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We study the low-lying eigenvalues of the semiclassical Witten Laplacian associated to a Morse function '.
Compared to previous works we allow general distributions of critical values of ', for instance allowing
all the local minima to be absolute. The motivation comes from metastable dynamics described by the
Kramers–Smoluchowski equation.
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1. Introduction

1A. Motivation. The Witten Laplacian, �' was introduced by Witten [1982] to give an analytic proof of
Morse inequalities. Its study led to many mathematical developments, most notably the Helffer–Sjöstrand
theory [1985] of potential wells in the semiclassical limit. It is defined by twisting the operator d (acting
on forms) by a Morse function ':

�' WD d
�
' d' C d'd

�
' ; d' WD e

�'=hhde'=h: (1-1)

It takes a simple form on functions and for the Euclidean metric on Rd we then have

�' D�h
2�Cj@x'j

2
� h�': (1-2)

Even in that case using the action on 1-forms is highly beneficial — see [Michel and Zworski 2018] for
an introduction in the simple one-dimensional setting.
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More recently the Witten Laplacian appeared in quantitative studies of metastability for kinetic
equations — see for instance [Hérau and Nier 2004; Helffer, Klein and Nier 2004; Hérau, Hitrik and
Sjöstrand 2011; Di Gesù, Lelièvre, Le Peutrec and Nectoux 2017].

Other interesting developments also include connecting the “Arrhenius rates” (exponential widths S
of small eigenvalues �h in (1-8)) with barcodes of the Morse–Barannikov complex in [Le Peutrec, Nier
and Viterbo 2013] and showing that (in the case of compact manifolds) the eigenvalues of the Witten
Laplacian converge, as h! 0, to the Ruelle resonances of the gradient flow of ' in [Dang and Rivière
2017].

This paper continues the study of the Witten Laplacian by considering functions ' with general
distributions on critical values, in particular functions with several equal minima and equal values at
saddle points. (In works related to Morse theory it is natural to assume that all critical values are distinct.)
As emphasized in [Michel and Zworski 2018] such functions lead to interesting effective dynamics
for the Kramers–Smoluchowski equation (1-6) — see Figure 2 and Section 1B. This, and more general
situations in which equal critical values are allowed (see Figure 4 for a schematic illustration of an allowed
landscape), leads to new subtle difficulties.

To explain metastable dynamics consider a particle evolving in an energy landscape ' and submitted to
random forces. The position Xt of such a particle at time t satisfies the over-damped Langevin equation

PXt D�2r'.Xt /C
p
2h PBt ; (1-3)

where h is the temperature of the system and Bt is a Brownian force. This equation appears for instance
in physics to describe the microscopic evolution of a charged gas assuming the mass of the particles is
negligible.

Assuming that the potential ' has several wells, a particle starting at a local minimum of the function '
can, due to the presence of the random force, move over a saddle point and reach another energy well —
see Figure 1 for a schematic illustration.

The celebrated Eyring–Kramers law describes the average time it takes to escape from a well, in the
regime of low temperature, h! 0. In his pioneering work, Kramers [1940] considered a one-dimensional
model, see Figure 1, and predicted that the average transition time, �' , from a local minimum A to the

A

S

B

Figure 1. Metastable dynamics: random force allows a state localized near one minimum
A to reach another minimum B passing a saddle point (a local maximum in dimension 1).
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nearest saddle point S is exponentially large with respect to h�1:

�' ' a'e
�'=h; �' D '.S/�'.A/; a' D 2�j'

00.A/'00.B/j�1=2: (1-4)

Hence, for h small this average transition time is large and this explains the terminology of A being a
metastable state. (Once we get past S , the transition time to B is bounded and hence �' is effectively the
transition time from the state A to the state B .)

The Eyring–Kramers law has important applications in which the trajectory (1-3) is used to imple-
ment computational algorithms. Roughly speaking it proceeds as follows: in order to compute some
thermodynamical quantities

E�.f /D

Z
Rd
f .x/ d�.x/ (1-5)

associated with a measure � and an observable f , we introduce a random dynamics Xt which is ergodic
with respect to �. We then use the Monte Carlo method to approximate E�.f / by the long-time average of
f along any trajectory — see [Lelièvre, Rousset and Stoltz 2010] for an introduction. In many situations
d�.x/DZhe

�'.x/=h for some potential ' and the over-damped Langevin dynamics (1-3) can be used
as Xt . The time needed for the process Xt to explore the whole space Rd (which ensures the validity
of the Monte Carlo approximation method) is directly linked to the metastable properties discussed
previously. Understanding this metastable behavior is then of interest if, for instance, we need to evaluate
the stopping time or to accelerate the convergence.

The mathematical proof of Eyring–Kramers law in a generic setting was first obtained by a potential-
theory approach in [Bovier, Gayrard and Klein 2005] and then by semiclassical methods in [Helffer, Klein
and Nier 2004]. The semiclassical point of view and connection to the Witten Laplacian can be seen by
considering the Langevin equation (1-3) at the macroscopic level. In that case statistical distributions
�.t; x/ of particles are governed by the Kramers–Smoluchowski equation

@t�� h��� 2 div.�r'/D 0: (1-6)

This is equivalent to

h@t Q�C�' Q�D 0; Q� WD e'=h�;

where �' is the Witten Laplacian (1-2) associated to '. In view of (1-1), �' is nonnegative and under a
confining assumption on the function ', it has a nontrivial kernel corresponding to the global equilibrium
of (1-6). (Confining assumption means that ' grows fast enough so that e�'=h 2 L2.) As a consequence,
the behavior of Q� when t !1 is determined by the small eigenvalues of �' . In particular, any state
associated to a small eigenvalue is stable for exponentially long times. These are the metastable states,
and the inverses of the corresponding eigenvalues yield their lifetimes. Helffer, Klein and Nier [2004]
obtained a full description of the small eigenvalues of the Witten Laplacian in a general setting. For the
Kramers–Smoluchowski equation, their result implies that if the initial probability distribution �0 belongs
to L2.e2'=h dx/, then the solution � of (1-6) converges exponentially fast to the equilibrium probability
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distribution c�2
h
e�2'=h (where ch is a normalizing factor)

k�.t/� c�2h e�2'=hkL2.e2'=h dx/ � e
��ht=hk�0kL2.e2'=h dx/: (1-7)

Moreover, the rate of convergence

�h=hD b.h/e
�2S=h; �h WDmin �.�'/ n f0g; (1-8)

is described by the Eyring–Kramers law, that is:

� S is the biggest height a particle has to pass in order to reach the unique global minimum.

� The prefactor b.h/ has an asymptotic expansion with respect to the parameter h, b.h/�
P
k bkh

k

and its leading term is given by an explicit formula in terms of the Hessian of '.

More precisely, the assumptions made in [Helffer, Klein and Nier 2004] imply that there exist a unique
minimumm and a unique saddle point s of ' such that S D'.s/�'.m/. Then, the leading term of b.h/ is

b0 D
j�1.s/j

�

s
det Hess.'/.m/
jdet Hess.'/.s/j

; (1-9)

where �1.s/ denotes the negative eigenvalue of Hess.'/.s/. In the case of a double well, this formula
is exactly the one predicted by Kramers [1940]. In view of (1-7) the transmission time is approximately
the inverse of �h of (1-8). Hence the result of [Helffer, Klein and Nier 2004] is in agreement with (1-4).
(Note that in dimension 1, '00.s/D �1.s/.)

The method developed in [Helffer, Klein and Nier 2004] to compute the small eigenvalues of the
Witten Laplacian was successfully used on bounded domains in [Helffer and Nier 2006; Le Peutrec 2010]
and in the study of semiclassical random walks [Bony, Hérau and Michel 2015].

The range of potential ' covered by these papers does not include many cases which are important in
practice. Roughly speaking, Helffer, Klein and Nier [2004] make an assumption on the relative position
of minima and saddle points that ensures that the small eigenvalues are all of different size. Among the
limitations of this assumption is the fact that the potential ' cannot have saddle points or minima with the
same value. In many physical applications the energy landscape may not satisfy that assumption. Also,
the energy potential may have symmetries which again are not allowed by the assumptions in [Helffer,
Klein and Nier 2004]. For instance this is the case of some homogeneous systems such as Lennard-Jones
clusters — see [Wales 2006] for an example and a discussion.

The aim of this paper is to study the spectral properties of �' in the case where ' is a general Morse
function without restrictions on the relative positions of the critical values.

1B. An example. A motivating example is given by ' W Rd ! R which has n0 minima all at the same
level and n1 saddle points all at the same level — see Figure 2, where the x represent minima and the
o local maxima. Denote by S D '.s/�'.m/ the difference of the value at the saddle points and at the
minima. To simplify the setting further, we assume also that the function Hess.'/.x/ has eigenvalues ˙1
when x belongs to the set of minima and saddle points.
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Figure 2. Left: the sublevel set f' < �g (shaded region) associated to a potential '
having a unique saddle value � . The x’s represent local minima, the o’s, local maxima.
Right: the graph associated to the potential on the left.

This case is not allowed under the assumptions of [Helffer, Klein and Nier 2004] yet it displays some
interesting phenomena. More precisely, in the very simplified case discussed in this section, a consequence
of Theorem 7.1 below is the following:

Theorem 1.1. Under the assumptions of this subsection, there exist �0 > 0 and h0 > 0 such that for
all h 2 �0; h0�, �' has exactly n0 eigenvalues �k , k D 1; : : : ; n0, in the interval Œ0; �0h�. The lowest
eigenvalue is �1 D 0 and

�k D hbk.h/e
�2S=h; k D 2; : : : ; n0:

The prefactors bk.h/ satisfy bk.h/�
P1
jD0 h

j bk;j and the terms bk;0 are given by the nonzero eigenvalues
of the graph Laplacian for the graph G whose vertices are the minima of ' and whose edges are the saddle
points joining two minima (see Figure 2).

In terms of the Kramers–Smoluchowski equation (1-6), Theorem 1.1 exhibits metastable states whose
lifetimes (given by the inverse of the above eigenvalues) are described by the graph G. At the level of
particles, these new rules of computation can be understood as follows. Since all the minima are at
the same level, the equilibrium state is equidistributed among all the minima. Moreover, since all the
saddle points are at the same level, an ergodic trajectory of (1-3) will visit all the minima in the same
time scale, by traveling along the edges of the graph G. Hence, the effective long-time dynamics of
the Kramers–Smoluchowski equation is given by the heat equation for the graph Laplacian of G — see
[Michel and Zworski 2018, Theorem 3].

Earlier results, in dimension 1 and for finite times, on effective dynamics were obtained in [Peletier,
Savaré and Veneroni 2012] using �-convergence, in [Herrmann and Niethammer 2011] using Wasserstein
gradient flows and in [Evans and Tabrizian 2016]. We also remark that the same graph Laplacian was
constructed in [Landim, Misturini and Tsunoda 2015] in a discrete setting.

Under our special assumptions the coefficients bk do not depend on the second derivative of ' as in
the usual case. In the more general case of arbitrary Hessians, G has to be replaced by a weighted graph
with weights depending on the Hessians in an explicit way — see Theorem 7.1.

To motivate objects introduced in the next section, we now discuss what happens if we modify the
potential ' in the following way: suppose that ' has the structure shown in Figure 2 but one of the minimal
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Figure 3. Left: the sublevel set f' < �g (shaded region) associated to a potential '
having a unique saddle value � . The x’s represent local minima, the o’s, local maxima.
Right: the two hypergraphs associated to the potential on the left (the missing vertex
corresponds to the minimum A).

values is made higher or lower. In Figure 3, the modified minimum is denoted by A. Then, we can
associate to this potential the two hypergraphs corresponding to minima at the same level and linked by a
saddle value (see Figure 3). If A is an absolute minimum, then equilibrium distribution is concentrated
in A and the prefactor bk.h/ will be given by the smallest nonzero eigenvalue of the two hypergraphs
introduced above (roughly speaking this represents the maximum time needed to reach A). In the opposite
case, A is no longer a global minimum and the equilibrium state is uniformly distributed among all
the absolute minima. In order to visit each site of the equilibrium state, a particle will necessarily pass
through the point A. This heuristic explains why the computation of the prefactor bk.h/ will involve a
more complicated procedure describing the interaction between the two hypergraphs via the well A.

The main contribution of this paper is to describe these phenomena in a quantitative way.

2. Framework and results

Let X be either Rd or a compact manifold of dimension d without boundary and let ' W X ! R be a
smooth Morse function. Consider the semiclassical Witten Laplacian associated to ':

�' D�h
2�Cjr'j2� h�'; (2-1)

where h 2 �0; 1� denotes the semiclassical parameter.
If X is a compact manifold, the operator �' is selfadjoint with domain H 2.X/ and its resolvent is

compact. In the case X D Rd we make the additional assumption that there exist C > 0 and a compact
K � Rd such that for all x 2 Rd nK, we have

jr'.x/j �
1

C
; jHess.'.x//j � C jr'j2 and '.x/� C jxj: (2-2)

Then, �' is essentially selfadjoint on C1c .Rd / and thanks to (2-2), there exist h0 > 0 and c0 > 0 such
that for all h 2 �0; h0�, we have

�ess.�'/� Œc0;1Œ:

In both situations X compact or X DRd, it is well known that �' is nonnegative. Hence �.�'/� Œ0;1Œ
and it follows from the above remarks that �.�'/\ Œ0; c0Œ is made of eigenvalues with no accumulation
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point except maybe c0. Moreover e�'=h is clearly in the kernel of �' and belongs to L2.Rd / thanks to
(2-2), so that the lowest eigenvalue of �' is clearly 0.

Since ' is a Morse function (and thanks to assumption (2-2) in the case X D Rd ), the set U of critical
points is finite. In the following, for p D 0; : : : ; d , we will denote by U .p/ the set of critical points of
' of index p. Hence, U .0/ is the set of minima and U .1/ the set of saddle points of '. Throughout the
paper, we will write nj D #U .j /.

From the pioneering work [Witten 1982], it is well known that for small h, there is a correspondence
between the small eigenvalues of �' and the critical points of '. More precisely, by standard localization
arguments one can show that there exists �0 > 0 such that for h > 0 small enough, �' has exactly
n0 eigenvalues in the interval Œ0; �0h�, which we denote by 0D �1 � �2 � � � � � �n0 . This result is easily
proved in [Cycon, Froese, Kirsch and Simon 1987] with �0h replaced by h3=2. The proof with �0h can be
found in [Helffer and Sjöstrand 1985, Proposition 1.7] (see also [Michel and Zworski 2018, Proposition 1]
for a self-contained proof). Moreover, these eigenvalues are actually exponentially small; that is, they live
in an interval Œ0; e�C=h� for some C > 0 (see [Helffer 1988] for a proof). From a topological point of
view, this information (together with the equivalent estimates for the Witten Laplacian �.p/' acting on
p-forms) is sufficient to establish a correspondence between the small eigenvalues of �.p/' and the critical
points of ' of index p (this was the key point in the Witten’s proof of Morse inequalities). However, for
applications to the description of metastable dynamics, it is important to get some accurate description
of the �j . Our main theorem will give some asymptotic of these eigenvalues for any Morse function ',
without any assumption on the relative position of minimal and saddle values of '.

Before going further, we introduce notation used in this paper. For x0 2X and r > 0, introduce the
geodesic ball B.x0; r/D fx 2X W d.x; x0/ < rg.

Throughout, we will say that s is a saddle point if it is a critical point of index 1.
Given a.h/; b.h/ > 0, two functions of the semiclassical parameter, we say that a.h/� b.h/ if there

exists some constant c1; c2 > 0 such that for all h > 0 small we have c1b.h/� a.h/� c2b.h/. We say
that a family of vectors .a.h//h2�0;1� in a normed vector space V admits a classical expansion if there
exists a sequence of vectors .an/n2N independent of h and such that for all N 2 N, there exists some
constant CN > 0 such that



a.h/� NX

nD0

hnan






V

� CNh
NC1 for all h 2 �0; 1�:

We set a.h/�
P1
nD0 h

nan.
As we shall see later, we will have to analyze carefully some finite-dimensional matrices which are

strongly related to the critical points of '. Given any subsets B1;B2 of U , it will be convenient to
introduce the finite-dimensional vector space F .Bj / of real-valued functions on Bj . We shall then denote
by M .B1;B2/ the vector space of linear operators from F .B1/ into F .B2/.

2A. Labeling of minima. Let us now recall the general labeling of minima introduced in [Helffer, Klein
and Nier 2004] and generalized in [Hérau, Hitrik and Sjöstrand 2011]. The main ingredient is the notion
of separating saddle point, which is defined as follows. Given a saddle point s of ', and r > 0 small
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�1 D1

E3;4

m3;4

Figure 4. Labeling procedure.

enough, the set
fx 2 B.s; r/ W '.x/ < '.s/g

has exactly two connected components Cj .s; r/, j D 1; 2. The following definition is taken from [Hérau,
Hitrik and Sjöstrand 2011, Definition 4.1].

Definition 2.1. We say that s 2X is a separating saddle point (ssp) if it is a saddle point and if C1.s; r/
and C2.s; r/ are contained in two different connected components of fx 2 X W '.x/ < '.s/g. We will
denote by V.1/ the set of separating saddle points.

We say that � 2 R is a separating saddle value (ssv) if it is of the form � D '.s/ with s 2 V.1/. We
denote by †D '.V.1// the set of separating saddle values.

We say that E �X is a critical component if there exists � 2† such that E is a connected component
of f' < �g and if @E \V.1/ ¤∅. We denote by C the set of critical components.

Let us now describe the labeling procedure of [Hérau, Hitrik and Sjöstrand 2011]. Since ' is a Morse
function, it has finitely many critical points and so † is finite. We denote by �2 > �3 > � � � > �N its
elements and for convenience we also introduce a fictive infinite saddle value �1 D C1 and write
†D†[f�1g. Starting from �1, we will recursively associate to each �i a finite family of local minima
.mi;j /j and a finite family of critical components .Ei;j /j (see Figure 4):

� Let X�1 D fx 2X W '.x/ < �1 D1gDX. We let m1;1 be any global minimum of ' (not necessarily
unique) and E1;1 DX.

� Next we consider X�2 D fx 2 X W '.x/ < �2g. This is the union of its finitely many connected
components. Exactly one of these components contains m1;1 and the other components are denoted by
E2;1; : : : ; E2;N2 . In each component E2;j , we pick up a pointm2;j which is a global minimum of 'jE2;j .

� Suppose now that the families .mk;j /j and .Ek;j /j have been constructed until rank k D i � 1. The
set X�i D fx 2 X W '.x/ < �ig has again finitely many connected components and we label by Ei;j ,
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j D 1; : : : ; Ni , those that do not contain any mk;l with k < i . In each Ei;j we pick a point mi;j which
is a global minimum of 'jEi;j . Observe that for all i � 2, the components Ei;j are all critical.

We run the procedure until all the minima have been labeled.

Remark 2.2. The above labeling satisfies the following property. For any �i 2 † and any connected
component Ai of f' < �ig, there exists a unique .k; l/ such that k � i and mk;l 2 Ai .

Proof. Let us start with the existence part of the result. If Ai is one of the Ei;j for some j , then take
k D i and l D j . Otherwise, this means that in the labeling procedure, Ai already contained a minimum
mk;l with k < i .

Let us prove the uniqueness part. Assume thatmk;l ;mk0;l 0 2Ai with k � k0� i . Then Ai \Ek0;l 0 ¤∅
and since Ai is a connected component of f' < �ig with �i � �k0 it follows that Ai � Ek0;l 0 . Since
mk;l 2 Ai , it follows that mk;l 2Ek0;l 0 which is impossible unless .k; l/D .k0; l 0/. �

Using the above labeling, Hérau, Hitrik and Sjöstrand [2011] made some significant progress (in the
more general situation of Kramers–Fokker–Planck operators, but this applies to Witten Laplacian). First,
they showed in Theorem 7.1 of that paper that the exponentially small eigenvalues .�m.h//m2U.0/ of �'
(indexed by the sequence of local minima) satisfy �m.h/� he�2S.m/=h for the sequence of Arrhenius
numbers .S.m//m2U.0/ defined by S.mi;j / D �i � f .mi;j / with the above notation. However, their
method does not work to prove that h�1�m.h/e2S.m/=h admits a limit when h! 0. In order to compute
the asymptotic expansion of the eigenvalues �m.h/, they need to make some additional assumption on
the interaction between minima and saddle points (see Assumption 5.1 in [Hérau, Hitrik and Sjöstrand
2011]). This hypothesis, which is a generalization of the one made in [Helffer, Klein and Nier 2004], can
be formulated as follows with the notation of the preceding section:

Generic Assumption. For all i D 1; : : : ; N , j D 1; : : : ; Ni , the following hold true:

(i) mi;j is the unique global minimum of the application 'jEi;j .

(ii) If E is a connected component of f' < �ig such that E \V.1/ ¤∅, there exists a unique s 2 V.1/

such that '.s/D sup'.E \V.1//. In particular, '�1.��1; '.s/Œ/\E is the union of exactly two
different connected components.

Throughout the paper, we denote this assumption by (GA).

Under this assumption, there exists a bijection between U .0/ and V.1/ [ fs1g, where s1 is a fictive
saddle point associated to �1 D 1 and for which by convention '.s1/ D 1. Using this one-to-one
correspondence, the authors exhibit some labeling U .0/Dfm1; : : : ;mn0g and V.1/[fs1gD fs1; : : : ; sn0g
such that the small eigenvalues �i .h/ are of the form hbi .h/e

�2Si=h with Si D '.si /�'.mi /. Moreover,
they prove that the bi .h/ have a classical expansion and compute the leading term of this expansion; see
[Hérau, Hitrik and Sjöstrand 2011, Theorem 5.10].

As it is stated above, (GA) is not exactly Assumption 5.1 stated in [Hérau, Hitrik and Sjöstrand
2011]. Indeed, it is supposed in that paper that (ii) holds true only for E being a critical component.
However, as indicated by the anonymous referee, we can easily construct some function ' satisfying
this assumption for which there is no bijection between U .0/ and V.1/. To see this, first consider in
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dimension 1 a potential ' with four minima mj , j D 1; : : : ; 4, and three saddle points sj , j D 1; : : : ; 3,
such that m1 < s1 < m2 < s2 < m3 < s3 < m4 and such that '.m1/ < '.m4/ < '.m2/ D '.m3/

and '.s1/ D '.s2/ < '.s3/. Since the component of f' < '.s3/g containing m1 is not critical, this
function satisfies Assumption 5.1 in [Hérau, Hitrik and Sjöstrand 2011]. It doesn’t satisfy (GA) as stated
above. In higher dimensions, one can easily generalize this construction to obtain potentials satisfying
Assumption 5.1 in [Hérau, Hitrik and Sjöstrand 2011], with a fixed number of minima and an arbitrarily
large number of separating saddle points (think for instance of many saddle points between the well
containing m1 and the well containing m2). This shows that Assumption 5.1 is not sufficient to ensure a
bijection between minima and separating saddle points.

Let us emphasize that the above remark doesn’t affect the rest of the work done in [Hérau, Hitrik and
Sjöstrand 2011], where we can easily use the above corrected version of Assumption 5.1.

Let us observe that the Generic Assumption allows some degeneracy in the sequence .Sj /; that is,
there may exist j such that Sj D SjC1. However, (GA) remains restrictive for the following reasons:

� It permits only potentials ' for which U .0/ and V.1/[fs1g have the same cardinality.

� The eventual degenerate heights are associated to weakly interacting eigenstates in the following
sense. Assume for instance that Sj D SjC1 for some j D 1; : : : ; n0 � 1 and modify slightly the
function ' near the minimummj . Then the coefficient bj is modified, whereas the classical expansion
of bjC1 remains unchanged.

Figures 6 and 7 below present some examples of potentials where (GA) is not satisfied. These examples,
as well as an example in higher dimensions, are discussed in detail in Section 7C.

In the present paper, we obtain an asymptotic expansion for the �i .h/ for general Morse functions '
without any additional assumptions on the relative position of minima and ssp’s.

2B. Main result. In order to state our main result, we introduce some notation that will be used throughout
the paper. First, using the above labeling, we define � WU .0/!† by � .mi;j /D�i and S WU .0/! �0;C1�

by S.m/D � .m/�'.m/. We let S D S.U .0//; then with the notation of the preceding section, we have

S D f�i �'.mi;j / W i D 1; : : : ; N; j D 1; : : : ; Nig: (2-3)

Throughout the paper, we denote by mDm1;1 the (not necessarily unique) absolute minimum of ' that
was chosen at the first step of the labeling procedure, and we let

U .0/ D U .0/ n fmg: (2-4)

Using again the above labeling, we can associate a critical component to any local minimum. More
precisely, we define

E W U .0/! C [fXg (2-5)

by E.mi;j / D Ei;j . Observe that by definition, this application is injective. Using this map, we can
associate to each minimum m 2 U .0/ a boundary set given by �.m/D @E.m/. Thanks to the fact that '
is a smooth Morse function, for any m 2 U .0/, the set �.m/ is a finite union of compact submanifolds
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of X of dimension d �1 with conic singularities at the saddle points. For our construction of quasimodes,
we also need to introduce the set

H.m/ WD fm0 2E.m/\U .0/ W '.m0/D '.m/g: (2-6)

Given m 2 U .0/, we have � .m/D �i for some i � 2. Moreover, since �i�1 > �i , there exists a unique
connected component of f' < �i�1g that contains m (observe that this component is not necessarily
critical). We denote that component by E�.m/, and by

E� W U .0/!�.X/ (2-7)

the corresponding application, where �.X/ is the collection of connected open subsets of X. Thanks to
Remark 2.2, we know that for any m 2 U .0/, there exists a unique m0 2E�.m/\U .0/, denoted by Om.m/,
such that � .m0/ > � .m/. In particular,

for all m 2 U .0/; '. Om.m//� '.m/; (2-8)

and we denote by yE.m/ the connected component of f' < �.m/g containing Om.m/. It holds additionally
yE.m/�E�.m/ and we can easily see that yE.m/ is always a critical component. Throughout, we denote by

yE W U .0/! C ; (2-9)

Om W U .0/! U .0/ (2-10)

the corresponding applications. The fact that the inequality in (2-8) is large or strict plays an important
role in our analysis.

Definition 2.3. Let m 2 U .0/. We say that m is of type I if '. Om.m// < '.m/. If '. Om.m//D '.m/, we
say that m is of type II. We define

U .0/; I D fm 2 U .0/ Wm is of type Ig;

U .0/; II D fm 2 U .0/ Wm is of type IIg:

We have clearly the disjoint union U .0/ D U .0/; I[U .0/; II.

Example 2.4. Let us compute the preceding object in the case of the potential ' represented in Figure 4.
The results are presented in Figure 5.

� Let us start with the object associated to �2. By definition, yE.m2;1/ D yE.m2;2/ D yE.m2;3/ D zE2,
where zE2 is the connected component of f' < �2g that contains m1;1. Then we have Om.m2;1/ D
Om.m2;2/D Om.m2;3/Dm1;1.

Since '.m1;1/D '.m2;1/ < '.m2;3/ < '.m2;2/, we know m2;1 is of type II, whereas m2;2 and m2;3
are of type I.

� Consider now the level �3. We have E�.m3;1/ D E�.m3;2/ D zE2 and E�.m3;3/ D E�.m3;4/ D
E2;3. Therefore, yE.m3;1/ D yE.m3;2/ D zE3, where zE3 is the connected component of f' < �3g that
contains m1;1. Similarly, we have yE.m3;3/D yE.m3;4/D zE 03, where zE 03 is the connected component of
f' < �3g that contains m2;3. From these computations, it follows that Om.m3;1/D Om.m3;2/Dm1;1 and
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E1;1

m1;1

E2;1 E2;3E2;2

m2;1

m2;2

m2;3

E3;1E3;2 E3;3

E4;1

m4;1

m3;2m3;1

m3;3

�2

�3

�4

�1 D1

E3;4

m3;4

zE3

zE2

zE 03

zE4

Figure 5. Computations of Example 2.4.

since '.m1;1/ < '.m3;1/D '.m3;2/ it follows that m3;1 and m3;2 are both of type I. On the other hand,
Om.m3;3/D Om.m3;4/Dm2;3 and since '.m2;3/D '.m3;3/ < '.m3;4/ it follows that m3;3 is of type II

and m3;4 is of type I.

� Finally, E�.m4;1/ D zE3, yE.m4;1/ D zE4 as represented on Figure 5 and Om.m4;1/ D m1;1. Since
'.m1;1/D '.m4;1/, it follows that m4;1 is of type II.

The points of type II play an important role in our analysis. Given � 2†, let �� D�0� [ y�� , with

�0� D fE.m/ Wm 2 �
�1.�/g (2-11)

and y�� be defined by y�� D∅ if � D �1 and

y�� D f yE.m/ Wm 2 �
�1.�/\U .0/; IIg (2-12)

if � 2†.

Definition 2.5. We define an equivalence relation R on U .0/ by mRm0 if and only if�
� .m/D � .m0/D �;

9!1; : : : ; !K 2�� such that m 2 !1;m0 2 !K and 8k D 1; : : : ; K � 1; N!k \ N!kC1 ¤∅: (2-13)

Throughout the paper, we denote by Cl.m/ the equivalence class of m for the relation R. Observe that
since m is the only minimum such that � .m/D1, we have Cl.m/D fmg.

Let us denote by .U .0/˛ /˛2A the equivalence classes of R with A a finite set. We have evidently

U .0/ D
G
˛2A

U .0/˛ : (2-14)

We need also to consider the set A defined by ADA n f˛g, where U .0/˛ D fmg is the equivalence class
of the absolute minimum chosen for '. Throughout, we will write q˛ D #U .0/˛ . We will also use the
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following partition of U .0/˛ for any ˛ 2A:

U .0/; I˛ WD U .0/˛ \U .0/; I; U .0/; II˛ WD U .0/˛ \U .0/; II: (2-15)

Proposition 2.6. Let ˛ 2A. The applications � ; E�; yE and Om are constant on U .0/˛ .

Proof. For � , it is a direct consequence of the definition. Suppose now that m;m0 2 U .0/ satisfy mRm0

and m ¤ m0. Then, m and m0 belong to the same connected component of f' � �.m/g. Hence, the
uniqueness part in the definition ofE� shows thatE�.m/DE�.m0/. SinceE�.m/DE�.m0/, the identity
Om.m/D Om.m0/ follows directly from the definition of Om. This implies automatically yE.m/D yE.m0/. �

Thanks to the above proposition, given ˛ 2A, we will write respectively � .˛/; E�.˛/; yE.˛/ and Om.˛/
instead of � .m/; E�.m/; yE.m/, Om.m/ for some m 2 U .0/˛ .

Definition 2.7. We say that

� ˛ is of type I if '. Om.˛// < '.m/ for all m 2 U .0/˛ ,

� ˛ is of type II if there exists m 2 U .0/˛ such that '. Om.˛//D '.m/.

Recall that the height function S W U .0/! R and the set of heights S D S.U .0// were defined by (2-3)
and above. For any ˛ 2A, we let

S˛ D S.U .0/˛ / and p.˛/D #S˛: (2-16)

There exist some integers �˛1 < �
˛
2 < � � �< �

˛
p.˛/

such that

S˛ D fS�˛1 ; : : : ; S�˛p.˛/g:

In the theorem below, proved in Sections 5 and 6, we sum up in a rather vague way the description of
the small eigenvalues that we obtained.

Theorem 2.8. There exist c > 0 and some symmetric positive definite matrices M˛, ˛ 2 A, such that
counted with multiplicity, we have �.�'/ n f0g D

S
˛2A �.M˛/.1CO.e�c=h//, with

�.M˛/D

p.˛/[
jD1

he
�2h�1S�˛

j �.M ˛;j /

for some symmetric positive definite matrices M ˛;j having a classical expansion with invertible leading
term given in Theorem 5.8. Moreover 0 is a multiplicity-1 eigenvalue.

Let us make a few comments on this theorem.
First, observe that since M ˛;j has a classical expansion with invertible leading term M

˛;j
0 , its eigen-

values �˛;jr , r D 1; : : : ; r˛;j , have a classical expansion

�˛;jr .h/�
X
k

hk�
˛;j

r;k
;

with �˛;jr;0 eigenvalue of the matrix M ˛;j
0 .
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Compared to previous results obtained under the Generic Assumption, the main difference is that
the prefactors �˛;j

r;k
are more difficult to compute since they are obtained as the eigenvalues of the

matrices M ˛;j. When (GA) is satisfied, the M ˛;j are 1� 1 matrices whose spectrum is direct to obtain.
In the general case, this is not true anymore and the construction of the matrices M ˛;j is more involved.
In particular, it depends dramatically on the number p.˛/D #S.U .0/˛ /. Observe that this number is also
equal to the number of different values taken by ' on the equivalence class U .0/˛ .

If p.˛/D 1, the coefficients of M ˛;j depend only on the pairs .m; s/ for which '.s/�'.m/D S�˛
j

.
Except for the fact that the different eigenvalues �˛;jr , r D 1; : : : ; r˛;j, are linked together, the situation is
similar to that encountered in the generic case. Actually, we prove in Appendix B that if (GA) is satisfied
then Cl.m/ is reduced to one point for any m, and in particular p.˛/D 1 for all ˛.

In the case where p.˛/� 2, the matrix is more difficult to compute. It comes from an application of
the Schur complement method and it depends on some pairs .m; s/ for which the height '.s/�'.m/ is
smaller than S�˛

j
. In other words, the lifetime of the metastable state m is not entirely described by the

height that is needed to jump over in order to reach the nearest lower-energy position. It depends also on
some interactions with some higher-energy states that are not present in the classical Eyring–Kramers
formula. To our knowledge, this is the first time that such a phenomena is exhibited.

Let us now compute p.˛/ on explicit examples. Let us fix nD 2 and consider the potentials ' given
respectively by Figures 6 and 7. In both cases, Om.m2;1/ D Om.m2;2/ D Om.m2;3/ D m1;1, which we
denote by Om for short. Since '. Om/ < '.m2;j / for all j , there is no point of type II, U .0/; IID∅ and hence
��2 D fE2;1; E2;2; E2;3g. Therefore, we can compute easily the equivalence classes of R in both cases:

� In the case of Figure 6, we have three equivalence classes: c1 D fm1;1g, c2 D fm2;1;m2;2g and
c3 D fm2;3g. The potential ' is constant on each equivalence class, and hence p.c1/D p.c2/D
p.c3/D 1.

m1;1 D Om

m2;1 m2;2

m2;3

�2

�1 D1

'.m2;3/

'.m2;1/D '.m2;2/

'. Om/

E2;1 E2;2 zE2 E2;3

Figure 6. A potential with p.˛/D 1.
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m1;1 D Om

m2;1 m2;2

m2;3

�2

�1 D1

'.m2;3/

'.m2;1/D '.m2;2/

'. Om/

E2;1 E2;2 zE2E2;3

Figure 7. A potential with p.˛/D 2.

m1;1 D Omm2;1 m2;2

m2;3

�2

�1 D1

'.m2;3/

'.m1;1 D '.m2;1/D '.m2;2/

E2;1 E2;2 zE2 E2;3

Figure 8. An example with points of type II.

� In the case of Figure 7, we have two equivalence classes: c1 D fm1;1g and c2 D fm2;1;m2;2;m2;3g.
The potential ' takes two different values on c2: p.c2/D 2.

We will come back to these examples at the end of the paper and compute explicitly the spectrum of �'
in both cases.

Let us finish this discussion with an example where U .0/; II ¤ ∅. Consider the potential given by
Figure 8. In that case Om.m2;1/D Om.m2;2/D Om.m2;2/Dm1;1, which we denote by Om for short. Since
'. Om/ D '.m2;1/ D '.m2;2/ < '.m2;3/, we know m2;1 and m2;2 are of type II and m2;3 is of type I.
We still have �0�2 D fE2;1; E2;2; E2;3g but contrary to the previous case y��2 D f zE2g is nonempty. It
follows that ��2 D fE2;1; E2;2; E2;3; zE2g and R admits two equivalence classes: c1 D fm1;1g and
c2 D fm2;1;m2;2;m2;3g. The potential ' takes two different values on c2 and hence p.c2/D 2.
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2C. General strategy of the proof. Let us recall the general strategy followed in [Helffer, Klein and Nier
2004]. The starting point is to use the supersymmetric structure of the Witten Laplacian. For 0� k� n, let
�k.X/D C1.X;ƒkT �X/ be the space of k-differential forms and denote by d W�k.X/!�kC1.X/

the exterior derivative and by d� W�k.X/!�k�1.X/ its adjoint for the natural pairing. The Witten
complex associated to the function ' is defined by the semiclassical weighted de Rham differentiation

d';h D e
�'=h

ı hd ı e'=h D hd C d'^

and its adjoint
d�';h D e

'=h
ı hd� ı e�'=h D hd�C d'⌟:

Then the semiclassical Witten Laplacian is defined on the forms of any degree by

�' D d
�
';h ı d';hC d';h ı d

�
';h: (2-17)

When restricted to the space of p-forms we denote this operator by �.p/' (observe that in the case p D 0,
the above formula yields easily (2-1)). Then, we have the intertwining relation

d';h�
.p/
' D�

.pC1/
' d';h (2-18)

and its analogue for the coderivative

d�';h�
.pC1/
' D�.p/' d�';h: (2-19)

For any p D 0; : : : ; d , it follows from (2-2) that �.p/' (as an unbounded operator on L2) is essentially
self-adjoint on the space of compactly supported smooth forms. We still denote by �.p/' its unique
self-adjoint extension. Then �.p/' is nonnegative and thanks to (2-2), there exists c0 > 0 such that
�ess.�

.p/
' /� Œc0;C1Œ for any h > 0 small enough (in the case where X is a compact manifold, �.p/'

has actually compact resolvent). Moreover, there exists �p > 0 such that for h > 0 small enough, it has
exactly np eigenvalues in the interval Œ0; �ph�, where np denotes the number of critical points of index p
of '. We shall denote by E.p/ the spectral subspace associated to these small eigenvalues of �.p/' . Then
dimE.p/ D np and relations (2-18), (2-19) show that

d';h.E
.p//�E.pC1/ and d�';h.E

.pC1//�E.p/: (2-20)

This shows in particular that d';h acts from E.0/ into E.1/ and we shall denote by L this operator.
Similarly �.0/' acts on E.0/ and we denote by M this operator. By (2-17), we get

MD L�L:

The general strategy used in [Helffer, Klein and Nier 2004] (that we will follow in the present work), is to
construct appropriate bases of E.0/ and E.1/ in which one can compute handily the singular values of L.
The main idea to construct such bases is to build accurate quasimodes for �' and to project them on the
spaces E.j /. The construction of the quasimodes is performed in Section 3. The quasimodes for 1-forms
are the ones constructed in [Helffer and Sjöstrand 1985]. The main properties of these quasimodes will
be recalled in Section 3C. Concerning the quasimodes on 0-forms, we cannot use the ones constructed in
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[Helffer, Klein and Nier 2004] since many important properties that are required for our analysis fail to be
true in the present situation (for instance, the quasiorthogonality). In Section 3B, we use the partition of
U .0/ into equivalence classes of R to construct a family of quasimodes on 0-forms adapted to our setting.
Each quasimode will be associated to a minimum m 2 U .0/.

In Section 4, we compute the matrix L in the above basis. One arrives at a block diagonal matrix
diag.L˛; ˛ 2A/ whose singular values are the singular values of each block.

Section 5 is devoted to the computation of singular values of the above blocks. The main difficulty is
that given two minima m;m0 in the same equivalence class, we do not necessarily have S.m/D S.m0/.
For equivalence classes satisfying this property (that is, p.˛/D 1), each block L˛ of the matrix L has a
typical size e�S.˛/=h and the situation could be handled quite easily. But more complicated cases may
arise where quasimodes yielding different heights S.m/ are interacting. In order to treat the full general
case, we use the Schur complement method combined with an induction on p.˛/. Running the induction
step requires exhibiting a specific structure of the matrices under consideration (see Sections 5A and 5B).
In Section 5C, we prove a general result for such matrices, which we use to conclude in Section 5D.

In Section 6, we prove Theorem 2.8.
In the Appendices, we collect several results linear algebra. We also provide a list of notation used in

the paper.

3. Construction of adapted quasimodes

3A. Gathering minima by equivalence class. Let us start this section with a proposition collecting some
elementary facts about E;E� and yE.

Proposition 3.1. Letm;m0 2 U .0/ such thatm¤m0. Then, we have the following:

(i) If �.m/D �.m0/, then

(i.a) E.m/\E.m0/D∅,
(i.b) either E�.m/DE�.m0/ or E�.m/\E�.m0/D∅,
(i.c) if E�.m/DE�.m0/ then yE.m/D yE.m0/; otherwise yE.m/\ yE.m0/D∅.

(ii) If �.m/ > �.m0/, then

(ii.a) either E.m/\E.m0/D∅ or E�.m0/�E.m/,
(ii.b) either E�.m/\E�.m0/D∅ or E�.m0/�E�.m/.

Proof. Let m ¤ m0 be two minima. Assume first that �.m/ D �.m0/ D � . Since m ¤ m0 and
��1.1/ D fmg, we have necessarily m;m0 2 U .0/. In particular, E�.�/; yE.�/, � D m;m0, are well-
defined. Moreover, since E.m/ and E.m0/ are two connected components of f' < �g, we have either
E.m/D E.m0/ or E.m/\E.m0/D∅. Since m¤m0 and E is injective, E.m/\E.m0/D∅, which
proves (i.a).

Since E�.m/ and E�.m0/ are two connected component of the same set f' < �g for some � > �.m/,
(i.b) is obvious.

Suppose now that E�.m/ D E�.m0/. Since �.m/ D �.m0/, we have Om.m/ D Om.m0/. Moreover,
since yE.m/ is the unique connected component of f' < �.m/g containing Om.m/, we get yE.m/D yE.m0/.
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If E�.m/ and E�.m0/ are disjoint, then yE.m/ and yE.m0/ are also disjoint since yE.m/ � E�.m/ and
yE.m0/�E�.m

0/. This completes the proof of (i.c).
Let us now prove (ii) and assume that �.m/ > �.m0/. Once again, since ��1.1/D fmg, we have

m02U .0/. IfE.m0/\E.m/¤∅, thenE�.m0/\E.m/¤∅. Moreover,E�.m0/ is a connected component
of f' < �g for some � � �.m/. Since E.m/ is a connected component of f' < �.m/g � f' < �g, we
have E�.m0/�E.m/ which proves (ii.a).

The point (ii.b) is proved by similar arguments. �

Let us now decompose the set of separating saddle points according to the equivalence classes. Given
˛ 2A, introduce the closed set

G.˛/D
[

m2U.0/˛

E.m/ (3-1)

and for any ˛ 2A let
V.1/˛ D fs 2 V

.1/
W '.s/D � .˛/g\G.˛/: (3-2)

For any ˛ 2A, let
uU .0/˛ D U .0/˛ [f Om.˛/g (3-3)

and define an application �˛ from uU .0/˛ into the closed subsets of X by�
�˛.m/D �.m/ if m 2 U .0/˛ ;

�˛. Om.˛//D @ yE.˛/;
(3-4)

where � is defined below (2-5).

Remark 3.2. Since yE.m/¨E. Om/, the application �˛ is slightly different from the application � defined
in below (2-5). Observe also that for all m 2 uU .0/˛ , �˛.m/ is the boundary of the connected component
of f' < '.s/g that contains m.

Lemma 3.3. The collection .V.1/˛ /˛2A is a partition of V.1/. Moreover, for all ˛ 2A and s 2 V.1/˛ , there
existsm1.s/ 2 U

.0/
˛ andm2.s/ 2 uU .0/˛ such that

s 2 �˛.m1/\�˛.m2/: (3-5)

One can chosem1;m2 in order that S.m1/� S.m2/ (that is, '.m1/� '.m2/). Up to permutation, the
pair .m1.s/;m2.s// is unique.

Proof. Let s 2 V.1/; then '.s/ 2† and there exists k � 2 such that '.s/D �k . By definition, there exist
two different connected components E1; E2 of f' < �kg such that s 2E1\E2. From the existence part
of Remark 2.2 there exist ml;i 2 E1 and ml 0;i 0 2 E2 with l 0 � l � k. Moreover, one has necessarily
l D k. Otherwise � .ml;i / > �k and since E1\E2 ¤∅, this would imply that ml 0;i 0 2E.ml;i /, which
is impossible since l 0 � l . Hence we have l D k. Therefore E1 is equal to E.ml;i / with ml;i 2 U .0/˛ ,
which proves that s 2 V.1/˛ . Moreover, E2 is either of the form E2 D E.ml 0;i 0/ with ml 0;i 0 2 U .0/˛ (if
l 0 D k) or E2 D yE.ml;i / (if l 0 < k). Setting m1.s/Dml;i 2 U .0/˛ and m2.s/Dml 0;i 0 2 uU .0/˛ , one has
s 2 �˛.m1/\�˛.m2/ and since l � l 0 one has also '.m1/� '.m2/.
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Let us now prove that the union of the V.1/˛ for ˛ 2A is disjoint. Suppose that s 2 V.1/˛ \V.1/
ˇ

. Then
�.˛/D '.s/D �.ˇ/. Moreover, there exist m 2 U .0/˛ and m0 2 U .0/

ˇ
such that s 2E.m/\E.m0/. This

proves that mRm0 and hence ˛ D ˇ.
The uniqueness of .m1;m2/ up to permutation is obvious. �

Let us now introduce an extra partition that will be useful in the sequel.

Lemma 3.4. For all ˛ 2A there exists a partition V.1/˛ D V.1/;b˛ tV.1/;i˛ such that the following hold true:

(i) For any s 2 V.1/;i˛ , m1.s/ andm2.s/ belong to U .0/˛ .

(ii) The set V.1/;b˛ is nonempty and for all s 2 V.1/;b˛ one hasm1.s/ 2 U
.0/
˛ ,m2.s/D Om.˛/ and

s 2 �˛.m1.s//\�˛. Om.˛//:

Proof. Define V.1/;i˛ Dfs 2V.1/˛ Wm1.s/;m2.s/2U
.0/
˛ g. Then (i) is true by definition. Moreover, defining

V.1/;b˛ D V.1/˛ nV
.1/;i
˛ , one has automatically the partition property and it remains to prove (ii).

Since ˛ 2A, the set yE.˛/\
�S

m2U.0/˛
E.m/

�
is nonempty and contained in V.1/;b˛ . This proves that

V.1/;b˛ is not empty. Suppose now that s 2 V.1/;b˛ . It follows from Lemma 3.3 that m1.s/ 2 U .0/˛ and
m2.s/ 2 yU

.0/
˛ . But by the definition of V.1/;b˛ , m2.s/ cannot belong to U .0/˛ , which implies by definition

that m2.s/D Om.˛/. This completes the proof of (ii). �

3B. Quasimodes for 0-forms. In this section we construct a family of quasimodes of �.0/' associated to
the minima of '. Each of these quasimodes will be of the form x 7! h�d=4�m.x/e

�.'.x/�'.m//=h with
some suitable cut-off functions �m associated to a minimum m 2 U .0/.

Following [Helffer, Klein and Nier 2004], we can associate to each minimum m 2 U .0/ a cut-off
function �m in the following way. For mDm, we simply take �mD 1. For m 2 U .0/ we introduce some
small parameters �; Q�; ı > 0 with Q� < � and we define

E�;Q�;ı.m/D

��
E.m/ n

[
s2V.1/\�.m/

B.s; �/

�
CB.0; Q�/

�
[

� [
s2.U.1/nV.1//\�.m/

B.s; ı/

�
: (3-6)

Proposition 3.5. Let �m be any function in C1c .E�;2Q�;2ı.m// such that �m D 1 on E�;Q�;ı.m/. There
exist �0 > 0, ı0 > 0 and C > 0 such that for all 0 < ı < ı0, all 0 < � < �0 and all 0 < Q� < �=4, the
following hold true:

(a) If x 2 supp.�m/ and '.x/ < �.m/, then x 2E.m/.

(b) There exists c� > 0 such that for all x 2 supp.r�m/, we have

� either x …
S
s2V.1/\�.m/B.s; �/ and

�.m/C c�1� < '.x/ < �.m/C c�;

� or x 2
S
s2V.1/\�.m/B.s; �/ and

j'.x/� �.m/j � C�:
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(c) For all s 2 U .1/ n .V.1/ \ �.m//, one has dist.s; suppr�m/ � ı. If moreover s 2 supp.�m/ then
s 2E.m/ and �m D 1 near s.

(d) Suppose that m 2 U .0/˛ , ˛ 2 A, and let s 2 V.1/ \ supp.�m/. Then, there exists ˇ 2 A such that
� .ˇ/ < � .˛/, s 2 V.1/

ˇ
and

S
m02U.0/

ˇ

E.m0/� fx 2X W �m.x/D 1g.

Proof. Observe that the construction of the cut-off functions �m is slightly different to that of the �k;� in
Proposition 4.2 in [Helffer, Klein and Nier 2004] (in particular because there can exist more than one
separating saddle point on @E.m/).

Let ı1 D minfjs � s0j W s; s0 2 U .1/; s ¤ s0g and ı2 D minfdist.s; �.m// W s 2 E.m/ \ U .1/g. Let
0 < ı < 1

4
min.ı1; ı2/ and �0 > 0 such that there exists C > 0 such that for all 0 < � < �0 and all s 2 V.1/,

one has

j'.x/�'.s/j< C� for all x 2 B.s; �/:

This is possible since ' is a smooth function. Then (a) and (b) above can be proved much as Proposition 4.2
in [Helffer, Klein and Nier 2004] and (c) is a direct consequence of our choice of ı.

Let us now prove (d). By definition, if s 2 V.1/\ supp.�m/, then s 2E.m/ (here we use the condition
0 < Q� < �=4). Hence, there exists ˇ ¤ ˛ such that s 2 V.1/

ˇ
and one has additionally � .ˇ/ < � .˛/. By

definition of the sets E.m/, this implies that[
m02U.0/

ˇ

E.m0/�E.m/ n
[

s02V.1/\�.m/

B.s0; �/

for any � 2 �0; �0Œ with �0 > 0 small enough independent of ı. This implies the results. �

We are now in position to define the quasimodes in a recursive way on the values of � .˛/.

� We start with the quasimode associated to m. We set

f
.0/
m .x/D c.m; h/h�d=4e.'.m/�'.x//=h; (3-7)

where c.m; h/ is a normalizing constant such that kfmkL2 D 1. Due to the fact that ' may have several
global minima, the function f .0/m does not concentrate only on m but on the reunion of all global minima.
Hence the normalizing factor c.m; h/ is computed by adding the contributions coming from each of
these minima via quadratic approximation. More precisely, it follows from the Laplace method that
c.m; h/�

P1
kD0 h

k
k.m/ with the function 
0 given by


0.m/
�2
D �d=2

X
m02H.m/

jdet Hess'.m0/j�1=2; (3-8)

where by definition (2-6) one has

H.m/ WD fm0 2E.m/\U .0/ W '.m0/D '.m/g:

Finally, observe that f .0/m is an exact quasimode: �'f
.0/
m D 0.
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� Suppose now that k 2 f2; : : : ; Kg and that the quasimodes f .0/m have been constructed for m 2S
˛02A;� .˛0/��k�1 U

.0/
˛ , and let us define f .0/m for m 2 U .0/˛ with � .˛/D �k . The form of the quasimode

associated to m depends on the type of m as introduced in Definition 2.3.

� If m is of type I, then we define f .0/m as in [Helffer, Klein and Nier 2004] by

f
.0/
m .x/D c.m; h/h�d=4�m.x/e

.'.m/�'.x//=h; (3-9)

where �m is the cut-off function associated to m defined in Proposition 3.5 and c.m; h/ is again a
normalizing constant such that kf .0/m kL2 D 1. As before, we have to add all the contributions of minima
in E.m/ at the same height as m. We get c.m; h/�

P1
kD0 h

k
k.m/ with 
0.m/ given by (3-8).

� Let us now construct quasimodes associated to minima m of type II. We assume here that U .0/; II ¤∅
and we define

yU .0/; II˛ D U .0/; II˛ [f Omg; (3-10)

where for short, we write OmD Om.˛/ and qII
˛ D #U .0/; II˛ .

Let us introduce an additional cut-off function around Om that we define as follows. Recall that yE.˛/
denotes the connected component of fx 2E�.m/ W'.x/<�.m/g that contains Om. As before, we introduce
some parameters �; Q�; ı > 0 with Q� < � and we define

yE�;Q�;ı.˛/D

��
yE.˛/ n

[
s2V.1/\@ yE.˛/

B.s; �/

�
CB.0; Q�/

�
[

� [
s2.U.1/nV.1//\@ yE.˛/

B.s; ı/

�
:

Then, we let O� Om be any function in C1c . yE�;2Q�;2ı.˛// such that O� Om D 1 on yE�;Q�;ı.˛/. For m 2 U .0/; II˛ ,
we let O�m D �m, with �m defined in Proposition 3.5. We want to construct the quasimode as a
linear combination of the O�me�'=h, m 2 yU

.0/; II
˛ . In order to chose the coefficients, let us introduce

F˛DF .yU .0/; II˛ /, the finite vector space of functions from yU .0/; II˛ into R. This space has dimension qII
˛C1

and is endowed with the usual Euclidean structure

h�; � 0iF˛ D
X

m2yU.0/; II
˛

�.m/� 0.m/:

We denote by N the associated norm. Eventually, we define �˛0 2 F˛ by

�˛0 .m/D
c˛0 .h/

c.m; h/
; (3-11)

where c.m; h/ is the unique positive constant such that the function

Qfm WD c.m; h/h
�d=4

O�me
.'.m/�'.x//=h

satisfies k QfmkL2 D 1 and c˛0 .h/ is defined by N.�˛0 / D 1. Let us now extend the definition of the set
H.m/ in the following way. Given ˛ 2A and m 2 yU .0/; II˛ we define

yH˛.m/D

�
H.m/ if m 2 U .0/˛ ;

fm0 2 yE.˛/\U .0/ W '.m0/D '. Om/g if m 2 yU .0/; II˛ nU .0/˛ :
(3-12)
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Observe that if ˛ is of type II, since E. Om.˛// is larger than yE.˛/, the sets H. Om.˛// and yH˛. Om.˛//
may be different. From the preceding definition, it follows that for all m 2 yU .0/; II˛ , the normalizing factor
c.m; h/ admits a classical expansion c.m; h/D

P
k h

k
k.m/ with


0.m/
�2
D �d=2

X
m02 yH˛.m/

jdet Hess'.m0/j�1=2: (3-13)

Therefore, we can compute the constant c˛0 .h/, and we get

c˛0 .h/D �
�d=4

� X
�2yU.0/; II

˛

X
m02 yH˛.�/

jdet Hess'.m0/j�1=2
��1=2

CO.h/:

Here the index ˛ is used to indicate that the function is associated to U .0/; II˛ .

Lemma 3.6. There exist some functions �˛1 ; : : : ; �
˛
qII
˛
2 F˛ such that the following hold true:

(i) f�˛j ; j D 0; : : : ; q
II
˛g is an orthonormal basis of F˛.

(ii) The functions �˛j admit a classical expansion

�˛j D
X
k�0

hk�
˛;k
j

and for all j � 1, the leading terms �˛;0j are orthogonal to the function �˛;00 .m/D c˛0 .0/=
0.m/.

Proof. First observe that �˛0 admits a classical expansion �˛0 �
P
j�0h

j �
˛;j
0 with �˛;00 .m/Dc˛0 .0/=
0.m/.

Since .�˛;00 /? is a qII
˛ -dimensional subspace of F˛, it admits an orthonormal basis . Q�˛;0j / independent

of h. Then the functions Q�˛j defined by

Q�˛j WD
Q�
˛;0
j � h Q�

˛;0
j ; �˛0 i�

˛
0

form a basis of .�˛0 /
?. Moreover, the Q�˛j admit a classical expansion and since h Q�˛;0j ; �˛0 i D O.h/ for

any j , they satisfy
h Q�˛j ;

Q�˛k i D ıjkCO.h2/:

Defining the .�˛j / as the Gram–Schmidt orthonormalization of the . Q�˛j /, we get the desired result. �

Observe that since U .0/; II˛ has qII
˛ elements, the functions �˛1 ; : : : ;�

˛
qII
˛

can also be indexed by U .0/; II˛ using
any arbitrary bijection. We end up with a family of functions .�˛m/m2U.0/; II

˛
and for convenience we will

also write �˛
Om
D �˛0 . Then, we define the qII

˛ quasimodes associated to the m 2 U .0/; II˛ by

f
.0/
m .x/D h�d=4

X
m02yU.0/; II

˛

�˛m.m
0/c.m0; h/ O�m0.x/e

.'.m/�'.x//=h; (3-14)

where the normalization factor c.m0; h/ is defined above and ensures that

kc.m0; h/h�d=4 O�m0.x/e
.'.m/�'.x//=h

kL2 D 1:
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Before going further and as a preparation for the final analysis we would like to write the quasimode
given by (3-9) and (3-14) in the same fashion. For this purpose, we define yU .0/˛ by

yU .0/˛ D U .0/; I˛ [ yU .0/; II˛ ; (3-15)

with the convention that yU .0/; II˛ D∅ if U .0/; II˛ D∅ (observe that yU .0/˛ is equal to the set uU .0/˛ defined in
(3-3) if and only if U .0/; II˛ ¤∅). Then, we define �˛m.m

0/ for any m 2 U .0/˛ , m0 2 yU .0˛ / in the following
way:

� If m 2 U .0/; II˛ and m0 2 yU .0/; II˛ , we keep the above definition.

� Otherwise, we set
�˛m.m

0/D ım;m0 : (3-16)

Then the formulas in (3-9) and (3-14) can be summarized in

f
.0/
m .x/D h�d=4

X
m02yU.0/˛

�˛m.m
0/c.m0; h/ O�m0.x/e

.'.m/�'.x//=h; (3-17)

with yU .0/˛ and �˛ as above.

Definition 3.7. For any ˛ 2A, let us denote by T ˛ 2M .U .0/˛ ; yU .0/˛ / the matrix given by

T ˛
D .�˛m.m

0//
m02yU.0/˛ ;m2U

.0/
˛

Let us remark that if all points of U .0/˛ are of type I, then T ˛ is just the q˛�q˛ identity matrix, whereas
if U .0/; II˛ ¤∅, it is a .q˛C 1/� q˛ matrix. Observe also that the partitions U .0/˛ D U .0/; I˛ tU .0/; II˛ and
yU .0/˛ D U .0/; I˛ t yU .0/; II˛ induce decompositions of the corresponding vector spaces:

F .U .0/˛ /DF .U .0/; I˛ /˚F .U .0/; II˛ /; (3-18)

F .yU .0/˛ /DF .U .0/; I˛ /˚F .yU .0/; II˛ /: (3-19)

From the above construction, one deduces that in a suitable basis the matrix T ˛ is block diagonal with Id
on the upper-left corner and a certain orthogonal matrix in the lower-right corner. More precisely, there
exists an orthogonal matrix uT

˛
2M .U .0/; II˛ ; yU .0/; II˛ / such that for any f D f ICf II with f I 2F .U .0/; I˛ /

and f II 2F .yU .0/; II˛ /, one has

T f .m/D f I.m/C . uT
˛
f II/.m/: (3-20)

Moreover, the matrix uT
˛ is just the matrix .�˛m.m

0//
m2U.0/; II

˛ ;m02yU.0/; II
˛

whose coefficients are given by
Lemma 3.6. In particular, Ran uT

˛
D .R�˛0 /

?, where �˛0 is defined by (3-11).
For any m 2 U .0/, let us introduce the set F.m/, defined as follows. If m D m, let F.m/ D X. If

m 2 U .0/; I WD U .0/\U .0/; I, let F.m/DE.m/ and if m 2 U .0/; II WD U .0/\U .0/; II, let

F.m/D

� [
m02U.0/; II

˛

E.m0/

�
[ yE.m/; (3-21)

where ˛ is such that m 2 U .0/˛ . Observe that we always have E.m/� F.m/.
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Proposition 3.8. Letm;m0 2 U .0/ be such thatm¤m0. The following hold true:

(i) If mRm0 then

(i.a) if m orm0 is of type I, then F.m/\F.m0/� V.1/,
(i.b) if m andm0 are both of type II, then F.m/D F.m0/.

(ii) If m0 … Cl.m/, then

(ii.a) if �.m/D �.m0/, then F.m/\F.m0/D∅,
(ii.b) if �.m/ > �.m0/, then either F.m/\F.m0/D∅ or F.m0/� VF .m/.

Proof. Let mRm0 with m ¤ m0. As in the proof of Proposition 3.1, one has necessarily m;m0 ¤ m.
Assume first that m is of type I. Then F.m/ D E.m/. If m0 is also of type I, then F.m0/ D E.m0/.
Moreover since m ¤ m0, it follows from (i.a) of Proposition 3.1 that E.m/\E.m0/ D ∅. Therefore,
F.m/\F.m0/ is either empty or is reduced to a union of saddle points which are separating by definition.
If m0 is of type II, the same proof works. This completes the proof of (i.a).

Suppose now thatm andm0 are both of type II. SincemRm0, it follows that yE.m/D yE.m0/ and hence
F.m/D F.m0/ which shows (i.b).

Suppose now thatm0 …Cl.m/. Consider first the case where �.m/D �.m0/. Then, one has necessarily
F.m/\F.m0/D∅; otherwise we would have mRm0.

Suppose now that �.m/ > �.m0/ and that F.m/\F.m0/¤ ∅. If mDm, then F.m/D X and the
conclusion is obvious. Suppose now thatm2U .0/ and consider first the case wherem andm0 are of type I.
Then F.m/DE.m/ and F.m0/DE.m0/ and since �.m/ > �.m0/, it follows that E.m/\E.m0/¤∅.
Hence (ii.a) of Proposition 3.1 shows that E�.m0/�E.m/ which yields F.m0/�E.m/D VF .m/. Ifm is
of type I andm0 is of type II, then one has E.m/\ zE ¤∅ with either zE DE.m00/ for somem00 2Cl.m0/
or zE D yE.m0/. As before, E.m/ contains the connected component of f' < � .m/g that contains zE and
the same proof works.

Let us now suppose thatm is of type II andm0 is of type I. ThenE.m0/\ zE¤∅ with either zEDE.m00/
for some m00 2 Cl.m/ or zE D yE.m/. In both cases one sees easily that E�.m0/� zE, which proves the
result.

The case where both m and m0 are of type II is left to the reader. �

Let us now give some information on the support of the quasimodes. For m 2 U .0/, let us introduce the
set

F�;Q�;ı.m/D

��
F.m/ n

[
s2V.1/\@F .m/

B.s; �/

�
CB.0; Q�/

�
[

� [
s2.U.1/nV.1//\@F .m/

B.s; ı/

�
: (3-22)

If m is of type I, it is clear that F�;Q�;ı.m/DE�;Q�;ı.m/ and if m is of type II, one has

F�;Q�;ı.m/D yE�;Q�;ı.˛/[

� [
m02U.0/; II

˛

E�;Q�;ı.m/

�
:

From the above construction one deduces the following proposition.
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Proposition 3.9. There exists �0; ı0 > 0 such that for all 0 < ı < ı0 and all 0 < Q� < �=4 < �0=4, the
following hold true:

(i) For anym;m0 2 U .0/

F.m/\F.m0/D∅ D) F�;Q�;ı.m/\F�;Q�;ı.m
0/D∅:

(ii) For any ˛ 2A andm 2 U .0/˛ , one has supp.f .0/m /� F�;2Q�;2ı.m/ and

for all s 2 U .1/ n .V.1/\ @F.m//; d'f
.0/
m D 0 in B.s; ı/:

Proof. Observe that

F�;2Q�;2ı.m/� F.m/CB.0; 2max.ı; Q�//:

Since F.m/ and F.m0/ are compact, the first point of the proposition immediately follows. The second
point of the proposition is a direct consequence of (c) of Proposition 3.5. �

Recall that the functions f .0/m , m 2 U .0/, depend on �; Q�; ı via the definition of the cut-off function �m.
This family is quasiorthonormal in the following sense.

Proposition 3.10. There exist �0; ı0; ˇ > 0 such that for all 0 < ı < ı0, 0 < Q� < �=4 < �0=4 and all
m;m0 2 U .0/, one has

hf
.0/
m ; f

.0/
m0 i D ım;m0 CO.e�ˇ=h/:

Proof. Throughout the proof, we assume that 0 < ı < ı0 and 0 < Q� < �=4 < �0=4 as in Proposition 3.5
and we decrease �0; ı0 if necessary.

Let m;m0 be two minima.

� Consider first the case where mRm0. If mDm, one has necessarily m0 Dm and hence

hf
.0/
m ; f

.0/
m0 i D kf

.0/
m k

2
D 1

by construction. Consider now the case where m;m0 ¤m and suppose first that m or m0 is of type I. If
mDm0, the definition of c.m; h/ shows that kfmkD 1. If m¤m0, it follows from (ii) of Proposition 3.9
that f .0/m and f .0/m0 are supported in F�;2Q�;2ı.m/ and F�;2Q�;2ı.m0/ respectively. Moreover, thanks to (i)
of Proposition 3.8, one has F.m/\F.m0/� V.1/\ @F.m/. Hence, one can choose �0 sufficiently small,
so that F�;2Q�;2ı.m/\F�;2Q�;2ı.m0/D∅. Therefore, supp.f .0/m /\ supp.f .0/m0 /D∅ and hence f .0/m and
f
.0/
m0 are orthogonal.

Suppose now that m and m0 are both of type II. Then, we can write

f
.0/
m .x/D h�d=4

X
�12yU

.0/
˛

�m.�1/c.�1; h/ O��1.x/e
.'. Om.m//�'.x//=h;

f
.0/
m0 .x/D h

�d=4
X

�22yU
.0/
˛

�m0.�2/c.�2; h/ O��2.x/e
.'. Om.m//�'.x//=h:
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Since, for �2 ¤ �1, O��1 and O��2 have again disjoint support for �0; ı0 > 0 small enough, we get

hf
.0/
m ; f

.0/
m0 i D h

�d=2
X
�2yU.0/˛

�m.�/�m0.�/jc.�; h/j
2

Z
X

j O��.x/j
2e2.'. Om.m//�'.x//=h dx

D h�m; �m0iF˛ D ım;m0 :

This shows in particular that kf .0/m kL2 D 1 for all m 2 U .0/.

� Suppose now, that m0 … Cl.m/ (in particular m ¤ m0). If �.m0/ D �.m/ then F.m/\ F.m0/ D ∅
thanks to (ii.a) of Proposition 3.8, and (i) of Proposition 3.9 implies that F�;2Q�;2ı.m/\F�;2Q�;2ı.m0/D∅.
Then, the first part of (ii) of Proposition 3.9 proves that f .0/m and f .0/m0 are orthogonal.

Consider now the case where �.m/¤ �.m0/; say, �.m/ > �.m0/. From (ii.b) of Proposition 3.8, we
know that either F.m0/ is disjoint from F.m/ or F.m0/� VF .m/. In the first case, we get immediately
hf

.0/
m ; f

.0/
m0 i D 0 by the same argument as before. Suppose we are in the second situation, that is

F.m0/� VF .m/. By definition, we have '.m/ � '.m0/, and by taking �0; ı0 > 0 small enough we can
ensure that F�;2Q�;2ı.m0/� VF �;2Q�;2ı.m/.

Suppose first that '.m/ < '.m0/. A priori we don’t know if m;m0 are of type I or II. However, since
F�;2Q�;2ı.m

0/� VF �;2Q�;2ı.m/,

hf
.0/
m ; f

.0/
m0 i D

Z
F�;2Q�;2ı.m0/

f
.0/
m .x/f

.0/
m0 .x/ dx

and

.f
.0/
m /jF�;2Q�;2ı.m0/ D Qc.m; h/h

�d=4e.'.m/�'.x//=h; (3-23)

where the constant Qc.m; h/ is uniformly bounded with respect to h. This is clear if m is of type I. If
m is of type II and, say, m 2 U .0/˛ , then F.m0/ � VF .m/ implies that there exists � 2 yU .0/˛ such that
F.m0/ � E.�/ (or yE.�/). Then the general formula (3-14) shows (3-23). Moreover, by construction,
there exists a cut-off function  2 C1c .

VF �;2Q�;2ı.m// independent of h such that infsupp ' D '.m
0/ and

jf
.0/
m0 .x/j � h

�d=4 .x/e.'.m
0/�'.x//=h

and it follows that

jhf
.0/
m ; f

.0/
m0 ij � Ch

�d=2

Z
 .x/e.'.m

0/C'.m/�2'.x//=h dx � C 0h�d=2e.'.m/�'.m
0//=h:

Since '.m0/ > '.m/, this proves the result.
It remains to study the case where '.m/D '.m0/. Let ˛; ˛0 2A be such that m 2 U .0/˛ and m0 2 U .0/˛0 .

From the above assumption, we also have �.m/ > �.m0/ and F.m0/� VF .m/. Since �.m/ > �.m0/ and
'.m/D '.m0/, we know f

.0/
m0 is necessarily of type II. It has the form (3-14) and since F�;2Q�;2ı.m0/�

VF �;2Q�;2ı.m/, (3-23) still holds true. Hence, we get

hf
.0/
m ; f

.0/
m0 i D Qc.m; h/h

�d=2
X

�2yU.0/; II
˛0

�m0.�/c.�; h/

Z
O��.x/e

2.'.x/�'.m//=h dx: (3-24)
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On the other hand, by a standard argument based on the Laplace method, we know that there exist r > 0
and ˇ > 0 such that for all � 2 yU .0/; II˛0 , we have

h�d=2c.�;h/

Z
O��.x/e

2.'.x/�'.m//=hdxD h�d=2c.�;h/
X

�02H.�/

Z
B.�0;r/

e2.'.x/�'.m//=hdxCO.e�ˇ=h/

D h�d=2c.�;h/

Z
j O��.x/j

2e2.'.x/�'.m//=hdxCO.e�ˇ=h/

D
1

c.�;h/
CO.e�ˇ=h/:

Plugging this in (3-24), we get

hf
.0/
m ; f

.0/
m0 iD Qc.m; h/

X
�2yU.0/; II

˛0

�m0.�/
1

c.�; h/
CO.e�ˇ=h/D

Qc.m; h/

c˛
0

0 .h/
h�m0 ; �

˛0

0 iF˛0CO.e�ˇ=h/: (3-25)

Since �m0 is orthogonal to �˛
0

0 by construction, the first term of the right-hand side above vanishes and
we get hf .0/m ; f

.0/
m0 i DO.e�ˇ=h/. �

We end this section by giving an exponential estimate of the action of d';h on the quasimodes.

Lemma 3.11. There exists C > 0 such that for all � > 0 small enough, we have

d';hf
.0/
m DO.e�.S.m/�C�/=h/

for allm 2 U .0/.

Proof. The result is classical, but since the quasimodes f .0/m are slightly different from the usual ones, we
have to check the estimates. Let m 2 U .0/ and let us compute d';hf

.0/
m .

If mDm, then d';hf
.0/
m D 0 and there is nothing to do.

Suppose now that m¤m. From (3-17), one has

d';hf
.0/
m .x/D h1�d=4

X
m02yU.0/˛

�m.m
0/c.m0; h/r O�m0.x/e

.'.m/�'.x//=h:

All terms of the above sum corresponding to m 2 U .0/˛ are O.e�.S.m/�C�/=h/ by (b) of Proposition 3.5.
The only new term is the one corresponding to Om.m/. Since O� Om 2 C1c . yE�;2Q�;2ı/ and is equal to 1 on
yE�;Q�;ı , we have again

'.x/�'. Om/D '.x/�'.m/� S.m/�C�

on supp.r O� Om/ and the proof is complete. �

3C. Quasimodes for 1-forms. This section is devoted to the quasimodes associated to low-lying eigen-
values of �.1/' . The construction of these quasimodes was done in [Helffer and Sjöstrand 1985] and we
refer to that paper for all the proofs. Here, we just describe the main properties of these functions. In this
section !s denotes a small neighborhood of s 2 U .1/ that may be chosen as small as needed independently
of �0 fixed in previous sections.
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Given any saddle point s 2 U .1/, and any appropriate open neighborhood !s of s, let P';s denote the
operator�.1/' restricted to !s with Dirichlet boundary conditions. Let us denote a normalized fundamental
state of P';s. The quasimodes f .1/s are then defined by

f
.1/
s .x/ WD �0k susk

�1 s.x/us.x/; (3-26)

where  s is a well-chosen C10 localization function supported in !s and equal to 1 near s and �0 D˙1
will be fixed later. By taking !s sufficiently small, we can ensure that the f .1/s have disjoint supports,
and thanks to (c) of Proposition 3.5, we can also shrink !s so that

for all s 2 U .1/ nV.1/; for all m 2 U .0/; .s 2 supp.�m/ D) �m D 1 on !s/: (3-27)

Observe that this choice of !s depends on ı0 but not on �0. From this construction, we immediately
deduce that

hf
.1/
s ; f

.1/
s0 i D ıs;s0 ; (3-28)

and hence the family ff .1/s W s 2 U .1/g is a free family of 1-forms. From [Helffer 1988, Proposition 5.2.6],
one knows that the eigenvalues of P';s are exponentially small. Using Agmon estimates, it follows that
there exists ˇ > 0 independent of � such that

�.1/' f
.1/
s DO.e�ˇ=h/: (3-29)

Combined with the spectral theorem, this proves that the n1 eigenvalues of �.1/' in Œ0; �1h� are actually
O.e�ˇ=h/ (see [Helffer 1988, Proposition 5.2.5] for details).

Furthermore, Theorem 2.5 of [Helffer and Sjöstrand 1985] implies that these quasimodes have a WKB
expansion given by

f
.1/
s .x/D �0h

�d=4 s.x/b
.1/
s .x; h/e�'C;s.x/=h; (3-30)

where b.1/s .x; h/ is a 1-form having a semiclassical asymptotic, and 'C;s is the phase generating the
outgoing manifold of j�j2 � jrx'.x/j2 at .s; 0/ (see [Dimassi and Sjöstrand 1999, Chapter 3] for
details on such constructions). In particular, the phase function 'C;s satisfies the eikonal equation
jrx'C;sj

2 D jrx'j
2 and 'C;s.x/� jx� sj2 near s (the notation � was defined in the paragraph before

Section 2A). For other properties of 'C;s we refer to [Helffer and Sjöstrand 1985].

3D. Projection onto the eigenspaces. The next step in our analysis is to project the preceding quasimodes
onto the generalized eigenspaces associated to exponentially small eigenvalues. Recall that we have built
in the preceding section quasimodes f .0/m , m 2 U .0/, with good orthogonality properties. To each of these
quasimodes we will associate a function in E.0/, the eigenspace associated to o.h/ eigenvalues. For this,
we first define the spectral projector

….0/ D
1

2�i

Z



.z��.0/' /�1 dz; (3-31)
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where 
 D @B.0; �0h/ and �0 > 0 is such that �.�'/\ Œ0; 2�0h�� Œ0; e�C=h�. From the fact that �.0/' is
selfadjoint, we get that

k….0/k D 1:

We now introduce the projection of the quasimodes constructed above, e.0/m D….0/.f
.0/
m /. We have the

following:

Lemma 3.12. The system .e.0/m /m2U.0/ is free and spansE.0/. Additionally, there exists ˇ>0 independent
of �0 such that for all 0 < Q� < �=4 < �0=4, one has

e
.0/
m D f

.0/
m CO.e�ˇ=h/ and he

.0/
m ; e

.0/
m0 i D ım;m0 CO.e�ˇ=h/

for allm;m0 2 U .0/.

Proof. The argument is very classical. We recall it for reader’s convenience. One has

e
.0/
m �f

.0/
m D .….0/� Id/f .0/m D

1

2�i

Z



..z��.0/' /�1� z�1/f
.0/
m dz

D
1

2�i

Z



.z��.0/' /�1z�1�.0/' f
.0/
m dz: (3-32)

Since .z��.0/' /�1 DO.h�1/ on 
 , it follows from Lemma 3.11 that e.0/m �f
.0/
m DO.e�ˇ=h/ for some

ˇ > 0. This proves the first point. Combining this information with Proposition 3.10 we get immediately
the second point. �

We can do a similar study for �.1/' , for which we know that the n1 eigenvalues lying in Œ0; �1h� are
actually O.e�˛0=h/. To the family of quasimodes .f .1/s /s2U.1/ , we now associate a family of functions
in E.1/, the eigenspace associated to eigenvalues of �.1/' in Œ0; �1h�. Thanks to the spectral properties of
the selfadjoint operator �.1/' , its spectral projector onto E.1/ is given by

….1/ D
1

2�i

Z



.z��.1/' /�1 dz; (3-33)

where 
 D @B.0; �1h/ with �1 defined above. In the sequel, we write e.1/s D….1/.f
.1/
s /. The family

.e
.1/
s /s satisfies the following estimates.

Lemma 3.13. The system .e
.1/
s /s2U.1/ is free and spans E.1/. Additionally, we have

e
.1/
s D f

.1/
s CO.e�ˇ

0=h/ and he
.1/
s ; e

.1/
s0 i D ıs;s0 CO.e�ˇ

0=h/;

with ˇ0 > 0 independent of �.

Proof. Using the orthonormality of the f .1/j and (3-29), the proof is the same as that of Lemma 3.12. �

4. Preliminaries for singular values analysis

This section is a preparation for the study of the singular values of the operator L WE.0/!E.1/ defined
below (2-20). We simplify the forthcoming study by several reductions and changes of basis. Let us
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denote by L� the n1 �n0 matrix given by

L�s;m D he
.1/
s ; d';he

.0/
m i for all s 2 U .1/; m 2 U .0/; (4-1)

with e.1/s , e.0/m defined in the preceding section. Since .e.0/m / and .e.1/s / are almost orthonormal bases
(thanks to Lemmas 3.12 and 3.13), this matrix is close to the matrix of the operator L in these bases. We
first work on the matrix L�.

Recall that m denotes the absolute minimum of ' associated to the connected component E.m/DX.
Since �.0/' em D 0, the nonzero singular values of L� are exactly the singular values of the reduced
matrix L�;0 defined by L�;0s;m D L�s;m for all s 2 U .1/, m 2 U .0/ with U .0/ D U .0/ n fmg.

Lemma 4.1. There exists ˇ00 > 0 such that for � > 0 sufficiently small, one has

L�;0s;m D hf
.1/
s ; d';hf

.0/
m iCO.e�.S.m/Cˇ

00/=h/

for all s 2 U .1/,m 2 U .0/.

Proof. The trick to get the good error estimate above is now well-known (see for instance the proof of
Proposition 5.8 in [Hérau, Hitrik and Sjöstrand 2011]) but we recall the proof for reader’s convenience.
Let s 2 U .1/, m 2 U .0/; then thanks to (2-18) we have

he
.1/
s ; d';he

.0/
m i D he

.1/
s ; d';h…

.0/f
.0/
m i D he

.1/
s ;….1/d';hf

.0/
m i D he

.1/
s ; d';hf

.0/
m i

D hf
.1/
s ; d';hf

.0/
m iC he

.1/
s �f

.1/
s ; d';hf

.0/
m i:

But from Lemmas 3.11 and 3.13 and the Cauchy–Schwarz inequality one gets

jhe
.1/
s �f

.1/
s ; d';hf

.0/
m ij � Ce

�.ˇ 0CS.m/�C�/=h:

Since ˇ0 is independent of �, one can conclude by taking � small enough and ˇ00 D ˇ0=2. �

Let us denote by Lbkw 2M .U .0/;U .1// the matrix defined by

Lbkw
s;m D hf

.1/
s ; d';hf

.0/
m i for all s 2 U .1/; m 2 U .0/: (4-2)

Of course, the first column of this matrix is identically zero and it is more interesting to consider the
matrix Lbkw;0 2M .U .0/;U .1// defined by

Lbkw;0
s;m D hf

.1/
s ; d';hf

.0/
m i for all s 2 U .1/; m 2 U .0/: (4-3)

As we shall see later, the singular values of L�;0 and Lbkw;0 are exponentially close and it is natural
to study the matrix Lbkw;0. For s 2 U .1/ n V.1/ and m 2 U .0/, thanks to (ii) of Proposition 3.9 one has
d';hf

.0/
m D 0 near s, and hence

hf
.1/
s ; d';hf

.0/
m i D 0: (4-4)

Therefore, the singular values of Lbkw;0 are equal to the singular values of the reduced matrix Lbkw;00 2

M .U .0/;V.1// defined by

Lbkw;00
s;m D hf

.1/
s ; d';hf

.0/
m i for all s 2 V.1/; m 2 U .0/: (4-5)
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In order to study this matrix, we need to introduce a new enumeration of critical points. Let us start
with some abstract notation. Assume that .I;�/ and .J ;�/ are two totally ordered sets and let A D
.aij /i2I;j2J be the associated matrix (with i; j enumerated in increasing order). Assume that we have
partitions PI and PJ of I and J respectively

PI D .I1; : : : ; INI / and PJ D .J1; : : : ;JNJ /:

Assume that each partition admits a total order � (that is, we can compare the subsets Ii ). Then we get a
total order � on I (resp. J ) by using the associated lexicographical order:

i � j () .9I˛ � Iˇ ; i 2 I˛ and j 2 Iˇ / or .9I˛; i; j 2 I˛ and i � j /:

Hence, there exists a unique ˛ W .I;�/ ! .I;�/ which is strictly increasing (and hence bijective).
Similarly, there is a unique ˇ W .J ;�/! .J ;�/ which is strictly increasing. We denote by API ;PJ the
matrix .a˛.i/;ˇ.j //i2I;j2J . This matrix is obtained from A by intertwining the basis vector; hence it has
exactly the same singular values.

Let us go back to the matrix Lbkw;00. Consider the partitions of U .0/ and V.1/ given by

P.0/ D fU .0/˛ ; ˛ 2Ag and P.1/ D fV.1/
ˇ
; ˇ 2Ag:

At this stage of our analysis, we do not need any specific choice of order on these partitions. We just endow
A with any total order and for all ˛; ˇ 2 A we choose any arbitrary total order on U .0/˛ and V.1/

ˇ
. This

gives an order on the above partitions and we denote by L D .L ˛;ˇ /˛;ˇ2A the matrix Lbkw;00 associated
to these partitions. Observe here that each L ˛;ˇ is itself a matrix L ˛;ˇ D .L

˛;ˇ
s;m /s2V.1/

ˇ
;m2U.0/˛

.

Lemma 4.2. For all ˛ ¤ ˇ, we have L ˛;ˇ D 0.

Proof. Let ˛; ˇ 2A such that ˛ ¤ ˇ and let m 2 U .0/˛ and s 2 V.1/
ˇ

. If � .˛/D � .ˇ/ then ˛ ¤ ˇ implies
that s … F.m/. Shrinking if necessary (by taking �0; ı0 > 0 small enough) the support of f .0/m and f .1/s ,
it follows that these functions have disjoint supports so that their scalar product vanishes.

If � .˛/¤ � .ˇ/, then by construction d';hf
.0/
m is supported near f'D � .˛/g whereas e.1/s is supported

near f'D� .ˇ/g. Since this two sets are disjoint we get hf .1/s ; d';he
.0/
m iD 0 and the proof is complete. �

From this lemma we deduce that the matrix L admits a block-diagonal structure

L D diag.L ˛; ˛ 2A/; (4-6)

with L ˛ WD L ˛;˛. Recall from Definition 3.7 that for any ˛ 2 A, the matrix T ˛ 2M .U .0/˛ ; yU .0/˛ / is
given by T ˛ D .�˛m.m

0//
m02yU.0/˛ ;m2U.0/˛

. We have the following factorization result on L ˛.

Lemma 4.3. We have L ˛ D yL
˛
T ˛, where the matrix yL

˛
D . Ò˛s;m0/s;m0 2M .yU .0/˛ ;V.1/˛ / is given by

Ò˛
s;m0 D hf

.1/
s ; d';hg

.0/
m0 i for all s 2 V.1/˛ ; m0 2 yU .0/˛ ;

with g.0/m0 .x/D h
�d=4c.m0; h/ O�m0.x/e

'.m0/�'.x/=h.
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Proof. Let s 2 V.1/˛ , m 2 U .0/˛ . From (3-17), one has

hf
.1/
s ; d';hf

.0/
m i D h

�d=4
X

m02yU.0/˛

�˛m.m
0/c.m0; h/hf

.1/
s ; hd O�m0.x/e

.'.m/�'.x//=h
i:

Moreover, the function ' being constant on yU .0/; II˛ , we can replace '.m/ by '.m0/ in the above identity
and it follows that

hf
.1/
s ; d';hf

.0/
m i D

X
m02yU.0/˛

�˛m.m
0/hf

.1/
s ; d';hg

.0/
m0 i;

which is exactly the result to be proved. �

One of the crucial points of our analysis is to compute the coefficient Ò˛s;m. Given m 2 yU .0/˛ , we define

h'.m/D

� X
m02 yH˛.m/

jdet Hess'.m/j�1=2
��1=2

; (4-7)

with yH˛.m/ defined in (3-12). One has clearly h'.m/D �d=4
0.m/, with 
0 given by (3-13). Moreover,
in the case where H.m/ D fmg, one has h'.m/ D jdet Hess'.m/j1=4. Given s 2 V.1/, we denote by
O�1.s/ the unique negative eigenvalue of Hess'.s/. In order to keep uniform notation, we also extend the
definition (4-7) to saddle points by

h'.s/D jdet Hess'.s/j1=4:

Eventually, we introduce the diagonal matrix y�˛ 2M .yU .0/˛ ; yU .0/˛ / defined by

y�˛f .m/D e�
yS.m/=hf .m/ for all m 2 yU .0/˛ ; (4-8)

with yS.m/D � .˛/�'.m/. For m 2 U .0/˛ , one has of course � .˛/D � .m/ and hence yS.m/D S.m/ but
this fails to be true for mD Om.˛/. We then define the rescaled matrix zL

˛
D . Q̀˛s;m/ 2M .yU .0/˛ ;V.1/˛ / by

yL
˛
D zL

˛
y�˛I

i.e.,
Q̀˛
s;m D e

yS.m/=h Ò˛
s;m for all s 2 V.1/˛ ; m 2 yU .0/˛ : (4-9)

Going back to the matrix L ˛, one has

L ˛
D zL

˛
y�˛T ˛:

Moreover, as already noticed below Definition 3.7, one has T ˛f .m/ D f .m/ for any f supported
on U .0/; I˛ . Hence we get

L ˛
D zL

˛
T ˛�˛; (4-10)

with �˛ 2M .U .0/˛ ;U .0/˛ / defined by �˛f .m/D e�S.m/=hf .m/. The following lemma gives an asymp-
totic expansion of the matrix zL

˛
. We recall that m1.s/ and m2.s/ were defined in Lemma 3.3.

Lemma 4.4. Let ˛ 2A and s 2 V.1/˛ ,m 2 yU .0/˛ . The following hold true:

(i) If m … fm1.s/;m2.s/g, then Q̀˛s;m D 0.
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(ii) The coefficients Q̀˛s;m admit a classical expansion Q̀˛s;m � h
1=2
P
k�0 h

k Q̀˛;k
s;m. Moreover, one can

choose �0 D˙1 in (3-26) so that the leading terms satisfy

Q̀˛;0
s;m1.s/

D ��1=2j O�1.s/j
1=2h'.m1.s//

h'.s/
; (4-11)

and in the case wherem2.s/ 2 yU
.0/
˛ ,

Q̀˛;0
s;m2.s/

D���1=2j O�1.s/j
1=2h'.m2.s//

h'.s/
: (4-12)

In particular, ifm2.s/ 2 yU
.0/
˛ , one has

Q̀˛;0
s;m1.s/

h'.m1.s//
D�

Q̀˛;0
s;m2.s/

h'.m2.s//
(4-13)

for all s 2 V.1/˛ .

Proof. Suppose first that m¤m1.s/;m2.s/. Then, supp.d';hg
.0/
m /D supp.d O�m/ is contained in a small

neighborhood ! of �.m/. Since m¤m1.s/;m2.s/ it follows from Lemma 3.3 that s … ! and hence
Q̀˛
s;m D 0 which proves (i).

Let us now compute the coefficients Q̀s;m for m 2 fm1.s/;m2.s/g\ yU
.0/
˛ (observe that this set may be

reduced to m1.s/). We compute these coefficients in the case where m2.s/ 2 yU
.0/
˛ . If it is not the case,

the only nonzero coefficient is Q̀s;m1.s/, which is computed in the same way. Recall from (3-30), that the
quasimodes on 1-forms are given by

f
.1/
s D �0h

�d=4 s.x/b
.1/
s .x; h/e�'C;s.x/=h:

Summing up the construction of [Helffer, Klein and Nier 2004, Section 4.2], there exists an open
neighborhood Vs of s on which one can find a system of local Morse coordinates .y; z/ 2 R�Rd�1 in
which s is the origin and such that the following properties hold true:

(1) In the above coordinate system one has

' D '.s/C
1

2

�
O�1.s/y2C

dX
jD2

O�j .s/z
2
j

�
;

'C D
1

2

�
�O�1.s/y2C

dX
jD2

O�j .s/z
2
j

�
;

where . O�j .s//jD1;:::;d are the eigenvalues of Hess.'/ at point s.

(2) The amplitude b.1/s .x; h/ admits a classical expansion

b
.1/
s �

1X
kD0

hkws;k (4-14)

with

ws;0 D .�1/
d�1 jdet Hess'.s/j1=4

�d=4
dy on fz D 0g: (4-15)
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(3) One can chose the orientation of the y-axis so that

E.m1.s//\Vs � fy < 0g\Vs and E.m2.s//\Vs � fy > 0g\Vs:

Moreover, the cut-off function �m can be constructed so that:

(4) In Vs the functions O�mj , j D 1; 2, depend only on the variable y.

Additionally, one can shrink !s so that:

(5) supp.f .1/s / is contained in Vs.

Observe that the only minor (but important) difference with [Helffer, Klein and Nier 2004] is the
property (3), saying that each �mj , j D 1; 2, is supported in one of the two different half-planes fy 7 0g.
Let us now compute the first coefficient in the asymptotic expansion of Q̀p;˛s;m. Using the above properties,
Proposition 3.5 and following the computations of [Helffer, Klein and Nier 2004, Section 6] we get

Ò˛
s;m D hf

.1/
s ; d';hg

.0/
m i

D h1�d=2c.m; h/e.s; h/

Z
B.s;�/

e�.'C.x/C'.x/�'.m//=h. O�0m.y/CO.h// dy ^ dz2 ^ � � � ^ dzd
CO�.e�.'.s/�'.m/Cc�/=h/;

with

e.s; h/D �0.�1/
d�1 jdet Hess'.s/j1=4

�d=4
CO.h/D �0.�1/d�1��d=4h'.s/CO.h/:

Using the local form of ' and 'C, we get

Ò˛
s;m D h

1�d=2c.m; h/e.s; h/e�.'.s/�'.m//=h
Z
B.s;�/

e�g�.z/=h. O�0m.y/CO.h// dy ^ dz2 ^ � � � ^ dzd
CO�.e�.'.s/�'.m/Cc�/=h/;

with g�.z/D
Pd
jD2
O�j .s/z

2
j . Since O�m depends only on y and g� � c�2 on jzj1 � �, the integration

domain B.s; �/ can be replaced by a smaller one Ws D fjyj< �; jzj1 � ��g modulo exponentially small
error terms. Using also the identity yS.m/D '.s/�'.m/, we get

Ò˛
s;m D I�.h/e

�yS.m/=h
CO�.e�.

yS.m/Cc�/=h/;

with

I�.h/D h
1�d=2c.m; h/e.s; h/

Z
Ws

e�g�.z/=h. O�0m.y/CO.h// dy ^ dz2 ^ � � � ^ dzd :

The integral on the right-hand side can be easily computed by means of Stoke’s formula and the Laplace
method. We get

I�.h/D h
1�d=2c.m; h/e.s; h/.Œ O�m�

�
��CO.h//

Z
jzj1���

e�g�.z/=h dz2 ^ � � � ^ dzd

D h1=2c.m; h/e.s; h/.Œ O�m�
�
��CO.h//

�
�.d�1/=2

j O�2.s/ � � � O�d .s/j
1=2

�
:
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Combining this with the expressions of c.m; h/ and e.s; h/, we obtain

Q̀˛;0
s;m D �0.�1/

d�1Œ O�m�
�
���

�1=2
j O�1.s/j

1=2h'.m/

h'.s/
:

We now remark that with our choice of O�m, one has Œ O�m1 �
�
�� D�1 and Œ O�m2 �

�
�� D 1. Taking �0D .�1/d,

we get immediately the formula of (ii). �

5. Computation of the approximated singular values

From Lemma A.2, we know that the singular values of a block-diagonal matrix are given by the singular
values of each block. Hence, in view of the results of the preceding section, we study the matrices L ˛.
The first step in the analysis is to prove that L ˛ is injective except for ˛ D ˛.

5A. Injectivity of the matrix L ˛. We first compute the kernel of the matrix zL
˛
.

Lemma 5.1. Let ˛ 2A. Then:

� If ˛ is of type I (that is, U .0/; II˛ D∅), then zL
˛;0

is injective.

� If ˛ is of type II, then Ker. zL
˛;0
/D R�0, where �0 2 R Oq˛ ' F˛ is defined by

�0.m/D h'.m/
�1

for allm 2 yU .0/˛ .

Proof. Suppose first that ˛ is of type II. Let x 2F˛ DF .yU .0/˛ / be such that zL
˛;0
x D 0. ThenX

m2yU.0/˛

Q̀˛;0
s;mxm D 0 for all s 2 V.1/˛ : (5-1)

From (i) of Lemma 4.4 it follows that

Q̀˛;0
s;m1.s/

xm1.s/ D�
Q̀˛;0
s;m2.s/

xm2.s/ for all s 2 V.1/˛ :

Moreover, since ˛ is of type II, we know m2.s/ 2 yU
.0/
˛ for any s 2 V.1/˛ and thanks to (4-13) we get

xm1.s/h'.m1.s//D xm2.s/h'.m2.s// for all s 2 V.1/˛ : (5-2)

Now, we recall that for any s 2 V.1/˛ , m1.s/ and m2.s/ are exactly the two minima such that s D
�˛.m1/\�˛.m2/. Therefore, we deduce from (5-2) that

for all m;m0 2 yU .0/˛ ; .�˛.m/\�˛.m
0/¤∅ D) h'.m/xm D h'.m

0/xm0/:

By the definition of the equivalence relation R, this implies that xmh'.m/ is constant on yU .0/˛ , which
means exactly that x 2 R�0.

Suppose now that ˛ is of type I and let x 2F .U .0/˛ / such that zL
˛;0
x D 0. As before, one shows that

there exists a constant c such that for all m 2 U .0/˛ , h'.m/xm D c. Recall that the nonempty set V.1/;b˛
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was defined in Lemma 3.4. Given sb 2 V
.1/;b
˛ , since m2.sb/D Om.˛/ … yU

.0/
˛ , one has Q̀˛;0sb;m D 0 for any

m¤m1.sb/ and
Q̀˛;0
sb;m1.sb/

D ��1=2j O�1.sb/j
1=2
¤ 0:

Combined with (5-1) this shows that xm1.sb/D 0 and hence c D 0, which proves that Ker. zL
˛;0
/D 0. �

Proposition 5.2. Let ˛ 2 A, then the matrix uL
˛
WD zL

˛
T ˛ admits a classical expansion uL

˛
�

h1=2
P
j h

j
uL
˛;j

and the matrix uL
˛;0

is injective.

Proof. By Lemmas 3.6 and 4.4 the matrices zL
˛

and T ˛ admit classical expansions zL
˛
�h1=2

P
hj zL

˛;j

and T ˛ �
P
hjT ˛;j. Therefore, uL

˛
admits a classical expansion uL

˛
� h1=2

P
j h

j
uL
˛;j

with uL
˛;0
D

zL
˛;0

T ˛;0.
Let us now prove that uL

˛;0
is injective.

Suppose first that ˛ is of type I. Then T ˛ D T ˛;0 D Id and the result follows immediately from the
first part of Lemma 5.1.

Suppose now that ˛ is of type II and let x 2 F .U .0// be such that zL
˛;0

T ˛;0x D 0. We have the
decomposition x D xIC xII, with x� supported in yU .0/;�. Thanks to (3-20), we have

T ˛;0x.m/D xI.m/C . uT
˛;0
xII/.m/;

with uT
˛;0
WF .U .0/; II/!F .yU .0/; II/ such that Ran uT

˛;0
D .R�˛0 /

?, where the function �˛0 is defined
by (3-11). On the other hand, we have ker zL

˛;0
D R�0 and we have the decomposition �0 D � I

0C �
II
0 ,

with � II
0 D �

˛;0. The equation zL
˛;0

T ˛;0x D 0 implies that there exists � 2 R such that T ˛;0x D ��0

and hence uT
˛;0
xII D �� II

0 . On the other hand, by construction, Ran uT
˛;0
D .� II

0 /
?. This implies that

�D 0 and proves the result. �

Corollary 5.3. For all ˛ 2A the matrix L ˛ is injective.

Proof. This follows directly from the above proposition and the fact that

L ˛
D yL

˛
T ˛
D zL

˛
y�˛T ˛

D uL
˛
�˛; (5-3)

with �˛ defined below (4-10) which is invertible. �

5B. Graded structure of the matrices L ˛. Throughout this section, we assume that ˛ 2 A is fixed.
Recall that we defined S˛ D S.U

.0/
˛ /, p.˛/D #S˛ and some integers �˛1 < � � �< �

˛
p.˛/

such that

S˛ D fS�˛1 ; : : : ; S�˛p.˛/g;

with the convention S�˛1 > � � �> S�˛p.˛/ . In order to lighten the notation we will drop the indices ˛ and
write from now p D p.˛/, �j D �˛j . To the set of heights S˛, we can associate a natural partition

yU .0/˛ D
pG
nD1

yU .0/˛;n (5-4)

with yU .0/˛;n D fm 2 yU
.0/
˛ W '.m/D � .˛/�S�ng. We order this partition by deciding that yU .0/˛;nC1 � yU

.0/
˛;n.

On the other hand, we recall that L ˛ D uL
˛
�˛ with uL

˛
D zL

˛
T ˛. Let us compute the matrices uL

˛
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and �˛ in the basis given by the above partition of yU .0/˛ . With a slight abuse of notation we still denote
by uL

˛
and �˛ the resulting matrices. Since yS.m/D � .˛/�S�k on U .0/

˛;k
, it follows from (4-8) that in

the above partition, the matrix �˛ can be written

�˛ D

0BBBBBB@
e�S�p =hIrp 0 � � � � � � 0

0 e
�S�p�1=hIrp�1 0 � � � 0

::: 0
: : :

: : :
:::

:::
: : :

: : :
: : : 0

0 � � � � � � 0 e�S�1=hIr1

1CCCCCCA ; (5-5)

where the rj D #U .0/˛;j are such that r1 C � � � C rp D #U .0/˛ . Factorizing by e�S�p =h, we get �˛ D
e�S�p =h u�

˛
.�/, with

u�
˛
.�/D

0BBBBB@
Irp 0 � � � � � � 0

0 �2Irp�1 0 � � � 0
::: 0

: : :
: : :

:::
:::

: : :
: : :

: : : 0

0 � � � � � � 0 �2�3 � � � �pIr1

1CCCCCA ; (5-6)

where � D .�2; : : : ; �p/ 2 .R�C/
p is defined by �j D e

.S�p�.j�2/�S�p�.j�1/ /=h for any j D 2; : : : ; p. With
this new notation, one deduces from (5-3), that L ˛;�L ˛ D he�2S�p =h ŇM˛

.�/, with

ŇM˛
.�/D u�

˛
.�/.h�1 uL

˛;�
uL
˛
/u�

˛
.�/: (5-7)

It turns out that such matrices can be described in a slightly more general setting that is useful to compute
their spectrum. We introduce this setting now. Throughout, we denote by SC.E/ the set of symmetric
positive definite matrices on a vector space E. We will denote by SCcl .E/ the set of h-dependent
matrices M.h/ 2 SC.E/ admitting a classical expansion M.h/ �

P
jh
jMj with M0 2 SC.E/. We

will sometimes drop E and write for short SC, SCcl .

Definition 5.4. Let E D .Ej /jD1;:::;p be a sequence of finite-dimensional vector spaces Ej of dimen-
sion rj > 0, let E D

L
jD1;:::;pEj and let � D .�2; : : : ; �p/ 2 .R�C/

p�1. Suppose that � 7!M.�/ is a
smooth map from .R�

C
/p�1 into the set of matrices M .E/:

� We say that M.�/ is an .E ; �/-graded matrix if there exists M0 2SC.E/ independent of � such
that M.�/D�.�/M0�.�/, with �.�/ 2M .E/ of the form (5-6); that is, �D diag.�j .�/Irj ; j D
1; : : : ; p/, where �1.�/D 1 and �j .�/D

�Qj

kD2
�k
�

for all j � 2.

� We say that a family of .E ; �/-graded matrices Mh.�/, h 2 �0; h0� is classical if one has Mh.�/D

�.�/M0.h/�.�/ for some matrix M0.h/ 2SCcl .E/.

Throughout, we denote by G .E ; �/ the set of .E ; �/-graded matrices and by Gcl.E ; �/ the set of classical
.E ; �/-graded matrices.

Let us remark that for p D 1, a graded matrix is simply a �-independent symmetric positive definite
matrix.



186 LAURENT MICHEL

Lemma 5.5. Suppose that Mh.�/ is a classical .E ; �/-graded family of matrices and that p � 2. Then
one has

Mh.�/D

�
J.h/ �2Bh.�

0/�

�2Bh.�
0/ �22Nh.�

0/

�
; (5-8)

with

� J.h/ 2SCcl .E1/,

� Nh.� 0/ 2 Gcl.E
0; � 0/, with � 0 D .�3; : : : ; �p/ and E 0 D .Ej /jD2;:::;p,

� Bh.�
0/ 2M

�
E1;

Lp
jD2Ej

�
satisfying

Bh.�
0/� D .b2.h/

�; �3b3.h/
�; �3�4b4.h/

�; : : : ; �3 � � � �pbp.h/
�/;

with bj .h/ WE1!Ej independent of � admitting a classical expansion.

Moreover, the matrix Nh.� 0/�Bh.� 0/J.h/�1Bh.� 0/� belongs to Gcl.E
0; � 0/.

Proof. Assume that Mh.�/D�.�/M0.h/�.�/, with �.�/ of the form (5-6). First observe that

�.�/D

�
Irp 0

0 �2�
0.� 0/;

�
;

with

�0.� 0/D

0BBBBB@
Irp�1 0 � � � � � � 0

0 �3Irp�2 0 � � � 0
::: 0

: : :
: : :

:::
:::

: : :
: : :

: : : 0

0 � � � � � � 0 �3�4 � � � �pIr1

1CCCCCA :
On the other hand, we can write

M0.h/D
�
J.h/ B 0.h/�

B 0.h/ N 0.h/

�
;

with J.h/;N 0.h/ 2SCcl and B 0.h/ admitting a classical expansion. Therefore,

�.�/M0h�.�/D
�

J.h/ �2B
0.h/��0.� 0/

�2�
0.� 0/B 0.h/ �22�

0.� 0/N 0.h/�0.� 0/

�
;

which has exactly the form (5-8) with Bh.� 0/ D �0.� 0/B 0.h/ and Nh.� 0/ D �0.� 0/N 0.h/�0.� 0/. By
construction, Nh.� 0/ belongs to Gcl.E

0; � 0/ and Bh.� 0/ has the required form.
It remains to prove that

Rh WDNh.� 0/�Bh.� 0/J.h/�1Bh.� 0/�

belongs to Gcl.E
0; � 0/. First observe that since J.h/ is symmetric positive definite, this quantity is

well-defined. Moreover, one has by construction

Rh D�0.� 0/N 0.h/�0.� 0/��0.� 0/B 0.h/J.h/�1B 0.h/��0.� 0/

D�0.� 0/R0.h/�0.� 0/;
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with R0.h/DN 0.h/�B 0.h/J.h/�1B 0.h/�. Since J.h/ 2SCcl , we have J.h/�1 2SCcl and R0.h/ admits
a classical expansion R0.h/�

P
jh
jR0j with

R00 D J0�B
0
0J
�1
0 .B 00/

�:

Moreover, since M0.h/ 2SCcl , the matrix

M00 D
�
J0 .B 00/

�

B 00 N 00

�
is symmetric definite positive. Hence, it follows directly from Lemma A.5 that R00 2SC. �

5C. The spectrum of graded matrices. Using Lemma 5.5, we define an application R W Gcl.E ; �/!

Gcl.E
0; � 0/, with � 0 D .�3; : : : ; �p/ and E 0 D

Lp
jD2Ej , by

R.Mh.�//DNh.� 0/�Bh.� 0/J.h/�1B�h .�
0/ (5-9)

for any Mh.�/ 2 Gcl.E ; �/. Of course, the map R depends on E and � , but we omit this dependence since
the set on which R is acting will be obvious in the sequel. By a slight abuse of notation we will write
Rk DRı� � �ıR (k times). Obviously, Rk acts from G .E ; �/ into G .E .k/; � .k// with E .k/D

Lp

jDkC1
Ej

and � .k/D .�kC2; : : : ; �p/. In the same way, we defined R, we can define a map J WGcl.E ; �/!SCcl .E1/

by J .Mh.�//DMh if p D 1 and J .Mh.�//D J.h/ for any Mh.�/ having the form (5-8) if p � 2.

Theorem 5.6. Let E D .Ej /jD1;:::;p be a finite sequence of vector spaces Ej of finite dimension nj D
dimEj and let � D .�2; : : : ; �p/ 2 .R�C/

p�1. Suppose that Mh.�/ is classical .E ; �/-graded. There exists
h0 > 0 and ı > 0 such that uniformly with respect to h 2 �0; h0� and j� j1 < ı, one has

�.Mh.�//D

pG
jD1

�j�.J ıRj�1.Mh.�///.1CO.j� j21//; (5-10)

with �j D �j .�/ given in Definition 5.4.

Remark 5.7. In the above theorem, the matrix J ıRj�1.Mh.�// is always independent of the parameter � .
Let us define f�j1 � � � � � �

j
nj g D �.J ıR

j�1.Mh.�//. The identity (5-10) means that there exists
a; b > 0 independent of �; h such that

�.Mh.�//�

pG
jD1

�j Œa; b�

and that, for all j D 1; : : : ; p, Mh.�/ has exactly nj eigenvalues �j1 � � � � � �
j
nj in �j Œa; b� and

�jn D �j .�
j
nCO.j� j21//:

Proof. We prove the theorem by induction on p. Throughout the proof the notation O. � / is uniform
with respect to the parameters h and � . For p D 1, Mh.�/DMh 2SCcl .E1/ is independent of � and
JR0.Mh.�//D JMh.�/DMh, which proves the statement.
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Suppose now that p � 2 and let Mh.�/ 2 Gcl.E ; �/. We have

Mh.�/D

�
J.h/ �2Bh.�

0/�

�2Bh.�
0/ �22Nh.�

0/

�
;

with J.h/; Bh.� 0/ and Nh.� 0/ as in Lemma 5.5. In order to lighten the notation we will drop the variables
�; � 0 in the proof below. For � 2 C, let

P.�/ WDMh��D

�
J.h/�� �2B

�
h

�2Bh �22Nh��

�
: (5-11)

This is an holomorphic function, and since it is nontrivial, its inverse is well-defined except for a
finite number of values of � which are exactly the eigenvalues of Mh. Moreover � 2 C 7! P.�/�1 is
meromorphic with poles in �.Mh/ and for any � in �.Mh/, the rank of the residue of P.�/�1 at � is
exactly the multiplicity of � as an eigenvalue.

Let us first prove that Mh admits at least n1 eigenvalues of size 1. Let �1n D �
1
n.h/, nD 1; : : : ; n1,

denote the increasing sequence of eigenvalues of the positive definite matrix J.h/. Since J.h/DJ0CO.h/
with J0 2 SC, the �1n.h/ satisfy �1n.h/ D �

1
n;0 CO.h/, with �1n;0 an eigenvalue of J0. In particular

�1n;0 > 0 for all n D 1; : : : ; n1 and hence there exists c1; d1 > 0 and h0 > 0 such that for h 2 �0; h0�
and all n D 1; : : : ; n1, one has �1n.h/ 2 Œc1; d1�. Let n 2 f1; : : : ; n1g be fixed and consider Dn D
Dn.h; �2/ D fz 2 C W jz � �1nj � M�22 g for some M > 0 that will be chosen large enough later and
zDn D fz 2 C W jz��1nj � 2M�22 g. Observe that for h; �2 > 0 small enough, the disks zDn are disjoint. By

definition, one has Nh.� 0/DO.1/ and since �1n � c1 > 0, this implies that for �2 > 0 small enough with
respect to c and � 2 zDn, the matrix �22Nh.�

0/�� is invertible, and .�22Nh.�
0/��/�1DO.1/. Moreover,

for � 2 zDn nDn, J.h/�� is invertible and .J.h/��/�1 DO.��22 M�1/. This implies that for M > 0

large enough, J.h/��� �22B
�
h
.�22Nh��/

�1Bh is invertible with

.J.h/��� �22B
�
h .�

2
2Nh��/

�1Bh/
�1
D .J.h/��/�1

�
I � �22B

�
h .�

2
2Nh��/

�1Bh.J.h/��/
�1
��1

D .J.h/��/�1.1CO.M�1//: (5-12)

Hence, the standard Schur complement procedure shows that for � 2 zDn nDn, P.�/ is invertible with
inverse E.�/ given by

E.�/D
�

E.�/ ��2E.�/B
�
h
.�22Nh��/

�1

��2.�
2
2Nh��/

�1BhE.�/ E0.�/

�
; (5-13)

with
E.�/D .J.h/��� �22B

�
h .�

2
2Nh��/

�1Bh/
�1;

E0.�/D .�
2
2Nh��/

�1
C �22 .�

2
2Nh��/

�1BhE.�/B
�
h .�

2
2Nh��/

�1:

By functional calculus and the Cauchy formula, the number of eigenvalues of Mh (counted with multi-
plicity) in Dn is equal to the rank of the projector

…n D
1

2i�

Z
@Dn

E.�/ d�:
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One has rk.�n/� rk. z…n/, where we set

z…n D

�
Id 0

0 0

�
…n

�
Id 0

0 0

�
:

On the other hand, an elementary computation shows that

z…n D
1

2i�

Z
@Dn

�
E.�/ 0

0 0

�
d�D

�
En 0

0 0

�
;

with

En D
1

2i�

Z
@Dn

.J.h/��� �22B
�
h .�

2
2Nh��/

�1Bh/
�1 d�:

As a consequence we get rk.…n/ � rk.En/. Moreover, for M large enough independent of .h; �/, the
matrix .I � �22B

�
h
.�22Nh��/

�1Bh.J.h/��/
�1/�1 is holomorphic in zDn. It follows from (5-12) that

the rank of En is exactly the multiplicity of �1n and hence the rank of …n is bounded from below by
the multiplicity of �1n. Therefore, Mh admits at least n1 eigenvalues �11 � � � � � �

1
n1

in the interval
Œc1�M�22 ; d1CM�22 � and these eigenvalues satisfy

�1n D �
1
nCO.�22 / for all nD 1; : : : ; n1: (5-14)

Let us now study the eigenvalues below �22 . Throughout the proof, we let t D j� 0j1. Thanks to the last
part of Lemma 5.5, the matrix Zh.� 0/ WDR.Mh.�//DNh�BhJ.h/�1B�h is classical .E 0; � 0/-graded.
Hence, it follows from the induction hypothesis that uniformly with respect to h, one has

�.Zh.� 0//D
pG
jD2

Q�j�.J ıRj�2.Zh.� 0///.1CO.j� 0j21//; (5-15)

with Q�j D
�Qj

lD3
�l
�2 for j � 3 and Q�2 D 1. Moreover, by definition, one has Zh DR.Mh.�//; hence

(5-15) can be rewritten as

�.Zh.� 0//D
pG
jD2

Q�j�.J ıRj�1.Mh.�///.1CO.j� 0j21//: (5-16)

Since Mh.�
0/ 2 Gcl.E ; �/, for all j D 2; : : : ; p the matrix J ıRj�1.Mh.�// belongs to SCcl .Ej /. For

j D 2; : : : ; p, let �j1.h/� � � ���
j
nj .h/ denote the eigenvalues of the symmetric matrix J ıRj�1.Mh.�//.

As above, this implies that there exist cj ; dj > 0 and h0 > 0 such that for all h 2 �0; h0� the eigenvalues
�
j
n.h/ satisfy �jn.h/2 Œcj ; dj � for all nD 1; : : : ; nj . Suppose now that j 2 f2; : : : ; pg and n2 f1; : : : ; nj g

are fixed and consider D0j;n D fz 2 C W jz � �j�
j
nj � Mt2�j g for some M > 0 to be chosen large

enough and zD0j;n D fz 2 C W jz � �j�
j
nj � 2Mt2�j g. As above, we introduce also the corresponding

projector

…0j;n D
1

2i�

Z
@D0
j;n

E.�/ d�:
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Since J0 is invertible, we know that for � in zD0j;n and h; t small enough, J.h/�� is invertible and once
again the Schur complement formula permits us to write the inverse of P.�/,

E.�/D
�

E0.�/ ��2.J.h/��/
�1B�

h
E.�/

��2E.�/Bh.J.h/��/
�1 E.�/

�
; (5-17)

with
E.�/D .�22Nh��� �

2
2Bh.J.h/��/

�1B�h /
�1;

E0.�/D .J.h/��/
�1
C �22 .J.h/��/

�1B�hE.�/Bh.J.h/��/
�1:

Setting �D �22 z, we get (using the relation �j D �22 Q�j )

…0j;n D
�22
2i�

Z
@ yD0

j;n

E.�22 z/ dz;

with yD0nDfz 2C W jz� Q�j�
j
nj �Mt2 Q�j g. Moreover, for jz� Q�j�

j
nj DMt2 Q�j , the matrix J.h/ is invertible

with J.h/�1 DO.1/; hence we have

E.�22 z/D �
�2
2 .Nh� z�Bh.J.h/� �22 z/

�1B�h /
�1

D ��22 .Zh� zCO.�22 jz//
�1

D ��22 .Zh� z/�1.I CO.�22 Q�j k.Zh� z/
�1
k//:

Moreover, by the definition of yD0j;n and thanks to (5-15), one has dist.z; �.Zh// � 1
2
Mt2 Q�j for any

z 2 @ yD0j;n. Hence k.Zh� z/�1k � 2.Mt2 Q�j /
�1 and since t � �2, it follows that

E.�22 z/D �
�2
2 .Zh� z/�1.I CO.M�1//:

Integrating along @ zD0j;n and working as above, we get

…0j;n D
1

2i�

Z
@D0
j;n

 
E0.�/ R

�
�2E.�/

E.�/R�2 E.�/

!
d�;

with R�2.�/D��2.�
2
2Nh��/

�1Bh and R��2.�/D��2B
�
h
.�22Nh��/

�1. The same argument as above
shows that rk.…n/� rk.E 0n/ with

E 0n D
�22
2i�

Z
@ yD0

j;n

E.�22 z/ dz D
1

2i�

Z
@ yD0

j;n

.Zh� z/�1.I CO.M�1//�1 dz:

By the induction hypothesis, this shows that the rank of E 0n is exactly the multiplicity of �jn and hence the
rank of …0j;n is bounded from below by this multiplicity. Therefore, for any j D 2; : : : ; p, Mh admits at
least nj eigenvalues �11 � � � � � �

1
n1

in the interval �j Œcj �Mt2; dj CMt2� and these eigenvalues satisfy

�jn D �j .�
j
nCO.j� j21// for all nD 1; : : : ; nj : (5-18)

Combining this estimate with (5-14) and using the fact the dim.E/D
Pp
jD1 rj , we obtain the �jn are

the only eigenvalues of Mh. �
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5D. The singular values of L ˛. Given m;m1;m2 2 U .0/ and s 2 V.1/, we define

�2.s;m;m1;m2/D �
�1=2
j O�1.s/j

1=2

�
h'.m1/

h'.s/
ım;m1 �

h'.m2/

h'.s/
ım;m2

�
; (5-19)

�1.s;m;m1/D �
�1=2
j O�1.s/j

1=2h'.m1/

h'.s/
ım;m1 : (5-20)

Let us define the matrix ‡˛ 2M .yU .0/˛ ;V.1/˛ / by

‡˛.s;m/D

�
�2.s;m;m1.s/;m2.s// if m2.s/ 2 yU

.0/
˛ ;

�1.s;m;m1.s// if m2.s/ … yU
.0/
˛ ;

(5-21)

where the indices m; s are enumerated according to the partitions of Section 5B. Observe that with this
notation, the conclusion of Lemma 4.4 can be written as zL

˛;0
D ‡. Moreover, the above expression can

be simplified according to the type of ˛. More precisely,

� if ˛ is of type I, then m2.s/ 2 yU
.0/
˛ if and only if s 2 V.1/;i˛ ,

� if ˛ is of type II, then m2.s/ is always in yU .0/˛ .

Theorem 5.8. Let M˛ DL ˛;�L ˛. There exists c > 0 such that, counted with multiplicity, one has

�.M˛/D

p.˛/G
jD1

he
�2h�1S�˛

j �.M ˛;j /.1CO.e�c=h//;

where the matrices M ˛;j have a classical expansion M ˛;j �
P
hkM

˛;j

k
whose leading term is given by

M
˛;j
0 D JRj�1.Z˛/;

where Z˛ D �˛T ˛;0‡˛;�‡˛T ˛;0�˛ belongs to G .E ; �/ with E D .F .yU .0/˛;j //jD1;:::;p and � D

.�j /jD1;:::;p, with �j D e
.S�p�.j�2/�S�p�.j�1/ /=h.

Proof. One has

M˛
DL ˛;�L ˛

D he�2Sp1=h ŇM˛
;

with ŇM˛ given by (5-7),
ŇM˛

.�/D u�
˛
.�/�ŇM˛;0

u�
˛
.�/;

with ŇM˛;0
D .h�1 uL

˛;�
uL
˛
/. Of course, this matrix is symmetric positive and thanks to Proposition 5.2,

it admits a classical expansion
ŇM˛;0

�

X
k

hk ŇM˛;0
k

with ŇM˛;0
0 D . uL

˛;0
/� uL

˛;0
D T ˛;0‡˛;�‡˛T ˛;0 2 SC. This shows that ŇM˛;0 belongs to SCcl .

Hence ŇM˛ is classical .E ; �/-graded with E D .F .yU .0/˛;j //jD1;:::;p and � D .�2; : : : ; �p/, with �j D
e
.S�p�.j�2/�S�p�.j�1/ /=h and the conclusion follows directly from Theorem 5.6. �
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6. Proof of the main theorem

In this section we explain how one can deduce Theorem 2.8 from Theorem 5.8. As in [Helffer, Klein and
Nier 2004], the general idea is to compare the singular values of the successive reduced matrix by a mean
of Fan inequalities. As preparation, we shall compare the matrices L�;0 and Lbkw;0 defined in Section 3.
First, observe that thanks to (4-4), (4-5), (4-10), one has

Lbkw;0
DJLbkw;00

DJ L DJ zL T �; (6-1)

with J WF .V.1//!F .U .1// defined by Js;s0 D ıs;s0 , zL D diag. zL
˛
; ˛ 2A/, T D diag.T ˛; ˛ 2A/

and �D diag.�˛; ˛ 2A/.

Lemma 6.1. There exists 
 > 0 such that

L�;0 D .J CO.e�
=h//L :

Proof. First observe that thanks to Lemma 4.1, one has

L�;0 D Lbkw;0
CR; (6-2)

with R WF .U .0//!F .U .1// satisfying

Rs;m DO.e�.S.m/C
/=h/ for all m 2 U .0/; (6-3)

for some 
 > 0. Using (6-1), we get

L�;0 DJ zL T �C zR�;

with zR D O.e�
=h/. Hence, we have to prove that there exists R W F .V.1// ! F .U .1// such that
zRDR zL T and RDO.e�
=h/. From Proposition 5.2, we know that the matrix W WD . zL T /� zL T is
invertible with inverse uniformly bounded with respect to h. This allows us to define R WD zRW �1. zL T /�.
Thanks to the above remarks, we have RDO.e�
=h/ and by construction

R zL T D zRW �1. zL T /� zL T D zR;

which completes the proof. �

We are now ready to prove Theorem 2.8. Until the end of this section, 
 > 0 denotes a constant
independent of h that may change from line to line. We shall also denote by SV.M/ the singular values
of any matrix M.

From Section 2C, we know that the n0 exponentially small eigenvalues of �.0/' are the square of the
singular values of the matrix L. Thanks to Lemmas 3.12 and 3.13, we have

LD .IdCO.e�
=h//L�.IdCO.e�
=h//

and it follows from the Fan inequality (Lemma A.1) that

SV.L/D SV.L�/.1CO.e�
=h//:
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Hence, we are reduced to computing the singular values of L�. Since the first column of L� is the null
vector, it follows that the nonzero singular values of L� are the singular values of L�;0. From Lemma 6.1,
we know that

L�;0 D .J CO.e�
=h//L ; (6-4)

and since J �J D Id this implies for h small enough

L D .J �
CO.e�
=h//L�;0: (6-5)

Using the fact that kJ k D kJ �k D 1, (6-4) and (6-5) combined with Lemma A.1 show that

SV.L�;0/D .1CO.e�
=h//SV.L /:

Combined with Theorem 5.8 this proves Theorem 2.8.

7. Some particular cases and examples

In this section, we rephrase Theorem 5.8 in the particular situations p.˛/D 1 and p.˛/D 2.

7A. The case p.˛/ D 1. In this section we assume that p.˛/ D 1. Then, the set S˛ is reduced to a
singleton S˛ D fS�˛1 g. Moreover, the points of U .0/˛ are either all of type I, or all of type II.

7A1. The case where ˛ is of type II. We first assume that ˛ is of type II. Then all the points m 2 U .0/˛
are of type II and Theorem 5.8 takes the following form.

Theorem 7.1. Let ˛ 2A be such that p.˛/D 1 and all the points of U .0/˛ are of type II. Then the matrix
L ˛ has exactly q˛ D #U .0/˛ singular values counted with multiplicity �˛;�.h/, �D 1; : : : ; q˛ . They have
the form

�˛;�.h/D h
1=2�˛;�.h/e

�S�˛
1
=h
;

where �˛;� �
P1
rD0 h

r�˛;�;r is a classical symbol such that the �˛;�;0, �D 1; : : : ; q˛, are the nonzero
singular values of the matrix ‡˛ 2M .yU .0/˛ ;V.1/˛ / given by

‡˛s;m D �
�1=2
j O�1.s/j

1=2

�
h'.m1.s//

h'.s/
ım;m1.s/�

h'.m2.s//

h'.s/
ım;m2.s/

�
for all s 2 V.1/˛ ; m 2 yU .0/˛ ;

withm1.s/;m2.s/ defined in Lemma 3.3.

Observe that the description of the approximated small eigenvalues of �' in the above theorem is very
close in spirit to that obtained in nondegenerate situations. Though, the different eigenvalues �˛;� are
linked to one another, the only minima involved in the computation of the prefactors �˛;� are associated to
the typical height S�˛1 . In that sense, we can say that the above formula is a generalized Eyring–Kramers
formula.

As already mentioned in the Introduction, the matrix ‡˛ enjoys a nice interpretation in terms of graph
theory. In order to simplify, suppose that the function ' is such that the coefficients of ‡˛ are either 1
or �1. Define a graph G˛ associated to the equivalence class ˛ in the following way. The vertices of the
graph are the minima m 2 yU .0/˛ and the edges are the saddle points s 2 V.1/˛ . The two vertices associated
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to the edge s 2 V.1/˛ are just m1.s/ and m2.s/. With this definition it turns out that the matrix ‡˛ is the
transpose of the incidence matrix of a certain oriented version of the graph Ga. As a consequence, the
j�˛;�;0j

2 are the eigenvalues of the corresponding graph Laplacian �G D .ım;m0/m;m02yU.0/ defined by

ım;m0 D

8<:
d.m/ if mDm0;
�1 if m¤m0 and there is an edge between m and m0;
0 otherwise;

(7-1)

where the degree d.m/ is the number of edges incident to the vertex m.
Figure 2 in the Introduction presents an example of a potential ' having one unique saddle value �

and such that all local minima are absolute minima. We represent also in Figure 2 the graph associated to
the nontrivial equivalence class (that is, the one which is not reduced to one element).

In the case where the coefficients of ‡˛ are not necessarily equal to ˙1, the same interpretation
is available with weighted graphs. We refer to [Cvetković, Doob and Sachs 1995] for definitions and
standard results on graph theory.

7A2. The case where ˛ is of type I. In this section, we compute explicitly the singular values of L ˛,
when ˛ is of type I.

Theorem 7.2. Let ˛ 2A be such that p.˛/D 1 and all the points of U .0/˛ are of type I. Then, the matrix
L ˛ has exactly q˛ WD #U .0/˛ singular values counted with multiplicity. These singular values �˛;�.h/,
�D 1; : : : ; q˛, have the form

�˛;�.h/D �˛;�.h/e
�S�˛

1
=h
;

where �˛;� � h1=2
P1
rD0 h

r�˛;�;r has a classical expansion such that �˛;�;0 are the q˛ singular values
of the matrix ‡˛ given by

‡s;m D �
�1=2
j O�1.s/j

1=2

�
h'.m1.s//

h'.s/
ım;m1.s/�

h'.m2.s//

h'.s/
ım;m2.s/

�
if s 2 V.1/;i˛ and

‡s;m D �
�1=2
j O�1.s/j

1=2h'.m1.s//

h'.s/
ım;m1.s/

if s 2 V.1/;b˛ . Moreover, these singular values are nonzero.

As in the case of points of type II we can interpret the matrix zL
˛;0

in terms of graphs. However, some
saddle points are now associated to only one minimum. In terms of the graph, this leads to some edges
having only one vertex, which means that we are dealing with hypergraphs.

7B. The case p.˛/D 2. Throughout this section we assume that p.˛/D 2. Then ' takes two different
values '� < 'C on U .0/˛ . One has S˛ D fS�˛

C
< S�˛�g with S�˛

˙
D �.˛/�'˙.
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7B1. The case where ˛ is of type II. The partition (5-4) takes the form yU .0/˛ D yU .0/˛;C t yU
.0/
˛;� with

yU .0/˛;˙ D fm 2 U .0/˛ W '.m/D '˙g. Since ˛ is of type II, m2.s/ 2 yU
.0/
˛ for all s. It is then convenient to

introduce the partition of V.1/˛ given by

V.1/˛ D V.1/˛;C tV
.1/
˛;C�[V.1/˛;�; (7-2)

with V.1/˛;C D fs 2 V.1/˛ W m1.s/;m2.s/ 2 yU
.0/
˛;Cg and V.1/˛;� D fs 2 V.1/˛ W m1.s/;m2.s/ 2 yU

.0/
˛;�g; where

the functions m1;m2 are defined by Lemma 3.3. In the case s 2 V.1/˛;C�, it follows from the choice of
Lemma 3.3 thatm1.s/2 yU

.0/
˛;C andm2.s/2 yU

.0/
˛;�. We order the above partitions by deciding yU .0/˛;C � yU

.0/
˛;�

and V.1/˛;C � V.1/˛;C� � V.1/˛;�. Then, the matrix Y ˛ WD h�1=2e
�S�˛
C
=h
yL
˛

has the form

Y ˛
D

0@ � 0

bC� �b�C
0 �a

1A ;
where � D e

.S�˛
C �S�˛�/=h and the matrices �; bC�; b�C admit a classical expansion whose principal

terms are given by the formula

� for all s 2 V.1/˛;C and m 2 yU .0/˛;C one has �0s;m D �2.s;m;m1.s/;m2.s//,

� for all s 2 V.1/˛;� and m 2 yU .0/˛;� one has a0s;m D �2.s;m;m1.s/;m2.s//,

� for all s 2 V.1/˛;C�, m 2 yU .0/˛;C and m0 2 yU .0/˛;� one has .b0
C�
/s;m D �1.s;m;m1.s// and .b0

�C
/s;m0 D

��1.s;m
0;m2.s//,

with �2; �1 given by (5-19), (5-20). By a standard block-matrix computation one has

.Y ˛/�Y ˛
D

 
J � yB

� yB� �2 yA

!
; (7-3)

with J D ���C b�
C�
bC�, yB D b�

C�
b�C and yAD a�aC b�

�C
b�C. All these matrices admit a classical

expansion, yA'
P
k�0 h

k yAk , yB '
P
k�0 h

k yBk , J D
P
k�0 h

kJ k and one has J 0D �0;��0Cb0;�
C�
b0
C�

,
yB0 D b

0;�
C�
b0
�C

and yA0 D a0;�a0C b0;�
�C
b0
�C

, where we use the notation .cj /� D cj;�.

Theorem 7.3. The matrix L ˛ has exactly q˛;˙ D #U .0/˛;˙ singular values �˙˛;�.h/, � D 1; : : : ; q˛;˙,
counted with multiplicity which are of order h1=2e�S�˛˙=h. These singular values have the form

�˙˛;�.h/D �
˙
˛;�.h/e

�S�˛
˙
=h
;

where
�˙˛;� � h

1=2
X
k

hk�˙˛;�;k

is a classical symbol such that .�˙˛;�;0/
2 are the q˛;˙ nonzero eigenvalues of the matrices G˙ given by

GC D J 0 and
G� D yA0� . yB0/�.J 0/�1 yB0;

where yA0, J 0 and yB0 are defined below (7-3).
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Figure 9. Top: the sublevel set f' < �g associated to a potential ' having a unique
saddle value and two minimal values. Bottom: the associated hypergraphs.

Let us make a few comments on this theorem. First, observe that the prefactor �˙ D �˙˛;� obeys two
different laws whether we are in the “C” or “�” case. In the “C” case, �C is determined by the matrix J 0

which depends only on the minima m 2 U .0/˛ such that S.m/ D S�C . In that sense, the behavior of
�C obeys a law similar to the generalized Eyring–Kramers law of Theorem 7.1. In the “�” case, the
situation is different since the matrix G� involves values of ' on all minima and not only those for which
S.m/D S�� . Hence the term . yB0/�.J 0/�1 yB0 in the definition of G� can be understood as a tunneling
term between minima associated to both heights.

This interpretation is confirmed by the following example. Suppose that ' has two distinct minimal
values and one saddle value. Figure 9 below represents such a potential. The blue wells correspond to the
absolute minimal value and the red one to the other minimal value. All the saddle points are supposed to
be at the same level. Then, the matrices yA0 and J 0 can be viewed as the Laplacians of the hypergraphs
built as follows. First we consider the graph G associated to all the minima whose vertex are the minima
and edges are the saddle points between two minima (without distinction on the level of the minima).
The blue and red hypergraphs Gb and Gr are obtained by cutting the graph G on edges between a blue
and a red minimum. Eventually, the matrix B links blue and red minima.

7B2. The case where ˛ is of type I. In this section we assume that ˛ is of type I. The partition (5-4) takes
the form U .0/˛ D U .0/˛;� tU

.0/
˛;C with

U .0/˛;˙ D fm 2 U
.0/
˛ W '.m/D '˙g:

We order the two elements of P
.0/
˛ by deciding U .0/˛;C � U .0/˛;�. In order to deal with the saddle points, we

introduce the partition P
.1/
˛ which is a mix of partitions used in Lemma 3.4 and Section 7B1:

V.1/˛ D V.1/
˛;C;b

tV.1/˛;C;i tV
.1/
˛;C� tV

.1/

˛;�;b
tV.1/˛;�;i
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with
V.1/˛;C;� D fs 2 V

.1/;i
˛ Wm1.s/ 2 U

.0/
˛;C;m2.s/ 2 U

.0/
˛;�g;

V.1/˛;C;i D fs 2 V
.1/;i
˛ Wm1.s/;m2.s/ 2 U

.0/
˛;Cg;

V.1/
˛;C;b

D fs 2 V.1/;b˛ Wm1.s/ 2 U
.0/
˛;Cg;

V.1/˛;�;i D fs 2 V
.1/;i
˛ Wm1.s/;m2.s/ 2 U .0/˛;�g;

V.1/
˛;�;b

D fs 2 V.1/;b˛ Wm1.s/ 2 U .0/˛;�g:

(7-4)

Here the functions m1, m2 are defined by Lemma 3.3. One has the following

Theorem 7.4. Assume that p.˛/ D 2 and ˛ is of type I. The matrix L ˛ has exactly q˛;˙ D #U .0/˛;˙
singular values �˙˛;�.h/, � D 1; : : : ; q˛;˙, counted with multiplicity which are of order h1=2e�S�˛˙=h.
These singular values have the form

�˙˛;�.h/D �
˙
˛;�.h/e

�S�˛
˙
=h

where �˙˛;� � h
1=2

P
k h

k�˙
˛;�;k

is a classical symbol such that .�˙˛;�;0/
2 are the q˛;˙ eigenvalues (which

are nonzero) of the matrices G˙ given by GCD J 0 and G�DA0� .B0/�.J 0/�1B0, where A0, B0 and
J 0 are defined by

J 0 D �0;��0C b
0;�
C�
b0C�; B0 D b

0;�
C�
b0�C; A0 D a0;�a0C b

0;�
�C
b0�C;

with the matrices a0, b0
C�

, b0
�C

and �0 defined by

� for all s 2 V.1/˛;C;i andm 2 U .0/˛;C one has �0s;m D ‡2.s;m;m1.s/;m2.s//,

� for all s 2 V.1/
˛;C;b

andm 2 U .0/˛;C one has �0s;m D ‡1.s;m;m1.s//,

� for all s 2 V.1/˛;�;i andm 2 U .0/˛;� one has a0s;m D ‡2.s;m;m1.s/;m2.s//,

� for all s 2 V.1/
˛;�;b

andm 2 U .0/˛;� one has a0s;m D ‡1.s;m;m1.s//,

� for all s 2 V.1/˛;C�, m 2 U .0/˛;C andm0 2 U .0/˛;� one has .b0
C�
/s;mD‡1.s;m;m1.s// and .b0

�C
/s;m0 D

�‡1.s;m
0;m2.s//.

7C. Some examples.

7C1. Computations in dimension 1 with p.˛/D1. Let us compute the small eigenvalues of the potential '
represented in Figure 10.

As already noticed in the discussion below Theorem 2.8, there are exactly three equivalence classes for R
in that case: U .0/1 Dfm1;1g, U

.0/
2 Dfm2;1;m2;2g and U .0/3 Dfm2;3g. Let us denote by s1 the saddle point

betweenm2;1 andm2;2, by s2 the saddle point betweenm2;2 andm1;1 and by s3 the saddle point between
m1;1 andm2;3. Define also S2D'.s1/�'.m2;1/D'.s1/�'.m2;2/ and S3D'.s3/�'.m2;3/. Observe
also that for all m 2 U .0/, one has H.m/D fmg. Then the matrix Lbkw defined by (4-2), admits the form

Lbkw
D

�
h

�

�1=20@0 d21;1 d21;2 0

0 d22;1 d
2
2;2 0

0 0 0 d3

1A ;
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m1;1

m2;1 m2;2

m2;3

�2

�1 D1

'.m2;3/

'.m2;1/D '.m2;2/

'.m1;1/

s1 s2 s3

S3
S2S2

Figure 10. A potential with p.˛/D 1 for all ˛.

with the coefficients given by

d21;1 D .j'
00.s1/'

00.m2;1/j
1=4
CO.h//e�S2=h; d21;2 D�.j'

00.s1/'
00.m2;2/j

1=4
CO.h//e�S2=h;

d22;1D0; d22;2D .j'
00.s2/'

00.m2;2/j
1=4
CO.h//e�S2=h; d3D .j'00.s3/'

00.m2;3/j
1=4
CO.h//e�S3=h:

The corresponding squares of singular values are then

�0 D 0; �3 D
h

�
.j'00.s3/'

00.m2;3/j
1=2
CO.h//e�2S3=h and �˙2 D

h

�
.�˙2 CO.h//e�2S2=h;

where �˙2 are the squares of the singular values of the matrix

zD2 D
�
a �b

0 c

�
;

with aD j'00.s1/'00.m2;1/j1=4, b D j'00.s1/'00.m2;2/j1=4 and c D j'00.s2/'00.m2;2/j1=4. It follows that

.zD2/� zD2 D
�
a2 �ab

�ab b2Cc2

�
;

whose eigenvalues can be computed handily. For instance, if j'00.s/j D j'00.m/j D 1 for all s 2 U .1/ and
m 2 U .0/, one has

.zD2/� zD2 D
�
1 �1

�1 2

�
;

whose eigenvalues are �˙2 D
3
2
˙

p
5
2

.
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We would like to conclude this example by noticing that one has necessarily �C2 ¤ �
�
2 . Indeed, if one

computes the characteristic polynomial of the above matrix, one finds P.x/Dx2�.a2Cb2Cc2/xCa2c2,
whose discriminant is given by

�D .a2C b2C c2/2� 4a2c2 D ..a� c/2C b2/..aC c/2C b2/:

Since ' is a Morse function, one has b ¤ 0 and hence �> 0.

7C2. Computations in dimension 1 with p.˛/D 2. Suppose now that the potential ' is as represented in
Figure 7. As already noticed there are exactly two equivalence classes for R in that case, U .0/1 D fm1;1g
and U .0/2 D fm2;1;m2;2;m2;3g, and again, one has H.m/ D fmg for all m 2 U .0/. Let us denote by
s1 the saddle point between m2;1 and m2;2, by s2 the saddle point between m2;2 and m2;3 and by s3
the saddle point between m2;3 and m1;1. Define also S2 D '.s1/� '.m2;1/ D '.s1/� '.m2;2/ and
S3D'.s2/�'.m2;3/. Then the matrix Lbkw;00 admits the following form in the basis .f .0/m2;3 ; f

.0/
m2;1 ; f

.0/
m2;2/

and .f .1/s3 ; f
.1/
s2 ; f

.1/
s1 /:

Lbkw;00
D

�
h

�

�1=2
e�S3=h

0@ � 0 0

b1 0 b2e
�.S2�S3/=h

0 a1e
�.S2�S3/=h a2e

�.S2�S3/=h

1A ;
with the leading terms of the coefficients given by

�0 D�j'00.s3/'
00.m2;3/j

1=4; b01 D j'
00.s2/'

00.m2;3/j
1=4; b02 D j'

00.s2/'
00.m2;2/j

1=4

and

a01 D j'
00.s1/'

00.m2;1/j
1=4; a02 D�j'

00.s1/'
00.m2;2/j

1=4:

In order to simplify the computation, assume that '00.m/D 1 for allm2 U .0/ and '00.s1/D '00.s2/D�1.
Define � D j'00.s3/j and � D e�.S2�S3/=h. Then

Lbkw;00
D

�
h

�

�1=2
e�S3=h

0@0@�� 0 0

1 0 �

0 � ��

1ACO.h/

1A :
Hence, we can apply Theorem 7.4 with

a0 D .1 � 1/; �0 D��; b0C� D 1; b0�C D .0 1/:

It follows that the singular values of order e�S2=h are

�˙.h/D

�
h

�

�1=2
e�S2=h.

p
�˙CO.h//;

with �˙ eigenvalues of M 0 WD A0� .B0/�.J 0/�1B0, with

A0 D

�
1 �1

�1 2

�
; B0 D .0 � 1/; J 0 D 1C �2:
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+
+

+

+

+

+

+

+
m1

m2

m3

mN

mN�1

s1
s2

sN�1

sN J
O

Figure 11. N wells in dimension 2.

Hence

M 0
D

�
1 �1

�1 2��

�
;

with � D 1=.1C �2/ 2 �0; 1Œ. The eigenvalues of this matrix are

�˙ D
3� �

2
˙

p
.3� �/2� 4.1� �/

2
:

This can be seen as perturbations by the well of height S3 of the eigenvalues �˙ computed in the previous
example (obtained by taking � D 0 in the above formula).

7C3. Computations in higher dimensions. Consider the case of the potential ' having N � 3 minima
m1; : : : ;mN and one local maximum at the origin as presented in Figure 11. Assume also that there
are exactly N saddle points s1; : : : ; sN , all at the same height '.sj /D �2 and that the set f' < �2g has
exactly N connected components E1; : : : ; EN , each Ej containing the minimum mj , and that for all
j D 1; : : : ; N, fsj g D Ej \EjC1 with the convention ENC1 D E1. Assume in addition that all the
'.mj / are equal and write S D �2 � '.m1/. Let us choose m1 as the global minimum associated to
�1 D1. Then all the other minima are associated to the saddle value �2. It is clear that they all belong
to the same equivalence class and that they are all of type II. Moreover, for all m 2 U .0/ n fm1g, one has
H.m/D fmg. Then, we can apply Theorem 7.1 to get the spectrum of the Witten Laplacian associated to
'. It follows that the eigenvalues are given by �1 D 0 and for all nD 2; : : : ; N

�n.h/D bn.h/e
�2S=h.1CO.e�˛=h//; (7-5)

where bn admits a classical expansion

bn.h/'
h

�

X
k�0

bn;kh
k:
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Moreover, one has bn;0 D �2n, where the �n, nD 2; : : : ; N, are the nonzero singular values of the matrix

L WD

0BBBBBBBB@

˛1ˇ1 �˛2ˇ1 0 � � � � � � 0

0 ˛2ˇ2 �˛3ˇ2 0 � � � 0

0 0 ˛3ˇ3
: : : � � � 0

:::
:::

0 � � � � � � 0 ˛N�1ˇN�1 �˛NˇN�1
�˛1ˇN 0 � � � � � � 0 ˛NˇN

1CCCCCCCCA
;

where we set j̨ D '
00.mj /

1=4 and ǰ D .�'
00.sj //

1=4.
If one assumes additionally that j̨ and ǰ are independent of j , let say j̨ D ˛ and ǰ D ˇ, then

LD ˛ˇA with

A D

0BBBBBBBBB@

1 �1 0 � � � � � � 0 0

0 1 �1 0 � � � � � � 0

0 0 1 �1 0 � � � 0
:::

:::
: : :

: : :
: : :

: : :
:::

:::
:::

: : :
: : :

: : : 0

0 0 � � � � � � 0 1 �1

�1 0 � � � � � � 0 0 1

1CCCCCCCCCA
:

The singular values of A are the square roots of the eigenvalues of

A �A D

0BBBBBBB@

2 �1 0 � � � 0 �1

�1 2 �1 � � � 0 0

0 �1 2 �1 � � � 0
:::

:::

0 0 � � � �1 2 �1

�1 0 0 0 �1 2

1CCCCCCCA
;

which are known to be �k D 2.1� cos.2k�=N//, k D 0; : : : ; N � 1. In particular, for all 2� k < N=2,
�k has multiplicity 2 since �k D �N�k .

Suppose now that the potential ' is invariant by a rotation of angle 2�=N ; then (7-5) still holds true
with bn.h/ being the singular values of a matrix of the form

A D �.h/

0BBBBBBBBB@

1 �1 0 � � � � � � 0 0

0 1 �1 0 � � � � � � 0

0 0 1 �1 0 � � � 0
:::

:::
: : :

: : :
: : :

: : :
:::

:::
:::

: : :
: : :

: : : 0

0 0 � � � � � � 0 1 �1

�1 0 � � � � � � 0 0 1

1CCCCCCCCCA
;

with �.h/'
P
k�0 h

k�k . Hence, the above computation is still valid and it follows that for 2� k <N=2,
bk.h/DbN�k.h/. This permits us to recover the results of [Hérau, Hitrik and Sjöstrand 2011, Section 7.4].
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Appendix A: Some results in linear algebra

We collect here some helpful results from linear algebra.

Lemma A.1 (Fan inequalities). Let A;B be two matrices and denote by �n.X/ the singular values of X .
Then

�n.AB/� kBk�n.A/;

�n.AB/� kAk�n.B/;

where kCk denotes the norm of C W Rp! Rq with R� endowed with `2 norms.

Proof. See [Simon 1979]. �

Lemma A.2. Let AD diag.A1; : : : ; AN / be a block diagonal matrix. Then the singular values of A are
the singular values of the An counted with multiplicities.

Proof. It is straightforward, since A�AD diag.A�1A1; : : : ; A
�
NAN /. �

Lemma A.3. Let E, F be two finite-dimensional vector spaces and A.h/ W E ! F be a family of
linear operators depending on a parameter h 2 �0; 1�. Assume that A.h/ admits a classical expansion
A.h/�

P
k�0 h

kAk and that the matrix A0 has nonzero singular values. Then, for h > 0 small enough
the singular values �n.h/ of A.h/ admit a classical expansion

�n.h/�
X
k�0

hk�kn;

where the �0n are the singular values of A0.

Proof. Since the singular values of A.h/ are the eigenvalues of A�A, which is selfadjoint, the result
follows easily from Kato’s perturbation theory of analytic families of selfadjoint operators [Kato 1966,
Chapter 2, Section 1] applied to the expansion of A�A in h powers cut at finite rank. �

Lemma A.4. Let A be a p� .qC 1/ matrix and T a .qC 1/� q matrix. Assume that T �T D Id and that
kerAD Ran.T /?. Then the singular values of A are f0; z1; : : : ; zqg, where z1; : : : ; zq are the singular
values of AT.

Proof. First observe that since kerADRan.T /?, 0 is a singular value of multiplicity 1 of A. Let us denote
by Q�0 a unit vector such that kerAD R Q�0. By definition, there exists an orthonormal basis �1; : : : ; �q of
Rq such that

T �A�AT �k D z
2
k�k (A-1)

for all k D 1; : : : ; q. Let us set Q�k D T �k . Since T �T D Id; then the set of Q�k is an orthonormal family
of RqC1. Moreover, since kerAD Ran.T /?, we have „D fQ�0; : : : ; Q�qg is an orthonormal basis of RqC1.
Moreover, for all k D 1; : : : ; q, it follows from (A-1) that

jA Q�kj
2
D jAT �kj

2
D z2k :

This shows that the matrix A�A in the basis „ is exactly diag.0; z21 ; : : : ; z
2
q/ and proves the result. �
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Lemma A.5. Let M be a real matrix. Assume that M is symmetric definite positive and that it admits a
block decomposition

MD
�
J B�

B N

�
:

Then J and N �B�J�1B are symmetric definite positive.

Proof. This is quite standard, but we recall the proof for the reader’s convenience. Of course J and
N �B�J�1B are symmetric. Moreover, since M is positive definite,

hJx; xi D

�
M
�
x

0

�
;

�
x

0

��
� cjxj2

for some c > 0. This shows that J is definite positive. On the other hand, setting

�D

�
I �J�1B�

0 I

�
;

one has

��M�D

�
J 0

0 N�BJ�1B�

�
:

Since M is positive definite, this implies that N �BJ�1B� is positive definite. �

Appendix B: Link between R and the Generic Assumption

Proposition B.1. Suppose that the Generic Assumption is satisfied; that is, for allm 2 U .0/ one has the
following:

� 'jE.m/ has a unique minimum point.

� If E is a connected component of f' < �.m/g such that E\V.1/¤∅, there exists a unique s 2 V.1/

such that '.s/ D supE \ V.1/. In particular, E \ '�1.��1; '.s/Œ/ is the union of exactly two
different connected components.

Then for allm 2 U .0/, Cl.m/ is reduced to fmg.

Proof. If mDm there is nothing to prove. Suppose that m 2 U0/ and apply assumption (ii) to E�.m/.
One has evidently V.1/\E�.m/¤∅ since it contains E.m/�E�.m/ and E.m/ is a critical component.
Hence, E�.m/\f' < �.m/g has exactly two connected components which are necessarily yE.m/ and
E.m/. Suppose now that m0Rm. Then �.m0/D �.m/ and hence m0 … yE.m/. Therefore m0 2 E.m/,
which implies mDm0. �

Remark B.2. There exist functions ' such that Cl.m/ D fmg for all m 2 U .0/ and that do not satisfy
the Generic Assumption. Take for instance ' W R2! R with two minima m1;m2 and two saddle points
s1; s2 such that

'.m1/ < '.m2/ < '.s1/D '.s2/:

Then, of course Cl.mj /D fmj g for j D 1; 2. On the other hand, since s1; s2 are two saddle points at the
same height (which turns out to be the maximal height of saddle points), (ii) of (GA) is not satisfied.
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Appendix C: List of symbols

We list the notation used in the paper and give the first place each appears:

U .0/, U .1/ page 155
n0, n1 page 155
F . � / page 155
V.1/ Definition 2.1

C , †, † Definition 2.1
S , � above (2-3)

S (2-3)
U .0/ (2-4)
E (2-5)

�.m/ below (2-5)
H.m/ (2-6)
E� (2-7)
yE (2-9)
Om (2-10)

U .0/; I, U .0/; II Definition 2.3
R Definition 2.5

U .0/˛ (2-14)
A, A below (2-14)
q˛ below (2-14)

U .0/; I˛ , U .0/; II˛ below (2-14)
S˛ (2-16)

p.˛/ (2-16)
�˛j below (2-16)

V.1/˛ (3-2)

uU .0/˛ (3-3)
�˛ (3-4)

V.1/;b˛ , V.1/;i˛ Lemma 3.4
yU .0/; II˛ (3-10)
�˛0 .m/ (3-11)
yH˛.m/ (3-12)
yU .0/˛ (3-15)
T ˛ Definition 3.7
L� (4-1)
L�;0 below (4-1)
Lbkw (4-2)

Lbkw;0 (4-3)
Lbkw;00 (4-5)

L above Lemma 4.2
L ˛ (4-6)
yL
˛

Lemma 4.3
h'.m/ (4-7)
zL
˛

(4-9)
uL
˛

(5-3)
SC, SCcl above Definition 5.4

G .E ; �/, Gcl.E ; �/ Definition 5.4
�2 (5-19)
�1 (5-20)
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