
PURE and APPLIED
ANALYSIS

msp

DEJAN GAJIC AND JONATHAN LUK

THE INTERIOR OF DYNAMICAL EXTREMAL BLACK HOLES
IN SPHERICAL SYMMETRY

vol. 1 no. 2 2019





PURE and APPLIED
ANALYSIS
Vol. 1, No. 2, 2019
dx.doi.org/10.2140/paa.2019.1.263

msp

THE INTERIOR OF DYNAMICAL EXTREMAL BLACK HOLES
IN SPHERICAL SYMMETRY

DEJAN GAJIC AND JONATHAN LUK

We study the nonlinear stability of the Cauchy horizon in the interior of extremal Reissner–Nordström
black holes under spherical symmetry. We consider the Einstein–Maxwell–Klein–Gordon system such
that the charge of the scalar field is appropriately small in terms of the mass of the background extremal
Reissner–Nordström black hole. Given spherically symmetric characteristic initial data which approach
the event horizon of extremal Reissner–Nordström sufficiently fast, we prove that the solution extends
beyond the Cauchy horizon in C0, 1

2 ∩W 1,2
loc , in contrast to the subextremal case (where generically the

solution is C0
\ (C0, 1

2 ∩W 1,2
loc )). In particular, there exist nonunique spherically symmetric extensions

which are moreover solutions to the Einstein–Maxwell–Klein–Gordon system. Finally, in the case that
the scalar field is chargeless and massless, we additionally show that the extension can be chosen so that
the scalar field remains Lipschitz.
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1. Introduction

In this paper, we initiate the study of the interior of dynamical extremal black holes. The Penrose diagram
corresponding to maximal analytic extremal Reissner–Nordström and Kerr spacetimes is depicted in
Figure 1. In particular, if one restricts to a globally hyperbolic subset with an (incomplete) asymptotically
flat Cauchy hypersurface (see the region D+(6) in Figure 1), then these spacetimes possess smooth
Cauchy horizons CH+, whose stability property is the main object of study of this paper.
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Since the pioneering work [Poisson and Israel 1989] and the seminal works [Dafermos 2003; 2005]
in the spherically symmetric setting, we now have a rather complete understanding of the interior of
dynamical black holes which approach subextremal limits along the event horizon, at least regarding the
stability of the Cauchy horizons. The works [Costa et al. 2015b; Dafermos 2003; 2005; 2014; Franzen
2016; Hintz 2017; Kommemi 2013; Luk 2018] culminated in the recent work [Dafermos and Luk 2017],
which proves the C0 stability of the Kerr Cauchy horizon without any symmetry assumptions; i.e., they
show that whenever the exterior region of a black hole approaches a subextremal, strictly rotating Kerr
exterior, then maximal Cauchy evolution can be extended across a nontrivial piece of Cauchy horizon as a
Lorentzian manifold with continuous metric. Moreover, it is expected that for a generic subclass of initial
data, the Cauchy horizon is an essential weak null singularity, so that there is no extension beyond the
Cauchy horizon as a weak solution to the Einstein equations; see [Dafermos 2005; Gleeson 2016; Luk
and Oh 2017a; 2017b; Luk and Sbierski 2016; Van de Moortel 2018] for recent progress and discussion.

On the other hand, much less is known about dynamical black holes which become extremal along the
event horizon. Mathematically, the only partial progress was made for a related linear problem, namely the
study of the linear scalar wave equation on extremal black hole backgrounds. For the linear scalar wave
equation, the first author established [Gajic 2017a; 2017b] that in the extremal case, the Cauchy horizon
is more stable than its subextremal counterpart. In particular, the solutions to linear wave equations are
not only bounded, as in the subextremal case, but they in fact obey higher regularity bounds which fail
in the subextremal case (see Section 1A for a more detailed discussion). Extrapolating from the linear
result, it may be conjectured that in the interior of a black hole which approaches an extremal black hole
along the event horizon, not only does the solution remain continuous up to the Cauchy horizon as in
the subextremal case, but in fact there are nonunique extensions beyond the Cauchy horizon as weak
solutions. This picture, if true, would also be consistent with the numerical study of this problem by
Murata, Reall and Tanahashi [Murata et al. 2013].

In this paper, we prove that this picture holds in a simple nonlinear setting. More precisely, we study
the Einstein–Maxwell–Klein–Gordon system of equations with spherically symmetric initial data (see
Section 3 for further discussions on the system). We solve for a quintuple (M, g, φ, A, F), where (M, g)
is a Lorentzian metric, φ is a complex-valued function on M, and A and F are real 1- and 2-forms on M
respectively. The system of equations is

Ricµν − 1
2 gµνR = 8π(T(sf)

µν +T
(em)
µν ),

T
(sf)
µν =

1
2 DµφDνφ+

1
2 DµφDνφ−

1
2 gµν((g−1)αβDαφDβφ+m2

|φ|2),

T
(em)
µν = (g−1)αβFµαFνβ − 1

4 gµν(g−1)αβ(g−1)γ σ Fαγ Fβσ ,

(g−1)αβDαDβφ =m2φ,

F = d A,

(g−1)αµ∇αFµν = 2π ie(φDνφ− φ̄Dνφ).

(1-1)

Here, ∇ denotes the Levi–Civita connection associated to the metric g, and Ric and R denote the Ricci
tensor and the Ricci scalar, respectively. We also use the notation Dα =∇α + ieAα , and m≥ 0, e ∈ R are
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fixed constants. The extremal Reissner–Nordström solution (see Section 3) is a special solution to (1-1)
with a vanishing scalar field φ.

In the following we will restrict the parameters so that |e| is sufficiently small in terms of M. More
precisely, we assume

1− (10+ 5
√

6− 3
√

9+ 4
√

6)|e|M > 0. (1-2)

Under the assumption (1-2), our main result can be stated informally as follows (we refer the reader to
Theorem 5.1 for a precise statement):

Theorem 1.1. Consider the characteristic initial value problem to (1-1) with spherically symmetric
smooth characteristic initial data on two null hypersurfaces transversely intersecting at a 2-sphere.
Assume that one of the null hypersurfaces is affine complete and that the data approach the event horizon
of extremal Reissner–Nordström at a sufficiently fast rate.

Then, the solution to (1-1) arising from such data, when restricted to a sufficiently small neighborhood
of timelike infinity (i.e., a neighborhood of i+ in Figure 1), satisfies the following properties:

• It possesses a nontrivial Cauchy horizon.

• The scalar field, the metric, the electromagnetic potential (in an appropriate gauge) and the charge
can be extended in (spacetime) C0, 1

2 ∩W 1,2
loc up to the Cauchy horizon. Moreover, the Hawking mass

(2-10) can be extended continuously up to the Cauchy horizon.

• The metric converges to that of extremal Reissner–Nordström towards timelike infinity and the scalar
field approaches 0 towards timelike infinity in an appropriate sense.

Moreover, the maximal globally hyperbolic solution is future extendible (nonuniquely) as a spherically
symmetric solution to (1-1).

Remark 1.2 (solutions with regularity below C2). The extensions of the solution we construct have
regularity below (spacetime) C2 and as such do not make sense as classical solutions. As is well known,
however, the Einstein equations admit a weak formulation which makes sense already if the metric is in
(spacetime) C0

∩W 1,2
loc and the stress-energy-momentum tensor is in spacetime L1

loc [Geroch and Traschen
1987]. The weak formulation can be recast geometrically as follows: given a smooth (3+1)-dimensional
manifold M, a C0

loc∩W 1,2
loc Lorentzian metric g and an L1

loc symmetric 2-tensor T, we say that the Einstein
equation Ric(g)− 1

2 gR(g)= 8πT is satisfied weakly if for all smooth and compactly supported vector
fields X, Y, ∫

M
((∇µX)µ(∇νY )ν − (∇µX)ν(∇νY )µ)= 8π

∫
M

(
T (X, Y )− 1

2 g(X, Y ) trg T
)
.

It is easy to check that any classical solution is indeed a weak solution in the sense above. Moreover, the
extensions that we construct in Theorem 1.1 have more than sufficient regularity to be interpreted in the
sense above.

However, in our setting we do not need to use the notion in [Geroch and Traschen 1987]. Instead,
we introduce a stronger notion of solutions, defined on a quotient manifold for which we quotiented
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Figure 1. Maximal analytically extended extremal Reissner–Nordström.

out the spherical symmetry; see Definition 10.4. This class of solutions — even though they are not
classical solutions — should be interpreted as strong solutions (instead of just weak solutions) since a
well-posedness theory can be developed for them;1 see Section 10.

Remark 1.3 (contrast with the subextremal case). Like in the subextremal case, the solution extends in
C0 to the Cauchy horizon. However, the C0, 1

2 ∩W 1,2
loc extendibility and the finiteness of the Hawking

mass, as well as the extendibility as a spherically symmetric solution, stand in contrast to the subextremal
case. In particular, according to the results of [Luk and Oh 2017b; ≥ 2019], see also [Dafermos 2005],
there are solutions which asymptote to subextremal Reissner–Nordström black holes in the exterior region
such that the Hawking mass blows up at the Cauchy horizon, and the solution cannot be extended as a
spherically symmetric solution to the Einstein–Maxwell-scalar field system.2

Remark 1.4 (regularity of the metric and extensions as solutions to (1-1)). The fact that we can extend
the solutions beyond the Cauchy horizon is intimately connected to the regularity of the solutions up to

1 In fact, in order to develop a well-posedness theory for strong solutions, one can even drop the assumption of spherical
symmetry, and instead require additional regularity along the “spherical directions” with respect to an appropriately defined
double null foliation gauge; see [Luk and Rodnianski 2017] for details.

2Though the estimates in [Luk and Oh 2017b] strongly suggest that the scalar field ceases to be in W 1,2
loc for any C0 extension

of the spacetime, this remains an open problem unless spherical symmetry is imposed. In particular, it is not known whether the
solutions constructed in [Luk and Oh 2017b; ≥ 2019] can be extended as weak solutions to the Einstein–Maxwell-scalar field
system if no spherical symmetry assumption is imposed.
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the Cauchy horizon. In particular this relies on the fact the metric, the scalar field and the electromagnetic
potential remain in (spacetime) C0

∩W 1,2
loc . In fact, the solutions are at a level of regularity for which

the Einstein equations are still locally well-posed.3 One can therefore construct extensions beyond the
Cauchy horizon by solving appropriate characteristic initial value problems; see Section 10.

In this connection, note that we emphasized in the statement of the theorem that the solution can be
extended beyond the Cauchy horizon as a spherically symmetric solution to (1-1). The emphasis on the
spherical symmetry of the extension is made mostly to contrast with the situation in the subextremal
case (see Remark 1.3). This should not be understood as implying that the extensions necessarily are
spherically symmetric: In fact, with the bounds that we establish in this paper, one can in principle
construct using the techniques in [Luk and Rodnianski 2017] extensions (still as solutions to (1-1)) without
any symmetry assumptions (see footnote 1).

Remark 1.5 (assumptions on the event horizon). The assumptions we impose on the event horizon are
consistent with the expected late-time behavior of the solutions in the exterior region of the black hole, at
least in the e=m= 0 case if one extrapolates from numerical results [Murata et al. 2013]. In particular,
the transversal derivative of the scalar field is not required to decay along the event horizon, and is
therefore consistent with the Aretakis instability [2015]. Of course, in order to completely understand
the structure of the interior, one needs to prove that the decay estimates along the event horizon indeed
hold for general dynamical solutions approaching these extremal black holes. This remains an open
problem.

Remark 1.6 (range of parameters of e and M). Our result only covers a limited range of parameters of
the model; see (1-2). This restriction comes from a Hardy-type estimate used to control the renormal-
ized energy (see Sections 1B and 8B) and we have not made an attempt to obtain the sharp range of
parameters.

Remark 1.7 (the m= e= 0 case and higher regularity for φ). In the special case m= e= 0, the analysis
is simpler and we obtain a stronger result; namely, we show that the scalar field in fact is Lipschitz up to
the Cauchy horizon (see Theorem 5.5).

Remark 1.8 (the m 6= 0, e 6= 0 case). While the result we obtain in the m 6= 0, e 6= 0 case is weaker, the
general model allows for the charge of the Maxwell field to be nonconstant, and serves as a better model
problem for the stability of the extremal Cauchy horizon without symmetry assumptions. Another reason
that we do not restrict ourselves to the simpler m = e = 0 case is that in the m = e = 0 case, extremal
black holes do not naturally arise dynamically:

• There are no one-ended black holes with nontrivial Maxwell field with regular data on R3 since in
that setting the Maxwell field necessarily blows up at the axis of symmetry.

3Note that in general the Einstein equations are not locally well-posed with initial data only in C0
∩W 1,2. Nevertheless, when

there is spherical symmetry (away from the axis of symmetry), or at least when there is additional regularity in the spherical
directions (see footnote 1), one can indeed develop a local well-posedness theory with such low regularity.
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• In the two-ended case, given future-admissible4 (in the sense of [Dafermos 2014]) initial data, the
solution always approaches subextremal black holes in each connected component of the exterior
region [Kommemi 2013; Luk and Oh 2017b].

On the other hand, if e 6= 0, then in principle there are no such obstructions.5

Remark 1.9 (geometry of the black hole interior). One feature of the black hole interior of extremal
Reissner–Nordström is that it is free of radial trapped surfaces — a stark contrast to the subextremal case
(where every sphere of symmetry is the black hole interior is trapped!). Let us note that this feature
has sometimes been taken as the defining feature of spherically symmetric extremal black holes; see for
instance [Israel 1986]. We will not use this definition in this paper, and when talking about “extremal
black holes”, we will only be referring to black holes which converge to a stationary extremal black hole
along the event horizon as in Theorem 1.1. Indeed, while our estimates imply that for the solutions in
Theorem 1.1 the geometry of the black hole interior is close to that of extremal Reissner–Nordström, it
remains an open problem in the general case whether the black hole interior contains any radial trapped
surface.6

The fact that the extremal Cauchy horizons are “more stable” than their subextremal counterparts
can be thought of as related to the vanishing of the surface gravity in the extremal case. Recall that in
both the extremal and subextremal charged Reissner–Nordström spacetimes, there is a global infinite
blue shift effect such that the frequencies of signals sent from the exterior region into the black hole
are shifted infinitely to the blue [Penrose 1968]. As a result, this gives rise to an instability mechanism.
Indeed, Sbierski [2015] showed7 that for the linear scalar wave equation on both extremal and subextremal
Reissner–Nordström spacetime, there exist finite energy Cauchy data which give rise to solutions that are
not W 1,2

loc at the Cauchy horizon. On the other hand, as emphasized in [Sbierski 2015], these types of
considerations do not take into account the strength of the blue shift effect and do not give information
on the behavior of the solutions arising from more localized data. Heuristically, for localized data, one
needs to quantify the amplification of the fields by a “local” blue shift effect at the Cauchy horizon,
whose strength can be measured by the surface gravity. In this language, what we see in Theorem 1.1 is a
manifestation of the vanishing of the local blue shift effect at the extremal limit.

This additional stability of the extremal Cauchy horizon due to the vanishing of the surface gravity
may at the first sight seem to make the problem simpler than its subextremal counterpart. Ironically, from

4The future-admissibility condition can be thought of as an analogue of the physical “no antitrapped surface” assumption in
the one-ended case.

5Nevertheless, it is an open problem to construct a dynamical black hole with regular data that settles down to an extremal
black hole.

6Note however that in the e=m= 0 case, if we assume in addition that ∂U r < 0 everywhere along the event horizon, we
can in principle modify the monotonicity argument of [Kommemi 2013] in establishing the subextremality of two-ended black
holes (see Remark 1.8) to show that the interior in the extremal case is free of radial trapped surfaces. Indeed, the argument of
[loc. cit.] exactly proceeds by (1) showing that there are no interior trapped surfaces in the interior of extremal black holes and
(2) establishing a contradiction with the future-admissibility condition. See also the appendix of [Luk and Oh 2017b].

7This statement is technically not explicitly proven in [Sbierski 2015], but it follows from the result there together with
routine functional analytic arguments.
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the point of view of the analysis, the local blue shift effect in the subextremal case in fact provides a way
to prove stable estimates! This method fails at the extremal limit.

To further illustrate this, first note that in the presence of the blue shift effect, one necessarily proves
degenerate estimates. By exploiting the geometric features of the interior of subextremal black holes, the
following can be shown: when proving degenerate energy-type estimates, by choosing the weights in
the estimates appropriately, one can prove that the bulk spacetime integral terms (up to a small error)
have a good sign, and can be used to control the error terms; see the discussions in the introduction of
[Dafermos and Luk 2017]. As a consequence, one can in fact obtain a stability result for a large class
of nonlinear wave equations with a null condition, irrespective of the precise structure of the linearized
system. This observation is also at the heart of [loc. cit.].

In the extremal case, however, it is not known how to obtain a sufficiently strong coercive bulk spacetime
integral term when proving energy estimates. Moreover, if one naively attempts to control the spacetime
integral error terms by using the boundary flux terms of the energy estimate and Grönwall’s lemma, one
encounters a logarithmic divergence. To handle the spacetime integral error terms, we need to use more
precise structures of the equations, and we will show that there is a cancellation in the weights appearing
in the bulk spacetime error terms. This improvement of the weights then allows the bulk spacetime error
terms to be estimated using the boundary flux terms and a suitable adaptation8 of Grönwall’s lemma.
In particular, we need to use the fact that (1) a renormalized energy can be constructed to control the
scalar field and the Maxwell field simultaneously, and that (2) the equations for the matter fields and the
equations for the geometry are “sufficiently decoupled” (see Section 1B). These structures seem to be
specific to the spherically symmetric problem: to what extent this is relevant to the general problem of
stability of extremal Cauchy horizons without symmetry assumptions remains to be seen.

The study of the stability properties of subextremal Cauchy horizons is often motivated by the strong
cosmic censorship conjecture. The conjecture states that solutions arising from generic asymptotically
flat initial data are inextendible as suitably regular Lorentzian manifolds. In particular, the conjecture,
if true, would imply that smooth Cauchy horizons, which are present in both extremal and subextremal
Reissner–Nordström spacetimes, are not generic in black hole interiors. As we have briefly discussed
above, there are various results establishing this in the subextremal case; see for example [Dafermos
2005; Luk and Oh 2017b; ≥ 2019; Van de Moortel 2018]. In fact, one expects that generically, if a
solution approaches a subextremal black hole at the event horizon, then the spacetime metric does not
admit W 1,2

loc extensions beyond the Cauchy horizon; see discussions in [Dafermos and Luk 2017]. On the
other hand, our result shows that at least in our setting, this does not occur for extremal Cauchy horizons.
Nevertheless, since one expects that generic dynamical black hole solutions are nonextremal, our results,
which only concern black holes that become extremal in the limit, are in fact irrelevant to the strong
cosmic censorship conjecture. In particular, provided that extremal black holes are indeed nongeneric
as is expected, the rather strong stability that we prove in this paper does not pose a threat to cosmic
censorship.

8In fact, using the smallness parameters in the problem, this will be implemented without explicitly resorting to Grönwall’s
lemma.
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Finally, even though our result establishes the C0, 1
2 ∩W 1,2

loc stability of extremal Cauchy horizons in
spherical symmetry, it still leaves open the possibility of some higher derivatives of the scalar field or the
metric blowing up (say, the Ck norm blows up for some k ∈ N). Whether this occurs or not for generic
data remains an open problem.

1A. Previous results on the linear wave equation. In this section, we review the results established in
[Gajic 2017a; 2017b] concerning the behaviour of solutions to the linear wave equation �gφ = 0 in the
interior of extremal black holes. The results concern the following cases:

• general solutions on extremal Reissner–Nordström,

• general solutions on extremal Kerr–Newman with sufficiently small specific angular momentum,

• axisymmetric solutions on extremal Kerr.

In each of these cases, the following results are proven (in a region sufficiently close to timelike infinity):

(A) φ is bounded and continuously extendible up to the Cauchy horizon.

(B) φ is C0,α up to the Cauchy horizon for all α ∈ (0, 1).

(C) φ has finite energy and is W 1,2
loc up to the Cauchy horizon.

As we mentioned earlier, these results are in contrast with the subextremal case; (A) holds also for
subextremal Reissner–Nordström and Kerr [Franzen 2016; Hintz 2017], (B) is false9 on subextremal
Reissner–Nordström [Dafermos 2005; Angelopoulos et al. 2018] and (C) is false on both subextremal
Reissner–Nordström and Kerr [Luk and Oh 2017a; Luk and Sbierski 2016]. (In fact, in subextremal
Reissner–Nordström, generic solutions fail to be in W 1,p

loc for all p> 1; see [Dafermos 2005; Angelopoulos
et al. 2018; Gleeson 2016].)

At this point, it is not clear whether the estimates in [Gajic 2017a; 2017b] are sharp. In the special
case of spherically symmetric solutions on extremal Reissner–Nordström, [Gajic 2017a] proves that the
solution is in fact C1 up to the Cauchy horizon. Moreover, if one assumes more precise asymptotics along
the event horizon (motivated by numerics), then it is shown that spherically symmetric solutions are C2.

Our results in the present paper can be viewed as an extension of those in [Gajic 2017a] to a nonlinear set-
ting. In particular, we show that even in the nonlinear (although only spherically symmetric) setting, φ still
obeys (A) and (C), and satisfies (B) in the subrange α ∈

(
0, 1

2

]
. Moreover, the metric components, the elec-

tromagnetic potential, and the charge, in appropriate coordinate systems and gauges, verify similar bounds.

1B. Ideas of the proof.

Model linear problems. The starting point of the analysis is to study linear systems of wave equations
on fixed extremal Reissner–Nordström background. A simple model of such a system is the following
(where a, b, c, d ∈ R):

�geRNφ = aφ+ bψ, �geRNψ = cψ + dφ. (1-3)

9This result is not explicitly stated in the literature, but can be easily inferred given the sharp asymptotics for generic solutions
in [Angelopoulos et al. 2018] and the blowup result in [Dafermos 2005] appropriately adapted to the linear setting.
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It turns out that in the extremal setting, we still lack an understanding of solutions to such a model system in
general. (This is in contrast to the subextremal case, where the techniques of [Franzen 2016; Dafermos and
Luk 2017] show that solutions to the analogue of (1-3) are globally bounded for any fixed a, b, c, d ∈ R.)

Instead, we can only handle some subcases of (1-3). Namely, we need a ≥ 0, c ≥ 0 and b = d = 0.
Put differently, this means that we can only treat decoupled Klein–Gordon equations with nonnegative
mass. Remarkably, as we will discuss later, although the linearized equations of (1-1) around extremal
Reissner–Nordström are more complicated than decoupled Klein–Gordon equations with nonnegative
masses, one can find a structure in the equations so that the ideas used to handle special subcases of (1-3)
can also apply to the nonlinear problem at hand.

Estimates for linear fields using ideas in [Gajic 2017a]. The most simplified case of (1-3) is the linear
wave equation with zero potential �geRNφ = 0. In the interior of extremal Reissner–Nordström spacetime,
this has been treated by the first author in [Gajic 2017a]. That paper is based on the vector field multiplier
method, which obtains L2-based energy estimates for the derivatives of φ. The vector field multiplier
method can be summarized as follows: Consider the stress-energy-momentum tensor

Tµν = ∂µφ ∂νφ−
1
2 gµν(g−1)αβ ∂αφ ∂βφ.

For a well-chosen vector field V, one can then integrate the identity for the current TµνV ν,

∇
µ(TµνV ν)= 1

2 Tµν(∇
µV ν
+∇

νV µ),

to obtain an identity relating a spacetime integral and a boundary integral.
When V is casual, future-directed and Killing, the above identity yields a coercive conservation law.

In the interior of extremal Reissner–Nordström ∂t =
1
2(∂v + ∂u) (see the definition of (u, v)-coordinates

in Section 3) is one such vector field. This vector field, however, is too degenerate near the event
horizon and the Cauchy horizon, and one expects the corresponding estimates to be of limited use in a
nonlinear setting. A crucial observation in [Gajic 2017a] is that the vector field V = |u|2 ∂u + v

2 ∂v (in
Eddington–Finkelstein double null coordinates, see Section 3) can give a useful, stronger, estimate. More
precisely, V = |u|2 ∂u + v

2 ∂v has the following properties:

(1) V is a nondegenerate vector field at both the event horizon and the Cauchy horizon.

(2) V is causal and future-directed. Hence, together with (1), this shows that the current associated to V,
when integrated over null hypersurfaces, corresponds to nondegenerate energy.

(3) Moreover, although V is not Killing, ∇µV ν
+∇

νV µ has a crucial cancellation10 so that the spacetime
error terms can be controlled by the boundary integrals.

These observations allow us to close the estimate and to obtain nondegenerate L2 control for the derivatives
of φ. Furthermore, the boundedness of such energy implies

|φ|(u, v). Data(v)+ |u|−
1
2 , (1-4)

10More precisely, ∇vV u
+∇

u V v =− 1
2�
−2(∂uu2

+∂vv
2
+�−2(u2 ∂u+v

2 ∂v)�
2).�−2, whereas each single term, e.g.,

�−2 ∂vv
2
∼ v�−2, behaves worse as |u|, v→∞. Without this cancellation, the estimate exhibits a logarithmic divergence.
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where, provided the data term decays in v, φ → 0 as |u|, v →∞. Moreover, using the embedding
W 1,2 ↪→ C0, 1

2 in one dimension, we also conclude that φ ∈ C0, 1
2 .

In spherical symmetry, it is in fact possible to control the solution to the linear wave equation up to the
Cauchy horizon using only the method of characteristics.11 Here, however, there is an additional twist to
the problem. We will need to control solutions to the Klein–Gordon equation with nonzero mass12

�geRNφ =m2φ.

For this scalar equation, however, whenever the mass is nonvanishing, using the method of characteristics
and naïve estimates leads to potential logarithmic divergences. Nonetheless, if m2 > 0, the argument
above which makes use of the vector field multiplier method can still be applied. In this case, one defines
instead the stress-energy-momentum tensor as

Tµν = ∂µφ ∂νφ−
1
2 gµν((g−1)αβ ∂αφ ∂βφ+m2φ2).

As it turns out, the observations (1), (2), and (3) still hold in the m2 > 0 case for the vector field
V = |u|2 ∂u+v

2 ∂v . In particular, there is a crucial cancellation in the bulk term as above, which removes
the logarithmically nonintegrable term and allows one to close the argument. Again, this consequently
yields also decay estimates and C0, 1

2 bounds for φ.
Let us recap what we have achieved for the model problem (1-3). The discussions above can be used

to deal fully with the case a ≥ 0, c≥ 0 and b= d = 0. If a < 0 or c< 0, one still has a cancellation in the
bulk spacetime term, but the boundary terms are not nonnegative. If, on the other hand, b 6= 0 or d 6= 0,
then in general one sees a bulk term which is exactly borderline and leads to logarithmic divergence.

Renormalized energy estimates for the matter fields. In order to attack our problem at hand, the first step
is to understand the propagation of the matter field even without coupling to gravity. In other words,
we need to control the solution to the Maxwell-charged Klein–Gordon system in the interior of fixed
extremal Reissner–Nordström. (A special case of this, when m= e= 0 is exactly what has been studied
in [Gajic 2017a].)

One difficulty that arises in controlling the matter fields is that when e 6= 0, the energy estimates for
the scalar field couple with estimates for the Maxwell field. If one naïvely estimates each field separately,
while treating the coupling as error terms, one encounters logarithmically divergent terms similar to those
appearing when controlling (1-3) for b 6= 0 or d 6= 0. Instead, we prove coupled estimates for the scalar
field and the Maxwell field simultaneously.

In order to prove coupled energy estimates, a natural first attempt would be to use the full stress-
energy-momentum tensor (i.e., the sum T = T(sf)

+ T(em)) and consider the current TµνV ν, where

11In fact, as in shown in [Gajic 2017a], the method of characteristics, when combined with the energy estimates, yields more
precise estimates when the initial data are assumed to be spherically symmetric. While [loc. cit.] does not give a proof of the
estimates in the spherically symmetric case purely based on the method characteristics, such a proof can be inferred from the
proof of Theorem 5.5 in Section 11.

12As we will discuss below, the need to consider the Klein–Gordon equation with nonzero mass stems not only from our
desire to include mass in the matter field in (1-1), but when attempting to control the metric components, one naturally encounters
a Klein–Gordon equation with positive mass.
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V = |u|2 ∂u + v
2 ∂v as in [Gajic 2017a]. However, since the charge is expected to asymptote to a nonzero

value (as it does initially along the event horizon), this energy is infinite!
Instead, we renormalize the energy to take out the infinite contribution from the background charge.

We are then faced with two new issues:

• The renormalized energy is not manifestly nonnegative.

• Additional error terms are introduced.

Here, it turns out that one can use a Hardy-type inequality to show that the renormalized energy is
coercive. (This is the step for which we need a restriction on the parameters of the problem.) Moreover,
the additional spacetime error terms that are introduced in the energy estimates also exhibit the cancellation
described in footnote 10 on page 271.

Estimates for the metric components. Having understood the uncoupled Maxwell–Klein–Gordon system,
we now discuss the problem where the Maxwell–Klein–Gordon system is coupled with the Einstein
equations. First, we write the metric in double null coordinates:

g =−�2(u, v) du dv+ r2(u, v)σS2,

where σS2 is the standard round metric on S2 (with radius 1). In such a gauge, the metric components r
and� satisfy nonlinear wave equations with φ and ∂φ as sources. In addition, r satisfies the Raychaudhuri
equations, which can be interpreted as constraint equations.

We control r directly using the method of characteristics. As noted before, using the method of
characteristics for wave equations with nontrivial zeroth-order terms13 leads to potentially logarithmically
divergent terms. To circumvent this, we use both the wave equation and the Raychaudhuri equations
satisfied by r : using different equations in different regions of spacetime, one can show using the method
of characteristics that

|r −M |. v−1
+ |u|−1, |∂vr |. v−2, |∂ur |. |u|−2.

For �, instead of controlling it directly, we bound the difference log�− log�0, where �0 corresponds
to the metric component of the background extremal Reissner–Nordström spacetime. We will control it
using the wave equation satisfied by �; see (2-2). Again, as is already apparent in the discussion of (1-3),
to obtain wave equation estimates, we need to use the structure of the equation. Using the estimates for φ
and r , the equation for log�− log�0 can be thought of as follows (modulo terms that are easier to deal
with and are represented by · · · ):

∂u∂v log �
�0
=−

1
4 M2(elog�2

− elog�2
0)+ · · · . (1-5)

Thus, when � is close to �0, (1-5) can be viewed as a nonlinear perturbation of the Klein–Gordon
equation with positive mass, which is moreover essentially decoupled from the other equations. Hence,
as long as we can control the error terms and justify the approximation (1-5), we can handle this equation

13The wave equation for r indeed has such zeroth order terms; see (2-1).



274 DEJAN GAJIC AND JONATHAN LUK

using suitable modifications of the ideas discussed before. In particular, an appropriate modification of
(1-4) implies that �→�0 in a suitable sense as |u|, v→∞.

Finally, revisiting the argument for the energy estimates for Maxwell–Klein–Gordon, one notes that it
can in fact be used to control solutions to the Maxwell–Klein–Gordon system on a dynamical background
such that r and log� approach their Reissner–Nordström values with a sufficiently fast polynomial
rate as |u|, v → ∞. In particular, the estimates we described above for the metric components are
sufficient for us to set up a bootstrap argument to simultaneously control the scalar field and the geometric
quantities.

Note that in terms of regularity, we have closed the problem at the level of the (nondegenerate) L2 norm
of first derivatives of the metric components and scalar field. As long as r > 0, this is the level of regularity
for which well-posedness holds in spherical symmetry. It follows that we can also construct an extension
which is a solution to (1-1).

1C. Structure of the paper. The remainder of the paper is structured as follows. In Section 2, we will
introduce the geometric setup and discuss (1-1) in spherical symmetry. In Section 3, we discuss the
geometry of the interior of the extremal Reissner–Nordström black hole. In Section 4, we introduce the
assumptions on the characteristic initial data. In Section 5, we give the statement of the main theorem
(Theorem 5.1, see also Theorem 5.5). In Section 6, we begin the proof of Theorem 5.1 and set up the
bootstrap argument. In Section 7, we prove the pointwise estimates. In Section 8, we prove the energy
estimates. In Section 9, we close the bootstrap argument and show that the solution extends up to the
Cauchy horizon. In Section 10, we complete the proof of Theorem 5.1 by constructing a spherically
symmetric solution which extends beyond the Cauchy horizon. In Section 11, we prove additional
estimates in the case m= e= 0.

2. Geometric preliminaries

2A. Class of spacetimes. In this paper, we consider spherically symmetric spacetimes (M, g) with
M=Q×S2 such that the metric g takes the form

g = gQ+ r2(dθ2
+ sin2 θ dϕ2),

where (Q, gQ) is a smooth (1+1)-dimensional Lorentzian spacetime and r : Q→ R>0 is smooth and
can geometrically be interpreted as the area radius of the orbits of spherical symmetry. We assume that
(Q, gQ) admits a global double null foliation,14 so that we write the metric g in double null coordinates as

g =−�2(u, v) du dv+ r2(u, v)(dθ2
+ sin2 θ dϕ2),

for some smooth and strictly positive function �2 on Q.

14Note that for sufficiently regular gQ, the metric can always be put into double null coordinates locally. Hence the
assumption is only relevant for global considerations. We remark that the interior of extremal Reissner–Nordström spacetimes
can be written (globally) in such a system of coordinates (see Section 3) and so can spacetimes that arise from spherically
symmetric perturbations of the interior of extremal Reissner–Nordström, which we consider in this paper.
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2B. The Maxwell field and the scalar field. We will assume that both the Maxwell field F and the scalar
field φ in (1-1) are spherically symmetric. For φ, this means that φ is constant on each spherical orbit,
and can be thought of as a function on Q.

For the Maxwell field, spherical symmetry means that there exists a function Q on Q, so that the
Maxwell field F takes the following form

F =
Q

2(π∗r)2
π∗(�2 du ∧ dv),

where π denotes the projection map π :M→Q. We will call Q the charge of the Maxwell field.

2C. The system of equations. In this subsection, we write down the symmetry-reduced equations in a
double null coordinate system as in Section 2A (see [Kommemi 2013] for details). Before we write down
the equations, we introduce the following notation for the covariant derivative operator with respect to the
1-form A:

Dµφ = ∂µφ+ ieAµφ.

2C1. Propagation equations for the metric components.

r∂u ∂vr =− 1
4�

2
− ∂ur ∂vr +m2πr2�2

|φ|2+ 1
4�

2r−2 Q2, (2-1)

r2∂u ∂v log�=−2πr2(DuφDvφ+ DuφDvφ)−
1
2�

2r−2 Q2
+

1
4�

2
+ ∂ur ∂vr. (2-2)

2C2. Propagation equations for the scalar field and electromagnetic tensor.

Du Dvφ+ DvDuφ =−
1
2m

2�2φ− 2r−1(∂ur Dvφ+ ∂vr Duφ), (2-3)

Du Dvφ− DvDuφ =
1
2r−2�2ieQ ·φ, (2-4)

∂u Q = 2π ir2e(φDuφ− φ̄Duφ), (2-5)

∂vQ =−2π ir2e(φDvφ− φ̄Dvφ). (2-6)

Furthermore, we can write

Q = 2r2�−2(∂u Av − ∂vAu). (2-7)

2C3. Raychaudhuri’s equations.

∂u(�
−2 ∂ur)=−4πr�−2

|Duφ|
2, (2-8)

∂v(�
−2 ∂vr)=−4πr�−2

|Dvφ|
2. (2-9)

2D. Hawking mass. Define the Hawking mass m by

m := r
2
(1− gQ(∇r,∇r))= r

2

(
1+

4∂ur ∂vr
�2

)
. (2-10)
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By (2-1), (2-8) and (2-9),

∂um =−8π
r2(∂vr)
�2 |Duφ|

2
+ 2(∂ur)m2πr2

|φ|2+
1
2
(∂ur)Q2

r2 , (2-11)

∂vm =−8π
r2(∂ur)
�2 |Dvφ|

2
+ 2(∂vr)m2πr2

|φ|2+
1
2
(∂vr)Q2

r2 . (2-12)

2E. Global gauge transformations. Consider the following global gauge transformation induced by the
function χ : D→ R, D ⊂ R2:

φ̃(u, v)= e−ieχ(u,v)φ(u, v),

Ãµ(u, v)= Aµ(u, v)+ ∂µχ(u, v),

with µ= u, v. Let us define D̃ = d + ie Ã. Then,

D̃µφ̃ = e−ieχ Dµφ.

As a result we conclude that the norms |φ| = |φ̃| and |Dµφ| = |D̃µφ̃| are (globally) gauge-invariant.
In most of this paper, the choice of gauge will not be important. We will only explicitly choose a gauge

when discussing local existence or when we need to construct an extension of the solution. Instead, most
of the time we will estimate the gauge-invariant quantities |φ| and |Dµφ|. For this purpose, let us note
that we have the following estimates regarding these quantities:

Lemma 2.1. The following estimates hold:

|φ|(u, v)≤ |φ|(u1, v)+

∫ u

u1

|Duφ|(u′, v) du′, (2-13)

|φ|(u, v)≤ |φ|(u, v1)+

∫ v

v1

|Dvφ|(u, v′) dv′. (2-14)

Proof. We can always pick χ such that Au = 0 and D̃uφ̃ = ∂uφ̃. This fact, together with the fundamental
theorem of calculus and the gauge-invariance property above, imply

|φ|(u, v)= |φ̃|(u, v)≤ |φ̃|(u1, v)+

∫ u

u1

|D̃uφ̃|(u′, v) du′ = |φ|(u1, v)+

∫ u

u1

|Duφ|(u′, v) du′,

which implies (2-13).
Similarly, by choosing χ such that Av = 0, we obtain (2-14). �

3. Interior of extremal Reissner–Nordström black holes

The interior region of the extremal Reissner–Nordström solution with mass M > 0 is the Lorentzian
manifold (MeRN, geRN), where MeRN= (0,M)r×(−∞,∞)t×S2 and the metric geRN in the (t, r, θ, ϕ)-
coordinate system is given by

geRN =−�
2
0dt2
+�−2

0 dr2
+ r2

0 (dθ
2
+ sin2 θ dϕ2),
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where

�0 =

(
1−

M
r0

)
.

We define the Eddington–Finkelstein r∗-coordinate (as a function of r ) by

r∗ =
M2

M − r
+ 2M log(M − r)+ r, (3-1)

and define the Eddington–Finkelstein double-null coordinates by

u = t − r∗, v = t + r∗. (3-2)

In Eddington–Finkelstein double-null coordinates (u, v, θ, ϕ), the metric takes the form as in Section 2A:

geRN =−�
2
0(u, v) du dv+ r2

0 (u, v)(dθ
2
+ sin2 θ dϕ2),

where r0 is defined implicitly by (3-1) and (3-2) and �2
0(u, v)= (1−M/(r0(u, v)))2.

For the purpose of this paper, we do not need the explicit expressions for r0 and �0 as functions of
(u, v), but it suffices to have some simple estimates. Since we will only be concerned with the region of
the spacetime close to timelike infinity i+ (see Figure 1),15 we will assume v ≥ 1 and u ≤−1. In this
region, we have the following estimates (the proof is simple and will be omitted):

Lemma 3.1. For v ≥ 1 and u ≤−1, there exists C > 0 (depending on M) such that for v ≥ 1 and u ≤−1,

|r0−M |(u, v)≤
C

(v+ |u|)
, |∂vr0|(u, v)+ |∂ur0|(u, v)≤

C
(v+ |u|)2

.

Given any β > 0, we can find a constant Cβ > 0 (depending on M and β) such that for v ≥ 1 and u ≤−1,∣∣∣∣�0−
2M
v+ |u|

∣∣∣∣(u, v)≤ Cβ(v+ |u|)−2+β, (3-3)

|∂v(v
2�2

0)+ ∂u(u2�2
0)|(u, v)≤ Cβ(v+ |u|)−2+β . (3-4)

3A. Regular coordinates. We would like to think of MeRN as having the “event horizon” and the “Cauchy
horizon” as null boundaries, which are formally the boundaries {u =−∞} and {v =∞} respectively. To
properly define them, we will introduce double null coordinate systems which are regular at the event
horizon and at the Cauchy horizon respectively. We will also use these coordinate systems later in the
paper

• to pose the characteristic initial value problem near the event horizon, and

• to extend the solution up to the Cauchy horizon.

15Formally, it is the “2-sphere at u =−∞, v =∞”.
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3A1. Regular coordinates at the event horizon. Define U by the relation

dU
du
=�2

0(u, 1)=
(

1−
M

r0(u, 1)

)2

, U (−∞)= 0. (3-5)

By Lemma 3.1, there exists a constant C (depending on M), so that we can estimate

0≤
dU
du
≤ C(1+ |u|)−2. (3-6)

Define the event horizon as the boundary {U = 0}. We will abuse notation to denote the event
horizon as both the boundary in the quotient manifold {(U, v) :U = 0} ⊂Q and the original manifold
{(U, v) :U = 0}×S2

⊂MeRN (see Section 2).
After defining u(U ) as the inverse of u 7→U, we abuse notation to write r0(U, v)= r0(u(U ), v) and

�̂0 is defined by
�̂2

0(U, v)=�
−2
0 (u(U ), 1)�2

0(u(U ), v),

and the extremal Reissner–Nordström metric takes the following form in the (U, v, θ, ϕ)-coordinate
system:

geRN =−�̂
2
0(U, v) dU dv+ r2

0 (U, v)(dθ
2
+ sin2 θ dϕ2).

In particular, by (3-3), it holds that
�̂0(0, v)= 1 (3-7)

for all v. Additionally, we have, for all v,

r0(0, v)= M.

Hence, in the (U, v, θ, ϕ)-coordinate system, �̂0(U, v) and r0(U, v) extend continuously (in fact smoothly)
to the event horizon. Moreover, for every v ≥ 1 and u(U )≤−1, �̂2

0(U, v) is bounded above and below
as follows:

2
v+ 1

≤ �̂0(U, v)≤ 1. (3-8)

3A2. Regular coordinates at the Cauchy horizon. Define V by the relation

dV
dv
=�2

0(−1, v)=
(

1−
M

r0(−1, v)

)2

, V (∞)= 0. (3-9)

By Lemma 3.1, there exists a constant C (depending on M), so that we can estimate

0≤
dV
dv
≤ C(1+ v)−2. (3-10)

Define the Cauchy horizon as the boundary {V = 0}. (Again, this is to be understood either as
{(u, V ) : V = 0} ⊂Q or the original manifold {(u, V ) : V = 0}× ⊂MeRN.) After defining v(V ) as the
inverse of v 7→ V, we abuse notation to write r0(u, v(V ))= r0(u, v(v)) and �̃0 is defined by

�̃
2
0(u, v(V ))=�

−2
0 (−1, v(V ))�2

0(u, v(V )),
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and the extremal Reissner–Nordström metric takes the following form in the (u, V, θ, ϕ)-coordinate
system:

geRN =−�̃
2
0(u, V ) du dV + r2

0 (u, V )(dθ2
+ sin2 θ dϕ2).

In analogy with Section 3A1, it is easy to see that �̃2
0 and r0 extend smoothly to the Cauchy horizon.

4. Initial data assumptions

We will consider the characteristic initial value problem for (1-1) with initial data given on two transversally
intersecting null hypersurfaces, which in the double null coordinates (U, v) are denoted by

H0 := {(U, v) :U = 0}, Hv0 := {(U, v) : v = v0}.

Here, the (U, v)-coordinates should be thought of as comparable to the Reissner–Nordström (U, v)-
coordinates in Section 3A1; see Section 4A for further comments.

The initial data consist of (φ, r, �, Q) on both H0 and Hv0 , subject to (2-5) and (2-8) on Hv0 , as well
as (2-6) and (2-9) on H0.

We impose the following gauge conditions on the initial hypersurfaces Hv0 and H0:

�̂(U, v0)= �̂0(U, v0) for U ∈ [0,U0], �̂(0, v)= �̂0(0, v)= 1 for v ∈ [v0,∞), (4-1)

which can be thought of as a normalization condition for the null coordinates.
The initial data for (φ, r, �, Q) will be prescribed in Sections 4C–4F, but before that, we will give

some remarks in Sections 4A and 4B: In Section 4A, we discuss our conventions on null coordinates; in
Section 4B, we discuss which parts of the data are freely prescribable and which parts are determined by
the constraints. We then proceed to discuss the initial data and the bounds that they satisfy. In Section 4C,
we discuss the data for φ; in Section 4D, we discuss the data for r ; in Section 4E, we discuss the data
for Q; in Section 4F, we discuss the data for ∂Ur on H0.

4A. A comment about the use of the null coordinates. In the beginning of Section 4, we normalized
the null coordinates (U, v) on the initial hypersurfaces by the condition (4-1) so that they play a similar
role to the (U, v)-coordinates on extremal Reissner–Nordström spacetimes introduced in Section 3A1.
This set of null coordinates has the advantage of being regular near the event horizon and therefore it is
easy to see that the Einstein–Maxwell–Klein–Gordon system is locally well-posed with the prescribed
initial data.

However, in the remainder of the paper, it will be useful to pass to other sets of null coordinates. For
this we introduce the following convention. We use all of the coordinate systems (U, v), (u, v) and (u, V ),
where u and V are defined (as functions of U and v respectively) by (3-5) and (3-9).

All the data will be prescribed in the (U, v)-coordinate system and we will prove estimates for φ,
r and Q in these coordinates. Nevertheless, using (3-5), they imply immediately also estimates in the
(u, v)-coordinate system, and it is those estimates that will be used in the later parts of the paper.
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4B. A comment about freely prescribable data. Since the initial data need to satisfy (2-5), (2-6), (2-8)
and (2-9), not all of the data are freely prescribed. Instead, we have freely prescribable and constrained data:

• A normalization condition for u and v can be specified. In our case, we specify the condition (4-1).

• φ on H0 and H 0 can be prescribed freely.

• r and Q can then be obtained by solving (2-5), (2-6), (2-8) and (2-9) with appropriate initial conditions,
namely,

– r and Q are to approach their corresponding values in extremal Reissner–Nordström with mass
M > 0; i.e.,

lim
v→∞

r(0, v)= lim
v→∞

Q(0, v)= M.

– (∂Ur)(0, v0) can be freely prescribed; see (4-7).

We remark that in order to fully specify the initial data, it only remains to pick a gauge condition for A.
For this purpose, it will be most convenient to set AU (U, v0)= 0 and Av(0, v)= 0. (This can always be
achieved as each of these are only set to vanish on one hypersurface; see the discussions following (9-6).)
Nevertheless, the choice of gauge will not play a role in the rest of this subsection, since all the estimates
we will need for φ and its derivatives can be phrased in terms of the gauge-invariant quantities |φ|, |Dvφ|

and |Duφ|.

4C. Initial data for φ. We assume that there exist constants Di and Do such that∫ U0

0
|DUφ|

2(U, v0) dU ≤ Di, (4-2)∫
∞

v0

v′2+α|Dvφ|
2(0, v′) dv′ ≤ Do, (4-3)

where we will take α > 0. We additionally assume that

lim
v→∞

φ(0, v)= 0. (4-4)

Lemma 4.1. The following estimate holds:

|φ|(0, v)≤
√
Dov

−
1
2−

α
2 . (4-5)

Proof. By (4-4), (2-14) and the Cauchy–Schwarz inequality, we have

|φ|(0, v)≤
∫
∞

v

|Dvφ|(0, v′) dv′ ≤

√∫
∞

v

v′−2−α dv′ ·

√∫
∞

v

v′2+α|Dvφ|(0, v′) dv′,

so we can conclude using (4-3). �

4D. Initial data for r. We assume that

lim
v→∞

r(0, v)= M (4-6)
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and we prescribe freely ∂Ur(0, v0). Let us assume that

∂Ur(0, v0) < 0, |∂Ur |(0, v0)≤ MDi. (4-7)

We use (2-8) and (2-9) as constraint equations for the variable r along H0={U=0} and Hv0 ={v=v0}.

4D1. Initial data for r on H0. We obtain along H0

∂2
vr(0, v)=−4πr(0, v)|Dvφ|

2. (4-8)

The above ODE can be solved to obtain r(0, v).

Lemma 4.2. There exists a unique smooth solution to (4-8) satisfying (4-6). Moreover, if v0 satisfies the
inequality

Dov
−1
0 ≤

1
8π , (4-9)

then the following estimates hold for v ≥ v0:

1
2 M ≤ r(0, v)≤ M, |r −M |(0, v)≤ 4πMDov

−1, |∂vr |(0, v)≤ 4πMDov
−2.

Proof. Existence and uniqueness can be obtained using a standard ODE argument. We will focus on
proving the estimates.

First, observe that by integrating (4-8), and using the assumptions r(0, v)→ M and (4-3), it follows
that limv→∞(∂vr)(0, v) exists. Now using again the assumption r(0, v)→ M, we deduce that

lim
v→∞

(∂vr)(0, v)= 0. (4-10)

Together with (4-8) this implies
∂vr(0, v)≥ 0.

Since r(0, v)→ M, we can then bound
r(0, v)≤ M. (4-11)

By (4-8) and (4-10),

|∂vr(0, v)| ≤ 4π sup
v0≤v<∞

r(0, v) ·
∫
∞

v

|Dvφ|
2(u, v′) dv′.

We deduce, using (4-3) and (4-11), that

|∂vr(0, v)| ≤ 4πMDov
−2−α, (4-12)

and therefore

|r(0, v)−M | ≤
4πM
1+α

Dov
−1−α (4-13)

for all v0 ≤ v <∞. In particular, given (4-9), it holds that for all v ∈ [v0,∞),

r(0, v)≥ 1
2 M. (4-14)

The estimates stated in the lemma hence follow from (4-11)–(4-14). �
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4D2. Initial data for r on H 0. We similarly obtain along H 0

∂U (�̂
−2(U, v0) ∂Ur(U, v0))=−4π�̂−2(U, v0)r(U, v0)|DUφ|

2. (4-15)

The above ODE can be solved to obtain r(U, v0).

Lemma 4.3. There exists a unique smooth solution to (4-15) satisfying (4-6). Moreover, if U0, v0 satisfy
the inequality

Dov
−1
0 ≤

1
8π , MDiv

2
0U0 ≤

1
36π , (4-16)

then the following estimates hold for U ∈ [0,U0]:

1
4 M ≤ r(U, v0)≤

5
4 M, |∂Ur |(U, v0)≤ 9πMDiv

2
0 .

Proof. As in Lemma 4.3, since existence and uniqueness is standard, we focus on the estimates. To this
end, we introduce a bootstrap argument, starting with the assumption

r(U, v0)≤ 2M. (4-17)

Integrating (4-15) and using (4-1),

|�̂−2(U, v0) ∂Ur(U, v0)− ∂Ur(0, v0)| ≤ 4π sup
0≤U ′≤U0

�̂−2(U ′, v0) r(U ′, v0) ·

∫ U

0
|DUφ|

2(U ′′, v0) dU ′′.

By (3-8), (4-2) and (4-7), this implies

|∂Ur(U, v0)| ≤ MDi+ 8πM ·
(
v0+ 1

2

)2

·Di = MDi(1+ 2π(v0+ 1)2)≤ 9πMDiv
2
0 . (4-18)

Integrating in U, this yields (for U ∈ [0,U0]),

|r(U, v0)− r(0, v0)| ≤ 9πMDiv
2
0U0,

which implies, using Lemma 4.2 (or more precisely (4-11) and (4-14)),

1
2 M − 9πMDiv

2
0U0 ≤ r(U, v0)≤ M + 9πMDiv

2
0U0.

Hence, by (4-16), it holds that
1
4 M ≤ r(U, v0)≤

5
4 M, (4-19)

and we have improved the bootstrap assumption (4-17). This closes the bootstrap argument, and the
desired estimates follow from (4-18) and (4-19). �

4E. Initial data for Q. In view of (2-5) and (2-6) which have to be satisfied on the initial hypersurfaces,
it suffices to impose Q on one initial sphere. We assume that

lim
v→∞

Q(0, v)= M. (4-20)

Lemma 4.4. Assume (4-9) holds. Then the following estimate holds on H0:

|Q(0, v)−M |(0, v)≤ 4π |e|MDov
−1−α. (4-21)
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Proof. Using (2-6), (4-11) and the Cauchy–Schwarz inequality we estimate

|Q(0, v)−M |(0, v)≤ 4π |e| sup
v′′∈[v0,∞)

r2(0, v′′) ·
∫
∞

v

|φ| · |Dvφ|(0, v′) dv′

≤ 4π |e|M2 sup
v≤v′<∞

|φ|(0, v′) ·

√∫
∞

v

v′−2−α dv′ ·

√∫
∞

v

v′2+α|Dvφ|
2(0, v′) dv′,

so we can use (4-3) and (4-5) to conclude (4-21). �

4F. ∂U r along H0. The function ∂ur along H0 is not freely prescribable, but is dictated by (2-1) and the
freely prescribable data for (∂Ur)(0, v0) (which obeys (4-7)). We will need the following estimate for
∂Ur along H0.

Lemma 4.5. Suppose (4-9) holds. Then there exists a constant C > 0 depending only on M and m such
that for every v ∈ [v0,∞),

|∂Ur(0, v)| ≤ C(Do+Di). (4-22)

Proof. By (2-1) we have

∂v(r ∂Ur)(0, v)= 4M2m2πr2
|φ|2+M2r−2(Q2

− r2)

= 4M2m2πr2
|φ|2+M2r−2(Q2

−M2)+M2r−2(M2
− r2).

Hence,

|(r ∂Ur)(0, v)− (r ∂Ur)(0, v0)|.

∣∣∣∣∫ ∞
v0

m2r2
|φ|2+ 1

4π M−2(Q2
−M2)+ 1

4π M−2(M2
− r2) dv′

∣∣∣∣. Do,

where we have used Lemmas 4.1, 4.2 and 4.4 (and we crucially used that α > 0). Together with (4-7), we
can therefore conclude (4-22). �

5. Statement of the main theorem

We are now ready to give a precise statement of the main theorem. Let us recall (from Section 4A) that
we also consider the coordinate system (u, v), where u(U ) is defined via the relation (3-5). It will be
convenient from this point onwards to use the u-(instead of U -) coordinate.

Theorem 5.1. Suppose

• the parameters M and e obey16

1− (10+ 5
√

6− 3
√

9+ 4
√

6)|e|M > 0. (5-1)

• the initial data are smooth and satisfy (4-1), (4-2), (4-3), (4-4), (4-6), (4-7) and (4-20) for some finite
Do and Di.

Then for |u0| sufficiently large depending on M, m, e, α, Do and Di and v0 sufficiently large depending on
M, m, e, α and Do (but not Di!), the following hold:

16Note that (10+ 5
√

6− 3
√

9+ 4
√

6)∼ 9.24 . . . .
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• (existence of solution) There exists a unique smooth, spherically symmetric solution to (1-1) in the
double null coordinate system in (u, v) ∈ (−∞, u0]× [v0,∞).

• (extendibility to the Cauchy horizon) In an appropriate coordinate system, a Cauchy horizon can be
attached to the solution so that the metric, the scalar field and the Maxwell field extend continuously to it.

• (quantitative estimates) The following estimates hold for all (u, v) ∈ (−∞, u0)× [v0,∞) for some
implicit constant depending on M, m and e (which shows that the solution is close to extremal Reissner–
Nordström in an appropriate sense):

|φ|(u, v). Dov
−

1
2−

α
2 + (Do+Di)|u|−

1
2 , |r −M |(u, v). Dov

−1
+ (Do+Di)|u|−1,

|�2
−�2

0|(u, v). |u|
−

1
2 (|u| + v)−2,

|∂ur |(u, v). (Do+Di)|u|−2, |∂vr |(u, v). (Do+Di)v
−2,∫

∞

v0

v2
|∂vφ|

2(u, v) dv+
∫ u0

−∞

u2
|∂uφ|

2(u, v) du . Do+Di,∫ u0

−∞

u2
(
∂u

(
log �

�0

))2
(u, v) du+

∫ v∞

v0

v2
(
∂v

(
log �

�0

))2
(u, v) dv ≤ 1

2 .

• (extendibility as a spherically symmetric solution) The solution can be extended nonuniquely in (space-
time) C0, 1

2 ∩W 1,2
loc beyond the Cauchy horizon as a spherically symmetric solution to the Einstein–Maxwell–

Klein–Gordon system.

Remark 5.2 (v0 ≥ 1, u0 ≤ −1.). Without loss of generality, we will from now on assume that v0 ≥ 1
and u0 ≤−1.

Remark 5.3 (validity of the estimates in Section 4). Recall that in Section 4, some of the estimates that
were proven depend on the assumptions (4-9) and (4-16). From now on, we take v0 sufficiently large and
u0 sufficiently negative (in a manner allowed by Theorem 5.1) so that (4-9) and (4-16) hold.

Remark 5.4 (relaxing the largeness of v0). Note that v0 is assumed to be large depending on M, m, e,
α and Do so that we restrict our attention to a region where the geometry is close to that of extremal
Reissner–Nordström. However, in general, if we are given data with v0,i = 1 (say) and Do not necessarily
small, we can do the following:

(1) First, find a v0 (sufficiently large) such that v0 is sufficiently large depending on M, m, e, α and Do in
a way that is required by Theorem 5.1.

(2) Solve a finite characteristic initial value problem in (−∞, u0] × [v0,i , v0] for some u0 sufficiently
negative. (Such a problem can always be solved for u0 sufficiently negative. This can be viewed as a
restatement of the fact that for local characteristic initial value problems, one only needs the smallness of
one characteristic length, as long as the other characteristic length is finite; see [Luk 2012].)

(3) Now, let Di be the size of the new data on {v = v0} which is obtained from the previous step. By
choosing u0 smaller if necessary, it can be arranged so that |u0| is large in terms of M, m, e and Do+Di

in a way consistent with Theorem 5.1.
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(4) Theorem 5.1 can now be applied to obtain a solution in (−∞, u0]×[v0,∞) such that the conclusions
of Theorem 5.1 hold.

In the case e=m= 0, we obtain the following additional regularity of the scalar field:

Theorem 5.5. In the case e = m = 0, suppose that in addition to the assumptions of Theorem 5.1, the
following pointwise bounds hold for the initial data:

sup
u∈(−∞,u0]

|u|2 |∂uφ|(u, v0)+ sup
v∈[v0,∞)

v2
|∂vφ|(−∞, v) <∞. (5-2)

Then, taking u0 more negative if necessary, in the (u, V )-coordinate system, see (9-1), the scalar field is
Lipschitz up to the Cauchy horizon.

6. The main bootstrap argument

6A. Setup of the bootstrap. We will assume that

• there exists a smooth solution (φ,�, r, A) to the system of (2-1)–(2-9) in the rectangle DU0,[v0,v∞) =

{(U, v) | 0≤U ≤U0, v0 ≤ v < v∞}, such that

• the initial gauge conditions are satisfied, i.e., �̂2(U, v0)= �̂
2
0(U, v0) and �̂2(0, v)= �̂2

0(0, v), and

• the initial conditions for φ, r , Q are attained.

On this region, we will moreover assume that certain bootstrap assumptions hold (see Section 6B). Our
goal will then be to improve these bootstrap assumptions, which then by continuity, implies that the above
three properties hold for all v ≥ v0, i.e., in the region DU0,v0 = DU0,[v0,∞).

Recall again that we often use the (u, v)- instead the (U, v)-coordinates. Abusing notation, we will
also write

Du0,[v0,v∞) = DU0,[v0,v∞) = {(u, v) | −∞< u ≤ u0 := u(U0), v0 ≤ v ≤ v∞}.

6B. Bootstrap assumptions. Fix η > 0 sufficiently small (depending only on e and M) so that

1− (10+ 5
√

6− 3
√

9+ 4
√

6)(1+ η)|e|M > 0. (6-1)

(Such an η exists in view of (5-1).) Define

µ=
(
1− (10+ 5

√
6− 3

√
9+ 4
√

6)(1+ η)|e|M
)
. (6-2)

Let us make the following bootstrap assumptions for the quantities (φ,�, r) in DU0,v∞ , for some Aφ ≥ 1
to be chosen later:

sup
v∈[v0,v∞]

∫ u0

−∞

u′2
(
∂u

(
log �

�0

))2
(u′, v) du′+ sup

u∈(−∞,u0]

∫ v∞

v0

v′2
(
∂v

(
log �

�0

))2
(u, v′) dv′ ≤ M, (A1)

sup
v∈[v0,v∞]

∫ u0

−∞

u′2|Duφ|
2(u′, v) du′+ sup

u∈(−∞,u0]

∫ v∞

v0

v′2|Dvφ|
2(u, v′) dv′ ≤Aφ(Do+Di), (A2)

sup
u∈(−∞,u0], v∈[v0,v∞]

|r −M |(u, v)≤ 1
2 M. (A3)
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Our goal will be to show that under these assumptions, for |u0| sufficiently large depending on M, m, e,
α, η, Do and Di and v0 sufficiently large depending on M, m, e, α, η and Do,

• the estimate (A1) can be improved so that the right-hand side can be replaced by 1
2 M ;

• the estimate (A2) can be improved so that the right-hand side can be replaced by C(Do+Di), where
C is a constant depending only on M, m, e, α and η;

• the estimate (A3) can be improved to |r −M | ≤ 1
4 M .

6C. Conventions regarding constants. In closing the bootstrap argument, the main source of smallness
will come from choosing |u0| and v0 appropriately large. We remark on our conventions regarding the
constants that will be used in the bootstrap argument:

• All the implicit constants (either in the form of C or .) are allowed to depend on the parameters M, m,
e and α. In particular, they are allowed to depend on η, defined in (6-1), and µ, defined in (6-2). There
will be places where the exact values of these parameters matter (hence the corresponding restriction in
Theorem 5.1): at those places the constants will be explicitly written.

• |u0| is taken to be large depending on M, m, e, α, η, Do and Di, and v0 is taken to be large depending
on M, m, e, α, η and Do. In particular, we will use

Dov
−

1
10

0 � 1, (Do+Di)|u0|
−

1
10 � 1

without explicit comments, where by� 1 we mean that it is small with respect to the constants appearing
in the argument that depend on M, m, e, α and η.

• Aφ ≥ 1 will eventually be chosen to be large depending M, m, e and α, but not on Do and Di. In
particular, we will also use

A3
φDov

−
1
10

0 � 1, A3
φ(Do+Di)|u0|

−
1
10 � 1 (6-3)

without explicit comments.

7. Pointwise estimates

Proposition 7.1. For all −∞< u ≤ u0, v0 ≤ v ≤ v∞ we have

|φ|(u, v).
√
Dov

−
1
2−

α
2 +A

1
2
φ

√
Do+Di|u|−

1
2 , (7-1)

|Q−M |(u, v). Dov
−1−α
+Aφ(Do+Di)|u|−1, (7-2)

|�−�0|(u, v). |u|−
1
2 (v+ |u|)−1, (7-3)

|�2
−�2

0|(u, v). |u|
−

1
2 (v+ |u|)−2, (7-4)∣∣∣∣�− 2M

(v+ |u|)

∣∣∣∣(u, v). |u|− 1
2 (v+ |u|)−1, (7-5)∣∣∣∣�2

−
4M2

(v+ |u|)2

∣∣∣∣(u, v). |u|− 1
2 (v+ |u|)−2. (7-6)
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In particular,
1
2 M ≤ |Q|(u, v)≤ 3

2 M, (7-7)

2M2(v+ |u|)−2
≤�2(u, v)≤ 6M2(v+ |u|)−2. (7-8)

Proof. Proof of (7-1). By (2-13) and the Cauchy–Schwarz inequality, we obtain

|φ|(u, v)≤ |φ|(−∞, v)+ |u|−
1
2

√∫ u

−∞

u′2|Duφ|
2(u′, v) du′. (7-9)

Using (4-5) and the bootstrap assumption (A2) to control the first and second term respectively, we obtain
(7-1).

Proof of (7-2). Using the estimate (7-1) for φ, the bootstrap assumption (A3) for r together with (2-5),
we obtain a pointwise estimate for |Q−M |:

|Q−M |(u, v)≤ |Q−M |(−∞, v)+
∫ u

−∞

|∂u Q|(u′, v) du′

≤ |Q−M |(−∞, v)+ 4π |e|
∫ u

−∞

r2
|φ||Duφ|(u′, v) du′

≤ |Q−M |(−∞, v)+ 4π |e||u|−
1
2 sup
−∞<u′≤u

r2
|φ|(u′, v) ·

√∫ u

−∞

u2
|Duφ|

2(u′, v) du′

≤ |Q−M |(−∞, v)+C
√
Aφ(Do+Di)|u|−

1
2 (|u|−

1
2
√
Aφ(Do+Di)+ v

−
1
2−

α
2
√
Do).

Using (4-21) and Young inequality, we therefore conclude that

|Q−M |(u, v). Dov
−1−α
+Aφ(Do+Di)|u|−1.

Proof of (7-3), (7-4), (7-5) and (7-6). By our choice of initial gauge (4-1), we have

log �
�0
(−∞, v)= log

�̂

�̂0
(U = 0, v)= 0,

so we can estimate using (A1)∣∣∣log �
�0

∣∣∣(u, v)≤ |u|− 1
2

√∫ u

−∞

u′2
(
∂u

(
log �

�0

))2
(u′, v′) du′ ≤ M

1
2 |u|−

1
2 .

Using (A1) and the simple inequality |eϑ − 1| ≤ |ϑ |e|ϑ |, we have∣∣∣�
�0
− 1

∣∣∣(u, v)≤ M
1
2 |u|−

1
2 max

{
�

�0
,
�0
�

}
(u, v),

∣∣∣�0
�
− 1

∣∣∣(u, v)≤ M
1
2 |u|−

1
2 max

{
�

�0
,
�0
�

}
(u, v).

We now consider two cases. Suppose (�/�0)(u, v) > 1 for some (u, v); we have∣∣∣�
�0
− 1

∣∣∣(u, v)≤ M
1
2 |u|−

1
2

(
�

�0
− 1
)
(u, v)+M

1
2 |u|−

1
2 ,

which, after choosing u0 to satisfy M
1
2 |u0|

−
1
2 ≤

1
2 , implies∣∣∣�

�0
− 1

∣∣∣(u, v)≤ 2M
1
2 |u|−

1
2 . (7-10)
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Multiplying (7-10) by �0 in particular implies

|�−�0|(u, v)≤ 4M
1
2 |u|−

1
2�0(u, v) (7-11)

in this case. On the other hand, if (�/�0)(u, v) < 1 for some (u, v), we have by a similar argument that
for M

1
2 |u0|

−
1
2 ≤

1
2 , ∣∣∣�0

�
− 1

∣∣∣(u, v)≤ 2M
1
2 |u|−

1
2 .

This then implies

|�0−�|(u, v)≤ 2M
1
2 |u|−

1
2 |�−�0|(u, v)+ 2M

1
2 |u|−

1
2�0(u, v).

Choosing M
1
2 |u0|

−
1
2 ≤

1
4 implies that we also have (7-11) in this case. Using (7-11) and (3-3), we

conclude (7-3).
For (7-4), we use (7-11) twice to obtain

|�2
−�2

0|(u, v)≤ 4M
1
2 |u|−

1
2�0(�+�0)≤ 16M |u|−1�2

0+ 8M
1
2 |u|−

1
2�2

0,

which, after choosing |u0| to be sufficiently large and using (3-3), implies (7-4).
Finally, (7-5) and (7-6) follow from (7-3), (7-4) and (3-3), with β = 1

2 .

Proof of (7-7) and (7-8). The bound (7-7) is an immediate consequence of (7-2), while (7-8) is an
immediate consequence of (7-6). �

Proposition 7.2. The following estimates hold:

|∂ur |(u, v).Aφ(Do+Di)|u|−2, (7-12)

|∂vr |(u, v). Dov
−2
+Aφ(Do+Di)min{v−2, |u|−2

}, (7-13)

|r(u, v)−M |. Dov
−1
+Aφ(Do+Di)|u|−1, (7-14)

|r(u, v)− r0(u, v)|. Dov
−1
+Aφ(Do+Di)|u|−1

+ (v+ |u|)−1. (7-15)

In particular,

|r(u, v)−M | ≤ 1
4 M, (7-16)

which improves the bootstrap assumption (A3).

Proof. Proof of (7-12). By (2-8), (A3), (7-8) and (4-22), we can estimate

|∂ur |(u, v)≤�2(u, v)|∂Ur |(−∞, v)+C�2(u, v)
∫ u

−∞

�−2(u′, v)|Duφ|
2(u′, v) du′

≤ C(Do+Di)|u|−2
+C(v+ |u|)−2

∫ u

−∞

(v+ |u′|)2

|u′|2
|u′|2 |Duφ|

2(u′, v) du′.
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Note that for |u′| ≥ |u|, we have(
v+ |u′|
|u′|

)2

=

(
1+

v

|u′|

)2

≤

(
1+

v

|u|

)2

=

(
v+ |u|
|u|

)2

,

which we can use to further estimate

|∂ur |(u, v)≤ C(Do+Di)|u|−2
+C |u|−2

∫ u

−∞

|u′|2 |Duφ|
2(u′, v) du′

and hence, by (A2),
|∂ur |(u, v)≤ CAφ(Do+Di)|u|−2.

Proof of (7-16). Using the fundamental theorem of calculus and integrating (7-12) in u, we obtain

|r(u, v)−M | ≤ |r(−∞, v)−M | +
∫ u

−∞

|∂ur |(u′, v)′ du′ . Dov
−1
+Aφ(Do+Di)|u|−1,

where in the last inequality we have used Lemma 4.2 and (7-12). Combining this with the estimates for r0

in Lemma 3.1, we thus obtain the estimate for r − r0 in (7-15). In particular, for Dov
−1
0 , (Do+Di)|u0|

−1

suitably small, we obtain
|r(u, v)−M |< 1

4 M

for all (u, v) ∈ Du0,v∞ , which is the estimate (7-14).

Proof of (7-13): the region {v ≤ |u|}. We first rewrite (2-1) as

∂u(r ∂vr)= 1
4�

2r−2(Q2
−M2)+ 1

4�
2r−2(M2

− r2)+m2πr2�2
|φ|2.

By (7-1) (for φ), (7-14) (for r −M) and (7-2) (for Q−M), the u-integral of the right-hand side of the
above equation can be estimated (up to a constant) by∫ u

−∞

�2(Dov
−1
+Aφ(Do+Di)|u′|−1) du′.

Using (7-6), we have, in the region {v ≤ |u|},∫ u

−∞

�2Dov
−1 du′ . Dov

−1
∫ u

−∞

(v+ |u′|)−2 du′ . Dov
−1(v+ |u|)−1

and ∫ u

−∞

�2Aφ(Do+Di)|u′|−1 du′ .Aφ(Do+Di)

∫ u

−∞

(v+ |u′|)−2
|u′|−1 du′

.Aφ(Do+Di)|u|−2.

Together with the bound on ∂vr on the event horizon in Lemma 4.2, this implies that when v ≤ |u|, we
have the estimate

|∂vr |(u, v). Dov
−2
+Aφ(Do+Di)min{v−2, |u|−2

}.

Proof of (7-13): the region {v ≥ |u|}. Notice that if we estimate in this region in the same manner as
before, we lose a factor of log v in the bound. So instead of (2-1), we will use the Raychaudhuri’s
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equation (2-9).17 More precisely, given (u, v) with v ≥ |u|, we integrate (2-9) along a constant-u curve
starting from its intersection with the curve {|u| = v} to obtain∣∣∣∣∂vr�2

∣∣∣∣(u, v). ∣∣∣∣∂vr�2

∣∣∣∣(u,−u)+
∫ v

−u
�−2
|Dvφ|

2(u, v′) dv′.

By the estimates for ∂vr in the previous step and (7-4), we have∣∣∣∣∂vr�2

∣∣∣∣(u,−u).Aφ(Do+Di).

Since v′ ≥ |u| in the domain of integration, we have, after using (7-4) and (A2), that∫ v

−u
�−2
|Dvφ|

2(u, v′) dv′ .
∫ v

−u
(v′+|u|)2|Dvφ|

2(u, v′) dv′ .
∫ v

−u
v2
|Dvφ|

2(u, v′) dv′ .Aφ(Do+Di).

Combining the three estimates above with (7-6) yields that when v ≥ |u|,

|∂vr |(u, v).Aφ(Do+Di)min{v−2, |u|−2
}.

Together with the previous step, we have thus completed the proof of (7-13). �

8. Energy estimates

In this section, we prove the energy estimates for (derivatives of) φ and �. In particular, we will improve
our bootstrap assumptions (A1) and (A2). As we discussed in the Introduction, the argument leading to
energy estimates for φ will go through the introduction of a renormalized energy, the analysis of which
forms the most technical part of the paper.

In Section 8A, we will motivate the introduction of our renormalized energy for the matter field by
considering the stress-energy-momentum tensor associated to the matter field. In Section 8B, we show
that the renormalized energy we introduce is coercive; and in Section 8C, we show that one can bound
this renormalized energy. Combining these facts yields the desired control for the matter field.

Finally, in Section 8D, we prove the energy estimates for (�/�0).

8A. The stress energy tensor and the renormalized energy fluxes. The null components of the stress-
energy-momentum tensor Tµν corresponding to the scalar field and electromagnetic tensor are given by

Tuv =
1
4�

2(m2
|φ|2+ 1

4π r−4 Q2), Tuu = |Duφ|
2, Tvv = |Dvφ|

2.

The above expressions suggest that the natural energy fluxes along the null hypersurfaces of constant u
and v are obtained by integrating the contraction T(X, ∂v) and T(X, ∂u), respectively. With the choice

17On the other hand, in the region {v ≤ |u|} that we considered above, it also does not seem that Raychaudhuri can give the
desired bound.



THE INTERIOR OF DYNAMICAL EXTREMAL BLACK HOLES IN SPHERICAL SYMMETRY 291

X = u2 ∂u + v
2 ∂v, this gives∫ v2

v1

v2r2
|Dvφ|

2
+

1
4 u2r2�2(m2

|φ|2+ 1
4π r−4 Q2) dv,∫ u2

u1

u2r2
|Duφ|

2
+

1
4v

2r2�2(m2
|φ|2+ 1

4π r−4 Q2) du,

with −∞< u1 < u2 ≤ u0, v0 ≤ v1 < v2 <∞.
However, with the above energy fluxes, the initial energy flux is not finite even initially on the event

horizon with the chosen initial data. We therefore introduce the following renormalized energy fluxes.18

Ev(u) :=
∫ v∞

v0

v2 M2
|Dvφ|

2(u, v)+ 1
4 u2 M2�2(m2

|φ|2+ 1
4π M−4(Q2

−M2)
)
(u, v) dv, (8-1)

Eu(v) :=

∫ u0

−∞

u2 M2
|Duφ|

2(u, v)+ 1
4v

2 M2�2(m2
|φ|2+ 1

4π M−4(Q2
−M2)

)
(u, v) du. (8-2)

8B. Coercivity of the renormalized energy flux. Our goal in this subsection is to prove that the renor-
malized energy flux we defined in (8-1) and (8-2) is coercive and controls the quantity on the left-hand
side of (A2). The statement of the main result can be found in Proposition 8.7 at the end of the subsection.
This will be achieved in a number of steps. We will first need the following preliminary results:

(1) We need an improved version of (7-2), which keeps track of the constants appearing in the leading-
order terms (Lemma 8.1).

(2) We then show that
∫ v
v0
(|u|/(v′+ |u|))2|φ|2(u, v′) dv′ can be controlled by the left-hand side of (A2)

(Lemma 8.3).

(3) Similarly, we show that
∫ u0
−∞
(v/(v+ |u′|))2|φ|2(u′, v) du′ can be controlled by the left-hand side

of (A2) (Lemma 8.4).

Both (2) and (3) above are based on a Hardy-type inequality; see Lemma 8.2. After these preliminary steps,
we turn to the terms in the renormalized energy (see (8-2), (8-1)) which are not manifestly nonnegative.
Precisely, we control

•
1

16π

∫ v∞
v0

u2 M−2�2(Q2
−M2)(u, v) dv in Proposition 8.5, and

•
1

16π

∫ u0
−∞

v2 M−2�2(Q2
−M2)(u, v) du in Proposition 8.6.

Putting all these together, we thus obtain the main result in Proposition 8.7.
We now turn to the details, beginning with the following lemma:

Lemma 8.1. Let η > 0 be as in (6-1). Then there exists C > 0 such that

|Q2
−M2

|(u, v)

≤ 8πM |e|(1+ η)|u|−1
∫ u

−∞

u′2 M2
|Duφ|

2(u′, v) du′+CDov
−1
+CAφ(Do+Di)|u|−2. (8-3)

18Notice that in the renormalization, not only have we “added an infinity term” to each of the fluxes, we have also “replaced
several factors of r by factors of M”. The replacement of r by M is strictly speaking not necessary to make the renormalized
energy fluxes finite, but this simplifies the computations below.
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Proof. We compute

(Q2
−M2)(u,v)= (Q(u,v)+M)(Q(u,v)−M)= (Q(u,v)+M)

(
Q(−∞,v)−M+

∫ u

−∞

∂u Q(u′,v)du′
)

and use (2-5) to estimate

|Q2
−M2

|(u, v)≤ |Q(u, v)+M |
(
|Q(−∞, v)−M | + 4π |e|

∫ u

−∞

r2
|φ||Duφ| du′

)
.

We further use (7-9) to estimate∫ u

−∞

r2
|φ||Duφ|(u′, v) du′

≤
[
M2
+ sup
−∞<u′≤u

(r2
−M2)

]
· sup
−∞<u′≤u

|φ|(u′, v) ·
∫ u

−∞

|Duφ|(u′, v) du′

≤
[
M2
+ sup
−∞<u′≤u

(r2
−M2)

]
· |u|−

1
2 |φ|(−∞, v)

√∫ u

−∞

u′2|Duφ|
2(u′, v) du′

+
[
M2
+ sup
−∞<u′≤u

(r2
−M2)

]
· |u|−

1
2

∫ u

−∞

|Duφ|(u′, v) du′ ·

√∫ u

−∞

u′2|Duφ|
2(u′, v) du′

≤
[
M2
+ sup
−∞<u′≤u

(r2
−M2)

]
· |u|−

1
2 |φ|(−∞, v)

√∫ u

−∞

u′2|Duφ|
2(u′, v) du′

+
[
M2
+ sup
−∞<u′≤u

(r2
−M2)

]
· |u|−1

∫ u

−∞

u′2|Duφ|
2(u′, v) du′. (8-4)

Using (7-14), it follows that

|r2
−M2

|(u, v)= |r −M + 2M | · |r −M |. Dov
−1
+Aφ(Do+Di)|u|−1,

where we have taken Dov
−1
0 and (Do+Di)|u0|

−1 to be suitably small.
Therefore, we can further estimate the right-hand side of (8-4) to obtain∫ u

−∞

r2
|φ||Duφ|(u′, v) du′ ≤ 1

4η
−1 M2

|φ|2(−∞, v)+ (1+ η)M2
|u|−1

∫ u

−∞

u′2|Duφ|
2(u′, v) du′

+CDov
−1
|u|−1

+CAφ(Do+Di)|u|−2, (8-5)

where we moreover applied Young’s inequality with an η-weight, where η > 0 is as in the statement of
the proposition.

By applying (7-2) and (8-5) together with the initial data estimate (4-5) and (4-21), we therefore obtain

|Q2
−M2
|(u,v)

≤ |Q(u,v)+M |
(
|Q(−∞,v)−M |+πη−1 M2

|e||φ|2(−∞,v)

+4π |e|(1+η)|u|−1
∫ u

−∞

u′2 M2
|Duφ|

2(u′,v)du′+CDov
−1
|u|−1
+CAφ(Do+Di)|u|−2

)
≤ (2M+CDov

−1−α
+CAφ(Do+Di)|u|−1)

·

(
4π |e|(1+η)|u|−1

∫ u

−∞

u′2 M2
|Duφ|

2(u′,v)du′+CDov
−1
+CAφ(Do+Di)|u|−2

)
≤ 8πM |e|(1+η)|u|−1

∫ u

−∞

u′2 M2
|Duφ|

2(u′,v)du′+CDov
−1
+CAφ(Do+Di)|u|−2. �
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In order to estimate the |φ|2 integral, we will make use of a Hardy inequality:

Lemma 8.2. Let f : R→ R be in H 1
loc(R) and let c ≥ 0 be a constant. Then for any x1, x2 ∈ R with

0< x1 < x2 <∞,∫ x2

x1

(x + c)p f 2(x) dx ≤ 2(x2+ c)p+1 f 2(x2)+
4

(p+ 1)2

∫ x2

x1

(x + c)p+2 f ′2(x) dx if p >−1,∫ x2

x1

(x + c)p f 2(x) dx ≤ 2(x1+ c)p+1 f 2(x1)+
4

(p+ 1)2

∫ x2

x1

(x + c)p+2 f ′2(x) dx if p <−1.

Proof. We will only prove the inequality in the case p >−1. The other inequality is similar. We compute

0≤
∫ x2

x1

(x + c)p
(

p+ 1
2

f + (x + c) f ′
)2

(x) dx

=

∫ x2

x1

(p+ 1)2

4
(x + c)p f 2

+
p+ 1

2
(x + c)p+1 d

dx
( f 2)+ (x + c)p+2 f ′2(x) dx

=−
(p+ 1)2

4

∫ x2

x1

(x + c)p f 2(x) dx +
p+ 1

2
(x2+ c)p+1 f 2(x2)

−
p+ 1

2
(x1+ c)p+1 f 2(x1)+

∫ x2

x1

(x + c)p+2 f ′2(x) dx .

Rearranging and dropping a manifestly nonnegative term yield the conclusion. �

Using Lemma 8.2, we prove a Hardy-type estimate on a constant-u hypersurface in our setting.

Lemma 8.3. Given η > 0 as in (6-1), there exists C > 0 independent of Aφ such that the following holds:∫ v

v0

(
|u|

v′+|u|

)2

|φ|2(u, v′) dv′ ≤ CDo+4
∫ v

v0

v′2|Dvφ|
2(u, v′) dv′+3(1+η)

∫ u

−∞

|u′|2 |Duφ|
2(u′, |u|) du′.

Proof. We will apply the Hardy inequality Lemma 8.2 on a fixed constant-u hypersurface. For this
purpose, it is useful to choose an auxiliary gauge for A (see Section 2E and proof of Lemma 2.1) where
|∂vφ| = |Dvφ| (and we will perform all estimates in terms of the gauge-invariant quantities |φ| and
|Dvφ|). Let γ > 0 be a constant to be chosen. If v > |u|, we also partition the integration interval,
[v0, v] = [v0, γ |u|] ∪ [γ |u|, v], so we can estimate∫ v

v0

(
|u|

v′+|u|

)2

|φ|2(u,v′)dv′

=

∫ γ |u|

v0

(
|u|

v′+|u|

)2

|φ|2(u,v′)dv′+
∫ v

γ |u|

(
|u|

v′+|u|

)2

|φ|2(u,v′)dv′

≤

∫ γ |u|

v0

|φ|2 dv′+|u|2
∫ v

γ |u|
(v′+|u|)−2

|φ|2(u,v′)dv′

≤ 4
∫ γ |u|

v0

v′2|Dvφ|
2(u,v′)dv′+4|u|2

∫ v

γ |u|
|Dvφ|

2(u,v′)dv′+2γ |u||φ|2(u,γ |u|)+
2|u|
(γ+1)

|φ|2(u,γ |u|)

≤ 4max{1,γ−2
}

∫ v

v0

v′2|Dvφ|
2(u,v′)dv′+

(
2γ+

2
γ+1

)
|u||φ|2(u,γ |u|), (8-6)
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where we applied Lemma 8.2 with p= 0 and p=−2 respectively in the two intervals. By (7-9), Young’s
inequality and (4-5) (to control the initial data), it moreover holds that for any η > 0, there exists Cη > 0
so that the following is satisfied:

|u||φ|2(u, v)≤ CηDo
|u|
v
+ (1+ η)

∫ u

−∞

|u′|2 |Duφ|
2(u′, v) du′. (8-7)

Using this to control the last term in (8-6), and setting γ = 1, we obtain the desired conclusion. �

We have a similar Hardy-type estimate on a constant-v hypersurface, with appropriate modifications of
the weights.

Lemma 8.4. Let η > 0 be as in (6-1). Then there exists C > 0 independent of Aφ such that the following
holds: ∫ u0

−∞

(
v

v+ |u′|

)2

|φ|2(u′, v) du′ ≤ CDo+ 6(1+ η)
∫ u0

−∞

u′2|Duφ|
2(u′, v) du′.

Proof. Choose a gauge so that |Duφ|= |∂uφ|. (As in Lemma 8.3, we will only estimate the gauge-invariant
quantities.)

Let σ > 0 be a constant that will be chosen suitably later on. We partition the integration interval:
[−∞, u0] = [−∞, σv] ∪ [σv, u0]. For the sake of convenience, we will change our integration variable
from u to −u and we will denote −u by |u|, so we can estimate∫
∞

|u0|

(
v

v+|u′|

)2

|φ|2(u′, v) d|u′|

=

∫ σv

|u0|

(
v

v+|u′|

)2

|φ|2(u′, v) d|u′|+
∫
∞

σv

(
v

v+|u′|

)2

|φ|2 d|u′|

≤

∫ σv

|u0|

|φ|2(u′, v) d|u′|+v2
∫
∞

σv

(v+|u′|)−2
|φ|2(u′, v) d|u′|

≤ 4
∫ σv

|u0|

|u′|2 |Duφ|
2(u′, v) d|u′|+4v2

∫
∞

σv

|Duφ|
2(u′, v) d|u′|+2σv|φ|2(σv, v)+2

v2

σv+v
|φ|2(σv, v)

≤ 4 max{1, σ−2
}

∫ u0

−∞

u′2|Duφ|
2(u′, v) du′+

(
2+

2
σ(1+σ)

)
σv|φ|2(σv, v),

where we applied Lemma 8.2 with p = 0 and p =−2 in the two intervals. We apply (8-7) to conclude
that for any η′, σ > 0, there exists Cη′,σ > 0 such that∫ u0

u

(
v

v+ |u′|

)2

|φ|2 du′ ≤
(

4 max{1, σ−2
}+ (1+ η′)

(
2+

2
σ(1+ σ)

))∫ u0

−∞

u′2|Duφ|
2 du′+Cη′,σDo.

Finally, choosing η′ sufficiently small and σ sufficiently large, we can choose

4 max{1, σ−2
}+ 4σ−2

+ (1+ η′)
(

2+
2

σ(1+ σ)

)
≤ 6(1+ η),

which then gives the desired conclusion. �
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With Lemmas 8.3 and 8.4 in place, we are now ready to control the terms in Ev(u) and Eu(v) which
are not manifestly nonnegative. These are the terms

1
16π

∫ v∞

v0

u2 M−2�2(Q2
−M2)(u, v) dv, 1

16π

∫ u0

−∞

v2 M−2�2(Q2
−M2)(u, v) du

in (8-1) and (8-2), which will be handled in Propositions 8.5 and 8.6 respectively.

Proposition 8.5. For η > 0 as in (6-1) and for κ > 0 arbitrary, there exists a constant C > 0 independent
of Aφ (but dependent on κ in addition to M, e, m, α and η) such that∣∣∣∣ 1
16π

∫ v

v0

u2 M−2�2(Q2
−M2)(u, v′) dv′

∣∣∣∣
≤ (κ + 4κ−1)|e|M3

∫ v

v0

v′2|Dvφ|
2 dv′+ (2+ 3κ−1)(1+ η)|e|M3

∫ u

−∞

|u′|2 |Duφ|
2 du′+C(Do+Di).

Proof. The main integration by parts. We begin the argument by a simple integration by parts:∣∣∣∣ 1
16π

∫ v

v0

u2 M−2�2(Q2
−M2)(u, v′) dv′

∣∣∣∣
≤

∣∣∣∣− 1
16π

∫ v

v0

(∫ v′

v0

u2 M−2�2(u, v′) dv′′
)
∂v(Q2

−M2)(u, v′) dv′
∣∣∣∣

+

∣∣∣∣ 1
16π

(∫ v′

v0

u2 M−2�2(u, v′′) dv′′
)
(Q2
−M2)(u, v′)

∣∣∣∣v′=v
v′=v0

∣∣∣∣
≤

1
16π

∣∣∣∣∫ v

v0

u2 M−2�2(u, v′) dv′
∣∣∣∣|Q2
−M2

|(u, v)

+
1

8π

∫ v

v0

∣∣∣∣∫ v′

v0

u2 M−2�2(u, v′′) dv′′′
∣∣∣∣|Q||∂vQ|(u, v′) dv′. (8-8)

Note that there are two terms that we need to estimate.

An auxiliary computation. Before we proceed, we first estimate the integral∫ v

v0

u2 M−2�2(u, v′) dv′,

which appears in (8-8). From (7-6) it follows that

M−2�2
≤ 4(v+ |u|)−2

+C |u|−
1
2 (v+ |u|)−2, (8-9)

and hence, ∫ v

v0

u2 M−2�2(u, v′) dv′ ≤ 4
∫ v

v0

(
|u|

v′+ |u|

)2

dv′+C |u|−
1
2

∫ v

v0

(
|u|

v′+ |u|

)2

dv′.

Note that

∂v(|u|v(v+ |u|)−1)=

(
|u|

v+ |u|

)2

. (8-10)
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Hence, ∫ v

v0

u2 M−2�2(u, v′) dv′ ≤ 4|u|v(v+ |u|)−1
+C |u|

1
2 v(v+ |u|)−1. (8-11)

Estimating the boundary term. We first estimate the boundary term in (8-8) above by using (8-3)
and (8-11):

1
16π

∣∣∣∣∫ v

v0

u2 M−2�2(u, v′) dv′
∣∣∣∣|Q2
−M2
|(u, v)

≤ 2(1+η)M |e|
∫ u

−∞

u2
|Duφ|

2(u′, v)M2 du′+CDo+CAφ(Do+Di)|u|−1
+C(Do+Di)|u|−

1
2 . (8-12)

Estimating the remaining integral, I: the error term. Now, we estimate the remaining integral on the very
right-hand side of (8-8) by applying (2-6) and (8-11):

1
8π

∫ v

v0

∣∣∣∣∫ v′

v0

u2 M−2�2(u, v′′) dv′′
∣∣∣∣|Q||∂vQ|(u, v′) dv′

≤ 2M3
|e|

∫ v

v0

|u|v′(v′+ |u|)−1
|φ||Dvφ| dv′︸ ︷︷ ︸

main term

+Err, (8-13)

where

Err= C
∫ v

v0

|u|v′(v′+ |u|)−1
|Q−M ||φ||Dvφ|(u, v′) dv′

+C
∫ v

v0

|M + (Q−M)||u|
1
2 v′(v′+ |u|)−1

|φ||Dvφ|(u, v′) dv′

+C
∫ v

v0

|u|v′(v′+ |u|)−1
|r2
−M2

||φ||Dvφ|(u, v′) dv′. (8-14)

Let us start with the error term, beginning with the second term (8-14), which is the hardest since the
decay is the weakest. By (7-1),∫ v

v0

|M + (Q−M)||u|
1
2 v(v+ |u|)−1

|φ||Dvφ|(u, v′) dv′

.
√
Do

∫ v

v0

|u|
1
2 v

1
2−

α
2 (v+ |u|)−1

|Dvφ|(u, v′) dv′+
√
Aφ(Do+Di)

∫ v

v0

v(v+ |u|)−1
|Dvφ|(u, v′) dv′

.
√
Aφ(Do+Di)(v0+ |u|)−

1
4

(∫ v

v0

v′−
3
2 dv′

)1
2
(∫ v

v0

v′2|Dvφ|
2(u, v′) dv′

)1
2

.Aφ(Do+Di)(v0+ |u|)−
1
4 v
−

1
4

0 .

The first term in (8-14) can be treated similarly, with the only caveat that there is a contribution
where |φ| and |Q−M | only give v-decay, and therefore one does not get any smallness in (v0+ |u|)−

1
4 .

Nevertheless, this term has a coefficient that depends only on Do (and not on Di). More precisely, using
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(7-1) and (7-2), we have∫ v

v0

|u|v′(v′+ |u|)−1
|Q−M ||φ||Dvφ|(u, v′) dv′

. D
3
2
o

∫ v

v0

v′−
1
2 |Dvφ|(u, v′) dv′+A2

φ(Do+Di)
2(v0+ |u|)−

1
4 v
−

1
4

0

. D
3
2
o v
−

1
2

0

(∫ v

v0

v′2|Dvφ|
2(u, v′) dv′

)1
2

+A2
φ(Do+Di)

2(v0+ |u|)−
1
4 v
−

1
4

0

.A
1
2
φD

2
ov
−

1
2

0 +A2
φ(Do+Di)

2(v0+ |u|)−
1
4 v
−

1
4

0 .

Finally, the third term in (8-14) can be handled in an identical manner as the first term, except for using
(7-14) instead of (7-2), so that we have∫ v

v0

|u|v′(v′+ |u|)−1
|r2
−M2

||φ||Dvφ|(u, v′)(u, v′) dv′ .A
1
2
φD

2
ov
−

1
2

0 +A2
φ(Do+Di)

2(v0+ |u|)−
1
4 v
−

1
4

0 .

Putting all these together, choosing |u0| and v0 appropriately large (where the largeness of v0 does not
depend on Di), and returning to (8-14), we thus obtain

Err. Do+Di. (8-15)

Estimating the remaining integral, II: the main term. Now for the main term in (8-13), we have, using
Young’s inequality,

2M3
|e|

∫ v

v0

|u|v′(v′+|u|)−1
|φ||Dvφ| dv′

≤ κ|e|M3
∫ v

v0

v′2|Dvφ|
2 dv′+κ−1

|e|M3
∫ v

v0

(
|u|

v′+|u|

)2

|φ|2 dv′

≤ (κ+4κ−1)|e|M3
∫ v

v0

v′2|Dvφ|
2 dv′+3(1+η)κ−1

|e|M3
∫ u

−∞

|u′|2 |Duφ|
2 du′+Cκ(Do+Di), (8-16)

where in the last line we have used Lemma 8.3.

Putting everything together. Combining (8-8), (8-12), (8-13), (8-15) and (8-16), we obtain the desired
conclusion. �

We now turn to the analogue of Proposition 8.5 on constant-v hypersurfaces.

Proposition 8.6. For η > 0 as in (6-1), there exists a constant C > 0 independent of Aφ such that∣∣∣∣ 1
16π

∫ u0

−∞

v2 M−2�2(Q2
−M2)(u′, v) du′

∣∣∣∣
≤ 2(1+

√
6)|e|M3(1+ η)

∫ u0

−∞

|u′|2 |Duφ|
2(u′, v) du′+C(Do+Di).
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Proof. We will consider the integral

1
16π

∫ u0

u
v2 M−2�2(Q2

−M2)(u′, v) du′

and take the limit u ↓ −∞.

The main integration by parts. We integrate by parts as in (8-8)∣∣∣∣ 1
16π

∫ u0

u
v2 M−2�2(Q2

−M2)(u′, v) du′
∣∣∣∣

≤

∣∣∣∣ 1
16π

∫ u0

u

(∫ u0

u′
v2 M−2�2 du′′

)
∂u(Q2

−M2)(u′, v) du′
∣∣∣∣

+

∣∣∣∣ 1
16π

(∫ u0

u′
v2 M−2�2(u′′, v) du′′

)
(Q2
−M2)(u′, v)

∣∣∣∣u′=u0

u′=u

∣∣∣∣
≤

1
16π

∫ u0

u
v2 M−2�2(u′, v) du′ · |Q2

−M2
|(u, v)

+
1

8π

∫ u0

u

[∫ u′

∞

v2 M−2�2(u′′, v) du′′
]
|Q||∂u Q|(u′, v) du′. (8-17)

An auxiliary computation. By (8-9) and

−∂u(|u|v(v+ |u|)−1)=

(
v2

v+ |u′|

)2

,

we obtain∫ u0

u
v2 M−2�2(u′, v) du′ ≤ 4

∫ u0

u

(
v2

v+ |u′|

)2

du′+Cv2
∫ u0

u

1

|u′|
1
2 (v+ |u′|)2

du′

≤ 4|u|v(v+ |u|)−1
+C |u|

1
2 v2(v+ |u|)−2.

(8-18)

Estimating the boundary term. We now control the boundary term in (8-17). By (8-18) combined with
(8-3), we obtain

1
16π

∣∣∣∣∫ u0

u
v2 M−2�2(u′, v) du′

∣∣∣∣|Q2
−M2

|(u, v)

≤ 2(1+ η)M3
|e|

∫ u

−∞

u′2|Duφ|
2(u′, v) du′+CDo+CAφ(Do+Di)|u|−1

+C(Do+Di)|u|−
1
2 . (8-19)

Estimating the remaining integral. The remaining integral in (8-17) can be controlled as follows:

1
8π

∫ u0

u

∣∣∣∣∫ u0

u′
v2 M−2�2(u′′, v) du′′

∣∣∣∣|Q||∂u Q|(u′, v) du′

≤ 2M3
|e|

∫ u0

u
|u′|v(v+ |u′|)−1

|φ||Duφ|(u′, v) du′︸ ︷︷ ︸
main term

+Err,
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where

Err= C
∫ u0

u
|u′|v(v+ |u′|)−1

|Q−M ||φ||Duφ|(u′, v) du′

+C
∫ u0

u
|M + (Q−M)||u′|

1
2 v(v+ |u′|)−1

|φ||Duφ|(u′, v) du′

+C
∫ u0

u
|u′|v(v+ |u′|)−1

|r2
−M2

||φ||Duφ|(u′, v) du′.

The error term can be estimated in essentially the same manner as the error term in the proof of
Proposition 8.5, except we use (A2) for

∫ u0
u u′2|Duφ|

2(u′, v) du′ instead of
∫ v
v0
v′2|Dvφ|

2(u, v′) dv′.
We omit the details and just record the estimate

Err. Do+Di. (8-20)

For the main term in (8-17), we apply Hölder’s inequality, Lemma 8.4 and Young’s inequality to obtain

2M3
|e|

∫ u0

u
|u′|v(v+ |u′|)−1

|φ||Duφ|(u′, v) du′

≤ 2|e|M3
(∫ u0

u
|u′|2 |Duφ|

2(u′, v) du′
)1

2
(∫ u0

u

(
v

v+ |u′|

)2

|φ|2(u′, v) du′
)1

2

≤ 2|e|M3
√

6(1+ η)
∫ u0

u
|u′|2 |Duφ|

2(u′, v) du′+CDo. (8-21)

Putting everything together. Putting together (8-17), (8-19), (8-20) and (8-21), and taking the limit
u ↓ −∞, we obtain the desired conclusion. �

We can now prove the main result of this subsection, namely, the coercivity of the renormalized energy
flux (up to controllable error terms).

Proposition 8.7. We can estimate∫ u0

−∞

|u|2 M2
|Duφ|

2 du+
∫ v∞

v0

v2 M2
|Dvφ|

2 dv ≤ µ−1(Eu(v)+ Ev(u))+C(Do+Di), (8-22)

with µ as in (6-2).

Proof. Plugging in the estimates in Propositions 8.5 and 8.6 into (8-1) and (8-2) respectively, and using
m≥ 0, we deduce that

Eu(v)+ Ev(u)≥
(
1− (4+ 2

√
6+ 3κ−1)(1+ η)|e|M

) ∫ u0

−∞

|u|2r2
|Duφ|

2 du′

+ (1− (κ + 4κ−1)|e|M)
∫ v∞

v0

v2 M2
|Dvφ|

2 dv′−C(Do+Di).

Now we choose κ = 2+
√

6+
√

9+ 4
√

6 to obtain the conclusion. �
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8C. Energy estimates for φ. We define

Eu(v; u) :=
∫ u

−∞

u2 M2
|Duφ|

2(u′, v)+ 1
4v

2 M2�2(m2
|φ|2+ 1

4π M−4(Q2
−M2)

)
(u′, v) du′,

Ev(u; v) :=
∫ v

v0

v2 M2
|Dvφ|

2(u, v′)+ 1
4 u2 M2�2(m2

|φ|2+ 1
4π M−4(Q2

−M2)
)
(u, v′) dv′.

With the above definitions, we have Eu(v)= Eu(v; u0) and Ev(u)= Ev(u; v∞).

Proposition 8.8. Eu(v; u) and Ev(u; v) obey the estimate

sup
v0≤v≤v∞

Eu(v; u)+ sup
−∞<u<u0

Ev(u; v)≤ C(Do+Di).

Proof. In order to simplify the notation, in this proof, we omit the arguments in the integrals, which will
typically be taken as (u′, v′). For any u ∈ (−∞, u0] and v ∈ [v0, v∞], we have the decomposition

[Eu(v; u)− Eu(v0; u)] + [Ev(u; v)− Ev(−∞; v)] =
∫ v

v0

∂vEu(v
′
; u) dv′+

∫ u

−∞

∂u Ev(u′; v) du′

= J1+ J2+ J3+ J4+ J5+ J6,

where

J1 = M2
∫ v

v0

∫ u

−∞

u′2 ∂v(|Duφ|
2) du′ dv′,

J2 =
1
4 M2m2

∫ v

v0

∫ u

−∞

v′2�2 ∂v(|φ|
2)+ ∂v(v

′2�2) · |φ|2 du′ dv′,

J3 =
1

16π M−2
∫ v

v0

∫ u

−∞

2v′2�2 Q ∂vQ+ ∂v(v′2�2)(Q2
−M2) du′ dv′,

J4 = M2
∫ v

v0

∫ u

−∞

v′2 M2 ∂u(|Dvφ|
2) du′ dv′,

J5 =
1
4 M2m2

∫ v

v0

∫ u

−∞

u′2�2 ∂u(|φ|
2)+ ∂u(u′2�2) · |φ|2 du′ dv′,

J6 =
1

16π M−2
∫ v

v0

∫ u

−∞

2u′2�2 Q ∂u Q+ ∂u(u′2�2)(Q2
−M2) du′ dv′.

We first use (2-3) and (2-4) to rewrite the integral J1 in terms of expressions that are zeroth- or
first-order derivatives of the variables φ,�, r . For this, we use that we have the following identity for
complex-valued functions f :

∂v(| f |2)= (Dv f − ieAv f ) f̄ + f (Dv f − ieAv f )= f̄ Dv f + f Dv f

and similarly

∂u(| f |2)= f̄ Du f + f Du f .
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We therefore obtain

J1 =

∫ v

v0

∫ u

−∞

u′2 M2(DuφDvDuφ+ DuφDvDuφ) du′ dv′

=−
1
2

∫ v

v0

∫ u

−∞

1
2 u′2 M2m2�2(φDuφ+ φ̄Duφ)+ 2M2r−1u′2 ∂ur(DuφDvφ+ DvφDuφ)

+ 4M2r−1u′2 ∂vr |Duφ|
2
+

1
2 ieM2r−2u′2�2 Q(φDuφ− φ̄Duφ) du′ dv′

and similarly,

J4 =

∫ v

v0

∫ u

−∞

v′2 M2(DvφDu Dvφ+ DvφDu Dvφ) du′ dv′

=−
1
2

∫ v

v0

∫ u

−∞

1
2v
′2 M2m2�2(φDvφ+ φ̄Dvφ)+ 2M2r−1v′2 ∂vr(DuφDvφ+ DvφDuφ)

+ 4M2r−1v′2 ∂ur |Dvφ|
2
−

1
2 ieM2r−2�2v′2 Q(φDvφ− φ̄Dvφ) du′ dv′.

We also rewrite J2 and J5 to obtain

J2 =
1
4 M2m2

∫ v

v0

∫ u

−∞

v′2�2(φ̄Dvφ+φDvφ)+ ∂v(v
′2�2) · |φ|2 du′ dv′,

J5 =
1
4 M2m2

∫ v

v0

∫ u

−∞

u′2�2(φ̄Duφ+φDuφ)+ ∂u(u′2�2) · |φ|2 du′ dv′.

Finally, we use (2-5) and (2-6) to rewrite J3 and J6:

J3 =

∫ v

v0

∫ u

−∞

−
1
4 ieM−2r2v′2�2 Q(φDvφ− φ̄Dvφ)+

1
16π M−2 ∂v(v

′2�2)(Q2
−M2) du′ dv′,

J6 =

∫ v

v0

∫ u

−∞

1
4 ieM−2r2u′2�2 Q(φDuφ− φ̄Duφ)+

1
16π M−2 ∂u(u′2�2)(Q2

−M2) du′ dv′.

By incorporating the cancellations in the terms in Ji , we can write

[Eu(v; u)− Eu(v0; u)] + [Ev(u; v)− Ev(−∞; v)] =
7∑

i=1

Fi , (8-23)

with

F1 =−M2
∫ v

v0

∫ u

−∞

r−1(u′2 ∂ur + v′2 ∂vr)(DuφDvφ+ DvφDuφ) du′ dv′,

F2 =−2M2
∫ v

v0

∫ u

−∞

r−1 ∂vr · u′2|Duφ|
2
+ r−1 ∂ur · v′2|Dvφ|

2 du′ dv′,

F3 =
1
4 M2m2

∫ v

v0

∫ u

−∞

[∂v(v
′2�2

0)+ ∂u(u′2�2
0)]|φ|

2 du′ dv′,

F4 =
1

16π M−2
∫ v

v0

∫ u

−∞

[∂v(v
′2�2

0)+ ∂u(u′2�2
0)](Q

2
−M2) du′ dv′,

F5 =
1
4

∫ v

v0

∫ u

−∞

[∂v(v
′2
· (�2
−�2

0)+ ∂u(u′2 · (�2
−�2

0))](M
2m2
|φ|2+ 1

4π M−2(Q2
−M2)) du′ dv′,
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F6 =
1
4 ieM−2

∫ v

v0

∫ u

−∞

r−2(r4
−M4)u′2 Q�2(φDuφ− φ̄Duφ) du′ dv′,

F7 =
1
4 ieM−2

∫ v

v0

∫ u

−∞

r−2(M4
− r4)v′2 Q�2(φDvφ− φ̄Dvφ) du′ dv′.

We estimate using Cauchy–Schwarz inequality, Young’s inequality, Proposition 7.2 and (A2)

|F1|.
∫ v

v0

∫ u

−∞

(u′2|∂ur | + v′2|∂vr |)|Duφ||Dvφ| du′ dv′

.
∫ v

v0

∫ u

−∞

Aφ(Do+Di)|Duφ||Dvφ| du′ dv′

.
∫ v

v0

∫ u

−∞

Aφ(Do+Di)v
′−2u′

3
2 |Duφ|

2 du′ dv′+
∫ v

v0

∫ u

−∞

Aφ(Do+Di)u′−
3
2 v′2|Dvφ|

2 du′ dv′

.Aφ(Do+Di)v
−1
0 |u0|

−
1
2 · sup

v0≤v≤v∞

∫ u

−∞

u′2|Duφ|
2 du′

+Aφ(Do+Di)|u0|
−

1
2 · sup
−∞<u<u0

∫ v∞

v0

v′2|Dvφ|
2 dv′

.A2
φ(Do+Di)

2
|u0|
−

1
2 .

We can similarly estimate

|F2|.
∫ v

v0

∫ u

−∞

|∂vr | · u′2|Duφ|
2 du′ dv′+

∫ v

v0

∫ u

−∞

|∂ur | · v′2|Dvφ|
2 du′ dv′

.Aφ(Do+Di)

(∫ v

v0

∫ u

−∞

v′−
3
2 · u′

3
2 |Duφ|

2 du′ dv′+
∫ v

v0

∫ u

−∞

u′−2
· v′2|Dvφ|

2 du′ dv′
)

+Do

∫ v

v0

∫ u

−∞

v′−2
· u′2|Duφ|

2 du′ dv′

. [Dov
−1
0 +Aφ(Do+Di)(v

−
1
2

0 |u0|
−

1
2 + |u0|

−1)]Aφ(Do+Di).

In order to estimate |F3|, we use (3-4) (with a constant depending on β > 0) and (7-1) to get

|F3|.
∫ v

v0

∫ u

−∞

|∂v(v
2�2

0)+ ∂u(u2�2
0)| · |φ|

2 du′ dv′

.
∫ v

v0

∫ u

−∞

(v′+ |u′|)−2+β(Dov
′−1
+Aφ(Do+Di)|u′|−1) du′ dv′

.Aφ(Do+Di)(v0+ |u0|)
−1+2β .

Similarly, using (3-4) and (7-2),

|F4|.
∫ v

v0

∫ u

−∞

|∂v(v
2�2

0)+ ∂u(u2�2
0)| · |Q−M ||Q+M | du′ dv′

.
∫ v

v0

∫ u

−∞

(v′+ |u′|)−2+β(Dov
′−1
+Aφ(Do+Di)|u′|−1) du′ dv′

.Aφ(Do+Di)(v0+ |u0|)
−1+2β .
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Before we estimate |F5|, it is convenient to rewrite the following expression:

∂v(v
2(�2
−�2

0))+ ∂u(u2(�2
−�2

0))

= ∂v

(
v2�2

0

(
�2

�2
0
− 1
))
+ ∂u

(
u2�2

0

(
�2

�2
0
− 1
))

= (∂v(v
2�2

0)+ ∂u(u2�2
0))

(
�2

�2
0
− 1
)
+ v2�2

0 ∂v

(
�2

�2
0
− 1
)
+ u2�2

0 ∂u

(
�2

�2
0
− 1
)

= (∂v(v
2�2

0)+ ∂u(u2�2
0))

(
�2

�2
0
− 1
)
+ 2v2�2 ∂v

(
log �

�0

)
+ 2u2�2 ∂u

(
log �

�0

)
.

Therefore,

|F5|.
∫ v

v0

∫ u

−∞

|∂v(v
′2�2

0)+ ∂u(u′2�2
0)|

∣∣∣∣�2

�2
0
− 1

∣∣∣∣ · (|φ|2+ |Q−M ||Q+M |) du′ dv′

+

∫ v

v0

∫ u

−∞

v′2�2
∣∣∣∣∂v(log �

�0

)∣∣∣∣ · (|φ|2+ |Q−M ||Q+M |) du′ dv′

+

∫ v

v0

∫ u

−∞

u′2�2
∣∣∣∣∂u

(
log �

�0

)∣∣∣∣ · (|φ|2+ |Q−M ||Q+M |) du′ dv′ =: F5,1+ F5,2+ F5,3.

Using (3-4), (7-1), (7-2), (7-3), we can estimate |F5,1| in the same way as |F3| and |F4| to obtain

|F5,1|.Aφ(Do+Di)|u0|
−

1
2 (v0+ |u0|)

−1+2β .

For |F5,2|, we use (7-1), (7-2) and (A1) to estimate

|F5,2|.
∫ v

v0

∫ u

−∞

(Dov
′−1
+Aφ(Do+Di)|u′|−1)v′2�2

∣∣∣∣∂v(log �
�0

)∣∣∣∣du′ dv′

.Do

(
sup

u′∈(−∞,u0]

∫ v

v0

v′2
(
∂v

(
log �

�0

))2
(u′,v′)dv′

)1
2
∫ u

−∞

(∫ v

v0

(v′+|u′|)−4 dv′
)1

2

du′

+Aφ(Do+Di)

(
sup

u′∈(−∞,u0]

∫ v

v0

v′2
(
∂v

(
log �

�0

))2
(u′,v′)dv′

)1
2
∫ u

−∞

(∫ v

v0

v′2

|u′|2(v′+|u′|)4
dv′
)1

2

du′

.Do(v0+|u0|)
−

1
2+Aφ(Do+Di)|u0|

−
1
2 ,

where in the last line we have evaluated an integral as follows (we only include this estimate for
completeness; in what follows, we will bound similar integrals in analogous manner without spelling out
the full details):∫ u

−∞

(∫ v

v0

v′2

|u′|2(v′+|u′|)4
dv′
)1

2

du′ .
∫ u

−∞

(∫
|u|

v0

v′2

|u′|2(v′+|u′|)4
dv′+

∫ v

|u|

v′2

|u′|2(v′+|u′|)4
dv′
)1

2

du′

.
∫ u

−∞

(∫
|u|

v0

v′2

|u′|6
dv′+

∫ v

|u|

1
|u′|2v′2

dv′
)1

2

du′

.
∫ u

−∞

|u′|−
3
2 du′ . |u0|

−
1
2 .
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For |F5,3|, we similarly use (7-1), (7-2) and (A1) to estimate

|F5,3|.
∫ v

v0

∫ u

−∞

(Dov
′−1
+Aφ(Do+Di)|u′|−1)u′2�2

∣∣∣∂u

(
log �

�0

)∣∣∣ du′ dv′

. Do

(
sup

u′∈(−∞,u0]

∫ u

−∞

u′2
(
∂u

(
log �

�0

))2
(u′, v′) du′

)1
2
∫ v

v0

(∫ u

−∞

u′2

v′2(v′+|u′|)4
du′
) 1

2

dv′

+Aφ(Do+Di)

(
sup

u′∈(−∞,u0]

∫ u

−∞

u′2
(
∂u

(
log �

�0

))2
(u′, v′) du′

)1
2
∫ v

v0

(∫ u

−∞

(v′+|u′|)−4 du′
)1

2

dv′

. Dov
−

1
2

0 +Aφ(Do+Di)(v0+|u0|)
−

1
2 .

Thus, combining the estimates for F5,1, F5,2 and F5,3, we obtain

|F5|. Dov
−

1
2

0 +Aφ(Do+Di)|u0|
−

1
2 .

We are left with |F6| and |F7|, which are slightly easier because more decay is available. For F6, we use
the Cauchy–Schwarz inequality, (7-1), (7-6), (7-14), and (A2) to obtain

|F6|.
∫ v

v0

∫ u

−∞

|r −M |u′2�2
|φ||Duφ| du′ dv′

.
∫ v

v0

∫ u

−∞

(Dov
′−1
+Aφ(Do+Di)|u′|−1)(

√
Dov

′−
1
2 +

√
Aφ(Do+Di)|u′|−

1
2 )u′2�2

|Duφ| du′ dv′

. D
3
2
o

(
sup

v′∈[v0,v)

∫ u

−∞

u′2|Duφ|
2(u′, v′) du′

)1
2
∫ v

v0

(∫ u

−∞

v′−3u′2(v′+ |u′|)−4 du′
)1

2

dv′

+A
3
2
φ (Do+Di)

3
2

(
sup

v′∈[v0,v)

∫ u

−∞

u′2|Duφ|
2(u′, v′) du′

)1
2
∫ v

v0

(∫ u

−∞

|u′|−1(v′+ |u′|)−4 du′
)1

2

dv′

.A
1
2
φD

3
2
o (Do+Di)

1
2 v
−

1
2

0 |u0|
−

1
2 +A2

φ(Do+Di)
2
|u0|
−

1
2 (v0+ |u0|)

−
1
2 .

Similarly, we use the Cauchy–Schwarz inequality, (7-1), (7-6), (7-14), and (A2) to obtain

|F7|.
∫ v

v0

∫ u

−∞

|r−M |v′2�2
|φ||Dvφ| du′ dv′

.
∫ v

v0

∫ u

−∞

(Dov
′−1
+Aφ(Do+Di)|u′|−1)(

√
Dov

′−
1
2+
√
Aφ(Do+Di)|u′|−

1
2 )v′2�2

|Dvφ| du′ dv′

. D
3
2
o

(
sup

u′∈(−∞,u0]

∫ v

v0

v′2|Dvφ|
2(u′, v′) dv′

)1
2
∫ u

−∞

(∫ v

v0

v′−1(v′+|u′|)−4 dv′
)1

2

du′

+A
3
2
φ (Do+Di)

3
2

(
sup

u′∈(−∞,u0]

∫ v

v0

v′2|Dvφ|
2(u′, v′) dv′

)1
2
∫ u

−∞

(∫ v

v0

v′2|u′|−3(v′+|u′|)−4 dv′
)1

2

du′

.A
1
2
φD

3
2
o (Do+Di)

1
2 v
−

1
2

0 (v0+|u0|)
−

1
2+A2

φ(Do+Di)
2
|u0|
−

1
2 (v0+|u0|)

−
1
2 .
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Choosing v0 and |u0| large in a manner allowed by (6-3), we obtain

|F1| + · · · + |F7|. Do+Di.

Finally, noting that the initial data contributions Eu(v0; u) and Ev(−∞; v) are by definition bounded by
Do+Di, and returning to (8-23), we obtain

sup
v0≤v<v∞

Eu(v; u)+ sup
−∞<u<u0

Ev(u; v). Do+Di,

which is to be proved. �

Combining Propositions 8.7 and 8.8, we obtain the following estimate. In particular, this is an
improvement over the bootstrap assumption (A2) for Aφ sufficiently large depending on M, m, e and η.

Corollary 8.9. Choosing Aφ sufficiently large (depending on M, m and e), the following estimate holds:

sup
v∈[v0,v∞)

∫ u0

−∞

u2
|Duφ|

2(u, v) du+ sup
u∈(−∞,u0)

∫ v∞

v0

v2
|Dvφ|

2(u, v) dv ≤ C(Do+Di)≤
1
2 Aφ(Do+Di).

At this point we fix Aφ so that Corollary 8.9 holds.

8D. Energy estimates for log(�/�0). Finally, we carry out the energy estimates for log(�/�0). As we
noted in the Introduction, the essential point is to establish that log(�/�0) obeys an equation of the form
(1-5) up to lower-order terms. More precisely, starting with (2-2), the estimates that we have obtained so
far show that the DuφDvφ and ∂ur ∂vr terms have better decay properties, and that r and Q both decay
to M. Therefore, (2-2) can indeed be thought of as (1-5).

We split the proof of the energy estimates into two parts. First, in Lemma 8.10, we consider an energy
inspired by the form (1-5) and write down the error terms that arise when controlling this energy. Then, in
Proposition 8.11, we will bound all the error terms arising in Lemma 8.10 to obtain the desired estimate
for log(�/�0).

Lemma 8.10. The following identity holds for any u ∈ (−∞, u0) and v ∈ [v0, v∞):∫ u

−∞

u′2
(
∂v log

(
�

�0

))2
+

1
8 M−4u′2�−2(�2

−�2
0)

2(u′, v) du′

+

∫ v

v0

v′2
(
∂v log

(
�

�0

))2
+

1
8 M−4v′2�−2(�2

−�2
0)

2(u, v′) dv′ =
6∑

i=1

Oi ,

where

O1 =−4π
∫ v

v0

∫ u

−∞

(DuφDvφ+ DuφDvφ)
(
v′2∂v log

(
�

�0

)
+ u′2 ∂u log

(
�

�0

))
du′ dv′,

O2 =
1
8 M−4

∫ v

v0

∫ u

−∞

[∂v(v
′2�2

0)+ ∂u(u′2�2
0)]
�2

0

�2

(
�2

�2
0
− 1
)2

du′ dv′,

O3 =−
1
4 M−4

∫ v

v0

∫ u

−∞

�−2(�2
−�2

0)
2
(
v′2 ∂v log

(
�

�0

)
+ u′2 ∂u log

(
�

�0

))
du′ dv′,
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O4 =

∫ v

v0

∫ u

−∞

�2
0
[
Q2(r−4

0 − r−4)+ r−4
0 (M2

− Q2)− 1
2(r
−2
0 − r−2)

]
·

(
v′2 ∂v log

(
�

�0

)
+ u′2 ∂u log

(
�

�0

))
du′ dv′,

O5 =

∫ v

v0

∫ u

−∞

(�2
−�2

0)
[
r−4(M2

− Q2)+ 1
2(r
−2
−M−2)−M2(r−4

−M−4)
]

·

(
v′2 ∂v log

(
�

�0

)
+ u′2 ∂u log

(
�

�0

))
du′ dv′,

O6 = 2
∫ v

v0

∫ u

−∞

(r−2 ∂ur ∂vr − r−2
0 ∂ur0 ∂vr0)

(
v′2 ∂v log

(
�

�0

)
+ u′2 ∂u log

(
�

�0

))
du′ dv′,

where, as in Proposition 8.8, we have suppressed the argument (u′, v′) in the integrand in the Oi terms.

Proof. By (2-2) we have

∂u∂v log
(
�

�0

)
=−2π(DuφDvφ+ DuφDvφ)+ r−2∂ur ∂vr − r−2

0 ∂ur0 ∂vr0

−
1
2�

2r−4 Q2
+

1
2�

2
0r−4

0 M2
+

1
4�

2r−2
−

1
4�

2
0r−2

0

=−2π(DuφDvφ+ DuφDvφ)+ r−2 ∂u(r − r0) ∂vr + r−2 ∂ur0 ∂v(r − r0)

+ ∂ur0 ∂vr0(r−2
− r−2

0 )− 1
2(�

2
−�2

0)r
−4 M2

+
1
2(�

2
−�2

0)r
−4(M2

− Q2)

+
1
4(�

2
−�2

0)M
−2
+

1
4(�

2
−�2

0)(r
−2
−M−2)

+
1
2�

2
0 Q2(r−4

0 − r−4)+ 1
2�

2
0r−4

0 (M2
− Q2)− 1

4�
2
0(r
−2
0 − r−2)

=−2π(DuφDvφ+ DuφDvφ)+ r−2∂u(r − r0) ∂vr + r−2 ∂ur0 ∂v(r − r0)

+ ∂ur0 ∂vr0(r−2
− r−2

0 )− 1
2(�

2
−�2

0)M
−2
−

1
2(�

2
−�2

0)M
2(r−4

−M−4)

+
1
2(�

2
−�2

0)r
−4(M2

− Q2)+ 1
4(�

2
−�2

0)M
−2
+

1
4(�

2
−�2

0)(r
−2
−M−2)

+
1
2�

2
0 Q2(r−4

0 − r−4)+ 1
2�

2
0r−4

0 (M2
− Q2)− 1

4�
2
0(r
−2
0 − r−2).

Using the above equation, we obtain

∂u

(
v2
(
∂v log

(
�

�0

))2)
= 2v2 ∂u ∂v log

(
�

�0

)
· ∂v log

(
�

�0

)
=−4πv2(DuφDvφ+ DuφDvφ) ∂v log

(
�

�0

)
+ 2r−2 ∂u(r − r0) ∂vrv2 ∂v log

(
�

�0

)
+ 2r−2 ∂ur0 ∂v(r − r0)v

2 ∂v log
(
�

�0

)
+ 2∂ur0 ∂vr0(r−2

− r−2
0 )v2 ∂v log

(
�

�0

)
−

1
2 M−2v2(�2

−�2
0) ∂v log

(
�

�0

)
− (�2

−�2
0)M

2(r−4
−M−4)v2 ∂v log

(
�

�0

)
+ (�2

−�2
0)r
−4(M2

− Q2)v2 ∂v log
(
�

�0

)
+

1
2(�

2
−�2

0)(r
−2
−M−2)v2 ∂v log

(
�

�0

)
+�2

0 Q2(r−4
0 − r−4)v2 ∂v log

(
�

�0

)
+�2

0r−4
0 (M2

− Q2)v2 ∂v log
(
�

�0

)
−

1
2�

2
0(r
−2
0 − r−2)v2 ∂v log

(
�

�0

)
.
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Note that we can write

(�2
−�2

0) ∂v log
(
�

�0

)
=

1
2(�

2
−�2

0) ∂v

(
�2

�2
0
− 1
)
�2

0

�2 =
1
4
�4

0

�2 ∂v

((
�2

�2
0
− 1
)2)

.

Hence,

−
1
2 M−4v2(�2

−�2
0) ∂v log

(
�

�0

)
=−

1
8v

2 M−4�
4
0

�2 ∂v

((
�2

�2
0
−1
)2)

=− ∂v
( 1

8 M−4v2�−2(�2
−�2

0)
2)
+

1
8 M−4 ∂v

(
v2�2

0
�2

0

�2

)(
�2

�2
0
−1
)2

=−∂v
( 1

8 M−4v2�−2(�2
−�2

0)
2)
+

1
8 M−4 ∂v(v

2�2
0)
�2

0

�2

(
�2

�2
0
−1
)2

−
1
4 M−4v2�−2 ∂v log

(
�

�0

)
(�2
−�2

0)
2.

We similarly consider ∂v(u2(∂u log(�/�0))
2) and use the Leibniz rule (with u replacing the role of v).

Noting also that by the gauge condition (4-1), log(�/�0)= 0 on the initial hypersurfaces, this yields the
statement of the lemma. �

Proposition 8.11. The following estimate holds:

sup
v∈[v0,v∞]

∫ u0

−∞

u′2
(
∂u

(
log �

�0

))2
(u′, v) du′+ sup

u∈(−∞,u0]

∫ v∞

v0

v′2
(
∂v

(
log �

�0

))2
(u, v′) dv′ ≤ 1

2 M.

Proof. In order to obtain the stated estimates, we need to bound each of the terms in Lemma 8.10. The
basic idea is to use the bootstrap assumption (A1) to control ∂v log(�/�0) and ∂u log(�/�0) and to use
the estimates that we have previously obtained to deduce the decay and smallness of these terms.

We begin with the estimates for O1. This turns out to be the most difficult term since we do not have
any kind of pointwise estimates for |Dvφ|, |Duφ|, |∂v log(�/�0)| and |∂u log(�/�0)|. We bound it as
follows using (A1):

|O1|.
∫ v

v0

∫ u

−∞

|Duφ| · |Dvφ| ·
(
v′2
∣∣∣∂v log

(
�

�0

)∣∣∣+ u′2
∣∣∣∂u log

(
�

�0

)∣∣∣) du′ dv′

.

(∫ v

v0

v′2 sup
u′∈(−∞,u]

|Dvφ|
2(u′, v′) dv′

)1
2

·

(∫ u

−∞

u′2 sup
v′∈[v0,v]

|Duφ|
2(u′, v′) du′

)1
2

×

(
|u0|
−

1
2

(
sup

u′∈(−∞,u]

∫ v

v0

v′2
∣∣∣∂v log

(
�

�0

)∣∣∣2(u′, v′) dv′
)1

2

+ v
−

1
2

0

(
sup

v′∈[v0,v]

∫ u

−∞

u′2
∣∣∣∂u log

(
�

�0

)∣∣∣2(u′, v′) du′
)1

2
)

. (|u0|
−

1
2 + v

−
1
2

0 )

(∫ v

v0

sup
u′∈(−∞,u]

[∫ u′

−∞

v′2 ∂u(|Dvφ|
2)(u′′, v′) du′′

]
dv′
)1

2

×

(∫ u

−∞

sup
v′∈[v0,v]

[∫ v′

v0

|u′|2 ∂v(|Duφ|
2)(u′, v′′) dv′′

]
du′
)1

2

. (8-24)



308 DEJAN GAJIC AND JONATHAN LUK

We first consider the last factor in (8-24). From the computation for J1 in the proof of Proposition 8.8,
which used (2-3) and (2-4), it follows that∫ u

−∞

sup
v′∈[v0,v]

[∫ v′

v0

|u′|
3
2 ∂v(|Duφ|

2) dv′′
]

du′

.
∫ v

v0

∫ u

−∞

u′
3
2�2
|φ||Duφ| + u′

3
2 |∂ur ||Duφ|Dvφ| + u′

3
2 |∂vr ||Duφ|

2 du′ dv′

=: O1,1+ O1,2+ O1,3. (8-25)

The terms O1,2 and O1,3 have already been controlled in the proof of Proposition 8.8. More precisely,
estimating as the terms F1 and F2 in the proof of Proposition 8.8, and noting that O1,2 and O1,3 have an
additional u′−

1
2 -weight compared to F1 and F2, we have

O1,2+ O1,3 .A2
φ(Do+Di)

2
|u0|
−1
+AφDo(Do+Di)v

−1
0 |u0|

−
1
2 .A2

φ(Do+Di)
2
|u0|
−

1
2 .

It thus remains to bound O1,1, which has no analogue in Proposition 8.8. To control this term, we use
(7-1), (7-8), the Cauchy–Schwarz inequality and the bootstrap assumption (A2) to obtain

O1,1 .
√
Aφ(Do+Di)

∫ v

v0

(∫ u

−∞

u′2|Duφ|
2 du′

)1
2
(∫ u

−∞

(v′+ |u′|)−4 du′
)1

2

dv′

+
√
Do

∫ v

v0

(∫ u

−∞

u′2|Duφ|
2 du′

)1
2
(∫ u

−∞

|u′|
v′1+α

(v′+ |u′|)−4 du′
)1

2

dv′

.
√
Aφ(Do+Di)

(
sup

v′∈[v0,v]

∫ u

−∞

u′2|Duφ|
2(u′, v′) du′

)1
2

×

(∫ v

v0

(v′+ |u|)−
3
2 dv′+

∫ v

v0

v′−
1
2−

α
2 (v′+ |u|)−1 dv′

)
.Aφ(Do+Di)(v0+ |u0|)

−
1
2 .

Combining all these and plugging back into (8-25), we obtain∫ u

−∞

sup
v′∈[v0,v]

[∫ v′

v0

|u′|
3
2 ∂v(|Duφ|

2) dv′′
]

du′ .A2
φ(Do+Di)

2
|u0|
−

1
2 +Aφ(Do+Di)(v0+ |u0|)

−
1
2

.A2
φ(Do+Di)

2
|u0|
−

1
2 . (8-26)

For the other factor in (8-24), we estimate similarly by∫ v

v0

sup
−∞≤u′≤u

[∫ u′

−∞

v′
3
2 ∂u(|Dvφ|

2) du′′
]

dv′

.
∫ v

v0

∫ u

−∞

v′2�2
|φ||Dvφ| + v

′2
|∂vr ||Duφ|Dvφ| + v

′2
|∂ur ||Dvφ|

2 du′ dv′ =: O1,4+ O1,5+ O1,6.

The terms O1,5 and O1,6, just as O1,2 and O1,3, can be bounded above by A2
φ(Do+Di)

2
|u0|
−

1
2 as the

terms F1 and F2 in the proof of Proposition 8.8. For the term O1,4, we have, using (7-1), (7-8), the
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Cauchy–Schwarz inequality and the bootstrap assumption (A2),∫ v

v0

∫ u

−∞

v′
3
2�2
|φ||Dvφ| du′ dv′

.
√
Aφ(Do+Di)

∫ u

−∞

(∫ v

v0

v′2|Dvφ|
2 dv′

)1
2
(∫ v

v0

|u′|−1v′(v′+ |u′|)−4 dv′
)1

2

du′

+
√
Do

∫ u

−∞

(∫ v

v0

v′2|Dvφ|
2 dv′

)1
2
(∫ v

v0

v′−2α(v′+ |u′|)−4 dv′
)1

2

du′

.
√
Aφ(Do+Di)

(
sup

u′∈(−∞,u]

(∫ v

v0

v′2|Dvφ|
2(u′, v′) dv′

)1
2
)

×

(∫ u

−∞

|u′|−
1
2 (v0+ |u′|)−1 du′+

∫ u

−∞

(v0+ |u′|)−
3
2 du′

)
.Aφ(Do+Di)|u0|

−
1
2 .

Combining, we obtain∫ v

v0

sup
−∞≤u′≤u

[∫ u′

−∞

v′
3
2 ∂u(|Dvφ|

2) du′′
]

dv′ .A2
φ(Do+Di)

2
|u0|
−

1
2 . (8-27)

Combining (8-24), (8-26) and (8-27), we can therefore conclude that

|O1|.A2
φ(Do+Di)

2
|u0|
−

1
2 (|u0|

−
1
2 + v

−
1
2

0 ).

We estimate |O2| by applying (3-4) and (7-3) (here, as before, the implicit constant may depend on β
for β > 0):

|O2|.
∫ v

v0

∫ u

−∞

|∂v(v
′2�2

0)+ ∂u(u′2�2
0)|
�2

0

�2

(
�2

�2
0
− 1
)2

du′ dv′

.
∫ v

v0

∫ u

−∞

(v′+ |u′|)−2+β
(
�2

�2
0
− 1
)2

du′ dv′

.
∫ v

v0

∫ u

−∞

(v′+ |u′|)−2+β
|u′|−1 du′ dv′ . v−1+β

0 + |u0|
−1+β .

It turns out that the remaining terms have a similar structure and is convenient to bound them in the
same way. The following are the three basic estimates. First, using the Cauchy–Schwarz inequality and
(A1), we have∫ v

v0

∫ u

−∞

(v′+ |u′|)−2
|u′|−1

(
v′2
∣∣∣∂v log

(
�

�0

)∣∣∣+ u′2
∣∣∣∂u log

(
�

�0

)∣∣∣) du′ dv′

.

(∫ v

v0

∫ u

−∞

(v′+ |u′|)−4
|u′|−

1
2 v′2 du′ dv′

)1
2
(∫ v

v0

∫ u

−∞

|u′|−
3
2 v′2

∣∣∣∂v log
(
�

�0

)∣∣∣2 du′ dv′
)1

2

+

(∫ v

v0

∫ u

−∞

(v′+ |u′|)−4v′
3
2 du′ dv′

)1
2
(∫ v

v0

∫ u

−∞

v′−
3
2 u′2

∣∣∣∂u log
(
�

�0

)∣∣∣2 du′ dv′
)1

2

.
(
(|u0|

−
1
4 + v

−
1
4

0 )|u0|
−

1
4 + (v0+ |u0|)

−
1
4 v
−

1
4

0

)
. |u0|

−
1
4 . (8-28)
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Again, using the Cauchy–Schwarz inequality and (A1), we have∫ v

v0

∫ u

−∞

(v′+ |u′|)−2v′−1
(
v′2
∣∣∣∂v log

(
�

�0

)∣∣∣+ u′2
∣∣∣∂u log

(
�

�0

)∣∣∣) du′ dv′

.

(∫ v

v0

∫ u

−∞

(v′+ |u′|)−4
|u′|

3
2 du′ dv′

)1
2
(∫ v

v0

∫ u

−∞

|u′|−
3
2 v′2

∣∣∣∂v log
(
�

�0

)∣∣∣2 du′ dv′
)1

2

+

(∫ v

v0

∫ u

−∞

(v′+ |u′|)−4v′−
1
2 |u′|2 du′ dv′

)1
2
(∫ v

v0

∫ u

−∞

v′−
3
2 u′2

∣∣∣∂u log
(
�

�0

)∣∣∣2 du′ dv′
)1

2

.
(
(v0+ |u0|)

−
1
4 |u0|

−
1
4 + (v

−
1
4

0 + |u0|
−

1
4 )v
−

1
4

0

)
. v
−

1
4

0 . (8-29)

Thirdly, we have a another slight variant of the above estimates, for which we again use the Cauchy–
Schwarz inequality and (A1):∫ v

v0

∫ u

−∞

v′−2
|u′|−2

(
v′2
∣∣∣∂v log

(
�

�0

)∣∣∣+ u′2
∣∣∣∣∂u log

(
�

�0

)∣∣∣) du′ dv′

.

(∫ v

v0

∫ u

−∞

v′−2
|u′|−

5
2 du′ dv′

)1
2
(∫ v

v0

∫ u

−∞

|u′|−
3
2 v′2

∣∣∣∂v log
(
�

�0

)∣∣∣2 du′ dv′
)1

2

+

(∫ v

v0

∫ u

−∞

v′−
5
2 |u′|−2 du′ dv′

)1
2
(∫ v

v0

∫ u

−∞

v′−
3
2 u′2

∣∣∣∂u log
(
�

�0

)∣∣∣2 du′ dv′
)1

2

. (v
−

1
2

0 |u0|
−1
+ v−1

0 |u0|
−

1
2 ). |u0|

−
1
4 . (8-30)

Using these basic estimates, we now estimate |O3|, . . . , |O6|. Using (7-4) and (7-8) to bound
�−2(�2

−�2
0)

2, we bound O3 via (8-28)

|O3|.
∫ v

v0

∫ u

−∞

�−2(�2
−�2

0)
2
(
v′2
∣∣∣∂v log

(
�

�0

)∣∣∣+ u′2
∣∣∣∂u log

(
�

�0

)∣∣∣) du′ dv′

.
∫ v

v0

∫ u

−∞

(v′+ |u′|)−2
|u′|−1

(
v′2
∣∣∣∂v log

(
�

�0

)∣∣∣+ u′2
∣∣∣∂u log

(
�

�0

)∣∣∣) du′ dv′ . |u0|
−

1
4 .

Similarly, using (7-2), (7-14), (7-15), (8-28) and (8-29), we obtain the following estimate for |O4|:

|O4|.
∫ v

v0

∫ u

−∞

�2
0(|r −M | + |r − r0| + |Q−M |)

(
v′2
∣∣∣∂v log

(
�

�0

)∣∣∣+ u′2
∣∣∣∂u log

(
�

�0

)∣∣∣) du′ dv′

.
∫ v

v0

∫ u

−∞

(v′+ |u′|)−2(Aφ(Do+Di)|u′|−1
+Dov

′−1
+ (v′+ |u′|)−1)

·

(
v′2
∣∣∣∂v log

(
�

�0

)∣∣∣+ u′2
∣∣∣∂u log

(
�

�0

)∣∣∣) du′ dv′

. (Aφ(Do+Di)+ 1)|u0|
−

1
4 +Dov

−
1
4

0 .
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By Lemma 3.1 and (7-8), |�2
−�2

0|(u
′, v′) . (v′+ |u′|)−2. Hence |O5| can be controlled in a similar

manner to O4 as follows:

|O5|.
∫ v

v0

∫ u

−∞

|�2
−�2

0|(|r −M |+ |r − r0|+ |Q−M |)
(
v′2
∣∣∣∂v log

(
�

�0

)∣∣∣+ u′2
∣∣∣∂u log

(
�

�0

)∣∣∣) du′ dv′

.
∫ v

v0

∫ u

−∞

(v′+ |u′|)−2(Aφ(Do+Di)|u′|−1
+Dov

′−1
+ (v′+ |u′|)−1)

·

(
v′2
∣∣∣∂v log

(
�

�0

)∣∣∣+ u′2
∣∣∣∂u log

(
�

�0

)∣∣∣) du′ dv′

. (Aφ(Do+Di)+ 1)|u0|
−

1
4 +Dov

−
1
4

0 .

Finally, we estimate |O6|. For this we use Lemma 3.1, (7-12), (7-13) and (8-30) to obtain

|O6|.
∫ v

v0

∫ u

−∞

(|∂vr ||∂ur |+|∂vr0||∂ur0|)
(
v′2
∣∣∣∂v log

(
�

�0

)∣∣∣+u′2
∣∣∣∂u log

(
�

�0

)∣∣∣) du′ dv′

.
∫ v

v0

∫ u

−∞

[(v′+|u′|)−4
+A2

φ(Do+Di)
2
|u′|−2v′−2

]

(
v′2
∣∣∣∂v log

(
�

�0

)∣∣∣+u′2
∣∣∣∂u log

(
�

�0

)∣∣∣) du′ dv′

.A2
φ(Do+Di)

2
|u0|
−

1
4 .

Hence, choosing v0 and |u0| large in a manner allowed by (6-3), we obtain

sup
v∈[v0,v∞]

∫ u0

−∞

u2
(
∂u

(
log �

�0

))2
(u, v) du+ sup

u∈(−∞,u0]

∫ v∞

v0

v2
(
∂v

(
log �

�0

))2
(u, v) dv ≤ 1

2 M,

which is to be proved. �

9. Stability of the Cauchy horizon of extremal Reissner–Nordström

We now conclude the bootstrap argument and show that the solution exists and remains regular for all
v ≥ v0 and that certain estimates hold. More precisely, we have:

Proposition 9.1. There exists a smooth solution (φ, r, �, A) to (2-1)–(2-9) in the rectangle (see Figure 1)

Du0,v0 = {(u, v
′) | −∞≤ u ≤ u0, v0 ≤ v <∞}

with the prescribed initial data. Moreover, all the estimates in Sections 7 and 8 hold in Du0,v0 .

Proof. For every v ∈ [v0,∞), consider the following conditions:

(A) A smooth solution (φ, r, �, A) to (2-1)–(2-9) exists in the rectangle

Du0,[v0,v) = {(u, v
′) | −∞≤ u ≤ u0, v0 ≤ v

′ < v}

with the prescribed initial data.

(B) The estimates (A1), (A2) and (A3) hold in Du0,[v0,v).

Consider the set I⊂ [v0,∞) defined by

I := {v ∈ [v0,∞) : (A) and (B) are both satisfied for all v′ ∈ [v0, v)}.



312 DEJAN GAJIC AND JONATHAN LUK

We will show that I is nonempty, closed and open, which implies that I = [v0,∞). Standard local
existence implies that I is nonempty. Closedness of I follows immediately from the definition of I. The
most difficult property to verify is the openness of I. For this, suppose v ∈ I. We then argue as follows:

• Under the bootstrap assumptions (A1), (A2) and (A3), all the estimates in Sections 7 and 8 hold in
Du0,[v0,v). A standard propagation of regularity result shows that the solution can be extended smoothly
up to

Du0,[v0,v] = {(u, v
′) | −∞≤ u ≤ u0, v0 ≤ v

′
≤ v}.

Hence, one can apply a local existence result for the characteristic initial value problem to show that there
exists δ > 0 such that a smooth solution (φ, r, �, A) to (2-1)–(2-9) exists in Du0,[v0,v+δ).

• The estimates in (7-16), Corollary 8.9 and Proposition 8.11 improve those in (A1), (A2) and (A3).
Hence, by continuity, after choosing δ > 0 smaller if necessary, (A1), (A2) and (A3) hold in Du0,[v0,v+δ).

By combining the two points above, we deduce that after choosing δ > 0 smaller if necessary,
(v − δ, v + δ) ⊂ I. This proves the openness of I. By the connectedness of [v0,∞), we deduce that
I = [v0,∞). This implies the existence of a smooth solution in Du0,v0 . Moreover, this implies the
assumptions (A1), (A2) and (A3) that are used in Sections 7 and 8 in fact hold throughout Du0,v0 .
Therefore, indeed all the estimates in Sections 7 and 8 hold in Du0,v0 . �

We have therefore shown the existence of a solution in the whole region Du0,v0 . Since we have now
closed our bootstrap argument, in the remainder of the paper, we will suppress any dependence on Aφ
(which in turn depends only on M, m and e).

In the remainder of this section, we show that one can attach a Cauchy horizon to the solution and
prove regularity of the solution up to the Cauchy horizon. More precisely, define V to be a function of v
in exactly the same manner as in Section 3A2; i.e.,

dV
dv
=�2

0(1, v), V (∞)= 0. (9-1)

We will use also the convention that
V0 := V (v0).

Define moreover (as in Section 3A2) the Cauchy horizon CH+ as the boundary {V = 0} in the (u, V, θ, ϕ)-
coordinate system. Note that this induces a natural differential structure on Du0,v0 ∪ CH+. In the new
coordinate system, in order to distinguish the “new �”, we follow the convention in Section 3A2 and set
g(∂u, ∂V )=−

1
2�̃

2 instead. We show that the solution (φ, r, �̃, A) (after choosing an appropriate gauge
for A) extends to the Cauchy horizon continuously, and that in fact their derivatives are in L2

loc up to the
Cauchy horizon. (In fact, as we will show in Section 10, there are nonunique extensions as spherically
symmetric solutions to (1-1) beyond the Cauchy horizon.)

We begin by restating some of the estimates we have obtained in this new coordinate system.

Lemma 9.2. In the (u, V )-coordinate system, φ, r and �̃ satisfy the following estimates:

1
|u|2
. �̃

2
(u, V ). 1, |∂V r(u, V )|. Do+Di, (9-2)
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V0

|∂Vφ|
2(u, V ′) dV ′+

∫ u0

−∞

u2
|∂uφ|

2(u′, V ) du′ . Do+Di, (9-3)∫ 0

V0

|∂V log �̃|2(u, V ′) dV ′+
∫ u0

−∞

u2
|∂u log �̃|2(u′, V ) du′ . 1, (9-4)∫ 0

V0

|∂V r |2(u, V ′) dV ′+
∫ u0

−∞

u2
|∂ur |2(u′, V ) du′ . Do+Di. (9-5)

Proof. Proof of estimates for �̃ in (9-2). By (7-6) and (9-1),∣∣∣∣�̃2
(u, V )−

4M2

(v(V )+ |u|)2
�−2

0 (−1, v(V ))
∣∣∣∣=�−2

0 (−1, v(V ))
∣∣∣∣�2(u, v(V ))−

4M2

(v+ |u|)2

∣∣∣∣
. |u|−

1
2

(
v(V )+ 1
v(V )+ |u|

)2

,

which implies both the upper and lower bounds for �̃ in (9-2).

Proof of estimate for ∂V r in (9-2). The estimate for ∂V r in (9-2) follows from (7-13) and (9-1).

Proof of (9-3) and (9-4). These follow from Corollary 8.9, Proposition 8.11, (9-1) and (3-3).

Proof of (9-5). Finally, (9-5) can be obtained by directly integrating the pointwise estimates in (7-12)
(for ∂ur ) and (9-2) (for ∂V r ). �

We also have the following W 1,2 estimate for the charge Q.

Lemma 9.3. In the (u, V )-coordinate system, Q satisfies the estimate∫ 0

V0

|∂V Q|2(u, V ′) dV ′+
∫ u0

−∞

u2
|∂u Q|2(u′, V ) du′ . Do+Di.

Proof. Estimate for ∂V Q. By (2-6) (adapted to the (u, V )-coordinate system),

∂V Q =−2π ir2e(φDVφ− φ̄DVφ).

Therefore, using (7-1), (7-14) and (7-1),∫ 0

V0

|∂V Q|2(u, V ′) dV ′ .
∫ 0

V0

|DVφ|
2(u, V ′) dV ′ . Do+Di.

Estimate for ∂u Q. By (2-5), we have ∂u Q = 2π ir2e(φDuφ− φ̄Duφ). The desired estimate hence follows
much as above using (7-1), (7-14) and (9-3). �

In order to consider the extension, we will also need to choose a gauge for Aµ. We will fix A such that

Au = 0 everywhere and AV = 0 on the null hypersurface {u = u0}. (9-6)

To see that this is an acceptable gauge choice, simply notice that given any Ãu , ÃV , we can define

χ(u, V )=
∫ u

u0

Ãu(u, V ) du′+
∫ V

V0

ÃV (u0, V ′) dV ′,
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where V0 = V (v0). This implies

Au(u, V )= Ãu(u, V )− (∂uχ)(u, V )= 0 for all u, for all V,

AV (u0, V )= ÃV (u, V )− (∂vχ)(u0, V )= 0 for all V .

Now in the gauge (9-6), we have the following estimates:

Lemma 9.4. Suppose A satisfies the gauge condition above. Then AV , ∂u AV and ∂V AV obey the estimates

sup
u∈(−∞,u0], V∈[V0,0)

|AV (u, V )|. (u0− u), sup
V∈[V0,0)

∫ u0

u
|∂u AV |

2(u′, V ) du′ . (u0− u),

sup
u∈(−∞,u0]

∫ 0

V0

|∂V AV |
2(u, V ′) dV ′ . (Do+Di)(u0− u).

Proof. Pointwise estimate for AV . By (2-7) (adapted to the (u, V )-coordinate system),

∂u AV =
1
2
�̃

2 Q
r2 . (9-7)

Using (7-2), (7-14) and (9-2), and the fact that AV (u0, V )= 0, we obtain that for any u ≤ u0,

|AV (u, V )|.
∫ u0

u
du′ = (u0− u).

L2 estimate for ∂u AV . To obtain the desired L2
u estimate for ∂u AV , we simply use the fact that the

right-hand side of (9-7) is bounded (as shown above using (7-2), (7-14) and (9-2)) and integrate it up in u.

L2 estimate for ∂V AV . To estimate ∂V AV , we differentiate (9-7) in V to obtain

∂u∂V AV =
1
2∂V

(
�̃

2 Q
r2

)
. (9-8)

Using the pointwise bounds in (7-2), (7-14) and (9-2), and the L2
V estimates in (9-3), (9-5) and (9-4), we

obtain

sup
u∈(−∞,u0]

∫ 0

V0

∣∣∣∣∂V

(
�̃

2 Q
r2

)∣∣∣∣2(u, V ′) dV ′ . Do+Di.

Now since ∂V AV (u0, V )= 0 for all V, we have, for any u ≤ u0,∫ 0

V0

|∂V AV |
2(u, V ′) dV ′ ≤

∫ u0

u
|∂u∂V AV |

2(u′, V ′) dV ′ du′ . (Do+Di)(u0− u). �

Proposition 9.5. Let V be as in (9-1) and A satisfy the gauge condition (9-6). Then in the (u, V )-
coordinate system:

• φ, r , �̃, AV and Q (as functions of (u, V ) ∈ (−∞, u0] × [V0, 0)) can be continuously extended to
the Cauchy horizon {V = 0}.

• The extensions of φ, r , �̃, AV and Q (as functions of (u, V ) ∈ (−∞, u0] × [V0, 0]) are all in
C0, 1

2 ∩W 1,2
loc .
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• The Hawking mass m (as a function of (u, V ) ∈ (−∞, u0]× [V0, 0)) can be continuously extended
to the Cauchy horizon {V = 0}.

Proof. Continuous extendibility and Hölder estimates. Let us first consider in detail the estimates for φ.
As we will explain, the estimates for r , �̃, AV and Q are similar. Consider two points (u′, V ′) and
(u′′, V ′′). Set v′ = v(V ′) and v′′ = v(V ′′), where v is the inverse function of v 7→ V above. Then we
have, using the fundamental theorem of calculus and the Cauchy–Schwarz inequality,
|φ(u′, V ′)−φ(u′′, V ′′)|

≤

∣∣∣∣∫ u′′

u′
|∂uφ|(u′′′, V ′) du′′′

∣∣∣∣+ ∣∣∣∣∫ V ′′

V ′
|∂Vφ|(u′′, V ′′′) dV ′′′

∣∣∣∣
≤

∣∣∣∣∫ u′′

u′
|Duφ|(u′′′, V ′) du′′′

∣∣∣∣+ ∣∣∣∣∫ V ′′

V ′
|DVφ|(u′′, V ′′′)+ |AV ||φ|(u′′, V ′′′) dV ′′′

∣∣∣∣
. |u′− u′′|

1
2

(∫ u′′

u′
|Duφ|

2(u′′′, v′) du′′′
)1

2

+ |V ′− V ′′|
1
2

(∫ v′′

v′
(v′′′+ 1)2|Dvφ|

2(u′′, v′′′) dv′′′
)1

2

+ (D
1
2
o +D

1
2
i )(u0− u′′)|V ′− V ′′|

. (Do+Di)(|u′− u′′|
1
2 + |V ′− V ′′|

1
2 )+ (D

1
2
o +D

1
2
i )|V

′
− V ′′|, (9-9)

where in the last two lines we used (7-1), (9-3) and Lemma 9.4.
In a similar manner, using Lemmas 9.2, 9.3 and 9.4 instead, r , �̃, AV and Q can be estimated as

follows19 (to simplify the exposition, we suppress the discussion on the explicit dependence of the constant
on Do and Di):

|r(u′, V ′)− r(u′′, V ′′)| + |�̃(u′, V ′)− �̃(u′′, V ′′)|

+ |AV (u′, V ′)− AV (u′′, V ′′)| + |Q(u′, V ′)− Q(u′′, V ′′)|.Do,Di (|u
′
− u′′|

1
2 + |V ′− V ′′|

1
2 ). (9-10)

Define the extension of (φ, r, �̃, AV , Q) by

φ(u, V = 0) := lim
V→0

φ(u, V ), r(u, V = 0) := lim
V→0

r(u, V ),

�̃(u, V = 0) := lim
V→0

�̃(u, V ), AV (u, V = 0) := lim
V→0

AV (u, V ), Q(u, V = 0) := lim
V→0

Q(u, V ).

The estimates in (9-9) and (9-10) above show that the extensions are well-defined and that the extension
of (φ, r, �̃, AV , Q) is indeed C0, 1

2 .

W 1,2
loc estimates. Now that we have constructed an extension of (φ, r, �̃, AV , Q) to Du0,v0 ∪ CH+, it

follows immediately from Lemmas 9.2, 9.4 and 9.3 that the extension is in W 1,2
loc .

C0 extendibility of the Hawking mass. Finally, we prove the C0 extendibility of the Hawking mass, whose
definition we recall from (2-10). By (2-11) and (2-12) (appropriately adapted in the (u, V )-coordinate
system), we have

∂um =−8π
r2(∂V r)

�̃
2 |Duφ|

2
+ 2(∂ur)m2πr2

|φ|2+
1
2
(∂ur)Q2

r2 , (9-11)

19In fact, the estimates for r , �̃ AV and Q are simpler as we do not need to handle the difference between ∂V and DV .
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∂V m =−8π
r2(∂ur)

�̃
2 |DVφ|

2
+ 2(∂V r)m2πr2

|φ|2+
1
2
(∂V r)Q2

r2 . (9-12)

It now follows from (7-2), (7-14), (7-13) and Lemma 9.2 that the right-hand side of (9-11) is bounded in
L1

u and the right-hand side of (9-12) is bounded in L1
V . This implies the L1 estimate∫ u0

−∞

|∂um|(u′, V ) du′+
∫ 0

V0

|∂V m|(u, V ′) dV ′ .Do,Di 1. (9-13)

On the other hand, by the fundamental theorem of calculus,

|m(u′, V ′)−m(u′′, V ′′)| ≤
∣∣∣∣∫ u′′

u′
|∂um|(u′′′, V ′) du′′′

∣∣∣∣+ ∣∣∣∣∫ V ′′

V ′
|∂V m|(u′′, V ′′′) dV ′′′

∣∣∣∣. (9-14)

Combining (9-13) and (9-14), we see that

(1) m can be extended to CH+ by

m(u, 0)= lim
V→0

m(u, V ),

(2) the extension is continuous up to CH+,

which concludes the proof of the proposition. (Let us finally note that since we only have L1, as opposed
to L2, estimates for ∂um and ∂V m, we only show that m is continuous, but do not obtain any Hölder
estimates.) �

Remark 9.6 (C0, 1
2 ∩W 1,2

loc regularity in the (3+1)-dimensional spacetime). In Proposition 9.5, we proved
that the extensions of φ, r , �̃, AV and Q are C0, 1

2 ∩W 1,2
loc on the (1+1)-dimensional quotient manifold Q

(see the notation in Section 2A). It easily follows that these functions, when considered as functions
on M = Q×S2 are also in C0, 1

2 ∩W 1,2
loc . As a consequence, in the coordinate system (u, v, θ, ϕ), the

spacetime metric, the scalar field and the electromagnetic potential all extend to the Cauchy horizon in a
manner that is in the (3+1)-dimensional spacetime norm C0, 1

2 ∩W 1,2
loc .

10. Constructing extensions beyond the Cauchy horizon

In this section, we prove that the solution can be extended locally beyond the Cauchy horizon as a
spherically symmetric W 1,2 solution to (1-1) (in a nonunique manner). Together with Propositions 9.1
and 9.5, this completes the proof of Theorem 5.1.

The idea behind the construction of the extension is that the system (1-1) is locally well-posed in
spherical symmetry for data such that ∂Vφ, ∂V r and ∂V log �̃ are merely in L2 (when r and� are bounded
away from 0). This follows from the well-known fact that (1+1)-dimensional wave equations are locally
well-posed with W 1,2 data. Related results in the context of general relativity can be found throughout
the literature; see for instance [Costa et al. 2015a; Luk and Rodnianski 2017; LeFloch and Stewart 2011].
For completeness, we give a proof in our specific setting.

The section is organized as follows. We first discuss a general local well-posedness result on (1+1)-
dimensional wave equation (see Definition 10.1 and Proposition 10.3). We then apply the wave equation
result in our setting to construct extensions to our spacetime solutions by solving appropriate characteristic
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initial value problems. In particular, since we will be able to prescribe data for the construction of the
extensions, there are (infinitely many) nonunique extensions.

We begin by considering a general class of (1+1)-dimensional wave equation and introduce the
following notion of solution, which makes sense when the derivative of 9 is only in L2 in one of the null
directions.

Definition 10.1. Let k ∈N. Consider a wave equation20 for 9 : [0, ε)×[0, ε)→ V (where V ⊂ Rk is an
open subset) of the form

∂u∂v9A= f A(9)+N BC
A (9) ∂u9B ∂v9C+K BC

A (9) ∂u9B ∂u9C+L B
A(9) ∂u9B+RB

A (9) ∂v9B, (10-1)

where 9A denotes the components of 9, the functions f A, N BC
A , K BC

A , L B
A , RB

A : V→ R are smooth, and
we sum over all repeated capital Latin indices.

We say that a continuous function 9 : [0, ε)×[0, ε)→ V satisfying ∂v9 ∈ L2
v(C

0
u) and ∂u9 ∈ C0

uC0
v

is a solution in the integrated sense if

(∂v9A)(u, v)= (∂v9A)(0, v)+
∫ u

0
(RHS of (10-1))(u′, v) du′ for all u ∈ [0, ε) and for a.e. v ∈ [0, ε),

(∂u9A)(u, v)= (∂u9A)(u, 0)+
∫ v

0
(RHS of (10-1))(u, v′) dv′ for all v ∈ [0, ε) and for a.e. u ∈ [0, ε).

Remark 10.2. Given a solution 9 in the sense of Definition 10.1, it is also a weak solution in the
following sense: for any χ ∈ C∞c ,∫∫

(∂uχ)(u, v)(∂v9)(u, v) du dv =−
∫∫

χ(u, v)(RHS of (10-1))(u, v) du dv,∫∫
(∂vχ)(u, v)(∂u9)(u, v) du dv =−

∫∫
χ(u, v)(RHS of (10-1))(u, v) du dv.

The following is a general local existence result for (1+ 1)-dimensional wave equations where ∂v9 is
initially only in L2

v. We construct local solutions in the sense of Definition 10.1. (Let us note that the
following wave equation result holds for rougher data where ∂v9 is only in L1

v. This will however be
irrelevant to our problem; see Remark 10.6.)

Proposition 10.3. Consider the setup in Definition 10.1. Let K ⊂ V be a compact subset. Given initial
data to the wave equation (10-1) on two transversely intersecting characteristic curves

{(u, v) : u = 0, v ∈ [0, v∗]} ∪ {(u, v) : v = 0, u ∈ [0, u∗]}

such that

• 9 takes value in K; and

20For k > 1, this should be thought of as a system of wave equations.
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• the following estimates hold for the derivatives of 9 for some Cwave > 0:∫ v∗

0
|∂v9|

2(0, v′) dv′ ≤ Cwave,

sup
u∈[0,u∗]

|∂u9|
2(u′, 0)≤ Cwave.

Then, there exist εwave > 0 depending on K and Cwave (and the equation) such that there exists a unique
solution to (10-1) in the sense of Definition 10.1 in the region

(u, v) ∈ {(u, v) : u ∈ [0, εwave), v ∈ [0, εwave)}

which achieves the prescribed initial data.

Proof. We directly work with the formulation in Definition 10.1 and prove the existence and uniqueness of
integral solutions. This proposition can be proven via a standard iteration argument. In order to illustrate
the main idea and the use of the structure of the nonlinearity, we will only discuss below the proof of a
priori estimates.

By a bootstrap argument, we assume that

sup
u′,v′∈[0,εwave)

|∂u9|(u′, v′)≤ 4Cwave. (10-2)

Let K′ ⊂ V be a fixed compact set such that K ⊂ K̊′. We estimate 9 using the fundamental theorem of
calculus as follows:

sup
u′,v′∈[0,εwave)

|9(u′, v′)−9(0, v′)| ≤ sup
v′∈[0,εwave)

∫ εwave

0
|∂u9|(u′, v′) du′

≤ εwave sup
u′,v′∈[0,εwave)

|∂u9|(u′, v′)

≤ 4Cwaveεwave.

Using the compactness of K, we can choose εwave sufficiently small so that 9(u, v) ∈K′ for all u ∈ [0, ε).
Now that we have estimated 9, since K′ is compact, it follows that f A(9), N BC

A (9), K BC
A (9), L B

A(9),
and RB

A (9) are all bounded. From now on, we will use these bounds and write C for constants that are
allowed to depend on supx∈K′ f A(x), etc.

We now turn to the estimates for the derivatives of 9. First, we bound ∂v9 using (the integral form of)
(10-1) and Hölder’s inequality and Young’s inequality:∫ εwave

0
sup

u′∈[0,εwave)

|∂v9|
2(u′, v′) dv′

≤ Cwave+C
∫ εwave

0

∫ εwave

0
|∂v9|(1+ |∂v9| + |∂u9| + |∂v9||∂u9| + |∂u9|

2)(u′, v′) du′ dv′

≤ Cwave+C
(

1+
∫ εwave

0
sup

u′∈[0,εwave)

|∂v9|
2(u′, v′) dv′

)(
εwave+ εwave sup

u′,v′∈[0,εwave)

|∂u9|(u′, v′)
)

+Cwaveε
2
wave sup

u′,v′∈[0,εwave)

|∂u9|(u′, v′).
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For ∂u9, we again use (the integral form of) (10-1) and Hölder’s inequality and Young’s inequality to get

sup
u′,v′∈[0,εwave)

|∂u9|(u′, v′)

≤ Cwave+C sup
u′∈[0,εwave)

∫ ε

0
(1+ |∂v9| + |∂u9| + |∂v9||∂u9| + |∂u9|

2)(u′, v′))(u′, v′) dv′

≤ Cwave+C
(

1+
∫ ε

0
sup

u′∈[0,εwave]

|∂v9|
2(u′, v′) dv′

)(
ε

1
2
wave+ εwave sup

u′,v′∈[0,εwave)

|∂u9|
2(u′, v′)

)
≤ Cwave+C

(
1+

∫ ε

0
sup

u′∈[0,εwave]

|∂v9|
2(u′, v′) dv′

)(
ε

1
2
wave+ εwaveCwave sup

u′,v′∈[0,εwave)

|∂u9|(u′, v′)
)
.

Summing the above two estimates and choosing εwave sufficient small (depending on Cwave and K′), it
follows that ∫ ε

0
sup

u′∈[0,εwave)

|∂v9|
2(u′, v′) dv′+ sup

u′,v′∈[0,εwave)

|∂u9|(u′, v′)≤ 2Cwave.

This in particular improves the bootstrap assumption (10-2) so that we conclude the argument. �

We now use Proposition 10.3 to solve (1-1). In particular, this allows us to extend the solution in
Du0,v0 (in infinitely many ways!) beyond the Cauchy horizon as a spherically symmetric strong solution
to (1-1). Before we proceed, let us define a notion of spherically symmetric strong solutions to (1-1)
(using Definition 10.1) appropriate for our setting. For simplicity, in our notion of spherically symmetric
strong solutions, we will already fix a gauge so that Au = 0.

Definition 10.4. Let (φ,�, r, Av, Q) be continuous functions on

{(u, v) : u ∈ [u0, u0+ ε), v ∈ [v0, v0+ ε)}

for some ε > 0 with φ complex-valued, (�, r, Av, Q) real-valued and �, r > 0. We say (φ,�, r, Av, Q)
is a spherically symmetric strong solution to (1-1) if the following hold:21

• (φ,�, r, Av, Q) are in the following regularity classes:

∂vφ, ∂v log� ∈ L2
v(C

0
u), ∂uφ, ∂u log�, ∂ur, ∂vr, ∂u Av ∈ C0

uC0
v .

• (2-1), (2-2) and (2-3) are satisfied as wave equations in the integrated sense as in Definition 10.1 after
replacing Dv 7→ ∂v + ieAv, Du 7→ ∂u .

• (2-5), (2-6), (2-8) and (2-9) are all satisfied in the integrated sense as follows, again with the understanding
that Dv 7→ ∂v + ieAv, Du 7→ ∂u :

Q(u, v)= Q(0, v)+
∫ u

u0

[2π ir2e(φDuφ− φ̄Duφ)](u′, v) du′, (10-3)

Q(u, v)= Q(u, 0)−
∫ v

v0

[2π ir2e(φDvφ− φ̄Dvφ)](u, v′) dv′, (10-4)

21We remark that (2-4) is not explicitly featured below. Note however that (2-4) follows as an immediate consequence
of (10-7).
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r ∂ur(u, v)= r ∂ur(0, v)+
∫ u

u0

[2r ∂ur ∂u log�+ (∂ur)2− 4πr2
|Duφ|

2
](u′, v) du′, (10-5)

r ∂vr(u, v)= r ∂vr(u, 0)+
∫ v

v0

[2r ∂vr ∂v log�+ (∂vr)2− 4πr2
|Dvφ|

2
](u, v′) dv′ (10-6)

for all (u, v) ∈ {(u, v) : u ∈ [u0, u0+ ε), v ∈ [v0, v0+ ε)}.

• (2-7) is satisfied classically everywhere with Au = 0; i.e.,

∂u Av =
Q�2

2r2 . (10-7)

We emphasize again that a spherically symmetric strong solution to (1-1) in the sense of Definition 10.4
is a fortiori a weak solution to (1-1) in the sense of Remark 1.2.

We now construct extensions to the solutions given by Proposition 9.1 beyond the Cauchy horizon as
spherically symmetric strong solutions to (1-1):

Proposition 10.5. For every uext ∈ (−∞, u0), there exists εext > 0 such that there are infinitely many
inequivalent extensions (φ, �̃, r, AV , Q) to the region

Du0,v0 ∪ CH
+
∪ {(u, V ) : u ∈ [uext, uext+ εext], V ∈ [0, εext)},

each of which is a spherically symmetric strong solution to (1-1) (see Definition 10.4).

Proof. Let us focus the discussion on constructing one such extension. It will be clear at the end that the
argument indeed gives infinitely many inequivalent extensions.

Setting up the initial data. Extend the constant-u curve {u = uext} up to the Cauchy horizon. We will
consider a sequence of characteristic initial problems with initial data given on {u = uext} and {V = Vn}

where Vn approaches the Cauchy horizon, i.e., Vn → 0. For a fixed n ∈ N, the data on {V = Vn} are
simply induced by the solution that we have constructed in Proposition 9.1. On {u = uext}, the data when
V ∈ [Vn, 0) are induced by the solution, but we prescribe data for V ≥ 0 (i.e., beyond the Cauchy horizon)
by the following procedure:

• (data for �̃) As we showed in (9-2), (9-4) and Proposition 9.5, for a fixed uext, �̃(uext, V ) is continuous
up to {V = 0}, is bounded away from 0, and ∂V �̃(uext, V ) ∈ L2

V . We can therefore extend � to
{(uext, V ) : V ≥ 0} so that it is continuous and bounded away from 0 and ∂V �̃(uext, V ) ∈ L2

V .

• (data for φ) As we showed in (9-3) and Proposition 9.5, φ(uext, V ) is continuous up to {V = 0} and
DVφ(uext, V ) ∈ L2

V . Since by Lemma 9.4, |AV |(uext, V ) . (u0 − uext) for V ≤ 0, this also implies
that ∂Vφ(uext, V ) ∈ L2

V . We can therefore extend φ to {(uext, V ) : V ≥ 0} so that it is continuous and
∂Vφ(uext, V ) ∈ L2

V .

• (data for AV ) Next, by Lemma 9.4, AV (uext, V ) is continuous up to {V = 0} and ∂Vφ(uext, V ) ∈ L2
V .

Thus, like �̃ and φ, we can extend AV to {(uext, V ) :V ≥0} so that it is continuous and ∂V AV (uext, V )∈ L2
V .

• (data for r ) Finally, we prescribe r . Note that this is the only piece of the initial data which is not free,
but instead is required to satisfy constraints. First we note that by (7-16), (9-5) and Proposition 9.5, for
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V ≤ 0, r(uext, V ) is continuous up to {V = 0}, bounded away from 0 and (∂V r)(uext, V )∈ L2
V . Moreover,

using (2-9) (and the also estimates (9-2) and (9-3)), it can be deduced that (∂V r)(uext, V ) can be extended
continuously up to {V = 0}. Now we extend r and ∂V r beyond the Cauchy horizon {V = 0} by solving
(2-9). Since ∂Vφ ∈ L2

V and log� is bounded (by the choices above), provided that we only solve slightly
beyond the Cauchy horizon (i.e., for V sufficiently small), both r and |∂V r | are continuous, bounded
above, and r is also bounded away from 0.

Formulating the problem as a system of wave equations. Now apply Proposition 10.3 to solve the fol-
lowing system of wave equations for 9 = (r, log �̃,Re(φ), Im(φ), AV ):

r ∂u ∂V r =− 1
4�̃

2
−∂ur ∂V r+m2πr2�̃

2
|φ|2+

r2

�̃
2 (∂u AV )

2, (10-8)

r2 ∂u ∂V log �̃=−2πr2(∂uφ(∂V+ieAV )φ+∂uφ(∂V+ieAV )φ)−2
r2

�̃
2 (∂u AV )

2
+

1
4�̃

2
+∂ur ∂V r, (10-9)

∂u((∂V+ieAV )φ)+(∂V+ieAV ) ∂uφ =−
1
2m

2�̃
2
φ−2r−1(∂ur(∂V+ieAV )φ+∂V r ∂uφ), (10-10)

∂V

(
r2

�̃
2 ∂u AV

)
=−π ir2e(φDVφ−φ̄DVφ). (10-11)

It is easy to check that this system of equations indeed has the structure as in (10-1).

Solving the system of wave equations. By Proposition 10.3, there exists ε0 > 0 (independent of n)
such that for every Vn , a unique solution to the above system of equation exists for (u, V ) ∈ {(u, V ) :
u ∈ [uext, uext+ ε0), V ∈ [Vn, Vn + ε0)}. In particular, since Vn→ 0, we can choose n ∈ N sufficiently
large so that Vn + ε0 > 0. Now fix such an n and choose εext > 0 sufficiently small so that εext <

Vn + ε0. We have therefore constructed a solution (r, log�,Re(φ), Im(φ), AV ) to (10-8)–(10-11) in
Du0,v0 ∪ CH+ ∪ {(u, V ) : u ∈ [uext, uext+ εext], V ∈ [0, εext)}.

Definition of Q and (10-4). Define Q = 2r2�̃
−2
∂u AV . By definition Q is continuous and (10-7) is

satisfied classically. Moreover, since (10-11) is satisfied in an integrated sense, it also follows that (10-4)
is satisfied.

Plugging in the definition of Q into (10-8)–(10-10), we also obtain that r , �̃ and φ respectively satisfy
(2-1), (2-2) and (2-3) as wave equations in the integrated sense as in Definition 10.1.

Propagation of constraints and (10-3), (10-5) and (10-6). Next, we check that (10-3), (10-5) and (10-6)
are satisfied. This involves a propagation of constraints argument, which is standard except that we need
to be slightly careful about regularity issues.

First, we note that since the equations are satisfied classically at (u, Vn) for all u ∈ [uext, uext+ ε0),
(10-3) and (10-5) are satisfied on {V = Vn}. Moreover, by the construction of the data for r above, (10-6)
is also satisfied on {u = uext}.

Therefore, it follows that (10-3), (10-5) and (10-6) are equivalent respectively to the equations

(Q(u, V )− Q(u, Vn))− (Q(uext, V )− Q(uext, Vn))

=

∫ u

uext

[2π ir2e(Duφ− φ̄Duφ)](u′, V ) du′−
∫ u

uext

[2π ir2e(Duφ− φ̄Duφ)](u′, Vn) du′, (10-12)
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(r ∂ur(u, V )− r ∂ur(u, Vn))− (r ∂ur(uext, V )− r ∂ur(uext, Vn))

=

∫ u

uext

(
[2r ∂ur ∂u log �̃+ (∂ur)2− 4πr2

|Duφ|
2
](u′, V )− [· · · ](u′, Vn)

)
du′, (10-13)

(r ∂V r(u, V )− r ∂V r(uext, V ))− (r ∂V r(u, Vn)− r ∂V r(uext, Vn))

=

∫ V

Vn

(
[2r ∂V r ∂V log �̃+ (∂V r)2− 4πr2

|DVφ|
2
](u, V ′)− [· · · ](uext, V ′)

)
dV ′, (10-14)

where [· · · ] means that we take exactly the same expression as inside the previous pair of square brackets.
To proceed, observe now that we have the following integrated version of the Leibniz rule: let

f, g : [0, T ] → R, f ∈ C0, g ∈ C1. Assume that there exists an F : [0, T ] → R in L1 such that
f (t)− f (0)=

∫ t
0 F(s) ds for all t ∈ [0, T ]. Then by Fubini’s theorem and the fundamental theorem of

calculus, ∫ t

0
F(s)g(s) ds = g(0)

∫ t

0
F(s) ds+

∫ t

0

∫ s

0
F(s)g′(τ ) dτ ds

= f (t)g(0)− f (0)g(0)+
∫ t

0

∫ t

τ

F(s)g′(τ ) ds dτ

= f (t)g(0)− f (0)g(0)+
∫ t

0
[ f (t)g′(τ )− f (τ )g′(τ )] dτ

= f (t)g(t)− f (0)g(0)−
∫ t

0
f (s)g′(s) ds. (10-15)

In other words, assuming9i satisfies ∂u∂v9i = Fi (for some Fi ∈ L1
vC

0
u ), the following integrated versions

of the Leibniz rule hold:

∂u9i (u, V )9 j (u, V )= ∂u9i (u, Vn)9 j (u, Vn)+

∫ V

Vn

[9 j Fi + ∂v9 j ∂u9i ](u, V ′) dV ′, (10-16)

∂v9i (u, V )9 j (u, V )= ∂u9i (uext, V )9 j (uext, V )+
∫ u

uext

[9 j Fi + ∂u9 j ∂v9i ](u′, V ) du′. (10-17)

Let us now show that (10-3), or equivalently (10-12), holds. Since we have already established that
(10-4) holds, it follows that (10-12) is equivalent to

−

∫ V

Vn

(
[2π ir2e(φDvφ− φ̄Dvφ)](u, V ′)− [· · · ](uext, V ′)

)
dV ′

=

∫ u

uext

(
[2π ir2e(φDuφ− φ̄Duφ)](u′, V )− [· · · ](u′, Vn)

)
du′. (10-18)

By (10-16) and (10-17) above, it follows that we need to check∫ u

uext

∫ V

Vn

(
∂u(2π ir2e(φDvφ− φ̄Dvφ))+ ∂V (2π ir2e(φDuφ− φ̄Duφ))

)
(u′, V ′) du′ dV ′ = 0, (10-19)

where expressions such as ∂u Dvφ and ∂V Duφ are to be understood after plugging in the appropriate
inhomogeneous terms arising from (10-10). On the other hand, after plugging in the appropriate expressions
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from (10-10), it is easy to check that the integrand in (10-19) vanishes almost everywhere. Therefore,
(10-19) indeed holds, which then implies that (10-3) holds.

Next, we consider (10-5), or equivalently (10-13). Since we have already established (10-8) in an
integrated sense, using the definition of Q above, it follows from (10-16) that (10-13) is equivalent to∫ V

Vn

([
−

1
4
�̃

2
+m2πr2�̃

2
|φ|2+

1
4
�̃

2

r2 Q2
]
(u, V ′)− [· · · ](uext, V ′)

)
dV ′

=

∫ u

uext

(
[2r ∂ur ∂u log �̃+ (∂ur)2− 4πr2

|Duφ|
2
](u′, V )− [· · · ](u′, Vn)

)
du′. (10-20)

Using again the integrated Leibniz rule (10-16) and (10-17), it then follows that (10-20) is equivalent to∫ u

uext

∫ V

Vn

∂u

([
−

1
4
�̃

2
+m2πr2�̃

2
|φ|2+

1
4
�̃

2

r2 Q2
]
(u′, V ′)

)
dV ′ du′

−

∫ V

Vn

∫ u

uext

∂V
(
[2r ∂ur ∂u log �̃+ (∂ur)2− 4πr2

|Duφ|
2
](u′, V ′)

)
du′ dV ′ = 0, (10-21)

where (in a similar manner to (10-19)) expressions ∂V ∂ur , ∂V ∂u log �̃ and ∂V Duφ are to be understood after
plugging in the appropriate inhomogeneous terms arising from (10-8), (10-9) and (10-10) respectively,
and ∂u Q is to be understood as

∂u Q = 2π ir2e(φDuφ− φ̄Duφ);

see (10-3). Direct algebraic manipulations (using in particular Q = 2r2�̃
−2
∂u AV ) then show that the

integrand in (10-21) vanishes almost everywhere. This verifies (10-5).
Finally, we need to check (10-6), or equivalently (10-14). This can be argued in a very similar manner

to (10-5); we omit the details.

Checking the regularity of the functions. We have now checked that all the equations are appropriately
satisfied. To conclude that we have a solution in the sense of 10.4, it remains to check that ∂V r is
continuous. (A priori, using Proposition 10.3, we only know that ∂V r ∈ L2

V (C
0
u).) That ∂V r is continuous

is an immediate consequence of (10-14), the fact that the data for ∂V r are continuous on {u = uext}, and
the regularity properties of all the other functions.

We have thus shown how to construct one extension of the solution (as a spherically symmetric strong
solution in the sense of Definition 10.4). Since the procedure involves prescribing arbitrary data, one
concludes that in fact there are infinitely many inequivalent extensions. �

Remark 10.6. Notice that in spherical symmetry, one can solve the wave equations with data such
that one only requires ∂Vφ, ∂V r, ∂v log �̃ ∈ L1

V . However, if ∂Vφ /∈ L2
V , we have ∂V r →−∞ along a

constant-u hypersurface, and one cannot make sense of (2-9) beyond the singularity. In other words, if
∂Vφ /∈ L2

V , we cannot find appropriate data to the system of the wave equations so as to guarantee that
the solution indeed corresponds to a solution to (1-1).
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11. Improved estimates for massless and chargeless scalar field

Proof of Theorem 5.5. We will prove that

sup
u∈(−∞,u0], v∈[v0,∞)

(|u|2 |∂uφ|(u, v)+ v2
|∂vφ|(u, v)) <∞.

Recalling the relation between v and the regular coordinate V in (9-1), this then implies the desired
conclusion.

We prove the above bounds with a bootstrap argument. Assume that

sup
u∈(−∞,u0], v∈[v0,∞)

|u|2 |∂uφ|(u, v)≤Aimp. (11-1)

In the following argument, we will allow the implicit constant in . to depend on all the constants in the
previous sections, as well as the size of the left-hand side of (5-2). Aimp will then be thought of as larger
than all these constants. We will show that for appropriate |u0|, the estimate in (11-1) can be improved.

To proceed, note that when m= e= 0, (2-3) can be written as

∂u(r ∂vφ)=−(∂vr)(∂uφ), (11-2)

∂v(r ∂uφ)=−(∂ur)(∂vφ). (11-3)
Using (11-2), we estimate

v2
|∂vφ|(u, v). 1+Aimp

∫ u

−∞

v2
|u′|−2(v+ |u′|)−2 du′ . 1+Aimp|u0|

−1. (11-4)

Using (11-3) and the estimate (11-4) that we just established, we have

|u|2 |∂uφ|(u, v). 1+(1+Aimp|u0|
−1)

∫
∞

v0

|u|2 |v′|−2(v′+|u|)−2 dv′. 1+(1+Aimp|u0|
−1)v−1

0 . (11-5)

Choosing Aimp sufficiently large and u0 sufficiently negative (in that order), we have improved the
bootstrap assumption (11-1). Then by (11-4) and (11-5),

sup
u,V
(|∂Vφ|(u, V )+ |u|2 |∂uφ|(u, V )). sup

u,v
(v2
|∂vφ|(u, v)+ |u|2 |∂uφ|(u, v)) <∞,

from which the conclusion follows. �
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