  s is a well-chosen C10 localization function supported in !s and equal to 1 near s and �0 D˙1
will be fixed later. By taking !s sufficiently small, we can ensure that the f .1/s have disjoint supports,
and thanks to (c) of Proposition 3.5, we can also shrink !s so that

for all s 2 U .1/ nV.1/; for all m 2 U .0/; .s 2 supp.�m/ D) �m D 1 on !s/: (3-27)

Observe that this choice of !s depends on ı0 but not on �0. From this construction, we immediately
deduce that

hf
.1/
s ; f

.1/
s0 i D ıs;s0 ; (3-28)

and hence the family ff .1/s W s 2 U .1/g is a free family of 1-forms. From [Helffer 1988, Proposition 5.2.6],
one knows that the eigenvalues of P';s are exponentially small. Using Agmon estimates, it follows that
there exists ˇ > 0 independent of � such that

�.1/' f
.1/
s DO.e�ˇ=h/: (3-29)

Combined with the spectral theorem, this proves that the n1 eigenvalues of �.1/' in Œ0; �1h� are actually
O.e�ˇ=h/ (see [Helffer 1988, Proposition 5.2.5] for details).

Furthermore, Theorem 2.5 of [Helffer and Sjöstrand 1985] implies that these quasimodes have a WKB
expansion given by

f
.1/
s .x/D �0h

�d=4 s.x/b
.1/
s .x; h/e�'C;s.x/=h; (3-30)

where b.1/s .x; h/ is a 1-form having a semiclassical asymptotic, and 'C;s is the phase generating the
outgoing manifold of j�j2 � jrx'.x/j2 at .s; 0/ (see [Dimassi and Sjöstrand 1999, Chapter 3] for
details on such constructions). In particular, the phase function 'C;s satisfies the eikonal equation
jrx'C;sj

2 D jrx'j
2 and 'C;s.x/� jx� sj2 near s (the notation � was defined in the paragraph before

Section 2A). For other properties of 'C;s we refer to [Helffer and Sjöstrand 1985].

3D. Projection onto the eigenspaces. The next step in our analysis is to project the preceding quasimodes
onto the generalized eigenspaces associated to exponentially small eigenvalues. Recall that we have built
in the preceding section quasimodes f .0/m , m 2 U .0/, with good orthogonality properties. To each of these
quasimodes we will associate a function in E.0/, the eigenspace associated to o.h/ eigenvalues. For this,
we first define the spectral projector

….0/ D
1

2�i

Z



.z��.0/' /�1 dz; (3-31)
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where 
 D @B.0; �0h/ and �0 > 0 is such that �.�'/\ Œ0; 2�0h�� Œ0; e�C=h�. From the fact that �.0/' is
selfadjoint, we get that

k….0/k D 1:

We now introduce the projection of the quasimodes constructed above, e.0/m D….0/.f
.0/
m /. We have the

following:

Lemma 3.12. The system .e.0/m /m2U.0/ is free and spansE.0/. Additionally, there exists ˇ>0 independent
of �0 such that for all 0 < Q� < �=4 < �0=4, one has

e
.0/
m D f

.0/
m CO.e�ˇ=h/ and he

.0/
m ; e

.0/
m0 i D ım;m0 CO.e�ˇ=h/

for allm;m0 2 U .0/.

Proof. The argument is very classical. We recall it for reader’s convenience. One has

e
.0/
m �f

.0/
m D .….0/� Id/f .0/m D

1

2�i

Z



..z��.0/' /�1� z�1/f
.0/
m dz

D
1

2�i

Z



.z��.0/' /�1z�1�.0/' f
.0/
m dz: (3-32)

Since .z��.0/' /�1 DO.h�1/ on 
 , it follows from Lemma 3.11 that e.0/m �f
.0/
m DO.e�ˇ=h/ for some

ˇ > 0. This proves the first point. Combining this information with Proposition 3.10 we get immediately
the second point. �

We can do a similar study for �.1/' , for which we know that the n1 eigenvalues lying in Œ0; �1h� are
actually O.e�˛0=h/. To the family of quasimodes .f .1/s /s2U.1/ , we now associate a family of functions
in E.1/, the eigenspace associated to eigenvalues of �.1/' in Œ0; �1h�. Thanks to the spectral properties of
the selfadjoint operator �.1/' , its spectral projector onto E.1/ is given by

….1/ D
1

2�i

Z



.z��.1/' /�1 dz; (3-33)

where 
 D @B.0; �1h/ with �1 defined above. In the sequel, we write e.1/s D….1/.f
.1/
s /. The family

.e
.1/
s /s satisfies the following estimates.

Lemma 3.13. The system .e
.1/
s /s2U.1/ is free and spans E.1/. Additionally, we have

e
.1/
s D f

.1/
s CO.e�ˇ

0=h/ and he
.1/
s ; e

.1/
s0 i D ıs;s0 CO.e�ˇ

0=h/;

with ˇ0 > 0 independent of �.

Proof. Using the orthonormality of the f .1/j and (3-29), the proof is the same as that of Lemma 3.12. �

4. Preliminaries for singular values analysis

This section is a preparation for the study of the singular values of the operator L WE.0/!E.1/ defined
below (2-20). We simplify the forthcoming study by several reductions and changes of basis. Let us
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denote by L� the n1 �n0 matrix given by

L�s;m D he
.1/
s ; d';he

.0/
m i for all s 2 U .1/; m 2 U .0/; (4-1)

with e.1/s , e.0/m defined in the preceding section. Since .e.0/m / and .e.1/s / are almost orthonormal bases
(thanks to Lemmas 3.12 and 3.13), this matrix is close to the matrix of the operator L in these bases. We
first work on the matrix L�.

Recall that m denotes the absolute minimum of ' associated to the connected component E.m/DX.
Since �.0/' em D 0, the nonzero singular values of L� are exactly the singular values of the reduced
matrix L�;0 defined by L�;0s;m D L�s;m for all s 2 U .1/, m 2 U .0/ with U .0/ D U .0/ n fmg.

Lemma 4.1. There exists ˇ00 > 0 such that for � > 0 sufficiently small, one has

L�;0s;m D hf
.1/
s ; d';hf

.0/
m iCO.e�.S.m/Cˇ

00/=h/

for all s 2 U .1/,m 2 U .0/.

Proof. The trick to get the good error estimate above is now well-known (see for instance the proof of
Proposition 5.8 in [Hérau, Hitrik and Sjöstrand 2011]) but we recall the proof for reader’s convenience.
Let s 2 U .1/, m 2 U .0/; then thanks to (2-18) we have

he
.1/
s ; d';he

.0/
m i D he

.1/
s ; d';h…

.0/f
.0/
m i D he

.1/
s ;….1/d';hf

.0/
m i D he

.1/
s ; d';hf

.0/
m i

D hf
.1/
s ; d';hf

.0/
m iC he

.1/
s �f

.1/
s ; d';hf

.0/
m i:

But from Lemmas 3.11 and 3.13 and the Cauchy–Schwarz inequality one gets

jhe
.1/
s �f

.1/
s ; d';hf

.0/
m ij � Ce

�.ˇ 0CS.m/�C�/=h:

Since ˇ0 is independent of �, one can conclude by taking � small enough and ˇ00 D ˇ0=2. �

Let us denote by Lbkw 2M .U .0/;U .1// the matrix defined by

Lbkw
s;m D hf

.1/
s ; d';hf

.0/
m i for all s 2 U .1/; m 2 U .0/: (4-2)

Of course, the first column of this matrix is identically zero and it is more interesting to consider the
matrix Lbkw;0 2M .U .0/;U .1// defined by

Lbkw;0
s;m D hf

.1/
s ; d';hf

.0/
m i for all s 2 U .1/; m 2 U .0/: (4-3)

As we shall see later, the singular values of L�;0 and Lbkw;0 are exponentially close and it is natural
to study the matrix Lbkw;0. For s 2 U .1/ n V.1/ and m 2 U .0/, thanks to (ii) of Proposition 3.9 one has
d';hf

.0/
m D 0 near s, and hence

hf
.1/
s ; d';hf

.0/
m i D 0: (4-4)

Therefore, the singular values of Lbkw;0 are equal to the singular values of the reduced matrix Lbkw;00 2

M .U .0/;V.1// defined by

Lbkw;00
s;m D hf

.1/
s ; d';hf

.0/
m i for all s 2 V.1/; m 2 U .0/: (4-5)
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In order to study this matrix, we need to introduce a new enumeration of critical points. Let us start
with some abstract notation. Assume that .I;�/ and .J ;�/ are two totally ordered sets and let A D
.aij /i2I;j2J be the associated matrix (with i; j enumerated in increasing order). Assume that we have
partitions PI and PJ of I and J respectively

PI D .I1; : : : ; INI / and PJ D .J1; : : : ;JNJ /:

Assume that each partition admits a total order � (that is, we can compare the subsets Ii ). Then we get a
total order � on I (resp. J ) by using the associated lexicographical order:

i � j () .9I˛ � Iˇ ; i 2 I˛ and j 2 Iˇ / or .9I˛; i; j 2 I˛ and i � j /:

Hence, there exists a unique ˛ W .I;�/ ! .I;�/ which is strictly increasing (and hence bijective).
Similarly, there is a unique ˇ W .J ;�/! .J ;�/ which is strictly increasing. We denote by API ;PJ the
matrix .a˛.i/;ˇ.j //i2I;j2J . This matrix is obtained from A by intertwining the basis vector; hence it has
exactly the same singular values.

Let us go back to the matrix Lbkw;00. Consider the partitions of U .0/ and V.1/ given by

P.0/ D fU .0/˛ ; ˛ 2Ag and P.1/ D fV.1/
ˇ
; ˇ 2Ag:

At this stage of our analysis, we do not need any specific choice of order on these partitions. We just endow
A with any total order and for all ˛; ˇ 2 A we choose any arbitrary total order on U .0/˛ and V.1/

ˇ
. This

gives an order on the above partitions and we denote by L D .L ˛;ˇ /˛;ˇ2A the matrix Lbkw;00 associated
to these partitions. Observe here that each L ˛;ˇ is itself a matrix L ˛;ˇ D .L

˛;ˇ
s;m /s2V.1/

ˇ
;m2U.0/˛

.

Lemma 4.2. For all ˛ ¤ ˇ, we have L ˛;ˇ D 0.

Proof. Let ˛; ˇ 2A such that ˛ ¤ ˇ and let m 2 U .0/˛ and s 2 V.1/
ˇ

. If � .˛/D � .ˇ/ then ˛ ¤ ˇ implies
that s … F.m/. Shrinking if necessary (by taking �0; ı0 > 0 small enough) the support of f .0/m and f .1/s ,
it follows that these functions have disjoint supports so that their scalar product vanishes.

If � .˛/¤ � .ˇ/, then by construction d';hf
.0/
m is supported near f'D � .˛/g whereas e.1/s is supported

near f'D� .ˇ/g. Since this two sets are disjoint we get hf .1/s ; d';he
.0/
m iD 0 and the proof is complete. �

From this lemma we deduce that the matrix L admits a block-diagonal structure

L D diag.L ˛; ˛ 2A/; (4-6)

with L ˛ WD L ˛;˛. Recall from Definition 3.7 that for any ˛ 2 A, the matrix T ˛ 2M .U .0/˛ ; yU .0/˛ / is
given by T ˛ D .�˛m.m

0//
m02yU.0/˛ ;m2U.0/˛

. We have the following factorization result on L ˛.

Lemma 4.3. We have L ˛ D yL
˛
T ˛, where the matrix yL

˛
D . Ò˛s;m0/s;m0 2M .yU .0/˛ ;V.1/˛ / is given by

Ò˛
s;m0 D hf

.1/
s ; d';hg

.0/
m0 i for all s 2 V.1/˛ ; m0 2 yU .0/˛ ;

with g.0/m0 .x/D h
�d=4c.m0; h/ O�m0.x/e

'.m0/�'.x/=h.
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Proof. Let s 2 V.1/˛ , m 2 U .0/˛ . From (3-17), one has

hf
.1/
s ; d';hf

.0/
m i D h

�d=4
X

m02yU.0/˛

�˛m.m
0/c.m0; h/hf

.1/
s ; hd O�m0.x/e

.'.m/�'.x//=h
i:

Moreover, the function ' being constant on yU .0/; II˛ , we can replace '.m/ by '.m0/ in the above identity
and it follows that

hf
.1/
s ; d';hf

.0/
m i D

X
m02yU.0/˛

�˛m.m
0/hf

.1/
s ; d';hg

.0/
m0 i;

which is exactly the result to be proved. �

One of the crucial points of our analysis is to compute the coefficient Ò˛s;m. Given m 2 yU .0/˛ , we define

h'.m/D

� X
m02 yH˛.m/

jdet Hess'.m/j�1=2
��1=2

; (4-7)

with yH˛.m/ defined in (3-12). One has clearly h'.m/D �d=4
0.m/, with 
0 given by (3-13). Moreover,
in the case where H.m/ D fmg, one has h'.m/ D jdet Hess'.m/j1=4. Given s 2 V.1/, we denote by
O�1.s/ the unique negative eigenvalue of Hess'.s/. In order to keep uniform notation, we also extend the
definition (4-7) to saddle points by

h'.s/D jdet Hess'.s/j1=4:

Eventually, we introduce the diagonal matrix y�˛ 2M .yU .0/˛ ; yU .0/˛ / defined by

y�˛f .m/D e�
yS.m/=hf .m/ for all m 2 yU .0/˛ ; (4-8)

with yS.m/D � .˛/�'.m/. For m 2 U .0/˛ , one has of course � .˛/D � .m/ and hence yS.m/D S.m/ but
this fails to be true for mD Om.˛/. We then define the rescaled matrix zL

˛
D . Q̀˛s;m/ 2M .yU .0/˛ ;V.1/˛ / by

yL
˛
D zL

˛
y�˛I

i.e.,
Q̀˛
s;m D e

yS.m/=h Ò˛
s;m for all s 2 V.1/˛ ; m 2 yU .0/˛ : (4-9)

Going back to the matrix L ˛, one has

L ˛
D zL

˛
y�˛T ˛:

Moreover, as already noticed below Definition 3.7, one has T ˛f .m/ D f .m/ for any f supported
on U .0/; I˛ . Hence we get

L ˛
D zL

˛
T ˛�˛; (4-10)

with �˛ 2M .U .0/˛ ;U .0/˛ / defined by �˛f .m/D e�S.m/=hf .m/. The following lemma gives an asymp-
totic expansion of the matrix zL

˛
. We recall that m1.s/ and m2.s/ were defined in Lemma 3.3.

Lemma 4.4. Let ˛ 2A and s 2 V.1/˛ ,m 2 yU .0/˛ . The following hold true:

(i) If m … fm1.s/;m2.s/g, then Q̀˛s;m D 0.
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(ii) The coefficients Q̀˛s;m admit a classical expansion Q̀˛s;m � h
1=2
P
k�0 h

k Q̀˛;k
s;m. Moreover, one can

choose �0 D˙1 in (3-26) so that the leading terms satisfy

Q̀˛;0
s;m1.s/

D ��1=2j O�1.s/j
1=2h'.m1.s//

h'.s/
; (4-11)

and in the case wherem2.s/ 2 yU
.0/
˛ ,

Q̀˛;0
s;m2.s/

D���1=2j O�1.s/j
1=2h'.m2.s//

h'.s/
: (4-12)

In particular, ifm2.s/ 2 yU
.0/
˛ , one has

Q̀˛;0
s;m1.s/

h'.m1.s//
D�

Q̀˛;0
s;m2.s/

h'.m2.s//
(4-13)

for all s 2 V.1/˛ .

Proof. Suppose first that m¤m1.s/;m2.s/. Then, supp.d';hg
.0/
m /D supp.d O�m/ is contained in a small

neighborhood ! of �.m/. Since m¤m1.s/;m2.s/ it follows from Lemma 3.3 that s … ! and hence
Q̀˛
s;m D 0 which proves (i).

Let us now compute the coefficients Q̀s;m for m 2 fm1.s/;m2.s/g\ yU
.0/
˛ (observe that this set may be

reduced to m1.s/). We compute these coefficients in the case where m2.s/ 2 yU
.0/
˛ . If it is not the case,

the only nonzero coefficient is Q̀s;m1.s/, which is computed in the same way. Recall from (3-30), that the
quasimodes on 1-forms are given by

f
.1/
s D �0h

�d=4 s.x/b
.1/
s .x; h/e�'C;s.x/=h:

Summing up the construction of [Helffer, Klein and Nier 2004, Section 4.2], there exists an open
neighborhood Vs of s on which one can find a system of local Morse coordinates .y; z/ 2 R�Rd�1 in
which s is the origin and such that the following properties hold true:

(1) In the above coordinate system one has

' D '.s/C
1

2

�
O�1.s/y2C

dX
jD2

O�j .s/z
2
j

�
;

'C D
1

2

�
�O�1.s/y2C

dX
jD2

O�j .s/z
2
j

�
;

where . O�j .s//jD1;:::;d are the eigenvalues of Hess.'/ at point s.

(2) The amplitude b.1/s .x; h/ admits a classical expansion

b
.1/
s �

1X
kD0

hkws;k (4-14)

with

ws;0 D .�1/
d�1 jdet Hess'.s/j1=4

�d=4
dy on fz D 0g: (4-15)
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(3) One can chose the orientation of the y-axis so that

E.m1.s//\Vs � fy < 0g\Vs and E.m2.s//\Vs � fy > 0g\Vs:

Moreover, the cut-off function �m can be constructed so that:

(4) In Vs the functions O�mj , j D 1; 2, depend only on the variable y.

Additionally, one can shrink !s so that:

(5) supp.f .1/s / is contained in Vs.

Observe that the only minor (but important) difference with [Helffer, Klein and Nier 2004] is the
property (3), saying that each �mj , j D 1; 2, is supported in one of the two different half-planes fy 7 0g.
Let us now compute the first coefficient in the asymptotic expansion of Q̀p;˛s;m. Using the above properties,
Proposition 3.5 and following the computations of [Helffer, Klein and Nier 2004, Section 6] we get

Ò˛
s;m D hf

.1/
s ; d';hg

.0/
m i

D h1�d=2c.m; h/e.s; h/

Z
B.s;�/

e�.'C.x/C'.x/�'.m//=h. O�0m.y/CO.h// dy ^ dz2 ^ � � � ^ dzd
CO�.e�.'.s/�'.m/Cc�/=h/;

with

e.s; h/D �0.�1/
d�1 jdet Hess'.s/j1=4

�d=4
CO.h/D �0.�1/d�1��d=4h'.s/CO.h/:

Using the local form of ' and 'C, we get

Ò˛
s;m D h

1�d=2c.m; h/e.s; h/e�.'.s/�'.m//=h
Z
B.s;�/

e�g�.z/=h. O�0m.y/CO.h// dy ^ dz2 ^ � � � ^ dzd
CO�.e�.'.s/�'.m/Cc�/=h/;

with g�.z/D
Pd
jD2
O�j .s/z

2
j . Since O�m depends only on y and g� � c�2 on jzj1 � �, the integration

domain B.s; �/ can be replaced by a smaller one Ws D fjyj< �; jzj1 � ��g modulo exponentially small
error terms. Using also the identity yS.m/D '.s/�'.m/, we get

Ò˛
s;m D I�.h/e

�yS.m/=h
CO�.e�.

yS.m/Cc�/=h/;

with

I�.h/D h
1�d=2c.m; h/e.s; h/

Z
Ws

e�g�.z/=h. O�0m.y/CO.h// dy ^ dz2 ^ � � � ^ dzd :

The integral on the right-hand side can be easily computed by means of Stoke’s formula and the Laplace
method. We get

I�.h/D h
1�d=2c.m; h/e.s; h/.Œ O�m�

�
��CO.h//

Z
jzj1���

e�g�.z/=h dz2 ^ � � � ^ dzd

D h1=2c.m; h/e.s; h/.Œ O�m�
�
��CO.h//

�
�.d�1/=2

j O�2.s/ � � � O�d .s/j
1=2

�
:



ABOUT SMALL EIGENVALUES OF THE WITTEN LAPLACIAN 183

Combining this with the expressions of c.m; h/ and e.s; h/, we obtain

Q̀˛;0
s;m D �0.�1/

d�1Œ O�m�
�
���

�1=2
j O�1.s/j

1=2h'.m/

h'.s/
:

We now remark that with our choice of O�m, one has Œ O�m1 �
�
�� D�1 and Œ O�m2 �

�
�� D 1. Taking �0D .�1/d,

we get immediately the formula of (ii). �

5. Computation of the approximated singular values

From Lemma A.2, we know that the singular values of a block-diagonal matrix are given by the singular
values of each block. Hence, in view of the results of the preceding section, we study the matrices L ˛.
The first step in the analysis is to prove that L ˛ is injective except for ˛ D ˛.

5A. Injectivity of the matrix L ˛. We first compute the kernel of the matrix zL
˛
.

Lemma 5.1. Let ˛ 2A. Then:

� If ˛ is of type I (that is, U .0/; II˛ D∅), then zL
˛;0

is injective.

� If ˛ is of type II, then Ker. zL
˛;0
/D R�0, where �0 2 R Oq˛ ' F˛ is defined by

�0.m/D h'.m/
�1

for allm 2 yU .0/˛ .

Proof. Suppose first that ˛ is of type II. Let x 2F˛ DF .yU .0/˛ / be such that zL
˛;0
x D 0. ThenX

m2yU.0/˛

Q̀˛;0
s;mxm D 0 for all s 2 V.1/˛ : (5-1)

From (i) of Lemma 4.4 it follows that

Q̀˛;0
s;m1.s/

xm1.s/ D�
Q̀˛;0
s;m2.s/

xm2.s/ for all s 2 V.1/˛ :

Moreover, since ˛ is of type II, we know m2.s/ 2 yU
.0/
˛ for any s 2 V.1/˛ and thanks to (4-13) we get

xm1.s/h'.m1.s//D xm2.s/h'.m2.s// for all s 2 V.1/˛ : (5-2)

Now, we recall that for any s 2 V.1/˛ , m1.s/ and m2.s/ are exactly the two minima such that s D
�˛.m1/\�˛.m2/. Therefore, we deduce from (5-2) that

for all m;m0 2 yU .0/˛ ; .�˛.m/\�˛.m
0/¤∅ D) h'.m/xm D h'.m

0/xm0/:

By the definition of the equivalence relation R, this implies that xmh'.m/ is constant on yU .0/˛ , which
means exactly that x 2 R�0.

Suppose now that ˛ is of type I and let x 2F .U .0/˛ / such that zL
˛;0
x D 0. As before, one shows that

there exists a constant c such that for all m 2 U .0/˛ , h'.m/xm D c. Recall that the nonempty set V.1/;b˛
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was defined in Lemma 3.4. Given sb 2 V
.1/;b
˛ , since m2.sb/D Om.˛/ … yU

.0/
˛ , one has Q̀˛;0sb;m D 0 for any

m¤m1.sb/ and
Q̀˛;0
sb;m1.sb/

D ��1=2j O�1.sb/j
1=2
¤ 0:

Combined with (5-1) this shows that xm1.sb/D 0 and hence c D 0, which proves that Ker. zL
˛;0
/D 0. �

Proposition 5.2. Let ˛ 2 A, then the matrix uL
˛
WD zL

˛
T ˛ admits a classical expansion uL

˛
�

h1=2
P
j h

j
uL
˛;j

and the matrix uL
˛;0

is injective.

Proof. By Lemmas 3.6 and 4.4 the matrices zL
˛

and T ˛ admit classical expansions zL
˛
�h1=2

P
hj zL

˛;j

and T ˛ �
P
hjT ˛;j. Therefore, uL

˛
admits a classical expansion uL

˛
� h1=2

P
j h

j
uL
˛;j

with uL
˛;0
D

zL
˛;0

T ˛;0.
Let us now prove that uL

˛;0
is injective.

Suppose first that ˛ is of type I. Then T ˛ D T ˛;0 D Id and the result follows immediately from the
first part of Lemma 5.1.

Suppose now that ˛ is of type II and let x 2 F .U .0// be such that zL
˛;0

T ˛;0x D 0. We have the
decomposition x D xIC xII, with x� supported in yU .0/;�. Thanks to (3-20), we have

T ˛;0x.m/D xI.m/C . uT
˛;0
xII/.m/;

with uT
˛;0
WF .U .0/; II/!F .yU .0/; II/ such that Ran uT

˛;0
D .R�˛0 /

?, where the function �˛0 is defined
by (3-11). On the other hand, we have ker zL

˛;0
D R�0 and we have the decomposition �0 D � I

0C �
II
0 ,

with � II
0 D �

˛;0. The equation zL
˛;0

T ˛;0x D 0 implies that there exists � 2 R such that T ˛;0x D ��0

and hence uT
˛;0
xII D �� II

0 . On the other hand, by construction, Ran uT
˛;0
D .� II

0 /
?. This implies that

�D 0 and proves the result. �

Corollary 5.3. For all ˛ 2A the matrix L ˛ is injective.

Proof. This follows directly from the above proposition and the fact that

L ˛
D yL

˛
T ˛
D zL

˛
y�˛T ˛

D uL
˛
�˛; (5-3)

with �˛ defined below (4-10) which is invertible. �

5B. Graded structure of the matrices L ˛. Throughout this section, we assume that ˛ 2 A is fixed.
Recall that we defined S˛ D S.U

.0/
˛ /, p.˛/D #S˛ and some integers �˛1 < � � �< �

˛
p.˛/

such that

S˛ D fS�˛1 ; : : : ; S�˛p.˛/g;

with the convention S�˛1 > � � �> S�˛p.˛/ . In order to lighten the notation we will drop the indices ˛ and
write from now p D p.˛/, �j D �˛j . To the set of heights S˛, we can associate a natural partition

yU .0/˛ D
pG
nD1

yU .0/˛;n (5-4)

with yU .0/˛;n D fm 2 yU
.0/
˛ W '.m/D � .˛/�S�ng. We order this partition by deciding that yU .0/˛;nC1 � yU

.0/
˛;n.

On the other hand, we recall that L ˛ D uL
˛
�˛ with uL

˛
D zL

˛
T ˛. Let us compute the matrices uL

˛
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and �˛ in the basis given by the above partition of yU .0/˛ . With a slight abuse of notation we still denote
by uL

˛
and �˛ the resulting matrices. Since yS.m/D � .˛/�S�k on U .0/

˛;k
, it follows from (4-8) that in

the above partition, the matrix �˛ can be written

�˛ D

0BBBBBB@
e�S�p =hIrp 0 � � � � � � 0

0 e
�S�p�1=hIrp�1 0 � � � 0

::: 0
: : :

: : :
:::

:::
: : :

: : :
: : : 0

0 � � � � � � 0 e�S�1=hIr1

1CCCCCCA ; (5-5)

where the rj D #U .0/˛;j are such that r1 C � � � C rp D #U .0/˛ . Factorizing by e�S�p =h, we get �˛ D
e�S�p =h u�

˛
.�/, with

u�
˛
.�/D

0BBBBB@
Irp 0 � � � � � � 0

0 �2Irp�1 0 � � � 0
::: 0

: : :
: : :

:::
:::

: : :
: : :

: : : 0

0 � � � � � � 0 �2�3 � � � �pIr1

1CCCCCA ; (5-6)

where � D .�2; : : : ; �p/ 2 .R�C/
p is defined by �j D e

.S�p�.j�2/�S�p�.j�1/ /=h for any j D 2; : : : ; p. With
this new notation, one deduces from (5-3), that L ˛;�L ˛ D he�2S�p =h ŇM˛

.�/, with

ŇM˛
.�/D u�

˛
.�/.h�1 uL

˛;�
uL
˛
/u�

˛
.�/: (5-7)

It turns out that such matrices can be described in a slightly more general setting that is useful to compute
their spectrum. We introduce this setting now. Throughout, we denote by SC.E/ the set of symmetric
positive definite matrices on a vector space E. We will denote by SCcl .E/ the set of h-dependent
matrices M.h/ 2 SC.E/ admitting a classical expansion M.h/ �

P
jh
jMj with M0 2 SC.E/. We

will sometimes drop E and write for short SC, SCcl .

Definition 5.4. Let E D .Ej /jD1;:::;p be a sequence of finite-dimensional vector spaces Ej of dimen-
sion rj > 0, let E D

L
jD1;:::;pEj and let � D .�2; : : : ; �p/ 2 .R�C/

p�1. Suppose that � 7!M.�/ is a
smooth map from .R�

C
/p�1 into the set of matrices M .E/:

� We say that M.�/ is an .E ; �/-graded matrix if there exists M0 2SC.E/ independent of � such
that M.�/D�.�/M0�.�/, with �.�/ 2M .E/ of the form (5-6); that is, �D diag.�j .�/Irj ; j D
1; : : : ; p/, where �1.�/D 1 and �j .�/D

�Qj

kD2
�k
�

for all j � 2.

� We say that a family of .E ; �/-graded matrices Mh.�/, h 2 �0; h0� is classical if one has Mh.�/D

�.�/M0.h/�.�/ for some matrix M0.h/ 2SCcl .E/.

Throughout, we denote by G .E ; �/ the set of .E ; �/-graded matrices and by Gcl.E ; �/ the set of classical
.E ; �/-graded matrices.

Let us remark that for p D 1, a graded matrix is simply a �-independent symmetric positive definite
matrix.



186 LAURENT MICHEL

Lemma 5.5. Suppose that Mh.�/ is a classical .E ; �/-graded family of matrices and that p � 2. Then
one has

Mh.�/D

�
J.h/ �2Bh.�

0/�

�2Bh.�
0/ �22Nh.�

0/

�
; (5-8)

with

� J.h/ 2SCcl .E1/,

� Nh.� 0/ 2 Gcl.E
0; � 0/, with � 0 D .�3; : : : ; �p/ and E 0 D .Ej /jD2;:::;p,

� Bh.�
0/ 2M

�
E1;

Lp
jD2Ej

�
satisfying

Bh.�
0/� D .b2.h/

�; �3b3.h/
�; �3�4b4.h/

�; : : : ; �3 � � � �pbp.h/
�/;

with bj .h/ WE1!Ej independent of � admitting a classical expansion.

Moreover, the matrix Nh.� 0/�Bh.� 0/J.h/�1Bh.� 0/� belongs to Gcl.E
0; � 0/.

Proof. Assume that Mh.�/D�.�/M0.h/�.�/, with �.�/ of the form (5-6). First observe that

�.�/D

�
Irp 0

0 �2�
0.� 0/;

�
;

with

�0.� 0/D

0BBBBB@
Irp�1 0 � � � � � � 0

0 �3Irp�2 0 � � � 0
::: 0

: : :
: : :

:::
:::

: : :
: : :

: : : 0

0 � � � � � � 0 �3�4 � � � �pIr1

1CCCCCA :
On the other hand, we can write

M0.h/D
�
J.h/ B 0.h/�

B 0.h/ N 0.h/

�
;

with J.h/;N 0.h/ 2SCcl and B 0.h/ admitting a classical expansion. Therefore,

�.�/M0h�.�/D
�

J.h/ �2B
0.h/��0.� 0/

�2�
0.� 0/B 0.h/ �22�

0.� 0/N 0.h/�0.� 0/

�
;

which has exactly the form (5-8) with Bh.� 0/ D �0.� 0/B 0.h/ and Nh.� 0/ D �0.� 0/N 0.h/�0.� 0/. By
construction, Nh.� 0/ belongs to Gcl.E

0; � 0/ and Bh.� 0/ has the required form.
It remains to prove that

Rh WDNh.� 0/�Bh.� 0/J.h/�1Bh.� 0/�

belongs to Gcl.E
0; � 0/. First observe that since J.h/ is symmetric positive definite, this quantity is

well-defined. Moreover, one has by construction

Rh D�0.� 0/N 0.h/�0.� 0/��0.� 0/B 0.h/J.h/�1B 0.h/��0.� 0/

D�0.� 0/R0.h/�0.� 0/;
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with R0.h/DN 0.h/�B 0.h/J.h/�1B 0.h/�. Since J.h/ 2SCcl , we have J.h/�1 2SCcl and R0.h/ admits
a classical expansion R0.h/�

P
jh
jR0j with

R00 D J0�B
0
0J
�1
0 .B 00/

�:

Moreover, since M0.h/ 2SCcl , the matrix

M00 D
�
J0 .B 00/

�

B 00 N 00

�
is symmetric definite positive. Hence, it follows directly from Lemma A.5 that R00 2SC. �

5C. The spectrum of graded matrices. Using Lemma 5.5, we define an application R W Gcl.E ; �/!

Gcl.E
0; � 0/, with � 0 D .�3; : : : ; �p/ and E 0 D

Lp
jD2Ej , by

R.Mh.�//DNh.� 0/�Bh.� 0/J.h/�1B�h .�
0/ (5-9)

for any Mh.�/ 2 Gcl.E ; �/. Of course, the map R depends on E and � , but we omit this dependence since
the set on which R is acting will be obvious in the sequel. By a slight abuse of notation we will write
Rk DRı� � �ıR (k times). Obviously, Rk acts from G .E ; �/ into G .E .k/; � .k// with E .k/D

Lp

jDkC1
Ej

and � .k/D .�kC2; : : : ; �p/. In the same way, we defined R, we can define a map J WGcl.E ; �/!SCcl .E1/

by J .Mh.�//DMh if p D 1 and J .Mh.�//D J.h/ for any Mh.�/ having the form (5-8) if p � 2.

Theorem 5.6. Let E D .Ej /jD1;:::;p be a finite sequence of vector spaces Ej of finite dimension nj D
dimEj and let � D .�2; : : : ; �p/ 2 .R�C/

p�1. Suppose that Mh.�/ is classical .E ; �/-graded. There exists
h0 > 0 and ı > 0 such that uniformly with respect to h 2 �0; h0� and j� j1 < ı, one has

�.Mh.�//D

pG
jD1

�j�.J ıRj�1.Mh.�///.1CO.j� j21//; (5-10)

with �j D �j .�/ given in Definition 5.4.

Remark 5.7. In the above theorem, the matrix J ıRj�1.Mh.�// is always independent of the parameter � .
Let us define f�j1 � � � � � �

j
nj g D �.J ıR

j�1.Mh.�//. The identity (5-10) means that there exists
a; b > 0 independent of �; h such that

�.Mh.�//�

pG
jD1

�j Œa; b�

and that, for all j D 1; : : : ; p, Mh.�/ has exactly nj eigenvalues �j1 � � � � � �
j
nj in �j Œa; b� and

�jn D �j .�
j
nCO.j� j21//:

Proof. We prove the theorem by induction on p. Throughout the proof the notation O. � / is uniform
with respect to the parameters h and � . For p D 1, Mh.�/DMh 2SCcl .E1/ is independent of � and
JR0.Mh.�//D JMh.�/DMh, which proves the statement.
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Suppose now that p � 2 and let Mh.�/ 2 Gcl.E ; �/. We have

Mh.�/D

�
J.h/ �2Bh.�

0/�

�2Bh.�
0/ �22Nh.�

0/

�
;

with J.h/; Bh.� 0/ and Nh.� 0/ as in Lemma 5.5. In order to lighten the notation we will drop the variables
�; � 0 in the proof below. For � 2 C, let

P.�/ WDMh��D

�
J.h/�� �2B

�
h

�2Bh �22Nh��

�
: (5-11)

This is an holomorphic function, and since it is nontrivial, its inverse is well-defined except for a
finite number of values of � which are exactly the eigenvalues of Mh. Moreover � 2 C 7! P.�/�1 is
meromorphic with poles in �.Mh/ and for any � in �.Mh/, the rank of the residue of P.�/�1 at � is
exactly the multiplicity of � as an eigenvalue.

Let us first prove that Mh admits at least n1 eigenvalues of size 1. Let �1n D �
1
n.h/, nD 1; : : : ; n1,

denote the increasing sequence of eigenvalues of the positive definite matrix J.h/. Since J.h/DJ0CO.h/
with J0 2 SC, the �1n.h/ satisfy �1n.h/ D �

1
n;0 CO.h/, with �1n;0 an eigenvalue of J0. In particular

�1n;0 > 0 for all n D 1; : : : ; n1 and hence there exists c1; d1 > 0 and h0 > 0 such that for h 2 �0; h0�
and all n D 1; : : : ; n1, one has �1n.h/ 2 Œc1; d1�. Let n 2 f1; : : : ; n1g be fixed and consider Dn D
Dn.h; �2/ D fz 2 C W jz � �1nj � M�22 g for some M > 0 that will be chosen large enough later and
zDn D fz 2 C W jz��1nj � 2M�22 g. Observe that for h; �2 > 0 small enough, the disks zDn are disjoint. By

definition, one has Nh.� 0/DO.1/ and since �1n � c1 > 0, this implies that for �2 > 0 small enough with
respect to c and � 2 zDn, the matrix �22Nh.�

0/�� is invertible, and .�22Nh.�
0/��/�1DO.1/. Moreover,

for � 2 zDn nDn, J.h/�� is invertible and .J.h/��/�1 DO.��22 M�1/. This implies that for M > 0

large enough, J.h/��� �22B
�
h
.�22Nh��/

�1Bh is invertible with

.J.h/��� �22B
�
h .�

2
2Nh��/

�1Bh/
�1
D .J.h/��/�1

�
I � �22B

�
h .�

2
2Nh��/

�1Bh.J.h/��/
�1
��1

D .J.h/��/�1.1CO.M�1//: (5-12)

Hence, the standard Schur complement procedure shows that for � 2 zDn nDn, P.�/ is invertible with
inverse E.�/ given by

E.�/D
�

E.�/ ��2E.�/B
�
h
.�22Nh��/

�1

��2.�
2
2Nh��/

�1BhE.�/ E0.�/

�
; (5-13)

with
E.�/D .J.h/��� �22B

�
h .�

2
2Nh��/

�1Bh/
�1;

E0.�/D .�
2
2Nh��/

�1
C �22 .�

2
2Nh��/

�1BhE.�/B
�
h .�

2
2Nh��/

�1:

By functional calculus and the Cauchy formula, the number of eigenvalues of Mh (counted with multi-
plicity) in Dn is equal to the rank of the projector

…n D
1

2i�

Z
@Dn

E.�/ d�:
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One has rk.�n/� rk. z…n/, where we set

z…n D

�
Id 0

0 0

�
…n

�
Id 0

0 0

�
:

On the other hand, an elementary computation shows that

z…n D
1

2i�

Z
@Dn

�
E.�/ 0

0 0

�
d�D

�
En 0

0 0

�
;

with

En D
1

2i�

Z
@Dn

.J.h/��� �22B
�
h .�

2
2Nh��/

�1Bh/
�1 d�:

As a consequence we get rk.…n/ � rk.En/. Moreover, for M large enough independent of .h; �/, the
matrix .I � �22B

�
h
.�22Nh��/

�1Bh.J.h/��/
�1/�1 is holomorphic in zDn. It follows from (5-12) that

the rank of En is exactly the multiplicity of �1n and hence the rank of …n is bounded from below by
the multiplicity of �1n. Therefore, Mh admits at least n1 eigenvalues �11 � � � � � �

1
n1

in the interval
Œc1�M�22 ; d1CM�22 � and these eigenvalues satisfy

�1n D �
1
nCO.�22 / for all nD 1; : : : ; n1: (5-14)

Let us now study the eigenvalues below �22 . Throughout the proof, we let t D j� 0j1. Thanks to the last
part of Lemma 5.5, the matrix Zh.� 0/ WDR.Mh.�//DNh�BhJ.h/�1B�h is classical .E 0; � 0/-graded.
Hence, it follows from the induction hypothesis that uniformly with respect to h, one has

�.Zh.� 0//D
pG
jD2

Q�j�.J ıRj�2.Zh.� 0///.1CO.j� 0j21//; (5-15)

with Q�j D
�Qj

lD3
�l
�2 for j � 3 and Q�2 D 1. Moreover, by definition, one has Zh DR.Mh.�//; hence

(5-15) can be rewritten as

�.Zh.� 0//D
pG
jD2

Q�j�.J ıRj�1.Mh.�///.1CO.j� 0j21//: (5-16)

Since Mh.�
0/ 2 Gcl.E ; �/, for all j D 2; : : : ; p the matrix J ıRj�1.Mh.�// belongs to SCcl .Ej /. For

j D 2; : : : ; p, let �j1.h/� � � ���
j
nj .h/ denote the eigenvalues of the symmetric matrix J ıRj�1.Mh.�//.

As above, this implies that there exist cj ; dj > 0 and h0 > 0 such that for all h 2 �0; h0� the eigenvalues
�
j
n.h/ satisfy �jn.h/2 Œcj ; dj � for all nD 1; : : : ; nj . Suppose now that j 2 f2; : : : ; pg and n2 f1; : : : ; nj g

are fixed and consider D0j;n D fz 2 C W jz � �j�
j
nj � Mt2�j g for some M > 0 to be chosen large

enough and zD0j;n D fz 2 C W jz � �j�
j
nj � 2Mt2�j g. As above, we introduce also the corresponding

projector

…0j;n D
1

2i�

Z
@D0
j;n

E.�/ d�:
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Since J0 is invertible, we know that for � in zD0j;n and h; t small enough, J.h/�� is invertible and once
again the Schur complement formula permits us to write the inverse of P.�/,

E.�/D
�

E0.�/ ��2.J.h/��/
�1B�

h
E.�/

��2E.�/Bh.J.h/��/
�1 E.�/

�
; (5-17)

with
E.�/D .�22Nh��� �

2
2Bh.J.h/��/

�1B�h /
�1;

E0.�/D .J.h/��/
�1
C �22 .J.h/��/

�1B�hE.�/Bh.J.h/��/
�1:

Setting �D �22 z, we get (using the relation �j D �22 Q�j )

…0j;n D
�22
2i�

Z
@ yD0

j;n

E.�22 z/ dz;

with yD0nDfz 2C W jz� Q�j�
j
nj �Mt2 Q�j g. Moreover, for jz� Q�j�

j
nj DMt2 Q�j , the matrix J.h/ is invertible

with J.h/�1 DO.1/; hence we have

E.�22 z/D �
�2
2 .Nh� z�Bh.J.h/� �22 z/

�1B�h /
�1

D ��22 .Zh� zCO.�22 jz//
�1

D ��22 .Zh� z/�1.I CO.�22 Q�j k.Zh� z/
�1
k//:

Moreover, by the definition of yD0j;n and thanks to (5-15), one has dist.z; �.Zh// � 1
2
Mt2 Q�j for any

z 2 @ yD0j;n. Hence k.Zh� z/�1k � 2.Mt2 Q�j /
�1 and since t � �2, it follows that

E.�22 z/D �
�2
2 .Zh� z/�1.I CO.M�1//:

Integrating along @ zD0j;n and working as above, we get

…0j;n D
1

2i�

Z
@D0
j;n

 
E0.�/ R

�
�2E.�/

E.�/R�2 E.�/

!
d�;

with R�2.�/D��2.�
2
2Nh��/

�1Bh and R��2.�/D��2B
�
h
.�22Nh��/

�1. The same argument as above
shows that rk.…n/� rk.E 0n/ with

E 0n D
�22
2i�

Z
@ yD0

j;n

E.�22 z/ dz D
1

2i�

Z
@ yD0

j;n

.Zh� z/�1.I CO.M�1//�1 dz:

By the induction hypothesis, this shows that the rank of E 0n is exactly the multiplicity of �jn and hence the
rank of …0j;n is bounded from below by this multiplicity. Therefore, for any j D 2; : : : ; p, Mh admits at
least nj eigenvalues �11 � � � � � �

1
n1

in the interval �j Œcj �Mt2; dj CMt2� and these eigenvalues satisfy

�jn D �j .�
j
nCO.j� j21// for all nD 1; : : : ; nj : (5-18)

Combining this estimate with (5-14) and using the fact the dim.E/D
Pp
jD1 rj , we obtain the �jn are

the only eigenvalues of Mh. �
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5D. The singular values of L ˛. Given m;m1;m2 2 U .0/ and s 2 V.1/, we define

�2.s;m;m1;m2/D �
�1=2
j O�1.s/j

1=2

�
h'.m1/

h'.s/
ım;m1 �

h'.m2/

h'.s/
ım;m2

�
; (5-19)

�1.s;m;m1/D �
�1=2
j O�1.s/j

1=2h'.m1/

h'.s/
ım;m1 : (5-20)

Let us define the matrix ‡˛ 2M .yU .0/˛ ;V.1/˛ / by

‡˛.s;m/D

�
�2.s;m;m1.s/;m2.s// if m2.s/ 2 yU

.0/
˛ ;

�1.s;m;m1.s// if m2.s/ … yU
.0/
˛ ;

(5-21)

where the indices m; s are enumerated according to the partitions of Section 5B. Observe that with this
notation, the conclusion of Lemma 4.4 can be written as zL

˛;0
D ‡. Moreover, the above expression can

be simplified according to the type of ˛. More precisely,

� if ˛ is of type I, then m2.s/ 2 yU
.0/
˛ if and only if s 2 V.1/;i˛ ,

� if ˛ is of type II, then m2.s/ is always in yU .0/˛ .

Theorem 5.8. Let M˛ DL ˛;�L ˛. There exists c > 0 such that, counted with multiplicity, one has

�.M˛/D

p.˛/G
jD1

he
�2h�1S�˛

j �.M ˛;j /.1CO.e�c=h//;

where the matrices M ˛;j have a classical expansion M ˛;j �
P
hkM

˛;j

k
whose leading term is given by

M
˛;j
0 D JRj�1.Z˛/;

where Z˛ D �˛T ˛;0‡˛;�‡˛T ˛;0�˛ belongs to G .E ; �/ with E D .F .yU .0/˛;j //jD1;:::;p and � D

.�j /jD1;:::;p, with �j D e
.S�p�.j�2/�S�p�.j�1/ /=h.

Proof. One has

M˛
DL ˛;�L ˛

D he�2Sp1=h ŇM˛
;

with ŇM˛ given by (5-7),
ŇM˛

.�/D u�
˛
.�/�ŇM˛;0

u�
˛
.�/;

with ŇM˛;0
D .h�1 uL

˛;�
uL
˛
/. Of course, this matrix is symmetric positive and thanks to Proposition 5.2,

it admits a classical expansion
ŇM˛;0

�

X
k

hk ŇM˛;0
k

with ŇM˛;0
0 D . uL

˛;0
/� uL

˛;0
D T ˛;0‡˛;�‡˛T ˛;0 2 SC. This shows that ŇM˛;0 belongs to SCcl .

Hence ŇM˛ is classical .E ; �/-graded with E D .F .yU .0/˛;j //jD1;:::;p and � D .�2; : : : ; �p/, with �j D
e
.S�p�.j�2/�S�p�.j�1/ /=h and the conclusion follows directly from Theorem 5.6. �
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6. Proof of the main theorem

In this section we explain how one can deduce Theorem 2.8 from Theorem 5.8. As in [Helffer, Klein and
Nier 2004], the general idea is to compare the singular values of the successive reduced matrix by a mean
of Fan inequalities. As preparation, we shall compare the matrices L�;0 and Lbkw;0 defined in Section 3.
First, observe that thanks to (4-4), (4-5), (4-10), one has

Lbkw;0
DJLbkw;00

DJ L DJ zL T �; (6-1)

with J WF .V.1//!F .U .1// defined by Js;s0 D ıs;s0 , zL D diag. zL
˛
; ˛ 2A/, T D diag.T ˛; ˛ 2A/

and �D diag.�˛; ˛ 2A/.

Lemma 6.1. There exists 
 > 0 such that

L�;0 D .J CO.e�
=h//L :

Proof. First observe that thanks to Lemma 4.1, one has

L�;0 D Lbkw;0
CR; (6-2)

with R WF .U .0//!F .U .1// satisfying

Rs;m DO.e�.S.m/C
/=h/ for all m 2 U .0/; (6-3)

for some 
 > 0. Using (6-1), we get

L�;0 DJ zL T �C zR�;

with zR D O.e�
=h/. Hence, we have to prove that there exists R W F .V.1// ! F .U .1// such that
zRDR zL T and RDO.e�
=h/. From Proposition 5.2, we know that the matrix W WD . zL T /� zL T is
invertible with inverse uniformly bounded with respect to h. This allows us to define R WD zRW �1. zL T /�.
Thanks to the above remarks, we have RDO.e�
=h/ and by construction

R zL T D zRW �1. zL T /� zL T D zR;

which completes the proof. �

We are now ready to prove Theorem 2.8. Until the end of this section, 
 > 0 denotes a constant
independent of h that may change from line to line. We shall also denote by SV.M/ the singular values
of any matrix M.

From Section 2C, we know that the n0 exponentially small eigenvalues of �.0/' are the square of the
singular values of the matrix L. Thanks to Lemmas 3.12 and 3.13, we have

LD .IdCO.e�
=h//L�.IdCO.e�
=h//

and it follows from the Fan inequality (Lemma A.1) that

SV.L/D SV.L�/.1CO.e�
=h//:
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Hence, we are reduced to computing the singular values of L�. Since the first column of L� is the null
vector, it follows that the nonzero singular values of L� are the singular values of L�;0. From Lemma 6.1,
we know that

L�;0 D .J CO.e�
=h//L ; (6-4)

and since J �J D Id this implies for h small enough

L D .J �
CO.e�
=h//L�;0: (6-5)

Using the fact that kJ k D kJ �k D 1, (6-4) and (6-5) combined with Lemma A.1 show that

SV.L�;0/D .1CO.e�
=h//SV.L /:

Combined with Theorem 5.8 this proves Theorem 2.8.

7. Some particular cases and examples

In this section, we rephrase Theorem 5.8 in the particular situations p.˛/D 1 and p.˛/D 2.

7A. The case p.˛/ D 1. In this section we assume that p.˛/ D 1. Then, the set S˛ is reduced to a
singleton S˛ D fS�˛1 g. Moreover, the points of U .0/˛ are either all of type I, or all of type II.

7A1. The case where ˛ is of type II. We first assume that ˛ is of type II. Then all the points m 2 U .0/˛
are of type II and Theorem 5.8 takes the following form.

Theorem 7.1. Let ˛ 2A be such that p.˛/D 1 and all the points of U .0/˛ are of type II. Then the matrix
L ˛ has exactly q˛ D #U .0/˛ singular values counted with multiplicity �˛;�.h/, �D 1; : : : ; q˛ . They have
the form

�˛;�.h/D h
1=2�˛;�.h/e

�S�˛
1
=h
;

where �˛;� �
P1
rD0 h

r�˛;�;r is a classical symbol such that the �˛;�;0, �D 1; : : : ; q˛, are the nonzero
singular values of the matrix ‡˛ 2M .yU .0/˛ ;V.1/˛ / given by

‡˛s;m D �
�1=2
j O�1.s/j

1=2

�
h'.m1.s//

h'.s/
ım;m1.s/�

h'.m2.s//

h'.s/
ım;m2.s/

�
for all s 2 V.1/˛ ; m 2 yU .0/˛ ;

withm1.s/;m2.s/ defined in Lemma 3.3.

Observe that the description of the approximated small eigenvalues of �' in the above theorem is very
close in spirit to that obtained in nondegenerate situations. Though, the different eigenvalues �˛;� are
linked to one another, the only minima involved in the computation of the prefactors �˛;� are associated to
the typical height S�˛1 . In that sense, we can say that the above formula is a generalized Eyring–Kramers
formula.

As already mentioned in the Introduction, the matrix ‡˛ enjoys a nice interpretation in terms of graph
theory. In order to simplify, suppose that the function ' is such that the coefficients of ‡˛ are either 1
or �1. Define a graph G˛ associated to the equivalence class ˛ in the following way. The vertices of the
graph are the minima m 2 yU .0/˛ and the edges are the saddle points s 2 V.1/˛ . The two vertices associated
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to the edge s 2 V.1/˛ are just m1.s/ and m2.s/. With this definition it turns out that the matrix ‡˛ is the
transpose of the incidence matrix of a certain oriented version of the graph Ga. As a consequence, the
j�˛;�;0j

2 are the eigenvalues of the corresponding graph Laplacian �G D .ım;m0/m;m02yU.0/ defined by

ım;m0 D

8<:
d.m/ if mDm0;
�1 if m¤m0 and there is an edge between m and m0;
0 otherwise;

(7-1)

where the degree d.m/ is the number of edges incident to the vertex m.
Figure 2 in the Introduction presents an example of a potential ' having one unique saddle value �

and such that all local minima are absolute minima. We represent also in Figure 2 the graph associated to
the nontrivial equivalence class (that is, the one which is not reduced to one element).

In the case where the coefficients of ‡˛ are not necessarily equal to ˙1, the same interpretation
is available with weighted graphs. We refer to [Cvetković, Doob and Sachs 1995] for definitions and
standard results on graph theory.

7A2. The case where ˛ is of type I. In this section, we compute explicitly the singular values of L ˛,
when ˛ is of type I.

Theorem 7.2. Let ˛ 2A be such that p.˛/D 1 and all the points of U .0/˛ are of type I. Then, the matrix
L ˛ has exactly q˛ WD #U .0/˛ singular values counted with multiplicity. These singular values �˛;�.h/,
�D 1; : : : ; q˛, have the form

�˛;�.h/D �˛;�.h/e
�S�˛

1
=h
;

where �˛;� � h1=2
P1
rD0 h

r�˛;�;r has a classical expansion such that �˛;�;0 are the q˛ singular values
of the matrix ‡˛ given by

‡s;m D �
�1=2
j O�1.s/j

1=2

�
h'.m1.s//

h'.s/
ım;m1.s/�

h'.m2.s//

h'.s/
ım;m2.s/

�
if s 2 V.1/;i˛ and

‡s;m D �
�1=2
j O�1.s/j

1=2h'.m1.s//

h'.s/
ım;m1.s/

if s 2 V.1/;b˛ . Moreover, these singular values are nonzero.

As in the case of points of type II we can interpret the matrix zL
˛;0

in terms of graphs. However, some
saddle points are now associated to only one minimum. In terms of the graph, this leads to some edges
having only one vertex, which means that we are dealing with hypergraphs.

7B. The case p.˛/D 2. Throughout this section we assume that p.˛/D 2. Then ' takes two different
values '� < 'C on U .0/˛ . One has S˛ D fS�˛

C
< S�˛�g with S�˛

˙
D �.˛/�'˙.
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7B1. The case where ˛ is of type II. The partition (5-4) takes the form yU .0/˛ D yU .0/˛;C t yU
.0/
˛;� with

yU .0/˛;˙ D fm 2 U .0/˛ W '.m/D '˙g. Since ˛ is of type II, m2.s/ 2 yU
.0/
˛ for all s. It is then convenient to

introduce the partition of V.1/˛ given by

V.1/˛ D V.1/˛;C tV
.1/
˛;C�[V.1/˛;�; (7-2)

with V.1/˛;C D fs 2 V.1/˛ W m1.s/;m2.s/ 2 yU
.0/
˛;Cg and V.1/˛;� D fs 2 V.1/˛ W m1.s/;m2.s/ 2 yU

.0/
˛;�g; where

the functions m1;m2 are defined by Lemma 3.3. In the case s 2 V.1/˛;C�, it follows from the choice of
Lemma 3.3 thatm1.s/2 yU

.0/
˛;C andm2.s/2 yU

.0/
˛;�. We order the above partitions by deciding yU .0/˛;C � yU

.0/
˛;�

and V.1/˛;C � V.1/˛;C� � V.1/˛;�. Then, the matrix Y ˛ WD h�1=2e
�S�˛
C
=h
yL
˛

has the form

Y ˛
D

0@ � 0

bC� �b�C
0 �a

1A ;
where � D e

.S�˛
C �S�˛�/=h and the matrices �; bC�; b�C admit a classical expansion whose principal

terms are given by the formula

� for all s 2 V.1/˛;C and m 2 yU .0/˛;C one has �0s;m D �2.s;m;m1.s/;m2.s//,

� for all s 2 V.1/˛;� and m 2 yU .0/˛;� one has a0s;m D �2.s;m;m1.s/;m2.s//,

� for all s 2 V.1/˛;C�, m 2 yU .0/˛;C and m0 2 yU .0/˛;� one has .b0
C�
/s;m D �1.s;m;m1.s// and .b0

�C
/s;m0 D

��1.s;m
0;m2.s//,

with �2; �1 given by (5-19), (5-20). By a standard block-matrix computation one has

.Y ˛/�Y ˛
D

 
J � yB

� yB� �2 yA

!
; (7-3)

with J D ���C b�
C�
bC�, yB D b�

C�
b�C and yAD a�aC b�

�C
b�C. All these matrices admit a classical

expansion, yA'
P
k�0 h

k yAk , yB '
P
k�0 h

k yBk , J D
P
k�0 h

kJ k and one has J 0D �0;��0Cb0;�
C�
b0
C�

,
yB0 D b

0;�
C�
b0
�C

and yA0 D a0;�a0C b0;�
�C
b0
�C

, where we use the notation .cj /� D cj;�.

Theorem 7.3. The matrix L ˛ has exactly q˛;˙ D #U .0/˛;˙ singular values �˙˛;�.h/, � D 1; : : : ; q˛;˙,
counted with multiplicity which are of order h1=2e�S�˛˙=h. These singular values have the form

�˙˛;�.h/D �
˙
˛;�.h/e

�S�˛
˙
=h
;

where
�˙˛;� � h

1=2
X
k

hk�˙˛;�;k

is a classical symbol such that .�˙˛;�;0/
2 are the q˛;˙ nonzero eigenvalues of the matrices G˙ given by

GC D J 0 and
G� D yA0� . yB0/�.J 0/�1 yB0;

where yA0, J 0 and yB0 are defined below (7-3).
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Figure 9. Top: the sublevel set f' < �g associated to a potential ' having a unique
saddle value and two minimal values. Bottom: the associated hypergraphs.

Let us make a few comments on this theorem. First, observe that the prefactor �˙ D �˙˛;� obeys two
different laws whether we are in the “C” or “�” case. In the “C” case, �C is determined by the matrix J 0

which depends only on the minima m 2 U .0/˛ such that S.m/ D S�C . In that sense, the behavior of
�C obeys a law similar to the generalized Eyring–Kramers law of Theorem 7.1. In the “�” case, the
situation is different since the matrix G� involves values of ' on all minima and not only those for which
S.m/D S�� . Hence the term . yB0/�.J 0/�1 yB0 in the definition of G� can be understood as a tunneling
term between minima associated to both heights.

This interpretation is confirmed by the following example. Suppose that ' has two distinct minimal
values and one saddle value. Figure 9 below represents such a potential. The blue wells correspond to the
absolute minimal value and the red one to the other minimal value. All the saddle points are supposed to
be at the same level. Then, the matrices yA0 and J 0 can be viewed as the Laplacians of the hypergraphs
built as follows. First we consider the graph G associated to all the minima whose vertex are the minima
and edges are the saddle points between two minima (without distinction on the level of the minima).
The blue and red hypergraphs Gb and Gr are obtained by cutting the graph G on edges between a blue
and a red minimum. Eventually, the matrix B links blue and red minima.

7B2. The case where ˛ is of type I. In this section we assume that ˛ is of type I. The partition (5-4) takes
the form U .0/˛ D U .0/˛;� tU

.0/
˛;C with

U .0/˛;˙ D fm 2 U
.0/
˛ W '.m/D '˙g:

We order the two elements of P
.0/
˛ by deciding U .0/˛;C � U .0/˛;�. In order to deal with the saddle points, we

introduce the partition P
.1/
˛ which is a mix of partitions used in Lemma 3.4 and Section 7B1:

V.1/˛ D V.1/
˛;C;b

tV.1/˛;C;i tV
.1/
˛;C� tV

.1/

˛;�;b
tV.1/˛;�;i
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with
V.1/˛;C;� D fs 2 V

.1/;i
˛ Wm1.s/ 2 U

.0/
˛;C;m2.s/ 2 U

.0/
˛;�g;

V.1/˛;C;i D fs 2 V
.1/;i
˛ Wm1.s/;m2.s/ 2 U

.0/
˛;Cg;

V.1/
˛;C;b

D fs 2 V.1/;b˛ Wm1.s/ 2 U
.0/
˛;Cg;

V.1/˛;�;i D fs 2 V
.1/;i
˛ Wm1.s/;m2.s/ 2 U .0/˛;�g;

V.1/
˛;�;b

D fs 2 V.1/;b˛ Wm1.s/ 2 U .0/˛;�g:

(7-4)

Here the functions m1, m2 are defined by Lemma 3.3. One has the following

Theorem 7.4. Assume that p.˛/ D 2 and ˛ is of type I. The matrix L ˛ has exactly q˛;˙ D #U .0/˛;˙
singular values �˙˛;�.h/, � D 1; : : : ; q˛;˙, counted with multiplicity which are of order h1=2e�S�˛˙=h.
These singular values have the form

�˙˛;�.h/D �
˙
˛;�.h/e

�S�˛
˙
=h

where �˙˛;� � h
1=2

P
k h

k�˙
˛;�;k

is a classical symbol such that .�˙˛;�;0/
2 are the q˛;˙ eigenvalues (which

are nonzero) of the matrices G˙ given by GCD J 0 and G�DA0� .B0/�.J 0/�1B0, where A0, B0 and
J 0 are defined by

J 0 D �0;��0C b
0;�
C�
b0C�; B0 D b

0;�
C�
b0�C; A0 D a0;�a0C b

0;�
�C
b0�C;

with the matrices a0, b0
C�

, b0
�C

and �0 defined by

� for all s 2 V.1/˛;C;i andm 2 U .0/˛;C one has �0s;m D ‡2.s;m;m1.s/;m2.s//,

� for all s 2 V.1/
˛;C;b

andm 2 U .0/˛;C one has �0s;m D ‡1.s;m;m1.s//,

� for all s 2 V.1/˛;�;i andm 2 U .0/˛;� one has a0s;m D ‡2.s;m;m1.s/;m2.s//,

� for all s 2 V.1/
˛;�;b

andm 2 U .0/˛;� one has a0s;m D ‡1.s;m;m1.s//,

� for all s 2 V.1/˛;C�, m 2 U .0/˛;C andm0 2 U .0/˛;� one has .b0
C�
/s;mD‡1.s;m;m1.s// and .b0

�C
/s;m0 D

�‡1.s;m
0;m2.s//.

7C. Some examples.

7C1. Computations in dimension 1 with p.˛/D1. Let us compute the small eigenvalues of the potential '
represented in Figure 10.

As already noticed in the discussion below Theorem 2.8, there are exactly three equivalence classes for R
in that case: U .0/1 Dfm1;1g, U

.0/
2 Dfm2;1;m2;2g and U .0/3 Dfm2;3g. Let us denote by s1 the saddle point

betweenm2;1 andm2;2, by s2 the saddle point betweenm2;2 andm1;1 and by s3 the saddle point between
m1;1 andm2;3. Define also S2D'.s1/�'.m2;1/D'.s1/�'.m2;2/ and S3D'.s3/�'.m2;3/. Observe
also that for all m 2 U .0/, one has H.m/D fmg. Then the matrix Lbkw defined by (4-2), admits the form

Lbkw
D

�
h

�

�1=20@0 d21;1 d21;2 0

0 d22;1 d
2
2;2 0

0 0 0 d3

1A ;
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m1;1

m2;1 m2;2

m2;3

�2

�1 D1

'.m2;3/

'.m2;1/D '.m2;2/

'.m1;1/

s1 s2 s3

S3
S2S2

Figure 10. A potential with p.˛/D 1 for all ˛.

with the coefficients given by

d21;1 D .j'
00.s1/'

00.m2;1/j
1=4
CO.h//e�S2=h; d21;2 D�.j'

00.s1/'
00.m2;2/j

1=4
CO.h//e�S2=h;

d22;1D0; d22;2D .j'
00.s2/'

00.m2;2/j
1=4
CO.h//e�S2=h; d3D .j'00.s3/'

00.m2;3/j
1=4
CO.h//e�S3=h:

The corresponding squares of singular values are then

�0 D 0; �3 D
h

�
.j'00.s3/'

00.m2;3/j
1=2
CO.h//e�2S3=h and �˙2 D

h

�
.�˙2 CO.h//e�2S2=h;

where �˙2 are the squares of the singular values of the matrix

zD2 D
�
a �b

0 c

�
;

with aD j'00.s1/'00.m2;1/j1=4, b D j'00.s1/'00.m2;2/j1=4 and c D j'00.s2/'00.m2;2/j1=4. It follows that

.zD2/� zD2 D
�
a2 �ab

�ab b2Cc2

�
;

whose eigenvalues can be computed handily. For instance, if j'00.s/j D j'00.m/j D 1 for all s 2 U .1/ and
m 2 U .0/, one has

.zD2/� zD2 D
�
1 �1

�1 2

�
;

whose eigenvalues are �˙2 D
3
2
˙

p
5
2

.
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We would like to conclude this example by noticing that one has necessarily �C2 ¤ �
�
2 . Indeed, if one

computes the characteristic polynomial of the above matrix, one finds P.x/Dx2�.a2Cb2Cc2/xCa2c2,
whose discriminant is given by

�D .a2C b2C c2/2� 4a2c2 D ..a� c/2C b2/..aC c/2C b2/:

Since ' is a Morse function, one has b ¤ 0 and hence �> 0.

7C2. Computations in dimension 1 with p.˛/D 2. Suppose now that the potential ' is as represented in
Figure 7. As already noticed there are exactly two equivalence classes for R in that case, U .0/1 D fm1;1g
and U .0/2 D fm2;1;m2;2;m2;3g, and again, one has H.m/ D fmg for all m 2 U .0/. Let us denote by
s1 the saddle point between m2;1 and m2;2, by s2 the saddle point between m2;2 and m2;3 and by s3
the saddle point between m2;3 and m1;1. Define also S2 D '.s1/� '.m2;1/ D '.s1/� '.m2;2/ and
S3D'.s2/�'.m2;3/. Then the matrix Lbkw;00 admits the following form in the basis .f .0/m2;3 ; f

.0/
m2;1 ; f

.0/
m2;2/

and .f .1/s3 ; f
.1/
s2 ; f

.1/
s1 /:

Lbkw;00
D

�
h

�

�1=2
e�S3=h

0@ � 0 0

b1 0 b2e
�.S2�S3/=h

0 a1e
�.S2�S3/=h a2e

�.S2�S3/=h

1A ;
with the leading terms of the coefficients given by

�0 D�j'00.s3/'
00.m2;3/j

1=4; b01 D j'
00.s2/'

00.m2;3/j
1=4; b02 D j'

00.s2/'
00.m2;2/j

1=4

and

a01 D j'
00.s1/'

00.m2;1/j
1=4; a02 D�j'

00.s1/'
00.m2;2/j

1=4:

In order to simplify the computation, assume that '00.m/D 1 for allm2 U .0/ and '00.s1/D '00.s2/D�1.
Define � D j'00.s3/j and � D e�.S2�S3/=h. Then

Lbkw;00
D

�
h

�

�1=2
e�S3=h

0@0@�� 0 0

1 0 �

0 � ��

1ACO.h/

1A :
Hence, we can apply Theorem 7.4 with

a0 D .1 � 1/; �0 D��; b0C� D 1; b0�C D .0 1/:

It follows that the singular values of order e�S2=h are

�˙.h/D

�
h

�

�1=2
e�S2=h.

p
�˙CO.h//;

with �˙ eigenvalues of M 0 WD A0� .B0/�.J 0/�1B0, with

A0 D

�
1 �1

�1 2

�
; B0 D .0 � 1/; J 0 D 1C �2:
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+
+

+

+

+

+

+

+
m1

m2

m3

mN

mN�1

s1
s2

sN�1

sN J
O

Figure 11. N wells in dimension 2.

Hence

M 0
D

�
1 �1

�1 2��

�
;

with � D 1=.1C �2/ 2 �0; 1Œ. The eigenvalues of this matrix are

�˙ D
3� �

2
˙

p
.3� �/2� 4.1� �/

2
:

This can be seen as perturbations by the well of height S3 of the eigenvalues �˙ computed in the previous
example (obtained by taking � D 0 in the above formula).

7C3. Computations in higher dimensions. Consider the case of the potential ' having N � 3 minima
m1; : : : ;mN and one local maximum at the origin as presented in Figure 11. Assume also that there
are exactly N saddle points s1; : : : ; sN , all at the same height '.sj /D �2 and that the set f' < �2g has
exactly N connected components E1; : : : ; EN , each Ej containing the minimum mj , and that for all
j D 1; : : : ; N, fsj g D Ej \EjC1 with the convention ENC1 D E1. Assume in addition that all the
'.mj / are equal and write S D �2 � '.m1/. Let us choose m1 as the global minimum associated to
�1 D1. Then all the other minima are associated to the saddle value �2. It is clear that they all belong
to the same equivalence class and that they are all of type II. Moreover, for all m 2 U .0/ n fm1g, one has
H.m/D fmg. Then, we can apply Theorem 7.1 to get the spectrum of the Witten Laplacian associated to
'. It follows that the eigenvalues are given by �1 D 0 and for all nD 2; : : : ; N

�n.h/D bn.h/e
�2S=h.1CO.e�˛=h//; (7-5)

where bn admits a classical expansion

bn.h/'
h

�

X
k�0

bn;kh
k:
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Moreover, one has bn;0 D �2n, where the �n, nD 2; : : : ; N, are the nonzero singular values of the matrix

L WD

0BBBBBBBB@

˛1ˇ1 �˛2ˇ1 0 � � � � � � 0

0 ˛2ˇ2 �˛3ˇ2 0 � � � 0

0 0 ˛3ˇ3
: : : � � � 0

:::
:::

0 � � � � � � 0 ˛N�1ˇN�1 �˛NˇN�1
�˛1ˇN 0 � � � � � � 0 ˛NˇN

1CCCCCCCCA
;

where we set j̨ D '
00.mj /

1=4 and ǰ D .�'
00.sj //

1=4.
If one assumes additionally that j̨ and ǰ are independent of j , let say j̨ D ˛ and ǰ D ˇ, then

LD ˛ˇA with

A D

0BBBBBBBBB@

1 �1 0 � � � � � � 0 0

0 1 �1 0 � � � � � � 0

0 0 1 �1 0 � � � 0
:::

:::
: : :

: : :
: : :

: : :
:::

:::
:::

: : :
: : :

: : : 0

0 0 � � � � � � 0 1 �1

�1 0 � � � � � � 0 0 1

1CCCCCCCCCA
:

The singular values of A are the square roots of the eigenvalues of

A �A D

0BBBBBBB@

2 �1 0 � � � 0 �1

�1 2 �1 � � � 0 0

0 �1 2 �1 � � � 0
:::

:::

0 0 � � � �1 2 �1

�1 0 0 0 �1 2

1CCCCCCCA
;

which are known to be �k D 2.1� cos.2k�=N//, k D 0; : : : ; N � 1. In particular, for all 2� k < N=2,
�k has multiplicity 2 since �k D �N�k .

Suppose now that the potential ' is invariant by a rotation of angle 2�=N ; then (7-5) still holds true
with bn.h/ being the singular values of a matrix of the form

A D �.h/

0BBBBBBBBB@

1 �1 0 � � � � � � 0 0

0 1 �1 0 � � � � � � 0

0 0 1 �1 0 � � � 0
:::

:::
: : :

: : :
: : :

: : :
:::

:::
:::

: : :
: : :

: : : 0

0 0 � � � � � � 0 1 �1

�1 0 � � � � � � 0 0 1

1CCCCCCCCCA
;

with �.h/'
P
k�0 h

k�k . Hence, the above computation is still valid and it follows that for 2� k <N=2,
bk.h/DbN�k.h/. This permits us to recover the results of [Hérau, Hitrik and Sjöstrand 2011, Section 7.4].
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Appendix A: Some results in linear algebra

We collect here some helpful results from linear algebra.

Lemma A.1 (Fan inequalities). Let A;B be two matrices and denote by �n.X/ the singular values of X .
Then

�n.AB/� kBk�n.A/;

�n.AB/� kAk�n.B/;

where kCk denotes the norm of C W Rp! Rq with R� endowed with `2 norms.

Proof. See [Simon 1979]. �

Lemma A.2. Let AD diag.A1; : : : ; AN / be a block diagonal matrix. Then the singular values of A are
the singular values of the An counted with multiplicities.

Proof. It is straightforward, since A�AD diag.A�1A1; : : : ; A
�
NAN /. �

Lemma A.3. Let E, F be two finite-dimensional vector spaces and A.h/ W E ! F be a family of
linear operators depending on a parameter h 2 �0; 1�. Assume that A.h/ admits a classical expansion
A.h/�

P
k�0 h

kAk and that the matrix A0 has nonzero singular values. Then, for h > 0 small enough
the singular values �n.h/ of A.h/ admit a classical expansion

�n.h/�
X
k�0

hk�kn;

where the �0n are the singular values of A0.

Proof. Since the singular values of A.h/ are the eigenvalues of A�A, which is selfadjoint, the result
follows easily from Kato’s perturbation theory of analytic families of selfadjoint operators [Kato 1966,
Chapter 2, Section 1] applied to the expansion of A�A in h powers cut at finite rank. �

Lemma A.4. Let A be a p� .qC 1/ matrix and T a .qC 1/� q matrix. Assume that T �T D Id and that
kerAD Ran.T /?. Then the singular values of A are f0; z1; : : : ; zqg, where z1; : : : ; zq are the singular
values of AT.

Proof. First observe that since kerADRan.T /?, 0 is a singular value of multiplicity 1 of A. Let us denote
by Q�0 a unit vector such that kerAD R Q�0. By definition, there exists an orthonormal basis �1; : : : ; �q of
Rq such that

T �A�AT �k D z
2
k�k (A-1)

for all k D 1; : : : ; q. Let us set Q�k D T �k . Since T �T D Id; then the set of Q�k is an orthonormal family
of RqC1. Moreover, since kerAD Ran.T /?, we have „D fQ�0; : : : ; Q�qg is an orthonormal basis of RqC1.
Moreover, for all k D 1; : : : ; q, it follows from (A-1) that

jA Q�kj
2
D jAT �kj

2
D z2k :

This shows that the matrix A�A in the basis „ is exactly diag.0; z21 ; : : : ; z
2
q/ and proves the result. �
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Lemma A.5. Let M be a real matrix. Assume that M is symmetric definite positive and that it admits a
block decomposition

MD
�
J B�

B N

�
:

Then J and N �B�J�1B are symmetric definite positive.

Proof. This is quite standard, but we recall the proof for the reader’s convenience. Of course J and
N �B�J�1B are symmetric. Moreover, since M is positive definite,

hJx; xi D

�
M
�
x

0

�
;

�
x

0

��
� cjxj2

for some c > 0. This shows that J is definite positive. On the other hand, setting

�D

�
I �J�1B�

0 I

�
;

one has

��M�D

�
J 0

0 N�BJ�1B�

�
:

Since M is positive definite, this implies that N �BJ�1B� is positive definite. �

Appendix B: Link between R and the Generic Assumption

Proposition B.1. Suppose that the Generic Assumption is satisfied; that is, for allm 2 U .0/ one has the
following:

� 'jE.m/ has a unique minimum point.

� If E is a connected component of f' < �.m/g such that E\V.1/¤∅, there exists a unique s 2 V.1/

such that '.s/ D supE \ V.1/. In particular, E \ '�1.��1; '.s/Œ/ is the union of exactly two
different connected components.

Then for allm 2 U .0/, Cl.m/ is reduced to fmg.

Proof. If mDm there is nothing to prove. Suppose that m 2 U0/ and apply assumption (ii) to E�.m/.
One has evidently V.1/\E�.m/¤∅ since it contains E.m/�E�.m/ and E.m/ is a critical component.
Hence, E�.m/\f' < �.m/g has exactly two connected components which are necessarily yE.m/ and
E.m/. Suppose now that m0Rm. Then �.m0/D �.m/ and hence m0 … yE.m/. Therefore m0 2 E.m/,
which implies mDm0. �

Remark B.2. There exist functions ' such that Cl.m/ D fmg for all m 2 U .0/ and that do not satisfy
the Generic Assumption. Take for instance ' W R2! R with two minima m1;m2 and two saddle points
s1; s2 such that

'.m1/ < '.m2/ < '.s1/D '.s2/:

Then, of course Cl.mj /D fmj g for j D 1; 2. On the other hand, since s1; s2 are two saddle points at the
same height (which turns out to be the maximal height of saddle points), (ii) of (GA) is not satisfied.
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Appendix C: List of symbols

We list the notation used in the paper and give the first place each appears:

U .0/, U .1/ page 155
n0, n1 page 155
F . � / page 155
V.1/ Definition 2.1

C , †, † Definition 2.1
S , � above (2-3)

S (2-3)
U .0/ (2-4)
E (2-5)

�.m/ below (2-5)
H.m/ (2-6)
E� (2-7)
yE (2-9)
Om (2-10)

U .0/; I, U .0/; II Definition 2.3
R Definition 2.5

U .0/˛ (2-14)
A, A below (2-14)
q˛ below (2-14)

U .0/; I˛ , U .0/; II˛ below (2-14)
S˛ (2-16)

p.˛/ (2-16)
�˛j below (2-16)

V.1/˛ (3-2)

uU .0/˛ (3-3)
�˛ (3-4)

V.1/;b˛ , V.1/;i˛ Lemma 3.4
yU .0/; II˛ (3-10)
�˛0 .m/ (3-11)
yH˛.m/ (3-12)
yU .0/˛ (3-15)
T ˛ Definition 3.7
L� (4-1)
L�;0 below (4-1)
Lbkw (4-2)

Lbkw;0 (4-3)
Lbkw;00 (4-5)

L above Lemma 4.2
L ˛ (4-6)
yL
˛

Lemma 4.3
h'.m/ (4-7)
zL
˛

(4-9)
uL
˛

(5-3)
SC, SCcl above Definition 5.4

G .E ; �/, Gcl.E ; �/ Definition 5.4
�2 (5-19)
�1 (5-20)
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SEMICLASSICAL RESOLVENT ESTIMATES
FOR SHORT-RANGE L∞ POTENTIALS

GEORGI VODEV

We prove semiclassical resolvent estimates for real-valued potentials V ∈ L∞(Rn), n ≥ 3, satisfying
V (x)=O(〈x〉−δ) with δ > 3.

1. Introduction and statement of results

Our goal in this note is to study the resolvent of the Schrödinger operator

P(h)=−h21+ V (x),

where 0< h� 1 is a semiclassical parameter, 1 is the negative Laplacian in Rn, n ≥ 3, and V ∈ L∞(Rn)

is a real-valued potential satisfying
|V (x)| ≤ C〈x〉−δ, (1-1)

with some constants C > 0 and δ > 3. More precisely, we are interested in bounding from above the
quantity

g±s (h, ε) := log ‖〈x〉−s(P(h)− E ± iε)−1
〈x〉−s

‖L2→L2,

where L2
:= L2(Rn), 0< ε < 1, s > 1

2 and E > 0 is a fixed energy level independent of h. Such bounds
are known in various situations. For example, for long-range real-valued C1 potentials it is proved in
[Datchev 2014] when n ≥ 3 and in [Shapiro 2019] when n = 2 that

g±s (h, ε)≤ Ch−1, (1-2)

with some constant C > 0 independent of h and ε. Previously, the bound (1-2) was proved for smooth
potentials in [Burq 2002] and an analog of (1-2) for Hölder potentials was proved in [Vodev 2014b]. A
high-frequency analog of (1-2) on more complex Riemannian manifolds was also proved in [Burq 1998;
Cardoso and Vodev 2002]. In all these papers the regularity of the potential (and of the perturbation in
general) plays an essential role. Without any regularity, the problem of bounding g±s from above by an
explicit function of h gets quite tough. Nevertheless, it was recently shown in [Shapiro 2018] that for
real-valued compactly supported L∞ potentials one has the bound

g±s (h, ε)≤ Ch−4/3 log(h−1), (1-3)
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with some constant C > 0 independent of h and ε. The bound (1-3) was also proved in [Klopp and Vogel
2019], still for real-valued compactly supported L∞ potentials but with the weight 〈x〉−s replaced by
a cut-off function. When n = 1 it was shown in [Dyatlov and Zworski 2019] that we have the better
bound (1-2) instead of (1-3). When n ≥ 2, however, the bound (1-3) seems hard to improve without extra
conditions on the potential. The problem of showing that the bound (1-3) is optimal is largely open. In
contrast, it is well known that the bound (1-2) cannot be improved in general; e.g., see [Datchev et al.
2015].

In this note we show that the bound (1-3) still holds for noncompactly supported L∞ potentials when
n ≥ 3. Our main result is the following.

Theorem 1.1. Under the condition (1-1), there exists h0 > 0 such that for all 0< h ≤ h0 the bound (1-3)
holds true.

Remark. It is easy to see from the proof, see the inequality (4-2), that the bound (1-3) holds also for a
complex-valued potential V satisfying (1-1), provided that its imaginary part satisfies the condition

∓ Im V (x)≥ 0 for all x ∈ Rn.

To prove this theorem we adapt the Carleman estimates proved in [Shapiro 2018] simplifying some key
arguments as, for example, the construction of the phase function ϕ. This is made possible by defining
the key function F in Section 3 differently, without involving the second derivative ϕ′′. The consequence
is that we do not need to seek ϕ′ as a solution to a differential equation as done in [Shapiro 2018], but
it suffices to define it explicitly. Note also that similar (but simpler) Carleman estimates were used in
[Vodev 2014a] to prove high-frequency resolvent estimates for the magnetic Schrödinger operator with
large L∞ magnetic potentials.

2. Construction of the phase and weight functions

We will first construct the weight function. We begin by introducing the continuous function

µ(r)=
{
(r + 1)2− 1 for 0≤ r ≤ a,
(a+ 1)2− 1+ (a+ 1)−2s+1

− (r + 1)−2s+1 for r ≥ a,

where
1
2 < s < 1

2(δ− 2) (2-1)

and a = h−m with some parameter m > 0 to be fixed in the proof of Lemma 2.3 below depending only
on δ and s. Clearly, the first derivative (in sense of distributions) of µ satisfies

µ′(r)=
{

2(r + 1) for 0≤ r < a,
(2s− 1)(r + 1)−2s for r > a.

The main properties of the functions µ and µ′ are given in the following.
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Lemma 2.1. For all r > 0, r 6= a, we have the inequalities

2r−1µ(r)−µ′(r)≥ 0, (2-2)

µ′(r)≥ C1(r + 1)−2s, (2-3)

µ(r)2

µ′(r)
≤ C2a4(r + 1)2s (2-4)

with some constants C1,C2 > 0.

Proof. For r < a the left-hand side of (2-2) is equal to 2, while for r > a it is bounded from below by

2r−1(a2
+ 2a− s) > 2a2r−1 > 0,

provided a is taken large enough. Furthermore, we clearly have (2-3) for r < a with C1 = 2, while for
r > a it holds with C1 = 2s − 1. Therefore, (2-3) holds with C1 = min{2, 2s − 1}. The bound (2-4)
follows with C2 = 2C−1

1 from (2-3) and the observation that µ(r)2 ≤ (a+ 1)4 ≤ 2a4 for all r . �

We now turn to the construction of the phase function ϕ ∈ C1([0,+∞)) such that ϕ(0) = 0 and
ϕ(r) > 0 for r > 0. We define the first derivative of ϕ by

ϕ′(r)=
{
τ(r + 1)−1

− τ(a+ 1)−1 for 0≤ r ≤ a,
0 for r ≥ a,

where

τ = τ0h−1/3, (2-5)

with some parameter τ0� 1 independent of h to be fixed in Lemma 2.3 below. Clearly, the first derivative
of ϕ′ satisfies

ϕ′′(r)=
{
−τ(r + 1)−2 for 0≤ r < a,
0 for r > a.

Lemma 2.2. For all r ≥ 0 we have the bound

h−1ϕ(r). h−4/3 log 1
h
. (2-6)

Proof. We have

maxϕ =
∫ a

0
ϕ′(r) dr ≤ τ

∫ a

0
(r + 1)−1 dr = τ log(a+ 1),

which clearly implies (2-6) in view of the choice of τ and a. �

For r 6= a, set
A(r)= (µϕ′2)′(r),

B(r)=

(
µ(r)(h−1(r + 1)−δ + |ϕ′′(r)|)

)2

h−1ϕ′(r)µ(r)+µ′(r)
.

The following lemma will play a crucial role in the proof of the Carleman estimates in the next section.
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Lemma 2.3. Given any C > 0 independent of the variable r and the parameters h, τ and a, there exist
τ0 = τ0(C) > 0 and h0 = h0(C) > 0 so that for τ satisfying (2-5) and for all 0 < h ≤ h0 we have the
inequality

A(r)−C B(r)≥− 1
2 Eµ′(r) (2-7)

for all r > 0, r 6= a.

Proof. For r < a we have

A(r)=−(ϕ′2)′(r)+ τ 2∂r (1− (r + 1)(a+ 1)−1)2

=−2ϕ′(r)ϕ′′(r)− 2τ 2(a+ 1)−1(1− (r + 1)(a+ 1)−1)

≥ 2τ(r + 1)−2ϕ′(r)− 2τ 2(a+ 1)−1

≥ 2τ(r + 1)−2ϕ′(r)− τ 2a−1µ′(r)

≥ 2τ(r + 1)−2ϕ′(r)−O(hm−1)µ′(r),

where we have used that µ′(r)≥ 2. Taking m > 2 we get

A(r)≥ 2τ(r + 1)−2ϕ′(r)−O(h)µ′(r) (2-8)

for all r < a. We will now bound the function B from above. Let first 0< r ≤ 1
2a. Since in this case we

have

ϕ′(r)≥ 1
3τ(r + 1)−1,

we obtain

B(r).
µ(r)(h−2(r + 1)−2δ

+ϕ′′(r)2)
h−1ϕ′(r)

. (τh)−1µ(r)(r + 1)2−2δ

ϕ′(r)2
τ(r + 1)−2ϕ′(r)+ h

µ(r)ϕ′′(r)2

µ′(r)ϕ′(r)
µ′(r)

. τ−3h−1(r + 1)6−2δτ(r + 1)−2ϕ′(r)+ τhµ′(r)

. τ−3
0 τ(r + 1)−2ϕ′(r)+ τ0h2/3µ′(r),

where we have used that δ > 3. This bound, together with (2-8), clearly implies (2-7), provided τ−1
0 and

h are taken small enough depending on C .
Let now 1

2a < r < a. Then we have the bound

B(r)≤
(
µ(r)
µ′(r)

)2

(h−1(r + 1)−δ + |ϕ′′(r)|)2µ′(r)

. (h−2(r + 1)2−2δ
+ τ 2(r + 1)−2)µ′(r)

. (h−2a2−2δ
+ τ 2a−2)µ′(r)

. (h2m(δ−1)−2
+ h2m−2/3)µ′(r). hµ′(r),

provided m is taken large enough. Again, this bound, together with (2-8), implies (2-7).
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It remains to consider the case r > a. Using that µ = O(a2), together with (2-3), and taking into
account that s satisfies (2-1), we get

B(r)=

(
µ(r)(h−1(r + 1)−δ)

)2

µ′(r)

. h−2a4(r + 1)4s−2δµ′(r). h−2a4+4s−2δµ′(r)

. h2m(δ−2−2s)−2µ′(r). hµ′(r),

provided that m is taken large enough. Since in this case A(r)=0, the above bound clearly implies (2-7). �

3. Carleman estimates

Our goal in this section is to prove the following:

Theorem 3.1. Suppose (1-1) holds and let s satisfy (2-1). Then, for all functions f ∈ H 2(Rn) such that
〈x〉s(P(h)− E ± iε) f ∈ L2 and for all 0< h� 1, 0< ε ≤ ha−2, we have the estimate

‖〈x〉−seϕ/h f ‖L2 ≤ Ca2h−1
‖〈x〉seϕ/h(P(h)− E ± iε) f ‖L2 +Caτ(ε/h)1/2‖eϕ/h f ‖L2, (3-1)

with a constant C > 0 independent of h, ε and f .

Proof. We pass to the polar coordinates (r, w) ∈ R+ × Sn−1, r = |x |, w = x/|x |, and recall that
L2(Rn) = L2(R+×Sn−1, rn−1drdw). In what follows we denote by ‖ · ‖ and 〈 · , · 〉 the norm and the
scalar product in L2(Sn−1). We will make use of the identity

r (n−1)/21r−(n−1)/2
= ∂2

r +
1̃w

r2 , (3-2)

where 1̃w =1w− 1
4(n−1)(n−3) and 1w denotes the negative Laplace–Beltrami operator on Sn−1. Set

u = r (n−1)/2eϕ/h f and
P±(h)= r (n−1)/2(P(h)− E ± iε)r−(n−1)/2,

P±ϕ (h)= eϕ/hP±(h)e−ϕ/h .

Using (3-2) we can write the operator P±(h) in the coordinates (r, w) as

P±(h)= D2
r +

3w

r2 − E ± iε+ V,

where we have put Dr =−ih∂r and 3w =−h21̃w. Since the function ϕ depends only on the variable r ,
this implies

P±ϕ (h)= D2
r +

3w

r2 − E ± iε−ϕ′2+ hϕ′′+ 2iϕ′Dr + V .

For r > 0, r 6= a, introduce the function

F(r)=−〈(r−23w − E −ϕ′(r)2)u(r, · ), u(r, · )〉+ ‖Dr u(r, · )‖2
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and observe that its first derivative is given by

F ′(r)= 2
r
〈r−23wu(r, · ), u(r, · )〉+ ((ϕ′)2)′‖u(r, · )‖2− 2h−1 Im〈P±ϕ (h)u(r, · ),Dr u(r, · )〉

± 2εh−1 Re〈u(r, · ),Dr u(r, · )〉+ 4h−1ϕ′‖Dr u(r, · )‖2+ 2h−1 Im〈(V + hϕ′′)u(r, · ),Dr u(r, · )〉.

Thus, if µ is the function defined in the previous section, we obtain the identity

µ′F +µF ′ = (2r−1µ−µ′)〈r−23wu(r, · ), u(r, · )〉+ (Eµ′+ (µ(ϕ′)2)′)‖u(r, · )‖2

− 2h−1µ Im〈P±ϕ (h)u(r, · ),Dr u(r, · )〉± 2εh−1µRe〈u(r, · ),Dr u(r, · )〉

+ (µ′+ 4h−1ϕ′µ)‖Dr u(r, · )‖2+ 2h−1µ Im〈(V + hϕ′′)u(r, · ),Dr u(r, · )〉.

Using that 3w ≥ 0, together with (2-2), we get the inequality

µ′F +µF ′ ≥ (Eµ′+ (µ(ϕ′)2)′)‖u(r, · )‖2+ (µ′+ 4h−1ϕ′µ)‖Dr u(r, · )‖2

−
3h−2µ2

µ′
‖P±ϕ (h)u(r, · )‖

2
−

1
3µ
′
‖Dr u(r, · )‖2− εh−1µ(‖u(r, · )‖2+‖Dr u(r, · )‖2)

− 3h−2µ2(µ′+ 4h−1ϕ′µ)−1
‖(V + hϕ′′)u(r, · )‖2− 1

3(µ
′
+ 4h−1ϕ′µ)‖Dr u(r, · )‖2

≥
(
Eµ′+ (µ(ϕ′)2)′−Cµ2(µ′+ h−1ϕ′µ)−1(h−1(r + 1)−δ + |ϕ′′|)2

)
‖u(r, · )‖2

−
3h−2µ2

µ′
‖P±ϕ (h)u(r, · )‖

2
− εh−1µ(‖u(r, · )‖2+‖Dr u(r, · )‖2),

with some constant C > 0. Now we use Lemma 2.3 to conclude that

µ′F +µF ′ ≥ 1
2 Eµ′‖u(r, · )‖2−

3h−2µ2

µ′
‖P±ϕ (h)u(r, · )‖

2
− εh−1µ(‖u(r, · )‖2+‖Dr u(r, · )‖2).

We now integrate this inequality with respect to r and use that, since µ(0)= 0, we have∫
∞

0
(µ′F +µF ′) dr = 0.

Thus we obtain the estimate

1
2 E
∫
∞

0
µ′‖u(r, · )‖2 dr

≤ 3h−2
∫
∞

0

µ2

µ′
‖P±ϕ (h)u(r, · )‖

2 dr + εh−1
∫
∞

0
µ(‖u(r, · )‖2+‖Dr u(r, · )‖2) dr. (3-3)

Using that µ=O(a2) together with (2-3) and (2-4) we get from (3-3)∫
∞

0
(r + 1)−2s

‖u(r, · )‖2 dr

≤ Ca4h−2
∫
∞

0
(r + 1)2s

‖P±ϕ (h)u(r, · )‖
2 dr +Cεh−1a2

∫
∞

0
(‖u(r, · )‖2+‖Dr u(r, · )‖2) dr, (3-4)
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with some constant C > 0 independent of h and ε. On the other hand, we have the identity

Re
∫
∞

0
〈2iϕ′Dr u(r, · ), u(r, · )〉 dr =

∫
∞

0
hϕ′′‖u(r, · )‖2 dr

and hence

Re
∫
∞

0
〈P±ϕ (h)u(r, · ), u(r, · )〉 dr =

∫
∞

0
‖Dr u(r, · )‖2 dr +

∫
∞

0
〈r−23wu(r, · ), u(r, · )〉 dr

−

∫
∞

0
(E +ϕ′2)‖u(r, · )‖2 dr +

∫
∞

0
〈V u(r, · ), u(r, · )〉 dr.

This implies∫
∞

0
‖Dr u(r, · )‖2 dr ≤O(τ 2)

∫
∞

0
‖u(r, · )‖2 dr

+ γ

∫
∞

0
(r + 1)−2s

‖u(r, · )‖2 dr + γ−1
∫
∞

0
(r + 1)2s

‖P±ϕ (h)u(r, · )‖
2 dr (3-5)

for every γ > 0. We take now γ small enough, independent of h, and recall that εh−1a2
≤ 1. Thus,

combining the estimates (3-4) and (3-5), we get∫
∞

0
(r + 1)−2s

‖u(r, · )‖2 dr

≤ Ca4h−2
∫
∞

0
(r + 1)2s

‖P±ϕ (h)u(r, · )‖
2 dr +Cεh−1a2τ 2

∫
∞

0
‖u(r, · )‖2 dr, (3-6)

with a new constant C > 0 independent of h and ε. It is an easy observation now that the estimate (3-6)
implies (3-1). �

4. Resolvent estimates

In this section we will derive the bound (1-3) from Theorem 3.1. Indeed, it follows from the estimate
(3-1) and Lemma 2.2 that for 0< h� 1, 0< ε ≤ ha−2 and s satisfying (2-1) we have

‖〈x〉−s f ‖L2 ≤ M‖〈x〉s(P(h)− E ± iε) f ‖L2 +Mε1/2
‖ f ‖L2, (4-1)

where

M = exp(Ch−4/3 log(h−1)),

with a constant C > 0 independent of h and ε. On the other hand, since the operator P(h) is symmetric,
we have

ε‖ f ‖2L2 =± Im〈(P(h)− E ± iε) f, f 〉L2

≤ (2M)−2
‖〈x〉−s f ‖2L2 + (2M)2‖〈x〉s(P(h)− E ± iε) f ‖2L2 . (4-2)

We rewrite (4-2) in the form

Mε1/2
‖ f ‖L2 ≤

1
2‖〈x〉

−s f ‖L2 + 2M2
‖〈x〉s(P(h)− E ± iε) f ‖L2 . (4-3)



214 GEORGI VODEV

We now combine (4-1) and (4-3) to get

‖〈x〉−s f ‖L2 ≤ 4M2
‖〈x〉s(P(h)− E ± iε) f ‖L2 . (4-4)

It follows from (4-4) that the resolvent estimate

‖〈x〉−s(P(h)− E ± iε)−1
〈x〉−s

‖L2→L2 ≤ 4M2 (4-5)

holds for all 0< h� 1, 0<ε≤ ha−2 and s satisfying (2-1). On the other hand, for ε≥ ha−2 the estimate
(4-5) holds in a trivial way. Indeed, in this case, since the operator P(h) is symmetric, the norm of the
resolvent is bounded above by ε−1

= O(h−2m−1). Finally, observe that if (4-5) holds for s satisfying
(2-1), it holds for all s > 1

2 .
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JAN DEREZIŃSKI AND DANIEL SIEMSSEN

We develop a theory of the Klein–Gordon equation on curved spacetimes. Our main tool is the method of
(nonautonomous) evolution equations on Hilbert spaces. This approach allows us to treat low regularity
of the metric, of the electromagnetic potential and of the scalar potential. Our main goal is a construction
of various kinds of propagators needed in quantum field theory.

1. Introduction 215
2. Assumptions and setting 222
3. The energy space and the dynamical space 225
4. Instantaneous energy spaces and instantaneous dynamical spaces 226
5. Evolution 228
6. Solutions of the Klein–Gordon equation 232
7. Classical propagators 234
8. Instantaneous nonclassical propagators 238
9. Asymptotic nonclassical propagators 241
Appendix A. Second-order differential operators 243
Appendix B. Concrete assumptions 245
Appendix C. Nonautonomous evolution equations 248
Appendix D. Heinz–Kato inequality 256
Appendix E. Finite speed of propagation 256
Acknowledgements 260
References 260

1. Introduction

We consider the Klein–Gordon operator on a Lorentzian manifold (M, g) minimally coupled to an
electromagnetic potential A and with a scalar potential Y . In local coordinates it can be written as

K :=�A+ Y = |g|−1/2(Dµ− Aµ)|g|1/2gµν(Dν − Aν)+ Y, (1-1)

where |g| = |det[gµν]| and Dµ =−i∂µ. As in our recent work [Dereziński and Siemssen 2018], we are
interested in inverses and bisolutions of the Klein–Gordon operator K .
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Heuristically, they are defined as follows:

• An operator G is a bisolution of K if it satisfies

K G = 0 and G K = 0.

• An operator G is an inverse of K if it satisfies

K G = 1 and G K = 1.

To make these statements rigorous, one needs to specify the spaces between which these operators act,
making sure that the composition of K and G is well-defined. Often, G can be understood as an operator
from C∞c (M) to C∞(M).

The Klein–Gordon operator has several distinguished inverses and bisolutions. They are known by
many names, e.g., “propagator” or “two-point function”. Inverses are often also called “Green’s functions”.

The most well-known propagators are probably the forward (retarded) propagator G∨ and the backward
(advanced) propagator G∧. Their difference GPJ

:= G∨ −G∧ is sometimes called the Pauli–Jordan
propagator, which is the name we use. In the literature one can also find other names, such as “commutator
function” or “causal propagator”.1 These three propagators are important in the Cauchy problem of the
classical theory. Therefore, we will call them jointly classical propagators. It is well known that on
globally hyperbolic spacetimes the classical propagators exist and are unique.

In quantum field theory, one needs also other propagators: two inverses, the Feynman propagator GF

and the anti-Feynman propagator GF, as well as the positive- and negative-frequency bisolutions G(±).
We will call them jointly nonclassical propagators. A positive-frequency bisolution yields the two-point
function of a vacuum state — a pure quasifree state whose Gelfand–Naimark–Segal (GNS) representation
yields a Hilbert space for the quantum field theory. The integral kernel of the Feynman propagator
coincides with the expectation value of time-ordered products of quantum fields. It is used to evaluate
Feynman diagrams.

The analysis of the Klein–Gordon equation is especially simple if the spacetime is stationary and the
Hamiltonian is positive. On the mathematical side, if in addition the Hamiltonian is bounded away from
zero (the “positive-mass case”), we have a natural Hilbert space structure for the Cauchy data. The most
obvious choice is the so-called energy Hilbert space. It is also natural to consider a whole scale of Hilbert
spaces, which includes the energy space. The generator of the dynamics is self-adjoint on all of these
spaces. Thus the functional analytic setting for stationary spacetimes in the “positive-mass case” is rather
clean and simple. If we assume that the Hamiltonian is only positive, without a positive lower bound,
(the “zero-mass case”), then the functional-analytic setup becomes slightly more technically involved, but
the general picture remains the same.

1We try to use as much as possible the terminology from classic textbooks on quantum field theory. For instance, “Pauli–
Jordan function” is the name used for GPJ already in [Bogoliubov and Shirkov 1980]. The same authors call GF the “causal
Green’s function”, since the choice of GF for the evaluation of Feynman diagrams expresses causality in quantum field theory.
Therefore, using the name “causal propagator” for GPJ clashes with the traditional terminology and, we believe, should be
discouraged.
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On the physical side, on a stationary spacetime with a positive Hamiltonian, it is clear how to define the
nonclassical propagators. The positive- and negative-frequency bisolutions, as well as the Feynman and
anti-Feynman propagators, are constructed from the spectral projections of the generator of the dynamics.
These constructions, at least implicitly, can be found in various works devoted to quantum field theory on
curved spacetimes. In a systematic way the static case has been worked out recently in [Dereziński and
Siemssen 2018]; see also [Dereziński and Gérard 2013, Chapter 18]. In [Dereziński and Siemssen 2018],
we assumed in addition the “positive-mass condition”, and the results of that paper can be easily generalized
to stationary spacetimes (using, e.g., the stationary special case of Sections 2.1 and 2.2 as a starting point).

The positivity of the Hamiltonian plays an important role in the construction of nonclassical propagators.
This is related to the fact that nonpositive Hamiltonians lead to problems in quantum field theory, which
are often collectively called the Klein paradox. The original paper by Klein involved fermions and the
Dirac equation with a large step potential causing spontaneous pair creation. One can easily resolve
the fermionic Klein paradox in the second quantized theory. Splitting the Hilbert space into the particle
and antiparticle subspaces and applying second quantization makes the quantum Hamiltonian positive
definite. The corresponding problem for bosons is much more serious. If the classical Hamiltonian is
not positive, it will not become positive by quantization. Besides, in this case there is no positive scalar
product preserved by the evolution, as is the case for Dirac fermions. This typically leads to the so-called
superradiance. In mathematical terms it means that the scattering operator has a norm greater than 1, or
it does not exist at all because the norm of the evolution grows all the time.

This paper is devoted to the study of the Klein–Gordon equation on rather general (possibly, nonsta-
tionary) spacetimes. We construct both the classical propagators and certain families of nonclassical
propagators. Let us first describe the basic steps of our construction of the classical propagators:

(1) We assume that there is a manifold 6 such that the spacetime M is diffeomorphic to R×6. This
diffeomorphism provides a global time function t whose level sets 6t are assumed to be spacelike. It also
defines a flow whose generator ∂t is assumed to be timelike.

(2) We rewrite the Klein–Gordon equation as a (nonautonomous) first-order equation for the Cauchy data
on 6t . Thus the generator of the evolution can be written as a 2× 2 matrix.

(3) We make various assumptions on the metric, electromagnetic and scalar potentials. The assumptions on
their regularity are rather weak; however, they are global in spacetime. We assume that the positive-mass
condition holds for all times; that is, all instantaneous Hamiltonians have a strictly positive lower bound.

(4) We apply functional-analytic methods from the theory of nonautonomous evolution equations, as
developed in [Kato 1970]. Note that, unlike in [Dereziński and Siemssen 2018], in the nonstationary case
we do not have a unique distinguished energy space. Instead, we have a whole time-dependent family of
instantaneous-energy Hilbert spaces describing the Cauchy data at each time. Under the assumptions
we impose, these spaces can be identified with one another. They have a variable scalar product, but a
common topology — thus the Cauchy data at each time belong to a single Hilbertizable space.

(5) The Pauli–Jordan propagator essentially coincides with one of the matrix elements of the evolution
operator. One can then write down the forward and backward propagators by inserting the Heaviside
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function in the appropriate places. Thus if one uses the method of evolution equations, the Pauli–Jordan
propagator becomes the central object, whereas in typical approaches found in the literature, e.g., [Bär et al.
2007], the forward and backward propagators are obtained first and then used to define the Pauli–Jordan
propagator. We find this (trivial) observation curious.

The assumptions of our paper, in particular their global character and the positive-mass assumptions,
are adapted to the needs of nonclassical propagators, which are our main interest. However, if one is
interested only in classical propagators, some of these assumptions can be relaxed.

When the Hamiltonian is merely bounded from below, we can reduce the problem to the positive-mass
case by a perturbation argument. Then one can construct the evolution, and hence also the classical
propagators. We remark about this fact at the end of Section 5.

Another point that can be relaxed are the global assumptions. We know that the propagation of
solutions to the Klein–Gordon equation has finite speed — this can be proven independently under a weak
assumption on the regularity; see, e.g., Appendix E. Therefore, to construct the evolution, it is sufficient
to have local information about our system. We do not discuss this point further in our paper.

As already stated above, our main interest is the nonclassical propagators. Unfortunately, in the
nonstationary case it is not obvious how to define them. The most popular view on this subject says that
instead of a single positive-frequency bisolution one should consider a whole class of bisolutions locally
similar to the Minkowski two-point function, known as Hadamard states. There exists considerable
literature about them; in particular we would like to mention [Radzikowski 1996; Kay and Wald 1991].
Properties of Hadamard states play a central role in most formulations of perturbation theory and
renormalization on curved spacetimes; see, e.g., [Hollands and Wald 2001; 2002]. Moreover, the
expectation value of time-ordered fields in every Hadamard state is the integral kernel of an inverse of K
and can be viewed as a possible generalization of the usual Feynman propagator to the generic case.

One of possibilities is to use spectral projections of the generator of the evolution at a fixed instance of
time, as we describe in Section 8. This allows us to define instantaneous positive- and negative-frequency
bisolutions, which yield the so-called instantaneous vacua. One also has the corresponding instantaneous
Feynman inverses.

One can criticize these propagators on physical grounds. Not only do they depend on an arbitrary and
unphysical choice of a preferred time, but it is folklore knowledge that they are generally not Hadamard
states. In a forthcoming article we will show, using methods from our formalism, that an instantaneous
positive-frequency bisolution yields a Hadamard state if the Klein–Gordon operator K is infinitesimally
stationary at the Cauchy surface where the positive/negative-frequency splitting was performed.

Spacetimes that become asymptotically stationary in the past and the future form a class that in our
opinion is especially natural from the point of view of quantum field theory and scattering theory. For
such spacetimes one can define positive/negative-frequency bisolutions corresponding to the asymptotic
past and future; see Section 9. We can call them in/out-positive/negative-frequency bisolutions. One can
argue that the corresponding in-vacuum yields the representation of incoming states (prepared in the
experiment) and the corresponding out-vacuum gives the representation of final observables (measured in
the experiment). Therefore, the in- and out-states are not only distinguished, they also have a clear and
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important physical meaning. If the spacetime becomes stationary sufficiently fast, it can be shown that
the states thus defined are Hadamard [Gérard and Wrochna 2017].

As we described above, and is well known, spacetimes with asymptotically stationary past and future
possess two pairs of distinguished and physically well-motivated propagators: the in/out-positive/negative-
frequency bisolution. It is perhaps less known that a large class of such spacetimes possesses another
pair of natural and physically motivated propagators: the so-called canonical Feynman and anti-Feynman
propagators (inverses). The Feynman propagator appears naturally when we evaluate Feynman diagrams.
A study of these propagators will be presented in a forthcoming article, where the formalism and results
of the present paper will play an important role.

Let us mention that the canonical Feynman and anti-Feynman propagators are related to the intriguing
and poorly understood question about the self-adjointness of the Klein–Gordon operator. It is easy to
see that the Klein–Gordon operator is Hermitian; however, the existence of a distinguished self-adjoint
extension seems to be difficult to prove and is known only in special cases: in the static case [Dereziński
and Siemssen 2018] and (since very recently) for a class of asymptotically Minkowskian spaces [Vasy
2017]. Note that heuristically the canonical Feynman or anti-Feynman propagator is the boundary value
at zero from above or below, respectively, of the resolvent of the Klein–Gordon operator. One could also
argue that the adjective canonical is not needed for both propagators, that they should simply be called
the Feynman and anti-Feynman propagators.

Let us compare our work with the literature. The construction of classical propagators is described
in numerous sources. Typically, one shows first the well-posedness of the Cauchy problem. Then the
existence of the classical propagators and their properties easily follow; see, e.g., [Kay 1978; Dimock and
Kay 1982], and also the more recent works [Drago and Gérard 2017; Gérard and Wrochna 2014; Gérard
et al. 2017]. Standard methods include the Hadamard parametrix method [Bär et al. 2007; Friedlander
1975] and energy estimates obtained via the divergence theorem. Another popular method relies on the
factorization of the Klein–Gordon operator into the product of first-order scalar operators (see, e.g., the
treatment of [Hörmander 1985], which also covers n-th order hyperbolic equations). A brief history of
the Cauchy problem for hyperbolic equations with references to various approaches can be found in
[Hörmander 1985, Notes to Chapter XXIII].

In our opinion, the method of evolution equations used in this paper provides a natural and powerful
approach to analyze the Klein–Gordon equation on curved spacetimes, especially concerning questions
relevant to quantum field theory. Therefore, we were greatly surprised that it is difficult to find a treatment
of this problem similar to ours in the existing literature. We are only aware of one more publication where
the methods of evolution equations have been applied to the problem at hand in the nonstationary case: in
[Furlani 1997] the evolution is constructed under quite restrictive assumptions, namely, assuming that
Cauchy surfaces are compact and have a decreasing volume along a finite time-interval. The treatment
of some papers, such as [Dimock and Kay 1982; Kay 1978; Gérard et al. 2017; Gérard and Wrochna
2014], may also resemble our method. However, in almost all papers that we know, the existence of the
evolution is taken for granted, is given by the local theory, and is not constructed within the formalism of
evolution equations on some Banach spaces.
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The literature devoted to classical propagators on curved spacetimes usually does not use a global
functional-analytic setting. As we discussed above, from the point of view of classical propagators, the
method of our paper seems to impose unnecessary limitations, because of the global assumptions on the
spacetime. However, to define and study nonclassical propagators, some kind of global assumptions are
usually indispensable.

Most authors do not consider low-regularity situations; for an exception we refer to [Sanchez and
Vickers 2018]. For example, the propagators are typically understood from C∞c (M) to C∞(M). As far as
we know, the constructions found in the literature require more stringent regularity assumptions than ours.

Throughout our paper we impose rather weak assumptions on the regularity of various objects (the met-
ric, electromagnetic potential and the scalar potential). Nevertheless, we did not write this work with any
particular nonregular examples in mind, even though low regularity is present in some interesting physical
applications (e.g., boundaries of astrophysical objects, shock waves) and singularities appear generically
in solutions of the Einstein equation. Instead, the main reason for the chosen approach is our conviction
that weak assumptions play an important theoretical role, because they impose a certain discipline on
a mathematical theory, forcing us to find better arguments and a more natural setting for the problem.

We think that our approach is rather natural and direct if one wants to treat the simplest examples of
spacetimes (from the point of view of quantum field theory) such as local perturbations of Minkowski
spacetime and cosmological spacetimes. However, it is also flexible enough to treat some less obvious
examples, such as certain nonglobally hyperbolic spacetimes, including spacetimes with boundaries,
provided we impose appropriate boundary conditions. This includes for example compactifications of
anti-de Sitter spacetime with appropriate conditions on its timelike boundary (see [Dappiaggi et al. 2018a;
2018b] for a recent discussion of boundary conditions on anti-de Sitter spacetime and spacetimes with a
timelike boundary).

Finally, let us remark that Kato’s theory of nonautonomous evolution equations has also been success-
fully applied in the context of quantum field theory for the Dirac equation on curved spacetimes; see,
e.g., [Häfner 2009; Nicolas 2002]. The Dirac equation is simpler in this respect than the Klein–Gordon
equation. For the Dirac equation there exists a natural Hilbert space. For the (nonstationary) Klein–Gordon
equation no such choice exists: one is forced to work with a family of Hilbertizable spaces. Studying
the evolution for the Klein–Gordon equation in time-dependent families of Hilbert spaces has also been
fruitful in the context of spherical gravitational collapse (i.e., in static Schwarzschild spacetime with
time-dependent boundary conditions); see [Bachelot 1999].

1.1. Notation and conventions. Throughout this paper we adopt essentially the same notation and
conventions as in [Dereziński and Siemssen 2018] but for the convenience of the reader we repeat the
relevant conventions. We also introduce some new notation.

Suppose that T is an operator on a Banach space X . We denote by Dom T its domain and by Ran T
its range. For its spectrum we write sp T and for the resolvent set rs T.

Suppose that T is an operator on a Hilbert space H with inner product ( · | · ). If T is positive, i.e.,
(u | T u)≥ 0, we write T ≥ 0. If also Ker T = {0}, then we write T > 0.

A useful function is the so-called “Japanese bracket”, defined as 〈T 〉 := (1+ |T |2)1/2.
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A topological vector space X is called Hilbertizable if there exists a scalar product on X that determines
its topology and makes it into a Hilbert space. Clearly, two scalar products determine the topology of X
if and only if they are equivalent.

The p-times continuously differentiable X -valued functions on a manifold M are denoted by C p(M;X );
if X = C, we simply write C p(M). Sets of compactly supported or bounded functions are indicated by a
subscript “c” or “b”.

AC(R) denotes the set of absolutely continuous functions, i.e., functions whose distributional derivative
belongs to L1

loc(R). AC1(R) denotes the set of functions whose distributional derivative belongs to AC(R).
When calculating integrals, we denote by

∫
′ the “Cauchy principal value” at infinity, e.g.,∫

′

iR
f (t) dt = lim

R→∞

∫ iR

−iR
f (t) dt.

Observe that we pass to infinity symmetrically in the lower and upper integration limits.
Suppose we fix a positive density γ on M. The space L2(M, γ ) of square-integrable functions on M is

then defined as the completion of C∞c (M) with respect to the scalar product

(u | v)γ :=
∫

M
ū v γ, u, v ∈ C∞c (M).

If g is the metric tensor g on M (of any signature), then we set |g| := |det[gµν]|. M is then equipped
with a canonical density |g|1/2. Sometimes it is however convenient to fix a density γ independent of the
metric tensor.

Often it is convenient to use the formalism of (complexified) half-densities on M. If γ is a positive
density on M, then γ 1/2 is a half-density. The canonical example for a half-density on a pseudo-Riemannian
manifold is |g|1/4. Since the integral over a density on a manifold is well-defined, half-densities come
equipped with a natural L2-structure

(ũ | ṽ)=
∫

M

¯̃u ṽ, ũ, ṽ ∈ C∞c (�
1/2 M).

We denote by L2(�1/2 M) the completion of C∞c (�
1/2 M) with respect to the corresponding norm. Note

that if we fix an everywhere-positive density γ , then

L2(M, γ ) 3 u 7→ ũ := uγ 1/2
∈ L2(�1/2 M)

is the natural unitary identification of the L2-space in the scalar formalism and in the half-density
formalism.

The operator D =−i∂ acts naturally on scalars, and Dγ
= γ 1/2 Dγ−1/2 acts naturally on half-densities.

In our paper we generally prefer to use the half-density formalism rather than the scalar formalism. The
Klein–Gordon operator K is presented in (1-1) in the scalar formalism. Transformed to the half-density
formalism it is

K 1
2
:= |g|1/4K |g|−1/4

= |g|−1/4(Dµ− Aµ)|g|1/2gµν(Dν − Aν)|g|−1/4
+ Y. (1-2)

In what follows we drop the subscript 1
2 from K1/2 and by K we will mean (1-2).
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2. Assumptions and setting

2.1. 1 + 3 splitting. We consider smooth manifolds M and 6 such that there exists a (fixed) diffeo-
morphism R×6→ M. This means that we have a distinguished time function t on M, and the leaves
6t = {t}×6 provide a foliation of M with a family of diffeomorphisms εt :6→6t ⊂ M. We define
the time vector field

∂t :=
d
dt
εt .

Note that dt · ∂t = 1.
We assume that M is equipped with a continuous Lorentzian metric g; i.e., (M, g) is a spacetime. The

restriction of g to the tangent space of 6t defines a time-dependent family of metrics on 6, denoted by
g6(t) := ε∗t g. We make the assumption that all g6(t) are Riemannian, or, equivalently, that the covector dt
is everywhere timelike. This assumption allows us to define the lapse function α:

1
α2 := −g−1(dt, dt) > 0.

Note that at this moment we do not assume that the vector ∂t is everywhere timelike, which is equivalent to

g6(β, β) < α2. (2-1)

This assumption will be forced on us later on by Assumption (1.b). The part of ∂t orthogonal to the leaves
of the foliation is the shift vector

β := ∂t +α
2g−1(dt, · ).

The inverse metric can now be written as

g−1
=−

1
α2 (∂t −β)⊗ (∂t −β)+ g−1

6 . (2-2)

In coordinates, we have

gµν dxµ dxν =−α2 dt2
+ g6,i j (dx i

+β i dt)(dx j
+β j dt),

gµν∂µ∂ν =−
1
α2 (∂t −β

i∂i )
2
+ gi j

6∂i∂j .

The generic notation for a point of M will be (t, Ex). We often suppress the spatial dependence of
objects defined on M ; e.g., we identify f (t)= f (t, · ) for some function f on M. Sometimes we also
suppress the time-dependence, but it should be kept in mind that the central quantities considered here,
the metric g, the electromagnetic potential A and the scalar potential Y, generically are time-dependent.
Sometimes we denote derivatives with respect to t (i.e., the action of the vector field ∂t ) by a dot.

2.2. Klein–Gordon operator. The main object of our paper is the Klein–Gordon operator (1-2). Instead
of the operator K on L2(M), it is more convenient to work with the operator

K̃ := αKα.
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With the inverse metric expressed as (2-2), it can be written as

K̃ =−γ−1/2(Dt−Diβ
i
+V )γ (Dt−β

j Dj+V )γ−1/2
+γ−1/2(Di−Ai )α

2γ gi j
6 (Dj−Aj )γ

−1/2
+α2Y

=−(Dt+W ∗)(Dt+W )+L ,

where we introduce
γ := α−2

|g|1/2 = α−1
|g6|1/2,

V := −A0+ Aiβ
i ,

W := β i Di + V − 1
2γ
−1(Dtγ −β

i Diγ ),

L := D A,γ ∗
i g̃i j

6 D A,γ
j + Ỹ ,

and we use the shorthands
g̃i j
6 (t) := α(t)

2gi j
6 (t),

Ỹ (t) := α(t)2Y (t),

D A,γ (t) := γ (t)1/2(D− A(t))γ (t)−1/2.

Clearly, propagators for K̃ induce corresponding propagators for K .

2.3. First-order formalism. For each t ∈ R, we (formally) define

B(t) :=
(

W (t) 1
L(t) W (t)∗

)
.

Setting u1(t)= u(t) and u2(t)=−(Dt +W (t))u(t), we find that

(∂t + iB(t))
(

u1(t)
u2(t)

)
= 0

if and only if u is a (weak) solution of the Klein–Gordon equation K̃ u = 0. Therefore we occasionally
call ∂t + iB(t) the first-order Klein–Gordon operator. The half-densities u1(t) and u2(t) may be called
the Cauchy data for u at time t .

2.4. Assumptions local in time.

Assumption 1. We suppose that the following assumptions hold:

(1.a) For all t ∈ R, L(t) extends to a positive invertible self-adjoint operator on L2(�1/26) (denoted by
the same symbol).

(1.b) There exists a ∈ C(R) such that a(t) < 1 and ‖W (t)L(t)−1/2
‖ ≤ a(t).

(1.c) There exists a positive C ∈ L1
loc(R) such that for all |t − s| ≤ 1

‖L(t)−1/2(L(t)− L(s))L(t)−1/2
‖+ 2‖(W (t)−W (s))L(t)−1/2

‖ ≤

∣∣∣∣∫ t

s
C(r) dr

∣∣∣∣, (2-3)

where we place the absolute value on the right-hand side to account for the arbitrary order of t and s.
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(1.d) t 7→ α(t)±1 are norm-continuous on L(s)−1/2L2(�1/26) for any s ∈ R, and t 7→ α̇(t) is norm-
continuous on L2(�1/26).

A few remarks about these assumptions are in order:
First, Assumption (1.a) can always be realized if γ (t)−1∂iγ (t), Ai (t) ∈ L2

loc(6), g̃i j (t) ∈ L∞loc(6) and
Ỹ (t) ∈ L1

loc(6) such that Ỹ (t) is bounded from below by a positive constant. In that case L(t) can be
understood as the form

(u | L(t) v)=
∫
6

(
(D A,γ

i (t) u) g̃i j
6 (t) (D

A,γ
j (t) v)+ ū Ỹ (t) v

)
,

on its (natural) maximal form domain Dom L(t)1/2 ⊃ C∞c (�
1/26) (but it is not generally clear if

C∞c (�
1/26) is a form core). This form then defines a self-adjoint operator in the usual way. The details of

this construction are given in Appendix A; its main aspects can be found in [Kato 1966, Theorem VI.2.6].
Next, Assumption (1.b) means that ‖W (t)L(t)−1/2

‖< 1. Thus the electrostatic potential V (t) together
with the variation of the metric expressed by γ (t)−1γ̇ (t) and the shift vector β cannot be too big compared
to L(t). This has to be true already on the level of the principal symbols of W and L . Therefore, for each
x = (t, Ex) ∈ M and p ∈ T ∗

Ex 6t , we need to have

|βk(x)pk(g̃
i j
6 (x)pi pj )

−1/2
|< 1.

This is equivalent to
g̃6,i jβ

iβ j < 1, (2-4)

where g̃6,i j = α−2g6,i j is the inverse of g̃i j
6 , and consequently (2-4) is equivalent to (2-1). Thus

Assumption (1.b) implies that ∂t is timelike. This excludes, e.g., the ergosphere region of Kerr spacetime
in stationary coordinates — in such a case one needs to switch to the nonstationary corotating coordinates.

Together, Assumptions (1.a) and (1.b) guarantee that the Hamiltonian is positive and has a positive lower
bound (the “positive-mass assumption”). The positivity of the Hamiltonian and its positive lower bound
have two aspects. First, they are essentially necessary if we want to construct nonclassical propagators.
Second, this assumption helps us to introduce a natural family of Hilbertizable spaces, which are used
in the analysis of the evolution. (A similar analysis would be possible with a positive Hamiltonian, but
without a positive lower bound; however there would be some additional technical problems).

Nevertheless, as far as the derivation of the evolution and the classical propagators is concerned,
Assumption (1.a) can be relaxed. In fact, for the existence of the evolution it is sufficient that there exists a
constant b> 0 such that these assumptions are satisfied by L(t)+b; see also Corollary 5.5. In this case in
general we do not have a positive Hamiltonian and our analysis of nonclassical propagators does not apply.

Among other things, Assumption (1.c) guarantees that for any t, s there exists c(t, s) > 0 such that

L(t)≤ c(t, s)L(s). (2-5)

Therefore, for δ ∈ [−1, 1] we can define the Hilbertizable spaces

Kδ := L(t)−δ/2L2(�1/26),

where the Hilbertian structures on the right-hand side are equivalent for different t because of (2-5).
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Finally, Assumption (1.d) implies the norm-continuity of t 7→ α(t)±1 on Kδ for δ ∈ [−1, 1]. Indeed,
by this assumption, t 7→ α(t)±1 are norm-continuous on K1/2, hence by duality also on K−1/2, and then
we can interpolate using, e.g., the Heinz–Kato inequality (Theorem D.1).

While it should be obvious how Assumptions (1.a), (1.b) and (1.d) can be realized in an example, As-
sumption (1.c) is slightly less obvious. Therefore in Appendix B we briefly explain how Assumption (1.c)
can follow from more concrete assumptions on the metric, the vector potential and the scalar potential.

2.5. Assumptions global in time. While we always require that Assumption 1 holds, the following
additional assumptions are only imposed when we derive asymptotic properties of propagators.

Assumption 2. (2.a) L(t) is uniformly bounded away from zero.

(2.b) There exists a < 1 such that ‖W (t)L(t)−1/2
‖ ≤ a for all t .

(2.c) There exists a positive C ∈ L1(R) such that for all t, s ∈ R

‖L(t)−1/2(L(t)− L(s))L(t)−1/2
‖+ 2‖(W (t)−W (s))L(t)−1/2

‖ ≤

∣∣∣∣∫ t

s
C(r) dr

∣∣∣∣,
where we place the absolute value on the right-hand side to account for the arbitrary order of t and s.

(2.d) t 7→ α(t)±1 are uniformly bounded on K1 and t 7→ α̇ is uniformly bounded on K0.

Note that, by the same argument as for Assumption (1.d), one can show that Assumption (2.d) implies
the uniform boundedness of t 7→ α(t)±1 on Kδ for δ ∈ [−1, 1].

3. The energy space and the dynamical space

We will occasionally use the Hilbert space

H := L2(�1/26)⊕ L2(�1/26)= K0
⊕K0,

with the canonical inner product also denoted by ( · | · ) and the corresponding norm ‖ · ‖.
The Hilbert space H plays only an auxiliary role in our work. More important are the Hilbertizable

spaces Hλ, λ ∈ [−1, 1], defined as

Hλ := K(λ+1)/2
⊕K(λ−1)/2. (3-1)

Note that for any t
Hλ = (L(t)⊕ L(t))−λ/4H0, λ ∈ [−1, 1]. (3-2)

We will treat the space H0 as the central element of the family (3-2), identifying H0 with H∗0, the antidual
of H0 (the space of bounded antilinear functionals on H0). Then we have a natural identification of H−λ
with H∗λ.

The central role in this work is played by the energy space, the dynamical space and the antidual of
the energy space:

Hen :=H1 = (L(t)−1/2
⊕1)H= H0(t)−1/2H, (3-3a)

Hdyn :=H0 = (L(t)−1/4
⊕ L(t)1/4)H, (3-3b)

H∗en :=H−1 = (1⊕ L(t)1/2)H= (Q H0(t)Q)1/2H, (3-3c)
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where we set

H0(t) := L(t)⊕ 1=

(
L(t) 0

0 1

)
,

and we also used the charge form

(u | Qv) := (u1 | v2)+ (u2 | v1), Q :=
(

0 1
1 0

)
.

It is evident that the charge form is bounded on H. More importantly, it is also bounded on Hdyn (but,
e.g., not on Hen).

Note that
Im (u | Qv)= 1

2i
((u | Qv)− (v | Qu))

is a symplectic form on Hdyn. Therefore, the formalism based on the charge form is equivalent to the
symplectic formalism, commonly used in the literature.

4. Instantaneous energy spaces and instantaneous dynamical spaces

An important role in our paper is played by the instantaneous Hamiltonian, defined formally for each t as

H(t)= Q B(t)= B(t)∗Q.

One can rigorously define H(t) as a form-bounded perturbation of H0(t):

Proposition 4.1. The operator

H(t) :=
(

L(t) W (t)∗

W (t) 1

)
is self-adjoint on H with the form domain Hen. We have

(1− a(t))H0(t)≤ H(t)≤ (1+ a(t))H0(t), (4-1)

where 0≤ a(t) < 1 was introduced in Assumption (1.b).

Proof. We show only the right-hand side of the inequality (4-1). Set u =
( u1

u2

)
. Using the Cauchy–Schwarz

inequality and Assumption (1.b), we find

(u | H(t) u)≤ ‖L(t)1/2u1‖
2
+‖u2‖

2
+ 2‖W (t) u1‖‖u2‖

≤ ‖L(t)1/2u1‖
2
+‖u2‖

2
+ 2a(t)‖L(t)1/2u1‖‖u2‖

≤ (1+ a(t))(‖L(t)1/2u1‖
2
+‖u2‖

2)

= (1+ a(t))(u | H0(t) u). �

We define for each time t ∈ R the (instantaneous) energy scalar products given by

(u | v)en,t := (u | H(t)v)

on Hen. By (4-1) the scalar product ( · | · )en,t is compatible with the topology of Hen. We call the resulting
Hilbert space the instantaneous energy space at t and denote it by Hen,t .
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Similarly, we can also define the operator Q H(t)−1 Q. We find that its form domain is H∗en. Indeed,

(1+ a(t))−1 Q H0(t)−1 Q ≤ Q H(t)−1 Q ≤ (1− a(t))−1 Q H0(t)−1 Q. (4-2)

Then we define for each t the scalar product

(u | v)en∗,t := (u | Q H(t)−1 Qv)

and note that it is compatible with the topology of H∗en; we denote the resulting Hilbert space by H∗en,t .
The central operator in this work is B(t). In the next section we construct the evolution generated

by B(t), solving the first-order Klein–Gordon equation.

Proposition 4.2. Considered as an operator on H∗en,t with domain Hen,

B(t) :=
(

W (t) 1
L(t) W (t)∗

)
is self-adjoint and 0 is in its resolvent set.

Proof. For notational simplicity, we drop the time-dependence of B(t) and the other objects.
First note that, by definition, H0(t)−1/2

= (L(t)−1/2
⊕ 1) maps H to Hen, and (Q H0(t)Q)−1/2

=

(1⊕ L(t)−1/2) maps H∗en to H. Now, to check that B(t) is well-defined, we calculate(
1 0
0 L−1/2

)(
W 1
L W ∗

)(
L−1/2 0

0 1

)
=

(
W L−1/2 1

1 L−1/2W ∗

)
,

which is bounded by Assumption (1.b).
Next, we show that 0 ∈ rs B, and consequently also that B is closed. We rewrite B as

B =
(

1 0
W ∗ 1

)(
0 1

L −W ∗W 0

)(
1 0
W 1

)
and check that B−1 is bounded from H∗en to Hen:(

L1/2 0
0 1

)
B−1

(
1 0
0 L1/2

)
=

(
1 0

−L−1/2W ∗ 1

)(
0 (1−L−1/2W ∗W L−1/2)−1

1 0

)(
1 0

−W L−1/2 1

)
,

where the first and last factors on the right-hand side are bounded by Assumption (1.b), and

1− L−1/2W ∗W L−1/2

is invertible because ‖L−1/2W ∗W L−1/2
‖< 1, also by Assumption (1.b).

Finally, we check that B is Hermitian on H∗en. We calculate

(Q H Q)−1 B−1
= (B Q H Q)−1

= (Q H Q H Q)−1
= (Q H Q B∗)−1

= B∗−1(Q H Q)−1. �

We can now define for each time t ∈ R a whole scale of Hilbert spaces

Hλ,t := |B(t)|−(1+λ)/2H∗en,t , λ ∈ R,



228 JAN DEREZIŃSKI AND DANIEL SIEMSSEN

with scalar products
(u | v)λ,t := (u | |B(t)|1+λv)en∗,t , u, v ∈Hλ,t .

Above we performed the polar decomposition with respect to the Hilbert space H∗en,t , where we have

|B(t)| =
√

B(t)2 =
√

Q H(t)Q H(t).

It follows from its definition, that B(t) extends/restricts to a self-adjoint operator on each of the
spaces Hλ,t . When B(t) is interpreted as an operator on Hλ,t , its domain is Hλ+2,t .

Clearly the scales Hλ,t contain H∗en,t = H−1,t . They also contain the (instantaneous) energy spaces
Hen,t =H1,t , because a short calculation shows H(t)= Q H(t)−1 Q|B(t)|2. Furthermore, we define the
(instantaneous) dynamical spaces

Hdyn,t :=H0,t ,

which are treated as the central spaces in these scales. Note that Hdyn,t is the form domain of B(t). We
identify H∗0,t with H0,t , and hence H∗λ,t is identified with H−λ,t . Thus we obtain the rigged Hilbert space
setting

Hen,t ⊂Hdyn,t ⊂H∗en,t .

Proposition 4.3. In the sense of Hilbertizable spaces, we have

Hλ,t =Hλ, λ ∈ [−1, 1], (4-3)

thus justifying our notation. In particular,

Hen,t =Hen, Hdyn,t =Hdyn, H∗en,t =H∗en.

Proof. It follows from (4-1) and (4-2) that Hen,t =Hen and H∗en,t =H∗en. Since both L(t)1/2⊕ L(t)1/2

and |B| can be understood as invertible bounded operators from Hen to H∗en, there exists c > 1 such that

c−1
‖(L(t)⊕ L(t))1/2u‖en∗ ≤ ‖|B(t)|u‖en∗ ≤ c‖(L(t)⊕ L(t))1/2u‖en∗ .

By interpolation (e.g., using the Heinz–Kato inequality, Theorem D.1),

c−δ‖(L(t)⊕ L(t))δ/2u‖en∗ ≤ ‖|B(t)|δu‖en∗ ≤ cδ‖(L(t)⊕ L(t))δ/2u‖en∗

for δ ∈ [0, 1]. It follows that the norms for Hλ and Hλ,t with λ ∈ [−1, 1] are equivalent and thus (4-3)
follows. �

Note that for |λ|> 1 the spaces Hλ,t may depend on t and do not have to coincide with Hλ.

5. Evolution

In the last section we laid the foundations for an application of the theory of nonautonomous evolution
equations to the situation at hand, i.e., the first-order Klein–Gordon equation

∂t u(t)+ iB(t)u(t)= 0.
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Autonomous evolution equations (viz., with a time-independent generator) possess a well-understood
theory in terms of the theory of strongly continuous semigroups and groups. The theory for nonautonomous
evolution equations is significantly more complicated and subtle. In Appendix C we discuss the relevant
results based on [Kato 1970].

Here we apply Theorem C.10 to the operator B(t) on the spaces

Xt =H∗en,t and Yt =Hen,t . (5-1)

For this purpose, we need to check whether the conditions (a)–(c) of Theorem C.10 hold. The self-
adjointness condition (c) is clearly true; see Section 3. The next proposition implies that condition (b), a
continuity condition on the norms of the Hilbert spaces Hen,t and H∗en,t , holds:

Proposition 5.1. Let C ∈ L1
loc(R) as in Assumption (1.c), a(t) ∈ C(R) as in Assumption (1.b) and

|t − s| ≤ 1 with t ≥ s. Set
cs,t := sup

τ∈[s,t]
(1− a(τ ))−1.

Then, for λ ∈ [−1, 1],

‖u‖λ,t exp
(
−cs,t

∫ t

s
C(τ ) dτ

)
≤ ‖u‖λ,s ≤ ‖u‖λ,t exp

(
cs,t

∫ t

s
C(τ ) dτ

)
. (5-2)

Proof. First we show (5-2) for λ= 1, i.e., for the energy space.
By Assumption (1.c), we have

‖(L(t)−1/2
⊕1)(H(s)− H(t))(L(t)−1/2

⊕ 1)‖

≤ ‖L(t)−1/2(L(s)− L(t))L(t)−1/2
‖+ 2‖(W (s)−W (t))L(t)−1/2

‖

≤

∫ t

s
C(τ ) dτ. (5-3)

Equation (4-1) then implies
‖H(t)−1/2(L(t)⊕ 1)H(t)−1/2

‖ ≤ cs,t . (5-4)

Putting together (5-3) and (5-4), we obtain

‖H(t)−1/2(H(s)− H(t))H(t)−1/2
‖ ≤ cs,t

∫ t

s
C(τ ) dτ.

Consequently we have ∣∣‖u‖2en,s −‖u‖
2
en,t

∣∣≤ ‖u‖2en,t

(
cs,t

∫ t

s
C(τ ) dτ

)
.

Therefore

‖u‖2en,s ≤ ‖u‖
2
en,t

(
1+ cs,t

∫ t

s
C(τ ) dτ

)
≤ ‖u‖2en,t exp

(
cs,t

∫ t

s
C(τ ) dτ

)
and, exchanging the roles of t and s, we can similarly derive

‖u‖2en,s ≥ ‖u‖
2
en,t exp

(
−cs,t

∫ t

s
C(τ ) dτ

)
,

so that the inequality (5-2) for λ= 1 follows.
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For λ=−1 the inequality follows by duality. Using interpolation, we can then extend the inequality to
the remaining values of λ. �

To show that condition (a) of Theorem C.10 holds, we only need to show the norm-continuity of
t 7→ B(t); the remaining statements are obvious.

Proposition 5.2. With C ∈ L1
loc(R) as in Assumption (1.c), cs,t as in (4-1) and |t − s| ≤ 1,

‖(B(s)− B(t))u‖en∗,t ≤ ‖u‖en,t

∣∣∣∣cs,t

∫ t

s
C(τ ) dτ

∣∣∣∣,
where we place the absolute value on the right-hand side because t ≥ s or t ≤ s. In particular, t 7→ B(t)
is norm-continuous as an operator from Hen,t to H∗en,t .

Proof. We reduce the problem to the inequalities

‖(1⊕ L(t)−1/2)(B(s)− B(t))(L(t)−1/2
⊕1)‖ = ‖Q(L(t)−1/2

⊕ 1)Q(B(s)− B(t))(L(t)−1/2
⊕1)‖

≤ ‖(L(t)−1/2
⊕1)(H(s)− H(t))(L(t)−1/2

⊕1)‖

≤

∣∣∣∣∫ t

s
C(τ ) dτ

∣∣∣∣
and proceed much as in the proof of Proposition 5.1. Since the integral is continuous, the required
norm-continuity follows. �

It follows that we can globally define an evolution for B(t):

Theorem 5.3. There exists a unique, strongly continuous family of bounded operators {U (t, s)}s,t∈R

on H∗en, the evolution generated by B(t), with the following properties:

(i) For all r, s, t ∈ R, we have the identities

U (t, t)= 1, U (t, r)U (r, s)=U (t, s). (5-5)

(ii) For λ∈ [−1, 1], U (t, s)Hλ⊂Hλ, (t, s) 7→U (t, s) is strongly Hλ-continuous and satisfies the bounds

‖U (t, r)‖λ,s ≤ exp
(

2cr,t

∫ t

r
C(τ ) dτ

)
, (5-6a)

‖U (r, t)‖λ,s ≤ exp
(

2cr,t

∫ t

r
C(τ ) dτ

)
, (5-6b)

with C, c as in Proposition 5.1 and r ≤ s ≤ t , where |t − r | ≤ 1.

(iii) For all u ∈Hen, U (t, s)u is continuously differentiable in s, t ∈ R with respect to the strong topology
of H∗en and it satisfies

i∂tU (t, s)u = B(t)U (t, s)u, (5-7a)

−i∂sU (t, s)u =U (t, s)B(s)u. (5-7b)
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Proof. Propositions 5.1 and 5.2 as well as the results of Section 3 show that Theorem C.10 can be applied
to our operator B(t), understood as an operator from Hen to H∗en (or, equivalently, as a form on Hdyn

with form domain Hen). We thus obtain for every sufficiently small compact interval I ⊂ R an evolution
U (t, s) with the properties (i)–(iv) of Theorem C.10. In particular, we have for r, t ∈ I and r ≤ s ≤ t

‖U (t, r)‖en,s ≤ exp
(

2cr,t

∫ t

r
C(τ ) dτ

)
,

‖U (t, r)‖en∗,s ≤ exp
(

2cr,t

∫ t

r
C(τ ) dτ

)
.

The same bounds also hold for ‖U (r, t)‖en,s and ‖U (r, t)‖en∗,s . By interpolation we find (5-6).
We cover R by compact intervals. Using the identity (5-5), we thereby define the evolution U (t, s) on

the whole real axis by gluing. For finite s, t , it has the properties (i)–(iv) of Theorem C.10. �

Equation (5-6) states that U (t, s) is bounded for finite t, s. To obtain stronger results later, we can
choose more stringent assumptions:

Corollary 5.4. If Assumption (2.c) holds, and we set C1(t) := 2(1− a)−1C(t), then

‖U (t, s)‖λ,r ≤ exp
(∫

R

C1(τ ) dτ
)

for all r, s, t ∈ R and any λ ∈ [−1, 1].

In Assumption (1.a) we supposed that L(t) is positive and invertible. Actually, the main results of this
section remain true if L(t) is only bounded from below:

Corollary 5.5. Instead of Assumption 1, suppose that there exists a constant b> 0 such that Assumption 1
holds for L(t)+ b. Then Theorem 5.3 holds with respect to the scale of Hilbert spaces and constants
obtained from L(t)+ b, and with the bounds (5-6) replaced by

‖U (t, r)‖λ,s ≤ exp
(

2cr,t

∫ t

r
C(τ ) dτ + (t − r)b‖(L(s)+ b)−1/2

‖

)
,

‖U (r, t)‖λ,s ≤ exp
(

2cr,t

∫ t

r
C(τ ) dτ + (t − r)b‖(L(s)+ b)−1/2

‖

)
.

Proof. Replacing L(t) in B(t) by L(t)+ b, we obtain a new operator

Bb(t)= B(t)+
(

0 0
b 0

)
.

We also replace L(t) by L(t)+ b in all definitions concerning the Hilbert and Hilbertizable spaces that
we need. According to Theorem 5.3, Bb(t) has an evolution Ub(t, s) with the properties stated in the
theorem. Note that

( 0
b

0
0

)
is a bounded operator on H∗en. Indeed, this follows from the boundedness of(

1 0
0 L−1/2

)(
0 0
b 0

)(
1 0
0 L1/2

)
=

(
0 0

L−1/2b 0

)
on H. Since B(t) is a bounded perturbation of Bb(t), we can apply Theorem C.11 to find the evolution
for B(t). �



232 JAN DEREZIŃSKI AND DANIEL SIEMSSEN

Remark 5.6. Our choice of spaces (5-1) to prove Theorem 5.3 is natural, especially given our low-
regularity setup. Under more restrictive assumptions on the smoothness and boundedness of coefficients
of the Klein–Gordon operator K , other spaces in the scale Hλ,t , λ ∈ R, could be used. This would lead
to improved regularity results of the type U (t, s)Hλ ⊂Hλ and continuous differentiability of U (t, s)Hλ

in Hλ−2.

Remark 5.7. In the stationary case, i.e., if B does not depend on time, there exist distinguished Hilbert
spaces Hλ and the evolution family U (t, s) simplifies to a unitary group U (t − s)=U (t, s) on Hλ.

6. Solutions of the Klein–Gordon equation

Solutions of the Klein–Gordon equation are closely related to solutions of the first-order Klein–Gordon
equation.

Let us introduce the projection onto the second component:

π2

(
u1

u2

)
:= u2.

We also define embeddings

ι2u :=
(

0
u

)
, ρu :=

(
u

−(Dt +W )u

)
.

A formal calculation then shows that2

K̃ =−iπ2(∂t + iB)ρ and K =−iα−1π2(∂t + iB)ρα−1. (6-1)

Therefore, if K u = f or, equivalently, K̃ ũ = f̃ with ũ = α−1u, f̃ = α f , then

−i(∂t + iB)ρũ = ι2 f̃ .

The projection π2 and the embeddings ρ, ι2, which relate solutions of the Klein–Gordon equation and
the first-order Klein–Gordon equation, can be understood between various spaces. It follows from the
definition of Hλ in (3-1) that, for λ ∈ [−1, 1],

π2 :Hλ→ K(λ−1)/2, (6-2a)

π2 Q :Hλ→ K(λ+1)/2, (6-2b)

ι2 : K(λ−1)/2
→Hλ. (6-2c)

These projections and embeddings already allow us to easily prove an existence and uniqueness result
regarding solutions of the Klein–Gordon equation with Cauchy data in the energy space:

Theorem 6.1. Let s ∈ R,
( u1(s)

u2(s)

)
∈Hen and f ∈ L1

loc(R;K
0). Set(

ũ1(s)
ũ2(s)

)
= α(s)−1

(
u1(s)
u2(s)

)
and f̃ = α f.

2Note that there is a sign error in the corresponding equation in [Dereziński and Siemssen 2018] which also affects the
definition of the associated propagators.
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Then u = αũ, with

ũ(t)= π2 QU (t, s)
(

ũ1(s)
ũ2(s)

)
+ i

∫ t

s
π2 QU (t, r)ι2 f̃ (r) dr,

is the unique solution of K u = f such that

u ∈ C(R;K1)∩C1(R;K0) and ρũ(s)=
(

ũ1(s)
ũ2(s)

)
. (6-3)

Proof. We have the following special cases of (6-2):

ι2 : K0
→Hen, (6-4a)

π2 Q :Hen→ K1, (6-4b)

π2 Q :H∗en→ K0. (6-4c)

By (6-4a), (6-4b) and Assumption (1.d), u belongs to C(R;K1). By (6-4a), (6-4c) and Assumption (1.d),
∂t u belongs to C(R;K0). Hence the first part of (6-3) is true. The second part of (6-3) is obvious.

Set (
ũ1(t)
ũ2(t)

)
=U (t, s)

(
ũ1(s)
ũ2(s)

)
+ i

∫ t

s
U (t, r)ι2 f̃ (r) dr. (6-5)

Differentiating (6-5) we obtain

i∂t

(
ũ1(t)
ũ2(t)

)
= B(t)

(
ũ1(t)
ũ2(t)

)
− ι2 f̃ (t). (6-6)

Clearly, ũ(t)= ũ1(t). The first component of (6-6) yields ũ2(t)=−(Dt +W (t))ũ1(t). Hence

ρũ(t)=
(

ũ1(t)
ũ2(t)

)
. (6-7)

The second component of (6-6) and then insertion of (6-7) yield

f̃ (t)=−iπ2(∂t + iB)
(

ũ1(t)
ũ2(t)

)
=−iπ2(∂t + iB)ρũ(t)= K̃ ũ(t),

whence we have shown that ũ solves K̃ ũ = f̃ and thus K u = f .
Uniqueness of the solution follows from the uniqueness of the evolution U (t, s), and the linearity of

K , ρ by the standard argument: if u, u′ satisfy

K u = K u′ = f and ρũ(s)= ρũ′(s)=
(

ũ1(s)
ũ2(s)

)
,

where ũ′ = α−1u′, then K (u− u′)= 0, ρ(ũ− ũ′)(s)= 0 and thus u = u′. �

It is well known that solutions of the Klein–Gordon equation propagate slower than the speed of light.
The method of evolution equations together with the freedom of the choice of the time-variable provide
a rather obvious heuristic argument for the propagation at a finite speed. However, when one tries to
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convert this argument into a rigorous proof, technical problems appear which make such a proof difficult
to formulate.

In the literature the finiteness of the speed of propagation is usually shown for the Klein–Gordon
equation with smooth coefficients. In Appendix E, in particular in Theorem E.1, we show that solu-
tions of the Klein–Gordon propagate at a finite speed also in a low-regularity setup typical for our
paper.

7. Classical propagators

Having constructed the evolution for B(t) in Section 5, it is not difficult to find the classical propagators
for the first-order Klein–Gordon operator ∂t + iB. To wit, the Pauli–Jordan propagator EPJ and the
forward/backward propagator E∨/∧ are given by the integral kernels

EPJ(t, s) :=U (t, s), (7-1a)

E∨(t, s) := θ(t − s)U (t, s), (7-1b)

E∧(t, s) := −θ(s− t)U (t, s), (7-1c)

where θ denotes the Heaviside step function, via

(E • f )(t)=
∫

R

E •(t, s) f (s) ds. (7-2)

Theorem 7.1. Let λ ∈ [−1, 1]:

(i) The classical propagators EPJ and E∨/∧ are well-defined between the spaces

E • : L1
c(R;Hλ)→ C(R;Hλ),

E • : L1
c(R;Hen)→ C1(R;H∗en).

(ii) The forward and backward propagators E∨/∧ are well-defined between the spaces

E∨/∧ : L1
loc(I ;Hλ)→ C(I ;Hλ),

E∨/∧ : L1
loc(I ;Hen)→ C1(I ;H∗en),

where I = [a,+∞[ or ]−∞, a], respectively, for some a ∈ R.

(iii) If Assumption 2 is satisfied, the classical propagators EPJ and E∨/∧ are bounded between the spaces

E • : L1(R;Hλ)→ Cb(R;Hλ),

E • : L1(R;Hen)→ C1
b(R;H

∗

en).

(iv) EPJ is a bisolution of ∂t + iB:

(∂t + iB)EPJ f = 0, f ∈ L1
c(R;Hen), (7-3)

EPJ(∂t + iB) f = 0, f ∈ L1
c(R;Hen)∩ACc(R;H∗en). (7-4)
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(v) E∨/∧ are the unique inverses of ∂t + iB such that

(∂t + iB)E∨/∧ f = f, f ∈ L1
loc(I,Hen), (7-5)

E∨/∧(∂t + iB) f = f, f ∈ L1
loc(I ;Hen)∩AC(I,H∗en), (7-6)

with I = [a,+∞[ or ]−∞, a], respectively, for some a ∈ R.

(vi) The relation EPJ
= E∨− E∧ holds.

Proof. Parts (i)–(iii) follow from the properties of the evolution U (t, s) (see Theorem 5.3 and Corollary 5.4)
and the definition of the kernels (7-1).

Consider next (iv) and (v). We first need to check that the products contained in these properties are
well-defined. Indeed, by (i), the maps

E • : L1
c(R;Hen)→ C(R;Hen)∩C1(R;H∗en), (7-7a)

(∂t + iB) : C(R;Hen)∩C1(R;H∗en)→ C(R;H∗en), (7-7b)

are well-defined, which shows that (7-3) and (7-5) make sense. Similarly, by (i), we have

(∂t + iB) : L1
c(R;Hen)∩ACc(R;H∗en)→ L1

c(R;H
∗

en), (7-8a)

E • : L1
c(R;H

∗

en)→ C(R;H∗en), (7-8b)

and hence the products in (7-4) and (7-6) make sense. Then we show (7-3)–(7-6) using (7-2) and (5-7).
For (7-4) and (7-6) we also need to apply an integration by parts. �

We can also state an L2 version of Theorem 7.1(iii):

Theorem 7.2. Let s > 1
2 and λ ∈ [−1, 1]. If Assumption 2 is satisfied, the classical propagators EPJ and

E∨/∧ are bounded between the spaces

E • : 〈t〉−s L2(R;Hλ)→ 〈t〉s L2(R;Hλ),

E • : 〈t〉−s L2(R;Hen)→ 〈t〉s〈∂t 〉
−1L2(R;H∗en).

Proof. We use the embeddings

〈t〉−s L2(R;X )⊂ L1(R;X ) and 〈t〉s L2(R;X )⊃ Cb(R;X )

for any Banach space X and s > 1
2 . �

The classical propagators for the first-order Klein–Gordon operator can also be understood between
various spaces other than those considered in Theorems 7.1 and 7.2, but our choices are quite natural.
At the same time, this setup leads to an almost straightforward derivation of the propagators for the
Klein–Gordon operator K .

Since ∂t + iB and K are related via (6-1), also the propagators of these operators are closely related.
At least formally, it can be shown that if E • is a propagator for ∂t + iB, then iπ2 QE •ι2 is a propagator
for K̃ , and hence

G• = iαπ2 QE •ι2α (7-9)
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is a propagator for the Klein–Gordon operator K . As we shall see now, this is indeed true if the domain
of G• is carefully chosen:

Theorem 7.3. Let δ ∈ [0, 1]:

(i) The classical propagators GPJ and G∨/∧ are well-defined between the spaces

G• : L1
c(R;K

−δ)→ C(R;K1−δ), (7-10)

G• : L1
c(R;K

0)→ C1(R;K0). (7-11)

(ii) The forward and backward propagators G∨/∧ are well-defined between the spaces

G∨/∧ : L1
loc(I ;K

−δ)→ C(I ;K1−δ),

G∨/∧ : L1
loc(I ;K

0)→ C1(I ;K0),

where I = [a,+∞[ or ]−∞, a], respectively, for some a ∈ R.

(iii) If Assumption 2 is satisfied, the classical propagators GPJ and G∨/∧ are bounded between the spaces

G• : L1(R;K−δ)→ Cb(R;K1−δ),

G• : L1(R;K0)→ C1
b(R;K

0).

(iv) GPJ is a bisolution of K :

K GPJ f = 0, f ∈ L1
c(R;K

0), (7-12)

GPJK f = 0, f ∈ L1
c(R;K

1)∩ACc(R;K0)∩AC1
c(R;K

−1). (7-13)

(v) G∨/∧ are the unique inverses of K such that

K G∨/∧ f = f, f ∈ L1
loc(I ;K

0), (7-14)

G∨/∧K f = f, f ∈ L1
loc(I ;K

1)∩AC(R;K0)∩AC1(I ;K−1), (7-15)

with I = [a,+∞[ or ]−∞, a], respectively, for some a ∈ R.

(vi) The relation GPJ
= G∨−G∧ holds.

Proof. These results are a direct consequence of Theorem 7.1. In (i)–(iii) we used (6-2) and Assump-
tion (1.d).

Let us check that the products in (iv) and (v) are well-defined. From the definition of ρ we can read
off that

ρ : C(R;K1)∩C1(R;K0)→ C(R;Hen),

ρ : L1
c(R;K

1)∩ACc(R;K0)→ L1
c(R;Hen),

ρ : ACc(R;K0)∩AC1
c(R;K

−1)→ ACc(R;H∗en).

Then, by (i) and also using (7-7), we have

G• : L1
c(R;K

0)→ C(R;K1)∩C1(R;K0),

K : C(R;K1)∩C1(R;K0)→ C−1(R;K0)∩C(R;K−1),
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where C−1(R) denotes the space of distributional derivatives of continuous functions. This shows
that (7-12) and (7-14) make sense. Similarly, by (i) and (7-8), we have

K : L1
c(R;K

1)∩ACc(R;K0)∩AC1
c(R;K

−1)→ L1
c(R;K

−1),

G• : L1
c(R;K

−1)→ C(R;K0),

and hence the products in (7-13) and (7-15) make sense. �

Here is an L2 version of Theorem 7.3(iii):

Theorem 7.4. Let s> 1
2 . If Assumption 2 is satisfied, the classical propagators GPJ and G∨/∧ are bounded

between the spaces
G• : 〈t〉−s L2(�1/2 M)→ 〈t〉s L(t)−1/2L2(�1/2 M), (7-16a)

G• : 〈t〉−s L2(�1/2 M)→ 〈t〉s〈∂t 〉
−1L2(�1/2 M). (7-16b)

Proof. By (7-10), for δ ∈ [0, 1] we have

G• : 〈t〉−s L2(R;K−δ)→ 〈t〉s L2(R;K1−δ). (7-17)
Setting δ = 0 we obtain

G• : 〈t〉−s L2(R;K0)→ 〈t〉s L(t)−1/2L2(R;K0). (7-18)

But L2(R;K0)= L2(R; L2(�1/26)) and L2(�1/2 M) can naturally be identified, which proves (7-16a).
It follows from (7-11) that

G• : 〈t〉−s L2(R;K0)→ 〈t〉s〈∂t 〉
−1L2(R;K0).

This yields (7-16b). �

Observe that in other approaches, e.g., [Bär et al. 2007], the retarded and advanced propagators are
the central objects and the Pauli–Jordan propagator is defined as their difference. Here, instead, the
Pauli–Jordan propagator follows immediately from the evolution U (t, s) and should be seen as the central
object, while the retarded and advanced propagators are derived objects.

Using the Pauli–Jordan propagator GPJ, we can associate to every sufficiently regular compactly
supported function a solution of the homogeneous Klein–Gordon equation. In fact, as the following
proposition shows, also the converse is true.

Proposition 7.5. Suppose that u ∈ L1
loc(R;K

1)∩AC(R;K)∩AC1(R;K−1) satisfies K u = 0. Then there
exists a (nonunique) f ∈ L1

c(R;K−1) such that u = GPJ f .

Proof. Choose any r, s ∈ R, r < s, and χ ∈ C∞(M) such that χ(t) = 0 for t < r , 0 ≤ χ(t) ≤ 1 for
r ≤ t ≤ s and χ(t)= 1 for t > s. Clearly,

0= K u = Kχu− K (χ − 1)u

and thus supp(Kχu) ⊂ [r, s] ×6. Besides, Kχu ∈ L1
c(R;K−1). Therefore, we can act with GPJ on

Kχu, obtaining
GPJKχu = G∨Kχu−G∧K (χ − 1)u = u.

That is, f = Kχu is the desired function. �
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Our construction of the classical propagators starts from the propagators for the first-order Klein–
Gordon operator; i.e., given E •, we derive G• using (7-9). If, instead, G• is provided, then E • can be
derived:

(i) If G• is an inverse of K then

E • =−i
(

−α−1G•α−1(Dt+W ∗) α−1G•α−1

1+(Dt+W )α−1G•α−1(Dt+W ∗) −(Dt+W )α−1G•α−1

)
is (formally) an inverse of (∂t + iB).

(ii) If G• is a bisolution of K then

E • =−i
(
−α−1G•α−1(Dt+W ∗) α−1G•α−1

(Dt+W )α−1G•α−1(Dt+W ∗) −(Dt+W )α−1G•α−1

)
is (formally) a bisolution of (∂t + iB).

Note the subtle difference in the formulas for inverses and bisolutions. No such difference appears in (7-9),
which yields G• given E •.

8. Instantaneous nonclassical propagators

Consider an arbitrary reference time τ . According to Proposition 4.2, B(τ ) is a self-adjoint operator
on H∗en,τ . Therefore we can use the functional calculus to define the projections onto the positive and
negative parts of the spectrum of B(τ ):

5(±)
τ := 1[0,∞[(±B(τ )). (8-1)

Zero is in the resolvent set of B(τ ), and therefore the projections in (8-1) are complementary.

Proposition 8.1. 5(±)
τ restrict to complementary projections on Hλ for λ ∈ [−1, 1], and have the

following properties:

(i) 5(±)
τ B(τ )= B(τ )5(±)

τ .

(ii) 5(+)
τ −5

(−)
τ = sgn B(τ ).

(iii) sp(±5(±)
τ B(τ ))⊂ ]0,∞[.

(iv) 5(±)
τ are self-adjoint with respect to Hλ,τ .

Moreover, the projections 5(±)
τ split Hλ,τ into subspaces of positive and negative charge (with respect

to the charge form Q):

Proposition 8.2. ±(u | Q5(±)
τ u)=±(5(±)

τ u | Qu)=±(5(±)
τ u | Q5(±)

τ u)≥ 0 (8-2)

for all u ∈Hλ with λ ∈ [−1, 1].

Proof. The proof is the same as that of [Dereziński and Siemssen 2018, Proposition 6.3]. �
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The projections 5(±)
τ can be used to define instantaneous positive/negative-frequency bisolutions E (±)τ ,

given by their integral kernels as

E (±)τ (t, s) := ±U (t, τ )5(±)
τ U (τ, s). (8-3)

Using step functions, we then define the kernels of the instantaneous Feynman and anti-Feynman inverses
of ∂t + iB:

EF
τ (t, s) := θ(t − s)E (+)τ (t, s)+ θ(s− t)E (−)τ (t, s),

EF
τ (t, s) := −θ(t − s)E (−)τ (t, s)− θ(s− t)E (+)τ (t, s).

It is easy to see that these kernels can also be expressed using the retarded and advanced propagators:

EF
τ (t, s)= E∧(t, s)+ E (+)τ (t, s)= E∨(t, s)+ E (−)τ (t, s), (8-4a)

EF
τ (t, s)= E∨(t, s)− E (+)τ (t, s)= E∧(t, s)− E (−)τ (t, s). (8-4b)

As before, these kernels define the corresponding propagators via (7-2):

Theorem 8.3. Let λ ∈ [−1, 1]:

(i) The instantaneous nonclassical propagators E (±)τ and EF/F
τ are well-defined between the spaces

E •τ : L
1
c(R;Hλ)→ C(R;Hλ),

E •τ : L
1
c(R;Hen)→ C1(R;H∗en).

(ii) If Assumption 2 is satisfied, E (±)τ and EF/F
τ are bounded between the spaces

E •τ : L
1(R;Hλ)→ Cb(R;Hλ),

E •τ : L
1(R;Hen)→ C1

b(R;H
∗

en).

(iii) E (±)τ are bisolutions of ∂t + iB:

(∂t + iB)E (±)τ f = 0, f ∈ L1
c(R;Hen),

E (±)τ (∂t + iB) f = 0, f ∈ L1
c(R;Hen)∩ACc(R;H∗en).

(iv) EF/F
τ are inverses of ∂t + iB:

(∂t + iB)EF/F
τ f = f, f ∈ L1

c(R;Hen),

EF/F
τ (∂t + iB) f = f, f ∈ L1

c(R;Hen)∩ACc(R;H∗en).

(v) The instantaneous nonclassical propagators satisfy the relations

EF
τ = E∧+ E (+)τ = E∨+ E (−)τ , EF

τ + EF
τ = E∨+ E∧, E (+)τ − E (−)τ = EPJ,

EF
τ = E∨− E (+)τ = E∧− E (−)τ , EF

τ − EF
τ = E (+)τ + E (−)τ .

Proof. The various properties of the nonclassical propagators can be shown along the same lines as in
Theorem 7.1 so we will omit the proofs. Property (v) in particular follows from (8-4) and its linear
combinations. �
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As for the classical propagators, we can also find an L2 version of Theorem 8.3(ii):

Theorem 8.4. Let s>1
2 and λ ∈ [−1, 1]. If Assumption 2 is satisfied, the instantaneous nonclassical

propagators E (±)τ and EF/F
τ are bounded between the spaces

E •τ : 〈t〉
−s L2(R;Hλ)→ 〈t〉s L2(R;Hλ),

E •τ : 〈t〉
−s L2(R;Hen)→ 〈t〉s〈∂t 〉

−1L2(R;H∗en).

Similarly to (7-9), we define the instantaneous nonclassical propagators G(±)
τ and GF/F

τ for the Klein–
Gordon operator K by

G(±)
τ := απ2 QE (±)τ ι2α, GF/F

τ := iαπ2 QEF/F
τ ι2α.

Note the absence of the complex unit in the definition of G(±)
τ so that G(±)

τ define positive forms; see
property (vi) below.

Analogously to Theorem 7.3, we find:

Theorem 8.5. Let δ ∈ [−1, 1]:

(i) The instantaneous nonclassical propagators G(±)
τ and GF/F

τ are well-defined between the spaces

G•τ : L
1
c(R;K

−δ)→ C(R;K1−δ),

G•τ : L
1
c(R;K

0)→ C1(R;K0).

(ii) If Assumption 2 is satisfied, G(±)
τ and GF/F

τ are bounded between the spaces

G•τ : L
1(R;K−δ)→ Cb(R;K1−δ),

G•τ : L
1(R;K0)→ C1

b(R;K
0).

(iii) G(±)
τ are bisolutions of K :

K G(±)
τ f = 0, f ∈ L1

c(R;K
0),

G(±)
τ K f = 0, f ∈ L1

c(R;K
1)∩ACc(R;K0)∩AC1

c(R;K
−1).

(iv) GF/F
τ are inverses of K :

K GF/F
τ f = f, f ∈ L1

c(R;K
0),

GF/F
τ K f = f, f ∈ L1

c(R;K
1)∩ACc(R;K0)∩AC1

c(R;K
−1).

(v) The instantaneous nonclassical propagators satisfy the relations:

GF
τ = G∧+ iG(+)

τ = G∨+ iG(−)
τ , GF

τ +GF
τ = G∨+G∧, G(+)

τ −G(−)
τ =−iGPJ,

GF
τ = G∨− iG(+)

τ = G∧− iG(−)
τ , GF

τ −GF
τ = iG(+)

τ + iG(−)
τ .

(vi) The instantaneous positive/negative-frequency bisolutions are positive:

( f |G(±)
τ f )=

∫
M

f̄ G(±)
τ f ≥ 0

for f ∈ L1
c(R;K0).
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Proof. We only show (vi); the remaining properties follow from corresponding properties of E •τ in
Theorem 8.3 and can be shown as in Theorem 7.3. For (vi), we note that

( f |G(±)
τ f )=

∫∫
(ι2 f̃ (t) | QE (±)τ (t, s)ι2 f̃ (s)) ds dt

= (ũ(τ ) | Q5(±)
τ ũ(τ ))≥ 0

by Proposition 8.2, where we set

f̃ = α f and ũ(τ )=
∫

U (τ, t) f̃ (t) dt ∈Hen. �

The L2 version of Theorem 8.5(ii) is:

Theorem 8.6. Let s > 1
2 . If Assumption 2 is satisfied, the instantaneous nonclassical propagators G(±)

τ

and GF/F
τ are bounded between the spaces

G•τ : 〈t〉
−s L2(�1/2 M)→ 〈t〉s L(t)−1/2L2(�1/2 M),

G•τ : 〈t〉
−s L2(�1/2 M)→ 〈t〉s〈∂t 〉

−1L2(�1/2 M).

In the static case, the nonclassical propagators defined above do not depend on τ . They are the natural
propagators to consider in that situation; see also our earlier work [Dereziński and Siemssen 2018].

In the nonstatic case, however, the instantaneous nonclassical propagators just defined have deficiencies
from the physical point of view; see, e.g., [Fulling 1979]. First of all, their definition hinges on the
arbitrary choice of a fixed instance of time and, even more seriously, on the choice of a time function.
Secondly, instantaneous positive-frequency bisolutions usually do not satisfy the microlocal spectrum
condition of [Radzikowski 1996] (in other words, they do not define Hadamard states).

Nevertheless, the situation improves if the Klein–Gordon operator is infinitesimally static at the time
when the positive/negative-frequency splitting is performed. In a forthcoming article we will show (using
methods of evolution equations) that the corresponding instantaneous positive-frequency bisolutions,
which we define in the following section, satisfy then the microlocal spectrum condition of [Radzikowski
1996].

9. Asymptotic nonclassical propagators

Throughout this section we assume that Assumption 2 is satisfied. It follows, in particular, that B(t)
converges to B(±∞) as t → ±∞ in norm as an operator from Hen to H∗en. We define the out/in-
positive/negative-frequency projections

5
(±)
+ := 1[0,∞[(±B(+∞)),

5
(±)
− := 1[0,∞[(±B(−∞)).

Theorem 9.1. The strong limits
5
(±)
+ (t) := s-lim

τ→+∞
U (t, τ )5(±)

+ U (τ, t), (9-1a)

5
(±)
− (t) := s-lim

τ→−∞
U (t, τ )5(±)

− U (τ, t) (9-1b)
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exist as bounded operators on Hλ with λ ∈ [−1, 1]. They satisfy the obvious analogs of Propositions 8.1
and 8.2. Additionally,

U (s, t)5(±)
+ (t)U (t, s)=5(±)

+ (s), (9-2)

U (s, t)5(±)
− (t)U (t, s)=5(±)

− (s). (9-3)

Proof. We only prove the theorem for (9-1a) because the proof for (9-1b) is the same. We have

U (t, r)5(±)
+ U (r, t)=U (t, r)ei(t−r)B(+∞)5

(±)
+ ei(r−t)B(+∞)U (r, t).

We analyze separately the limit r →+∞ of the operators left and right of the projection. Since both
operators are bounded on Hλ,τ , λ ∈ [−1, 1], uniformly in t, r for arbitrary τ ∈ R, it is sufficient to show
the convergence on Hen with respect to the norm on H∗en,τ .

We may assume that r > t . For u ∈Hen we have

U (t, r)ei(t−r)B(+∞)u = u+
∫ r

t
∂s(U (t, s)ei(t−s)B(+∞))u ds

= u− i
∫ r

t
U (t, s)(B(s)− B(+∞))ei(t−s)B(+∞)u ds,

by the fundamental theorem of calculus and Theorem 5.3(iii). Taking the norm of this expression in H∗en,τ ,
we find

‖U (t, r)ei(t−r)B(+∞)u− u‖en∗,τ ≤ C‖u‖en,τ

∫ r

t

∥∥(1⊕ L(τ )−1/2)(B(s)− B(+∞))(L(τ )−1/2
⊕ 1)

∥∥ ds,

since U (t, s) is uniformly bounded on H∗en,τ .
It follows from the proof of Proposition 5.2 that

‖(1⊕ L(τ )−1/2)(B(s)− B(+∞))(L(τ )−1/2
⊕ 1)‖

is uniformly bounded. Therefore,

‖U (t, r)ei(t−r)B(+∞)u− u‖en∗,τ → 0

as t, r→+∞ and the desired convergence follows.
The proof for U (t, r)ei(t−r)B(+∞) is essentially the same. The main difference is that we use the

uniform boundedness of U (t, s) on Hen,τ . �

We also define
E (±)+ (t, s) := ±U (t, τ )5(±)

+ (τ )U (τ, s), (9-4)

E (±)− (t, s) := ±U (t, τ )5(±)
− (τ )U (τ, s). (9-5)

Clearly, the definitions above do not depend on τ .
The kernels E (±)± (t, s) yield the positive/negative-frequency bisolutions at future and past infinity. They

are often called out and in, or jointly asymptotic. Moreover, we may use them together with the advanced
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and retarded propagators to define corresponding asymptotic Feynman and anti-Feynman propagators:

EF
±
= E∧+ E (+)± = E∨+ E (−)± ,

EF
±
= E∨− E (+)± = E∧− E (−)± .

As before, the propagators E •
±

for ∂t + iB induce the corresponding propagators G•
±

for K . Obviously,
the asymptotic nonclassical propagators defined here have analogs to Theorems 8.3 and 8.5; we only have
to replace occurrences of τ with ±.

The asymptotic propagators defined above have various advantages over the instantaneous ones of the
previous section. For one, they do not depend on an arbitrarily chosen instant of time. Under rather broad
assumptions one can show that they even do not depend on the choice of the time function, but only on the
spacetime itself. Finally, as recently discussed in [Gérard and Wrochna 2017], if the spacetime becomes
asymptotically static sufficiently fast, they satisfy the microlocal spectrum condition of [Radzikowski
1996].

Appendix A: Second-order differential operators

Consider a manifold 6. Every second-order Hermitian differential operator on L2(�1/26) can locally be
written as

L = Di gi j (x)Dj − Ai (x)Di − Di Ai (x)+ Y0(x), (A-1)

where gi j
= g j i, Y0 and Ai are real-valued.

L can be often rewritten in the form

L = (Di − Ai )gi j (Dj − Aj )+ Y1. (A-2)

This is possible in particular if gi j is everywhere nondegenerate, viz., g determines a (pseudo-)Riemannian
structure on M. Then (A-2) holds with

Ai := gi j A j , Y1 := Y0− Ai gi j A j ,

where gi j denotes the inverse of gi j.
Let γ be an everywhere nonzero function. Then the operator L can be rewritten as

L = γ−1/2(Di − Ai )γ gi j (Dj − Aj )γ
−1/2
+ Yγ , (A-3)

where
Yγ := Y − 1

2(Di gi jγ−1(Djγ ))−
1
4 gi jγ−2(Diγ )(Djγ ).

In particular, if we set γ := |g|1/2, where |g| := |det[gi j ]| is the canonical density induced by the metric,
and Y := Y|g|1/2 , then (A-3) yields the geometric form of the operator L:

L = |g|−1/4(Di − Ai )|g|1/2gi j (Dj − Aj )|g|−1/4
+ Y. (A-4)

If g is a metric tensor, A a 1-form, and Y a scalar, then the right-hand side of (A-4) transforms covariantly
and L is well-defined as a differential operator acting on half-densities. We can rewrite (A-4) using the
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Levi-Civita derivative ∇ for g as

L = gi j (i∇i + Ai )(i∇j + Aj )+ Y. (A-5)

Note that in (A-5) the right ∇ acts on half-densities and the left ∇ acts on half-densitized covectors.
If the metric is Riemannian, the differential part of the operator (A-4) can be called a (magnetic)

Laplace–Beltrami operator, and the full operator can be called a (magnetic) Schrödinger operator. If
the metric is Lorentzian, the differential part of the operator (A-4) can be called an (electromagnetic)
d’Alembertian, and the full operator can be called an (electromagnetic) Klein–Gordon operator.

It is however sometimes convenient to consider a density γ independent of the metric tensor g, i.e., to
work with (A-3) instead of (A-4). Using the derivative

D A,γ
:= γ 1/2(D− A)γ−1/2, (A-6)

L can be written as a quadratic form on half-densities:

(u | Lv)=
∫
6

((D A,γ
i u)gi j (D A,γ

j v)+ ū Yγ v). (A-7)

Assumption 3. In the remaining part of this appendix we assume that g is a Riemannian metric. We also
assume that γ−1∂iγ , Ai ∈ L2

loc(6), gi j
∈ L∞loc(6) and Yγ ∈ L1

loc(6) such that Yγ ≥ C for some C ∈ R.

We will see that under the above assumption L can be understood as a self-adjoint operator on L2(�1/26)

in at least two natural ways. First we reinterpret (A-7) by introducing the form

lmx[u, v] =
∫
6

((D A,γ
i u)gi j (D A,γ

j v)+ ū Yγ v) (A-8)

on its maximal form domain

dom lmx = {u ∈ L2(�1/26) | D A,γ u ∈ L2(�1/2T ∗6, g), Y 1/2
γ u ∈ L2(�1/26)}.

Here we denote by L2(�1/2T ∗6, g) the completion of C∞c (�
1/2T ∗6) with respect to the norm given by

u 7→
(∫

6

ūi gi j u j

)1/2

.

We remark that C∞c (�
1/26)⊂ dom lmx.

The following is a standard proof and has been adapted from [Leinfelder and Simader 1981, Lemma 1].

Lemma A.1. The form lmx is closed and Hermitian. It defines a unique self-adjoint operator Lmx on

Dom Lmx = {v ∈ dom lmx | |lmx[u, v]| ≤ Cv‖u‖ for all u ∈ L2(�1/26)}

satisfying

(u | Lmxv)= lmx[u, v]

for u ∈ dom lmx and v ∈ Dom Lmx. Moreover, dom lmx = Dom L1/2
mx .
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Proof. Suppose that {un} ⊂ dom lmx is a Cauchy sequence with respect to the norm

dom lmx 3 u 7→ (lmx[u, u] + (1−C)‖u‖2)1/2.

Then there exist u, v ∈ L2(�1/26) and w ∈ L2(�1/2T ∗6, g) such that

un→ u, Y 1/2
γ un→ v in L2(�1/26)

and
D A,γ un→ w in L2(�1/2T ∗6, g).

Moreover, Y 1/2
γ un→ Y 1/2

γ u and D A,γ un→ D A,γ u weakly, and thus v = Y 1/2
γ u and w = D A,γ u because

v,w must coincide with the weak limits. It follows that lmx is a closed form (and manifestly Hermitian).
Therefore, by the first representation theorem [Kato 1966, Theorem VI.2.6], lmx defines a unique self-
adjoint operator with the stated properties. �

An alternative to lmx is the form lmn given by the completion of the form (A-8) on C∞c (�
1/26), and

the corresponding operator Lmn. lmn may have a strictly smaller domain than lmx because of boundary
effects. If lmn = lmx, then C∞c (�

1/26) is a core of lmx. Note that for 6 = R3 with the Euclidean metric
this is known to be true; see, e.g., [Leinfelder and Simader 1981].

Certainly the setting considered in this appendix is not the most general possible. For example, the
assumption that Y is bounded from below can certainly be relaxed.

Appendix B: Concrete assumptions

The objective of this appendix is to elucidate how Assumption (1.c) may be realized in practice. Recall
that (6, g̃6(t)) is a family of Riemannian manifolds, γ (t) > 0 are densities on 6, A(t) are real-valued
1-forms and Ỹ (t) are real-valued scalar potentials. For simplicity, we write g̃ for g̃6 . As in Assumption 3
in Appendix A, we assume that γ−1(t)∂iγ (t), Ai (t) ∈ L2

loc(6), g̃i j
∈ L∞loc(6), and Ỹ ∈ L1

loc(6) is
bounded from below.

Let us recall the definition of the operators W (t) and L(t) on L2(�1/26):

W (t) := β(t)i Di + V (t)− 1
2γ (t)

−1(Dtγ (t)−β(t)i Diγ (t)),

(u | L(t) v) :=
∫
6

(
(D A,γ

i (t) u) g̃i j (t) (D A,γ
j (t) v)+ ū Ỹ (t) v

)
, (B-1)

where L(t) is interpreted, say, as the maximal operator given by (B-1), as in Appendix A. Assumption (1.c)
now says that there exists a positive C ∈ L1

loc(R) such that for all |t − s| ≤ 1

‖L(t)−1/2(L(t)− L(s))L(t)−1/2
‖+ 2‖(W (t)−W (s))L(t)−1/2

‖ ≤

∣∣∣∣∫ t

s
C(r) dr

∣∣∣∣ (B-2)

for some C ∈ L1
loc(R).

We also introduce the family of norms

‖X‖t =
(∫

6

g̃i j (t) X i X j

)1/2

for half-densitized 1-forms X on 6.
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Proposition B.1. Suppose that there are positive CY ,Cg,CW ∈ L1
loc(R), CA,Cγ ∈ L2

loc(R) such that for
all |t − s| ≤ 1

‖L(t)−1/2∂s Ỹ (s)L(t)−1/2
‖ ≤ CY (s),

‖∂s W (s)L(t)−1/2
‖ ≤ CW (s),

‖∂s A(s)L(t)−1/2
‖t ≤ CA(s),

‖∂sγ (s)−1 dγ (s)L(t)−1/2
‖t ≤ Cγ (s),

|∂s g̃i j (s)X i X j | ≤ Cg(s)g̃i j (t)X i X j , X ∈ C(T ∗6).

Then (B-2) holds and thus Assumption (1.c) is true.

Proof. To avoid notational clutter within this proof, we simply write Di for D A,γ
i . Clearly, the assumptions

of the proposition imply

‖L(t)−1/2(Ỹ (t)− Ỹ (s))L(t)−1/2
‖ ≤

∣∣∣∣∫ t

s
CY (r) dr

∣∣∣∣, (B-3a)

‖(W (t)−W (s))L(t)−1/2
‖ ≤

∣∣∣∣∫ t

s
CW (r) dr

∣∣∣∣, (B-3b)

‖(A(t)− A(s))L(t)−1/2
‖t ≤

∣∣∣∣∫ t

s
CA(r) dr

∣∣∣∣, (B-3c)

‖(γ (t)−1 dγ (t)− γ (s)−1 dγ (s))L(t)−1/2
‖t ≤

∣∣∣∣∫ t

s
Cγ (r) dr

∣∣∣∣, (B-3d)

|g̃i j (t)X i X j − g̃i j (s)X i X j | ≤

∣∣∣∣∫ t

s
Cg(r) dr

∣∣∣∣ g̃i j (t)X i X j . (B-3e)

We compute

(u | (L(t)− L(s))u)

=

∫
6

g̃i j (t)
(
(Di (t)u)(Dj (t)u− Dj (s)u)+ (Di (t)u− Di (s)u)(Dj (t)u)

− (Di (t)u− Di (s)u)(Dj (t)u− Dj (s)u)
)

+

∫
6

(g̃i j (t)− g̃i j (s))
(
(Di (t)u)(Dj (t)u)− (Di (t)u)(Dj (t)u− Dj (s)u)

− (Di (t)u− Di (s)u)(Dj (t)u)+ (Di (t)u− Di (s)u)(Dj (t)u− Dj (s)u)
)

+

∫
6

(Ỹ (t)− Ỹ (s))|u|2,

where
Di (t)− Di (s)=−Ai (t)+ Ai (s)+

i
2
γ (t)−1∂iγ (t)−

i
2
γ (s)−1∂iγ (s).

Estimating each term separately using (B-3), we find

|(u | (L(t)− L(s))u)| ≤ C̃(t, s)(u | L(t)u),

where

C̃(t, s)= 2
∣∣∣∣∫ t

s
CD(r) dr

∣∣∣∣+ ∣∣∣∣∫ t

s
CD(r) dr

∣∣∣∣2+ ∣∣∣∣∫ t

s
Cg(r) dr

∣∣∣∣(1+
∣∣∣∣∫ t

s
CD(r) dr

∣∣∣∣)2

+

∣∣∣∣∫ t

s
CY (r) dr

∣∣∣∣,
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with CD = CA+Cγ /2. After two applications of∣∣∣∣∫ t

s
CD(r) dr

∣∣∣∣2 ≤ |t − s|
∣∣∣∣∫ t

s
CD(r)2 dr

∣∣∣∣≤ ∣∣∣∣∫ t

s
CD(r)2 dr

∣∣∣∣,
which is a simple consequence of the Cauchy–Schwarz inequality, we obtain

C̃(t, s)≤
∣∣∣∣∫ t

s
(c(t)(2CD +C2

D)+Cγ +Cg) dr
∣∣∣∣,

where c(t) := 1+
∫ t+1

t−1 Cg(r) dr . Thus Assumption (1.c) is true with C(t)= C̃(t)+CW (t). �

The inequalities (B-3) in the last proposition were stated with respect to L(t). For a more convenient
criterion, fix a (time-independent) Riemannian metric g0 on 6 and set γ0 := |g0|

1/2. Consider the
operator L0 defined by the form

(u | L0v) :=

∫
6

(
(Dγ0

i u)gi j
0 (t)(D

γ0
j v)+ ū v

)
.

Proposition B.2. Assume that there exists a positive Cg ∈ C(R) such that

g̃i j (t)X i X j ≥ Cg(t)g
i j
0 X i X j . (B-4)

Further, suppose that there exist ε0 ∈ C(R), ε0(t) ∈ ]0, 1[, and a positive C0 ∈ C(R) such that

ε0(t)γ 2
0 γ (t)

−2(∂iγ
−1
0 γ (t)) g̃i j (t) (∂jγ

−1
0 γ (t))+ Ỹ (t)≥ C0(t). (B-5)

Then there exists a positive C ∈ C(R) such that L0 satisfies the inequality

‖L(t)1/2u‖ ≥ C(t)‖L1/2
0 |u|‖, u ∈ Dom L(t)1/2. (B-6)

Proof. Let ε(t) := (1− 4ε0(t))−1, so that ε0(t)= 1
4(1− ε(t)

−1). Then

(u | L(t)u)

≥

∫
6

(
−(Dγ

i (t)|u|)g̃
i j (t)(Dγ

j (t)|u|)+ Ỹ (t) |u|2
)

≥

∫
6

(ε(t)− 1)(Dγ0
i |u|)g̃

i j (t)(Dγ0
j |u|)+

∫
6

(
ε0(t)γ 2

0 γ (t)
−2(∂iγ

−1
0 γ (t))g̃i j (t)(∂jγ

−1
0 γ (t))+ Ỹ (t)

)
|u|2

≥min
(
Cg(t)(1− ε(t)),C0(t)

)
(|u| | L0|u|).

In the first step we used the diamagnetic inequality

|(∂x − iV (x)) f (x)| ≥ |∂x | f (x)||

almost everywhere for real V and f such that (∂x − iV ) f exists almost everywhere. In the second step
we used the Cauchy–Schwarz inequality. �

We can apply the preceding proposition to restate Proposition B.1 using L0 instead of L(t). For this
purpose we introduce another norm on half-densitized 1-forms:

‖X‖ =
(∫

6

gi j
0 X i X j

)1/2

.



248 JAN DEREZIŃSKI AND DANIEL SIEMSSEN

Proposition B.3. In addition to (B-4) and (B-5) we suppose that for some Cg ∈ C(R)

g̃i j (t)X i X j ≤ Cg(t)g
i j
0 X i X j , X ∈ C(T ∗6).

Moreover, we assume that there are positive CY,0,Cg,0,CW,0 ∈ L1
loc(R), CA,0,Cγ,0 ∈ L2

loc(R) such that
for all t ∈ R

‖L−1/2
0 |∂t Ỹ (t)|L

−1/2
0 ‖ ≤ CY,0(t),

‖∂t W (t)L−1/2
0 ‖ ≤ CW,0(t),

‖∂t A(t)L−1/2
0 ‖ ≤ CA,0(t),

‖∂tγ (t)−1 dγ (t)L−1/2
0 ‖ ≤ Cγ,0(t),

|∂t g̃i j (t)X i X j | ≤ Cg,0(t)g
i j
0 X i X j , X ∈ C(T ∗6).

Then Assumption (1.c) is true.

Appendix C: Nonautonomous evolution equations

To make this paper more self-contained, we explain in this appendix relevant aspects of the theory of
linear evolution equations. We are more general than strictly necessary for the purposes of this paper, but
in anticipation of our upcoming work this generality could be useful. The results stated in this appendix
can be found in similar form in [Kato 1970] and in the monographs [Pazy 1983; Tanabe 1997]. We also
wish to refer to the appendix of [Bach and Bru 2016], which uses slightly different assumptions that
essentially coincide with ours for the Hilbertian case. Finally, we would like to mention [Schmid and
Griesemer 2017] which also discusses the theory of nonautonomous evolution equations on uniformly
convex Banach spaces.

Let X be a Banach space. We recall that a linear operator A on X is the generator of a strongly
continuous (one-parameter) semigroup [0,∞[ 3 t 7→ et A if and only if A is densely defined, closed and
there exist constants M ≥ 1, β ∈ R such that its resolvent satisfies

‖(A− λ)−n
‖ ≤ M(λ−β)−n, λ > β, n = 1, 2, . . . . (C-1)

Then we have ‖et A
‖ ≤ Meβt and say that et A is a semigroup of type (M, β). If both A and −A generate

strongly continuous semigroups, they generate a strongly continuous (one-parameter) group R 3 t 7→ et A.
If

‖(A− λ)−1
‖ ≤ (λ−β)−1, λ > β, (C-2)

then (C-1) is true with M = 1. Thus ‖et A
‖ ≤ Meβt, so that et (A−β) is a semigroup of contractions.

Let Y be another Banach space which is densely and continuously embedded in X .

Definition C.1. By the part of A on Y we mean the operator Ã, which is the restriction of A to the
domain

Dom( Ã) := {y ∈ Dom(A)∩Y | Ay ∈ Y}.

Definition C.2. Y is called A-admissible if the semigroup et A, t ∈ [0,∞[, leaves Y invariant and its
restriction to Y is a strongly continuous semigroup on Y .
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In the following we consider a family {A(t)}t∈[0,T ] of generators of a strongly continuous semigroup.
We chose the interval [0, T ] for convenience and definiteness; the generalization to other intervals is
straightforward.

Definition C.3. The family {A(t)}t∈[0,T ] is called stable with stability constants M ≥ 1, β ∈ R, if∥∥∥∥ k∏
j=1

(A(tj )− λ)
−1
∥∥∥∥≤ M(λ−β)−k, λ > β,

for all finite sequences 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ T, k = 1, 2, . . . . Here and below such products are
time-ordered (viz., factors with a larger tj are to the left of factors with a smaller tj ).

Proposition C.4. If {A(t)}t∈[0,T ] is stable with stability constants M, β, then∥∥∥∥ k∏
j=1

eµj A(tj )

∥∥∥∥≤ Meβ(µ1+···+µk), µj ≥ 0.

Proof. The proof is straightforward; see, e.g., [Tanabe 1997, Proposition 7.3]. �

The following simple generalization of [Kato 1970, Proposition 3.4] gives a criterion for the stability
using an assumption of the form (C-2) for a time-dependent norm:

Proposition C.5. For each t ∈ [0, T ], let ‖ · ‖t be an equivalent norm on X and C ∈ L1
[0, T ] positive

such that

‖u‖s ≤ ‖u‖t exp
∣∣∣∣∫ t

s
C(r) dr

∣∣∣∣, u ∈ X , s, t ∈ [0, T ]. (C-3)

If {A(t)} satisfies
‖(A(t)− λ)−1

‖t ≤ (λ−β)
−1, λ > β, (C-4)

for all t ∈ [0, T ], then for any s ∈ [0, T ]∥∥∥∥ k∏
j=1

(A(tj )− λ)
−1
∥∥∥∥

s
≤ (λ−β)−k exp

(∫ T

0
2C(r) dr

)
, t1 ≤ s ≤ tk,

for every finite sequence 0≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ T.

Proof. Repeated application of (C-3) and (C-4) yields∥∥∥∥ k∏
j=1

(A(tj )− λ)
−1u

∥∥∥∥
tk

≤ (λ−β)−1
∥∥∥∥k−1∏

j=1

(A(tj )− λ)
−1u

∥∥∥∥
tk

≤ (λ−β)−1 exp
(∫ tk

tk−1

C(r) dr
)∥∥∥∥k−1∏

j=1

(A(tj )− λ)
−1u

∥∥∥∥
tk−1

...

≤ (λ−β)−k exp
(∫ tk

t1
C(r) dr

)
‖u‖t1 .

Applying (C-3) twice more (for s and tk , as well as s and t1), we obtain the desired result. �
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Let us start with a rather general theorem on the construction of evolution operators; see also [Kato
1970, Theorem 4.1; Tanabe 1997, Theorem 7.1]. Note that the properties of the evolution operator
described in this theorem are rather modest.

Theorem C.6. Assume that:

(a) {A(t)}t∈[0,T ] is stable with constants M, β.

(b) Y is A(t)-admissible for each t , and the part Ã(t) of A(t) in Y is stable with constants M̃, β̃.

(c) Y ⊂ Dom A(t) so that A(t) ∈ B(Y,X ) for each t , and t 7→ A(t) is norm-continuous in the norm of
B(Y,X ).

Then there exists a unique family of bounded operators {U (t, s)}0≤s≤t≤T , on X , called the evolution
(operator) generated by A(t), with the following properties:

(i) For all 0≤ r ≤ s ≤ t ≤ T, we have the identities

U (t, t)= 1, U (t, s)U (s, r)=U (t, r).

(ii) (t, s) 7→U (t, s) is strongly X -continuous and ‖U (t, s)‖X ≤ Meβ(t−s).

(iii) For all y ∈ Y and 0≤ s ≤ t ≤ T,

∂+t U (t, s)y|t=s = A(s)y, (C-5a)

−∂sU (t, s)y =U (t, s)A(s)y, (C-5b)

where the right derivative ∂+t and the derivative ∂s (right derivative if s = 0 and left derivative if
s = t) are in the strong topology of X .

Proof. We approximate A(t) by step functions: Set

An(t)= A(T btn/T c/n),

where b · c denotes the floor function, viz., rounding to the integral part. Since t 7→ A(t) is norm-continuous
in the norm of B(Y,X ), we have

‖An(t)− A(t)‖B(Y,X )→ 0 as n→∞ (C-6)

uniformly in t . It follows immediately that also An(t) and Ãn(t) are stable with constants M, β and M̃, β̃,
respectively.

Corresponding to An(t) we construct approximating evolution operators Un(t, s) by setting

Un(t, s)= e(t−s)An(s)

if s, t belong to the closure of an interval where An is constant, and by imposing the relation

Un(t, s)=Un(t, r)Un(r, s)

to determine Un(t, s) for other values of s, t . Clearly, Un(t, t) = 1 and (t, s) 7→ Un(t, s) is strongly
X -continuous. We also have

‖Un(t, s)‖X ≤ Meβ(t−s), ‖Un(t, s)‖Y ≤ M̃eβ̃(t−s) (C-7)
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by Proposition C.4, and Un(t, s)Y⊂Y because Y is A(t)-admissible. Furthermore, because Y⊂Dom A(t)
we have for y ∈ Y

∂tUn(t, s)y = An(t)Un(t, s)y,

∂sUn(t, s)y =−Un(t, s)An(s)y,

for any t or s, respectively, that is not on the boundary of an interval where An is constant.
Next we show that Un(t, s) converges to U (t, s) strongly in X uniformly in s, t : By the fundamental

theorem of calculus, we have

Un(t, r)y−Um(t, r)y =
∫ t

r
Un(t, s)(An(s)− Am(s))Um(s, r)y ds.

Applying (C-7), we thus obtain

‖Un(t, r)y−Um(t, r)y‖X ≤ M M̃eγ (t−r)
‖y‖Y

∫ t

r
‖An(s)− Am(s)‖B(Y,X ) ds,

where γ =max(β, β̃). Therefore it follows from (C-6) that Un(t, s)y converges in the strong topology of
X uniformly in s, t . Since Y is dense in X and Un(t, s) is uniformly bounded in n, Un(t, s) converges
strongly in X and we set

U (t, s)= s-lim
n→∞

Un(t, s).

It is immediate that the properties (i) and (ii) follow from the corresponding properties for Un(t, s).
Finally, we show uniqueness and (iii): If {V (t, s)}0≤s≤t≤T satisfies (i)–(iii) for a stable family of

operators {A′(t)}t∈[0,T ] with the same stability constants, then we apply the fundamental theorem of
calculus to find

Un(t, s)y− V (t, s)y =
∫ t

s
Un(t, r)(An(r)− A′(r))V (r, s)y dr,

and therefore

‖Un(t, s)y− V (t, s)y‖X ≤ M M̃eγ (t−s)
‖y‖Y

∫ t

s
‖An(r)− A′(r)‖B(Y,X ) dr. (C-8)

If we set A′(t)= A(t) and let n→∞, we thus find that U (t, s)y = V (t, s)y and by density U (t, s)=
V (t, s) on the whole of X . We conclude that U (t, s) is unique.

Now, in (C-8), we set A′(t)= A(τ )= const for τ ∈ [0, T ], divide by t − s and let n→∞ to obtain

(t − s)−1
‖U (t, s)y− e(t−s)A(τ )y‖X ≤ (t − s)−1 M M̃eγ (t−s)

‖y‖Y

∫ t

s
‖An(r)− A(τ )‖B(Y,X ) dr.

On the one hand, for τ = s, we find (C-5a) in the limit t→ s. On the other hand, setting τ = t and letting
t→ s, we find

∂−s U (t, s)y|s=t =−A(t)y. (C-9)

To find (C-5b), we check the right and left derivative separately. Applying (C-5a) and (C-9), we obtain

∂+s U (t, s)y = s-lim
h↘0

h−1(U (t, s+ h)y−U (t, s)y)

=U (t, s+ h) s-lim
h↘0

h−1(y−U (s+ h, s)y)=−U (t, s)A(s)y, (C-10a)
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∂−s U (t, s)y = s-lim
h↘0

h−1(U (t, s)y−U (t, s− h)y)

=U (t, s) s-lim
h↘0

h−1(y−U (s, s− h)y)=−U (t, s)A(s)y. (C-10b)

Therefore we have completed the proof also for (iii). �

We say that a Banach space Y possesses a predual if there exists a Banach space Y∗ such that Y is
the dual of Y∗. Having fixed a predual Y∗, we can equip Y with the so-called weak* topology, which is
generated by the seminorms y 7→ |ξ(y)|, where ξ ∈ Y∗. Note in particular that every reflexive Banach
space possesses a unique predual (namely, its dual). For reflexive Banach spaces the weak* convergence
clearly coincides with the weak convergence.

For Banach spaces possessing a predual one can slightly improve the previous theorem; see also [Kato
1970, Theorem 5.1].

Theorem C.7. In addition to the assumptions of Theorem C.6, assume that:

(d) Y possesses a predual.

Then, in addition to (i)–(iii), the evolution {U (t, s)}0≤s≤t≤T has the following properties:

(iv) U (t, s)Y ⊂ Y , (t, s) 7→U (t, s) is weakly* continuous and

‖U (t, r)‖Y ≤ M̃eβ̃(t−s), 0≤ r ≤ s ≤ t ≤ T . (C-11)

Proof. Note that for fixed s, t ∈ [0, T ] and y ∈ Y , Un(t, s)y is a uniformly bounded sequence in Y , and
thus, by the Banach–Alaoglu theorem, it contains a weakly* convergent subsequence. Moreover, by our
previous results, Un(t, s)y→U (t, s)y in X . But U (t, s)y must be equal to the weak* limit, and thus lie
in Y; i.e., U (t, s)Y ⊂ Y . The inequality then follows from (C-7).

Now, let (tj )j , (sj )j be sequences with tj→ t , sj→ s and y ∈Y . Recall that U (tj , sj )y→U (t, s)y in X
because (t, s) 7→U (t, s) is X -strongly continuous. By the Banach–Alaoglu theorem, since U (tj , sj ) is
uniformly bounded, U (tj , sj )y contains a weakly* convergent subsequence. The weak* limit of U (tj , sj )y
is thus U (t, s)y and must lie in Y . In other words, U (t, s) is weakly* continuous on Y . �

We recall that a normed space is called uniformly convex if for every ε>0 and unit vectors ‖x‖=‖y‖=1
there exists δ > 0 such that

‖x − y‖ ≥ ε =⇒

∥∥∥∥ x + y
2

∥∥∥∥≤ 1− δ.

We note that all uniformly convex Banach spaces are reflexive. Additionally, on uniformly convex
Banach spaces, ‖xn‖ → ‖x‖ and the weak convergence xn ⇀ x implies the strong convergence. All
Hilbert spaces are uniformly convex.

If we assume that the Banach space Y is uniformly convex, stronger results about the evolution can be
derived. They are described in the following theorem, which is a part of [Kato 1970, Theorem 5.2]:

Theorem C.8. In addition to the assumptions of Theorem C.6, assume that:

(d′) Y is uniformly convex.
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(e) For every t there exist on Y an equivalent norm ‖ · ‖Y,t as well as a positive C ∈ L1
[0, T ] such that

‖y‖Y,s ≤ ‖y‖Y,t exp
∣∣∣∣∫ t

s
C(r) dr

∣∣∣∣, s, t ∈ [0, T ]. (C-12)

Additionally, there exists β̃ ∈ R such that

‖( Ã(t)− λ)−1
‖Y,t ≤ (λ− β̃)

−1, λ > β̃,

for all t ∈ [0, T ].

Then, in addition to (i)–(iii), the evolution {U (t, s)}0≤s≤t≤T has the following property, which is an
improved version of (iv):

(iv′) U (t, s) preserves Y , is Y-strongly continuous in s for fixed t and Y-strongly right-continuous in t
for fixed s, and

‖U (t, r)‖Y,s ≤ exp
(∫ t

r
(β̃ + 2C(τ )) dτ

)
, 0≤ r ≤ s ≤ t ≤ T . (C-13)

Proof. Since Y is uniformly convex, it is also reflexive, and thus Theorem C.7(iv) holds. Then we use
Propositions C.4 and C.5 to find (C-13).

Let us prove the strong continuity. By (iv), for any y ∈ Y we have w-limt,r→s U (t, r)y→ y. Using
this, and then the bound (C-13), we obtain

‖y‖ ≤ lim inf
r,t→s

‖U (t, r)y‖Y,s ≤ lim sup
r,t→s

‖U (t, r)y‖Y,s

≤ lim sup
r,t→s

exp
(∫ t

r
(β̃ + 2C(τ )) dτ

)
‖y‖ = ‖y‖.

Hence, limr,t→s ‖U (t, r)y‖Y,s = ‖y‖. But Y is uniformly convex, so this implies

lim
r,t→s

U (t, r)y = y.

Let 0≤ s ≤ s ′ ≤ t ≤ T and y ∈ Y . Then

‖U (t, s ′)y−U (t, s)y‖Y ≤ ‖U (t, s ′)‖Y‖y−U (s ′, s)y‖Y→ 0

as s ′→ s or s→ s ′. Similarly, for 0≤ s ≤ t ≤ t ′ ≤ T we find

‖U (t ′, s)y−U (t, s)y‖Y ≤ ‖(U (t ′, t)−1)U (t, s)y‖Y→ 0

as t ′→ t . �

In the previous theorem we still had to distinguish between the t- and s-properties of U (t, s). If the
reversed operator −A(T − t) also satisfies the assumptions of the theorems above, this distinction can be
dropped; see also [Kato 1970, Remark 5.3]:

Theorem C.9. Suppose that both {A(t)}t∈[0,T ] and the reversed family {−A(T − t)}t∈[0,T ] satisfy the
assumptions of Theorems C.6 and C.8. Then the unique family of bounded operators {U (t, s)}s,t∈R

described in the previous theorems satisfies the following improved versions of (i), (iii), and (iv′):
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(i′) For all r, s, t ∈ [0, T ], we have the identities

U (t, t)= 1, U (t, s)U (s, r)=U (t, r).

(iii′) For all y ∈ Y and s, t ∈ [0, T ],
∂tU (t, s)y = A(t)U (t, s)y, (C-14a)

−∂sU (t, s)y =U (t, s)A(s)y, (C-14b)

where the derivatives (right/left derivatives at the boundaries of [0, T ]) are in the strong topology
of X .

(iv′′) (t, s) 7→U (t, s) preserves Y , is Y-strongly continuous and satisfies (C-13).

Proof. Denote the evolution for {A(t)}t∈[0,T ] by U (t, s) and the evolution for {−A(T − t)}t∈[0,T ] by
V (t, s). For 0≤ s ≤ t ≤ T, we define

U (s, t)= V (T − s, T − t).

From the approximations Un(t, s) and Vn(t, s), it is easy to see that

U (t, s)U (s, t)= 1

for s, t ∈ R. This proves (i′).
It is clear that

∂tU (t, s)y|t=s = A(s)y,

−∂sU (t, s)y =U (t, s)A(s)y

for s, t ∈ [0, T ]. Then we can proceed as in (C-10) to find also

∂tU (t, s)y = A(t)U (t, s)y.

Finally, the strong continuity of U (t, s) follows from (iv′) applied to both U (t, s) and V (t, s), which
implies, in particular, that U (t, s) is strongly right- and left-continuous in t for fixed s. �

Theorem C.9 implies the following; see also [Yajima 2011, Theorem 3.2]:

Theorem C.10. Let X and Y be Hilbert spaces such that Y is densely and continuously embedded in X .
Let I ⊂ R be a compact interval, and {A(t)}t∈I a family of densely defined, closed operators on X .
Suppose that the following is satisfied:

(a) Y ⊂ Dom A(t) so that A(t) ∈ B(Y,X ) and t 7→ A(t) is norm-continuous in the norm of B(Y,X ).

(b) For every t ∈ I , there exist on X and Y Hilbert structures ( · | · )X ,t and ( · | · )Y,t , which are equivalent
to the original ones and for a positive C ∈ L1(I ) and all s, t ∈ I

‖x‖X ,s ≤ ‖x‖X ,t exp
∣∣∣∣∫ t

s
C(r) dr

∣∣∣∣,
‖y‖Y,s ≤ ‖y‖Y,t exp

∣∣∣∣∫ t

s
C(r) dr

∣∣∣∣.
Denote the corresponding Hilbert spaces by Xt and Yt .
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(c) A(t) is self-adjoint with respect to Xt and the part Ã(t) of A(t) in Yt is self-adjoint in Yt .

Then there exists a unique family of bounded operators {U (t, s)}s,t∈I , in X , called the evolution (operator)
generated by A(t), with the following properties:

(i) For all r, s, t ∈ I , we have the identities

U (t, t)= 1, U (t, s)U (s, r)=U (t, r).

(ii) U (t, s) is X -strongly continuous and

‖U (t, s)‖X ,s ≤ exp
∣∣∣∣∫ t

s
2C(r) dr

∣∣∣∣, s, t ∈ I.

(iii) For all y ∈ Y and s, t ∈ I ,
i∂tU (t, s)y = A(t)U (t, s)y,

−i∂sU (t, s)y =U (t, s)A(s)y,

where the derivatives (right/left derivatives at the boundaries of I ) are in the strong topology of X .

(iv) U (t, s)Y ⊂ Y , U (t, s) is Y-strongly continuous and

‖U (t, s)‖Y,s ≤ exp
∣∣∣∣∫ t

s
2C(r) dr

∣∣∣∣, s, t ∈ I.

The following perturbation theorem is essentially [Kato 1966, Theorem 4.5]. We leave the proof as an
exercise to the reader.

Theorem C.11. Suppose that {A(t)}t∈[0,T ] satisfies the assumptions of Theorem C.6. Let {B(t)}t∈[0,T ]
be a family of bounded operators in X such that t 7→ B(t) is strongly continuous with respect to X and
K = supt‖B(t)‖X . Then there exists a unique evolution V (t, s) for {A(t)+ B(t)}t∈[0,T ] satisfying the
properties (i)–(iii), but with the estimate

‖V (t, s)‖ ≤ Me(β+K M)(t−s).

Suppose that {A(t)}t∈[0,T ] also satisfies the stronger assumptions of Theorem C.7, C.8 or C.9, and
{B(t)}t∈[0,T ] preserves Y and its part {B̃(t)}t∈[0,T ] in Y is bounded in Y with K̃ = supt‖B(t)‖Y . Then the
evolution V (t, s) satisfies the corresponding stronger properties, where the estimate (C-11) needs to be
multiplied by eK̃ M̃(t−s), and the estimate (C-13) by eK̃ (t−s).

The evolution V (t, s) in the theorem above is given symbolically by

V =U +U ∗ B ∗U +U ∗ B ∗U ∗ B ∗U + · · · ,

where ∗ B ∗ denotes a Volterra-type convolution with “density” B(t). For example,

(U ∗ B ∗U )(t, r)=
∫ t

r
U (t, s)B(s)U (s, r) ds.
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Appendix D: Heinz–Kato inequality

We recall the Heinz–Kato inequality [Heinz 1951; Kato 1961], which is an elementary but very useful
result for the interpolation of operators:

Theorem D.1. Suppose that A, B are positive operators on Hilbert spaces X , Y , respectively. If T is a
bounded operator from X to Y such that T (Dom A)⊂ Dom B and

‖T x‖ ≤ C0‖x‖, ‖BT x‖ ≤ C1‖Ax‖,

for x ∈ Dom A, then

‖BλT x‖ ≤ Cλ
0 C1−λ

1 ‖Aλx‖, λ ∈ [0, 1]. (D-1)

Appendix E: Finite speed of propagation

In this appendix we prove the finite speed of propagation for solutions of the Klein–Gordon equation
with coefficients of low regularity.

In this section we prefer to work with the Klein–Gordon equation in the scalar formalism, given
by (1-1), which can be locally written as

K u := −gµν(∇µ− iAµ)(∇ν − iAν)u+ Y u, (E-1)

with pseudo-Riemannian metric g and the corresponding Levi-Civita derivative ∇, vector potential A,
and scalar potential Y. Our standing assumptions in this appendix are as follows:

Assumption 4. M = R×6 is equipped with a continuous Lorentzian metric g =−α2 dt2
+ g6 , where

α > 0 and g6 are continuous, and g6 restricts to a family of Riemannian metrics on 6. (Recall that every
globally hyperbolic spacetime can be brought into this form [Bernal and Sánchez 2005].) We assume that
Aµ(t) ∈ L∞loc(6) for all t , and Aµ, Ȧµ, Y ∈ L∞loc(M). Moreover, in every compact neighborhood U ⊂ M
there is Cg > 0 such that

|ġµνXµXν | ≤ Cg|gµνXµXν |

almost everywhere in U for all covectors X .

Under these assumption we will show the following theorem on the finite speed of propagation:

Theorem E.1. If u ∈ C1(R; L2
loc(6)) with ∂i u ∈ C(R; L2

loc(6)) and K u ∈ L2
loc(M), then

supp u ⊂ J
(
supp K u ∪ {t}×(supp u(t)∪ supp u̇(t))

)
for any t ∈ R. That is, u is supported in the causal shadow of the union of K u and of the support of its
Cauchy data on {t}×6.

Equation (E-1) can be obtained via the Euler–Lagrange equations from the Lagrangian density

L[u] := −|g|1/2
(
((∂µ+ iAµ)ū)gµν((∂ν − iAν)u)+ Y |u|2

)
.
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To the Lagrangian density L we can associate the momentum flux density

Pµ[u] := −δµ0 L[u] +
∂L[u]
∂(∂µū)

∂t ū+
∂L[u]
∂(∂µu)

∂t u.

If the action for L is invariant under infinitesimal time-translations, Noether’s theorem says that the
momentum flux is conserved. If the action is not time-translation invariant, P is in general not conserved,
but it is still a useful quantity.

The energy density E =P0 obtained from L is not necessarily positive. Therefore, for technical reasons
it will be convenient to replace L with the modified Lagrangian density

L̃[u] := −|g|1/2
(
((∂µ+ iAµ)ū)gµν((∂ν − iAν)u)− (1+α−2 A2

0)|u|
2),

denoting the corresponding momentum flux density by P̃. Using the special form of the metric, we find
the energy density

Ẽ[u] := P̃ 0
[u] = |g|1/2

(
α−2
|u̇|2+ ((∂i + iAi )ū)g

i j
6 ((∂j − iAj )u)+ |u|2

)
and the spatial momentum flux density

P̃ i
[u] = P i

[u] = −|g|1/2
(
˙̄ugi j
6 ((∂j − iAj )u)+ u̇gi j

6 ((∂j + iAj )ū)
)
.

Below we will integrate ∂µP̃
µ over a region which is delimited by two constant-time surfaces and the

backward lightcone of a point as described in Figure 1. To rewrite this integral as an integral over the
boundary of said region via Stokes’ theorem, it is useful to assume that ∂ J±g (�) is a Lipschitz topological
hypersurface; see [Beem et al. 1996, Theorem 3.9]. Here we denote by J±g (�) the causal future (+) or
causal past (−) of�, i.e., the set of points which can be reached from� by future-directed or, respectively,
past-directed causal curves with respect to the metric g. Moreover, we write Jg(�)= J+g (�)∪ J−g (�).

If g is not smooth (or at least C2), it is not guaranteed that ∂ J±g (�) is a Lipschitz topological
hypersurface. However, we can approximate g by smooth metrics:

If a Lorentzian metric ĝ has strictly larger lightcones than g, i.e., each nonvanishing g-causal vector
Xµ (gµνXµXν

≤ 0) is ĝ-timelike (ĝµνXµXν < 0), then we write

ĝ � g.

As shown in [Chruściel and Grant 2012, Proposition 1.2], there always exists a smooth Lorentzian metric ĝ
with strictly larger lightcones which approximates g arbitrarily well.

Proposition E.2. Let ĝ � g be smooth and consider the situation depicted in Figure 1. Then there exists
C > 0 such that

eC(s−t)
∫

Kt

Ẽ[u](t)≤
∫

Ks

Ẽ[u](s)+
∫
�

|g|1/2|K u|2 (E-2)

for all u ∈ C1(R; L2
loc(6)) with ∂i u ∈ C(R; L2

loc(6)) and K u ∈ L2
loc(M).
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�

6s
Ks

6t
Kt

3

x

Figure 1. The truncated cone given by the backward lightcone J−ĝ (x) of a point, and two
constant-time surfaces6t ={t}×6 and6s (with t > s). We write Kt = J−ĝ (x)∩({t}×6)
and Ks for the caps, and 3= ∂ J−ĝ (x)∩ ([s, t]×6) for the mantle of the truncated cone
�= J−ĝ (x)∩ ([s, t]×6).

Proof. We derive

∂µP̃
µ
[u] = −∂t L̃[u]+

(
∂µ
∂L̃[u]
∂(∂µū)

)
˙̄u+

∂L̃
∂(∂µū)

∂µ∂t ū+
(
∂µ

∂L̃
∂(∂µu)

)
u̇+

∂L̃[u]
∂(∂µu)

∂µ∂t u

=−∂t L̃[u]+
(
|g|1/2 K̃ u+

∂L̃[u]
∂ ū

)
˙̄u+

∂L̃[u]
∂(∂µū)

∂t∂µū+
(
|g|1/2 K̃ u+

∂L̃[u]
∂u

)
u̇+

∂L̃[u]
∂(∂µu)

∂t∂µu

=−2|g|1/2 Re( ˙̄uK̃ u)−
∂L̃[u]
∂gµν

ġµν−
∂L̃[u]
∂Aµ

Ȧµ−
∂L̃[u]
∂|g|

∂t |g|

= |g|1/2
(
2 Re( ˙̄uK̃ u)+((∂µ+iAµ)ū)ġµν((∂ν−iAν)u)−2α−3α̇A2

0|u|
2

−2 Im(ū Ȧµgµν(∂ν−iAν)u)+2α−2 A0 Ȧ0|u|2− 1
2 |g|

−1(∂t |g|)L̃[u]
)
.

where, in the second step, we used the Euler–Lagrange equations with

K̃ = K − Y + 1+α−2 A2
0

being the Klein–Gordon operator associated to L̃. Estimating each term separately using our assumptions
and the Cauchy–Schwarz inequality yields

∂µP̃
µ
[u] ≤ |g|1/2

(
|K u|2+C1α

−2
|u̇|2+C2((∂i + iAi )ū)g

i j
6 ((∂j + iAj )u)+C3|u|2

)
for C1,C2,C3 > 0 which do not depend on u. Therefore we find∫

�

∂µP̃
µ
[u] ≤

∫
�

(|g|1/2|K u|2+C Ẽ[u]) (E-3)

for some constant C > 0.
By Stokes’ theorem,∫

�

∂µP̃
µ
[u] =

∫
∂�

nµP̃
µ
[u] =

∫
Kt

Ẽ[u](t)−
∫

Ks

Ẽ[u](s)+
∫
3

nµP̃
µ
[u], (E-4)
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where n is the outward-directed normal field to ∂�. For any future-directed causal covector field ξ (i.e.,
gµνξµξν ≤ 0 and ξ0 ≥ 0) with |Eξ | = (gi j

6ξiξj )
1/2,

ξµP̃
µ
[u] = ξ0Ẽ[u] − 2|g|1/2 Re(ξi ˙̄ugi j

6 (∂j − iAj )u)

≥ ξ0Ẽ[u] − |g|1/2α|Eξ |
(
α−2
|u̇|2+ ((∂i + iAi )ū)g

i j
6 ((∂j − iAj )u)

)
≥ (ξ0−α|Eξ |)Ẽ[u] ≥ 0

almost everywhere. Consequently, we can estimate the last term in (E-4) as
∫
3

nµP̃
µ
≥ 0.

Combining (E-3) and (E-4), we obtain∫
Kt

Ẽ[u](t)−
∫

Ks

Ẽ[u](s)≤
∫ t

s

(∫
Kr

(|g|1/2|K u(r)|2+C Ẽ[u](r))
)

dr,

and thus (E-2) by Grönwall’s inequality. �

Now, using the proposition above, we can show the finite speed of propagation:

Theorem E.3. If u ∈ C1(R; L2
loc(6)) with ∂i u ∈ C(R; L2

loc(6)) and K u ∈ L2
loc(M), then

supp u ∩M± ⊂ J±g
(
(supp K u ∩M±)∪ {t}×(supp u(t)∪ supp u̇(t))

)
,

supp u ⊂ Jg
(
supp K u ∪ {t}×(supp u(t)∪ supp u̇(t))

) (E-5)

for any t ∈ R, where M+ = [t,+∞[×6 and M− = ]−∞, t]×6.

Proof. Note that, as a subset of 6, we have supp Ẽ[u](t)= supp u(t)∪ supp u̇(t). We show that u(x)= 0
for any

x ∈ M \ J+ĝ ((supp K u ∩M+)∪ {t}× supp Ẽ[u](t))

by an application of Proposition E.2 for all smooth ĝ � g. For any such x , J−ĝ (x) does not intersect
(supp K u ∩ M+)∪ {t}× supp Ẽ[u](t). Proposition E.2 now shows that u vanishes in J−ĝ (x)∩ M+ and
thus also at x .

We have thus shown that

supp u ∩M± ⊂ J±ĝ
(
(supp K u ∩M±)∪ {t}×(supp u(t)∪ supp u̇(t))

)
for all smooth ĝ � g. It follows that (E-5) holds, because a vector is g-causal if and only if it is ĝ-timelike
for all smooth ĝ � g by [Chruściel and Grant 2012, Proposition 1.5] and therefore

J±g (�)=
⋂
ĝ�g

J±ĝ (�), �⊂ M.

The embedding for J− follows by time reversal and the remaining embedding by the union of the
embeddings for J+ and J−. �
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[Chruściel and Grant 2012] P. T. Chruściel and J. D. E. Grant, “On Lorentzian causality with continuous metrics”, Classical
Quantum Gravity 29:14 (2012), art. id. 145001. MR Zbl

[Dappiaggi et al. 2018a] C. Dappiaggi, N. Drago, and H. Ferreira, “Fundamental solutions for the wave operator on static
Lorentzian manifolds with timelike boundary”, preprint, 2018. arXiv

[Dappiaggi et al. 2018b] C. Dappiaggi, H. Ferreira, and A. Marta, “Ground states of a Klein–Gordon field with Robin boundary
conditions in global anti-de Sitter spacetime”, preprint, 2018. arXiv
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We study the nonlinear stability of the Cauchy horizon in the interior of extremal Reissner–Nordström
black holes under spherical symmetry. We consider the Einstein–Maxwell–Klein–Gordon system such
that the charge of the scalar field is appropriately small in terms of the mass of the background extremal
Reissner–Nordström black hole. Given spherically symmetric characteristic initial data which approach
the event horizon of extremal Reissner–Nordström sufficiently fast, we prove that the solution extends
beyond the Cauchy horizon in C0, 1

2 ∩W 1,2
loc , in contrast to the subextremal case (where generically the

solution is C0
\ (C0, 1

2 ∩W 1,2
loc )). In particular, there exist nonunique spherically symmetric extensions

which are moreover solutions to the Einstein–Maxwell–Klein–Gordon system. Finally, in the case that
the scalar field is chargeless and massless, we additionally show that the extension can be chosen so that
the scalar field remains Lipschitz.
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1. Introduction

In this paper, we initiate the study of the interior of dynamical extremal black holes. The Penrose diagram
corresponding to maximal analytic extremal Reissner–Nordström and Kerr spacetimes is depicted in
Figure 1. In particular, if one restricts to a globally hyperbolic subset with an (incomplete) asymptotically
flat Cauchy hypersurface (see the region D+(6) in Figure 1), then these spacetimes possess smooth
Cauchy horizons CH+, whose stability property is the main object of study of this paper.
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Since the pioneering work [Poisson and Israel 1989] and the seminal works [Dafermos 2003; 2005]
in the spherically symmetric setting, we now have a rather complete understanding of the interior of
dynamical black holes which approach subextremal limits along the event horizon, at least regarding the
stability of the Cauchy horizons. The works [Costa et al. 2015b; Dafermos 2003; 2005; 2014; Franzen
2016; Hintz 2017; Kommemi 2013; Luk 2018] culminated in the recent work [Dafermos and Luk 2017],
which proves the C0 stability of the Kerr Cauchy horizon without any symmetry assumptions; i.e., they
show that whenever the exterior region of a black hole approaches a subextremal, strictly rotating Kerr
exterior, then maximal Cauchy evolution can be extended across a nontrivial piece of Cauchy horizon as a
Lorentzian manifold with continuous metric. Moreover, it is expected that for a generic subclass of initial
data, the Cauchy horizon is an essential weak null singularity, so that there is no extension beyond the
Cauchy horizon as a weak solution to the Einstein equations; see [Dafermos 2005; Gleeson 2016; Luk
and Oh 2017a; 2017b; Luk and Sbierski 2016; Van de Moortel 2018] for recent progress and discussion.

On the other hand, much less is known about dynamical black holes which become extremal along the
event horizon. Mathematically, the only partial progress was made for a related linear problem, namely the
study of the linear scalar wave equation on extremal black hole backgrounds. For the linear scalar wave
equation, the first author established [Gajic 2017a; 2017b] that in the extremal case, the Cauchy horizon
is more stable than its subextremal counterpart. In particular, the solutions to linear wave equations are
not only bounded, as in the subextremal case, but they in fact obey higher regularity bounds which fail
in the subextremal case (see Section 1A for a more detailed discussion). Extrapolating from the linear
result, it may be conjectured that in the interior of a black hole which approaches an extremal black hole
along the event horizon, not only does the solution remain continuous up to the Cauchy horizon as in
the subextremal case, but in fact there are nonunique extensions beyond the Cauchy horizon as weak
solutions. This picture, if true, would also be consistent with the numerical study of this problem by
Murata, Reall and Tanahashi [Murata et al. 2013].

In this paper, we prove that this picture holds in a simple nonlinear setting. More precisely, we study
the Einstein–Maxwell–Klein–Gordon system of equations with spherically symmetric initial data (see
Section 3 for further discussions on the system). We solve for a quintuple (M, g, φ, A, F), where (M, g)
is a Lorentzian metric, φ is a complex-valued function on M, and A and F are real 1- and 2-forms on M
respectively. The system of equations is

Ricµν − 1
2 gµνR = 8π(T(sf)

µν +T
(em)
µν ),

T
(sf)
µν =

1
2 DµφDνφ+

1
2 DµφDνφ−

1
2 gµν((g−1)αβDαφDβφ+m2

|φ|2),

T
(em)
µν = (g−1)αβFµαFνβ − 1

4 gµν(g−1)αβ(g−1)γ σ Fαγ Fβσ ,

(g−1)αβDαDβφ =m2φ,

F = d A,

(g−1)αµ∇αFµν = 2π ie(φDνφ− φ̄Dνφ).

(1-1)

Here, ∇ denotes the Levi–Civita connection associated to the metric g, and Ric and R denote the Ricci
tensor and the Ricci scalar, respectively. We also use the notation Dα =∇α + ieAα , and m≥ 0, e ∈ R are
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fixed constants. The extremal Reissner–Nordström solution (see Section 3) is a special solution to (1-1)
with a vanishing scalar field φ.

In the following we will restrict the parameters so that |e| is sufficiently small in terms of M. More
precisely, we assume

1− (10+ 5
√

6− 3
√

9+ 4
√

6)|e|M > 0. (1-2)

Under the assumption (1-2), our main result can be stated informally as follows (we refer the reader to
Theorem 5.1 for a precise statement):

Theorem 1.1. Consider the characteristic initial value problem to (1-1) with spherically symmetric
smooth characteristic initial data on two null hypersurfaces transversely intersecting at a 2-sphere.
Assume that one of the null hypersurfaces is affine complete and that the data approach the event horizon
of extremal Reissner–Nordström at a sufficiently fast rate.

Then, the solution to (1-1) arising from such data, when restricted to a sufficiently small neighborhood
of timelike infinity (i.e., a neighborhood of i+ in Figure 1), satisfies the following properties:

• It possesses a nontrivial Cauchy horizon.

• The scalar field, the metric, the electromagnetic potential (in an appropriate gauge) and the charge
can be extended in (spacetime) C0, 1

2 ∩W 1,2
loc up to the Cauchy horizon. Moreover, the Hawking mass

(2-10) can be extended continuously up to the Cauchy horizon.

• The metric converges to that of extremal Reissner–Nordström towards timelike infinity and the scalar
field approaches 0 towards timelike infinity in an appropriate sense.

Moreover, the maximal globally hyperbolic solution is future extendible (nonuniquely) as a spherically
symmetric solution to (1-1).

Remark 1.2 (solutions with regularity below C2). The extensions of the solution we construct have
regularity below (spacetime) C2 and as such do not make sense as classical solutions. As is well known,
however, the Einstein equations admit a weak formulation which makes sense already if the metric is in
(spacetime) C0

∩W 1,2
loc and the stress-energy-momentum tensor is in spacetime L1

loc [Geroch and Traschen
1987]. The weak formulation can be recast geometrically as follows: given a smooth (3+1)-dimensional
manifold M, a C0

loc∩W 1,2
loc Lorentzian metric g and an L1

loc symmetric 2-tensor T, we say that the Einstein
equation Ric(g)− 1

2 gR(g)= 8πT is satisfied weakly if for all smooth and compactly supported vector
fields X, Y, ∫

M
((∇µX)µ(∇νY )ν − (∇µX)ν(∇νY )µ)= 8π

∫
M

(
T (X, Y )− 1

2 g(X, Y ) trg T
)
.

It is easy to check that any classical solution is indeed a weak solution in the sense above. Moreover, the
extensions that we construct in Theorem 1.1 have more than sufficient regularity to be interpreted in the
sense above.

However, in our setting we do not need to use the notion in [Geroch and Traschen 1987]. Instead,
we introduce a stronger notion of solutions, defined on a quotient manifold for which we quotiented
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Figure 1. Maximal analytically extended extremal Reissner–Nordström.

out the spherical symmetry; see Definition 10.4. This class of solutions — even though they are not
classical solutions — should be interpreted as strong solutions (instead of just weak solutions) since a
well-posedness theory can be developed for them;1 see Section 10.

Remark 1.3 (contrast with the subextremal case). Like in the subextremal case, the solution extends in
C0 to the Cauchy horizon. However, the C0, 1

2 ∩W 1,2
loc extendibility and the finiteness of the Hawking

mass, as well as the extendibility as a spherically symmetric solution, stand in contrast to the subextremal
case. In particular, according to the results of [Luk and Oh 2017b; ≥ 2019], see also [Dafermos 2005],
there are solutions which asymptote to subextremal Reissner–Nordström black holes in the exterior region
such that the Hawking mass blows up at the Cauchy horizon, and the solution cannot be extended as a
spherically symmetric solution to the Einstein–Maxwell-scalar field system.2

Remark 1.4 (regularity of the metric and extensions as solutions to (1-1)). The fact that we can extend
the solutions beyond the Cauchy horizon is intimately connected to the regularity of the solutions up to

1 In fact, in order to develop a well-posedness theory for strong solutions, one can even drop the assumption of spherical
symmetry, and instead require additional regularity along the “spherical directions” with respect to an appropriately defined
double null foliation gauge; see [Luk and Rodnianski 2017] for details.

2Though the estimates in [Luk and Oh 2017b] strongly suggest that the scalar field ceases to be in W 1,2
loc for any C0 extension

of the spacetime, this remains an open problem unless spherical symmetry is imposed. In particular, it is not known whether the
solutions constructed in [Luk and Oh 2017b; ≥ 2019] can be extended as weak solutions to the Einstein–Maxwell-scalar field
system if no spherical symmetry assumption is imposed.
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the Cauchy horizon. In particular this relies on the fact the metric, the scalar field and the electromagnetic
potential remain in (spacetime) C0

∩W 1,2
loc . In fact, the solutions are at a level of regularity for which

the Einstein equations are still locally well-posed.3 One can therefore construct extensions beyond the
Cauchy horizon by solving appropriate characteristic initial value problems; see Section 10.

In this connection, note that we emphasized in the statement of the theorem that the solution can be
extended beyond the Cauchy horizon as a spherically symmetric solution to (1-1). The emphasis on the
spherical symmetry of the extension is made mostly to contrast with the situation in the subextremal
case (see Remark 1.3). This should not be understood as implying that the extensions necessarily are
spherically symmetric: In fact, with the bounds that we establish in this paper, one can in principle
construct using the techniques in [Luk and Rodnianski 2017] extensions (still as solutions to (1-1)) without
any symmetry assumptions (see footnote 1).

Remark 1.5 (assumptions on the event horizon). The assumptions we impose on the event horizon are
consistent with the expected late-time behavior of the solutions in the exterior region of the black hole, at
least in the e=m= 0 case if one extrapolates from numerical results [Murata et al. 2013]. In particular,
the transversal derivative of the scalar field is not required to decay along the event horizon, and is
therefore consistent with the Aretakis instability [2015]. Of course, in order to completely understand
the structure of the interior, one needs to prove that the decay estimates along the event horizon indeed
hold for general dynamical solutions approaching these extremal black holes. This remains an open
problem.

Remark 1.6 (range of parameters of e and M). Our result only covers a limited range of parameters of
the model; see (1-2). This restriction comes from a Hardy-type estimate used to control the renormal-
ized energy (see Sections 1B and 8B) and we have not made an attempt to obtain the sharp range of
parameters.

Remark 1.7 (the m= e= 0 case and higher regularity for φ). In the special case m= e= 0, the analysis
is simpler and we obtain a stronger result; namely, we show that the scalar field in fact is Lipschitz up to
the Cauchy horizon (see Theorem 5.5).

Remark 1.8 (the m 6= 0, e 6= 0 case). While the result we obtain in the m 6= 0, e 6= 0 case is weaker, the
general model allows for the charge of the Maxwell field to be nonconstant, and serves as a better model
problem for the stability of the extremal Cauchy horizon without symmetry assumptions. Another reason
that we do not restrict ourselves to the simpler m = e = 0 case is that in the m = e = 0 case, extremal
black holes do not naturally arise dynamically:

• There are no one-ended black holes with nontrivial Maxwell field with regular data on R3 since in
that setting the Maxwell field necessarily blows up at the axis of symmetry.

3Note that in general the Einstein equations are not locally well-posed with initial data only in C0
∩W 1,2. Nevertheless, when

there is spherical symmetry (away from the axis of symmetry), or at least when there is additional regularity in the spherical
directions (see footnote 1), one can indeed develop a local well-posedness theory with such low regularity.



268 DEJAN GAJIC AND JONATHAN LUK

• In the two-ended case, given future-admissible4 (in the sense of [Dafermos 2014]) initial data, the
solution always approaches subextremal black holes in each connected component of the exterior
region [Kommemi 2013; Luk and Oh 2017b].

On the other hand, if e 6= 0, then in principle there are no such obstructions.5

Remark 1.9 (geometry of the black hole interior). One feature of the black hole interior of extremal
Reissner–Nordström is that it is free of radial trapped surfaces — a stark contrast to the subextremal case
(where every sphere of symmetry is the black hole interior is trapped!). Let us note that this feature
has sometimes been taken as the defining feature of spherically symmetric extremal black holes; see for
instance [Israel 1986]. We will not use this definition in this paper, and when talking about “extremal
black holes”, we will only be referring to black holes which converge to a stationary extremal black hole
along the event horizon as in Theorem 1.1. Indeed, while our estimates imply that for the solutions in
Theorem 1.1 the geometry of the black hole interior is close to that of extremal Reissner–Nordström, it
remains an open problem in the general case whether the black hole interior contains any radial trapped
surface.6

The fact that the extremal Cauchy horizons are “more stable” than their subextremal counterparts
can be thought of as related to the vanishing of the surface gravity in the extremal case. Recall that in
both the extremal and subextremal charged Reissner–Nordström spacetimes, there is a global infinite
blue shift effect such that the frequencies of signals sent from the exterior region into the black hole
are shifted infinitely to the blue [Penrose 1968]. As a result, this gives rise to an instability mechanism.
Indeed, Sbierski [2015] showed7 that for the linear scalar wave equation on both extremal and subextremal
Reissner–Nordström spacetime, there exist finite energy Cauchy data which give rise to solutions that are
not W 1,2

loc at the Cauchy horizon. On the other hand, as emphasized in [Sbierski 2015], these types of
considerations do not take into account the strength of the blue shift effect and do not give information
on the behavior of the solutions arising from more localized data. Heuristically, for localized data, one
needs to quantify the amplification of the fields by a “local” blue shift effect at the Cauchy horizon,
whose strength can be measured by the surface gravity. In this language, what we see in Theorem 1.1 is a
manifestation of the vanishing of the local blue shift effect at the extremal limit.

This additional stability of the extremal Cauchy horizon due to the vanishing of the surface gravity
may at the first sight seem to make the problem simpler than its subextremal counterpart. Ironically, from

4The future-admissibility condition can be thought of as an analogue of the physical “no antitrapped surface” assumption in
the one-ended case.

5Nevertheless, it is an open problem to construct a dynamical black hole with regular data that settles down to an extremal
black hole.

6Note however that in the e=m= 0 case, if we assume in addition that ∂U r < 0 everywhere along the event horizon, we
can in principle modify the monotonicity argument of [Kommemi 2013] in establishing the subextremality of two-ended black
holes (see Remark 1.8) to show that the interior in the extremal case is free of radial trapped surfaces. Indeed, the argument of
[loc. cit.] exactly proceeds by (1) showing that there are no interior trapped surfaces in the interior of extremal black holes and
(2) establishing a contradiction with the future-admissibility condition. See also the appendix of [Luk and Oh 2017b].

7This statement is technically not explicitly proven in [Sbierski 2015], but it follows from the result there together with
routine functional analytic arguments.
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the point of view of the analysis, the local blue shift effect in the subextremal case in fact provides a way
to prove stable estimates! This method fails at the extremal limit.

To further illustrate this, first note that in the presence of the blue shift effect, one necessarily proves
degenerate estimates. By exploiting the geometric features of the interior of subextremal black holes, the
following can be shown: when proving degenerate energy-type estimates, by choosing the weights in
the estimates appropriately, one can prove that the bulk spacetime integral terms (up to a small error)
have a good sign, and can be used to control the error terms; see the discussions in the introduction of
[Dafermos and Luk 2017]. As a consequence, one can in fact obtain a stability result for a large class
of nonlinear wave equations with a null condition, irrespective of the precise structure of the linearized
system. This observation is also at the heart of [loc. cit.].

In the extremal case, however, it is not known how to obtain a sufficiently strong coercive bulk spacetime
integral term when proving energy estimates. Moreover, if one naively attempts to control the spacetime
integral error terms by using the boundary flux terms of the energy estimate and Grönwall’s lemma, one
encounters a logarithmic divergence. To handle the spacetime integral error terms, we need to use more
precise structures of the equations, and we will show that there is a cancellation in the weights appearing
in the bulk spacetime error terms. This improvement of the weights then allows the bulk spacetime error
terms to be estimated using the boundary flux terms and a suitable adaptation8 of Grönwall’s lemma.
In particular, we need to use the fact that (1) a renormalized energy can be constructed to control the
scalar field and the Maxwell field simultaneously, and that (2) the equations for the matter fields and the
equations for the geometry are “sufficiently decoupled” (see Section 1B). These structures seem to be
specific to the spherically symmetric problem: to what extent this is relevant to the general problem of
stability of extremal Cauchy horizons without symmetry assumptions remains to be seen.

The study of the stability properties of subextremal Cauchy horizons is often motivated by the strong
cosmic censorship conjecture. The conjecture states that solutions arising from generic asymptotically
flat initial data are inextendible as suitably regular Lorentzian manifolds. In particular, the conjecture,
if true, would imply that smooth Cauchy horizons, which are present in both extremal and subextremal
Reissner–Nordström spacetimes, are not generic in black hole interiors. As we have briefly discussed
above, there are various results establishing this in the subextremal case; see for example [Dafermos
2005; Luk and Oh 2017b; ≥ 2019; Van de Moortel 2018]. In fact, one expects that generically, if a
solution approaches a subextremal black hole at the event horizon, then the spacetime metric does not
admit W 1,2

loc extensions beyond the Cauchy horizon; see discussions in [Dafermos and Luk 2017]. On the
other hand, our result shows that at least in our setting, this does not occur for extremal Cauchy horizons.
Nevertheless, since one expects that generic dynamical black hole solutions are nonextremal, our results,
which only concern black holes that become extremal in the limit, are in fact irrelevant to the strong
cosmic censorship conjecture. In particular, provided that extremal black holes are indeed nongeneric
as is expected, the rather strong stability that we prove in this paper does not pose a threat to cosmic
censorship.

8In fact, using the smallness parameters in the problem, this will be implemented without explicitly resorting to Grönwall’s
lemma.
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Finally, even though our result establishes the C0, 1
2 ∩W 1,2

loc stability of extremal Cauchy horizons in
spherical symmetry, it still leaves open the possibility of some higher derivatives of the scalar field or the
metric blowing up (say, the Ck norm blows up for some k ∈ N). Whether this occurs or not for generic
data remains an open problem.

1A. Previous results on the linear wave equation. In this section, we review the results established in
[Gajic 2017a; 2017b] concerning the behaviour of solutions to the linear wave equation �gφ = 0 in the
interior of extremal black holes. The results concern the following cases:

• general solutions on extremal Reissner–Nordström,

• general solutions on extremal Kerr–Newman with sufficiently small specific angular momentum,

• axisymmetric solutions on extremal Kerr.

In each of these cases, the following results are proven (in a region sufficiently close to timelike infinity):

(A) φ is bounded and continuously extendible up to the Cauchy horizon.

(B) φ is C0,α up to the Cauchy horizon for all α ∈ (0, 1).

(C) φ has finite energy and is W 1,2
loc up to the Cauchy horizon.

As we mentioned earlier, these results are in contrast with the subextremal case; (A) holds also for
subextremal Reissner–Nordström and Kerr [Franzen 2016; Hintz 2017], (B) is false9 on subextremal
Reissner–Nordström [Dafermos 2005; Angelopoulos et al. 2018] and (C) is false on both subextremal
Reissner–Nordström and Kerr [Luk and Oh 2017a; Luk and Sbierski 2016]. (In fact, in subextremal
Reissner–Nordström, generic solutions fail to be in W 1,p

loc for all p> 1; see [Dafermos 2005; Angelopoulos
et al. 2018; Gleeson 2016].)

At this point, it is not clear whether the estimates in [Gajic 2017a; 2017b] are sharp. In the special
case of spherically symmetric solutions on extremal Reissner–Nordström, [Gajic 2017a] proves that the
solution is in fact C1 up to the Cauchy horizon. Moreover, if one assumes more precise asymptotics along
the event horizon (motivated by numerics), then it is shown that spherically symmetric solutions are C2.

Our results in the present paper can be viewed as an extension of those in [Gajic 2017a] to a nonlinear set-
ting. In particular, we show that even in the nonlinear (although only spherically symmetric) setting, φ still
obeys (A) and (C), and satisfies (B) in the subrange α ∈

(
0, 1

2

]
. Moreover, the metric components, the elec-

tromagnetic potential, and the charge, in appropriate coordinate systems and gauges, verify similar bounds.

1B. Ideas of the proof.

Model linear problems. The starting point of the analysis is to study linear systems of wave equations
on fixed extremal Reissner–Nordström background. A simple model of such a system is the following
(where a, b, c, d ∈ R):

�geRNφ = aφ+ bψ, �geRNψ = cψ + dφ. (1-3)

9This result is not explicitly stated in the literature, but can be easily inferred given the sharp asymptotics for generic solutions
in [Angelopoulos et al. 2018] and the blowup result in [Dafermos 2005] appropriately adapted to the linear setting.
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It turns out that in the extremal setting, we still lack an understanding of solutions to such a model system in
general. (This is in contrast to the subextremal case, where the techniques of [Franzen 2016; Dafermos and
Luk 2017] show that solutions to the analogue of (1-3) are globally bounded for any fixed a, b, c, d ∈ R.)

Instead, we can only handle some subcases of (1-3). Namely, we need a ≥ 0, c ≥ 0 and b = d = 0.
Put differently, this means that we can only treat decoupled Klein–Gordon equations with nonnegative
mass. Remarkably, as we will discuss later, although the linearized equations of (1-1) around extremal
Reissner–Nordström are more complicated than decoupled Klein–Gordon equations with nonnegative
masses, one can find a structure in the equations so that the ideas used to handle special subcases of (1-3)
can also apply to the nonlinear problem at hand.

Estimates for linear fields using ideas in [Gajic 2017a]. The most simplified case of (1-3) is the linear
wave equation with zero potential �geRNφ = 0. In the interior of extremal Reissner–Nordström spacetime,
this has been treated by the first author in [Gajic 2017a]. That paper is based on the vector field multiplier
method, which obtains L2-based energy estimates for the derivatives of φ. The vector field multiplier
method can be summarized as follows: Consider the stress-energy-momentum tensor

Tµν = ∂µφ ∂νφ−
1
2 gµν(g−1)αβ ∂αφ ∂βφ.

For a well-chosen vector field V, one can then integrate the identity for the current TµνV ν,

∇
µ(TµνV ν)= 1

2 Tµν(∇
µV ν
+∇

νV µ),

to obtain an identity relating a spacetime integral and a boundary integral.
When V is casual, future-directed and Killing, the above identity yields a coercive conservation law.

In the interior of extremal Reissner–Nordström ∂t =
1
2(∂v + ∂u) (see the definition of (u, v)-coordinates

in Section 3) is one such vector field. This vector field, however, is too degenerate near the event
horizon and the Cauchy horizon, and one expects the corresponding estimates to be of limited use in a
nonlinear setting. A crucial observation in [Gajic 2017a] is that the vector field V = |u|2 ∂u + v

2 ∂v (in
Eddington–Finkelstein double null coordinates, see Section 3) can give a useful, stronger, estimate. More
precisely, V = |u|2 ∂u + v

2 ∂v has the following properties:

(1) V is a nondegenerate vector field at both the event horizon and the Cauchy horizon.

(2) V is causal and future-directed. Hence, together with (1), this shows that the current associated to V,
when integrated over null hypersurfaces, corresponds to nondegenerate energy.

(3) Moreover, although V is not Killing, ∇µV ν
+∇

νV µ has a crucial cancellation10 so that the spacetime
error terms can be controlled by the boundary integrals.

These observations allow us to close the estimate and to obtain nondegenerate L2 control for the derivatives
of φ. Furthermore, the boundedness of such energy implies

|φ|(u, v). Data(v)+ |u|−
1
2 , (1-4)

10More precisely, ∇vV u
+∇

u V v =− 1
2�
−2(∂uu2

+∂vv
2
+�−2(u2 ∂u+v

2 ∂v)�
2).�−2, whereas each single term, e.g.,

�−2 ∂vv
2
∼ v�−2, behaves worse as |u|, v→∞. Without this cancellation, the estimate exhibits a logarithmic divergence.
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where, provided the data term decays in v, φ → 0 as |u|, v →∞. Moreover, using the embedding
W 1,2 ↪→ C0, 1

2 in one dimension, we also conclude that φ ∈ C0, 1
2 .

In spherical symmetry, it is in fact possible to control the solution to the linear wave equation up to the
Cauchy horizon using only the method of characteristics.11 Here, however, there is an additional twist to
the problem. We will need to control solutions to the Klein–Gordon equation with nonzero mass12

�geRNφ =m2φ.

For this scalar equation, however, whenever the mass is nonvanishing, using the method of characteristics
and naïve estimates leads to potential logarithmic divergences. Nonetheless, if m2 > 0, the argument
above which makes use of the vector field multiplier method can still be applied. In this case, one defines
instead the stress-energy-momentum tensor as

Tµν = ∂µφ ∂νφ−
1
2 gµν((g−1)αβ ∂αφ ∂βφ+m2φ2).

As it turns out, the observations (1), (2), and (3) still hold in the m2 > 0 case for the vector field
V = |u|2 ∂u+v

2 ∂v . In particular, there is a crucial cancellation in the bulk term as above, which removes
the logarithmically nonintegrable term and allows one to close the argument. Again, this consequently
yields also decay estimates and C0, 1

2 bounds for φ.
Let us recap what we have achieved for the model problem (1-3). The discussions above can be used

to deal fully with the case a ≥ 0, c≥ 0 and b= d = 0. If a < 0 or c< 0, one still has a cancellation in the
bulk spacetime term, but the boundary terms are not nonnegative. If, on the other hand, b 6= 0 or d 6= 0,
then in general one sees a bulk term which is exactly borderline and leads to logarithmic divergence.

Renormalized energy estimates for the matter fields. In order to attack our problem at hand, the first step
is to understand the propagation of the matter field even without coupling to gravity. In other words,
we need to control the solution to the Maxwell-charged Klein–Gordon system in the interior of fixed
extremal Reissner–Nordström. (A special case of this, when m= e= 0 is exactly what has been studied
in [Gajic 2017a].)

One difficulty that arises in controlling the matter fields is that when e 6= 0, the energy estimates for
the scalar field couple with estimates for the Maxwell field. If one naïvely estimates each field separately,
while treating the coupling as error terms, one encounters logarithmically divergent terms similar to those
appearing when controlling (1-3) for b 6= 0 or d 6= 0. Instead, we prove coupled estimates for the scalar
field and the Maxwell field simultaneously.

In order to prove coupled energy estimates, a natural first attempt would be to use the full stress-
energy-momentum tensor (i.e., the sum T = T(sf)

+ T(em)) and consider the current TµνV ν, where

11In fact, as in shown in [Gajic 2017a], the method of characteristics, when combined with the energy estimates, yields more
precise estimates when the initial data are assumed to be spherically symmetric. While [loc. cit.] does not give a proof of the
estimates in the spherically symmetric case purely based on the method characteristics, such a proof can be inferred from the
proof of Theorem 5.5 in Section 11.

12As we will discuss below, the need to consider the Klein–Gordon equation with nonzero mass stems not only from our
desire to include mass in the matter field in (1-1), but when attempting to control the metric components, one naturally encounters
a Klein–Gordon equation with positive mass.
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V = |u|2 ∂u + v
2 ∂v as in [Gajic 2017a]. However, since the charge is expected to asymptote to a nonzero

value (as it does initially along the event horizon), this energy is infinite!
Instead, we renormalize the energy to take out the infinite contribution from the background charge.

We are then faced with two new issues:

• The renormalized energy is not manifestly nonnegative.

• Additional error terms are introduced.

Here, it turns out that one can use a Hardy-type inequality to show that the renormalized energy is
coercive. (This is the step for which we need a restriction on the parameters of the problem.) Moreover,
the additional spacetime error terms that are introduced in the energy estimates also exhibit the cancellation
described in footnote 10 on page 271.

Estimates for the metric components. Having understood the uncoupled Maxwell–Klein–Gordon system,
we now discuss the problem where the Maxwell–Klein–Gordon system is coupled with the Einstein
equations. First, we write the metric in double null coordinates:

g =−�2(u, v) du dv+ r2(u, v)σS2,

where σS2 is the standard round metric on S2 (with radius 1). In such a gauge, the metric components r
and� satisfy nonlinear wave equations with φ and ∂φ as sources. In addition, r satisfies the Raychaudhuri
equations, which can be interpreted as constraint equations.

We control r directly using the method of characteristics. As noted before, using the method of
characteristics for wave equations with nontrivial zeroth-order terms13 leads to potentially logarithmically
divergent terms. To circumvent this, we use both the wave equation and the Raychaudhuri equations
satisfied by r : using different equations in different regions of spacetime, one can show using the method
of characteristics that

|r −M |. v−1
+ |u|−1, |∂vr |. v−2, |∂ur |. |u|−2.

For �, instead of controlling it directly, we bound the difference log�− log�0, where �0 corresponds
to the metric component of the background extremal Reissner–Nordström spacetime. We will control it
using the wave equation satisfied by �; see (2-2). Again, as is already apparent in the discussion of (1-3),
to obtain wave equation estimates, we need to use the structure of the equation. Using the estimates for φ
and r , the equation for log�− log�0 can be thought of as follows (modulo terms that are easier to deal
with and are represented by · · · ):

∂u∂v log �
�0
=−

1
4 M2(elog�2

− elog�2
0)+ · · · . (1-5)

Thus, when � is close to �0, (1-5) can be viewed as a nonlinear perturbation of the Klein–Gordon
equation with positive mass, which is moreover essentially decoupled from the other equations. Hence,
as long as we can control the error terms and justify the approximation (1-5), we can handle this equation

13The wave equation for r indeed has such zeroth order terms; see (2-1).
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using suitable modifications of the ideas discussed before. In particular, an appropriate modification of
(1-4) implies that �→�0 in a suitable sense as |u|, v→∞.

Finally, revisiting the argument for the energy estimates for Maxwell–Klein–Gordon, one notes that it
can in fact be used to control solutions to the Maxwell–Klein–Gordon system on a dynamical background
such that r and log� approach their Reissner–Nordström values with a sufficiently fast polynomial
rate as |u|, v → ∞. In particular, the estimates we described above for the metric components are
sufficient for us to set up a bootstrap argument to simultaneously control the scalar field and the geometric
quantities.

Note that in terms of regularity, we have closed the problem at the level of the (nondegenerate) L2 norm
of first derivatives of the metric components and scalar field. As long as r > 0, this is the level of regularity
for which well-posedness holds in spherical symmetry. It follows that we can also construct an extension
which is a solution to (1-1).

1C. Structure of the paper. The remainder of the paper is structured as follows. In Section 2, we will
introduce the geometric setup and discuss (1-1) in spherical symmetry. In Section 3, we discuss the
geometry of the interior of the extremal Reissner–Nordström black hole. In Section 4, we introduce the
assumptions on the characteristic initial data. In Section 5, we give the statement of the main theorem
(Theorem 5.1, see also Theorem 5.5). In Section 6, we begin the proof of Theorem 5.1 and set up the
bootstrap argument. In Section 7, we prove the pointwise estimates. In Section 8, we prove the energy
estimates. In Section 9, we close the bootstrap argument and show that the solution extends up to the
Cauchy horizon. In Section 10, we complete the proof of Theorem 5.1 by constructing a spherically
symmetric solution which extends beyond the Cauchy horizon. In Section 11, we prove additional
estimates in the case m= e= 0.

2. Geometric preliminaries

2A. Class of spacetimes. In this paper, we consider spherically symmetric spacetimes (M, g) with
M=Q×S2 such that the metric g takes the form

g = gQ+ r2(dθ2
+ sin2 θ dϕ2),

where (Q, gQ) is a smooth (1+1)-dimensional Lorentzian spacetime and r : Q→ R>0 is smooth and
can geometrically be interpreted as the area radius of the orbits of spherical symmetry. We assume that
(Q, gQ) admits a global double null foliation,14 so that we write the metric g in double null coordinates as

g =−�2(u, v) du dv+ r2(u, v)(dθ2
+ sin2 θ dϕ2),

for some smooth and strictly positive function �2 on Q.

14Note that for sufficiently regular gQ, the metric can always be put into double null coordinates locally. Hence the
assumption is only relevant for global considerations. We remark that the interior of extremal Reissner–Nordström spacetimes
can be written (globally) in such a system of coordinates (see Section 3) and so can spacetimes that arise from spherically
symmetric perturbations of the interior of extremal Reissner–Nordström, which we consider in this paper.
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2B. The Maxwell field and the scalar field. We will assume that both the Maxwell field F and the scalar
field φ in (1-1) are spherically symmetric. For φ, this means that φ is constant on each spherical orbit,
and can be thought of as a function on Q.

For the Maxwell field, spherical symmetry means that there exists a function Q on Q, so that the
Maxwell field F takes the following form

F =
Q

2(π∗r)2
π∗(�2 du ∧ dv),

where π denotes the projection map π :M→Q. We will call Q the charge of the Maxwell field.

2C. The system of equations. In this subsection, we write down the symmetry-reduced equations in a
double null coordinate system as in Section 2A (see [Kommemi 2013] for details). Before we write down
the equations, we introduce the following notation for the covariant derivative operator with respect to the
1-form A:

Dµφ = ∂µφ+ ieAµφ.

2C1. Propagation equations for the metric components.

r∂u ∂vr =− 1
4�

2
− ∂ur ∂vr +m2πr2�2

|φ|2+ 1
4�

2r−2 Q2, (2-1)

r2∂u ∂v log�=−2πr2(DuφDvφ+ DuφDvφ)−
1
2�

2r−2 Q2
+

1
4�

2
+ ∂ur ∂vr. (2-2)

2C2. Propagation equations for the scalar field and electromagnetic tensor.

Du Dvφ+ DvDuφ =−
1
2m

2�2φ− 2r−1(∂ur Dvφ+ ∂vr Duφ), (2-3)

Du Dvφ− DvDuφ =
1
2r−2�2ieQ ·φ, (2-4)

∂u Q = 2π ir2e(φDuφ− φ̄Duφ), (2-5)

∂vQ =−2π ir2e(φDvφ− φ̄Dvφ). (2-6)

Furthermore, we can write

Q = 2r2�−2(∂u Av − ∂vAu). (2-7)

2C3. Raychaudhuri’s equations.

∂u(�
−2 ∂ur)=−4πr�−2

|Duφ|
2, (2-8)

∂v(�
−2 ∂vr)=−4πr�−2

|Dvφ|
2. (2-9)

2D. Hawking mass. Define the Hawking mass m by

m := r
2
(1− gQ(∇r,∇r))= r

2

(
1+

4∂ur ∂vr
�2

)
. (2-10)
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By (2-1), (2-8) and (2-9),

∂um =−8π
r2(∂vr)
�2 |Duφ|

2
+ 2(∂ur)m2πr2

|φ|2+
1
2
(∂ur)Q2

r2 , (2-11)

∂vm =−8π
r2(∂ur)
�2 |Dvφ|

2
+ 2(∂vr)m2πr2

|φ|2+
1
2
(∂vr)Q2

r2 . (2-12)

2E. Global gauge transformations. Consider the following global gauge transformation induced by the
function χ : D→ R, D ⊂ R2:

φ̃(u, v)= e−ieχ(u,v)φ(u, v),

Ãµ(u, v)= Aµ(u, v)+ ∂µχ(u, v),

with µ= u, v. Let us define D̃ = d + ie Ã. Then,

D̃µφ̃ = e−ieχ Dµφ.

As a result we conclude that the norms |φ| = |φ̃| and |Dµφ| = |D̃µφ̃| are (globally) gauge-invariant.
In most of this paper, the choice of gauge will not be important. We will only explicitly choose a gauge

when discussing local existence or when we need to construct an extension of the solution. Instead, most
of the time we will estimate the gauge-invariant quantities |φ| and |Dµφ|. For this purpose, let us note
that we have the following estimates regarding these quantities:

Lemma 2.1. The following estimates hold:

|φ|(u, v)≤ |φ|(u1, v)+

∫ u

u1

|Duφ|(u′, v) du′, (2-13)

|φ|(u, v)≤ |φ|(u, v1)+

∫ v

v1

|Dvφ|(u, v′) dv′. (2-14)

Proof. We can always pick χ such that Au = 0 and D̃uφ̃ = ∂uφ̃. This fact, together with the fundamental
theorem of calculus and the gauge-invariance property above, imply

|φ|(u, v)= |φ̃|(u, v)≤ |φ̃|(u1, v)+

∫ u

u1

|D̃uφ̃|(u′, v) du′ = |φ|(u1, v)+

∫ u

u1

|Duφ|(u′, v) du′,

which implies (2-13).
Similarly, by choosing χ such that Av = 0, we obtain (2-14). �

3. Interior of extremal Reissner–Nordström black holes

The interior region of the extremal Reissner–Nordström solution with mass M > 0 is the Lorentzian
manifold (MeRN, geRN), where MeRN= (0,M)r×(−∞,∞)t×S2 and the metric geRN in the (t, r, θ, ϕ)-
coordinate system is given by

geRN =−�
2
0dt2
+�−2

0 dr2
+ r2

0 (dθ
2
+ sin2 θ dϕ2),
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where

�0 =

(
1−

M
r0

)
.

We define the Eddington–Finkelstein r∗-coordinate (as a function of r ) by

r∗ =
M2

M − r
+ 2M log(M − r)+ r, (3-1)

and define the Eddington–Finkelstein double-null coordinates by

u = t − r∗, v = t + r∗. (3-2)

In Eddington–Finkelstein double-null coordinates (u, v, θ, ϕ), the metric takes the form as in Section 2A:

geRN =−�
2
0(u, v) du dv+ r2

0 (u, v)(dθ
2
+ sin2 θ dϕ2),

where r0 is defined implicitly by (3-1) and (3-2) and �2
0(u, v)= (1−M/(r0(u, v)))2.

For the purpose of this paper, we do not need the explicit expressions for r0 and �0 as functions of
(u, v), but it suffices to have some simple estimates. Since we will only be concerned with the region of
the spacetime close to timelike infinity i+ (see Figure 1),15 we will assume v ≥ 1 and u ≤−1. In this
region, we have the following estimates (the proof is simple and will be omitted):

Lemma 3.1. For v ≥ 1 and u ≤−1, there exists C > 0 (depending on M) such that for v ≥ 1 and u ≤−1,

|r0−M |(u, v)≤
C

(v+ |u|)
, |∂vr0|(u, v)+ |∂ur0|(u, v)≤

C
(v+ |u|)2

.

Given any β > 0, we can find a constant Cβ > 0 (depending on M and β) such that for v ≥ 1 and u ≤−1,∣∣∣∣�0−
2M
v+ |u|

∣∣∣∣(u, v)≤ Cβ(v+ |u|)−2+β, (3-3)

|∂v(v
2�2

0)+ ∂u(u2�2
0)|(u, v)≤ Cβ(v+ |u|)−2+β . (3-4)

3A. Regular coordinates. We would like to think of MeRN as having the “event horizon” and the “Cauchy
horizon” as null boundaries, which are formally the boundaries {u =−∞} and {v =∞} respectively. To
properly define them, we will introduce double null coordinate systems which are regular at the event
horizon and at the Cauchy horizon respectively. We will also use these coordinate systems later in the
paper

• to pose the characteristic initial value problem near the event horizon, and

• to extend the solution up to the Cauchy horizon.

15Formally, it is the “2-sphere at u =−∞, v =∞”.
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3A1. Regular coordinates at the event horizon. Define U by the relation

dU
du
=�2

0(u, 1)=
(

1−
M

r0(u, 1)

)2

, U (−∞)= 0. (3-5)

By Lemma 3.1, there exists a constant C (depending on M), so that we can estimate

0≤
dU
du
≤ C(1+ |u|)−2. (3-6)

Define the event horizon as the boundary {U = 0}. We will abuse notation to denote the event
horizon as both the boundary in the quotient manifold {(U, v) :U = 0} ⊂Q and the original manifold
{(U, v) :U = 0}×S2

⊂MeRN (see Section 2).
After defining u(U ) as the inverse of u 7→U, we abuse notation to write r0(U, v)= r0(u(U ), v) and

�̂0 is defined by
�̂2

0(U, v)=�
−2
0 (u(U ), 1)�2

0(u(U ), v),

and the extremal Reissner–Nordström metric takes the following form in the (U, v, θ, ϕ)-coordinate
system:

geRN =−�̂
2
0(U, v) dU dv+ r2

0 (U, v)(dθ
2
+ sin2 θ dϕ2).

In particular, by (3-3), it holds that
�̂0(0, v)= 1 (3-7)

for all v. Additionally, we have, for all v,

r0(0, v)= M.

Hence, in the (U, v, θ, ϕ)-coordinate system, �̂0(U, v) and r0(U, v) extend continuously (in fact smoothly)
to the event horizon. Moreover, for every v ≥ 1 and u(U )≤−1, �̂2

0(U, v) is bounded above and below
as follows:

2
v+ 1

≤ �̂0(U, v)≤ 1. (3-8)

3A2. Regular coordinates at the Cauchy horizon. Define V by the relation

dV
dv
=�2

0(−1, v)=
(

1−
M

r0(−1, v)

)2

, V (∞)= 0. (3-9)

By Lemma 3.1, there exists a constant C (depending on M), so that we can estimate

0≤
dV
dv
≤ C(1+ v)−2. (3-10)

Define the Cauchy horizon as the boundary {V = 0}. (Again, this is to be understood either as
{(u, V ) : V = 0} ⊂Q or the original manifold {(u, V ) : V = 0}× ⊂MeRN.) After defining v(V ) as the
inverse of v 7→ V, we abuse notation to write r0(u, v(V ))= r0(u, v(v)) and �̃0 is defined by

�̃
2
0(u, v(V ))=�

−2
0 (−1, v(V ))�2

0(u, v(V )),
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and the extremal Reissner–Nordström metric takes the following form in the (u, V, θ, ϕ)-coordinate
system:

geRN =−�̃
2
0(u, V ) du dV + r2

0 (u, V )(dθ2
+ sin2 θ dϕ2).

In analogy with Section 3A1, it is easy to see that �̃2
0 and r0 extend smoothly to the Cauchy horizon.

4. Initial data assumptions

We will consider the characteristic initial value problem for (1-1) with initial data given on two transversally
intersecting null hypersurfaces, which in the double null coordinates (U, v) are denoted by

H0 := {(U, v) :U = 0}, Hv0 := {(U, v) : v = v0}.

Here, the (U, v)-coordinates should be thought of as comparable to the Reissner–Nordström (U, v)-
coordinates in Section 3A1; see Section 4A for further comments.

The initial data consist of (φ, r, �, Q) on both H0 and Hv0 , subject to (2-5) and (2-8) on Hv0 , as well
as (2-6) and (2-9) on H0.

We impose the following gauge conditions on the initial hypersurfaces Hv0 and H0:

�̂(U, v0)= �̂0(U, v0) for U ∈ [0,U0], �̂(0, v)= �̂0(0, v)= 1 for v ∈ [v0,∞), (4-1)

which can be thought of as a normalization condition for the null coordinates.
The initial data for (φ, r, �, Q) will be prescribed in Sections 4C–4F, but before that, we will give

some remarks in Sections 4A and 4B: In Section 4A, we discuss our conventions on null coordinates; in
Section 4B, we discuss which parts of the data are freely prescribable and which parts are determined by
the constraints. We then proceed to discuss the initial data and the bounds that they satisfy. In Section 4C,
we discuss the data for φ; in Section 4D, we discuss the data for r ; in Section 4E, we discuss the data
for Q; in Section 4F, we discuss the data for ∂Ur on H0.

4A. A comment about the use of the null coordinates. In the beginning of Section 4, we normalized
the null coordinates (U, v) on the initial hypersurfaces by the condition (4-1) so that they play a similar
role to the (U, v)-coordinates on extremal Reissner–Nordström spacetimes introduced in Section 3A1.
This set of null coordinates has the advantage of being regular near the event horizon and therefore it is
easy to see that the Einstein–Maxwell–Klein–Gordon system is locally well-posed with the prescribed
initial data.

However, in the remainder of the paper, it will be useful to pass to other sets of null coordinates. For
this we introduce the following convention. We use all of the coordinate systems (U, v), (u, v) and (u, V ),
where u and V are defined (as functions of U and v respectively) by (3-5) and (3-9).

All the data will be prescribed in the (U, v)-coordinate system and we will prove estimates for φ,
r and Q in these coordinates. Nevertheless, using (3-5), they imply immediately also estimates in the
(u, v)-coordinate system, and it is those estimates that will be used in the later parts of the paper.
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4B. A comment about freely prescribable data. Since the initial data need to satisfy (2-5), (2-6), (2-8)
and (2-9), not all of the data are freely prescribed. Instead, we have freely prescribable and constrained data:

• A normalization condition for u and v can be specified. In our case, we specify the condition (4-1).

• φ on H0 and H 0 can be prescribed freely.

• r and Q can then be obtained by solving (2-5), (2-6), (2-8) and (2-9) with appropriate initial conditions,
namely,

– r and Q are to approach their corresponding values in extremal Reissner–Nordström with mass
M > 0; i.e.,

lim
v→∞

r(0, v)= lim
v→∞

Q(0, v)= M.

– (∂Ur)(0, v0) can be freely prescribed; see (4-7).

We remark that in order to fully specify the initial data, it only remains to pick a gauge condition for A.
For this purpose, it will be most convenient to set AU (U, v0)= 0 and Av(0, v)= 0. (This can always be
achieved as each of these are only set to vanish on one hypersurface; see the discussions following (9-6).)
Nevertheless, the choice of gauge will not play a role in the rest of this subsection, since all the estimates
we will need for φ and its derivatives can be phrased in terms of the gauge-invariant quantities |φ|, |Dvφ|

and |Duφ|.

4C. Initial data for φ. We assume that there exist constants Di and Do such that∫ U0

0
|DUφ|

2(U, v0) dU ≤ Di, (4-2)∫
∞

v0

v′2+α|Dvφ|
2(0, v′) dv′ ≤ Do, (4-3)

where we will take α > 0. We additionally assume that

lim
v→∞

φ(0, v)= 0. (4-4)

Lemma 4.1. The following estimate holds:

|φ|(0, v)≤
√
Dov

−
1
2−

α
2 . (4-5)

Proof. By (4-4), (2-14) and the Cauchy–Schwarz inequality, we have

|φ|(0, v)≤
∫
∞

v

|Dvφ|(0, v′) dv′ ≤

√∫
∞

v

v′−2−α dv′ ·

√∫
∞

v

v′2+α|Dvφ|(0, v′) dv′,

so we can conclude using (4-3). �

4D. Initial data for r. We assume that

lim
v→∞

r(0, v)= M (4-6)
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and we prescribe freely ∂Ur(0, v0). Let us assume that

∂Ur(0, v0) < 0, |∂Ur |(0, v0)≤ MDi. (4-7)

We use (2-8) and (2-9) as constraint equations for the variable r along H0={U=0} and Hv0 ={v=v0}.

4D1. Initial data for r on H0. We obtain along H0

∂2
vr(0, v)=−4πr(0, v)|Dvφ|

2. (4-8)

The above ODE can be solved to obtain r(0, v).

Lemma 4.2. There exists a unique smooth solution to (4-8) satisfying (4-6). Moreover, if v0 satisfies the
inequality

Dov
−1
0 ≤

1
8π , (4-9)

then the following estimates hold for v ≥ v0:

1
2 M ≤ r(0, v)≤ M, |r −M |(0, v)≤ 4πMDov

−1, |∂vr |(0, v)≤ 4πMDov
−2.

Proof. Existence and uniqueness can be obtained using a standard ODE argument. We will focus on
proving the estimates.

First, observe that by integrating (4-8), and using the assumptions r(0, v)→ M and (4-3), it follows
that limv→∞(∂vr)(0, v) exists. Now using again the assumption r(0, v)→ M, we deduce that

lim
v→∞

(∂vr)(0, v)= 0. (4-10)

Together with (4-8) this implies
∂vr(0, v)≥ 0.

Since r(0, v)→ M, we can then bound
r(0, v)≤ M. (4-11)

By (4-8) and (4-10),

|∂vr(0, v)| ≤ 4π sup
v0≤v<∞

r(0, v) ·
∫
∞

v

|Dvφ|
2(u, v′) dv′.

We deduce, using (4-3) and (4-11), that

|∂vr(0, v)| ≤ 4πMDov
−2−α, (4-12)

and therefore

|r(0, v)−M | ≤
4πM
1+α

Dov
−1−α (4-13)

for all v0 ≤ v <∞. In particular, given (4-9), it holds that for all v ∈ [v0,∞),

r(0, v)≥ 1
2 M. (4-14)

The estimates stated in the lemma hence follow from (4-11)–(4-14). �
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4D2. Initial data for r on H 0. We similarly obtain along H 0

∂U (�̂
−2(U, v0) ∂Ur(U, v0))=−4π�̂−2(U, v0)r(U, v0)|DUφ|

2. (4-15)

The above ODE can be solved to obtain r(U, v0).

Lemma 4.3. There exists a unique smooth solution to (4-15) satisfying (4-6). Moreover, if U0, v0 satisfy
the inequality

Dov
−1
0 ≤

1
8π , MDiv

2
0U0 ≤

1
36π , (4-16)

then the following estimates hold for U ∈ [0,U0]:

1
4 M ≤ r(U, v0)≤

5
4 M, |∂Ur |(U, v0)≤ 9πMDiv

2
0 .

Proof. As in Lemma 4.3, since existence and uniqueness is standard, we focus on the estimates. To this
end, we introduce a bootstrap argument, starting with the assumption

r(U, v0)≤ 2M. (4-17)

Integrating (4-15) and using (4-1),

|�̂−2(U, v0) ∂Ur(U, v0)− ∂Ur(0, v0)| ≤ 4π sup
0≤U ′≤U0

�̂−2(U ′, v0) r(U ′, v0) ·

∫ U

0
|DUφ|

2(U ′′, v0) dU ′′.

By (3-8), (4-2) and (4-7), this implies

|∂Ur(U, v0)| ≤ MDi+ 8πM ·
(
v0+ 1

2

)2

·Di = MDi(1+ 2π(v0+ 1)2)≤ 9πMDiv
2
0 . (4-18)

Integrating in U, this yields (for U ∈ [0,U0]),

|r(U, v0)− r(0, v0)| ≤ 9πMDiv
2
0U0,

which implies, using Lemma 4.2 (or more precisely (4-11) and (4-14)),

1
2 M − 9πMDiv

2
0U0 ≤ r(U, v0)≤ M + 9πMDiv

2
0U0.

Hence, by (4-16), it holds that
1
4 M ≤ r(U, v0)≤

5
4 M, (4-19)

and we have improved the bootstrap assumption (4-17). This closes the bootstrap argument, and the
desired estimates follow from (4-18) and (4-19). �

4E. Initial data for Q. In view of (2-5) and (2-6) which have to be satisfied on the initial hypersurfaces,
it suffices to impose Q on one initial sphere. We assume that

lim
v→∞

Q(0, v)= M. (4-20)

Lemma 4.4. Assume (4-9) holds. Then the following estimate holds on H0:

|Q(0, v)−M |(0, v)≤ 4π |e|MDov
−1−α. (4-21)
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Proof. Using (2-6), (4-11) and the Cauchy–Schwarz inequality we estimate

|Q(0, v)−M |(0, v)≤ 4π |e| sup
v′′∈[v0,∞)

r2(0, v′′) ·
∫
∞

v

|φ| · |Dvφ|(0, v′) dv′

≤ 4π |e|M2 sup
v≤v′<∞

|φ|(0, v′) ·

√∫
∞

v

v′−2−α dv′ ·

√∫
∞

v

v′2+α|Dvφ|
2(0, v′) dv′,

so we can use (4-3) and (4-5) to conclude (4-21). �

4F. ∂U r along H0. The function ∂ur along H0 is not freely prescribable, but is dictated by (2-1) and the
freely prescribable data for (∂Ur)(0, v0) (which obeys (4-7)). We will need the following estimate for
∂Ur along H0.

Lemma 4.5. Suppose (4-9) holds. Then there exists a constant C > 0 depending only on M and m such
that for every v ∈ [v0,∞),

|∂Ur(0, v)| ≤ C(Do+Di). (4-22)

Proof. By (2-1) we have

∂v(r ∂Ur)(0, v)= 4M2m2πr2
|φ|2+M2r−2(Q2

− r2)

= 4M2m2πr2
|φ|2+M2r−2(Q2

−M2)+M2r−2(M2
− r2).

Hence,

|(r ∂Ur)(0, v)− (r ∂Ur)(0, v0)|.

∣∣∣∣∫ ∞
v0

m2r2
|φ|2+ 1

4π M−2(Q2
−M2)+ 1

4π M−2(M2
− r2) dv′

∣∣∣∣. Do,

where we have used Lemmas 4.1, 4.2 and 4.4 (and we crucially used that α > 0). Together with (4-7), we
can therefore conclude (4-22). �

5. Statement of the main theorem

We are now ready to give a precise statement of the main theorem. Let us recall (from Section 4A) that
we also consider the coordinate system (u, v), where u(U ) is defined via the relation (3-5). It will be
convenient from this point onwards to use the u-(instead of U -) coordinate.

Theorem 5.1. Suppose

• the parameters M and e obey16

1− (10+ 5
√

6− 3
√

9+ 4
√

6)|e|M > 0. (5-1)

• the initial data are smooth and satisfy (4-1), (4-2), (4-3), (4-4), (4-6), (4-7) and (4-20) for some finite
Do and Di.

Then for |u0| sufficiently large depending on M, m, e, α, Do and Di and v0 sufficiently large depending on
M, m, e, α and Do (but not Di!), the following hold:

16Note that (10+ 5
√

6− 3
√

9+ 4
√

6)∼ 9.24 . . . .
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• (existence of solution) There exists a unique smooth, spherically symmetric solution to (1-1) in the
double null coordinate system in (u, v) ∈ (−∞, u0]× [v0,∞).

• (extendibility to the Cauchy horizon) In an appropriate coordinate system, a Cauchy horizon can be
attached to the solution so that the metric, the scalar field and the Maxwell field extend continuously to it.

• (quantitative estimates) The following estimates hold for all (u, v) ∈ (−∞, u0)× [v0,∞) for some
implicit constant depending on M, m and e (which shows that the solution is close to extremal Reissner–
Nordström in an appropriate sense):

|φ|(u, v). Dov
−

1
2−

α
2 + (Do+Di)|u|−

1
2 , |r −M |(u, v). Dov

−1
+ (Do+Di)|u|−1,

|�2
−�2

0|(u, v). |u|
−

1
2 (|u| + v)−2,

|∂ur |(u, v). (Do+Di)|u|−2, |∂vr |(u, v). (Do+Di)v
−2,∫

∞

v0

v2
|∂vφ|

2(u, v) dv+
∫ u0

−∞

u2
|∂uφ|

2(u, v) du . Do+Di,∫ u0

−∞

u2
(
∂u

(
log �

�0

))2
(u, v) du+

∫ v∞

v0

v2
(
∂v

(
log �

�0

))2
(u, v) dv ≤ 1

2 .

• (extendibility as a spherically symmetric solution) The solution can be extended nonuniquely in (space-
time) C0, 1

2 ∩W 1,2
loc beyond the Cauchy horizon as a spherically symmetric solution to the Einstein–Maxwell–

Klein–Gordon system.

Remark 5.2 (v0 ≥ 1, u0 ≤ −1.). Without loss of generality, we will from now on assume that v0 ≥ 1
and u0 ≤−1.

Remark 5.3 (validity of the estimates in Section 4). Recall that in Section 4, some of the estimates that
were proven depend on the assumptions (4-9) and (4-16). From now on, we take v0 sufficiently large and
u0 sufficiently negative (in a manner allowed by Theorem 5.1) so that (4-9) and (4-16) hold.

Remark 5.4 (relaxing the largeness of v0). Note that v0 is assumed to be large depending on M, m, e,
α and Do so that we restrict our attention to a region where the geometry is close to that of extremal
Reissner–Nordström. However, in general, if we are given data with v0,i = 1 (say) and Do not necessarily
small, we can do the following:

(1) First, find a v0 (sufficiently large) such that v0 is sufficiently large depending on M, m, e, α and Do in
a way that is required by Theorem 5.1.

(2) Solve a finite characteristic initial value problem in (−∞, u0] × [v0,i , v0] for some u0 sufficiently
negative. (Such a problem can always be solved for u0 sufficiently negative. This can be viewed as a
restatement of the fact that for local characteristic initial value problems, one only needs the smallness of
one characteristic length, as long as the other characteristic length is finite; see [Luk 2012].)

(3) Now, let Di be the size of the new data on {v = v0} which is obtained from the previous step. By
choosing u0 smaller if necessary, it can be arranged so that |u0| is large in terms of M, m, e and Do+Di

in a way consistent with Theorem 5.1.
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(4) Theorem 5.1 can now be applied to obtain a solution in (−∞, u0]×[v0,∞) such that the conclusions
of Theorem 5.1 hold.

In the case e=m= 0, we obtain the following additional regularity of the scalar field:

Theorem 5.5. In the case e = m = 0, suppose that in addition to the assumptions of Theorem 5.1, the
following pointwise bounds hold for the initial data:

sup
u∈(−∞,u0]

|u|2 |∂uφ|(u, v0)+ sup
v∈[v0,∞)

v2
|∂vφ|(−∞, v) <∞. (5-2)

Then, taking u0 more negative if necessary, in the (u, V )-coordinate system, see (9-1), the scalar field is
Lipschitz up to the Cauchy horizon.

6. The main bootstrap argument

6A. Setup of the bootstrap. We will assume that

• there exists a smooth solution (φ,�, r, A) to the system of (2-1)–(2-9) in the rectangle DU0,[v0,v∞) =

{(U, v) | 0≤U ≤U0, v0 ≤ v < v∞}, such that

• the initial gauge conditions are satisfied, i.e., �̂2(U, v0)= �̂
2
0(U, v0) and �̂2(0, v)= �̂2

0(0, v), and

• the initial conditions for φ, r , Q are attained.

On this region, we will moreover assume that certain bootstrap assumptions hold (see Section 6B). Our
goal will then be to improve these bootstrap assumptions, which then by continuity, implies that the above
three properties hold for all v ≥ v0, i.e., in the region DU0,v0 = DU0,[v0,∞).

Recall again that we often use the (u, v)- instead the (U, v)-coordinates. Abusing notation, we will
also write

Du0,[v0,v∞) = DU0,[v0,v∞) = {(u, v) | −∞< u ≤ u0 := u(U0), v0 ≤ v ≤ v∞}.

6B. Bootstrap assumptions. Fix η > 0 sufficiently small (depending only on e and M) so that

1− (10+ 5
√

6− 3
√

9+ 4
√

6)(1+ η)|e|M > 0. (6-1)

(Such an η exists in view of (5-1).) Define

µ=
(
1− (10+ 5

√
6− 3

√
9+ 4
√

6)(1+ η)|e|M
)
. (6-2)

Let us make the following bootstrap assumptions for the quantities (φ,�, r) in DU0,v∞ , for some Aφ ≥ 1
to be chosen later:

sup
v∈[v0,v∞]

∫ u0

−∞

u′2
(
∂u

(
log �

�0

))2
(u′, v) du′+ sup

u∈(−∞,u0]

∫ v∞

v0

v′2
(
∂v

(
log �

�0

))2
(u, v′) dv′ ≤ M, (A1)

sup
v∈[v0,v∞]

∫ u0

−∞

u′2|Duφ|
2(u′, v) du′+ sup

u∈(−∞,u0]

∫ v∞

v0

v′2|Dvφ|
2(u, v′) dv′ ≤Aφ(Do+Di), (A2)

sup
u∈(−∞,u0], v∈[v0,v∞]

|r −M |(u, v)≤ 1
2 M. (A3)
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Our goal will be to show that under these assumptions, for |u0| sufficiently large depending on M, m, e,
α, η, Do and Di and v0 sufficiently large depending on M, m, e, α, η and Do,

• the estimate (A1) can be improved so that the right-hand side can be replaced by 1
2 M ;

• the estimate (A2) can be improved so that the right-hand side can be replaced by C(Do+Di), where
C is a constant depending only on M, m, e, α and η;

• the estimate (A3) can be improved to |r −M | ≤ 1
4 M .

6C. Conventions regarding constants. In closing the bootstrap argument, the main source of smallness
will come from choosing |u0| and v0 appropriately large. We remark on our conventions regarding the
constants that will be used in the bootstrap argument:

• All the implicit constants (either in the form of C or .) are allowed to depend on the parameters M, m,
e and α. In particular, they are allowed to depend on η, defined in (6-1), and µ, defined in (6-2). There
will be places where the exact values of these parameters matter (hence the corresponding restriction in
Theorem 5.1): at those places the constants will be explicitly written.

• |u0| is taken to be large depending on M, m, e, α, η, Do and Di, and v0 is taken to be large depending
on M, m, e, α, η and Do. In particular, we will use

Dov
−

1
10

0 � 1, (Do+Di)|u0|
−

1
10 � 1

without explicit comments, where by� 1 we mean that it is small with respect to the constants appearing
in the argument that depend on M, m, e, α and η.

• Aφ ≥ 1 will eventually be chosen to be large depending M, m, e and α, but not on Do and Di. In
particular, we will also use

A3
φDov

−
1
10

0 � 1, A3
φ(Do+Di)|u0|

−
1
10 � 1 (6-3)

without explicit comments.

7. Pointwise estimates

Proposition 7.1. For all −∞< u ≤ u0, v0 ≤ v ≤ v∞ we have

|φ|(u, v).
√
Dov

−
1
2−

α
2 +A

1
2
φ

√
Do+Di|u|−

1
2 , (7-1)

|Q−M |(u, v). Dov
−1−α
+Aφ(Do+Di)|u|−1, (7-2)

|�−�0|(u, v). |u|−
1
2 (v+ |u|)−1, (7-3)

|�2
−�2

0|(u, v). |u|
−

1
2 (v+ |u|)−2, (7-4)∣∣∣∣�− 2M

(v+ |u|)

∣∣∣∣(u, v). |u|− 1
2 (v+ |u|)−1, (7-5)∣∣∣∣�2

−
4M2

(v+ |u|)2

∣∣∣∣(u, v). |u|− 1
2 (v+ |u|)−2. (7-6)
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In particular,
1
2 M ≤ |Q|(u, v)≤ 3

2 M, (7-7)

2M2(v+ |u|)−2
≤�2(u, v)≤ 6M2(v+ |u|)−2. (7-8)

Proof. Proof of (7-1). By (2-13) and the Cauchy–Schwarz inequality, we obtain

|φ|(u, v)≤ |φ|(−∞, v)+ |u|−
1
2

√∫ u

−∞

u′2|Duφ|
2(u′, v) du′. (7-9)

Using (4-5) and the bootstrap assumption (A2) to control the first and second term respectively, we obtain
(7-1).

Proof of (7-2). Using the estimate (7-1) for φ, the bootstrap assumption (A3) for r together with (2-5),
we obtain a pointwise estimate for |Q−M |:

|Q−M |(u, v)≤ |Q−M |(−∞, v)+
∫ u

−∞

|∂u Q|(u′, v) du′

≤ |Q−M |(−∞, v)+ 4π |e|
∫ u

−∞

r2
|φ||Duφ|(u′, v) du′

≤ |Q−M |(−∞, v)+ 4π |e||u|−
1
2 sup
−∞<u′≤u

r2
|φ|(u′, v) ·

√∫ u

−∞

u2
|Duφ|

2(u′, v) du′

≤ |Q−M |(−∞, v)+C
√
Aφ(Do+Di)|u|−

1
2 (|u|−

1
2
√
Aφ(Do+Di)+ v

−
1
2−

α
2
√
Do).

Using (4-21) and Young inequality, we therefore conclude that

|Q−M |(u, v). Dov
−1−α
+Aφ(Do+Di)|u|−1.

Proof of (7-3), (7-4), (7-5) and (7-6). By our choice of initial gauge (4-1), we have

log �
�0
(−∞, v)= log

�̂

�̂0
(U = 0, v)= 0,

so we can estimate using (A1)∣∣∣log �
�0

∣∣∣(u, v)≤ |u|− 1
2

√∫ u

−∞

u′2
(
∂u

(
log �

�0

))2
(u′, v′) du′ ≤ M

1
2 |u|−

1
2 .

Using (A1) and the simple inequality |eϑ − 1| ≤ |ϑ |e|ϑ |, we have∣∣∣�
�0
− 1

∣∣∣(u, v)≤ M
1
2 |u|−

1
2 max

{
�

�0
,
�0
�

}
(u, v),

∣∣∣�0
�
− 1

∣∣∣(u, v)≤ M
1
2 |u|−

1
2 max

{
�

�0
,
�0
�

}
(u, v).

We now consider two cases. Suppose (�/�0)(u, v) > 1 for some (u, v); we have∣∣∣�
�0
− 1

∣∣∣(u, v)≤ M
1
2 |u|−

1
2

(
�

�0
− 1
)
(u, v)+M

1
2 |u|−

1
2 ,

which, after choosing u0 to satisfy M
1
2 |u0|

−
1
2 ≤

1
2 , implies∣∣∣�

�0
− 1

∣∣∣(u, v)≤ 2M
1
2 |u|−

1
2 . (7-10)
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Multiplying (7-10) by �0 in particular implies

|�−�0|(u, v)≤ 4M
1
2 |u|−

1
2�0(u, v) (7-11)

in this case. On the other hand, if (�/�0)(u, v) < 1 for some (u, v), we have by a similar argument that
for M

1
2 |u0|

−
1
2 ≤

1
2 , ∣∣∣�0

�
− 1

∣∣∣(u, v)≤ 2M
1
2 |u|−

1
2 .

This then implies

|�0−�|(u, v)≤ 2M
1
2 |u|−

1
2 |�−�0|(u, v)+ 2M

1
2 |u|−

1
2�0(u, v).

Choosing M
1
2 |u0|

−
1
2 ≤

1
4 implies that we also have (7-11) in this case. Using (7-11) and (3-3), we

conclude (7-3).
For (7-4), we use (7-11) twice to obtain

|�2
−�2

0|(u, v)≤ 4M
1
2 |u|−

1
2�0(�+�0)≤ 16M |u|−1�2

0+ 8M
1
2 |u|−

1
2�2

0,

which, after choosing |u0| to be sufficiently large and using (3-3), implies (7-4).
Finally, (7-5) and (7-6) follow from (7-3), (7-4) and (3-3), with β = 1

2 .

Proof of (7-7) and (7-8). The bound (7-7) is an immediate consequence of (7-2), while (7-8) is an
immediate consequence of (7-6). �

Proposition 7.2. The following estimates hold:

|∂ur |(u, v).Aφ(Do+Di)|u|−2, (7-12)

|∂vr |(u, v). Dov
−2
+Aφ(Do+Di)min{v−2, |u|−2

}, (7-13)

|r(u, v)−M |. Dov
−1
+Aφ(Do+Di)|u|−1, (7-14)

|r(u, v)− r0(u, v)|. Dov
−1
+Aφ(Do+Di)|u|−1

+ (v+ |u|)−1. (7-15)

In particular,

|r(u, v)−M | ≤ 1
4 M, (7-16)

which improves the bootstrap assumption (A3).

Proof. Proof of (7-12). By (2-8), (A3), (7-8) and (4-22), we can estimate

|∂ur |(u, v)≤�2(u, v)|∂Ur |(−∞, v)+C�2(u, v)
∫ u

−∞

�−2(u′, v)|Duφ|
2(u′, v) du′

≤ C(Do+Di)|u|−2
+C(v+ |u|)−2

∫ u

−∞

(v+ |u′|)2

|u′|2
|u′|2 |Duφ|

2(u′, v) du′.
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Note that for |u′| ≥ |u|, we have(
v+ |u′|
|u′|

)2

=

(
1+

v

|u′|

)2

≤

(
1+

v

|u|

)2

=

(
v+ |u|
|u|

)2

,

which we can use to further estimate

|∂ur |(u, v)≤ C(Do+Di)|u|−2
+C |u|−2

∫ u

−∞

|u′|2 |Duφ|
2(u′, v) du′

and hence, by (A2),
|∂ur |(u, v)≤ CAφ(Do+Di)|u|−2.

Proof of (7-16). Using the fundamental theorem of calculus and integrating (7-12) in u, we obtain

|r(u, v)−M | ≤ |r(−∞, v)−M | +
∫ u

−∞

|∂ur |(u′, v)′ du′ . Dov
−1
+Aφ(Do+Di)|u|−1,

where in the last inequality we have used Lemma 4.2 and (7-12). Combining this with the estimates for r0

in Lemma 3.1, we thus obtain the estimate for r − r0 in (7-15). In particular, for Dov
−1
0 , (Do+Di)|u0|

−1

suitably small, we obtain
|r(u, v)−M |< 1

4 M

for all (u, v) ∈ Du0,v∞ , which is the estimate (7-14).

Proof of (7-13): the region {v ≤ |u|}. We first rewrite (2-1) as

∂u(r ∂vr)= 1
4�

2r−2(Q2
−M2)+ 1

4�
2r−2(M2

− r2)+m2πr2�2
|φ|2.

By (7-1) (for φ), (7-14) (for r −M) and (7-2) (for Q−M), the u-integral of the right-hand side of the
above equation can be estimated (up to a constant) by∫ u

−∞

�2(Dov
−1
+Aφ(Do+Di)|u′|−1) du′.

Using (7-6), we have, in the region {v ≤ |u|},∫ u

−∞

�2Dov
−1 du′ . Dov

−1
∫ u

−∞

(v+ |u′|)−2 du′ . Dov
−1(v+ |u|)−1

and ∫ u

−∞

�2Aφ(Do+Di)|u′|−1 du′ .Aφ(Do+Di)

∫ u

−∞

(v+ |u′|)−2
|u′|−1 du′

.Aφ(Do+Di)|u|−2.

Together with the bound on ∂vr on the event horizon in Lemma 4.2, this implies that when v ≤ |u|, we
have the estimate

|∂vr |(u, v). Dov
−2
+Aφ(Do+Di)min{v−2, |u|−2

}.

Proof of (7-13): the region {v ≥ |u|}. Notice that if we estimate in this region in the same manner as
before, we lose a factor of log v in the bound. So instead of (2-1), we will use the Raychaudhuri’s
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equation (2-9).17 More precisely, given (u, v) with v ≥ |u|, we integrate (2-9) along a constant-u curve
starting from its intersection with the curve {|u| = v} to obtain∣∣∣∣∂vr�2

∣∣∣∣(u, v). ∣∣∣∣∂vr�2

∣∣∣∣(u,−u)+
∫ v

−u
�−2
|Dvφ|

2(u, v′) dv′.

By the estimates for ∂vr in the previous step and (7-4), we have∣∣∣∣∂vr�2

∣∣∣∣(u,−u).Aφ(Do+Di).

Since v′ ≥ |u| in the domain of integration, we have, after using (7-4) and (A2), that∫ v

−u
�−2
|Dvφ|

2(u, v′) dv′ .
∫ v

−u
(v′+|u|)2|Dvφ|

2(u, v′) dv′ .
∫ v

−u
v2
|Dvφ|

2(u, v′) dv′ .Aφ(Do+Di).

Combining the three estimates above with (7-6) yields that when v ≥ |u|,

|∂vr |(u, v).Aφ(Do+Di)min{v−2, |u|−2
}.

Together with the previous step, we have thus completed the proof of (7-13). �

8. Energy estimates

In this section, we prove the energy estimates for (derivatives of) φ and �. In particular, we will improve
our bootstrap assumptions (A1) and (A2). As we discussed in the Introduction, the argument leading to
energy estimates for φ will go through the introduction of a renormalized energy, the analysis of which
forms the most technical part of the paper.

In Section 8A, we will motivate the introduction of our renormalized energy for the matter field by
considering the stress-energy-momentum tensor associated to the matter field. In Section 8B, we show
that the renormalized energy we introduce is coercive; and in Section 8C, we show that one can bound
this renormalized energy. Combining these facts yields the desired control for the matter field.

Finally, in Section 8D, we prove the energy estimates for (�/�0).

8A. The stress energy tensor and the renormalized energy fluxes. The null components of the stress-
energy-momentum tensor Tµν corresponding to the scalar field and electromagnetic tensor are given by

Tuv =
1
4�

2(m2
|φ|2+ 1

4π r−4 Q2), Tuu = |Duφ|
2, Tvv = |Dvφ|

2.

The above expressions suggest that the natural energy fluxes along the null hypersurfaces of constant u
and v are obtained by integrating the contraction T(X, ∂v) and T(X, ∂u), respectively. With the choice

17On the other hand, in the region {v ≤ |u|} that we considered above, it also does not seem that Raychaudhuri can give the
desired bound.
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X = u2 ∂u + v
2 ∂v, this gives∫ v2

v1

v2r2
|Dvφ|

2
+

1
4 u2r2�2(m2

|φ|2+ 1
4π r−4 Q2) dv,∫ u2

u1

u2r2
|Duφ|

2
+

1
4v

2r2�2(m2
|φ|2+ 1

4π r−4 Q2) du,

with −∞< u1 < u2 ≤ u0, v0 ≤ v1 < v2 <∞.
However, with the above energy fluxes, the initial energy flux is not finite even initially on the event

horizon with the chosen initial data. We therefore introduce the following renormalized energy fluxes.18

Ev(u) :=
∫ v∞

v0

v2 M2
|Dvφ|

2(u, v)+ 1
4 u2 M2�2(m2

|φ|2+ 1
4π M−4(Q2

−M2)
)
(u, v) dv, (8-1)

Eu(v) :=

∫ u0

−∞

u2 M2
|Duφ|

2(u, v)+ 1
4v

2 M2�2(m2
|φ|2+ 1

4π M−4(Q2
−M2)

)
(u, v) du. (8-2)

8B. Coercivity of the renormalized energy flux. Our goal in this subsection is to prove that the renor-
malized energy flux we defined in (8-1) and (8-2) is coercive and controls the quantity on the left-hand
side of (A2). The statement of the main result can be found in Proposition 8.7 at the end of the subsection.
This will be achieved in a number of steps. We will first need the following preliminary results:

(1) We need an improved version of (7-2), which keeps track of the constants appearing in the leading-
order terms (Lemma 8.1).

(2) We then show that
∫ v
v0
(|u|/(v′+ |u|))2|φ|2(u, v′) dv′ can be controlled by the left-hand side of (A2)

(Lemma 8.3).

(3) Similarly, we show that
∫ u0
−∞
(v/(v+ |u′|))2|φ|2(u′, v) du′ can be controlled by the left-hand side

of (A2) (Lemma 8.4).

Both (2) and (3) above are based on a Hardy-type inequality; see Lemma 8.2. After these preliminary steps,
we turn to the terms in the renormalized energy (see (8-2), (8-1)) which are not manifestly nonnegative.
Precisely, we control

•
1

16π

∫ v∞
v0

u2 M−2�2(Q2
−M2)(u, v) dv in Proposition 8.5, and

•
1

16π

∫ u0
−∞

v2 M−2�2(Q2
−M2)(u, v) du in Proposition 8.6.

Putting all these together, we thus obtain the main result in Proposition 8.7.
We now turn to the details, beginning with the following lemma:

Lemma 8.1. Let η > 0 be as in (6-1). Then there exists C > 0 such that

|Q2
−M2

|(u, v)

≤ 8πM |e|(1+ η)|u|−1
∫ u

−∞

u′2 M2
|Duφ|

2(u′, v) du′+CDov
−1
+CAφ(Do+Di)|u|−2. (8-3)

18Notice that in the renormalization, not only have we “added an infinity term” to each of the fluxes, we have also “replaced
several factors of r by factors of M”. The replacement of r by M is strictly speaking not necessary to make the renormalized
energy fluxes finite, but this simplifies the computations below.
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Proof. We compute

(Q2
−M2)(u,v)= (Q(u,v)+M)(Q(u,v)−M)= (Q(u,v)+M)

(
Q(−∞,v)−M+

∫ u

−∞

∂u Q(u′,v)du′
)

and use (2-5) to estimate

|Q2
−M2

|(u, v)≤ |Q(u, v)+M |
(
|Q(−∞, v)−M | + 4π |e|

∫ u

−∞

r2
|φ||Duφ| du′

)
.

We further use (7-9) to estimate∫ u

−∞

r2
|φ||Duφ|(u′, v) du′

≤
[
M2
+ sup
−∞<u′≤u

(r2
−M2)

]
· sup
−∞<u′≤u

|φ|(u′, v) ·
∫ u

−∞

|Duφ|(u′, v) du′

≤
[
M2
+ sup
−∞<u′≤u

(r2
−M2)

]
· |u|−

1
2 |φ|(−∞, v)

√∫ u

−∞

u′2|Duφ|
2(u′, v) du′

+
[
M2
+ sup
−∞<u′≤u

(r2
−M2)

]
· |u|−

1
2

∫ u

−∞

|Duφ|(u′, v) du′ ·

√∫ u

−∞

u′2|Duφ|
2(u′, v) du′

≤
[
M2
+ sup
−∞<u′≤u

(r2
−M2)

]
· |u|−

1
2 |φ|(−∞, v)

√∫ u

−∞

u′2|Duφ|
2(u′, v) du′

+
[
M2
+ sup
−∞<u′≤u

(r2
−M2)

]
· |u|−1

∫ u

−∞

u′2|Duφ|
2(u′, v) du′. (8-4)

Using (7-14), it follows that

|r2
−M2

|(u, v)= |r −M + 2M | · |r −M |. Dov
−1
+Aφ(Do+Di)|u|−1,

where we have taken Dov
−1
0 and (Do+Di)|u0|

−1 to be suitably small.
Therefore, we can further estimate the right-hand side of (8-4) to obtain∫ u

−∞

r2
|φ||Duφ|(u′, v) du′ ≤ 1

4η
−1 M2

|φ|2(−∞, v)+ (1+ η)M2
|u|−1

∫ u

−∞

u′2|Duφ|
2(u′, v) du′

+CDov
−1
|u|−1

+CAφ(Do+Di)|u|−2, (8-5)

where we moreover applied Young’s inequality with an η-weight, where η > 0 is as in the statement of
the proposition.

By applying (7-2) and (8-5) together with the initial data estimate (4-5) and (4-21), we therefore obtain

|Q2
−M2
|(u,v)

≤ |Q(u,v)+M |
(
|Q(−∞,v)−M |+πη−1 M2

|e||φ|2(−∞,v)

+4π |e|(1+η)|u|−1
∫ u

−∞

u′2 M2
|Duφ|

2(u′,v)du′+CDov
−1
|u|−1
+CAφ(Do+Di)|u|−2

)
≤ (2M+CDov

−1−α
+CAφ(Do+Di)|u|−1)

·

(
4π |e|(1+η)|u|−1

∫ u

−∞

u′2 M2
|Duφ|

2(u′,v)du′+CDov
−1
+CAφ(Do+Di)|u|−2

)
≤ 8πM |e|(1+η)|u|−1

∫ u

−∞

u′2 M2
|Duφ|

2(u′,v)du′+CDov
−1
+CAφ(Do+Di)|u|−2. �
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In order to estimate the |φ|2 integral, we will make use of a Hardy inequality:

Lemma 8.2. Let f : R→ R be in H 1
loc(R) and let c ≥ 0 be a constant. Then for any x1, x2 ∈ R with

0< x1 < x2 <∞,∫ x2

x1

(x + c)p f 2(x) dx ≤ 2(x2+ c)p+1 f 2(x2)+
4

(p+ 1)2

∫ x2

x1

(x + c)p+2 f ′2(x) dx if p >−1,∫ x2

x1

(x + c)p f 2(x) dx ≤ 2(x1+ c)p+1 f 2(x1)+
4

(p+ 1)2

∫ x2

x1

(x + c)p+2 f ′2(x) dx if p <−1.

Proof. We will only prove the inequality in the case p >−1. The other inequality is similar. We compute

0≤
∫ x2

x1

(x + c)p
(

p+ 1
2

f + (x + c) f ′
)2

(x) dx

=

∫ x2

x1

(p+ 1)2

4
(x + c)p f 2

+
p+ 1

2
(x + c)p+1 d

dx
( f 2)+ (x + c)p+2 f ′2(x) dx

=−
(p+ 1)2

4

∫ x2

x1

(x + c)p f 2(x) dx +
p+ 1

2
(x2+ c)p+1 f 2(x2)

−
p+ 1

2
(x1+ c)p+1 f 2(x1)+

∫ x2

x1

(x + c)p+2 f ′2(x) dx .

Rearranging and dropping a manifestly nonnegative term yield the conclusion. �

Using Lemma 8.2, we prove a Hardy-type estimate on a constant-u hypersurface in our setting.

Lemma 8.3. Given η > 0 as in (6-1), there exists C > 0 independent of Aφ such that the following holds:∫ v

v0

(
|u|

v′+|u|

)2

|φ|2(u, v′) dv′ ≤ CDo+4
∫ v

v0

v′2|Dvφ|
2(u, v′) dv′+3(1+η)

∫ u

−∞

|u′|2 |Duφ|
2(u′, |u|) du′.

Proof. We will apply the Hardy inequality Lemma 8.2 on a fixed constant-u hypersurface. For this
purpose, it is useful to choose an auxiliary gauge for A (see Section 2E and proof of Lemma 2.1) where
|∂vφ| = |Dvφ| (and we will perform all estimates in terms of the gauge-invariant quantities |φ| and
|Dvφ|). Let γ > 0 be a constant to be chosen. If v > |u|, we also partition the integration interval,
[v0, v] = [v0, γ |u|] ∪ [γ |u|, v], so we can estimate∫ v

v0

(
|u|

v′+|u|

)2

|φ|2(u,v′)dv′

=

∫ γ |u|

v0

(
|u|

v′+|u|

)2

|φ|2(u,v′)dv′+
∫ v

γ |u|

(
|u|

v′+|u|

)2

|φ|2(u,v′)dv′

≤

∫ γ |u|

v0

|φ|2 dv′+|u|2
∫ v

γ |u|
(v′+|u|)−2

|φ|2(u,v′)dv′

≤ 4
∫ γ |u|

v0

v′2|Dvφ|
2(u,v′)dv′+4|u|2

∫ v

γ |u|
|Dvφ|

2(u,v′)dv′+2γ |u||φ|2(u,γ |u|)+
2|u|
(γ+1)

|φ|2(u,γ |u|)

≤ 4max{1,γ−2
}

∫ v

v0

v′2|Dvφ|
2(u,v′)dv′+

(
2γ+

2
γ+1

)
|u||φ|2(u,γ |u|), (8-6)
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where we applied Lemma 8.2 with p= 0 and p=−2 respectively in the two intervals. By (7-9), Young’s
inequality and (4-5) (to control the initial data), it moreover holds that for any η > 0, there exists Cη > 0
so that the following is satisfied:

|u||φ|2(u, v)≤ CηDo
|u|
v
+ (1+ η)

∫ u

−∞

|u′|2 |Duφ|
2(u′, v) du′. (8-7)

Using this to control the last term in (8-6), and setting γ = 1, we obtain the desired conclusion. �

We have a similar Hardy-type estimate on a constant-v hypersurface, with appropriate modifications of
the weights.

Lemma 8.4. Let η > 0 be as in (6-1). Then there exists C > 0 independent of Aφ such that the following
holds: ∫ u0

−∞

(
v

v+ |u′|

)2

|φ|2(u′, v) du′ ≤ CDo+ 6(1+ η)
∫ u0

−∞

u′2|Duφ|
2(u′, v) du′.

Proof. Choose a gauge so that |Duφ|= |∂uφ|. (As in Lemma 8.3, we will only estimate the gauge-invariant
quantities.)

Let σ > 0 be a constant that will be chosen suitably later on. We partition the integration interval:
[−∞, u0] = [−∞, σv] ∪ [σv, u0]. For the sake of convenience, we will change our integration variable
from u to −u and we will denote −u by |u|, so we can estimate∫
∞

|u0|

(
v

v+|u′|

)2

|φ|2(u′, v) d|u′|

=

∫ σv

|u0|

(
v

v+|u′|

)2

|φ|2(u′, v) d|u′|+
∫
∞

σv

(
v

v+|u′|

)2

|φ|2 d|u′|

≤

∫ σv

|u0|

|φ|2(u′, v) d|u′|+v2
∫
∞

σv

(v+|u′|)−2
|φ|2(u′, v) d|u′|

≤ 4
∫ σv

|u0|

|u′|2 |Duφ|
2(u′, v) d|u′|+4v2

∫
∞

σv

|Duφ|
2(u′, v) d|u′|+2σv|φ|2(σv, v)+2

v2

σv+v
|φ|2(σv, v)

≤ 4 max{1, σ−2
}

∫ u0

−∞

u′2|Duφ|
2(u′, v) du′+

(
2+

2
σ(1+σ)

)
σv|φ|2(σv, v),

where we applied Lemma 8.2 with p = 0 and p =−2 in the two intervals. We apply (8-7) to conclude
that for any η′, σ > 0, there exists Cη′,σ > 0 such that∫ u0

u

(
v

v+ |u′|

)2

|φ|2 du′ ≤
(

4 max{1, σ−2
}+ (1+ η′)

(
2+

2
σ(1+ σ)

))∫ u0

−∞

u′2|Duφ|
2 du′+Cη′,σDo.

Finally, choosing η′ sufficiently small and σ sufficiently large, we can choose

4 max{1, σ−2
}+ 4σ−2

+ (1+ η′)
(

2+
2

σ(1+ σ)

)
≤ 6(1+ η),

which then gives the desired conclusion. �
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With Lemmas 8.3 and 8.4 in place, we are now ready to control the terms in Ev(u) and Eu(v) which
are not manifestly nonnegative. These are the terms

1
16π

∫ v∞

v0

u2 M−2�2(Q2
−M2)(u, v) dv, 1

16π

∫ u0

−∞

v2 M−2�2(Q2
−M2)(u, v) du

in (8-1) and (8-2), which will be handled in Propositions 8.5 and 8.6 respectively.

Proposition 8.5. For η > 0 as in (6-1) and for κ > 0 arbitrary, there exists a constant C > 0 independent
of Aφ (but dependent on κ in addition to M, e, m, α and η) such that∣∣∣∣ 1
16π

∫ v

v0

u2 M−2�2(Q2
−M2)(u, v′) dv′

∣∣∣∣
≤ (κ + 4κ−1)|e|M3

∫ v

v0

v′2|Dvφ|
2 dv′+ (2+ 3κ−1)(1+ η)|e|M3

∫ u

−∞

|u′|2 |Duφ|
2 du′+C(Do+Di).

Proof. The main integration by parts. We begin the argument by a simple integration by parts:∣∣∣∣ 1
16π

∫ v

v0

u2 M−2�2(Q2
−M2)(u, v′) dv′

∣∣∣∣
≤

∣∣∣∣− 1
16π

∫ v

v0

(∫ v′

v0

u2 M−2�2(u, v′) dv′′
)
∂v(Q2

−M2)(u, v′) dv′
∣∣∣∣

+

∣∣∣∣ 1
16π

(∫ v′

v0

u2 M−2�2(u, v′′) dv′′
)
(Q2
−M2)(u, v′)

∣∣∣∣v′=v
v′=v0

∣∣∣∣
≤

1
16π

∣∣∣∣∫ v

v0

u2 M−2�2(u, v′) dv′
∣∣∣∣|Q2
−M2

|(u, v)

+
1

8π

∫ v

v0

∣∣∣∣∫ v′

v0

u2 M−2�2(u, v′′) dv′′′
∣∣∣∣|Q||∂vQ|(u, v′) dv′. (8-8)

Note that there are two terms that we need to estimate.

An auxiliary computation. Before we proceed, we first estimate the integral∫ v

v0

u2 M−2�2(u, v′) dv′,

which appears in (8-8). From (7-6) it follows that

M−2�2
≤ 4(v+ |u|)−2

+C |u|−
1
2 (v+ |u|)−2, (8-9)

and hence, ∫ v

v0

u2 M−2�2(u, v′) dv′ ≤ 4
∫ v

v0

(
|u|

v′+ |u|

)2

dv′+C |u|−
1
2

∫ v

v0

(
|u|

v′+ |u|

)2

dv′.

Note that

∂v(|u|v(v+ |u|)−1)=

(
|u|

v+ |u|

)2

. (8-10)
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Hence, ∫ v

v0

u2 M−2�2(u, v′) dv′ ≤ 4|u|v(v+ |u|)−1
+C |u|

1
2 v(v+ |u|)−1. (8-11)

Estimating the boundary term. We first estimate the boundary term in (8-8) above by using (8-3)
and (8-11):

1
16π

∣∣∣∣∫ v

v0

u2 M−2�2(u, v′) dv′
∣∣∣∣|Q2
−M2
|(u, v)

≤ 2(1+η)M |e|
∫ u

−∞

u2
|Duφ|

2(u′, v)M2 du′+CDo+CAφ(Do+Di)|u|−1
+C(Do+Di)|u|−

1
2 . (8-12)

Estimating the remaining integral, I: the error term. Now, we estimate the remaining integral on the very
right-hand side of (8-8) by applying (2-6) and (8-11):

1
8π

∫ v

v0

∣∣∣∣∫ v′

v0

u2 M−2�2(u, v′′) dv′′
∣∣∣∣|Q||∂vQ|(u, v′) dv′

≤ 2M3
|e|

∫ v

v0

|u|v′(v′+ |u|)−1
|φ||Dvφ| dv′︸ ︷︷ ︸

main term

+Err, (8-13)

where

Err= C
∫ v

v0

|u|v′(v′+ |u|)−1
|Q−M ||φ||Dvφ|(u, v′) dv′

+C
∫ v

v0

|M + (Q−M)||u|
1
2 v′(v′+ |u|)−1

|φ||Dvφ|(u, v′) dv′

+C
∫ v

v0

|u|v′(v′+ |u|)−1
|r2
−M2

||φ||Dvφ|(u, v′) dv′. (8-14)

Let us start with the error term, beginning with the second term (8-14), which is the hardest since the
decay is the weakest. By (7-1),∫ v

v0

|M + (Q−M)||u|
1
2 v(v+ |u|)−1

|φ||Dvφ|(u, v′) dv′

.
√
Do

∫ v

v0

|u|
1
2 v

1
2−

α
2 (v+ |u|)−1

|Dvφ|(u, v′) dv′+
√
Aφ(Do+Di)

∫ v

v0

v(v+ |u|)−1
|Dvφ|(u, v′) dv′

.
√
Aφ(Do+Di)(v0+ |u|)−

1
4

(∫ v

v0

v′−
3
2 dv′

)1
2
(∫ v

v0

v′2|Dvφ|
2(u, v′) dv′

)1
2

.Aφ(Do+Di)(v0+ |u|)−
1
4 v
−

1
4

0 .

The first term in (8-14) can be treated similarly, with the only caveat that there is a contribution
where |φ| and |Q−M | only give v-decay, and therefore one does not get any smallness in (v0+ |u|)−

1
4 .

Nevertheless, this term has a coefficient that depends only on Do (and not on Di). More precisely, using
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(7-1) and (7-2), we have∫ v

v0

|u|v′(v′+ |u|)−1
|Q−M ||φ||Dvφ|(u, v′) dv′

. D
3
2
o

∫ v

v0

v′−
1
2 |Dvφ|(u, v′) dv′+A2

φ(Do+Di)
2(v0+ |u|)−

1
4 v
−

1
4

0

. D
3
2
o v
−

1
2

0

(∫ v

v0

v′2|Dvφ|
2(u, v′) dv′

)1
2

+A2
φ(Do+Di)

2(v0+ |u|)−
1
4 v
−

1
4

0

.A
1
2
φD

2
ov
−

1
2

0 +A2
φ(Do+Di)

2(v0+ |u|)−
1
4 v
−

1
4

0 .

Finally, the third term in (8-14) can be handled in an identical manner as the first term, except for using
(7-14) instead of (7-2), so that we have∫ v

v0

|u|v′(v′+ |u|)−1
|r2
−M2

||φ||Dvφ|(u, v′)(u, v′) dv′ .A
1
2
φD

2
ov
−

1
2

0 +A2
φ(Do+Di)

2(v0+ |u|)−
1
4 v
−

1
4

0 .

Putting all these together, choosing |u0| and v0 appropriately large (where the largeness of v0 does not
depend on Di), and returning to (8-14), we thus obtain

Err. Do+Di. (8-15)

Estimating the remaining integral, II: the main term. Now for the main term in (8-13), we have, using
Young’s inequality,

2M3
|e|

∫ v

v0

|u|v′(v′+|u|)−1
|φ||Dvφ| dv′

≤ κ|e|M3
∫ v

v0

v′2|Dvφ|
2 dv′+κ−1

|e|M3
∫ v

v0

(
|u|

v′+|u|

)2

|φ|2 dv′

≤ (κ+4κ−1)|e|M3
∫ v

v0

v′2|Dvφ|
2 dv′+3(1+η)κ−1

|e|M3
∫ u

−∞

|u′|2 |Duφ|
2 du′+Cκ(Do+Di), (8-16)

where in the last line we have used Lemma 8.3.

Putting everything together. Combining (8-8), (8-12), (8-13), (8-15) and (8-16), we obtain the desired
conclusion. �

We now turn to the analogue of Proposition 8.5 on constant-v hypersurfaces.

Proposition 8.6. For η > 0 as in (6-1), there exists a constant C > 0 independent of Aφ such that∣∣∣∣ 1
16π

∫ u0

−∞

v2 M−2�2(Q2
−M2)(u′, v) du′

∣∣∣∣
≤ 2(1+

√
6)|e|M3(1+ η)

∫ u0

−∞

|u′|2 |Duφ|
2(u′, v) du′+C(Do+Di).
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Proof. We will consider the integral

1
16π

∫ u0

u
v2 M−2�2(Q2

−M2)(u′, v) du′

and take the limit u ↓ −∞.

The main integration by parts. We integrate by parts as in (8-8)∣∣∣∣ 1
16π

∫ u0

u
v2 M−2�2(Q2

−M2)(u′, v) du′
∣∣∣∣

≤

∣∣∣∣ 1
16π

∫ u0

u

(∫ u0

u′
v2 M−2�2 du′′

)
∂u(Q2

−M2)(u′, v) du′
∣∣∣∣

+

∣∣∣∣ 1
16π

(∫ u0

u′
v2 M−2�2(u′′, v) du′′

)
(Q2
−M2)(u′, v)

∣∣∣∣u′=u0

u′=u

∣∣∣∣
≤

1
16π

∫ u0

u
v2 M−2�2(u′, v) du′ · |Q2

−M2
|(u, v)

+
1

8π

∫ u0

u

[∫ u′

∞

v2 M−2�2(u′′, v) du′′
]
|Q||∂u Q|(u′, v) du′. (8-17)

An auxiliary computation. By (8-9) and

−∂u(|u|v(v+ |u|)−1)=

(
v2

v+ |u′|

)2

,

we obtain∫ u0

u
v2 M−2�2(u′, v) du′ ≤ 4

∫ u0

u

(
v2

v+ |u′|

)2

du′+Cv2
∫ u0

u

1

|u′|
1
2 (v+ |u′|)2

du′

≤ 4|u|v(v+ |u|)−1
+C |u|

1
2 v2(v+ |u|)−2.

(8-18)

Estimating the boundary term. We now control the boundary term in (8-17). By (8-18) combined with
(8-3), we obtain

1
16π

∣∣∣∣∫ u0

u
v2 M−2�2(u′, v) du′

∣∣∣∣|Q2
−M2

|(u, v)

≤ 2(1+ η)M3
|e|

∫ u

−∞

u′2|Duφ|
2(u′, v) du′+CDo+CAφ(Do+Di)|u|−1

+C(Do+Di)|u|−
1
2 . (8-19)

Estimating the remaining integral. The remaining integral in (8-17) can be controlled as follows:

1
8π

∫ u0

u

∣∣∣∣∫ u0

u′
v2 M−2�2(u′′, v) du′′

∣∣∣∣|Q||∂u Q|(u′, v) du′

≤ 2M3
|e|

∫ u0

u
|u′|v(v+ |u′|)−1

|φ||Duφ|(u′, v) du′︸ ︷︷ ︸
main term

+Err,
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where

Err= C
∫ u0

u
|u′|v(v+ |u′|)−1

|Q−M ||φ||Duφ|(u′, v) du′

+C
∫ u0

u
|M + (Q−M)||u′|

1
2 v(v+ |u′|)−1

|φ||Duφ|(u′, v) du′

+C
∫ u0

u
|u′|v(v+ |u′|)−1

|r2
−M2

||φ||Duφ|(u′, v) du′.

The error term can be estimated in essentially the same manner as the error term in the proof of
Proposition 8.5, except we use (A2) for

∫ u0
u u′2|Duφ|

2(u′, v) du′ instead of
∫ v
v0
v′2|Dvφ|

2(u, v′) dv′.
We omit the details and just record the estimate

Err. Do+Di. (8-20)

For the main term in (8-17), we apply Hölder’s inequality, Lemma 8.4 and Young’s inequality to obtain

2M3
|e|

∫ u0

u
|u′|v(v+ |u′|)−1

|φ||Duφ|(u′, v) du′

≤ 2|e|M3
(∫ u0

u
|u′|2 |Duφ|

2(u′, v) du′
)1

2
(∫ u0

u

(
v

v+ |u′|

)2

|φ|2(u′, v) du′
)1

2

≤ 2|e|M3
√

6(1+ η)
∫ u0

u
|u′|2 |Duφ|

2(u′, v) du′+CDo. (8-21)

Putting everything together. Putting together (8-17), (8-19), (8-20) and (8-21), and taking the limit
u ↓ −∞, we obtain the desired conclusion. �

We can now prove the main result of this subsection, namely, the coercivity of the renormalized energy
flux (up to controllable error terms).

Proposition 8.7. We can estimate∫ u0

−∞

|u|2 M2
|Duφ|

2 du+
∫ v∞

v0

v2 M2
|Dvφ|

2 dv ≤ µ−1(Eu(v)+ Ev(u))+C(Do+Di), (8-22)

with µ as in (6-2).

Proof. Plugging in the estimates in Propositions 8.5 and 8.6 into (8-1) and (8-2) respectively, and using
m≥ 0, we deduce that

Eu(v)+ Ev(u)≥
(
1− (4+ 2

√
6+ 3κ−1)(1+ η)|e|M

) ∫ u0

−∞

|u|2r2
|Duφ|

2 du′

+ (1− (κ + 4κ−1)|e|M)
∫ v∞

v0

v2 M2
|Dvφ|

2 dv′−C(Do+Di).

Now we choose κ = 2+
√

6+
√

9+ 4
√

6 to obtain the conclusion. �
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8C. Energy estimates for φ. We define

Eu(v; u) :=
∫ u

−∞

u2 M2
|Duφ|

2(u′, v)+ 1
4v

2 M2�2(m2
|φ|2+ 1

4π M−4(Q2
−M2)

)
(u′, v) du′,

Ev(u; v) :=
∫ v

v0

v2 M2
|Dvφ|

2(u, v′)+ 1
4 u2 M2�2(m2

|φ|2+ 1
4π M−4(Q2

−M2)
)
(u, v′) dv′.

With the above definitions, we have Eu(v)= Eu(v; u0) and Ev(u)= Ev(u; v∞).

Proposition 8.8. Eu(v; u) and Ev(u; v) obey the estimate

sup
v0≤v≤v∞

Eu(v; u)+ sup
−∞<u<u0

Ev(u; v)≤ C(Do+Di).

Proof. In order to simplify the notation, in this proof, we omit the arguments in the integrals, which will
typically be taken as (u′, v′). For any u ∈ (−∞, u0] and v ∈ [v0, v∞], we have the decomposition

[Eu(v; u)− Eu(v0; u)] + [Ev(u; v)− Ev(−∞; v)] =
∫ v

v0

∂vEu(v
′
; u) dv′+

∫ u

−∞

∂u Ev(u′; v) du′

= J1+ J2+ J3+ J4+ J5+ J6,

where

J1 = M2
∫ v

v0

∫ u

−∞

u′2 ∂v(|Duφ|
2) du′ dv′,

J2 =
1
4 M2m2

∫ v

v0

∫ u

−∞

v′2�2 ∂v(|φ|
2)+ ∂v(v

′2�2) · |φ|2 du′ dv′,

J3 =
1

16π M−2
∫ v

v0

∫ u

−∞

2v′2�2 Q ∂vQ+ ∂v(v′2�2)(Q2
−M2) du′ dv′,

J4 = M2
∫ v

v0

∫ u

−∞

v′2 M2 ∂u(|Dvφ|
2) du′ dv′,

J5 =
1
4 M2m2

∫ v

v0

∫ u

−∞

u′2�2 ∂u(|φ|
2)+ ∂u(u′2�2) · |φ|2 du′ dv′,

J6 =
1

16π M−2
∫ v

v0

∫ u

−∞

2u′2�2 Q ∂u Q+ ∂u(u′2�2)(Q2
−M2) du′ dv′.

We first use (2-3) and (2-4) to rewrite the integral J1 in terms of expressions that are zeroth- or
first-order derivatives of the variables φ,�, r . For this, we use that we have the following identity for
complex-valued functions f :

∂v(| f |2)= (Dv f − ieAv f ) f̄ + f (Dv f − ieAv f )= f̄ Dv f + f Dv f

and similarly

∂u(| f |2)= f̄ Du f + f Du f .
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We therefore obtain

J1 =

∫ v

v0

∫ u

−∞

u′2 M2(DuφDvDuφ+ DuφDvDuφ) du′ dv′

=−
1
2

∫ v

v0

∫ u

−∞

1
2 u′2 M2m2�2(φDuφ+ φ̄Duφ)+ 2M2r−1u′2 ∂ur(DuφDvφ+ DvφDuφ)

+ 4M2r−1u′2 ∂vr |Duφ|
2
+

1
2 ieM2r−2u′2�2 Q(φDuφ− φ̄Duφ) du′ dv′

and similarly,

J4 =

∫ v

v0

∫ u

−∞

v′2 M2(DvφDu Dvφ+ DvφDu Dvφ) du′ dv′

=−
1
2

∫ v

v0

∫ u

−∞

1
2v
′2 M2m2�2(φDvφ+ φ̄Dvφ)+ 2M2r−1v′2 ∂vr(DuφDvφ+ DvφDuφ)

+ 4M2r−1v′2 ∂ur |Dvφ|
2
−

1
2 ieM2r−2�2v′2 Q(φDvφ− φ̄Dvφ) du′ dv′.

We also rewrite J2 and J5 to obtain

J2 =
1
4 M2m2

∫ v

v0

∫ u

−∞

v′2�2(φ̄Dvφ+φDvφ)+ ∂v(v
′2�2) · |φ|2 du′ dv′,

J5 =
1
4 M2m2

∫ v

v0

∫ u

−∞

u′2�2(φ̄Duφ+φDuφ)+ ∂u(u′2�2) · |φ|2 du′ dv′.

Finally, we use (2-5) and (2-6) to rewrite J3 and J6:

J3 =

∫ v

v0

∫ u

−∞

−
1
4 ieM−2r2v′2�2 Q(φDvφ− φ̄Dvφ)+

1
16π M−2 ∂v(v

′2�2)(Q2
−M2) du′ dv′,

J6 =

∫ v

v0

∫ u

−∞

1
4 ieM−2r2u′2�2 Q(φDuφ− φ̄Duφ)+

1
16π M−2 ∂u(u′2�2)(Q2

−M2) du′ dv′.

By incorporating the cancellations in the terms in Ji , we can write

[Eu(v; u)− Eu(v0; u)] + [Ev(u; v)− Ev(−∞; v)] =
7∑

i=1

Fi , (8-23)

with

F1 =−M2
∫ v

v0

∫ u

−∞

r−1(u′2 ∂ur + v′2 ∂vr)(DuφDvφ+ DvφDuφ) du′ dv′,

F2 =−2M2
∫ v

v0

∫ u

−∞

r−1 ∂vr · u′2|Duφ|
2
+ r−1 ∂ur · v′2|Dvφ|

2 du′ dv′,

F3 =
1
4 M2m2

∫ v

v0

∫ u

−∞

[∂v(v
′2�2

0)+ ∂u(u′2�2
0)]|φ|

2 du′ dv′,

F4 =
1

16π M−2
∫ v

v0

∫ u

−∞

[∂v(v
′2�2

0)+ ∂u(u′2�2
0)](Q

2
−M2) du′ dv′,

F5 =
1
4

∫ v

v0

∫ u

−∞

[∂v(v
′2
· (�2
−�2

0)+ ∂u(u′2 · (�2
−�2

0))](M
2m2
|φ|2+ 1

4π M−2(Q2
−M2)) du′ dv′,
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F6 =
1
4 ieM−2

∫ v

v0

∫ u

−∞

r−2(r4
−M4)u′2 Q�2(φDuφ− φ̄Duφ) du′ dv′,

F7 =
1
4 ieM−2

∫ v

v0

∫ u

−∞

r−2(M4
− r4)v′2 Q�2(φDvφ− φ̄Dvφ) du′ dv′.

We estimate using Cauchy–Schwarz inequality, Young’s inequality, Proposition 7.2 and (A2)

|F1|.
∫ v

v0

∫ u

−∞

(u′2|∂ur | + v′2|∂vr |)|Duφ||Dvφ| du′ dv′

.
∫ v

v0

∫ u

−∞

Aφ(Do+Di)|Duφ||Dvφ| du′ dv′

.
∫ v

v0

∫ u

−∞

Aφ(Do+Di)v
′−2u′

3
2 |Duφ|

2 du′ dv′+
∫ v

v0

∫ u

−∞

Aφ(Do+Di)u′−
3
2 v′2|Dvφ|

2 du′ dv′

.Aφ(Do+Di)v
−1
0 |u0|

−
1
2 · sup

v0≤v≤v∞

∫ u

−∞

u′2|Duφ|
2 du′

+Aφ(Do+Di)|u0|
−

1
2 · sup
−∞<u<u0

∫ v∞

v0

v′2|Dvφ|
2 dv′

.A2
φ(Do+Di)

2
|u0|
−

1
2 .

We can similarly estimate

|F2|.
∫ v

v0

∫ u

−∞

|∂vr | · u′2|Duφ|
2 du′ dv′+

∫ v

v0

∫ u

−∞

|∂ur | · v′2|Dvφ|
2 du′ dv′

.Aφ(Do+Di)

(∫ v

v0

∫ u

−∞

v′−
3
2 · u′

3
2 |Duφ|

2 du′ dv′+
∫ v

v0

∫ u

−∞

u′−2
· v′2|Dvφ|

2 du′ dv′
)

+Do

∫ v

v0

∫ u

−∞

v′−2
· u′2|Duφ|

2 du′ dv′

. [Dov
−1
0 +Aφ(Do+Di)(v

−
1
2

0 |u0|
−

1
2 + |u0|

−1)]Aφ(Do+Di).

In order to estimate |F3|, we use (3-4) (with a constant depending on β > 0) and (7-1) to get

|F3|.
∫ v

v0

∫ u

−∞

|∂v(v
2�2

0)+ ∂u(u2�2
0)| · |φ|

2 du′ dv′

.
∫ v

v0

∫ u

−∞

(v′+ |u′|)−2+β(Dov
′−1
+Aφ(Do+Di)|u′|−1) du′ dv′

.Aφ(Do+Di)(v0+ |u0|)
−1+2β .

Similarly, using (3-4) and (7-2),

|F4|.
∫ v

v0

∫ u

−∞

|∂v(v
2�2

0)+ ∂u(u2�2
0)| · |Q−M ||Q+M | du′ dv′

.
∫ v

v0

∫ u

−∞

(v′+ |u′|)−2+β(Dov
′−1
+Aφ(Do+Di)|u′|−1) du′ dv′

.Aφ(Do+Di)(v0+ |u0|)
−1+2β .
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Before we estimate |F5|, it is convenient to rewrite the following expression:

∂v(v
2(�2
−�2

0))+ ∂u(u2(�2
−�2

0))

= ∂v

(
v2�2

0

(
�2

�2
0
− 1
))
+ ∂u

(
u2�2

0

(
�2

�2
0
− 1
))

= (∂v(v
2�2

0)+ ∂u(u2�2
0))

(
�2

�2
0
− 1
)
+ v2�2

0 ∂v

(
�2

�2
0
− 1
)
+ u2�2

0 ∂u

(
�2

�2
0
− 1
)

= (∂v(v
2�2

0)+ ∂u(u2�2
0))

(
�2

�2
0
− 1
)
+ 2v2�2 ∂v

(
log �

�0

)
+ 2u2�2 ∂u

(
log �

�0

)
.

Therefore,

|F5|.
∫ v

v0

∫ u

−∞

|∂v(v
′2�2

0)+ ∂u(u′2�2
0)|

∣∣∣∣�2

�2
0
− 1

∣∣∣∣ · (|φ|2+ |Q−M ||Q+M |) du′ dv′

+

∫ v

v0

∫ u

−∞

v′2�2
∣∣∣∣∂v(log �

�0

)∣∣∣∣ · (|φ|2+ |Q−M ||Q+M |) du′ dv′

+

∫ v

v0

∫ u

−∞

u′2�2
∣∣∣∣∂u

(
log �

�0

)∣∣∣∣ · (|φ|2+ |Q−M ||Q+M |) du′ dv′ =: F5,1+ F5,2+ F5,3.

Using (3-4), (7-1), (7-2), (7-3), we can estimate |F5,1| in the same way as |F3| and |F4| to obtain

|F5,1|.Aφ(Do+Di)|u0|
−

1
2 (v0+ |u0|)

−1+2β .

For |F5,2|, we use (7-1), (7-2) and (A1) to estimate

|F5,2|.
∫ v

v0

∫ u

−∞

(Dov
′−1
+Aφ(Do+Di)|u′|−1)v′2�2

∣∣∣∣∂v(log �
�0

)∣∣∣∣du′ dv′

.Do

(
sup

u′∈(−∞,u0]

∫ v

v0

v′2
(
∂v

(
log �

�0

))2
(u′,v′)dv′

)1
2
∫ u

−∞

(∫ v

v0

(v′+|u′|)−4 dv′
)1

2

du′

+Aφ(Do+Di)

(
sup

u′∈(−∞,u0]

∫ v

v0

v′2
(
∂v

(
log �

�0

))2
(u′,v′)dv′

)1
2
∫ u

−∞

(∫ v

v0

v′2

|u′|2(v′+|u′|)4
dv′
)1

2

du′

.Do(v0+|u0|)
−

1
2+Aφ(Do+Di)|u0|

−
1
2 ,

where in the last line we have evaluated an integral as follows (we only include this estimate for
completeness; in what follows, we will bound similar integrals in analogous manner without spelling out
the full details):∫ u

−∞

(∫ v

v0

v′2

|u′|2(v′+|u′|)4
dv′
)1

2

du′ .
∫ u

−∞

(∫
|u|

v0

v′2

|u′|2(v′+|u′|)4
dv′+

∫ v

|u|

v′2

|u′|2(v′+|u′|)4
dv′
)1

2

du′

.
∫ u

−∞

(∫
|u|

v0

v′2

|u′|6
dv′+

∫ v

|u|

1
|u′|2v′2

dv′
)1

2

du′

.
∫ u

−∞

|u′|−
3
2 du′ . |u0|

−
1
2 .
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For |F5,3|, we similarly use (7-1), (7-2) and (A1) to estimate

|F5,3|.
∫ v

v0

∫ u

−∞

(Dov
′−1
+Aφ(Do+Di)|u′|−1)u′2�2

∣∣∣∂u

(
log �

�0

)∣∣∣ du′ dv′

. Do

(
sup

u′∈(−∞,u0]

∫ u

−∞

u′2
(
∂u

(
log �

�0

))2
(u′, v′) du′

)1
2
∫ v

v0

(∫ u

−∞

u′2

v′2(v′+|u′|)4
du′
) 1

2

dv′

+Aφ(Do+Di)

(
sup

u′∈(−∞,u0]

∫ u

−∞

u′2
(
∂u

(
log �

�0

))2
(u′, v′) du′

)1
2
∫ v

v0

(∫ u

−∞

(v′+|u′|)−4 du′
)1

2

dv′

. Dov
−

1
2

0 +Aφ(Do+Di)(v0+|u0|)
−

1
2 .

Thus, combining the estimates for F5,1, F5,2 and F5,3, we obtain

|F5|. Dov
−

1
2

0 +Aφ(Do+Di)|u0|
−

1
2 .

We are left with |F6| and |F7|, which are slightly easier because more decay is available. For F6, we use
the Cauchy–Schwarz inequality, (7-1), (7-6), (7-14), and (A2) to obtain

|F6|.
∫ v

v0

∫ u

−∞

|r −M |u′2�2
|φ||Duφ| du′ dv′

.
∫ v

v0

∫ u

−∞

(Dov
′−1
+Aφ(Do+Di)|u′|−1)(

√
Dov

′−
1
2 +

√
Aφ(Do+Di)|u′|−

1
2 )u′2�2

|Duφ| du′ dv′

. D
3
2
o

(
sup

v′∈[v0,v)

∫ u

−∞

u′2|Duφ|
2(u′, v′) du′

)1
2
∫ v

v0

(∫ u

−∞

v′−3u′2(v′+ |u′|)−4 du′
)1

2

dv′

+A
3
2
φ (Do+Di)

3
2

(
sup

v′∈[v0,v)

∫ u

−∞

u′2|Duφ|
2(u′, v′) du′

)1
2
∫ v

v0

(∫ u

−∞

|u′|−1(v′+ |u′|)−4 du′
)1

2

dv′

.A
1
2
φD

3
2
o (Do+Di)

1
2 v
−

1
2

0 |u0|
−

1
2 +A2

φ(Do+Di)
2
|u0|
−

1
2 (v0+ |u0|)

−
1
2 .

Similarly, we use the Cauchy–Schwarz inequality, (7-1), (7-6), (7-14), and (A2) to obtain

|F7|.
∫ v

v0

∫ u

−∞

|r−M |v′2�2
|φ||Dvφ| du′ dv′

.
∫ v

v0

∫ u

−∞

(Dov
′−1
+Aφ(Do+Di)|u′|−1)(

√
Dov

′−
1
2+
√
Aφ(Do+Di)|u′|−

1
2 )v′2�2

|Dvφ| du′ dv′

. D
3
2
o

(
sup

u′∈(−∞,u0]

∫ v

v0

v′2|Dvφ|
2(u′, v′) dv′

)1
2
∫ u

−∞

(∫ v

v0

v′−1(v′+|u′|)−4 dv′
)1

2

du′

+A
3
2
φ (Do+Di)

3
2

(
sup

u′∈(−∞,u0]

∫ v

v0

v′2|Dvφ|
2(u′, v′) dv′

)1
2
∫ u

−∞

(∫ v

v0

v′2|u′|−3(v′+|u′|)−4 dv′
)1

2

du′

.A
1
2
φD

3
2
o (Do+Di)

1
2 v
−

1
2

0 (v0+|u0|)
−

1
2+A2

φ(Do+Di)
2
|u0|
−

1
2 (v0+|u0|)

−
1
2 .
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Choosing v0 and |u0| large in a manner allowed by (6-3), we obtain

|F1| + · · · + |F7|. Do+Di.

Finally, noting that the initial data contributions Eu(v0; u) and Ev(−∞; v) are by definition bounded by
Do+Di, and returning to (8-23), we obtain

sup
v0≤v<v∞

Eu(v; u)+ sup
−∞<u<u0

Ev(u; v). Do+Di,

which is to be proved. �

Combining Propositions 8.7 and 8.8, we obtain the following estimate. In particular, this is an
improvement over the bootstrap assumption (A2) for Aφ sufficiently large depending on M, m, e and η.

Corollary 8.9. Choosing Aφ sufficiently large (depending on M, m and e), the following estimate holds:

sup
v∈[v0,v∞)

∫ u0

−∞

u2
|Duφ|

2(u, v) du+ sup
u∈(−∞,u0)

∫ v∞

v0

v2
|Dvφ|

2(u, v) dv ≤ C(Do+Di)≤
1
2 Aφ(Do+Di).

At this point we fix Aφ so that Corollary 8.9 holds.

8D. Energy estimates for log(�/�0). Finally, we carry out the energy estimates for log(�/�0). As we
noted in the Introduction, the essential point is to establish that log(�/�0) obeys an equation of the form
(1-5) up to lower-order terms. More precisely, starting with (2-2), the estimates that we have obtained so
far show that the DuφDvφ and ∂ur ∂vr terms have better decay properties, and that r and Q both decay
to M. Therefore, (2-2) can indeed be thought of as (1-5).

We split the proof of the energy estimates into two parts. First, in Lemma 8.10, we consider an energy
inspired by the form (1-5) and write down the error terms that arise when controlling this energy. Then, in
Proposition 8.11, we will bound all the error terms arising in Lemma 8.10 to obtain the desired estimate
for log(�/�0).

Lemma 8.10. The following identity holds for any u ∈ (−∞, u0) and v ∈ [v0, v∞):∫ u

−∞

u′2
(
∂v log

(
�

�0

))2
+

1
8 M−4u′2�−2(�2

−�2
0)

2(u′, v) du′

+

∫ v

v0

v′2
(
∂v log

(
�

�0

))2
+

1
8 M−4v′2�−2(�2

−�2
0)

2(u, v′) dv′ =
6∑

i=1

Oi ,

where

O1 =−4π
∫ v

v0

∫ u

−∞

(DuφDvφ+ DuφDvφ)
(
v′2∂v log

(
�

�0

)
+ u′2 ∂u log

(
�

�0

))
du′ dv′,

O2 =
1
8 M−4

∫ v

v0

∫ u

−∞

[∂v(v
′2�2

0)+ ∂u(u′2�2
0)]
�2

0

�2

(
�2

�2
0
− 1
)2

du′ dv′,

O3 =−
1
4 M−4

∫ v

v0

∫ u

−∞

�−2(�2
−�2

0)
2
(
v′2 ∂v log

(
�

�0

)
+ u′2 ∂u log

(
�

�0

))
du′ dv′,
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O4 =

∫ v

v0

∫ u

−∞

�2
0
[
Q2(r−4

0 − r−4)+ r−4
0 (M2

− Q2)− 1
2(r
−2
0 − r−2)

]
·

(
v′2 ∂v log

(
�

�0

)
+ u′2 ∂u log

(
�

�0

))
du′ dv′,

O5 =

∫ v

v0

∫ u

−∞

(�2
−�2

0)
[
r−4(M2

− Q2)+ 1
2(r
−2
−M−2)−M2(r−4

−M−4)
]

·

(
v′2 ∂v log

(
�

�0

)
+ u′2 ∂u log

(
�

�0

))
du′ dv′,

O6 = 2
∫ v

v0

∫ u

−∞

(r−2 ∂ur ∂vr − r−2
0 ∂ur0 ∂vr0)

(
v′2 ∂v log

(
�

�0

)
+ u′2 ∂u log

(
�

�0

))
du′ dv′,

where, as in Proposition 8.8, we have suppressed the argument (u′, v′) in the integrand in the Oi terms.

Proof. By (2-2) we have

∂u∂v log
(
�

�0

)
=−2π(DuφDvφ+ DuφDvφ)+ r−2∂ur ∂vr − r−2

0 ∂ur0 ∂vr0

−
1
2�

2r−4 Q2
+

1
2�

2
0r−4

0 M2
+

1
4�

2r−2
−

1
4�

2
0r−2

0

=−2π(DuφDvφ+ DuφDvφ)+ r−2 ∂u(r − r0) ∂vr + r−2 ∂ur0 ∂v(r − r0)

+ ∂ur0 ∂vr0(r−2
− r−2

0 )− 1
2(�

2
−�2

0)r
−4 M2

+
1
2(�

2
−�2

0)r
−4(M2

− Q2)

+
1
4(�

2
−�2

0)M
−2
+

1
4(�

2
−�2

0)(r
−2
−M−2)

+
1
2�

2
0 Q2(r−4

0 − r−4)+ 1
2�

2
0r−4

0 (M2
− Q2)− 1

4�
2
0(r
−2
0 − r−2)

=−2π(DuφDvφ+ DuφDvφ)+ r−2∂u(r − r0) ∂vr + r−2 ∂ur0 ∂v(r − r0)

+ ∂ur0 ∂vr0(r−2
− r−2

0 )− 1
2(�

2
−�2

0)M
−2
−

1
2(�

2
−�2

0)M
2(r−4

−M−4)

+
1
2(�

2
−�2

0)r
−4(M2

− Q2)+ 1
4(�

2
−�2

0)M
−2
+

1
4(�

2
−�2

0)(r
−2
−M−2)

+
1
2�

2
0 Q2(r−4

0 − r−4)+ 1
2�

2
0r−4

0 (M2
− Q2)− 1

4�
2
0(r
−2
0 − r−2).

Using the above equation, we obtain

∂u

(
v2
(
∂v log

(
�

�0

))2)
= 2v2 ∂u ∂v log

(
�

�0

)
· ∂v log

(
�

�0

)
=−4πv2(DuφDvφ+ DuφDvφ) ∂v log

(
�

�0

)
+ 2r−2 ∂u(r − r0) ∂vrv2 ∂v log

(
�

�0

)
+ 2r−2 ∂ur0 ∂v(r − r0)v

2 ∂v log
(
�

�0

)
+ 2∂ur0 ∂vr0(r−2

− r−2
0 )v2 ∂v log

(
�

�0

)
−

1
2 M−2v2(�2

−�2
0) ∂v log

(
�

�0

)
− (�2

−�2
0)M

2(r−4
−M−4)v2 ∂v log

(
�

�0

)
+ (�2

−�2
0)r
−4(M2

− Q2)v2 ∂v log
(
�

�0

)
+

1
2(�

2
−�2

0)(r
−2
−M−2)v2 ∂v log

(
�

�0

)
+�2

0 Q2(r−4
0 − r−4)v2 ∂v log

(
�

�0

)
+�2

0r−4
0 (M2

− Q2)v2 ∂v log
(
�

�0

)
−

1
2�

2
0(r
−2
0 − r−2)v2 ∂v log

(
�

�0

)
.



THE INTERIOR OF DYNAMICAL EXTREMAL BLACK HOLES IN SPHERICAL SYMMETRY 307

Note that we can write

(�2
−�2

0) ∂v log
(
�

�0

)
=

1
2(�

2
−�2

0) ∂v

(
�2

�2
0
− 1
)
�2

0

�2 =
1
4
�4

0

�2 ∂v

((
�2

�2
0
− 1
)2)

.

Hence,

−
1
2 M−4v2(�2

−�2
0) ∂v log

(
�

�0

)
=−

1
8v

2 M−4�
4
0

�2 ∂v

((
�2

�2
0
−1
)2)

=− ∂v
( 1

8 M−4v2�−2(�2
−�2

0)
2)
+

1
8 M−4 ∂v

(
v2�2

0
�2

0

�2

)(
�2

�2
0
−1
)2

=−∂v
( 1

8 M−4v2�−2(�2
−�2

0)
2)
+

1
8 M−4 ∂v(v

2�2
0)
�2

0

�2

(
�2

�2
0
−1
)2

−
1
4 M−4v2�−2 ∂v log

(
�

�0

)
(�2
−�2

0)
2.

We similarly consider ∂v(u2(∂u log(�/�0))
2) and use the Leibniz rule (with u replacing the role of v).

Noting also that by the gauge condition (4-1), log(�/�0)= 0 on the initial hypersurfaces, this yields the
statement of the lemma. �

Proposition 8.11. The following estimate holds:

sup
v∈[v0,v∞]

∫ u0

−∞

u′2
(
∂u

(
log �

�0

))2
(u′, v) du′+ sup

u∈(−∞,u0]

∫ v∞

v0

v′2
(
∂v

(
log �

�0

))2
(u, v′) dv′ ≤ 1

2 M.

Proof. In order to obtain the stated estimates, we need to bound each of the terms in Lemma 8.10. The
basic idea is to use the bootstrap assumption (A1) to control ∂v log(�/�0) and ∂u log(�/�0) and to use
the estimates that we have previously obtained to deduce the decay and smallness of these terms.

We begin with the estimates for O1. This turns out to be the most difficult term since we do not have
any kind of pointwise estimates for |Dvφ|, |Duφ|, |∂v log(�/�0)| and |∂u log(�/�0)|. We bound it as
follows using (A1):

|O1|.
∫ v

v0

∫ u

−∞

|Duφ| · |Dvφ| ·
(
v′2
∣∣∣∂v log

(
�

�0

)∣∣∣+ u′2
∣∣∣∂u log

(
�

�0

)∣∣∣) du′ dv′

.

(∫ v

v0

v′2 sup
u′∈(−∞,u]

|Dvφ|
2(u′, v′) dv′

)1
2

·

(∫ u

−∞

u′2 sup
v′∈[v0,v]

|Duφ|
2(u′, v′) du′

)1
2

×

(
|u0|
−

1
2

(
sup

u′∈(−∞,u]

∫ v

v0

v′2
∣∣∣∂v log

(
�

�0

)∣∣∣2(u′, v′) dv′
)1

2

+ v
−

1
2

0

(
sup

v′∈[v0,v]

∫ u

−∞

u′2
∣∣∣∂u log

(
�

�0

)∣∣∣2(u′, v′) du′
)1

2
)

. (|u0|
−

1
2 + v

−
1
2

0 )

(∫ v

v0

sup
u′∈(−∞,u]

[∫ u′

−∞

v′2 ∂u(|Dvφ|
2)(u′′, v′) du′′

]
dv′
)1

2

×

(∫ u

−∞

sup
v′∈[v0,v]

[∫ v′

v0

|u′|2 ∂v(|Duφ|
2)(u′, v′′) dv′′

]
du′
)1

2

. (8-24)
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We first consider the last factor in (8-24). From the computation for J1 in the proof of Proposition 8.8,
which used (2-3) and (2-4), it follows that∫ u

−∞

sup
v′∈[v0,v]

[∫ v′

v0

|u′|
3
2 ∂v(|Duφ|

2) dv′′
]

du′

.
∫ v

v0

∫ u

−∞

u′
3
2�2
|φ||Duφ| + u′

3
2 |∂ur ||Duφ|Dvφ| + u′

3
2 |∂vr ||Duφ|

2 du′ dv′

=: O1,1+ O1,2+ O1,3. (8-25)

The terms O1,2 and O1,3 have already been controlled in the proof of Proposition 8.8. More precisely,
estimating as the terms F1 and F2 in the proof of Proposition 8.8, and noting that O1,2 and O1,3 have an
additional u′−

1
2 -weight compared to F1 and F2, we have

O1,2+ O1,3 .A2
φ(Do+Di)

2
|u0|
−1
+AφDo(Do+Di)v

−1
0 |u0|

−
1
2 .A2

φ(Do+Di)
2
|u0|
−

1
2 .

It thus remains to bound O1,1, which has no analogue in Proposition 8.8. To control this term, we use
(7-1), (7-8), the Cauchy–Schwarz inequality and the bootstrap assumption (A2) to obtain

O1,1 .
√
Aφ(Do+Di)

∫ v

v0

(∫ u

−∞

u′2|Duφ|
2 du′

)1
2
(∫ u

−∞

(v′+ |u′|)−4 du′
)1

2

dv′

+
√
Do

∫ v

v0

(∫ u

−∞

u′2|Duφ|
2 du′

)1
2
(∫ u

−∞

|u′|
v′1+α

(v′+ |u′|)−4 du′
)1

2

dv′

.
√
Aφ(Do+Di)

(
sup

v′∈[v0,v]

∫ u

−∞

u′2|Duφ|
2(u′, v′) du′

)1
2

×

(∫ v

v0

(v′+ |u|)−
3
2 dv′+

∫ v

v0

v′−
1
2−

α
2 (v′+ |u|)−1 dv′

)
.Aφ(Do+Di)(v0+ |u0|)

−
1
2 .

Combining all these and plugging back into (8-25), we obtain∫ u

−∞

sup
v′∈[v0,v]

[∫ v′

v0

|u′|
3
2 ∂v(|Duφ|

2) dv′′
]

du′ .A2
φ(Do+Di)

2
|u0|
−

1
2 +Aφ(Do+Di)(v0+ |u0|)

−
1
2

.A2
φ(Do+Di)

2
|u0|
−

1
2 . (8-26)

For the other factor in (8-24), we estimate similarly by∫ v

v0

sup
−∞≤u′≤u

[∫ u′

−∞

v′
3
2 ∂u(|Dvφ|

2) du′′
]

dv′

.
∫ v

v0

∫ u

−∞

v′2�2
|φ||Dvφ| + v

′2
|∂vr ||Duφ|Dvφ| + v

′2
|∂ur ||Dvφ|

2 du′ dv′ =: O1,4+ O1,5+ O1,6.

The terms O1,5 and O1,6, just as O1,2 and O1,3, can be bounded above by A2
φ(Do+Di)

2
|u0|
−

1
2 as the

terms F1 and F2 in the proof of Proposition 8.8. For the term O1,4, we have, using (7-1), (7-8), the
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Cauchy–Schwarz inequality and the bootstrap assumption (A2),∫ v

v0

∫ u

−∞

v′
3
2�2
|φ||Dvφ| du′ dv′

.
√
Aφ(Do+Di)

∫ u

−∞

(∫ v

v0

v′2|Dvφ|
2 dv′

)1
2
(∫ v

v0

|u′|−1v′(v′+ |u′|)−4 dv′
)1

2

du′

+
√
Do

∫ u

−∞

(∫ v

v0

v′2|Dvφ|
2 dv′

)1
2
(∫ v

v0

v′−2α(v′+ |u′|)−4 dv′
)1

2

du′

.
√
Aφ(Do+Di)

(
sup

u′∈(−∞,u]

(∫ v

v0

v′2|Dvφ|
2(u′, v′) dv′

)1
2
)

×

(∫ u

−∞

|u′|−
1
2 (v0+ |u′|)−1 du′+

∫ u

−∞

(v0+ |u′|)−
3
2 du′

)
.Aφ(Do+Di)|u0|

−
1
2 .

Combining, we obtain∫ v

v0

sup
−∞≤u′≤u

[∫ u′

−∞

v′
3
2 ∂u(|Dvφ|

2) du′′
]

dv′ .A2
φ(Do+Di)

2
|u0|
−

1
2 . (8-27)

Combining (8-24), (8-26) and (8-27), we can therefore conclude that

|O1|.A2
φ(Do+Di)

2
|u0|
−

1
2 (|u0|

−
1
2 + v

−
1
2

0 ).

We estimate |O2| by applying (3-4) and (7-3) (here, as before, the implicit constant may depend on β
for β > 0):

|O2|.
∫ v

v0

∫ u

−∞

|∂v(v
′2�2

0)+ ∂u(u′2�2
0)|
�2

0

�2

(
�2

�2
0
− 1
)2

du′ dv′

.
∫ v

v0

∫ u

−∞

(v′+ |u′|)−2+β
(
�2

�2
0
− 1
)2

du′ dv′

.
∫ v

v0

∫ u

−∞

(v′+ |u′|)−2+β
|u′|−1 du′ dv′ . v−1+β

0 + |u0|
−1+β .

It turns out that the remaining terms have a similar structure and is convenient to bound them in the
same way. The following are the three basic estimates. First, using the Cauchy–Schwarz inequality and
(A1), we have∫ v

v0

∫ u

−∞

(v′+ |u′|)−2
|u′|−1

(
v′2
∣∣∣∂v log

(
�

�0

)∣∣∣+ u′2
∣∣∣∂u log

(
�

�0

)∣∣∣) du′ dv′

.

(∫ v

v0

∫ u

−∞

(v′+ |u′|)−4
|u′|−

1
2 v′2 du′ dv′

)1
2
(∫ v

v0

∫ u

−∞

|u′|−
3
2 v′2

∣∣∣∂v log
(
�

�0

)∣∣∣2 du′ dv′
)1

2

+

(∫ v

v0

∫ u

−∞

(v′+ |u′|)−4v′
3
2 du′ dv′

)1
2
(∫ v

v0

∫ u

−∞

v′−
3
2 u′2

∣∣∣∂u log
(
�

�0

)∣∣∣2 du′ dv′
)1

2

.
(
(|u0|

−
1
4 + v

−
1
4

0 )|u0|
−

1
4 + (v0+ |u0|)

−
1
4 v
−

1
4

0

)
. |u0|

−
1
4 . (8-28)
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Again, using the Cauchy–Schwarz inequality and (A1), we have∫ v

v0

∫ u

−∞

(v′+ |u′|)−2v′−1
(
v′2
∣∣∣∂v log

(
�

�0

)∣∣∣+ u′2
∣∣∣∂u log

(
�

�0

)∣∣∣) du′ dv′

.

(∫ v

v0

∫ u

−∞

(v′+ |u′|)−4
|u′|

3
2 du′ dv′

)1
2
(∫ v

v0

∫ u

−∞

|u′|−
3
2 v′2

∣∣∣∂v log
(
�

�0

)∣∣∣2 du′ dv′
)1

2

+

(∫ v

v0

∫ u

−∞

(v′+ |u′|)−4v′−
1
2 |u′|2 du′ dv′

)1
2
(∫ v

v0

∫ u

−∞

v′−
3
2 u′2

∣∣∣∂u log
(
�

�0

)∣∣∣2 du′ dv′
)1

2

.
(
(v0+ |u0|)

−
1
4 |u0|

−
1
4 + (v

−
1
4

0 + |u0|
−

1
4 )v
−

1
4

0

)
. v
−

1
4

0 . (8-29)

Thirdly, we have a another slight variant of the above estimates, for which we again use the Cauchy–
Schwarz inequality and (A1):∫ v

v0

∫ u

−∞

v′−2
|u′|−2

(
v′2
∣∣∣∂v log

(
�

�0

)∣∣∣+ u′2
∣∣∣∣∂u log

(
�

�0

)∣∣∣) du′ dv′

.

(∫ v

v0

∫ u

−∞

v′−2
|u′|−

5
2 du′ dv′

)1
2
(∫ v

v0

∫ u

−∞

|u′|−
3
2 v′2

∣∣∣∂v log
(
�

�0

)∣∣∣2 du′ dv′
)1

2

+

(∫ v

v0

∫ u

−∞

v′−
5
2 |u′|−2 du′ dv′

)1
2
(∫ v

v0

∫ u

−∞

v′−
3
2 u′2

∣∣∣∂u log
(
�

�0

)∣∣∣2 du′ dv′
)1

2

. (v
−

1
2

0 |u0|
−1
+ v−1

0 |u0|
−

1
2 ). |u0|

−
1
4 . (8-30)

Using these basic estimates, we now estimate |O3|, . . . , |O6|. Using (7-4) and (7-8) to bound
�−2(�2

−�2
0)

2, we bound O3 via (8-28)

|O3|.
∫ v

v0

∫ u

−∞

�−2(�2
−�2

0)
2
(
v′2
∣∣∣∂v log

(
�

�0

)∣∣∣+ u′2
∣∣∣∂u log

(
�

�0

)∣∣∣) du′ dv′

.
∫ v

v0

∫ u

−∞

(v′+ |u′|)−2
|u′|−1

(
v′2
∣∣∣∂v log

(
�

�0

)∣∣∣+ u′2
∣∣∣∂u log

(
�

�0

)∣∣∣) du′ dv′ . |u0|
−

1
4 .

Similarly, using (7-2), (7-14), (7-15), (8-28) and (8-29), we obtain the following estimate for |O4|:

|O4|.
∫ v

v0

∫ u

−∞

�2
0(|r −M | + |r − r0| + |Q−M |)

(
v′2
∣∣∣∂v log

(
�

�0

)∣∣∣+ u′2
∣∣∣∂u log

(
�

�0

)∣∣∣) du′ dv′

.
∫ v

v0

∫ u

−∞

(v′+ |u′|)−2(Aφ(Do+Di)|u′|−1
+Dov

′−1
+ (v′+ |u′|)−1)

·

(
v′2
∣∣∣∂v log

(
�

�0

)∣∣∣+ u′2
∣∣∣∂u log

(
�

�0

)∣∣∣) du′ dv′

. (Aφ(Do+Di)+ 1)|u0|
−

1
4 +Dov

−
1
4

0 .
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By Lemma 3.1 and (7-8), |�2
−�2

0|(u
′, v′) . (v′+ |u′|)−2. Hence |O5| can be controlled in a similar

manner to O4 as follows:

|O5|.
∫ v

v0

∫ u

−∞

|�2
−�2

0|(|r −M |+ |r − r0|+ |Q−M |)
(
v′2
∣∣∣∂v log

(
�

�0

)∣∣∣+ u′2
∣∣∣∂u log

(
�

�0

)∣∣∣) du′ dv′

.
∫ v

v0

∫ u

−∞

(v′+ |u′|)−2(Aφ(Do+Di)|u′|−1
+Dov

′−1
+ (v′+ |u′|)−1)

·

(
v′2
∣∣∣∂v log

(
�

�0

)∣∣∣+ u′2
∣∣∣∂u log

(
�

�0

)∣∣∣) du′ dv′

. (Aφ(Do+Di)+ 1)|u0|
−

1
4 +Dov

−
1
4

0 .

Finally, we estimate |O6|. For this we use Lemma 3.1, (7-12), (7-13) and (8-30) to obtain

|O6|.
∫ v

v0

∫ u

−∞

(|∂vr ||∂ur |+|∂vr0||∂ur0|)
(
v′2
∣∣∣∂v log

(
�

�0

)∣∣∣+u′2
∣∣∣∂u log

(
�

�0

)∣∣∣) du′ dv′

.
∫ v

v0

∫ u

−∞

[(v′+|u′|)−4
+A2

φ(Do+Di)
2
|u′|−2v′−2

]

(
v′2
∣∣∣∂v log

(
�

�0

)∣∣∣+u′2
∣∣∣∂u log

(
�

�0

)∣∣∣) du′ dv′

.A2
φ(Do+Di)

2
|u0|
−

1
4 .

Hence, choosing v0 and |u0| large in a manner allowed by (6-3), we obtain

sup
v∈[v0,v∞]

∫ u0

−∞

u2
(
∂u

(
log �

�0

))2
(u, v) du+ sup

u∈(−∞,u0]

∫ v∞

v0

v2
(
∂v

(
log �

�0

))2
(u, v) dv ≤ 1

2 M,

which is to be proved. �

9. Stability of the Cauchy horizon of extremal Reissner–Nordström

We now conclude the bootstrap argument and show that the solution exists and remains regular for all
v ≥ v0 and that certain estimates hold. More precisely, we have:

Proposition 9.1. There exists a smooth solution (φ, r, �, A) to (2-1)–(2-9) in the rectangle (see Figure 1)

Du0,v0 = {(u, v
′) | −∞≤ u ≤ u0, v0 ≤ v <∞}

with the prescribed initial data. Moreover, all the estimates in Sections 7 and 8 hold in Du0,v0 .

Proof. For every v ∈ [v0,∞), consider the following conditions:

(A) A smooth solution (φ, r, �, A) to (2-1)–(2-9) exists in the rectangle

Du0,[v0,v) = {(u, v
′) | −∞≤ u ≤ u0, v0 ≤ v

′ < v}

with the prescribed initial data.

(B) The estimates (A1), (A2) and (A3) hold in Du0,[v0,v).

Consider the set I⊂ [v0,∞) defined by

I := {v ∈ [v0,∞) : (A) and (B) are both satisfied for all v′ ∈ [v0, v)}.
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We will show that I is nonempty, closed and open, which implies that I = [v0,∞). Standard local
existence implies that I is nonempty. Closedness of I follows immediately from the definition of I. The
most difficult property to verify is the openness of I. For this, suppose v ∈ I. We then argue as follows:

• Under the bootstrap assumptions (A1), (A2) and (A3), all the estimates in Sections 7 and 8 hold in
Du0,[v0,v). A standard propagation of regularity result shows that the solution can be extended smoothly
up to

Du0,[v0,v] = {(u, v
′) | −∞≤ u ≤ u0, v0 ≤ v

′
≤ v}.

Hence, one can apply a local existence result for the characteristic initial value problem to show that there
exists δ > 0 such that a smooth solution (φ, r, �, A) to (2-1)–(2-9) exists in Du0,[v0,v+δ).

• The estimates in (7-16), Corollary 8.9 and Proposition 8.11 improve those in (A1), (A2) and (A3).
Hence, by continuity, after choosing δ > 0 smaller if necessary, (A1), (A2) and (A3) hold in Du0,[v0,v+δ).

By combining the two points above, we deduce that after choosing δ > 0 smaller if necessary,
(v − δ, v + δ) ⊂ I. This proves the openness of I. By the connectedness of [v0,∞), we deduce that
I = [v0,∞). This implies the existence of a smooth solution in Du0,v0 . Moreover, this implies the
assumptions (A1), (A2) and (A3) that are used in Sections 7 and 8 in fact hold throughout Du0,v0 .
Therefore, indeed all the estimates in Sections 7 and 8 hold in Du0,v0 . �

We have therefore shown the existence of a solution in the whole region Du0,v0 . Since we have now
closed our bootstrap argument, in the remainder of the paper, we will suppress any dependence on Aφ
(which in turn depends only on M, m and e).

In the remainder of this section, we show that one can attach a Cauchy horizon to the solution and
prove regularity of the solution up to the Cauchy horizon. More precisely, define V to be a function of v
in exactly the same manner as in Section 3A2; i.e.,

dV
dv
=�2

0(1, v), V (∞)= 0. (9-1)

We will use also the convention that
V0 := V (v0).

Define moreover (as in Section 3A2) the Cauchy horizon CH+ as the boundary {V = 0} in the (u, V, θ, ϕ)-
coordinate system. Note that this induces a natural differential structure on Du0,v0 ∪ CH+. In the new
coordinate system, in order to distinguish the “new �”, we follow the convention in Section 3A2 and set
g(∂u, ∂V )=−

1
2�̃

2 instead. We show that the solution (φ, r, �̃, A) (after choosing an appropriate gauge
for A) extends to the Cauchy horizon continuously, and that in fact their derivatives are in L2

loc up to the
Cauchy horizon. (In fact, as we will show in Section 10, there are nonunique extensions as spherically
symmetric solutions to (1-1) beyond the Cauchy horizon.)

We begin by restating some of the estimates we have obtained in this new coordinate system.

Lemma 9.2. In the (u, V )-coordinate system, φ, r and �̃ satisfy the following estimates:

1
|u|2
. �̃

2
(u, V ). 1, |∂V r(u, V )|. Do+Di, (9-2)
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V0

|∂Vφ|
2(u, V ′) dV ′+

∫ u0

−∞

u2
|∂uφ|

2(u′, V ) du′ . Do+Di, (9-3)∫ 0

V0

|∂V log �̃|2(u, V ′) dV ′+
∫ u0

−∞

u2
|∂u log �̃|2(u′, V ) du′ . 1, (9-4)∫ 0

V0

|∂V r |2(u, V ′) dV ′+
∫ u0

−∞

u2
|∂ur |2(u′, V ) du′ . Do+Di. (9-5)

Proof. Proof of estimates for �̃ in (9-2). By (7-6) and (9-1),∣∣∣∣�̃2
(u, V )−

4M2

(v(V )+ |u|)2
�−2

0 (−1, v(V ))
∣∣∣∣=�−2

0 (−1, v(V ))
∣∣∣∣�2(u, v(V ))−

4M2

(v+ |u|)2

∣∣∣∣
. |u|−

1
2

(
v(V )+ 1
v(V )+ |u|

)2

,

which implies both the upper and lower bounds for �̃ in (9-2).

Proof of estimate for ∂V r in (9-2). The estimate for ∂V r in (9-2) follows from (7-13) and (9-1).

Proof of (9-3) and (9-4). These follow from Corollary 8.9, Proposition 8.11, (9-1) and (3-3).

Proof of (9-5). Finally, (9-5) can be obtained by directly integrating the pointwise estimates in (7-12)
(for ∂ur ) and (9-2) (for ∂V r ). �

We also have the following W 1,2 estimate for the charge Q.

Lemma 9.3. In the (u, V )-coordinate system, Q satisfies the estimate∫ 0

V0

|∂V Q|2(u, V ′) dV ′+
∫ u0

−∞

u2
|∂u Q|2(u′, V ) du′ . Do+Di.

Proof. Estimate for ∂V Q. By (2-6) (adapted to the (u, V )-coordinate system),

∂V Q =−2π ir2e(φDVφ− φ̄DVφ).

Therefore, using (7-1), (7-14) and (7-1),∫ 0

V0

|∂V Q|2(u, V ′) dV ′ .
∫ 0

V0

|DVφ|
2(u, V ′) dV ′ . Do+Di.

Estimate for ∂u Q. By (2-5), we have ∂u Q = 2π ir2e(φDuφ− φ̄Duφ). The desired estimate hence follows
much as above using (7-1), (7-14) and (9-3). �

In order to consider the extension, we will also need to choose a gauge for Aµ. We will fix A such that

Au = 0 everywhere and AV = 0 on the null hypersurface {u = u0}. (9-6)

To see that this is an acceptable gauge choice, simply notice that given any Ãu , ÃV , we can define

χ(u, V )=
∫ u

u0

Ãu(u, V ) du′+
∫ V

V0

ÃV (u0, V ′) dV ′,
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where V0 = V (v0). This implies

Au(u, V )= Ãu(u, V )− (∂uχ)(u, V )= 0 for all u, for all V,

AV (u0, V )= ÃV (u, V )− (∂vχ)(u0, V )= 0 for all V .

Now in the gauge (9-6), we have the following estimates:

Lemma 9.4. Suppose A satisfies the gauge condition above. Then AV , ∂u AV and ∂V AV obey the estimates

sup
u∈(−∞,u0], V∈[V0,0)

|AV (u, V )|. (u0− u), sup
V∈[V0,0)

∫ u0

u
|∂u AV |

2(u′, V ) du′ . (u0− u),

sup
u∈(−∞,u0]

∫ 0

V0

|∂V AV |
2(u, V ′) dV ′ . (Do+Di)(u0− u).

Proof. Pointwise estimate for AV . By (2-7) (adapted to the (u, V )-coordinate system),

∂u AV =
1
2
�̃

2 Q
r2 . (9-7)

Using (7-2), (7-14) and (9-2), and the fact that AV (u0, V )= 0, we obtain that for any u ≤ u0,

|AV (u, V )|.
∫ u0

u
du′ = (u0− u).

L2 estimate for ∂u AV . To obtain the desired L2
u estimate for ∂u AV , we simply use the fact that the

right-hand side of (9-7) is bounded (as shown above using (7-2), (7-14) and (9-2)) and integrate it up in u.

L2 estimate for ∂V AV . To estimate ∂V AV , we differentiate (9-7) in V to obtain

∂u∂V AV =
1
2∂V

(
�̃

2 Q
r2

)
. (9-8)

Using the pointwise bounds in (7-2), (7-14) and (9-2), and the L2
V estimates in (9-3), (9-5) and (9-4), we

obtain

sup
u∈(−∞,u0]

∫ 0

V0

∣∣∣∣∂V

(
�̃

2 Q
r2

)∣∣∣∣2(u, V ′) dV ′ . Do+Di.

Now since ∂V AV (u0, V )= 0 for all V, we have, for any u ≤ u0,∫ 0

V0

|∂V AV |
2(u, V ′) dV ′ ≤

∫ u0

u
|∂u∂V AV |

2(u′, V ′) dV ′ du′ . (Do+Di)(u0− u). �

Proposition 9.5. Let V be as in (9-1) and A satisfy the gauge condition (9-6). Then in the (u, V )-
coordinate system:

• φ, r , �̃, AV and Q (as functions of (u, V ) ∈ (−∞, u0] × [V0, 0)) can be continuously extended to
the Cauchy horizon {V = 0}.

• The extensions of φ, r , �̃, AV and Q (as functions of (u, V ) ∈ (−∞, u0] × [V0, 0]) are all in
C0, 1

2 ∩W 1,2
loc .
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• The Hawking mass m (as a function of (u, V ) ∈ (−∞, u0]× [V0, 0)) can be continuously extended
to the Cauchy horizon {V = 0}.

Proof. Continuous extendibility and Hölder estimates. Let us first consider in detail the estimates for φ.
As we will explain, the estimates for r , �̃, AV and Q are similar. Consider two points (u′, V ′) and
(u′′, V ′′). Set v′ = v(V ′) and v′′ = v(V ′′), where v is the inverse function of v 7→ V above. Then we
have, using the fundamental theorem of calculus and the Cauchy–Schwarz inequality,
|φ(u′, V ′)−φ(u′′, V ′′)|

≤

∣∣∣∣∫ u′′

u′
|∂uφ|(u′′′, V ′) du′′′

∣∣∣∣+ ∣∣∣∣∫ V ′′

V ′
|∂Vφ|(u′′, V ′′′) dV ′′′

∣∣∣∣
≤

∣∣∣∣∫ u′′

u′
|Duφ|(u′′′, V ′) du′′′

∣∣∣∣+ ∣∣∣∣∫ V ′′

V ′
|DVφ|(u′′, V ′′′)+ |AV ||φ|(u′′, V ′′′) dV ′′′

∣∣∣∣
. |u′− u′′|

1
2

(∫ u′′

u′
|Duφ|

2(u′′′, v′) du′′′
)1

2

+ |V ′− V ′′|
1
2

(∫ v′′

v′
(v′′′+ 1)2|Dvφ|

2(u′′, v′′′) dv′′′
)1

2

+ (D
1
2
o +D

1
2
i )(u0− u′′)|V ′− V ′′|

. (Do+Di)(|u′− u′′|
1
2 + |V ′− V ′′|

1
2 )+ (D

1
2
o +D

1
2
i )|V

′
− V ′′|, (9-9)

where in the last two lines we used (7-1), (9-3) and Lemma 9.4.
In a similar manner, using Lemmas 9.2, 9.3 and 9.4 instead, r , �̃, AV and Q can be estimated as

follows19 (to simplify the exposition, we suppress the discussion on the explicit dependence of the constant
on Do and Di):

|r(u′, V ′)− r(u′′, V ′′)| + |�̃(u′, V ′)− �̃(u′′, V ′′)|

+ |AV (u′, V ′)− AV (u′′, V ′′)| + |Q(u′, V ′)− Q(u′′, V ′′)|.Do,Di (|u
′
− u′′|

1
2 + |V ′− V ′′|

1
2 ). (9-10)

Define the extension of (φ, r, �̃, AV , Q) by

φ(u, V = 0) := lim
V→0

φ(u, V ), r(u, V = 0) := lim
V→0

r(u, V ),

�̃(u, V = 0) := lim
V→0

�̃(u, V ), AV (u, V = 0) := lim
V→0

AV (u, V ), Q(u, V = 0) := lim
V→0

Q(u, V ).

The estimates in (9-9) and (9-10) above show that the extensions are well-defined and that the extension
of (φ, r, �̃, AV , Q) is indeed C0, 1

2 .

W 1,2
loc estimates. Now that we have constructed an extension of (φ, r, �̃, AV , Q) to Du0,v0 ∪ CH+, it

follows immediately from Lemmas 9.2, 9.4 and 9.3 that the extension is in W 1,2
loc .

C0 extendibility of the Hawking mass. Finally, we prove the C0 extendibility of the Hawking mass, whose
definition we recall from (2-10). By (2-11) and (2-12) (appropriately adapted in the (u, V )-coordinate
system), we have

∂um =−8π
r2(∂V r)

�̃
2 |Duφ|

2
+ 2(∂ur)m2πr2

|φ|2+
1
2
(∂ur)Q2

r2 , (9-11)

19In fact, the estimates for r , �̃ AV and Q are simpler as we do not need to handle the difference between ∂V and DV .
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∂V m =−8π
r2(∂ur)

�̃
2 |DVφ|

2
+ 2(∂V r)m2πr2

|φ|2+
1
2
(∂V r)Q2

r2 . (9-12)

It now follows from (7-2), (7-14), (7-13) and Lemma 9.2 that the right-hand side of (9-11) is bounded in
L1

u and the right-hand side of (9-12) is bounded in L1
V . This implies the L1 estimate∫ u0

−∞

|∂um|(u′, V ) du′+
∫ 0

V0

|∂V m|(u, V ′) dV ′ .Do,Di 1. (9-13)

On the other hand, by the fundamental theorem of calculus,

|m(u′, V ′)−m(u′′, V ′′)| ≤
∣∣∣∣∫ u′′

u′
|∂um|(u′′′, V ′) du′′′

∣∣∣∣+ ∣∣∣∣∫ V ′′

V ′
|∂V m|(u′′, V ′′′) dV ′′′

∣∣∣∣. (9-14)

Combining (9-13) and (9-14), we see that

(1) m can be extended to CH+ by

m(u, 0)= lim
V→0

m(u, V ),

(2) the extension is continuous up to CH+,

which concludes the proof of the proposition. (Let us finally note that since we only have L1, as opposed
to L2, estimates for ∂um and ∂V m, we only show that m is continuous, but do not obtain any Hölder
estimates.) �

Remark 9.6 (C0, 1
2 ∩W 1,2

loc regularity in the (3+1)-dimensional spacetime). In Proposition 9.5, we proved
that the extensions of φ, r , �̃, AV and Q are C0, 1

2 ∩W 1,2
loc on the (1+1)-dimensional quotient manifold Q

(see the notation in Section 2A). It easily follows that these functions, when considered as functions
on M = Q×S2 are also in C0, 1

2 ∩W 1,2
loc . As a consequence, in the coordinate system (u, v, θ, ϕ), the

spacetime metric, the scalar field and the electromagnetic potential all extend to the Cauchy horizon in a
manner that is in the (3+1)-dimensional spacetime norm C0, 1

2 ∩W 1,2
loc .

10. Constructing extensions beyond the Cauchy horizon

In this section, we prove that the solution can be extended locally beyond the Cauchy horizon as a
spherically symmetric W 1,2 solution to (1-1) (in a nonunique manner). Together with Propositions 9.1
and 9.5, this completes the proof of Theorem 5.1.

The idea behind the construction of the extension is that the system (1-1) is locally well-posed in
spherical symmetry for data such that ∂Vφ, ∂V r and ∂V log �̃ are merely in L2 (when r and� are bounded
away from 0). This follows from the well-known fact that (1+1)-dimensional wave equations are locally
well-posed with W 1,2 data. Related results in the context of general relativity can be found throughout
the literature; see for instance [Costa et al. 2015a; Luk and Rodnianski 2017; LeFloch and Stewart 2011].
For completeness, we give a proof in our specific setting.

The section is organized as follows. We first discuss a general local well-posedness result on (1+1)-
dimensional wave equation (see Definition 10.1 and Proposition 10.3). We then apply the wave equation
result in our setting to construct extensions to our spacetime solutions by solving appropriate characteristic
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initial value problems. In particular, since we will be able to prescribe data for the construction of the
extensions, there are (infinitely many) nonunique extensions.

We begin by considering a general class of (1+1)-dimensional wave equation and introduce the
following notion of solution, which makes sense when the derivative of 9 is only in L2 in one of the null
directions.

Definition 10.1. Let k ∈N. Consider a wave equation20 for 9 : [0, ε)×[0, ε)→ V (where V ⊂ Rk is an
open subset) of the form

∂u∂v9A= f A(9)+N BC
A (9) ∂u9B ∂v9C+K BC

A (9) ∂u9B ∂u9C+L B
A(9) ∂u9B+RB

A (9) ∂v9B, (10-1)

where 9A denotes the components of 9, the functions f A, N BC
A , K BC

A , L B
A , RB

A : V→ R are smooth, and
we sum over all repeated capital Latin indices.

We say that a continuous function 9 : [0, ε)×[0, ε)→ V satisfying ∂v9 ∈ L2
v(C

0
u) and ∂u9 ∈ C0

uC0
v

is a solution in the integrated sense if

(∂v9A)(u, v)= (∂v9A)(0, v)+
∫ u

0
(RHS of (10-1))(u′, v) du′ for all u ∈ [0, ε) and for a.e. v ∈ [0, ε),

(∂u9A)(u, v)= (∂u9A)(u, 0)+
∫ v

0
(RHS of (10-1))(u, v′) dv′ for all v ∈ [0, ε) and for a.e. u ∈ [0, ε).

Remark 10.2. Given a solution 9 in the sense of Definition 10.1, it is also a weak solution in the
following sense: for any χ ∈ C∞c ,∫∫

(∂uχ)(u, v)(∂v9)(u, v) du dv =−
∫∫

χ(u, v)(RHS of (10-1))(u, v) du dv,∫∫
(∂vχ)(u, v)(∂u9)(u, v) du dv =−

∫∫
χ(u, v)(RHS of (10-1))(u, v) du dv.

The following is a general local existence result for (1+ 1)-dimensional wave equations where ∂v9 is
initially only in L2

v. We construct local solutions in the sense of Definition 10.1. (Let us note that the
following wave equation result holds for rougher data where ∂v9 is only in L1

v. This will however be
irrelevant to our problem; see Remark 10.6.)

Proposition 10.3. Consider the setup in Definition 10.1. Let K ⊂ V be a compact subset. Given initial
data to the wave equation (10-1) on two transversely intersecting characteristic curves

{(u, v) : u = 0, v ∈ [0, v∗]} ∪ {(u, v) : v = 0, u ∈ [0, u∗]}

such that

• 9 takes value in K; and

20For k > 1, this should be thought of as a system of wave equations.
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• the following estimates hold for the derivatives of 9 for some Cwave > 0:∫ v∗

0
|∂v9|

2(0, v′) dv′ ≤ Cwave,

sup
u∈[0,u∗]

|∂u9|
2(u′, 0)≤ Cwave.

Then, there exist εwave > 0 depending on K and Cwave (and the equation) such that there exists a unique
solution to (10-1) in the sense of Definition 10.1 in the region

(u, v) ∈ {(u, v) : u ∈ [0, εwave), v ∈ [0, εwave)}

which achieves the prescribed initial data.

Proof. We directly work with the formulation in Definition 10.1 and prove the existence and uniqueness of
integral solutions. This proposition can be proven via a standard iteration argument. In order to illustrate
the main idea and the use of the structure of the nonlinearity, we will only discuss below the proof of a
priori estimates.

By a bootstrap argument, we assume that

sup
u′,v′∈[0,εwave)

|∂u9|(u′, v′)≤ 4Cwave. (10-2)

Let K′ ⊂ V be a fixed compact set such that K ⊂ K̊′. We estimate 9 using the fundamental theorem of
calculus as follows:

sup
u′,v′∈[0,εwave)

|9(u′, v′)−9(0, v′)| ≤ sup
v′∈[0,εwave)

∫ εwave

0
|∂u9|(u′, v′) du′

≤ εwave sup
u′,v′∈[0,εwave)

|∂u9|(u′, v′)

≤ 4Cwaveεwave.

Using the compactness of K, we can choose εwave sufficiently small so that 9(u, v) ∈K′ for all u ∈ [0, ε).
Now that we have estimated 9, since K′ is compact, it follows that f A(9), N BC

A (9), K BC
A (9), L B

A(9),
and RB

A (9) are all bounded. From now on, we will use these bounds and write C for constants that are
allowed to depend on supx∈K′ f A(x), etc.

We now turn to the estimates for the derivatives of 9. First, we bound ∂v9 using (the integral form of)
(10-1) and Hölder’s inequality and Young’s inequality:∫ εwave

0
sup

u′∈[0,εwave)

|∂v9|
2(u′, v′) dv′

≤ Cwave+C
∫ εwave

0

∫ εwave

0
|∂v9|(1+ |∂v9| + |∂u9| + |∂v9||∂u9| + |∂u9|

2)(u′, v′) du′ dv′

≤ Cwave+C
(

1+
∫ εwave

0
sup

u′∈[0,εwave)

|∂v9|
2(u′, v′) dv′

)(
εwave+ εwave sup

u′,v′∈[0,εwave)

|∂u9|(u′, v′)
)

+Cwaveε
2
wave sup

u′,v′∈[0,εwave)

|∂u9|(u′, v′).
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For ∂u9, we again use (the integral form of) (10-1) and Hölder’s inequality and Young’s inequality to get

sup
u′,v′∈[0,εwave)

|∂u9|(u′, v′)

≤ Cwave+C sup
u′∈[0,εwave)

∫ ε

0
(1+ |∂v9| + |∂u9| + |∂v9||∂u9| + |∂u9|

2)(u′, v′))(u′, v′) dv′

≤ Cwave+C
(

1+
∫ ε

0
sup

u′∈[0,εwave]

|∂v9|
2(u′, v′) dv′

)(
ε

1
2
wave+ εwave sup

u′,v′∈[0,εwave)

|∂u9|
2(u′, v′)

)
≤ Cwave+C

(
1+

∫ ε

0
sup

u′∈[0,εwave]

|∂v9|
2(u′, v′) dv′

)(
ε

1
2
wave+ εwaveCwave sup

u′,v′∈[0,εwave)

|∂u9|(u′, v′)
)
.

Summing the above two estimates and choosing εwave sufficient small (depending on Cwave and K′), it
follows that ∫ ε

0
sup

u′∈[0,εwave)

|∂v9|
2(u′, v′) dv′+ sup

u′,v′∈[0,εwave)

|∂u9|(u′, v′)≤ 2Cwave.

This in particular improves the bootstrap assumption (10-2) so that we conclude the argument. �

We now use Proposition 10.3 to solve (1-1). In particular, this allows us to extend the solution in
Du0,v0 (in infinitely many ways!) beyond the Cauchy horizon as a spherically symmetric strong solution
to (1-1). Before we proceed, let us define a notion of spherically symmetric strong solutions to (1-1)
(using Definition 10.1) appropriate for our setting. For simplicity, in our notion of spherically symmetric
strong solutions, we will already fix a gauge so that Au = 0.

Definition 10.4. Let (φ,�, r, Av, Q) be continuous functions on

{(u, v) : u ∈ [u0, u0+ ε), v ∈ [v0, v0+ ε)}

for some ε > 0 with φ complex-valued, (�, r, Av, Q) real-valued and �, r > 0. We say (φ,�, r, Av, Q)
is a spherically symmetric strong solution to (1-1) if the following hold:21

• (φ,�, r, Av, Q) are in the following regularity classes:

∂vφ, ∂v log� ∈ L2
v(C

0
u), ∂uφ, ∂u log�, ∂ur, ∂vr, ∂u Av ∈ C0

uC0
v .

• (2-1), (2-2) and (2-3) are satisfied as wave equations in the integrated sense as in Definition 10.1 after
replacing Dv 7→ ∂v + ieAv, Du 7→ ∂u .

• (2-5), (2-6), (2-8) and (2-9) are all satisfied in the integrated sense as follows, again with the understanding
that Dv 7→ ∂v + ieAv, Du 7→ ∂u :

Q(u, v)= Q(0, v)+
∫ u

u0

[2π ir2e(φDuφ− φ̄Duφ)](u′, v) du′, (10-3)

Q(u, v)= Q(u, 0)−
∫ v

v0

[2π ir2e(φDvφ− φ̄Dvφ)](u, v′) dv′, (10-4)

21We remark that (2-4) is not explicitly featured below. Note however that (2-4) follows as an immediate consequence
of (10-7).



320 DEJAN GAJIC AND JONATHAN LUK

r ∂ur(u, v)= r ∂ur(0, v)+
∫ u

u0

[2r ∂ur ∂u log�+ (∂ur)2− 4πr2
|Duφ|

2
](u′, v) du′, (10-5)

r ∂vr(u, v)= r ∂vr(u, 0)+
∫ v

v0

[2r ∂vr ∂v log�+ (∂vr)2− 4πr2
|Dvφ|

2
](u, v′) dv′ (10-6)

for all (u, v) ∈ {(u, v) : u ∈ [u0, u0+ ε), v ∈ [v0, v0+ ε)}.

• (2-7) is satisfied classically everywhere with Au = 0; i.e.,

∂u Av =
Q�2

2r2 . (10-7)

We emphasize again that a spherically symmetric strong solution to (1-1) in the sense of Definition 10.4
is a fortiori a weak solution to (1-1) in the sense of Remark 1.2.

We now construct extensions to the solutions given by Proposition 9.1 beyond the Cauchy horizon as
spherically symmetric strong solutions to (1-1):

Proposition 10.5. For every uext ∈ (−∞, u0), there exists εext > 0 such that there are infinitely many
inequivalent extensions (φ, �̃, r, AV , Q) to the region

Du0,v0 ∪ CH
+
∪ {(u, V ) : u ∈ [uext, uext+ εext], V ∈ [0, εext)},

each of which is a spherically symmetric strong solution to (1-1) (see Definition 10.4).

Proof. Let us focus the discussion on constructing one such extension. It will be clear at the end that the
argument indeed gives infinitely many inequivalent extensions.

Setting up the initial data. Extend the constant-u curve {u = uext} up to the Cauchy horizon. We will
consider a sequence of characteristic initial problems with initial data given on {u = uext} and {V = Vn}

where Vn approaches the Cauchy horizon, i.e., Vn → 0. For a fixed n ∈ N, the data on {V = Vn} are
simply induced by the solution that we have constructed in Proposition 9.1. On {u = uext}, the data when
V ∈ [Vn, 0) are induced by the solution, but we prescribe data for V ≥ 0 (i.e., beyond the Cauchy horizon)
by the following procedure:

• (data for �̃) As we showed in (9-2), (9-4) and Proposition 9.5, for a fixed uext, �̃(uext, V ) is continuous
up to {V = 0}, is bounded away from 0, and ∂V �̃(uext, V ) ∈ L2

V . We can therefore extend � to
{(uext, V ) : V ≥ 0} so that it is continuous and bounded away from 0 and ∂V �̃(uext, V ) ∈ L2

V .

• (data for φ) As we showed in (9-3) and Proposition 9.5, φ(uext, V ) is continuous up to {V = 0} and
DVφ(uext, V ) ∈ L2

V . Since by Lemma 9.4, |AV |(uext, V ) . (u0 − uext) for V ≤ 0, this also implies
that ∂Vφ(uext, V ) ∈ L2

V . We can therefore extend φ to {(uext, V ) : V ≥ 0} so that it is continuous and
∂Vφ(uext, V ) ∈ L2

V .

• (data for AV ) Next, by Lemma 9.4, AV (uext, V ) is continuous up to {V = 0} and ∂Vφ(uext, V ) ∈ L2
V .

Thus, like �̃ and φ, we can extend AV to {(uext, V ) :V ≥0} so that it is continuous and ∂V AV (uext, V )∈ L2
V .

• (data for r ) Finally, we prescribe r . Note that this is the only piece of the initial data which is not free,
but instead is required to satisfy constraints. First we note that by (7-16), (9-5) and Proposition 9.5, for
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V ≤ 0, r(uext, V ) is continuous up to {V = 0}, bounded away from 0 and (∂V r)(uext, V )∈ L2
V . Moreover,

using (2-9) (and the also estimates (9-2) and (9-3)), it can be deduced that (∂V r)(uext, V ) can be extended
continuously up to {V = 0}. Now we extend r and ∂V r beyond the Cauchy horizon {V = 0} by solving
(2-9). Since ∂Vφ ∈ L2

V and log� is bounded (by the choices above), provided that we only solve slightly
beyond the Cauchy horizon (i.e., for V sufficiently small), both r and |∂V r | are continuous, bounded
above, and r is also bounded away from 0.

Formulating the problem as a system of wave equations. Now apply Proposition 10.3 to solve the fol-
lowing system of wave equations for 9 = (r, log �̃,Re(φ), Im(φ), AV ):

r ∂u ∂V r =− 1
4�̃

2
−∂ur ∂V r+m2πr2�̃

2
|φ|2+

r2

�̃
2 (∂u AV )

2, (10-8)

r2 ∂u ∂V log �̃=−2πr2(∂uφ(∂V+ieAV )φ+∂uφ(∂V+ieAV )φ)−2
r2

�̃
2 (∂u AV )

2
+

1
4�̃

2
+∂ur ∂V r, (10-9)

∂u((∂V+ieAV )φ)+(∂V+ieAV ) ∂uφ =−
1
2m

2�̃
2
φ−2r−1(∂ur(∂V+ieAV )φ+∂V r ∂uφ), (10-10)

∂V

(
r2

�̃
2 ∂u AV

)
=−π ir2e(φDVφ−φ̄DVφ). (10-11)

It is easy to check that this system of equations indeed has the structure as in (10-1).

Solving the system of wave equations. By Proposition 10.3, there exists ε0 > 0 (independent of n)
such that for every Vn , a unique solution to the above system of equation exists for (u, V ) ∈ {(u, V ) :
u ∈ [uext, uext+ ε0), V ∈ [Vn, Vn + ε0)}. In particular, since Vn→ 0, we can choose n ∈ N sufficiently
large so that Vn + ε0 > 0. Now fix such an n and choose εext > 0 sufficiently small so that εext <

Vn + ε0. We have therefore constructed a solution (r, log�,Re(φ), Im(φ), AV ) to (10-8)–(10-11) in
Du0,v0 ∪ CH+ ∪ {(u, V ) : u ∈ [uext, uext+ εext], V ∈ [0, εext)}.

Definition of Q and (10-4). Define Q = 2r2�̃
−2
∂u AV . By definition Q is continuous and (10-7) is

satisfied classically. Moreover, since (10-11) is satisfied in an integrated sense, it also follows that (10-4)
is satisfied.

Plugging in the definition of Q into (10-8)–(10-10), we also obtain that r , �̃ and φ respectively satisfy
(2-1), (2-2) and (2-3) as wave equations in the integrated sense as in Definition 10.1.

Propagation of constraints and (10-3), (10-5) and (10-6). Next, we check that (10-3), (10-5) and (10-6)
are satisfied. This involves a propagation of constraints argument, which is standard except that we need
to be slightly careful about regularity issues.

First, we note that since the equations are satisfied classically at (u, Vn) for all u ∈ [uext, uext+ ε0),
(10-3) and (10-5) are satisfied on {V = Vn}. Moreover, by the construction of the data for r above, (10-6)
is also satisfied on {u = uext}.

Therefore, it follows that (10-3), (10-5) and (10-6) are equivalent respectively to the equations

(Q(u, V )− Q(u, Vn))− (Q(uext, V )− Q(uext, Vn))

=

∫ u

uext

[2π ir2e(Duφ− φ̄Duφ)](u′, V ) du′−
∫ u

uext

[2π ir2e(Duφ− φ̄Duφ)](u′, Vn) du′, (10-12)
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(r ∂ur(u, V )− r ∂ur(u, Vn))− (r ∂ur(uext, V )− r ∂ur(uext, Vn))

=

∫ u

uext

(
[2r ∂ur ∂u log �̃+ (∂ur)2− 4πr2

|Duφ|
2
](u′, V )− [· · · ](u′, Vn)

)
du′, (10-13)

(r ∂V r(u, V )− r ∂V r(uext, V ))− (r ∂V r(u, Vn)− r ∂V r(uext, Vn))

=

∫ V

Vn

(
[2r ∂V r ∂V log �̃+ (∂V r)2− 4πr2

|DVφ|
2
](u, V ′)− [· · · ](uext, V ′)

)
dV ′, (10-14)

where [· · · ] means that we take exactly the same expression as inside the previous pair of square brackets.
To proceed, observe now that we have the following integrated version of the Leibniz rule: let

f, g : [0, T ] → R, f ∈ C0, g ∈ C1. Assume that there exists an F : [0, T ] → R in L1 such that
f (t)− f (0)=

∫ t
0 F(s) ds for all t ∈ [0, T ]. Then by Fubini’s theorem and the fundamental theorem of

calculus, ∫ t

0
F(s)g(s) ds = g(0)

∫ t

0
F(s) ds+

∫ t

0

∫ s

0
F(s)g′(τ ) dτ ds

= f (t)g(0)− f (0)g(0)+
∫ t

0

∫ t

τ

F(s)g′(τ ) ds dτ

= f (t)g(0)− f (0)g(0)+
∫ t

0
[ f (t)g′(τ )− f (τ )g′(τ )] dτ

= f (t)g(t)− f (0)g(0)−
∫ t

0
f (s)g′(s) ds. (10-15)

In other words, assuming9i satisfies ∂u∂v9i = Fi (for some Fi ∈ L1
vC

0
u ), the following integrated versions

of the Leibniz rule hold:

∂u9i (u, V )9 j (u, V )= ∂u9i (u, Vn)9 j (u, Vn)+

∫ V

Vn

[9 j Fi + ∂v9 j ∂u9i ](u, V ′) dV ′, (10-16)

∂v9i (u, V )9 j (u, V )= ∂u9i (uext, V )9 j (uext, V )+
∫ u

uext

[9 j Fi + ∂u9 j ∂v9i ](u′, V ) du′. (10-17)

Let us now show that (10-3), or equivalently (10-12), holds. Since we have already established that
(10-4) holds, it follows that (10-12) is equivalent to

−

∫ V

Vn

(
[2π ir2e(φDvφ− φ̄Dvφ)](u, V ′)− [· · · ](uext, V ′)

)
dV ′

=

∫ u

uext

(
[2π ir2e(φDuφ− φ̄Duφ)](u′, V )− [· · · ](u′, Vn)

)
du′. (10-18)

By (10-16) and (10-17) above, it follows that we need to check∫ u

uext

∫ V

Vn

(
∂u(2π ir2e(φDvφ− φ̄Dvφ))+ ∂V (2π ir2e(φDuφ− φ̄Duφ))

)
(u′, V ′) du′ dV ′ = 0, (10-19)

where expressions such as ∂u Dvφ and ∂V Duφ are to be understood after plugging in the appropriate
inhomogeneous terms arising from (10-10). On the other hand, after plugging in the appropriate expressions
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from (10-10), it is easy to check that the integrand in (10-19) vanishes almost everywhere. Therefore,
(10-19) indeed holds, which then implies that (10-3) holds.

Next, we consider (10-5), or equivalently (10-13). Since we have already established (10-8) in an
integrated sense, using the definition of Q above, it follows from (10-16) that (10-13) is equivalent to∫ V

Vn

([
−

1
4
�̃

2
+m2πr2�̃

2
|φ|2+

1
4
�̃

2

r2 Q2
]
(u, V ′)− [· · · ](uext, V ′)

)
dV ′

=

∫ u

uext

(
[2r ∂ur ∂u log �̃+ (∂ur)2− 4πr2

|Duφ|
2
](u′, V )− [· · · ](u′, Vn)

)
du′. (10-20)

Using again the integrated Leibniz rule (10-16) and (10-17), it then follows that (10-20) is equivalent to∫ u

uext

∫ V

Vn

∂u

([
−

1
4
�̃

2
+m2πr2�̃

2
|φ|2+

1
4
�̃

2

r2 Q2
]
(u′, V ′)

)
dV ′ du′

−

∫ V

Vn

∫ u

uext

∂V
(
[2r ∂ur ∂u log �̃+ (∂ur)2− 4πr2

|Duφ|
2
](u′, V ′)

)
du′ dV ′ = 0, (10-21)

where (in a similar manner to (10-19)) expressions ∂V ∂ur , ∂V ∂u log �̃ and ∂V Duφ are to be understood after
plugging in the appropriate inhomogeneous terms arising from (10-8), (10-9) and (10-10) respectively,
and ∂u Q is to be understood as

∂u Q = 2π ir2e(φDuφ− φ̄Duφ);

see (10-3). Direct algebraic manipulations (using in particular Q = 2r2�̃
−2
∂u AV ) then show that the

integrand in (10-21) vanishes almost everywhere. This verifies (10-5).
Finally, we need to check (10-6), or equivalently (10-14). This can be argued in a very similar manner

to (10-5); we omit the details.

Checking the regularity of the functions. We have now checked that all the equations are appropriately
satisfied. To conclude that we have a solution in the sense of 10.4, it remains to check that ∂V r is
continuous. (A priori, using Proposition 10.3, we only know that ∂V r ∈ L2

V (C
0
u).) That ∂V r is continuous

is an immediate consequence of (10-14), the fact that the data for ∂V r are continuous on {u = uext}, and
the regularity properties of all the other functions.

We have thus shown how to construct one extension of the solution (as a spherically symmetric strong
solution in the sense of Definition 10.4). Since the procedure involves prescribing arbitrary data, one
concludes that in fact there are infinitely many inequivalent extensions. �

Remark 10.6. Notice that in spherical symmetry, one can solve the wave equations with data such
that one only requires ∂Vφ, ∂V r, ∂v log �̃ ∈ L1

V . However, if ∂Vφ /∈ L2
V , we have ∂V r →−∞ along a

constant-u hypersurface, and one cannot make sense of (2-9) beyond the singularity. In other words, if
∂Vφ /∈ L2

V , we cannot find appropriate data to the system of the wave equations so as to guarantee that
the solution indeed corresponds to a solution to (1-1).
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11. Improved estimates for massless and chargeless scalar field

Proof of Theorem 5.5. We will prove that

sup
u∈(−∞,u0], v∈[v0,∞)

(|u|2 |∂uφ|(u, v)+ v2
|∂vφ|(u, v)) <∞.

Recalling the relation between v and the regular coordinate V in (9-1), this then implies the desired
conclusion.

We prove the above bounds with a bootstrap argument. Assume that

sup
u∈(−∞,u0], v∈[v0,∞)

|u|2 |∂uφ|(u, v)≤Aimp. (11-1)

In the following argument, we will allow the implicit constant in . to depend on all the constants in the
previous sections, as well as the size of the left-hand side of (5-2). Aimp will then be thought of as larger
than all these constants. We will show that for appropriate |u0|, the estimate in (11-1) can be improved.

To proceed, note that when m= e= 0, (2-3) can be written as

∂u(r ∂vφ)=−(∂vr)(∂uφ), (11-2)

∂v(r ∂uφ)=−(∂ur)(∂vφ). (11-3)
Using (11-2), we estimate

v2
|∂vφ|(u, v). 1+Aimp

∫ u

−∞

v2
|u′|−2(v+ |u′|)−2 du′ . 1+Aimp|u0|

−1. (11-4)

Using (11-3) and the estimate (11-4) that we just established, we have

|u|2 |∂uφ|(u, v). 1+(1+Aimp|u0|
−1)

∫
∞

v0

|u|2 |v′|−2(v′+|u|)−2 dv′. 1+(1+Aimp|u0|
−1)v−1

0 . (11-5)

Choosing Aimp sufficiently large and u0 sufficiently negative (in that order), we have improved the
bootstrap assumption (11-1). Then by (11-4) and (11-5),

sup
u,V
(|∂Vφ|(u, V )+ |u|2 |∂uφ|(u, V )). sup

u,v
(v2
|∂vφ|(u, v)+ |u|2 |∂uφ|(u, v)) <∞,

from which the conclusion follows. �
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