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POSITIVITY, COMPLEX FIOS, AND TOEPLITZ OPERATORS

LEWIS A. COBURN, MICHAEL HITRIK AND JOHANNES SJÖSTRAND

We establish a characterization of complex linear canonical transformations that are positive with respect to
a pair of strictly plurisubharmonic quadratic weights. As an application, we show that the boundedness of
a class of Toeplitz operators on the Bargmann space is implied by the boundedness of their Weyl symbols.

1. Introduction and statement of results

The notion of a positive complex Lagrangian manifold, introduced in [Hörmander 1971], has long played
an important role in microlocal analysis and spectral theory. Restricting the attention to the linear case,
relevant for this work, let us recall that a complex Lagrangian planeƒ�C2n is said to be positive if we have

1

i
�.�; C.�//� 0; � 2ƒ: (1-1)

Here � is the complex symplectic form on C2n and C W C2n ! C2n is the antilinear map of complex
conjugation. Let us mention here several familiar problems, where considerations of positive Lagrangian
manifolds are essential. These include the spectral analysis and resolvent estimates for elliptic quadratic
differential operators [Sjöstrand 1974; Hitrik et al. 2013], the study of spectral instability and pseudospectra
for semiclassical nonnormal operators [Hörmander 1960; Dencker et al. 2004], as well as the construction
of Gaussian beam quasimodes for semiclassical self-adjoint operators of principal type, associated with
closed elliptic trajectories [Ralston 1976; Babich and Buldyrev 1991].

In [Sjöstrand 1982], one of us introduced and developed the notion of positivity of a complex Lagrangian
space relative to a strictly plurisubharmonic quadratic weight, which is the starting point for the present
work. To recall this notion, we let ˆ0 be a real-valued strictly plurisubharmonic quadratic form on Cn

and let us introduce the real linear subspace

ƒˆ0
D

��
x;

2

i

@ˆ0

@x
.x/

�
W x 2 Cn

�
� C2n: (1-2)

We can view ƒˆ0
as the image of the real phase space R2n � C2n under a suitable complex linear

canonical transformation on C2n, and in particular we notice that ƒˆ0
is maximally totally real. In

MSC2010: 32U05, 32W25, 35S30, 47B35, 70H15.
Keywords: positive Lagrangian plane, positive canonical transformation, strictly plurisubharmonic quadratic form, Fourier

integral operator in the complex domain, Toeplitz operator.
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328 LEWIS A. COBURN, MICHAEL HITRIK AND JOHANNES SJÖSTRAND

analogy with the discussion above, we say that a complex linear Lagrangian space ƒ� C2n is positive
relative to ƒˆ0

provided that the natural analog of (1-1) holds,

1

i
�.�; �ˆ0

.�//� 0; � 2ƒ: (1-3)

Here the map of complex conjugation C has been replaced by the unique antilinear involution �ˆ0
W

C2n! C2n such that �ˆ0
jƒˆ0

D 1. A result of [Sjöstrand 1982] establishes a complete characterization
of complex Lagrangians that are positive relative to ƒˆ0

— see also Theorem 2.1 below.
In this work, we shall be mainly concerned with positive complex canonical transformations. Indeed,

the main goal of the present work is to provide a characterization of positive complex linear canonical
transformations relative to plurisubharmonic weights, and to consider Fourier integral operators (FIOs) in
the complex domain associated to positive canonical transformations, establishing a link between such
operators and Toeplitz operators. In particular, it seems that the point of view of complex FIOs allows us
to shed some new light on some basic questions in the theory of Toeplitz operators. We would like to
emphasize here that the original motivation for attempting to establish a link between FIOs in the complex
domain and Toeplitz operators came from a talk delivered by Coburn at the conference “Complex and
functional analysis and their interactions with harmonic analysis” at the Mathematical Research and
Conference Center, Będlewo, June 2017.

We shall now proceed to define the notion of a complex linear canonical transformation which is
positive relative to a strictly plurisubharmonic quadratic weight, and to state our main results. In fact,
proceeding in the spirit of the discussion above, it will be more transparent to introduce the notion of
positivity relative to a pair of strictly plurisubharmonic quadratic forms rather than relative to a single
one. Thus, let ˆ1, ˆ2 be two strictly plurisubharmonic quadratic forms on Cn with the corresponding
antilinear involutions �ˆ1

, �ˆ2
. Let � WC2n!C2n be a complex linear canonical transformation, ��� D � .

We say that � is positive relative to .ƒˆ1
; ƒˆ2

/ provided that

1

i

�
�.�.�/; �ˆ1

�.�//� �.�; �ˆ2
.�//

�
� 0; � 2 C2n: (1-4)

The positivity of � relative to .ƒˆ1
; ƒˆ2

/ is said to be strict provided that the inequality in (1-4) is strict
for all 0¤ � 2 C2n. Let us remark that in the case when the positivity is taken relative to the real phase
space R2n, see (1-1), such canonical transformations were studied in [Hörmander 1983, 1995]; see also
the recent works [Pravda-Starov et al. 2018; Aleman and Viola 2018].

We can now state the first main result of this work.

Theorem 1.1. Let � W C2n ! C2n be a complex linear canonical transformation and let ˆ1, ˆ2 be
strictly plurisubharmonic quadratic forms on Cn. The canonical transformation � is positive relative to
.ƒˆ1

; ƒˆ2
/ precisely when we have

�.ƒˆ2
/Dƒˆ; (1-5)

where ˆ is a strictly plurisubharmonic quadratic form such that ˆ�ˆ1.
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Remark. The definition (1-4) of a positive canonical transformation is a direct adaptation of the corre-
sponding notion of positivity due to Hörmander [1983; 1995] to the weighted setting. One advantage of
the consideration of the general case of a pair of weights ˆ1, ˆ2 is that we can let � be the identity in
(1-4) and get an invariant notion of the positivity of one plurisubharmonic weight compared to another, in
view of Theorem 1.1.

Our second main result is concerned with applications of Theorem 1.1 to the study of Toeplitz operators
in the Bargmann space

Hˆ0
.Cn/DL2.Cn; e�2ˆ0L.dx//\Hol.Cn/;

where ˆ0 is a strictly plurisubharmonic quadratic form on Cn and L.dx/ is the Lebesgue measure
on Cn. See also (A-1). Specifically, we shall be concerned with the continuity properties of (in general
unbounded) Toeplitz operators of the form

Top.e2q/D…ˆ0
ı e2q

ı…ˆ0
WHˆ0

.Cn/!Hˆ0
.Cn/; (1-6)

where q is a complex-valued quadratic form on Cn and

…ˆ0
WL2.Cn; e�2ˆ0L.dx//!Hˆ0

.Cn/

is the orthogonal projection. Sufficient conditions for the boundedness of Top.e2q/ are provided in the
following result.

Theorem 1.2. Let ˆ0 be a strictly plurisubharmonic quadratic form on Cn and let q be a quadratic form
on Cn such that

2 Re q.x/ < ˆherm.x/ WD
1
2
.ˆ0.x/Cˆ0.ix//; x ¤ 0; (1-7)

@x@ Nx.ˆ0� q/¤ 0: (1-8)

Let a 2 C1.ƒˆ0
/ be the Weyl symbol of the Toeplitz operator Top.e2q/. Assume that a 2 L1.ƒˆ0

/.
Then the Toeplitz operator

Top.e2q/ WHˆ0
.Cn/!Hˆ0

.Cn/

is bounded.

Remark. Let us remark that Theorem 1.2 is closely related to the conjecture of [Berger and Coburn
1994; Coburn 2019] stating that a Toeplitz operator is bounded on Hˆ0

.Cn/ precisely when its Weyl
symbol is bounded on ƒˆ0

. Theorem 1.2 can therefore be regarded as establishing the sufficiency part
of the conjecture in the special case when the Toeplitz symbol is of the form exp.2q/, where q is a
complex-valued quadratic form on Cn, satisfying (1-7), (1-8).

Remark. As we shall see in Section 4, the strict inequality in condition (1-7) guarantees that the operator
Top.e2q/ is densely defined, and it seems difficult to weaken. Notice also that the Hermitian form ˆherm

in (1-7) is positive definite on Cn, thanks to the strict plurisubharmonicity of ˆ0.

The plan of the paper is as follows. In Section 2, we establish the necessity part of Theorem 1.1,
by means of direct geometric arguments, relying on some general results of [Sjöstrand 1982]; see also
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[Caliceti et al. 2012; Hitrik and Sjöstrand 2018]. The proof of Theorem 1.1 is completed in Section 3,
where we have found it convenient to introduce explicitly a Fourier integral operator in the complex domain
quantizing the canonical transformation � satisfying (1-5), when verifying the positivity of �. Applications
to Toeplitz operators are given in Section 4, where Theorem 1.2 is established. Appendix A is devoted
to some elementary remarks concerning integral representations for linear continuous maps between
weighted spaces of holomorphic functions, which can be regarded as a version of the Schwartz kernel
theorem in this setting. These representations are to be applied in the main text when deriving a Bergman-
type representation for our complex FIOs. Finally, Appendix B, for use in Section 4, characterizes
boundedness properties of operators given as Weyl quantizations of symbols of the form eiF.x;�/, where
F is a holomorphic quadratic form on C2n.

2. Positive Lagrangian planes and positive canonical transformations in the Hˆ-setting

Let ˆ0 be a strictly plurisubharmonic quadratic form on Cn. Associated to ˆ0 is the I-Lagrangian
R-symplectic linear manifold ƒˆ0

, given by

ƒˆ0
D

��
x;

2

i

@ˆ0

@x
.x/

�
W x 2 Cn

�
� C2n: (2-1)

The linear manifold ƒˆ0
is maximally totally real, and we let �ˆ0

be the unique antilinear involution

�ˆ0
W C2n

! C2n (2-2)

such that the restriction of �ˆ0
to ƒˆ0

is the identity. For future reference, we may recall the explicit
description of the involution �ˆ0

given in [Hitrik and Sjöstrand 2018],�
y;

2

i
.ˆ000;xxyCˆ000;x Nx Nx/

�
7!

�
x;

2

i
.ˆ000;xxxCˆ000;x Nx Ny/

�
: (2-3)

We also have
�ˆ0
W

�
y;

2

i
@y‰0.x; Ny/

�
7!

�
x;

2

i
@x‰0.x; Ny/

�
; (2-4)

where ‰0.x;y/ is the polarization of ˆ0, i.e., the unique holomorphic quadratic form on Cn
x �Cn

y such
that ‰0.x; Nx/Dˆ0.x/.

Let ƒ � C2n be a C-Lagrangian space, i.e., a complex linear subspace such that dimCƒ D n and
� jƒ D 0. Here � is the standard symplectic form on C2n. Let us consider the Hermitian form

b.�; �/D
1

i
�.�; �ˆ0

.�//; �; � 2 C2n: (2-5)

We say that ƒ is positive relative to ƒˆ0
if the Hermitian form (2-5) is positive semidefinite when

restricted to ƒ,
b.�; �/� 0; � 2ƒ: (2-6)

The positivity is said to be strict if the form b in (2-5) is positive definite along ƒ. As remarked in the
introduction, this notion is a direct adaptation of the corresponding notion of positivity due to Hörmander
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[1971], where in place of .ƒˆ0
; �ˆ0

/ we have .R2n; C/, with C being the antilinear map of complex
conjugation.

Remark. It is easy to see and is established in [Caliceti et al. 2012; Hitrik and Sjöstrand 2018] that the
Hermitian form b is nondegenerate along ƒ precisely when ƒ and ƒˆ0

are transversal.

Our starting point is the following well-known result; see [Sjöstrand 1982; Caliceti et al. 2012; Hitrik
and Sjöstrand 2018].

Theorem 2.1. A C-Lagrangian space ƒ is positive relative to ƒˆ0
if and only if ƒDƒ‰, where ‰ is a

pluriharmonic quadratic form such that ‰ �ˆ0.

The proof of Theorem 2.1 given in [Sjöstrand 1982; Caliceti et al. 2012; Hitrik and Sjöstrand 2018]
discusses the case of strictly positive Lagrangian planes only and depends on the general fact that the set
of all C-Lagrangian spaces which are strictly positive relative to ƒˆ0

is a connected component in the set
of all C-Lagrangian spaces that are transversal to ƒˆ0

. Here we shall give a more direct proof, using the
explicit description of the involution �ˆ0

, given in (2-3), (2-4). Let ƒ� C2n be C-Lagrangian, positive
relative to ƒˆ0

. It follows from (2-3), as explained in [Sjöstrand 1982; Hitrik and Sjöstrand 2018], that
the fiber f.0; �/I � 2 Cng is strictly negative relative to ƒˆ0

, in the sense that the Hermitian form b in
(2-5) is negative definite along the fiber, and therefore ƒ is necessarily of the form � D @x'.x/, where '
is a holomorphic quadratic form on Cn. It follows that

ƒDƒ‰; (2-7)

where ‰ D � Im' is pluriharmonic quadratic. We shall now see that ‰ � ˆ0, and to this end, let us
consider the decomposition

ˆ0 DˆhermCˆplh; (2-8)

where
ˆherm.x/Dˆ

00
0; Nxxx � Nx (2-9)

is positive definite Hermitian and

ˆplh.x/D Re.ˆ000;xxx �x/ (2-10)

is pluriharmonic. Let

AD
2

i
.ˆplh/

00
xx D

2

i
.ˆ0/

00
xx;

and let us consider the complex linear “vertical” canonical transformation

�A.y; �/D .y; �CAy/: (2-11)

We have
�A.ƒˆherm/Dƒˆ0

; (2-12)

and letting �ˆherm be the antilinear involution associated to ƒˆherm , it is then clear that

�ˆherm D �
�1
A ı �ˆ0

ı �A: (2-13)
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It follows that ƒ is positive relative to ƒˆ0
precisely when

��1
A .ƒ/Dƒ‰�ˆplh

is positive relative to ƒˆherm , and when proving Theorem 2.1 we may assume therefore that the plurihar-
monic part of ˆ0 vanishes. In this discussion, we are also allowed to perform complex linear changes of
variables in Cn, which correspond to canonical transformations of the form �C W .y; �/ 7! .C�1y;C t�/,
where C is an invertible complex n� n matrix. We have �C .ƒˆ0

/ D ƒˆ1
, ˆ1.x/ D ˆ0.Cx/, and it

follows therefore that when establishing Theorem 2.1 it suffices to consider the model case when

ˆ0.x/D
1
2
jxj2: (2-14)

An application of (2-3) shows that the involution �ˆ0
is then given by

.y; �/ 7!

�
1

i
N�;

1

i
Ny

�
; (2-15)

and therefore

b.�; �/D
1

i
�.�; �ˆ0

.�//D jxj2� j�j2; �D .x; �/ 2 C2n: (2-16)

When � 2 ƒ D ƒ‰, we write � D .2= i/@x‰.x/ D @x'.x/, ‰.x/ D � Im', where ' is a quadratic
holomorphic form, and therefore if ƒ is positive relative to ƒˆ0

, then (2-16) shows that

j'00xxxj � jxj; x 2 Cn
() k'00xxk � 1: (2-17)

We get
‰.x/D� Im'.x/� 1

2
j'00xxx �xj � 1

2
jxj2 Dˆ0.x/; x 2 Cn: (2-18)

Conversely, let ƒ be C-Lagrangian of the form ƒDƒ‰, where ‰ is pluriharmonic quadratic such that
‰ �ˆ0. Let us write ‰ D� Im', where ' is a holomorphic quadratic form. We shall now see that ƒ‰
is positive relative to ƒˆ0

, and it follows from the remarks above that it suffices to verify the positivity in
the model case when ˆ0 is given by (2-14), so that we have

‰.x/D� Im'.x/�ˆ0.x/D
1
2
jxj2: (2-19)

Writing
� Im'00xxx �x � jxj2; (2-20)

replacing x by ei�x and varying � 2 R, we get

j'00xxx �xj � jxj2; x 2 Cn: (2-21)

Next, writing
'00xxx �y D 1

4

�
'00xx.xCy/ � .xCy/�'00xx.x�y/ � .x�y/

�
;

we get, using (2-21),

j'00xxx �yj � 1
4
.jxCyj2Cjx�yj2/D 1

2
.jxj2Cjyj2/: (2-22)
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Replacing x 7! �1=2x, y 7! ��1=2y, � > 0, we get

j'00xxx �yj �
1

2

�
�jxj2C

1

�
jyj2

�
; (2-23)

and choosing �D jyj=jxj, assuming for simplicity that x ¤ 0, y ¤ 0, we obtain

j'00xxx �yj � jxjjyj:

Hence, k'00xxk � 1 and the positivity of ƒ‰ relative to ƒˆ0
follows from (2-16), (2-17). The proof of

Theorem 2.1 is complete.

Remark. Closely related to the proof of Theorem 2.1 given above is the normal form for strictly plurisub-
harmonic quadratic forms, given in Lemma 5.1 of [Hörmander 1997]; see also [Harvey and Wells 1973].

Letˆ1, ˆ2 be two strictly plurisubharmonic quadratic forms on Cn and let � WC2n!C2n be a complex
linear canonical transformation which is positive relative to .ƒˆ1

; ƒˆ2
/, in the sense of (1-4). In the

remainder of this section, we shall establish the necessity part of Theorem 1.1, while the sufficiency is
discussed in Section 3. To this end, let us observe first that the linear I-Lagrangian R-symplectic manifold
�.ƒˆ2

/ is transversal to the fiber f.0; �/ W � 2 Cng. Indeed, we have in view of (1-4),

1

i
�.�; �ˆ1

.�//� 0; � 2 �.ƒˆ2
/; (2-24)

while, as recalled above, we know from [Sjöstrand 1982; Hitrik and Sjöstrand 2018] that the fiber is
strictly negative relative to ƒˆ1

. It follows that �.ƒˆ2
/Dƒˆ, where ˆ is a real quadratic form such that

the Levi form N@@ˆ is nondegenerate. When verifying that ˆ is (necessarily strictly) plurisubharmonic,
we claim that it suffices to do so when the pluriharmonic part of ˆ2 vanishes. Indeed, introducing
the decomposition (2-8), with the quadratic form ˆ2 in place of ˆ0 and considering the canonical
transformation �A given in (2-11), we see, using also (2-13), that � is positive relative to .ƒˆ1

; ƒˆ2
/

precisely when ��1
A
ı � ı �A is positive relative to .ƒˆ1�ˆ2;plh ; ƒˆ2;herm/. Here ˆ2;plh and ˆ2;herm are the

pluriharmonic and the Hermitian parts of ˆ2, respectively. Here it is also helpful to notice that

�ˆ1�ˆ2;plh D �
�1
A ı �ˆ1

ı �A:

To summarize, if we know that the generating function of the linear I-Lagrangian R-symplectic manifold

��1
A ı � ı �A.ƒˆ2;herm/

is plurisubharmonic, then the same property is also enjoyed by the generating function of �.ƒˆ2
/. In

what follows we shall assume therefore that

ˆ2;xx Dˆ2; Nx Nx D 0: (2-25)

As above, in this discussion, we are also allowed to perform complex linear changes of variables in Cn,
which correspond to canonical transformations of the form .y; �/ 7! .C�1y;C t�/, where C is an invertible
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complex n�n matrix. Such canonical transformations preserve the plurisubharmonicity of the generating
functions, and similarly to the proof of Theorem 2.1, it suffices therefore to consider the case when

ˆ2.x/D
1
2
jxj2: (2-26)

Theorem 2.1 then shows that the C-Lagrangian plane given by f.x; �/ 2 C2n W � D 0g is strictly positive
relative to ƒˆ2

, and therefore �.f.x; �/ 2 C2n W � D 0g/ is strictly positive relative to ƒˆ1
, in view of the

positivity of �. Another application of Theorem 2.1 gives that

�.f.x; �/ 2 C2n
W � D 0g/Dƒ‰; (2-27)

where the quadratic form ‰ is pluriharmonic, with ‰ �ˆ1.
Let �.x;y; �/ be a holomorphic quadratic form on Cn

x �Cn
y �CN

�
, which is a nondegenerate phase

function in the sense of Hörmander, generating the graph of �. It follows from (2-27), as explained in
[Caliceti et al. 2012], that the quadratic form

Cn
�CN

3 .y; �/ 7! � Im�.0;y; �/ (2-28)

is nondegenerate, and since it is pluriharmonic, the signature is necessarily .nCN; nCN /. Recalling
that

�.ƒˆ2
/Dƒˆ; (2-29)

we see, using [Caliceti et al. 2012], that the quadratic form

.y; �/ 7! � Im�.0;y; �/Cˆ2.y/ (2-30)

is nondegenerate as well. We would like to conclude that the signature of the quadratic form in (2-30) is
also .nCN; nCN /, and to that end, we follow [Sjöstrand 1982] and consider the continuous deformation

Œ0; 1� 3 t 7! � Im�.0;y; �/C tˆ2.y/: (2-31)

Using (2-16) we see that

1

i
�.�; �ˆ2

.�//� 0; � 2ƒtˆ2
; 0� t � 1: (2-32)

It follows as before that the I-Lagrangian manifold �.ƒtˆ2
/ is transversal to the fiber, 0 � t � 1, and

therefore we conclude that the nondegeneracy of the quadratic forms in (2-31) is maintained along the
deformation 0� t � 1. Recalling that the set of nondegenerate quadratic forms of a fixed given signature
is a connected component in the set of all nondegenerate quadratic forms, we conclude that the signature
of the quadratic form in (2-30) is .nCN; nCN /. Now, as explained in [Caliceti et al. 2012], the quadratic
form ˆ in (2-29) is given by

ˆ.x/D vcy;� .� Im�.x;y; �/Cˆ2.y//; (2-33)

where vcy;� stands for the critical value with respect to y, � , and we conclude by the fundamental
lemma of [Sjöstrand 1982], see also [Hitrik and Sjöstrand 2018], that ˆ is plurisubharmonic. (As already
observed, the plurisubharmonicity of ˆ is necessarily strict.)
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We shall next see that ˆ � ˆ1, and when doing so it will be convenient to discuss the following
auxiliary result first, which may be of some independent interest.

Proposition 2.2. Let � W C2n ! C2n be a complex linear canonical transformation which is positive
relative to .ƒˆ1

; ƒˆ2
/. If ˆ2 is strictly convex then � has a generating function '.x; �/ which is a

holomorphic quadratic form such that

� W .'0�.x; �/; �/ 7! .x; '0x.x; �//: (2-34)

Proof. It suffices to show that the map

� W graph.�/ 3 .x; �Iy; �/ 7! .x; �/ 2 C2n

is bijective, i.e., injective. Let .0; �Iy; 0/ 2 Ker.�/ so that � W .y; 0/ 7! .0; �/. Let us consider the
Hermitian forms

bj .�; �/D
1

i
�.�; �

ĵ
.�//; j D 1; 2:

The strict convexity of ˆ2 together with Theorem 2.1 implies

b2..y; 0/; .y; 0//� jyj
2; y 2 Cn; (2-35)

and the strict negativity of the fiber with respect to ƒˆ1
gives

b1..0; �/; .0; �//��j�j
2; � 2 Cn:

Hence by the positivity of �, we get

0� b1..0; �/; .0; �//� b2..y; 0/; .y; 0//��.j�j
2
Cjyj2/:

It follows that .y; �/D 0 and we conclude that � is injective. �

Remark. Suppose that the assumptions of Proposition 2.2 hold. The holomorphic quadratic form
'.x; �/�y � � is then a nondegenerate phase function generating the graph of �.

Let us now turn to the proof of the fact that

ˆ�ˆ1: (2-36)

It follows from the remarks above that it suffices to verify (2-36) when the pluriharmonic part of ˆ2

vanishes, and since we are again allowed to perform complex linear changes of variables in Cn, as before,
we conclude that it suffices to consider the case when ˆ2 is given by (2-26). Proposition 2.2 applies and
there exists therefore a holomorphic quadratic form '.x; �/ such that

� W .'0� .x; �/; �/ 7! .x; '0x.x; �//: (2-37)

We shall now express the positivity of � relative to .ƒˆ1
; ƒˆ2

/ in terms of the generating function '. To
this end, we shall first obtain an explicit expression for the Hermitian form

1

i
�..y; �/; �ˆ1

.y; �//; .y; �/ 2 C2n;
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where we write

ˆ1.x/D
1
2
L Nx �xCRe.Ax �x/; LD 2ˆ001;x Nx; ADˆ001;xx : (2-38)

Here L is Hermitian positive definite and performing a unitary transformation, we may assume, for
simplicity, that L is diagonal, with real positive diagonal elements. A simple computation using (2-3)
shows that

1

i
�..y; �/; �ˆ1

.y; �//DL Ny �yC .2Ay � i�/ �x; (2-39)

where
L Nx D i�� 2Ay;

and therefore we get

1

i
�..y; �/; �ˆ1

.y; �//DL Ny �y �L�1.2iAyC �/ � .2iAyC �/: (2-40)

Using also (2-37), we conclude that � is positive relative to .ƒˆ1
; ƒˆ2

/ precisely when

L�1.'0xC 2iAx/ � .'0xC 2iAx/Cj'0� .x; �/j
2
�L Nx �xCj� j2; .x; �/ 2 C2n: (2-41)

It is now easy to conclude the proof of the necessity part of Theorem 1.1, using (2-41). It follows from
(2-33) that we can write

ˆ.x/D vcy;�

�
� Im.'.x; �/�y � �/Cˆ2.y/

�
: (2-42)

At the unique critical point .y.x/; �.x//, we have

y D '0� .x; �/; (2-43)

2

i

@ˆ2

@y
.y/D � () � D

1

i
Ny: (2-44)

Injecting (2-44) into (2-42), we get

ˆ.x/D� Im'.x; �/� 1
2
j� j2; � D �.x/; (2-45)

and in view of (2-38), it suffices therefore to establish the inequality

�2 Im'.x; �/�L Nx �xCj� j2C 2 Re.Ax �x/; .x; �/ 2 C2n: (2-46)

When verifying (2-46), we write, using the Euler homogeneity relation,

2'.x; �/D '0x.x; �/ �xC'
0
� .x; �/ � �; (2-47)

and therefore,

�2 Im'.x; �/D� Im
�
.'0x.x; �/C 2iAx/ �xC'0� .x; �/ � �

�
C 2 Re.Ax �x/: (2-48)

An application of the Cauchy–Schwarz inequality with respect to the positive definite Hermitian forms
.x;y/ 7!L�1x � Ny, .x;y/ 7! x � Ny together with the inequality ab � 1

2
a2C

1
2
b2 allows us to conclude
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that the first term in the right-hand side of (2-48) does not exceed

1
2

�
L�1.'0xC 2iAx/ � .'0xC 2iAx/CL Nx �xCj'0� .x; �/j

2
Cj� j2

�
:

The inequality (2-46) follows, in view of (2-41). The proof of the necessity part of Theorem 1.1 is
complete.

Remark. In the context of Theorem 1.1, assume that ˆ1 Dˆ2 DWˆ0 and let us write

ˆ0.x/D sup
y2Rn

.� Im'.x;y//; (2-49)

where '.x;y/ is a holomorphic quadratic form on Cn
x �Cn

y such that det'00xy ¤ 0 and Im'00yy > 0. In the
special case when ˆ0 is given by (2-26), we can take

'.x;y/D i
�

1
2
x2
C
p

2x �yC 1
2
y2
�
:

The complex canonical transformation

�' W C
2n
3 .y;�'0y.x;y// 7! .x; '0x.x;y// 2 C2n (2-50)

maps R2n bijectively ontoƒˆ0
, see [Hitrik and Sjöstrand 2018], and it exchanges the complex conjugation

map C and the involution �ˆ0
. Setting

Q� D ��1
' ı � ı �' ; (2-51)

we see that the complex linear canonical transformation Q� is positive in the sense of [Hörmander 1995],

1

i

�
�. Q�.�/; C Q�.�//� �.�; C.�//

�
� 0; � 2 C2n: (2-52)

An application of Proposition 5.10 of [Hörmander 1995] allows us to conclude therefore that the map Q�
enjoys the factorization

Q� D Q�1 ı Q�2 ı Q�3; (2-53)

where Q�1 and Q�3 are real linear canonical maps and the map Q�2 is of the form

Q�2 D exp.�iHQq/; (2-54)

where Qq is a quadratic form with Re Qq�0 on R2n — see also the discussion in the proof of Proposition 5.12
of [Hörmander 1995]. We obtain the factorization

� D �1 ı �2 ı �3; (2-55)

where we have
�j Wƒˆ0

!ƒˆ0
; j D 1; 3; (2-56)

and
�2 D exp.�iHq/; (2-57)

where q is a holomorphic quadratic form on C2n such that Re q � 0 along ƒˆ0
. The representation (2-55)

can be used to give an alternative proof of the basic inequality ˆ�ˆ0 in Theorem 1.1, in this special case.
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3. Positivity and Fourier integral operators

The purpose of this section is to establish the sufficiency part of Theorem 1.1. To this end, let ˆ1, ˆ2 be
two strictly plurisubharmonic quadratic forms on Cn and let � WC2n!C2n be a complex linear canonical
transformation. Assume that

�.ƒˆ2
/Dƒˆ; (3-1)

where ˆ is a strictly plurisubharmonic quadratic form such that

ˆ�ˆ1: (3-2)

We shall establish the positivity of � relative to .ƒˆ1
; ƒˆ2

/ by making a judicious choice of a nonde-
generate phase function generating the graph of �, and to this end, it will be convenient to consider a
metaplectic Fourier integral operator associated to �. Let therefore '.x;y; �/ be a holomorphic quadratic
form on Cn

x �Cn
y �CN

�
, which is a nondegenerate phase function in the sense of Hörmander, generating

the graph of �. It follows from [Caliceti et al. 2012] that the plurisubharmonic quadratic form

Cn
�CN

3 .y; �/ 7! � Im'.0;y; �/Cˆ2.y/ (3-3)

is nondegenerate of signature .nCN; nCN /. We conclude, following [Sjöstrand 1982; Caliceti et al.
2012] that the Fourier integral operator

Au.x/D

“
ei'.x;y;�/au.y/ dy d�; a 2 C; (3-4)

quantizing �, can be realized by means of a good contour and we obtain a bounded linear map,

A WHˆ2
.Cn/!Hˆ.C

n/: (3-5)

Here

Hˆ2
.Cn/D Hol.Cn/\L2.Cn; e�2ˆ2L.dx//;

with Hˆ.C
n/ having an analogous definition.

We shall now discuss a Bergman-type representation of the bounded operator in (3-5); see also [Melin
and Sjöstrand 2003] for a related discussion. To this end, let us recall from Theorem A.1 that we can
write

Au.x/D

Z
KA.x; Ny/u.y/ e�2ˆ2.y/L.dy/DW QAu.x/: (3-6)

Here the kernel KA.x; z/ is holomorphic on Cn
x �Cn

z , with

y 7!K.x; Ny/ 2Hˆ2
.Cn/;

uniquely determined by (3-6). If u 2L2
ˆ2
.Cn/DL2.Cn; e�2ˆ2L.dx// is orthogonal to Hˆ2

.Cn/, we
see from (3-6) that QAuD 0. Hence the operator QA in (3-6) is a well-defined linear continuous map

QA WL2
ˆ2
.Cn/!Hˆ2

.Cn/:
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Furthermore, QA extends to a map: E 0.Cn/! Hol.Cn/ and we have

KA.x; Ny/e
�2ˆ2.y/ D . QAıy/.x/; (3-7)

where ıy 2 E 0.Cn/ is the delta function at y. Let next …2 W L
2
ˆ2
.Cn/! Hˆ2

.C/ be the orthogonal
projection and let us recall from [Hitrik and Sjöstrand 2018] that the operator …2 is given by

…2u.x/D a2

Z
e2‰2.x; Ny/�ˆ2.y/u.y/L.dy/; a2 > 0: (3-8)

Here‰2 is the polarization ofˆ2, i.e., a holomorphic quadratic form on C2n
x;y such that‰2.x; Nx/Dˆ2.x/.

We get QAıy D QA…2ıy DA…2ıy , and it follows from (3-7) that

KA.x; Ny/DA.a2e2‰2. � ; Ny//.x/: (3-9)

From [Hitrik and Sjöstrand 2018], let us recall the basic property

2 Re‰2.x; Ny/�ˆ2.x/�ˆ2.y/��jx�yj2

on Cn
x �Cn

y , and in particular we have

2 Re‰2.x; Ny/�ˆ2.x/Cˆ2.y/: (3-10)

It follows that
� Im'.0; Qy; �/C 2 Re‰2. Qy; 0/� � Im'.0; Qy; �/Cˆ2. Qy/: (3-11)

Here, as observed in (3-3), the right-hand side is a nondegenerate plurisubharmonic quadratic form of
signature .nCN; nCN /, and since the left-hand side is pluriharmonic, we conclude that it is also
nondegenerate of signature .nCN; nCN /. Writing

� Im'.0; Qy; �/C 2 Re‰2. Qy; 0/D Re.i'.0; Qy; �/C 2‰2. Qy; 0//;

we conclude that the holomorphic quadratic form

Cn
�CN

3 . Qy; �/ 7! i'.0; Qy; �/C 2‰2. Qy; 0/

is nondegenerate. It follows that the holomorphic function

Cn
�CN

3 . Qy; �/ 7! i'.x; Qy; �/C 2‰2. Qy; z/

has a unique critical point which is nondegenerate for each .x; z/ 2 Cn �Cn. An application of exact
(quadratic) stationary phase allows us therefore to conclude that

KA.x; Ny/D Oae2‰.x; Ny/; Oa 2 C: (3-12)

Here ‰.x; z/ is a holomorphic quadratic form on C2n given by

2‰.x; z/D vc Qy;� .i'.x; Qy; �/C 2‰2. Qy; z//: (3-13)

Let us now make the following basic observation.
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Proposition 3.1. The holomorphic quadratic form ‰.x; z/ given in (3-13) satisfies

2 Re‰.x; Ny/�ˆ.x/Cˆ2.y/; .x;y/ 2 Cn
x �Cn

y : (3-14)

Proof. It will be more convenient to verify that

2 Re‰.x;y/�ˆ.x/Cˆ�2.y/; .x;y/ 2 Cn
x �Cn

y ; (3-15)

where ˆ�
2
.y/Dˆ2. Ny/. A direct calculation shows that

2

i
@yˆ

�
2.y/D�

2

i
.@yˆ2/. Ny/;

or equivalently,
2

i
@y.ˆ

�
2/. Ny/D�

2

i
.@yˆ2/.y/:

It follows that the antilinear involution

� W C2n
3 .y; �/ 7! . Ny;�N�/ 2 C2n (3-16)

maps ƒˆ2
bijectively onto ƒˆ�

2
. We conclude in view of (3-1) that

� ı� Wƒˆ�
2
!ƒˆ; (3-17)

and let us consider the graph of the map in (3-17), Graph.� ı �/\ .ƒˆ �ƒˆ�
2
/. Here ƒˆ �ƒˆ�

2
D

ƒˆ.x/Cˆ�
2
.y/ is I-Lagrangian and R-symplectic for the standard symplectic form

d� ^ dxC d�^ dy (3-18)

on C2n
x;�
�C2n

y;� and we claim that Graph.� ı�/\ .ƒˆ �ƒˆ�
2
/ is Lagrangian for the symplectic form in

(3-18), restricted to ƒˆ �ƒˆ�
2

. This can be seen by a direct computation: when .t; s/ 2ƒˆ�
2
�ƒˆ�

2
we

have, writing � for the standard symplectic form on C2n,

�
�
�.�.t//; �.�.s//

�
C �.t; s/D �.�.t/; �.s//C �.t; s/D��.t; s/C �.t; s/D 0;

since �.t; s/ is real. Here we have also used that, by a straightforward computation,

�.� t; �s/D��.t; s/: (3-19)

It is then well known that �x;y.Graph.�ı�/\.ƒˆ�ƒˆ�
2
//, the projection of Graph.�ı�/\.ƒˆ�ƒˆ�

2
/

in C2n
x;y , is maximally totally real; see [Melin and Sjöstrand 2003].

We now come to check (3-15). To this end, we observe that (3-13) gives

2@x‰.x;y/D i@x'.x; Qy; �/; (3-20)

2@y‰.x;y/D 2@y‰2. Qy;y/; (3-21)

where

@�'.x; Qy; �/D 0; @ Qy'.x; Qy; �/C
2

i
@ Qy‰2. Qy;y/D 0: (3-22)
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We shall consider (3-20), (3-21) at the points .x;y/2�x;y.Graph.�ı�/\ƒˆ�ƒˆ�
2
/, which corresponds

to Qy D Ny in (3-22). Using (3-22) together with the fact that

@ Qy‰2. Qy; NQy/D @ Qyˆ2. Qy/;

and (3-21) together with the fact that

.@y‰2/. Ny;y/D @yˆ
�
2.y/;

we conclude that at the points

.x;y/ 2 �x;y.Graph.� ı�/\ƒˆ �ƒˆ�
2
/;

the following equalities hold:

@x‰.x;y/D @xˆ.x/; @y‰.x;y/D @yˆ
�
2.y/: (3-23)

In other words,
@x.ˆ.x/� 2 Re‰.x;y//D @y.ˆ

�
2.y/� 2 Re‰.x;y//D 0;

along �x;y.Graph.� ı�/\ƒˆ �ƒˆ�
2
/, and thus the gradient of the real-valued function

F.x;y/Dˆ.x/Cˆ�2.y/� 2 Re‰.x;y/ (3-24)

vanishes on �x;y.Graph.� ı�/\ƒˆ�ƒˆ�
2
/. It follows that the strictly plurisubharmonic quadratic form

F.x;y/ vanishes to the second order along

�x;y.Graph.� ı�/\ƒˆ �ƒˆ�
2
/; (3-25)

and since the latter is maximally totally real, we get F � 0, thus implying (3-15). �

Remark. The strictly plurisubharmonic quadratic form F.x;y/ in (3-24) vanishes to the second order
along the maximally totally real subspace (3-25), and therefore the conclusion that F � 0 can be
strengthened to

F.x;y/� dist
�
.x;y/; �x;y.Graph.� ı�/\ƒˆ �ƒˆ�

2
/
�2
:

Let us now return to the Bergman-type representation of the Fourier integral operator A in (3-4)
quantizing �. Combining (3-6) and (3-12), we get

Au.x/D

“
Lae2.‰.x; Ny/�ˆ2.y//u.y/ dy d Ny (3-26)

for some La 2 C. This can be viewed as a Fourier integral operator

Au.x/D

“
Lae2.‰.x;�/�‰2.y;�//u.y/ dy d�; (3-27)

where we take the integration contour � D Ny in (3-27).
Since @y@�‰2.y; �/ is nondegenerate, the phase function

�.x;y; �/D
2

i
.‰.x; �/�‰2.y; �// (3-28)
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is nondegenerate in the sense of Hörmander, and the canonical transformation � takes the form

� W
�
y;

2

i
@y‰2.y; �/

�
7!

�
x;

2

i
@x‰.x; �/

�
; with @�‰.x; �/D @�‰2.y; �/: (3-29)

We may also notice here that if we define

�‰ W
�
�;�

2

i
@�‰.y; �/

�
7!

�
y;

2

i
@y‰.y; �/

�
and �‰2

similarly, then � D �‰ ı ��1
‰2

.
The discussion so far shows that the canonical transformation � enjoying the mapping properties (3-1),

(3-2), admits a nondegenerate phase function of the form (3-28), where the quadratic form ‰ satisfies

2 Re‰.x; Ny/�ˆ1.x/Cˆ2.y/; .x;y/ 2 Cn
x �Cn

y : (3-30)

The positivity of � relative to .ƒˆ1
; ƒˆ2

/ is then implied by the following general result.

Proposition 3.2. Let � be a canonical transformation satisfying (3-1) and let us consider a metaplectic
Fourier integral operator of the form (3-26), or equivalently (3-27), associated to �. Then the following
conditions are equivalent:

(i) � is positive relative to .ƒˆ1
; ƒˆ2

/ in the sense of (1-4):

1

i
�.t1; �ˆ1

t1/�
1

i
�.t2; �ˆ2

t2/� 0; whenever t1 D �.t2/; t2 2 C2n: (3-31)

(ii) ƒ2 Re‰.x; Ny/ is positive relative to ƒˆ1.x/Cˆ2.y/.

(iii) 2 Re‰.x; Ny/�ˆ1.x/�ˆ2.y/� 0 on Cn
x �Cn

y .

Proof. The equivalence (ii),(iii) follows from Theorem 2.1, so it suffices to show the equivalence
(i),(ii).

Clearly, (iii) is equivalent to

2 Re‰.x;y/�ˆ1.x/�ˆ
�
2.y/� 0 on C2n

x;y ; (3-32)

where ˆ�
2
.y/Dˆ2. Ny/.Dˆ2. Ny//, and by Theorem 2.1(ii) is equivalent to

ƒ2 Re‰.x;y/ is positive relative to ƒˆ1.x/Cˆ
�
2
.y/: (3-33)

We have
ƒ2 Re‰ D

n�
x;

2

i
@x2 Re‰.x;y/Iy; 2

i
@y2 Re‰.x;y/

�o
D

n�
x;

2

i
@x‰.x;y/Iy;

2

i
@y‰.x;y/

�o
; (3-34)

and (3-33) means that

1

i
�.t1; �ˆ1

t1/C
1

i
�.t2; �ˆ�

2
t2/� 0 for all .t1; t2/ 2ƒ2 Re‰: (3-35)

Here, we shall relate the involutions �ˆ�
2

and �ˆ2
. From (2-4) let us recall that �ˆ2

is given by

�ˆ2
W

�
y;

2

i
@y‰2.x; Ny/

�
7!

�
x;

2

i
@x‰2.x; Ny/

�
: (3-36)
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We also know that the antilinear involution � , given in (3-16), maps ƒˆ2
bijectively onto ƒˆ�

2
, and since

�ˆ2
, �ˆ�

2
are the unique antilinear maps equal to the identity on ƒˆ2

and ƒˆ�
2

respectively, it follows that

�ˆ�
2
D ��ˆ2

�: (3-37)

From (3-19), let us recall that
1

i
�.� t; �s/D

1

i
�.t; s/;

so using (3-37), we find that the second term in (3-35) is equal to

1

i
�.t2; ��ˆ2

� t2/D
1

i
�.� t2; �ˆ2

� t2/D
1

i
�.� t2; �ˆ2

� t2/D�
1

i
�.�ˆ2

� t2; � t2/;

where we also used the fact that .1= i/�.t; �ˆ2
t/ is real. Hence (3-33) is equivalent, via (3-35), to

1

i
�.t1; �ˆ1

t1/�
1

i
�.�ˆ2

� t2; � t2/� 0 for all .t1; t2/ 2ƒ2 Re‰: (3-38)

From (3-36), we get

�ˆ2
� W

�
Ny;�

2

i
@y‰2.x; Ny/

�
7!

�
x;

2

i
@x‰2.x; Ny/

�
I

i.e.,

�ˆ2
� W

�
�;

2

i
@�‰2.y; �/

�
7!

�
y;

2

i
@y‰2.y; �/

�
; (3-39)

where we changed the notation slightly for convenience.
Write

ƒ2 Re‰ 3 .t1; t2/D
�
x;

2

i
@x‰.x; �/I �;

2

i
@�‰.x; �/

�
;

and put t3 D �ˆ2
� t2, so that by (3-39)

t3 D
�
y;

2

i
@y‰2.y; �/

�
;

where �
�;

2

i
@�‰.x; �/

�
D

�
�;

2

i
@�‰2.y; �/

�
:

Comparing with (3-29), we see that t1 D �.t3/. Since � t2 D �2
ˆ2
� t2 D �ˆ2

t3, we see that (3-38) is
equivalent to

1

i
�.t1; �ˆ1

t1/�
1

i
�.t3; �ˆ2

t3/� 0; when t1 D �.t3/; (3-40)

which is precisely (3-31) up to a change of notation. This completes the proof of the equivalence (i),(ii)
and of the proposition. �

Combining Propositions 3.1 and 3.2, we see that the proof of the sufficiency part of Theorem 1.1 is
now complete.

Remark. Let � W C2n! C2n be a complex linear canonical transformation such that (3-1) holds, where
ˆ2, ˆ are strictly plurisubharmonic. It follows from (3-23) that the holomorphic quadratic form ‰.x;y/
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depends only on � and on the weights ˆ2, ˆ, but not on the choice of a nondegenerate phase function
'.x;y; �/, .x;y; �/ 2 Cn

x �Cn
y �CN

�
such that

ƒ0' D Graph.�/;

where
ƒ0' D f.x; '

0
x.x;y; �/Iy;�'

0
y.x;y; �// W '

0
� .x;y; �/D 0g:

It follows that if  .x;y; w/, .x;y; w/ 2 Cn
x �Cn

y �CN 0

w , is a second nondegenerate phase function such
that

ƒ0' Dƒ
0
 D Graph.�/;

then both ' and  give rise to the same Fourier integral operators, realized as bounded linear maps:
Hˆ2

.Cn/!Hˆ.C
n/.

We shall finish this section by making some remarks concerning metaplectic Fourier integral operators
in the complex domain, associated to canonical transformations that are strictly positive relative to
.ƒˆ1

; ƒˆ2
/. Let

� W C2n
! C2n (3-41)

be a complex linear canonical transformation which is strictly positive relative to .ƒˆ1
; ƒˆ2

/. According
to Theorem 1.1, we then have

�.ƒˆ2
/Dƒˆ; (3-42)

where ˆ is a strictly plurisubharmonic quadratic form on Cn such that

ˆ1.x/�ˆ.x/� jxj
2; x 2 Cn: (3-43)

Let

T u.x/D

“
ei�.x;y;�/au.y/ dy d�; a 2 C;

be a Fourier integral operator associated to �. As discussed above, it follows from [Caliceti et al. 2012;
Sjöstrand 1982] that the operator T can be realized by means of a suitable good contour and we then
obtain a bounded operator

T WHˆ2
.Cn/!Hˆ.C

n/: (3-44)

It follows from (3-43) that the inclusion map Hˆ.C
n/! Hˆ1

.C/ is compact, and the operator T W

Hˆ2
.Cn/!Hˆ1

.Cn/ is therefore compact. The following sharpening is essentially well known; see
[Aleman and Viola 2018].

Proposition 3.3. The operator
T WHˆ2

.Cn/!Hˆ1
.Cn/

is of trace class, with the singular values sj .T / satisfying

sj .T /DO.j�1/: (3-45)
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Proof. Let q be a holomorphic quadratic form on C2n such that its restriction toƒˆ1
is real positive definite.

Let us introduce the Weyl quantization of q, the operator Q D qw.x;Dx/. The quadratic differential
operator Q is self-adjoint on Hˆ1

.Cn/ with discrete spectrum, and let us consider the metaplectic Fourier
integral operator etQ, 0� t � t0� 1, acting on the space Hˆ.C

n/. Using some well-known arguments,
explained in detail in [Hérau et al. 2005; Hitrik and Pravda-Starov 2009; Hitrik et al. 2018], we see that,
for t 2 Œ0; t0� with t0 > 0 small enough, the operator etQ is bounded,

etQ
WHˆ.C

n/!Hˆt
.Cn/; (3-46)

where ˆt is a strictly plurisubharmonic quadratic form on Cn, depending smoothly on t � 0 small enough,
such that

ˆt .x/Dˆ.x/CO.t/jxj2: (3-47)

Combining this observation with (3-43) we conclude that there exists ı > 0 small enough such that the
operator

eıQT WHˆ2
.Cn/!Hˆ1

.Cn/ (3-48)

is bounded. Writing
T D e�ıQeıQT; (3-49)

and applying the Ky Fan inequalities, we get

sj .T /� sj .e
�ıQ/keıQT kL.Hˆ2

;Hˆ1
/ DO.j�1/:

Here we have also used the fact that the singular values of the compact positive self-adjoint operator
e�ıQ on Hˆ1

.Cn/ satisfy
sj .e

�ıQ/DO.j�1/:

It follows that T is of trace class and the proof of the proposition is complete. �

4. Applications to Toeplitz operators

The purpose of this section is to apply the point of view of Fourier integral operators in the complex
domain, developed in the previous sections, to the study of Toeplitz operators in the Bargmann space,
establishing Theorem 1.2.

Let ˆ0 be a strictly plurisubharmonic quadratic form on Cn and let p W Cn ! C be measurable.
Associated to p is the Toeplitz operator

Top.p/D…ˆ0
ıp ı…ˆ0

WHˆ0
.Cn/!Hˆ0

.Cn/: (4-1)
Here

…ˆ0
WL2.Cn; e�2ˆ0L.dx//!Hˆ0

.Cn/

is the orthogonal projection. We shall always assume that when equipped with the natural domain

D.Top.p//D fu 2Hˆ0
.Cn/ W pu 2L2.Cn; e�2ˆ0L.dx//g; (4-2)

the operator Top.p/ becomes densely defined.
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For future reference, let us recall the link between the Toeplitz and Weyl quantizations on Cn. Let
p 2L1.Cn/, say. Then we have

Top.p/D aw.x;Dx/; (4-3)

where a 2 C1.ƒˆ0
/ is given by

a

�
x;

2

i

@ˆ0

@x
.x/

�
D
�
exp

�
1
4
.ˆ000;x Nx/

�1@x � @ Nx
�
p
�
.x/; x 2 Cn: (4-4)

See [Guillemin 1984; Sjöstrand 1996]. Here �.ˆ00
0;x Nx

/�1@x � @ Nx is a constant coefficient second-order
differential operator on Cn whose symbol is the positive definite quadratic form

1
4
.ˆ000;x Nx/

�1 N� � � > 0; 0¤ � 2 Cn
' R2n;

and therefore the operator in (4-4) can be regarded as the forward heat flow acting on p.
In this section we shall be concerned with the question of when an operator of the form Top.p/ is

bounded,
Top.p/ 2 L.Hˆ0

.Cn/;Hˆ0
.Cn//;

and following [Berger and Coburn 1994], in doing so we shall only consider Toeplitz symbols of the
form

p D e2q; (4-5)

where q is a complex-valued quadratic form on Cn. Let us first proceed to give an explicit criterion,
guaranteeing that when equipped with the domain (4-2), the operator Top.e2q/ is densely defined.
Recalling the decomposition (2-8) and considering the unitary map

Hˆ0
.Cn/ 3 u 7! ue�f 2Hˆherm.C

n/; f .x/Dˆ000;xxx �x;

we may observe that the space ef P.Cn/D fef p W p 2 P.Cn/g is dense in Hˆ0
.Cn/. Here P.Cn/ is the

space of holomorphic polynomials on Cn. It follows that

ef P.Cn/� D.Top.e2q//;

so that Top.e2q/ is densely defined, provided that

2 Re q.x/ < ˆherm.x/; (4-6)

in the sense of quadratic forms on Cn.

Recalling (3-8), we may write

Top.e2q/u.x/D C

Z
e2.‰0.x; Ny/�ˆ0.y//e2q.y; Ny/u.y/ dy d Ny; u 2 D.Top.e2q//: (4-7)

Here C > 0 and ‰0 is the polarization of ˆ0. Similarly to (3-27), we get

Top.e2q/u.x/D C

“
�

e2.‰0.x;�/�‰0.y;�/Cq.y;�//u.y/ dy d�; (4-8)
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where � is the contour in C2n, given by � D Ny. Here the holomorphic quadratic form

F.x;y; �/D
2

i
.‰0.x; �/�‰0.y; �/C q.y; �// (4-9)

is a nondegenerate phase function in the sense of Hörmander, in view of the fact that det‰00
0;x�
¤ 0,

and therefore the operator Top.e2q/ in (4-8) can be viewed as a metaplectic Fourier integral operator
associated to a suitable canonical relation � C2n �C2n. We have the formal factorization

Top.e2q/DAB;

where

Av.x/D

Z
e2‰0.x;�/v.�/ d�; Bu.�/D

Z
e�2z‰0.y;�/u.y/ dy; (4-10)

and where we have written z‰0.y; �/D‰0.y; �/� q.y; �/. Here the operator A, formally, is an elliptic
Fourier integral operator associated to the canonical transformation�

�;�
2

i
@�‰0.x; �/

�
7!

�
x;

2

i
@x‰0.x; �/

�
:

It follows that the canonical relation associated to Top.e2q/ is the graph of a canonical transformation if
and only if this is the case for the Fourier integral operator B. We conclude that the operator Top.e2q/ in
(4-8) is associated to a canonical transformation precisely when

@y@� z‰0 ¤ 0: (4-11)

The condition (4-11) is equivalent to the assumption (1-8) in Theorem 1.2. The canonical transformation
is then given by

� W .y;�@yF.x;y; �// 7! .x; @xF.x;y; �//; @�F.x;y; �/D 0: (4-12)

Example. In the following discussion, we shall revisit the family of examples discussed in Section 6 of
[Berger and Coburn 1994] and show how the point of view of Fourier integral operators in the complex
domain, developed above, allows one to recover the main findings of Section 6 of that paper, obtained
there by means of a direct computation.

Let ˆ0.x/D
1

2
jxj2 and q D

1

2
�jyj2, � 2 C with Re� < 1

2
. Here the restriction on Re� implies that

(4-6) holds, so that the operator Top.e2q/ is densely defined in Hˆ0
.Cn/. We have

‰0.x;y/D
1
2
x �y;

and the phase function F in (4-9) is given by

F.x;y; �/D
2

i

�
1

2
x � � �

�
1��

2

�
y � �

�
: (4-13)

In particular, the condition (4-11) is satisfied and we may then compute the canonical transformation �
associated to the corresponding Fourier integral operator Top.e2q/ in (4-8).
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The critical set CF of the phase F is given by @�F D 0() x D .1� �/y, and the corresponding
canonical transformation � is of the form

� W .y;�@yF.x;y; �// 7! .x; @xF.x;y; �//; .x;y; �/ 2 CF : (4-14)

It follows that � is given by

� W .y; �/ 7!
�
.1��/y;

�

1��

�
: (4-15)

We shall now determine when the canonical transformation � is positive relative to ƒˆ0
, which can be

done by a direct computation: it follows from (2-4) that the involution �ˆ0
is given by

�ˆ0
W .y; �/ 7!

�
1

i
N�;

1

i
Ny

�
; (4-16)

and therefore, we may compute,

1

i
�.�.y; �/; �ˆ0

�.y; �//D
1

i
�

��
.1��/y;

�

1��

�
;

�
1

i

N�

1� N�
;
1

i
.1� N�/ Ny

��
D j1��j2jyj2�

j�j2

j1��j2
: (4-17)

Similarly, we have
1

i
�..y; �/; �ˆ0

.y; �//D jyj2� j�j2: (4-18)

Combining (4-17), (4-18) we see that the � is positive relative to ƒˆ0
if and only if

j1��j � 1: (4-19)

This condition occurs in [Berger and Coburn 1994, pp. 581–582] (with the inessential difference that in
the discussion in that paper one considers ˆ0.x/D

1
4
jxj2), where it is verified that the operator Top.e2q/

is in L.Hˆ0
.Cn/;Hˆ0

.Cn// precisely when (4-19) holds.
In the case when the strict inequality holds in (4-19), the canonical transformation � in (4-15) is strictly

positive relative to ƒˆ0
and it follows from Proposition 3.3 that the Toeplitz operator Top.e2q/ is of trace

class on Hˆ0
.Cn/.

We shall now proceed to discuss the “boundary” case when

j1��j D 1: (4-20)

In this case, using (4-15) we immediately see that �.ƒˆ0
/Dƒˆ0

, and therefore we conclude, in view of
[Caliceti et al. 2012; Sjöstrand 1982], that the operator

Top.e2q/ WHˆ0
.Cn/!Hˆ0

.Cn/ (4-21)

is bounded, with a bounded two-sided inverse.
We claim next that the operator in (4-21) is in fact unitary when (4-20) holds, and when verifying the

unitarity, it will be convenient to pass to the Weyl quantization, computing the Weyl symbol of Top.e2q/.
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It follows from (4-4) that

a

�
x;

2

i

@ˆ0

@x
.x/

�
D

�
exp

�
�

8

�
e2q

�
.x/D

�
2

�

�n Z
Cn

e�2jx�yj2e�jyj
2

L.dy/: (4-22)

Here � is the Laplacian on Cn ' R2n. Computing the Gaussian integral in (4-22) by the exact version of
stationary phase, we get, see also [Berger and Coburn 1994],

a

�
x;

2

i

@ˆ0

@x
.x/

�
D

�
2

2��

�n

exp
�

2�

2��
jxj2

�
: (4-23)

Here we may notice that

Re
�

2�

2��

�
D 0;

when (4-20) holds, reflecting the fact that the associated canonical transformation in (4-15) is “real” in
this case. We conclude that the Weyl symbol of the Toeplitz operator Top.e2q/ is given by

a.x; �/D
�

2

2��

�n
exp.iF.x; �//; F.x; �/D

2�

2��
x � �; (4-24)

so that

Top.e2q/D
�

2

2��

�n
.exp.iF //w: (4-25)

We have .Im F /jƒˆ0
D 0 and an application of Proposition 5.11 of [Hörmander 1995] together with the

metaplectic invariance of the Weyl quantization allows us to conclude that the operatorp
det.I �F=2/.exp.iF //w WHˆ0

.Cn/!Hˆ0
.Cn/ (4-26)

is unitary. Here F is the Hamilton map of F , i.e., the matrix of the (linear) Hamilton field HF , and it
remains therefore to check thatp

det.I �F=2/D
�

2

2��

�n
ei� ; � 2 R: (4-27)

To this end, we compute using (4-24),

F=2D
�

2��

�
1 0

0 �1

�
; I �F=2D

2

2��

�
1�� 0

0 1

�
;

and (4-27) follows, thanks to (4-20). We conclude therefore that the Toeplitz operator Top.e2q/ is unitary
on Hˆ0

.Cn/, when Re� < 1
2

and (4-20) holds. The unitarity property has also been observed in [Berger
and Coburn 1994].

Remark. In the case when Re� < 1
2

, j1� �j > 1, we observed that the operator Top.e2q/ is of trace
class on Hˆ0

.Cn/, and we get, using (4-24) and the metaplectic invariance of the Weyl quantization,

tr Top.e2q/D
1

.2�/n

“
ƒˆ0

a
.� jƒˆ0

/n

n!
;

where a is given in (4-24).
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We are now ready to discuss the proof of Theorem 1.2. It follows from Theorem 1.1 and the discussion
in this section that it suffices to check that the canonical transformation (4-12) associated to the operator
Top.e2q/ is positive relative to ƒˆ0

. To this end, let us consider the Weyl symbol of Top.e2q/, given by
(4-4),

a.x; �/D
�
exp

�
1
4
.ˆ000;x Nx/

�1@x � @ Nx
�
e2q

�
.x/; .x; �/ 2ƒˆ0

: (4-28)

A simple computation of the inverse Fourier transform of a real Gaussian shows that

a.x; �/D Cˆ0

Z
Cn

exp.�4ˆherm.x�y//e2q.y/L.dy/; Cˆ0
¤ 0: (4-29)

Here the convergence of the integral in (4-29) is guaranteed by (4-6). In view of the exact version of
stationary phase, it is therefore clear that

a.x; �/D C exp.iF.x; �//; .x; �/ 2ƒˆ0
; (4-30)

for some constant C ¤ 0, where F is a holomorphic quadratic form on C2n. Proposition B.1 shows that
the positivity of � in (4-12) relative to ƒˆ0

is equivalent to the fact that the Weyl symbol in (4-30) is
such that Im F jƒˆ0

� 0() exp.iF / 2L1.ƒˆ0
/. The proof of Theorem 1.2 is complete.

Appendix A: Schwartz kernel theorem in the Hˆ-setting

In this appendix we shall make some elementary remarks concerning integral representations for linear
continuous maps between weighted spaces of holomorphic functions. Such observations are essentially
well known; see for instance [Peetre 1990].

Let �j � Cnj be open, j D 1; 2, and let ĵ 2 C.�j IR/. We introduce the weighted spaces

H
ĵ
.�j /D Hol.�j /\L2.�j ; e

�2 ĵ L.dyj //; j D 1; 2; (A-1)

where L.dyj/ is the Lebesgue measure on Cnj. When viewed as closed subspaces of L2.�j ; e
�2 ĵL.dyj//,

the spaces H
ĵ
.�j / are separable complex Hilbert spaces and the natural embeddings H

ĵ
.�j /!

Hol.�j / are continuous. Here the space Hol.�j / is equipped with its natural Fréchet space topology of
locally uniform convergence. Let

T WHˆ1
.�1/!Hˆ2

.�2/ (A-2)

be a linear continuous map. Let us also write �1 D fz 2 Cn1 W Nz 2�1g.

Theorem A.1. There exists a unique function K.x; z/ 2 Hol.�2 ��1/ such that

�1 3 y 7!K.x; Ny/ 2Hˆ1
.�1/ (A-3)

for each x 2�2, and

Tf .x/D

Z
�1

K.x; Ny/f .y/e�2ˆ1.y/L.dy/; f 2Hˆ1
.�1/: (A-4)

We also have
�2 3 x 7!K.x; z/ 2Hˆ2

.�2/ (A-5)

for each z 2�1.
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When proving Theorem A.1, we observe that it follows from the remarks above that for each x 2�2,
the linear form

Hˆ1
.�1/ 3 f 7! .Tf /.x/ 2 C (A-6)

is continuous, and there exists therefore a unique element kx 2Hˆ1
.�1/ such that for all f 2Hˆ1

.�1/

we have

Tf .x/D .f; kx/ˆ1
; x 2�2: (A-7)

Here and in what follows . � ; � /
ĵ

stands for the scalar product in the space H
ĵ
.�j /, j D 1; 2.

Letting .ej / be an orthonormal basis for Hˆ1
.�1/, we may write with convergence in Hˆ1

.�1/, for
each x 2�2 fixed,

kx D

1X
jD1

.kx; ej /ˆ1
ej D

1X
jD1

Tej .x/ej : (A-8)

By Parseval’s formula we get

kkxk
2
ˆ1
D

1X
jD1

jTej .x/j
2; x 2�2: (A-9)

Here we know that

kkxkˆ1
D sup
kf kˆ1

�1

jTf .x/j; (A-10)

and it follows that the function �2 3 x 7! kkxkˆ1
is locally bounded. Let us now make the following

elementary observation: Let �� Cn be open and let fn 2 Hol.�/ be such that the series
1X

nD1

jfn.z/j
2 (A-11)

converges for each z 2�, with the sum being locally integrable in �. Then the series converges locally
uniformly in �. Indeed, let us write

1X
nD1

jfn.z/j
2
DW F.z/ 2L1

loc.�/:

Let K�� be compact and let ! be an open neighborhood of K such that K�! b�. Then by Cauchy’s
integral formula and the Cauchy–Schwarz inequality we have

sup
K

jfnj
2
�OK ;!.1/kfnk

2
L2.!/

:

We get therefore the uniform bound
NX

nD1

sup
K

jfnj
2
�OK ;!.1/kFkL1.!/; N D 1; 2; : : : ;

implying the locally uniform convergence of (A-11).
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It follows that (A-9) holds with locally uniform convergence in x 2�2, and in particular the function
�2 3 x 7! kkxk

2
ˆ1

is continuous plurisubharmonic. We may therefore conclude that the series in (A-8)
converges locally uniformly in �1 ��2. Letting

K.x; z/ WD kx.Nz/D

1X
jD1

Tej .x/ej .Nz/; (A-12)

we conclude that K 2 Hol.�2 ��1/ is such that (A-3) and (A-4) hold, and these properties characterize
the kernel K uniquely.

When verifying (A-5), we let Qkx 2Hˆ2
.�2/ be the reproducing kernel for Hˆ2

.�2/. We may then
write, when f 2Hˆ1

.�1/, x 2�2,

Tf .x/D .Tf; Qkx/ˆ2
D .f;T � Qkx/ˆ1

; (A-13)

and therefore,

kx D T � Qkx : (A-14)

Here

T � WHˆ2
.�2/!Hˆ1

.�1/

is the adjoint of T. Letting .fj / be an orthonormal basis for Hˆ2
.�2/ and recalling that

Qkx D

1X
jD1

fj .x/fj ; (A-15)

we get

kx.y/D

1X
jD1

fj .x/T
�fj .y/; (A-16)

Therefore,

K.x; Ny/D

1X
jD1

fj .x/T �fj .y/:

and we see that (A-5) follows. We also get

kK. � ; Ny/k2ˆ2
D

1X
jD1

jT �fj .y/j
2: (A-17)

Remark. It follows from (A-9) that T 2 L.Hˆ1
.�1/;Hˆ2

.�2// is of Hilbert–Schmidt class precisely
when “

�1��2

jK.x; Ny/j2e�2.ˆ1.y/Cˆ2.x//L.dy/L.dx/ <1:

Remark. An alternative proof of Theorem A.1 can be obtained by applying the Schwartz kernel theorem
directly to the linear continuous map

…ˆ2
T…ˆ1

WL2.�1; e
�2ˆ1L.dy1//!L2.�2; e

�2ˆ2L.dy2//:



POSITIVITY, COMPLEX FIOS, AND TOEPLITZ OPERATORS 353

Here
…

ĵ
WL2.�j ; e

�2 ĵ L.dyj //!H
ĵ
.�j /

is the orthogonal projection. Writing the Schwartz kernel of …ˆ2
T…ˆ1

in the form K.x; Ny/e�2ˆ1.y/,
we see that K should satisfy @ NxK.x; Ny/ D 0. Now the distribution kernel of the adjoint …ˆ1

T �…ˆ2

is given by K.y; Nx/e�2ˆ2.y/, and it follows that @ Nx.K.y; Nx// D 0. We get @x.K.y; Nx// D 0, so that
.@ NyK/.y; Nx/D 0() @ NyK.x;y/D 0. We conclude that K.x;y/ is holomorphic in .x;y/.

Appendix B. Positivity and Weyl quantization

The purpose of this appendix is to characterize the boundedness of the Weyl quantization of a symbol
of the form exp.iF.x; �//, where F a complex quadratic form, in the Hˆ-setting. See also [Hörmander
1995] for a related discussion in the context of L2-boundedness.

Let F DF.x; �/ be a complex-valued holomorphic quadratic form on C2n and let us consider formally
the Weyl quantization of eiF.x;�/,

Au.x/D Opw.eiF /u.x/D
1

.2�/n

“
ei..x�y/��CF..xCy/=2;�//u.y/ dy d�: (B-1)

The holomorphic quadratic form .x�y/ � � CF
�

1
2
.xCy/; �

�
is a nondegenerate phase function in the

sense of Hörmander and generates a canonical relation

� W .y; �/ 7! .x; �/; (B-2)

given by

x D
xCy

2
�

1
2
F 0�

�
xCy

2
; �

�
; � D � C 1

2
F 0x

�
xCy

2
; �

�
;

y D
xCy

2
C

1
2
F 0�

�
xCy

2
; �

�
; �D � � 1

2
F 0x

�
xCy

2
; �

�
:

(B-3)

The graph is parametrized by �D
�

1
2
.xCy/; �

�
2 C2n and (B-2), (B-3) take the form

� W �C 1
2
HF .�/ 7! �� 1

2
HF .�/; (B-4)

where HF .�/D .F
0
�
.�/;�F 0x.�// is the Hamilton field of F at �.

We shall now give a criterion for when � in (B-4) is a canonical transformation. Recall that HF .�/DF�,
where

F D

 
F 00
�x

F 00
��

�F 00xx �F 00
x�

!
is the fundamental matrix of F (usually appearing as the linearization of a Hamilton vector field, which
in our case is already linear). We have

F D JF 00; J D

�
0 1

�1 0

�
; F 00 D

 
F 00xx F 00

x�

F 00
�x

F 00
��

!
;
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and we notice that J 2 D�1, J> D�J . Then (B-4) is the relation

.1CF=2/� 7! .1�F=2/�: (B-5)

Now F is antisymmetric with respect to the bilinear form �.�; �/D J� ��; hence 1�F=2 is bijective if
and only if its transpose 1CF=2 with respect to � is bijective. We conclude that the following three
statements are equivalent:

(i) � is a canonical transformation.

(ii) 1�F=2 is bijective.

(iii) 1CF=2 is bijective.

In what follows, we shall assume that (i)–(iii) hold.

Letˆ0 be a strictly plurisubharmonic quadratic form on Cn and let �ˆ0
WC2n!C2n be the corresponding

antilinear involution, i.e., the unique antilinear map which is equal to the identity on ƒˆ0
. We shall now

proceed to characterize the positivity of the canonical transformation � in (B-4) relative to ƒˆ0
. Let

Œ�; ��D 1
2
b.�; �/; (B-6)

where b.�; �/ has been defined in (2-5). It is a Hermitian form and � is positive relative to ƒˆ0
precisely

when
Œ�; ��� Œ�; �� for all �; � with � D �.�/: (B-7)

By (B-4) this is equivalent to�
�� 1

2
HF .�/; ��

1
2
HF .�/

�
�
�
�C 1

2
HF .�/; �C

1
2
HF .�/

�
; � 2 C2n;

or equivalently,
ReŒHF .�/; ��� 0; � 2 C2n: (B-8)

To simplify the following discussion, we shall make use of the invariance (exact Egorov theorem) under
conjugation of A in (B-1) with a unitary metaplectic Fourier integral operator U W L2.Rn/!Hˆ0

.Cn/

with the associated canonical transformation �U , mapping R2n onto ƒˆ0
. The operator B D U�1AU

is the Weyl quantization of eiG, where G D F ı �U . Also �ˆ0
D �U C��1

U
, where C is the involution

associated to R2n, which is just the map of ordinary complex conjugation. By abuse of notation we write
F also for the pull back F ı �U and we continue the discussion in the case when ƒˆ0

has been replaced
with R2n and �ˆ0

with C, C.�/D N�. In this setting, (B-8) becomes

Im �.F 0�.�/;�F 0x.�/I Nx;
N�/� 0 for all �D .x; �/ 2 C2n

I

i.e.,
Im.F 0x.x; �/ � NxCF 0�.x; �/ �

N�/� 0; .x; �/ 2 C2n;

or even more simply,
Im.F 00��� � N�/� 0:
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Writing �D �C i�, �; � 2 R2n, we see that the last inequality is equivalent to

Im F 00� ��C Im F 00� � � � 0I

i.e.,
Im F 00 � 0I

i.e.,
Im F � 0 on R2n:

By the metaplectic invariance it follows that the positivity condition (B-7) is equivalent to

Im F � 0 on ƒˆ0
; (B-9)

now with the original F .

Remark. The condition (B-9) is quite natural since we know that for ordinary symbols instead of eiF,
the natural contour of integration in (B-1) should be

� D
2

i
@xˆ

�
xCy

2

�
I

see [Sjöstrand 1996; Hitrik and Sjöstrand 2018].

We summarize the discussion in this section in the following result.

Proposition B.1. Let F be a holomorphic quadratic form on C2n such that the fundamental matrix of
F does not have the eigenvalues˙2. Let ˆ0 be a strictly plurisubharmonic quadratic form on Cn. The
canonical transformation associated to the Fourier integral operator Opw.eiF / is positive relative toƒˆ0

precisely when
Im F jƒˆ0

� 0: (B-10)

In particular, if (B-10) holds, then the operator

Opw.eiF / WHˆ0
.Cn/!Hˆ0

.Cn/

is bounded.
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MICROLOCAL ANALYSIS OF FORCED WAVES

SEMYON DYATLOV AND MACIEJ ZWORSKI

Dedicated to Richard Melrose on the occasion of his 70th birthday

We use radial estimates for pseudodifferential operators to describe long-time evolution of solutions to
iut �PuD f , where P is a self-adjoint zeroth-order pseudodifferential operator satisfying hyperbolic
dynamical assumptions and where f is smooth. This is motivated by recent results of Colin de Verdière
and Saint-Raymond (2019) concerning a microlocal model of internal waves in stratified fluids.

1. Introduction

Colin de Verdière and Saint-Raymond [2019] recently found an interesting connection between modeling
of internal waves in stratified fluids and spectral theory of zeroth-order pseudodifferential operators on
compact manifolds. In other problems of fluid mechanics, relevance of such operators has been known for
a long time, for instance in [Ralston 1973]. We refer to [Colin de Verdière and Saint-Raymond 2019] for
pointers to current physics literature on internal waves and for numerical and experimental illustrations.

The purpose of this note is to show how the main result of [Colin de Verdière and Saint-Raymond 2019]
(see also [Colin de Verdière 2018]) follows from the now standard radial estimates for pseudodifferential
operators. In particular, we avoid the use of Mourre theory, normal forms and Fourier integral operators
and do not assume that the subprincipal symbols vanish. We also relax some geometric assumptions. The
conclusions are formulated in terms of Lagrangian regularity in the sense of [Hörmander 1985a, §25.1].
We illustrate the results with numerical examples. There are many possibilities for refinements but we
restrict ourselves to applying off-the-shelf results at this stage.

Radial estimates were introduced by Melrose [1994] for the study of asymptotically Euclidean scattering
and have been developed further in various settings. We only mention some of the more relevant ones:
scattering by zeroth-order potentials (very close in spirit to the problems considered in [Colin de Verdière
and Saint-Raymond 2019]) by Hassell, Melrose, and Vasy [Hassell et al. 2004], asymptotically hyperbolic
scattering by Vasy [2013] (see also [Dyatlov and Zworski 2016, Chapter 5] and [Zworski 2016]) and by
Datchev and Dyatlov [2013], in general relativity by Vasy [2013], Dyatlov [2012] and Hintz and Vasy
[2018], and in hyperbolic dynamics by Dyatlov and Zworski [2016]. Particularly useful here is [Haber
and Vasy 2015], which generalized some of the results of [Hassell et al. 2004]. A very general version of
radial estimates is presented “textbook style” in Section E.4 of [Dyatlov and Zworski 2019], henceforth
abbreviated [DZ19].

MSC2010: 35A27.
Keywords: forced waves, spectral theory, pseudodifferential operators, radial estimates.
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1A. The main result. Motivated by internal waves in linearized fluids Colin de Verdière and Saint-
Raymond [2019] considered long-time behavior of solutions to

.i@t �P /u.t/D f; u.0/D 0; f 2 C1.M/;

P 2‰0.M/; P D P �;
(1)

where M is a closed surface and P satisfies dynamical assumptions presented in Section 1B. By changing
P to P �!0 we can change f to the more physically relevant oscillatory forcing term, e�i!0tf .

Since the solution u.t/ is given by

u.t/D�i

Z t

0

e�isPf ds D P�1.e�itP � 1/f (2)

(where the operator P�1.e�itP � 1/ is well-defined for all t using the spectral theorem), the properties
of the spectrum of P play a crucial role in the description of the long-time behavior of u.t/. Referring
to Section 1B for the precise assumptions we state:

Theorem. Suppose that the operator P satisfies assumptions (5), (8) below and that 0 … Specpp.P /.
Then, for any f 2 C1.M/, the solution to (1) satisfies

u.t/D u1C b.t/C �.t/; kb.t/kL2 � C; k�.t/kH�1=2� ! 0; t !1; (3)

where (denoting by H�
1
2
� the intersection of the spaces H�

1
2
�� over � > 0)

u1 2 I
0.M IƒC0 /�H

� 1
2
�.M/ (4)

and I 0.M IƒC0 / is the space of Lagrangian distributions of order 0 (see Section 4A) associated to the
attracting Lagrangian ƒC0 defined in (9).

The proof gives other results obtained in [Colin de Verdière and Saint-Raymond 2019]. In particular,
we see that in the neighborhood of 0 the spectrum of P is absolutely continuous except for finitely many
eigenvalues with smooth eigenfunctions — see Section 3B.

In the case of general Morse–Smale flows (allowing for fixed points), Colin de Verdière [2018,
Theorem 4.3] used a hybrid of Mourre estimates (in particular their finer version given by Jensen, Mourre,
and Perry [Jensen et al. 1984]) and of the radial estimates [DZ19, §E.4] to obtain a version of (3) with
an estimate on WF.u1/. At this stage the purely microlocal approach of this paper would only give
k�.t/kH�3=2� ! 0.

1B. Assumptions on P . We assume that M is a compact surface without boundary and P 2‰0.M/ is a
zeroth-order pseudodifferential operator with principal symbol p2S0.T �M n0IR/which is homogeneous
(of order 0) and has 0 as a regular value. We also assume that for some smooth density, dm.x/, on M,
P is self-adjoint:

P 2‰0.M/; P D P � on L2.M; dm.x//;

p WD �.P /; p.x; t�/D p.x; �/; t > 0; dpjp�1.0/ ¤ 0:
(5)
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The homogeneity assumption on p can be removed as the results of [DZ19, §E.4] and [Dyatlov and
Zworski 2017] we use do not require it. That would however complicate the statement of the dynamical
assumptions.

We use the notation of [DZ19, §E.1.3], denoting by T �M the fiber-radially compactified cotangent
bundle. Define the quotient map for the RC action, .x; �/ 7! .x; t�/, t > 0,

� W T �M n 0! @T �M: (6)

Denote by j�j the norm of a covector � 2 T �xM with respect to some fixed Riemannian metric on M. The
rescaled Hamiltonian vector field j�jHp commutes with the RC action and

X WD ��.j�jHp/ is tangent to † WD �.p�1.0//: (7)

Note that † is an orientable surface since it is defined by the equation p D 0 in the orientable 3-manifold
@T �M.

We now recall the dynamical assumption made in [Colin de Verdière and Saint-Raymond 2019]:

The flow of X on † is a Morse–Smale flow with no fixed points. (8)

For the reader’s convenience we recall the definition of Morse–Smale flows generated by X on a surface†
(see [Nikolaev and Zhuzhoma 1999, Definition 5.1.1]):

(1) X has a finite number of fixed points, all of which are hyperbolic.

(2) X has a finite number of hyperbolic limit cycles.

(3) There are no separatrix connections between saddle fixed points.

(4) Every trajectory different from (1) and (2) has unique trajectories (1) or (2) as its ˛, !-limit sets.

As stressed in [Colin de Verdière and Saint-Raymond 2019], Morse–Smale flows enjoy stability and
genericity properties — see [Nikolaev and Zhuzhoma 1999, Theorem 5.1.1]. At this stage, following
[Colin de Verdière and Saint-Raymond 2019], we make the strong assumption that there are no fixed
points. By the Poincaré–Hopf theorem, that forces † to be a union of tori. Under the assumption (8), the
flow of X on † has an attractor LC0 , which is a union of closed attracting curves. We define the following
conic Lagrangian submanifold of T �M n 0 (see [Hörmander 1985a, §21.2] and Lemma 2.1):

ƒC0 WD �
�1.LC0 /: (9)

1C. Examples. We illustrate the result with two simple examples on M WD T2 D S1 � S1, where
S1 D R=.2�Z/. Define D WD .1=i/@. Consider first

P WD hDi�1Dx2 � 2 cos x1; p D j�j�1�2� 2 cos x1;

j�jHp D�
�1�2

j�j2
@x1 C

�21
j�j2

@x2 � 2.sin x1/j�j@�1 ;

ƒC0 D
˚�
˙
�
2
; x2I �1; 0

�
W x2 2 S1; ˙�1 < 0

	
:

(10)
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x1

x2

x 1
=
−
π
/2

x 1
=
π
/2

T2
x1,x2

Σ

Figure 1. On the left: the plot of the real part of u.50/ for P DhDi�1Dx2C2 cos x1 on
T2 and f given by a smooth bump function centered at

�
�
�
2
; 0
�
. We see the singularity

formation on the line x1 D��2 . On the right: † WD �.p�1.0//� @T �T2. The attracting
Lagrangian, ƒC0 , comes from the highlighted circles. See Section 1C for a discussion of
the examples shown in the figures.

x1

x2

x 1
=
−
π
/2

x 1
=
π
/2

T2
x1,x2

Σ

Figure 2. On the left: the plot of the real part of u.50/ for P given by (11) and f
given by a smooth bump function centered at

�
�
�
2
; 0
�
. We see the singularity formation

on the line x1 D ��2 and the slower formation of singularity at x1 D �
2

. On the right:
† WD �.p�1.0//. The attracting Lagrangian ƒC0 comes from the highlighted circles.

In this case �.p�1.0//, with � given in (6), is a union of two tori which do not cover T2 (and thus does not
satisfy the assumptions of [Colin de Verdière and Saint-Raymond 2019] but is covered by the treatment
here, and in [Colin de Verdière 2018]). See Figure 1 for the plot of <u.t/, t D 50, and for a schematic
visualization of †D �.p�1.0//.
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Our result applies also to the closely related operator

P WD hDi�1Dx2 �
1
2

cos x1; p D j�j�1�2�
1
2

cos x1;

j�jHp D�
�1�2

j�j2
@x1 C

�21
j�j2

@x2 �
1
2

sin x1j�j@�1 :
(11)

The attracting Lagrangians are the same but the energy surface �.p�1.0// consists of two tori covering T2

(and hence satisfying the assumptions of [Colin de Verdière and Saint-Raymond 2019]) — see Figure 2.

2. Geometric structure of attracting Lagrangians

In this section we prove geometric properties of the attracting and repulsive Lagrangians for the flow
et j�jHp where p satisfies (8).

2A. Sink and source structure. Let †.!/ WD �.p�1.!//. If ı > 0 is sufficiently small then stability of
Morse–Smale flows (and the stability of nonvanishing of X ) shows that (8) is satisfied for †.!/, j!j � 2ı.
Let L˙! �†.!/ be the attractive (C) and repulsive (�) hyperbolic cycles for the flow of X on †.!/. We
first establish dynamical properties needed for the application of radial estimates in Section 3:

Lemma 2.1. LC! is a radial sink and L�! a radial source for the Hamiltonian flow of j�j.p � !/ D
j�j�.P �!/ in the sense of [DZ19, Definition E.50]. The conic submanifolds

ƒ˙! WD �
�1.L˙! /� T

�M n 0

are Lagrangian.

Remark. It is not true that L˙! are radial sinks/sources for the Hamiltonian flow of p�! since [DZ19,
Definition E.50] requires convergence of all nearby Hamiltonian trajectories, not just those on the
characteristic set p�1.!/. See Remark 3 following [DZ19, Definition E.50] for details. The singular
behavior of j�j at � D 0 is irrelevant here since we are considering a neighborhood of the fiber infinity.

Proof. We consider the case of LC! as that of L�! is similar. To simplify the formulas below we put
! WD 0. To see that ƒC0 is a Lagrangian submanifold we note that Hp and �@� are tangent to ƒC0
and independent (since X does not vanish on LC0 ). Denoting the symplectic form by � , we have
�.Hp; �@�/D�dp.�@�/D 0; that is, � vanishes on the tangent space to ƒC0 .

We next show that LC0 is a radial sink. For simplicity assume that it consists of a single attractive
closed trajectory of X of period T > 0; in particular eTX D I on LC0 . Define the vector field

Y WDHj�jp;

which is homogeneous of order 0 on T �M n0 and thus extends smoothly to the fiber-radial compactification
T �M n 0; see [DZ19, Proposition E.5]. We have Y D X on @T �M \p�1.0/; thus LC0 � @T

�M is a
closed trajectory of Y of period T.

Fix arbitrary .x0; �0/ 2 LC0 and define the linearized Poincaré map P induced by deTY .x0; �0/ on
the quotient space T.x0;�0/.T

�M/=RY.x0;�0/. The adjoint map P� acts on covectors in T �
.x0;�0/

.T �M/
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which annihilate Y.x0;�0/. To prove that LC0 is a radial sink it suffices to show that the spectral radius
of P is strictly less than 1.

Put � WD j�j�1, which is a boundary-defining function on T �M ; then †D @T �M \p�1.0/ is given
by fp D 0; �D 0g. Since Y DX on † and LC0 is an attractive cycle for X on †, we have

Pjker.dp/\ker.d�/ D c1 for some c1 2 R; jc1j< 1:

Since Y is tangent to @T �M D ��1.0/, we have Y�D f2� for some f2 2 C1.T �M n 0IR/. Recalling
that Y DHj�jp , we compute YpD pHj�jpD�pHp.��1/D f2p. Setting c2 WD f2.x0; �0/ we then have

P�.dp.x0; �0//D c2dp.x0; �0/; P�.d�.x0; �0//D c2d�.x0; �0/:

Thus P has eigenvalues c1; c2; c2. On the other hand, eTY preserves the symplectic density j�^� j, which
has the form ��3d vol for some density d vol on T �M which is smooth up to the boundary. Taking the
limit of this statement at .x0; �0/ we obtain detP D det deTY .x0; �0/D c32 . It follows that c1 D c2 and
thus P has spectral radius jc1j< 1 as needed. �

For future use we define the conic hypersurfaces in T �M n 0

ƒ˙ WD
[
j!j<2ı

ƒ˙! : (12)

2B. Geometry of Lagrangian families. We next establish some facts about families of Lagrangian
submanifolds which do not need the dynamical assumptions (8). Instead we assume that

� p W T �M n 0! R is homogeneous of order 0;

� ƒ� T �M n 0 is a conic hypersurface;

� dpjTƒ ¤ 0 everywhere;

� the Hamiltonian vector field Hp is tangent to ƒ.

Under these assumptions, the sets
ƒ! WDƒ\p

�1.!/

are two-dimensional conic submanifolds of T �M n 0. Moreover, similarly to Lemma 2.1, each ƒ! is
Lagrangian. Indeed, if G is a (local) defining function of ƒ, namely Gjƒ D 0 and dGjƒ ¤ 0, then Hp
being tangent to ƒ implies

fp;Gg D 0 on ƒ: (13)

Thus Hp;HG form a tangent frame on ƒ! and �.Hp;HG/D 0 on ƒ, where � denotes the symplectic
form.

Since �@� is tangent to each ƒ! , for any choice of local defining function G of ƒ we can write

�@� DˆHpC‚HG on ƒ (14)

for some functions ˆ;‚ on ƒ. Since the one-dimensional subbundle RHG � Tƒ is invariantly defined,
we see that ˆ 2 C1.ƒIR/ does not depend on the choice of G.
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The function ˆ is homogeneous of order 1. Indeed, we can choose G to be homogeneous of order 1,
which implies that Œ�@� ;HG �D 0; we also have Œ�@� ;Hp�D �Hp. By taking the commutator of both
sides of (14) with �@� , we see that �@�ˆDˆ. Similarly we see that ‚ is homogeneous of order 0.

On the other hand, taking the commutators of both sides of (14) with Hp and HG and using the
following consequence of (13),

ŒHp;HG �DHfp;Gg 2 RHG on ƒ;

we get the identities

Hpˆ� 1; HGˆ� 0 on ƒ: (15)

The function ˆ is related to the !-derivative of a generating function of ƒ! (see (45)):

Lemma 2.2. Assume that ƒ! is locally given (in some coordinate system on M ) by

ƒ! D f.x; �/W x D @�F.!; �/; � 2 �0g; (16)

where � 7! F.!; �/ is a family of homogeneous functions of order 1 and �0 � R2 n 0 is a cone. Then we
have

@!F.!; �/D�ˆ.@�F.!; �/; �/: (17)

Proof. Let G be a (local) defining function of ƒ. Taking the @�-component of (14) at a point � WD
.@�F.!; �/; �/ 2ƒ we have

� D�ˆ.�/ @xp.�/�‚.�/ @xG.�/: (18)

On the other hand, differentiating in ! the identities

p.@�F.!; �/; �/D !; G.@�F.!; �/; �/D 0

we get

h@xp.�/; @�@!F.!; �/i D 1; h@xG.�/; @�@!F.!; �/i D 0: (19)

Combining (18) and (19) we arrive at

h�; @�@!F.!; �/i D �ˆ.�/D�ˆ.@�F.!; �/; �/;

which implies (17) since the function � 7! @!F.!; �/ is homogeneous of order 1. �

Now we specialize to the Lagrangian families used in this paper. We start with a sign condition on ˆ
which will be used in Section 5:

Lemma 2.3. Suppose that for ƒ D ƒC or ƒ D ƒ�, with ƒ˙ given in (12), we define ˆ˙ using (14).
Then for some constant c > 0,

˙ˆ˙.x; �/� cj�j on ƒ˙: (20)

Proof. We consider the case of ˆC as the case of ˆ� is handled by replacing p with �p. Recall from
Lemma 2.1 that each LC! D �.ƒ

C\p�1.!// is a radial sink for the flow et j�jHp. Take .x; �/ 2ƒC with
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j�j large. Then (with S�M denoting the cosphere bundle with respect to any fixed metric on M )

e�tHp .x; �/ 2 S�M for some t > 0; t � j�j: (21)

Recall from (15) that HpˆC D 1 on ƒC. Thus

ˆC.x; �/DˆC.e�tHp .x; �//C t � cj�j �C:

It follows that ˆC.x; �/� cj�j for large j�j; since ˆC is homogeneous of order 1, this inequality then
holds on the entire ƒC. �

We next construct adapted global defining functions of ƒ˙ used in Section 4B:

Lemma 2.4. Let ƒ˙ be defined in (12). Then there exist G˙ 2 C1.T �M n 0IR/ such that

(1) G˙ are homogeneous of order 1;

(2) G˙jƒ˙ D 0 and dG˙jƒ˙ ¤ 0;

(3) HpG˙ D a˙G˙ in a neighborhood of ƒ˙, where a˙ 2 C1.T �M n 0IR/ are homogeneous of
order �1 and a˙jƒ˙ D 0.

Proof. We construct GC, with G� constructed similarly. Fix some function zGC which satisfies condi-
tions (1) and (2) of the present lemma. It exists since ƒC is conic and orientable (each of its connected
components is diffeomorphic to Œ�ı; ı��S1 �RC). Let ‚C be defined in (14):

�@� DˆCHpC‚CH zGC
on ƒC: (22)

Commuting both sides of (14) with �@� we see that ‚C is homogeneous of order 0. Moreover ‚C does
not vanish on ƒC since Hp is not radial (since the flow of X in (7) has no fixed points). Choose GC
satisfying conditions (1) and (2) and such that

GC D‚C zGC near ƒC:

Then (22) gives
�@� DˆCHpCHGC on ƒC: (23)

We have HpGCjƒC D 0 (since Hp is tangent to ƒC); therefore HpGC D aCGC near ƒC for some
function aC. Commuting both sides of (23) with Hp and using that HpˆC� 1 on ƒC from (15) we have

Hp D ŒHp; �@� �DHpC ŒHp;HGC �DHpCHfp;GCg DHpC aCHGC on ƒC:

Since HGC does not vanish on ƒC, this gives aCjƒC D 0 as needed. �

One application of Lemma 2.4 is the existence of an Hp-invariant density on ƒ˙:

Lemma 2.5. There exist densities �˙! on ƒ˙! , ! 2 Œ�ı; ı�, such that

� �˙! are homogeneous of order 1, that is, L�@��
˙
! D �

˙
! ;

� �˙! are invariant under Hp, that is, LHp�˙! D 0.
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Proof. In the notation of Lemma 2.4 define �˙! by j� ^� j D jdp^dG˙j��˙! , where � is the symplectic
form. The properties of �˙! follow from the identities

L�@�� D �; L�@�dp D 0; L�@�dG˙ D dG˙; LHp� D 0

and the following statement which holds on ƒ˙:

LHp .dp^ dG˙/D dp^ d.a˙G˙/D 0: �

3. Resolvent estimates

Here we recall the radial estimates as presented in [DZ19, §E.4] specializing to the setting of Section 1B.
We use the notation of [DZ19, Appendix E] and we write kuks WD kukH s.M/.

Since we are not in the semiclassical setting of [DZ19, §E.4] we will only use the usual notion of
the wave front set: for u 2 D 0.M/, WF.u/ � T �M n 0— see [DZ19, Exercise E.16]. Similarly, for
A 2‰k.M/ we denote by ell.A/� T �M n 0 its (nonsemiclassical) elliptic set. Both sets are conic.

3A. Radial estimates uniformly up to the real axis. Since L�! is a radial source we can apply [DZ19,
Theorem E.52] (with h WD 1) to the operator

zP� WD zP � i�hDi 2‰
1.M/; zP WD hDi

1
2 .P �!/hDi

1
2 ; 0� �� 1:

Here, since zP is self-adjoint, the threshold regularity condition [DZ19, (E.4.39)] is satisfied for zP with
any s > 0. Strictly speaking, one has to modify the proof of [DZ19, Theorem E.52] to include the
anti-self-adjoint part �i�hDi, which has a favorable sign but is of the same differential order as zP.
(In [loc. cit.] it was assumed that the principal symbol of P is real-valued near L�! .) More precisely, we
put P WD zP and f WD zP�u (instead of f WD zPu) in [DZ19, Theorem E.52]. Since zP� satisfies the sign
condition for propagation of singularities [DZ19, Theorem E.47], it suffices to check that the positive
commutator estimate [DZ19, Lemma E.49] holds. For that we write

=hf;G�GuiL2 D=h zPu;G
�GuiL2 � �<hhDiu;G

�GuiL2 : (24)

Here G 2‰s.M/ is the quantization of an escape function used in the proof of [DZ19, Lemma E.49];
recall that we put h WD 1. We now estimate the additional term in (24):

�<hhDiu;G�GuiL2 D�khDi
1
2Guk2

L2
Ch<.G�ŒhDi; G�/u; uiL2

� CkB1uk
2
s�1=2CCkuk

2
H�N

;

where B1 satisfies the properties in the statement of [DZ19, Lemma E.49] and in the last line we used that
G�ŒhDi; G� 2 ‰2s.M/ has purely imaginary principal symbol and thus <.G�ŒhDi; G�/ 2 ‰2s�1.M/.
The rest of the proof of [DZ19, Lemma E.49] applies without changes. See also [Dyatlov and Guillarmou
2016, Lemma 3.7].

Applying the radial estimate in [DZ19, Theorem E.52] for the operator zP� D hDi
1
2 .P �! � i�/hDi

1
2

to hDi�
1
2u we see that for every zB� 2‰0.M/, ƒ�� ell. zB�/, there exists A� 2‰0.M/, ƒ�� ell.A�/,
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∂T
∗
ML−

ω

A−

B̃−

∂T
∗
M

A+

L+
ω

B+

B̃+

Figure 3. An illustration of the supports of the operators appearing in (25) (left: radial
sources) and (26) (right: radial sinks). The horizontal line on the top denotes @T �M ; the
arrows denote flow lines of j�jHp.

such that
kA�uks � Ck zB�.P �! � i�/uksC1CCkuk�N ;

u 2 C1.M/; s > �1
2
; j!j � ı; � � 0;

(25)

where C does not depend on �; ! and N can be chosen arbitrarily large. The supports of A�, zB� are
shown in Figure 3.

The inequality (25) can be extended to a larger class of distributions (as opposed to u 2 C1.M/): it
suffices that zB�.P �! � i�/u 2H sC1.M/ and that A�u 2H s0.M/ for some s0 > �1

2
. See Remark 5

after [DZ19, Theorem E.52] or [Dyatlov and Zworski 2016, Proposition 2.6; Vasy 2013, Proposition 2.3].
Similarly we have estimates near radial sinks [DZ19, Theorem E.54] for LC! . Namely, for every zBC 2

‰0.M/, ƒC � ell. zBC/, there exist AC; BC 2‰0.M/, such that ƒC � ell.AC/, WF.BC/\ƒC D∅,
and

kACuks � Ck zBC.P �! � i�/uksC1CCkBCuksCCkuk�N ;

u 2 C1.M/; s < �1
2
; j!j � ı; � � 0;

(26)

where C does not depend on �; ! and N can be chosen arbitrarily large. The inequality is also valid
for distributions u such that zBC.P �! � i�/u 2 H sC1.M/ and BCu 2 H s.M/ and it then provides
(unconditionally) ACu 2H s.M/— see Remark 2 after [DZ19, Theorem E.54] or [Dyatlov and Zworski
2016, Proposition 2.7; Vasy 2013, Proposition 2.4].

Away from radial points we have the now standard propagation results of Duistermaat and Hörmander
[DZ19, Theorem E.47]: if A;B; zB 2‰0.M/ and for each .x; �/ 2WF.A/ there exists T � 0 such that

e�T j�jHp .x; �/ 2 ell.B/; e�t j�jHp .x; �/ 2 ell. zB/; 0� t � T;

then
kAuks � Ck zB.P �! � i�/uksC1CCkBuksCCkuk�N ;

u 2 C1.M/; s 2 R; j!j � ı; � � 0;
(27)

with C independent of �; !. We also have the elliptic estimate [DZ19, Theorem E.33]: (27) holds with
B D 0 if WF.A/\p�1.Œ�ı; ı�/D∅ and WF.A/� ell. zB/.



MICROLOCAL ANALYSIS OF FORCED WAVES 369

L−
ω L+

ω

A− A+

B+

s > −1/2 s < −1/2

Figure 4. A schematic representation of the flow et j�jHp on the fiber infinity @T �M
intersected with the energy surface p�1.!/, with the regularity thresholds for the esti-
mates (25) and (26).

Let us now consider

u� D u�.!/ WD .P �! � i�/
�1f; f 2 C1.M/; j!j � ı; � > 0:

For any fixed � > 0, P �! � i� 2‰0.M/ is an elliptic operator (its principal symbol equals p�! � i�
and p is real-valued); thus by elliptic regularity u� 2 C1.M/. Combining (25), (26) and (27) we see
that for any ˇ > 0

ku�k�1=2�ˇ � Ckf k1=2Cˇ CCku�k�N ; (28)

and that
kAu�ks � Ckf ksC1CCku�k�N ; WF.A/\ƒC D∅; s > �1

2
: (29)

Here the constant C depends on ˇ; s but does not depend on �; !. Indeed, by our dynamical assumption (8)
every trajectory et j�jHp .x; �/ with .x; �/2p�1.Œ�ı; ı�/nƒC converges toƒ� as t!�1 (see Figure 4).
Applying (27) with B WD A� and using (25) we get (29). Putting A WD BC in (29) and using (26) we
get (28).

In particular, we obtain a regularity statement for the limits of the family .u�/:

there exist �j ! 0; u2D 0.M/ such that u�j
D 0.M/
����!u D) u2H�

1
2
�.M/; WF.u/�ƒC: (30)

Note also that every u in (30) solves the equation .P �!/uD f .

3B. Regularity of eigenfunctions. Motivated by (30) we have the following regularity statement. The
proof is an immediate modification of the proof of [Dyatlov and Zworski 2017, Lemma 2.3]: replace P
there by A�1.P �!/A�1, where A 2‰�

1
2 .M/ is elliptic, self-adjoint on L2.M; dm.x// (same density

with respect to which P is self-adjoint) and invertible. We record this as:

Lemma 3.1. Suppose that P satisfies (5) and (8). Then for ! sufficiently small and for u 2 D 0.M/

.P �!/u 2 C1; WF.u/�ƒC; =h.P �!/u; ui � 0; j!j � ı;

implies that u 2 C1.M/.

In particular this shows that if .P�!/uD0 and WF.u/�ƒC then u2L2; that is, ! lies in the point spec-
trum Specpp.P /. Radial estimates then show that the number of such !’s is finite in a neighborhood of 0:
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Lemma 3.2. Under the assumptions (5) and (8), with ı sufficiently small,

jSpecpp.P /\ Œ�ı; ı�j<1;

.P �!/uD 0; u 2 L2.M/; j!j � ı D) u 2 C1.M/:
(31)

Proof. If u 2 L2.M/ then the threshold assumption in (25) is satisfied for P � ! near ƒ� and for
�.P �!/ near ƒC. Using the remark about regularity after (25), as well as (27) away from sinks and
sources, we conclude that

kuks � Ckuk�N (32)

for any s and N. That implies that u 2 C1.M/. Now, suppose that there exists an infinite set of L2

eigenfunctions with eigenvalues in Œ�ı; ı�:

.P �!j /uj D 0; huk; uj iL2.M/ D ıkj ; j!j j � ı:

Since uj * 0, weakly in L2, we have uj ! 0 strongly in H�1. But this contradicts (32) applied with
s D 0 and N D 1. �

From now on we make the assumption that P has no eigenvalues in Œ�ı; ı�:

Specpp.P /\ Œ�ı; ı�D∅: (33)

By Lemma 3.2 we see that (33) holds for ı small enough as long as 0 … Specpp.P /.

3C. Limiting absorption principle. Using results of Sections 3A–3B we obtain a version of the limit-
ing absorption principle sufficient for proving (3). Radial estimates can also easily give existence of
.P �! � i0/�1 WH

1
2
C.M/!H�

1
2
�.M/ but we restrict ourselves to the simpler version and follow

[Melrose 1994, §14]. The only modification lies in replacing scattering asymptotics by the regularity
result given in Lemma 3.1.

Lemma 3.3. Suppose that P satisfies (5), (8), and (33). Then for j!j � ı and f 2 C1.M/, the limit

.P �! � i�/�1f
H�1=2�.M/
�������! .P �! � i0/�1f; �! 0C;

exists. This limit is the unique solution to the equation

.P �!/uD f; WF.u/�ƒC; (34)

and the map ! 7! .P �! � i0/�1f 2H�
1
2
�.M/ is continuous in ! 2 Œ�ı; ı�.

Remark. Replacing P with �P we see that there is also a limit

.P �!C i�/�1f
H�1=2�.M/
�������! .P �!C i0/�1f; �! 0C;

which satisfies (34) with ƒC replaced by ƒ�.

Proof. We first note that Lemma 3.1 and the spectral assumption (33) imply that (34) has no more than
one solution. By (30), if a (distributional) limit .P �! � i�j /�1f , �j ! 0, exists then it solves (34).
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To show that the limit exists, put u� WD .P � ! � i�/�1f and suppose first that ku�k� 1
2
�˛ is not

bounded as �! 0C for some ˛ > 0. Hence there exists �j ! 0C such that ku�j k� 1
2
�˛!1. Putting

vj WD u�j =ku�j k� 1
2
�˛ we obtain

.P �! � i�j /vj D fj ; kvj k� 1
2
�˛ D 1; fj

C1.M/
�����! 0: (35)

Applying (28) with N D 1
2
C ˛ we see that vj is bounded in H�

1
2
�ˇ .M/ for any ˇ > 0. Since

H�
1
2
�ˇ .M/ ,!H�

1
2
�˛.M/, we know ˇ < ˛ is compact and can assume, by passing to a subsequence,

that vj ! v in H�
1
2
�˛.M/. Then .P � !/v D 0 and the same reasoning that led to (30) shows that

WF.v/�ƒC. Thus v solves (34) with f � 0, implying that v � 0. This gives a contradiction with the
normalization kvj k� 1

2
�˛ D 1.

We conclude that u� is bounded in H�
1
2
�˛.M/ for all ˛ > 0. But then similarly to the previous

paragraph .u�/�!0 is precompact in H�
1
2
�˛.M/ for all ˛ > 0. Since every limit point has to be the

(unique) solution to (34), we see that u� converges to that solution as �! 0C in H�
1
2
�˛.M/.

As for continuity in !, we note that the above proof gives the stronger statement

.P �!j � i�j /
�1f

H�1=2�.M/
�������! .P �! � i0/�1f (36)

for all �j ! 0C, !j ! !, and j!j j � ı. �

In Section 4B we will need the following upgraded version of Lemma 3.3:

Lemma 3.4. Suppose that P satisfies (5), (8), and (33). Let s < �1
2

and g 2H sC1.M/, WF.g/�ƒC,
where ƒC is defined by (12). Then for j!j � ı the limit

.P �! � i�/�1g
H s�.M/
�����! .P �! � i0/�1g; �! 0C; (37)

exists, and WF..P �! � i0/�1g/�ƒC. In particular, for k � 1 and f 2 C1.M/ the limit

.P �! � i�/�kf
H�kC1=2�.M/
���������! .P �! � i0/�kf; �! 0C; (38)

exists. Finally, .P �! � i0/�1f 2 C k! .Œ�ı; ı�IH
�k� 1

2
�.M//, with

@k!.P �! � i0/
�1f D kŠ .P �! � i0/�k�1f :

Proof. We follow closely the proof of Lemma 3.3 and put u� WD .P �! � i�/�1g. Since P �! � i� is
elliptic for every � > 0, we have u� 2H sC1.M/ and WF.u�/�WF.g/�ƒC, so it remains to establish
uniformity as �! 0C. We use the following version of (29) (which follows from the same proof): for
every A 2‰0.M/ with WF.A/\ƒC D∅ there exists zB 2‰0.M/ with WF. zB/\ƒC D∅ such that

kAu�ks0 � Ck zBgks0C1CCku�k�N ; s0 > �1
2
; (39)

where the constant C does not depend on !; �. We also have the following version of (28): there exists
B 0 2‰0.M/ with WF.B 0/\ƒC D∅ such that

ku�ks � CkgksC1CCkB
0gk1CCku�k�N ; s < �1

2
: (40)
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Here the norms k zBgks0C1 and kB 0gk1 are finite since WF.g/�ƒC. From (39) and (40) we get regularity
for limit points of u�j similarly to (30):

there exist �j ! 0C; u 2 D 0.M/ such that u�j
D 0.M/
����!u D) u 2H s.M/; WF.u/�ƒC:

The existence of the limit (37) follows as in the proof of Lemma 3.3, replacing �1
2

by s in Sobolev space
orders; here uD .P �! � i0/�1g is the unique solution to

.P �!/uD g; WF.u/�ƒC:

Iterating this argument, we get existence of the limit (38) and continuous dependence of .P�!�i0/�kf 2
H�kC

1
2
� on ! 2 Œ�ı; ı� similarly to (36), with uD .P �! � i0/�kf being the unique solution to

.P �!/kuD f; WF.u/�ƒC:

It remains to show differentiability in !. For simplicity we assume that ! D 0 and show that for
f 2 C1.M/,

@! Œ.P �! � i0/
�1f �j!D0 D .P �! � i0/

�2f in H�
3
2
�: (41)

The case of higher derivatives is handled by iteration. To show (41) we define u�.!/ WD .P �!� i�/�1f
and write for ! ¤ 0, with limits in H�

3
2
�,

u0.!/�u0.0/

!
D lim
�!0C

u�.!/�u�.0/

!
D lim
�!0C

.P �! � i�/�1.P � i�/�1f

D .P �! � i0/�1.P � i0/�1f: (42)

To show the last equality above we first note that the family .P �! � i�/�1.P � i�/�1f is precompact
in H�

3
2
�˛.M/ for any ˛ > 0 as follows from iterating (40). By (39) every limit point u of this family as

�! 0C satisfies P.P �!/uD f , WF.u/�ƒ and thus equals .P �! � i0/�1.P � i0/�1f . Finally,
letting !! 0 in (42) we get (41). �

4. Lagrangian structure of the resolvent

We now describe the Lagrangian structure of the resolvent refining the results of [Haber and Vasy 2015] in
our special case. To start, we briefly review basic theory of Lagrangian distributions following [Hörmander
1985b, §25.1].

4A. Lagrangian distributions. Let M be a compact surface and ƒ0 � T �M n 0 a conic Lagrangian
submanifold without boundary. Denote by I s.M Iƒ0/� D0.M/ the space of Lagrangian distributions of
order s on M associated to ƒ0. It has the following properties:

(1) I s.M Iƒ0/�H�
1
2
�s�.M/.

(2) For all u 2 I s.M Iƒ0/ we have WF.u/�ƒ0.

(3) If ƒ1 � ƒ0 is an open conic subset and u 2 I s.M Iƒ0/, then u 2 I s.M Iƒ1/ if and only if
WF.u/�ƒ1.
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(4) For all A 2‰k.M/ and u 2 I s.M Iƒ0/ we have Au 2 I sCk.M Iƒ0/.

(5) If additionally �.A/jƒ0 D 0, then Au 2 I sCk�1.M Iƒ0/.

Define
I sC.M Iƒ0/ WD

\
s0>s

I s
0

.M Iƒ0/:

A simple example on a torus (in the notation of Section 1C) is given by

u.x/ WD
�
x1�

�
2
� i0

��1
'.x/; ' 2 C1c .B.0; 1//; u 2 I 0.T2IƒC0 /�H

� 1
2
�.T2/; (43)

where ƒC0 is given in (10).
To define Lagrangian distributions we use Melrose’s iterative characterization [Hörmander 1985b,

Definition 25.1.1]: u 2 D0.M/ lies in I sC.M Iƒ0/ if and only if WF.u/�ƒ0 and

A1 � � �A` u 2H
� 1
2
�s�.M/ for any A1; : : : ; A` 2‰

1.M/; �.Aj /jƒ0 D 0: (44)

Note that [Hörmander 1985b] uses Besov spaces 1H s . However, this does not make a difference in (44)
since H s �1H s �H s0 for all s0 < s; see [Hörmander 1985a, Proposition B.1.2].

We also need oscillatory integral representations for Lagrangian distributions. Assume that in some
local coordinate system on M, ƒ0 is given by

ƒ0 D f.x; �/W x D @�F.�/; � 2 �0g; (45)

where �0 �R2 n0 is an open cone and F W �0!R is homogeneous of order 1. (Every Lagrangian can be
locally written in this form after a change of base, x, variables — see [Hörmander 1985a, Theorem 21.2.16].
Using a pseudodifferential partition of unity we can write every Lagrangian distribution as a sum of expres-
sions of the form (46).) Then u 2 I s.M Iƒ0/ if and only if u can be written (modulo a C1 function) as

u.x/D

Z
�0

ei.hx;�i�F.�// a.�/ d�; (46)

where a.�/ 2 C1.R2/ is a symbol of order s� 1
2

, namely

j@˛� a.�/j � C˛h�i
s� 1

2
�j˛j; � 2 R2; (47)

and a is supported in a closed cone contained in �0. See [Hörmander 1985b, Proposition 25.1.3]. An
equivalent way of stating (46) is in terms of the Fourier transform Ou: eiF .�/ Ou.�/ is a symbol, that is,
satisfies estimates (47).

We finally review properties of the principal symbol of a Lagrangian distribution, used in the proof of
Lemma 4.5 below, referring the reader to [loc. cit., Chapter 25] for details. The principal symbol of a
Lagrangian distribution, u, with values in half-densities, u 2 I s.M;ƒI�

1
2

M /, is the equivalence class

�.u/ 2 SsC
1
2 .ƒIMƒ˝�

1
2

ƒ/=S
s� 1

2 .ƒIMƒ˝�
1
2

ƒ/;

see [loc. cit., Theorem 25.1.9], where:
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� �
1
2

ƒ is the line bundle of half-densities on ƒ.

� Mƒ is the Maslov line bundle; it has a finite number of prescribed local frames with ratios of any
two prescribed frames given by a constant of absolute value 1. Consequently it has a canonical inner
product and does not enter into the calculations below.

� Sk.ƒIMƒ˝�
1
2

ƒ/ is the space of sections in C1.ƒIMƒ˝�
1
2

ƒ/ which are symbols of order k,
defined using the dilation operator .x; �/ 7! .x; ��/, �> 0; see the discussion on [Hörmander 1985b,
page 13]. In the parametrization (46) we have �.ujdxj

1
2 /D .2�/�

1
2a.�/jd�j

1
2 . The factor jd�j

1
2

accounts for the difference in the order of the symbol.

If P 2‰`.M I�
1
2

M / satisfies �.P /jƒ D 0 and u 2 I s.M;ƒI�
1
2

M / then

Pu 2 I sC`�1.M;ƒI�
1
2

M /; �.Pu/D
1

i
L�.u/; (48)

where L is a first-order differential operator on C1.ƒIMƒ˝�
1
2

ƒ/ with principal part Hp . Equation (48)
is the transport equation for P (the eikonal equation corresponds to �.P /jƒ D 0) — see [loc. cit.,
Theorem 25.2.4]. If P is self-adjoint, then its subprincipal symbol is real-valued by [Hörmander 1985a,
Theorem 18.1.34] and thus by [Hörmander 1985b, (25.2.12)]

L� D�L on L2.ƒIMƒ˝�
1
2

ƒ/: (49)

4B. Lagrangian regularity. We now establish Lagrangian regularity for elements in the range of the
operators .P �!� i0/�1 constructed in Section 3C:

Lemma 4.1. Suppose that P satisfies (5), (8), and (33). Let f 2 C1.M/ and

u˙.!/ WD .P �!� i0/�1f 2H�
1
2
�.M/; j!j � ı:

Then u˙.!/ 2 I 0.M Iƒ˙! /. Moreover, the symbols of u˙.!/ depend smoothly on !:

u˙.!/ 2 C1! .Œ�ı; ı�I I
0.M Iƒ˙! //; (50)

where the precise meaning of (50) is explained in Lemma 4.4 below ((67) and Remark 2).

Remark. Lemma 4.1 is similar to [Haber and Vasy 2015, Theorems 1.7 and 6.3]. There are two
differences: that paper makes the assumption that the Hamiltonian field Hp is radial on ƒ˙! (which is not
true in our case) and it also does not prove smooth dependence of the symbols of u˙.!/ on !. Because
of these we give a self-contained proof of Lemma 4.1 below, noting that the argument is simpler in our
situation.

We focus on the case of uC.!/, with regularity of u�.!/ proved by replacing P; ! with �P; �!,
respectively. By Lemma 3.4 we have for every k � 0

uC.!/ 2 C k! .Œ�ı; ı�IH
�k� 1

2
�.M//; WF.@k!u

C.!//�ƒC; (51)

where the wavefront set statement is uniform in !.
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To upgrade (51) to Lagrangian regularity, we use the criterion (44), applying first-order operators W
and D! �Q to uC.!/ (see Lemma 4.3 below). Here,

W;Q 2‰1.M/; �.W /DGC; �.Q/jƒC DˆC; (52)

where GC is the defining function of ƒC constructed in Lemma 2.4 and ˆC is defined in (14). The
operator D! �Q, where D! WD .1=i/@! , is used to establish smoothness in !.

Our proof uses the following corollary of (26):

if Z 2‰�1.M/; �.Z/jƒC D 0; s < �1
2

then

v 2 D0.M/; WF.v/�ƒC; .P CZ �!/v 2H sC1
D) v 2H s:

(53)

The addition of Z does not change the validity of (26) since it is a subprincipal term whose symbol
vanishes on ƒC; see [DZ19, Theorem E.54].

We also use the following identity valid for any operators A;B on D0.M/:

BmAD

mX
jD0

�m
j

�
.adjB A/B

m�j ; adB A WD ŒB; A�; ad0B A WD A: (54)

The first step of the proof is to establish regularity with respect to powers of W :

Lemma 4.2. Assume that v 2 D0.M/ satisfies for some `� 0 and s < �1
2

WF.v/�ƒC; W j .P �!/v 2H sC1 for j D 0; : : : ; `: (55)

Then W `v 2H s, where W is defined in (52).

Proof. We argue by induction on `. For `D 0 the lemma follows immediately from (53). We thus assume
that ` > 0 and the lemma is true for all smaller values of `; in particular W kv 2H s for 0� k � `� 1.
Using (54) we write

W `.P �!/D .P �!/W `
C

X̀
jD1

� `
j

�
.adjW P /W `�j : (56)

We recall from Lemma 2.4 that near ƒC we have HGCp D �aCGC, where aC is homogeneous of
order �1 and aCjƒC D 0. Therefore for j � 1 we have H j

GC
p D�.H

j�1
GC

aC/GC near ƒC. Motivated
by this we take

Bj 2‰
�1.M/; �.Bj /D .�1/

j�1ijH
j�1
GC

aC; 1� j � `:

Then, for 1� j � `

adjW P D BjW CRj ; Rj 2‰
�1 microlocally near ƒC: (57)

Combining (56) and (57) we get

.P �!/W `
DW `.P �!/�

X̀
jD1

� `
j

�
.BjW

`C1�j
CRjW

`�j /: (58)
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Applying both sides of (58) to v and using thatW kv 2H s for 0�k� `�1 and thatW `.P �!/v 2H sC1

we get
.P C `B1�!/W

`v 2H sC1:

Since �.B1/D iaC vanishes on ƒC, we apply (53) to conclude that W `v 2H s as needed. �

Since .P �!/uC.!/D f 2 C1.M/, Lemma 4.2 implies that

W `uC.!/ 2H�
1
2
�.M/ for all `� 0: (59)

This can be generalized as follows:

A1 � � �A`u
C.!/ 2H�

1
2
�.M/ for all A1; : : : ; A` 2‰

1.M/; �.Aj /jƒC D 0: (60)

To see (60), we argue by induction on `. We have �.Aj /D QajGC near WF.uC.!//�ƒC for some Qaj
which is homogeneous of order 0. Taking zAj 2‰0.M/ with �. zAj /D Qaj we have

Aj D zAjW C zRj where zRj 2‰0.M/ microlocally near WF.uC.!//:

Then we can write A1 � � �A`uC.!/ as the sum of two kinds of terms (plus a C1 remainder):

� the term zA1 � � � zA`W `uC.!/, which lies in H�
1
2
�.M/ by (59), and

� terms of the form A01 � � �A
0
mu
C.!/, where 0�m� `�1, A0j 2‰

1.M/, and �.A0j /jƒC D 0, which
lie in H�

1
2
�.M/ by the inductive hypothesis.

From (60) we can deduce (similarly to the proof of Lemma 4.4 below) that uC.!/ 2 I 0C.M IƒC! / for
each ! 2 Œ�ı; ı�. To obtain the smooth dependence of the symbol of uC.!/ on ! we generalize (59) by
additionally applying powers of D! �Q:

Lemma 4.3. For all integers `;m� 0 we have

W `.D! �Q/
muC.!/ 2H�

1
2
�.M/; j!j � ı; (61)

and the corresponding norms are bounded uniformly in !.

Proof. We argue by induction on m, with the case mD 0 following from (59). Put

uj .!/ WD .D! �Q/
juC.!/ 2 D0.M/; 0� j �m:

By (51) we have WF.uj .!//�ƒC for all j . Moreover, by the inductive hypothesis

W `uj .!/ 2H
� 1
2
�.M/ for all `; 0� j �m� 1: (62)

Put
Y WD ŒP �!;D! �Q�D�i � ŒP;Q� 2‰

0.M/

and note that since �.Q/jƒC DˆC and HpˆC � 1 on ƒC by (15),

�.Y /jƒC D 0: (63)
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Moreover, by (15) we have HGCˆC� 0 on ƒC; thus the Hamiltonian vector field HˆC is tangent to ƒC.
This implies that

�.adjQ Y /D .�i/
jH

j
ˆC
�.Y /� 0 on ƒC for all j � 0: (64)

Applying (54) with A WD P �! and B WDD! �Q to uC.!/ we get

.P �!/um.!/D .D! �Q/
mf C

mX
jD1

.�1/j�1
�m
j

�
.adj�1Q Y /um�j .!/: (65)

Since f 2C1 does not depend on !, we have .D!�Q/mf 2C1. Next, by the inductive hypothesis (62)
we have W `um�j .!/ 2H

� 1
2
� for all ` � 0 and 1 � j �m. Arguing similarly to (60) and using (64)

we see that W `.adj�1Q Y /um�j .!/ 2H
1
2
� as well (here adj�1Q Y 2‰0.M/ which explains the stronger

regularity). Thus (65) implies

W `.P �!/um.!/ 2H
1
2
�.M/ for all `� 0:

Now Lemma 4.2 gives W `um.!/ 2H
� 1
2
� for all `� 0 as needed.

Finally, uniformity of (61) in ! follows immediately from the proof since the estimates (51) and (26)
that we used are uniform in !. �

We now deduce from Lemma 4.3 that uC.!/ has microlocal oscillatory integral representations (46)
with symbols depending smoothly on !. This shows the weaker version of (50) with I 0 replaced by I 0C.

Lemma 4.4. Assume that U � T �M n 0 is an open conic set such that ƒC! \U are given in the form (16)
in some local coordinate system on M :

ƒC! \U D f.x; �/W x D @�F.!; �/; � 2 �0g; j!j � ı; (66)

where � 7! F.!; �/ is homogeneous of order 1 and �0 � R2 n 0 is an open cone. Let A 2 ‰0.M/,
WF.A/� U . Then,

AuC.!; x/D

Z
�0

ei.hx;�i�F.!;�// a.!; �/ d�CC1!;x; j!j � ı; (67)

where a.!; �/ is a smooth in ! family of symbols of order �1
2
C in � supported in a closed cone inside �0,

see (47).

Remarks. (1) The statement (67) means that uC.!/ can be represented as (46), microlocally in every
closed cone contained in U .

(2) When (67) holds for every choice of parametrization (66) we write

uC.!/ 2 C1! .Œ�ı; ı�I I
0C.M IƒC! //;

with the analogous notation in the case of u�.!/. That explains the statement of Lemma 4.1.

Proof. Since .P �!/uC.!/D f 2 C1.M/, it follows from Lemma 4.3 that for all m; `; r � 0

.D! �Q/
mW `.P �!/ruC.!/ 2H�

1
2
�.M/:
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This can be generalized as follows:

.D! �Q.!//
mA1.!/ � � �A`.!/u

C.!/ 2H�
1
2
�.M/ (68)

for all m and all A1.!/; : : : ; A`.!/;Q.!/ 2‰1.M/ depending smoothly on ! 2 Œ�ı; ı� and such that
�.Aj .!//jƒC!

D0, �.Q.!//j
ƒ
C
!
DˆC. The proof is similar to the proof of (60), using the decomposition

Aj .!/D A
0
j .!/W CA

00
j .!/.P �!/CRj .!/; where Rj .!/ 2‰0 microlocally near WF.uC.!//;

for some A0j .!/; A
00
j .!/ 2‰

0.M/ depending smoothly on ! 2 Œ�ı; ı�.
Since WF.A@k!u

C.!//�ƒC\p�1.Œ�ı; ı�/\U for all k, by the Fourier inversion formula we can
write AuC.!/ in the form (67) for some a.!; �/ which is smooth in !; � and supported in � 2 �1, where
�1��0 is some closed cone. It remains to show the following growth bounds as �!1: for every � > 0

h�i�
1
2
Cj˛j��@m! @

˛
� a.!; �/ 2 L

1
! .Œ�ı; ı�IL

2
� .R

2//: (69)

(From (69) one can get L1
�

bounds using Sobolev embedding as in the proof of [Hörmander 1985b,
Proposition 25.1.3].)

Denote by I.a/ the integral on the right-hand side of (67). By Lemma 2.2 we have @!F.!; �/ D
�ˆC.@�F.!; �/; �/; therefore we may take Q.!/ WD �@!F.!;Dx/ to be a Fourier multiplier. The
operators

Ajk.!/ WDDxk ..@�jF /.!;Dx/� xj /; j; k 2 f1; 2g;

lie in ‰1 and satisfy �.Ajk.!//jƒC! D 0. We have

.D! �Q.!//I.a/D I.D!a/; Ajk.!/I.a/D I.�kD�j a/:

Also, if I.a/ 2H�
1
2
� uniformly in !, then h�i�

1
2
��a.!; �/ 2 L1! .Œ�ı; ı�IL

2
�
.R2//. Applying (68) with

the operators D! �Q.!/ and Ajk.!/ we get (69), finishing the proof. �

We finally show the stronger statement of Lemma 4.1 (with I 0 instead of I 0C) using the transport
equation satisfied by the principal symbol:

Lemma 4.5. We have
uC.!/ 2 C1! .Œ�ı; ı�I I

0.M IƒC! //I

that is, (67) holds where a.!; �/ is a symbol of order �1
2

in �.

Proof. In our setting P 2‰0.M/ is self-adjoint with respect to a smooth density on M — see (5). Using
that density to trivialize the half-density bundle we obtain a self-adjoint operator P 2‰0.M I�

1
2

M /.
Let aC 2 S

1
2
C.ƒC! IMƒ

C
!
˝�

1
2

ƒ
C
!

/ be a representative of �.uC.!//. Using the transport equation (48)
and .P �!/uC.!/D f 2 C1.M/, we have

bC WD LaC 2 S�
3
2
C.ƒC! IMƒ

C
!
˝�

1
2

ƒ
C
!

/; (70)

where L is a first-order differential operator on C1.ƒC! IMƒ
C
!
˝�

1
2

ƒ
C
!

/ with principal part given by
Hp and L� D�L by (49).
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We trivialize �
1
2

ƒ
C
!

using the density �C! constructed in Lemma 2.5 and write

aC D QaC
p
�C! ; bC D QbC

p
�C! ;

where QaC 2 S0C.ƒC! IMƒ
C
!
/, QbC 2 S�2C.ƒC! IMƒ

C
!
/. By (70) we have

.HpCV / Qa
C
D QbC; (71)

where Hp naturally acts on sections of the locally constant bundleM
ƒ
C
!

and V 2 C1.ƒC! / is homoge-
neous of order �1. Moreover, since L� D�L we have

<V D 1
2
.LHp�

C
! /=�

C
! D 0

using Lemma 2.5.
By (71) for all .x; �/ 2ƒC! and t � 0 we have

QaC.x; �/D .e�t.HpCV / QaC/.x; �/C

Z t

0

.e�s.HpCV / QbC/.x; �/ ds: (72)

Since <V D 0 we have je�t.HpCV / QaC.x; �/j D j QaC.e�tHp .x; �//j and the same is true for QbC.
Take .x; �/ 2ƒC! with j�j large. As in (21) choose t � 0, t � j�j, such that e�tHp .x; �/ 2 S�M ; we

next apply (72). The first term on the right-hand side is bounded uniformly as �!1. The same is true
for the second term since the function under the integral is O..t � s/�2C/. It follows that QaC.x; �/ is
bounded as �!1.

Since Œ�@� ;HpCV �D�Hp �V , we have for all j

.HpCV /.�@�/
j
QaC D .�@� C 1/

j QbC 2 S�2C.ƒC! IMƒ
C
!
/: (73)

It follows that .Hp C V /`.�@�/j QaC D O.h�i�`/ for all j; `: the case `D 0 follows from (72) applied
to (73) and the case `� 1 follows directly from (73). Since �@� and Hp form a frame on ƒC! , we have
QaC 2 S0.ƒC! IMƒ

C
!
/, which implies that uC! 2 I

0.M IƒC! /. �

Remark. It is instructive to consider the transport equation (71) in the microlocal model used in [Colin
de Verdière and Saint-Raymond 2019]: near a model sink

ƒC! D f.�!; x2I �1; 0/ W �1 > 0g � T
�.Rx1 �S1x2/� 0

(see the global examples in Section 1C) we consider p.x; �/ WD ��11 �2 � x1. We are then solving
.p.x;D/�!/uC.!/� 0 microlocally near ƒC! , see [DZ19, Definition E.29], and for that we expand
the symbol on uC! into Fourier modes in x2,

uC! .x/D
1

2�

Z
R

X
n2Z

OaC! .n; �1/ e
i.x1C!/�1 einx2 d�1; aC! D

X
n2Z

OaC! .n; �1/ e
inx2 jd�1dx2j

1
2 :
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The Fourier coefficients should satisfy .��11 nCD�1/ Qa
C
! .n; �1/ D 0 for �1 > 1 and Qa!

C
.n; �1/ D 0 for

�1 < �1. Hence the symbol is given by

aC! D Qa
C.!/jdx2d�1j

1
2 ; QaC.x2; �1/D

X
n2Z

��in1 an.!/ e
inx2 ; an.!/DO.hni�1/:

Hence, the symbol is very “nonclassical” in the sense that it does not have an expansion in powers of �1.
In the general case an analogous conclusion follows from the structure of (71).

5. An asymptotic result

We now place ourselves in the setting of Lemma 4.1 and assume that u.!/ 2 C1! .Œ�ı; ı�I I
0.M Iƒ!//

in the sense described in Lemma 4.5, where ƒ! DƒC! or ƒ! Dƒ�! . We are interested in the asymptotic
behavior as t !1 of

I.t/ WD

Z t

0

Z
R

e�is!'.!/ u.!/ d! ds 2 D0.M/; ' 2 C1c ..�ı; ı//: (74)

We have the following local asymptotic result.

Lemma 5.1. Suppose that u.!/ 2 D0.R2/ is given by

u.!/D u.!; x/D
1

.2�/2

Z
�0

ei.hx;�i�F.!;�// a.!; �/ d�; (75)

where �0, F , and a satisfy the general conditions in (67). Suppose also that

� @!F.!; �/ < 0; � D˙; � 2 �0; j!j � ı: (76)

Then as t !1,

I.t/D u1C b.t/C v.t/; kb.t/kH1=2� � C; v.t/! 0 in H�
1
2
�.R2/;

u1 D

�
2� '.0/ u.0/; � DC;

0; � D�:

(77)

Proof. We start by remarking that we can assume that the amplitude a is supported away from � D 0.
The remaining contribution can be absorbed into b.t/: if aD a.!; �/D 0 for j�j> C then

Ow.t; �/ WD

Z t

0

Z
R

e�is!e�iF .!;�/ a.!; �/ '.!/ d! ds

D

Z t

0

Z
R

Œ.1C s2/�1.1CD2!/e
�is! � e�iF .!;�/ a.!; �/ '.!/ d! ds;

which by integration by parts in ! is bounded in t and compactly supported in �.
Since u.!; x/ has nice structure on the Fourier transform side it is natural to consider the Fourier

transform of x 7! I.t/.x/, J.t; �/ WD Fx!�I.t/, where

J.t; �/D
1

h

Z ht

0

Z
R

e�
i
h
.F .!;�/Cr!/ a

�
!;
�

h

�
'.!/ d! dr; � D

�

h
; � 2 S1: (78)
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From the assumptions on a we have J.t; �/ D 0 unless � 2 �1, where �1 � �0 is a closed cone. The
phase in J.t/ is stationary when

! D 0; r D r.�/ WD �@!F.0; �/: (79)

From (76), @!F.!; �/¤ 0 and this means that for some  > 0,

jr C @!F.!; �/j> chri; � 2 S1\�1; j!j � ı; jr j …
�
;
1



�
: (80)

Let � 2 C1c ..=2; 2=/I Œ0; 1�/ be equal to 1 on .; 1=/. Using integration by parts based on

hN
�
�.r C @!F.!; �//

�1D!
�N
e�

i
h
.F .!;�/Cr!/

D e�
i
h
.F .!;�/Cr!/;

and (80), we see that, by taking N � 2,

1

h

Z ht

0

Z
R

.1��.r// e�
i
h
.F .!;�/Cr!/ a

�
!;
�

h

�
'.!/ d! dr DO.hN�1/;

uniformly in t � 0. Hence, for all N

J.t/D zJ .t/CFx 7!� u0.t/; sup
t�0

ku0.t/kHN � CN ;

zJ .t; �/ WD
1

h

Z ht

0

Z
R

�.r/ e�
i
h
.F .!;�/Cr!/ a

�
!;
�

h

�
'.!/ d! dr; � D

�

h
; � 2 S1:

When ht � 2= , we have zJ .t; �/D zJ .1; �/ due to the support property of �. In particular this implies
that zJ .t; �/! zJ .1; �/ as t !1 pointwise in �. We apply the standard method of stationary phase to
zJ .1/ noting that

�@2!;r.F.!; �/C r!/D

�
�@2!F �1

�1 0

�
; sgn @2!;r.F.!; �/� r!/D 0:

Therefore

zJ .1; �/D

�
2� a.0; �/ '.0/ e�iF .0;�/CO.h�i�

3
2
C/; @!F.0; �/ < 0;

O.h�i�1/; @!F.0; �/ > 0:
(81)

Hence to obtain (77) all we need to show is that zJ .t; �/DO.h�i�
1
2
C/ uniformly in t as then by dominated

convergence,

h�i�
1
2
� zJ .t/

L2.R2;d�/
�������!h�i�

1
2
� zJ .1/; t !C1;

that is,
zI .t/ WD F�1�!x zJ .t/

H�1=2�.R2/
�������!F�1�!x zJ1.t/; t !C1:

Here the O.h�i�
3
2
C/ remainder in (81) can be put into b.t/ in (77).

The uniform boundedness of zJ .t; �/ is a consequence of the following simple lemma:
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Lemma 5.2. Suppose that AD A.s; !/ 2 C1c .R2/ and G 2 C1.RIR/. Then as h! 0

L.h/ WD

Z 1
0

Z
R

e
i
h
.G.!/Cs!/A.s; !/ d! ds DO

�
h log

�
1

h

��
: (82)

Proof. We define

B.�; !/ WD

Z 1
0

eis�A.s; !/ ds; B.�; !/D i��1A.0; !/CO.��2/; j� j !1:

Hence,

L.h/D

Z
R

e
i
h
G.!/B

�
!

h
; !

�
d! D h

Z
R

e
i
h
G.hw/B.w; hw/ dw

DO.h/
Z
jwj�C

h

dw

1Cjwj
DO

�
h log

�
1

h

��
;

proving (82). (In fact we see that the estimate is sharp: if we take G � 0 and A which is odd in !, one
does have logarithmic growth.) �

To use the lemma to show the bound zJ .t; �/DO.h�i�
1
2
C/, uniformly in t � 0, it suffices to consider

the case ht � 2= , since otherwise zJ .t; �/D zJ .1; �/. As before, we write � D �=h where � 2S1. Then

zJ .t; �/D
1

h

Z 1
0

Z
R

e
i
h
.s!�ht!�F.!;�// �.ht � s/ a

�
!;
�

h

�
'.!/ d! ds:

We now apply Lemma 5.2 with A.s; !/ WD h˛�
1
2�.ht � s/a.!; �=h/'.!/, ˛ > 0 (and arbitrary), and

G.!/ D �ht! �F.!; �/ to obtain, zJ .t/ D O.h
1
2
�˛ log.1=h// D O.h�i�

1
2
C2˛/, which concludes the

proof. �

6. Proof of the Main Theorem

In the approach of [Colin de Verdière and Saint-Raymond 2019] the decomposition of u.t/ is obtained
using (2) and proving that, for ' supported in a neighborhood of 0,

P�1.e�itP � 1/'.P /f
H�1=2�.M/
�������!�.P � i0/�1'.P /f; t !1; (83)

which makes formal sense if we think in terms of distributions. The rigorous argument requires finer
aspects of Mourre theory developed by Jensen, Mourre, and Perry [Jensen et al. 1984].

Here we take a more geometric approach and use Lemmas 3.3 and 4.1 to study the behavior of u.t/.
Fix ı > 0 small enough so that the results of Section 2A, as well as (33), hold. Fix ' 2 C1c ..�ı; ı//

such that ' D 1 near 0. By (2), the spectral theorem, and Stone’s formula (see for instance [DZ19,
Theorem B.8]) we have

u.t/D�i

Z t

0

e�isP'.P /f dsCP�1.e�itP � 1/.1�'.P //f

D
1

2�

Z t

0

Z
R

e�is! '.!/.u�.!/�uC.!// d! dsC b1.t/; (84)

where kb1.t/kL2 �C for all t �0 and u˙.!/ WD .P�!�i0/�1f 2H�
1
2
�.M/ are defined in Lemma 3.3.
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By Lemma 4.1 we have u˙.!/ 2 C1! .Œ�ı; ı�I I
0.M Iƒ˙! //. The main result (3), (4) then follows

from Lemma 5.1. Here we use a pseudodifferential partition of unity to write u˙.!/ as a finite sum of
oscillatory integrals (75) and the geometric condition (76) follows from Lemmas 2.2 and 2.3. We obtain
u1 D�u

C.0/, which is consistent with (83).

Acknowledgements

This note is a result of a “groupe de travail” on [Colin de Verdière and Saint-Raymond 2019] conducted
in Berkeley in February and March of 2018. We would like to thank the participants of that seminar and
in particular Thibault de Poyferré for explaining the fluid-mechanical motivation to us. Thanks go also to
András Vasy for a helpful discussion of results of [Haber and Vasy 2015]. We are also grateful to Michał
Wrochna for pointing out to us a mistake in Lemma 2.1 — see the remark following that lemma — and to
the anonymous referee for many suggestions to improve the manuscript. This research was conducted
during the period Dyatlov served as a Clay Research Fellow and Zworski was supported by the National
Science Foundation grant DMS-1500852 and by a Simons Fellowship.

References

[Colin de Verdière 2018] Y. Colin de Verdière, “Spectral theory of pseudo-differential operators of degree 0 and application to
forced linear waves”, 2018. To appear in Anal. PDE. arXiv

[Colin de Verdière and Saint-Raymond 2019] Y. Colin de Verdière and L. Saint-Raymond, “Attractors for two dimensional
waves with homogeneous Hamiltonians of degree 0”, Comm. Pure Appl. Math. (online publication May 2019).

[Datchev and Dyatlov 2013] K. Datchev and S. Dyatlov, “Fractal Weyl laws for asymptotically hyperbolic manifolds”, Geom.
Funct. Anal. 23:4 (2013), 1145–1206. MR Zbl

[Dyatlov 2012] S. Dyatlov, “Asymptotic distribution of quasi-normal modes for Kerr–de Sitter black holes”, Ann. Henri Poincaré
13:5 (2012), 1101–1166. MR Zbl

[Dyatlov and Guillarmou 2016] S. Dyatlov and C. Guillarmou, “Pollicott–Ruelle resonances for open systems”, Ann. Henri
Poincaré 17:11 (2016), 3089–3146. MR Zbl

[Dyatlov and Zworski 2016] S. Dyatlov and M. Zworski, “Dynamical zeta functions for Anosov flows via microlocal analysis”,
Ann. Sci. Éc. Norm. Supér. .4/ 49:3 (2016), 543–577. MR Zbl

[Dyatlov and Zworski 2017] S. Dyatlov and M. Zworski, “Ruelle zeta function at zero for surfaces”, Invent. Math. 210:1 (2017),
211–229. MR Zbl

[Dyatlov and Zworski 2019] S. Dyatlov and M. Zworski, Mathematical theory of scattering resonances, Graduate Studies in
Mathematics 200, American Mathematical Society, 2019. To appear; available at https://tinyurl.com/dyatzwor.

[Haber and Vasy 2015] N. Haber and A. Vasy, “Propagation of singularities around a Lagrangian submanifold of radial points”,
Bull. Soc. Math. France 143:4 (2015), 679–726. MR Zbl

[Hassell et al. 2004] A. Hassell, R. Melrose, and A. Vasy, “Spectral and scattering theory for symbolic potentials of order zero”,
Adv. Math. 181:1 (2004), 1–87. MR Zbl

[Hintz and Vasy 2018] P. Hintz and A. Vasy, “The global non-linear stability of the Kerr–de Sitter family of black holes”, Acta
Math. 220:1 (2018), 1–206. MR Zbl

[Hörmander 1985a] L. Hörmander, The analysis of linear partial differential operators, III: Pseudodifferential operators,
Grundlehren der Math. Wissenschaften 274, Springer, 1985. MR Zbl

[Hörmander 1985b] L. Hörmander, The analysis of linear partial differential operators, IV: Fourier integral operators, Grundle-
hren der Math. Wissenschaften 275, Springer, 1985. MR Zbl

http://msp.org/idx/arx/1804.03367
http://dx.doi.org/10.1002/cpa.21845
http://dx.doi.org/10.1002/cpa.21845
http://dx.doi.org/10.1007/s00039-013-0225-8
http://msp.org/idx/mr/3077910
http://msp.org/idx/zbl/1297.58006
http://dx.doi.org/10.1007/s00023-012-0159-y
http://msp.org/idx/mr/2935116
http://msp.org/idx/zbl/1246.83111
http://dx.doi.org/10.1007/s00023-016-0491-8
http://msp.org/idx/mr/3556517
http://msp.org/idx/zbl/1367.37038
http://msp.org/idx/mr/3503826
http://msp.org/idx/zbl/1369.37028
http://dx.doi.org/10.1007/s00222-017-0727-3
http://msp.org/idx/mr/3698342
http://msp.org/idx/zbl/1382.58022
https://tinyurl.com/dyatzwor
http://dx.doi.org/10.24033/bsmf.2702
http://msp.org/idx/mr/3450499
http://msp.org/idx/zbl/1336.35015
http://dx.doi.org/10.1016/S0001-8708(03)00020-3
http://msp.org/idx/mr/2020655
http://msp.org/idx/zbl/1038.35085
http://dx.doi.org/10.4310/ACTA.2018.v220.n1.a1
http://msp.org/idx/mr/3816427
http://msp.org/idx/zbl/1396.83018
http://msp.org/idx/mr/781536
http://msp.org/idx/zbl/0601.35001
http://msp.org/idx/mr/781537
http://msp.org/idx/zbl/0612.35001


384 SEMYON DYATLOV AND MACIEJ ZWORSKI

[Jensen et al. 1984] A. Jensen, E. Mourre, and P. Perry, “Multiple commutator estimates and resolvent smoothness in quantum
scattering theory”, Ann. Inst. H. Poincaré Phys. Théor. 41:2 (1984), 207–225. MR Zbl

[Melrose 1994] R. B. Melrose, “Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces”, pp. 85–130
in Spectral and scattering theory (Sanda, Japan, 1992), edited by M. Ikawa, Lecture Notes in Pure and Appl. Math. 161, Dekker,
New York, 1994. MR Zbl

[Nikolaev and Zhuzhoma 1999] I. Nikolaev and E. Zhuzhoma, Flows on 2-dimensional manifolds: an overview, Lecture Notes
in Math. 1705, Springer, 1999. MR Zbl

[Ralston 1973] J. V. Ralston, “On stationary modes in inviscid rotating fluids”, J. Math. Anal. Appl. 44 (1973), 366–383. MR
Zbl

[Vasy 2013] A. Vasy, “Microlocal analysis of asymptotically hyperbolic and Kerr–de Sitter spaces”, Invent. Math. 194:2 (2013),
381–513. MR Zbl

[Zworski 2016] M. Zworski, “Resonances for asymptotically hyperbolic manifolds: Vasy’s method revisited”, J. Spectr. Theory
6:4 (2016), 1087–1114. MR Zbl

Received 3 Jul 2018. Revised 18 Apr 2019. Accepted 19 Apr 2019.

SEMYON DYATLOV: dyatlov@math.berkeley.edu
Department of Mathematics, University of California, Berkeley, CA, United States

and

Department of Mathematics, MIT, Cambridge, MA, United States

MACIEJ ZWORSKI: zworski@math.berkeley.edu
Department of Mathematics, University of California, Berkeley, CA, United States

mathematical sciences publishers msp

http://www.numdam.org/item?id=AIHPB_1984__41_2_207_0
http://www.numdam.org/item?id=AIHPB_1984__41_2_207_0
http://msp.org/idx/mr/769156
http://msp.org/idx/zbl/0561.47007
http://msp.org/idx/mr/1291640
http://msp.org/idx/zbl/0837.35107
http://dx.doi.org/10.1007/BFb0093599
http://msp.org/idx/mr/1707298
http://msp.org/idx/zbl/1022.37027
http://dx.doi.org/10.1016/0022-247X(73)90065-6
http://msp.org/idx/mr/0337144
http://msp.org/idx/zbl/0273.76068
http://dx.doi.org/10.1007/s00222-012-0446-8
http://msp.org/idx/mr/3117526
http://msp.org/idx/zbl/1315.35015
http://dx.doi.org/10.4171/JST/153
http://msp.org/idx/mr/3584195
http://msp.org/idx/zbl/1365.58012
mailto:dyatlov@math.berkeley.edu
mailto:zworski@math.berkeley.edu
http://msp.org


PURE and APPLIED
ANALYSIS
Vol. 1, No. 3, 2019
dx.doi.org/10.2140/paa.2019.1.385

msp

CHARACTERIZATION OF EDGE STATES
IN PERTURBED HONEYCOMB STRUCTURES

ALEXIS DROUOT

This paper is a mathematical analysis of conduction effects at interfaces between insulators. Motivated
by work of Haldane and Raghu (2008), we continue the study of a linear PDE initiated by Fefferman,
Lee-Thorp, and Weinstein (2016). This PDE is induced by a continuous honeycomb Schrödinger operator
with a line defect.

This operator exhibits remarkable connections between topology and spectral theory. It has essential
spectral gaps about the Dirac point energies of the honeycomb background. In a perturbative regime,
Fefferman, Lee-Thorp, and Weinstein constructed edge states: time-harmonic waves propagating along the
interface, localized transversely. At leading order, these edge states are adiabatic modulations of the Dirac-
point Bloch modes. Their envelopes solve a Dirac equation that emerges from a multiscale procedure.

We develop a scattering-oriented approach that derives all possible edge states, at arbitrary precision.
The key component is a resolvent estimate connecting the Schrödinger operator to the emerging Dirac
equation. We discuss topological implications via the computation of the spectral flow, or edge index.

1. Introduction and results 385
2. Honeycomb potentials, Dirac points and edges 401
3. The characterization of edge states 404
4. The Bloch resolvent 409
5. The bulk resolvent along the edge 415
6. The resolvent of the edge operator 420
7. A topological perspective 429
Appendix 434
Acknowledgements 439
References 440

1. Introduction and results

A central branch of condensed matter physics studies energy propagation between dissimilar media. In
favorable conditions, the interface acts like a unidirectional channel for electronic transport: the material
is conducting in the edge direction but remains insulating transversely. In experiments, this property is
remarkably robust: it persists even if the interface becomes bent, sharp or disordered. The first theoretical
investigations concerned the quantum Hall effect [Ando et al. 1975; von Klitzing et al. 1980; Halperin
1982; Thouless et al. 1982; Hatsugai 1993]. The research has since focused on topological insulators
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[Kane and Mele 2005a; 2005b; Fu et al. 2007; Moore and Balents 2007; Hsieh et al. 2008; Roy 2009;
Zhang et al. 2009; Jotzu et al. 2014], together with their applications in electronics, photonics, acoustics,
mechanics and geophysics [Khanikaev et al. 2007; Yu et al. 2008; Wang et al. 2008; Singha et al. 2011;
Rechtsman et al. 2013; Nash et al. 2015; Brendel et al. 2017; Delplace et al. 2017; Ozawa et al. 2018;
Perrot et al. 2018].

Energy transport along the interface may be interpreted as a bifurcation phenomenon. In certain periodic
materials, the introduction of an edge forces Bloch modes to bifurcate into edge states: time-harmonic
waves propagating along rather than across the edge. This seemingly goes back to Tamm [1932], who
looked at bifurcations from local extrema in the band spectrum. Shockley [1939] next studied bifurcations
from linear crossings in the band spectrum on a one-dimensional example. In contrast with Tamm’s work,
Shockley’s analysis applies to insulators with narrow energy gaps. It was later discovered that Shockley’s
states may be topologically protected: they may persist against large local perturbations.

Honeycomb structures are invariant under 2π
3 -rotation and spatial inversion. These symmetries generate

Dirac points: conical degeneracies in the band spectrum. Impurities breaking spatial inversion split the
dispersion surfaces away and open energy gaps: the material transits from a metal to an insulator. Here
we analyze interface effects at the junction of two such insulators.

Motivated by [Haldane and Raghu 2008; Raghu and Haldane 2008], Fefferman, Lee-Thorp and Wein-
stein [Fefferman et al. 2016b] introduced a PDE that models parity-breaking perturbations of a continuous
honeycomb lattice (see Section 1A–1B). The perturbed operator exhibits (a) an edge that separates two
asymptotically periodic near-honeycomb structures; (b) gaps in the essential spectrum centered at Dirac
point energies of the honeycomb background. Under a spectral condition on the unperturbed operator
(see [Fefferman et al. 2016b, §1.3] and Section 1C), Fefferman, Lee-Thorp and Weinstein designed edge
states as adiabatic modulations of the Dirac-point Bloch modes. Their envelopes are eigenvectors of a
Dirac operator produced via a multiscale procedure. See [Fefferman et al. 2016b, Theorem 7.3].

Here, we follow instead a scattering approach. We recover the results of [Fefferman et al. 2016a;
2016b]. In addition, we obtain

• a resolvent estimate connecting the initial PDE to the emerging Dirac equation,

• the complete characterization of edge states in the energy gap,

• full expansions of the edge states at all order in the size of the perturbation.

See Sections 1E and 3C for precise statements.
The full identification of edge states represents the most significant advance. It allows for topological

interpretation of the results. In Section 1G, we compute the signed number of eigenvalues that move across
Dirac point energies when the edge-parallel quasimomentum runs from 0 to 2π . This is a topological
invariant of the system — called spectral flow or edge index — and it vanishes here. This calculation
confirms numerical simulations [Raghu and Haldane 2008; Fefferman et al. 2016a; Lee-Thorp et al. 2019].
It corroborates the prediction of the Kitaev table [Kitaev 2009; Ryu et al. 2010], combined with the
bulk-edge correspondence: breaking spatial inversion while keeping time-reversal invariance does not
create protected edge states.
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Figure 1. The equilateral lattice with its generating vectors v1, v2 and dual vectors k1, k2

together with the fundamental cell L.

In the last part of the work, we consider a magnetic analog of the operator studied in [Fefferman et al.
2016a; 2016b], similar to those of [Raghu and Haldane 2008; Haldane and Raghu 2008; Lee-Thorp et al.
2019]. It models time-reversal breaking instead of parity breaking. We show that the corresponding
spectral flow equals either 2 or−2. This confirms the existence of at least two topologically protected, uni-
directionally propagating waves along the edge; see [Haldane and Raghu 2008] and the Kitaev table [Kitaev
2009; Ryu et al. 2010], as well as the numerical results [Raghu and Haldane 2008; Lee-Thorp et al. 2019].

1A. Periodic operators and Dirac points. We start with a description of honeycomb potentials as in
[Fefferman and Weinstein 2012]. Let 3 be the equilateral Z2-lattice. It is generated by two vectors v1

and v2, given in canonical coordinates by

v1 = a
[√

3
1

]
, v2 = a

[√
3
−1

]
, (1-1)

where a > 0 is a constant such that Det[v1, v2] = 1. The dual basis k1, k2 consists of two vectors in
(R2)∗ which satisfy 〈ki , vj 〉 = δi j . (See Figure 1.) The dual lattice is 3∗ = Zk1⊕Zk2. The corresponding
fundamental cell and dual fundamental cell are

L
def
= {sv1+ s ′v2 : s, s ′ ∈ [0, 1)}, L∗

def
= {τk1+ τ

′k2 : τ, τ
′
∈ [0, 2π)}. (1-2)

Definition 1.1. We say that V ∈ C∞(R2,R) is a honeycomb potential if:

• V is 3-periodic: V (x +w)= V (x) for w ∈3.

• V is even: V (x)= V (−x).

• V is invariant under the 2π
3 -rotation

V (Rx)= V (x), R def
=

1
2

[
−1

√
3

−
√

3 −1

]
.

A simple example of honeycomb potential is the periodization of a radial function over the lattice(
v1+ v2

3
+3

)
∪

(
2v1+ 2v2

3
+3

)
;
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v1

v2

L

Figure 2. If each gray circle supports the same radial function (with respect to the center
of the circle), the resulting potential has the honeycomb symmetry.

see Figure 2. Given a honeycomb potential V, we will study spatially delocalized perturbations of the
(unbounded) Schrödinger operator

P0
def
=−1+ V : L2(R2,C)→ L2(R2,C),

with domain H 2(R2,C). This operator is periodic with respect to3. This allows us to apply Floquet–Bloch
theory; see [Reed and Simon 1978, §XIII]: P0 leaves the space

L2
ξ

def
= {u ∈ L2

loc(R
2,C) : u(x +w)= ei〈ξ,w〉u(x), w ∈3}, ξ ∈ R2,

invariant. The space L2
ξ is Hilbertian when equipped with the Hermitian form

〈 f, g〉L2
ξ

def
=

∫
L

f (x)g(x) dx .

Let P0(ξ) be formally equal to P0 =−1+ V, but acting on L2
ξ . It has compact resolvent and discrete

spectrum — denoted below by 6L2
ξ
(P0(ξ))— depending on ξ :

λ0,1(ξ)≤ λ0,2(ξ)≤ · · · ≤ λ0, j (ξ)≤ · · · .

The maps ξ ∈ R2
7→ λ0, j (ξ) are called dispersion surfaces of P0. The L2-spectrum of P0 consists of the

ranges of the dispersion surfaces: it equals

6L2(P0)=
⋃
ξ∈R2

6L2
ξ
(P0(ξ))= {λ0, j (ξ) : j ≥ 1, ξ ∈ R2

}.

We now discuss Dirac points. Roughly speaking, they correspond to the conical degeneracies in the
band spectrum of P0.

Definition 1.2. A pair (ξ?, E?) ∈ R2
×R is a Dirac point of P0 =−1+ V if:

(i) E? is an L2
ξ?

-eigenvalue of P0(ξ?) of multiplicity 2;



CHARACTERIZATION OF EDGE STATES IN PERTURBED HONEYCOMB STRUCTURES 389

(ii) There exists an orthonormal basis {φ1, φ2} of kerL2
ξ?
(P0(ξ?)− E?) such that

φ1(Rx)= e2iπ/3φ1(x), φ2(x)= φ1(−x), φ2(Rx)= e−2iπ/3φ2(x). (1-3)

(iii) There exist j? ≥ 1 and νF > 0 such that for ξ close to ξ?,

λ0, j?(ξ)= E?− νF · |ξ − ξ?| + O(ξ − ξ?)2,

λ0, j?+1(ξ)= E?+ νF · |ξ − ξ?| + O(ξ − ξ?)2.

When V is a honeycomb potential, [Fefferman and Weinstein 2012] showed that P0 = −1 + V
generically admits Dirac points (ξ?, E?). We refer to that paper for details and to Section 2C for a review
of their results. Because of (1-3), (ξ?, E?) must satisfy

ξ? ∈ {ξ
A
? , ξ

B
? } mod 2π3∗, ξ A

?

def
=

2π
3 (2k1+ k2), ξ B

?

def
=

2π
3 (k1+ 2k2). (1-4)

See Figure 3. Symmetries impose that (ξ A
? , E?) is a Dirac point of P0 if and only if (ξ B

? , E?) is a Dirac
point of P0. We call the pair (φ1, φ2) of (1-3) a Dirac eigenbasis.

As observed in [Fefferman and Weinstein 2012], Dirac points are stable against small perturbations
preserving spatial inversion (parity) and time-reversal symmetry (conjugation). Conversely, breaking
parity (while keeping conjugation invariance) generically opens spectral gaps about Dirac point energies.
For δ 6= 0, we introduce the operator

Pδ
def
= P0+ δW =−1+ V + δW, where

W ∈ C∞(R2,R), W (x +w)=W (x), w ∈3, W (−x)=−W (x).
(1-5)

We will assume in the rest of the paper that the nondegeneracy condition

ϑ?
def
= 〈φ1,Wφ1〉L2

ξ?
6= 0 (1-6)

holds. This condition is generic in the sense that it excludes only a hyperplane of potentials W in the
space of odd, smooth, 3-periodic functions. Under (1-6), if (ξ?, E?) is a Dirac point of P0, then the
operator Pδ(ξ?) (equal to Pδ, but acting on L2

ξ?
) admits an L2

ξ?
-spectral gap centered at E?:

dist(6L2
ξ?
(Pδ(ξ?)), E?)= ϑF · δ+ O(δ2), ϑF

def
= |ϑ?|.

This gap has width 2ϑF · δ+ O(δ2); see Figure 3. This is a simple fact proved via perturbation analysis;
see, e.g., [Fefferman and Weinstein 2012, Remark 9.2] or Section 4B. Whether this L2

ξ?
-spectral gap

extends to a global L2-gap of Pδ depends on the global behavior of the dispersion surfaces of P0; see
[Fefferman et al. 2016b, §1.3 and §8]. When it does, the operators P±δ describe insulators at energy E?
with a narrow gap centered at E?. These materials are parity-breaking perturbations of the metal modeled
by P0.

1B. Edges and the model. We now describe the model of Fefferman, Lee-Thorp, and Weinstein [Feffer-
man et al. 2016a; 2016b] for honeycomb operators with an edge. Fix v= a1v1+a2v2 ∈3, with a1, a2 ∈Z
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2πk1

2πk2

L∗

ξ B
?

ξ A
?

ξ

E

(ξ?, E?)•

λ0, j?+1(ξ)

λ0, j?(ξ)

ξ

E

∼ 2ϑFδ

Figure 3. The picture on the left represents the Dirac points ξ A
? and ξ B

? inside a dual
fundamental cell L∗. The two pictures on the right represent the bifurcation of a Dirac
point (ξ?, E?) to an open gap on a one-dimensional section of the Brillouin zone.

relatively prime, representing the direction of an edge Rv. We introduce v′ ∈3 and k, k ′ ∈3∗ such that

v′
def
= b1v1+ b2v2, a1b2− a2b1 = 1, b1, b2 ∈ Z,

k def
= b2k1− b1k2, k ′ def

=−a2k1+ a1k2.
(1-7)

The pairs (v, v′) and (k, k ′) are dual to one another and span 3 and 3∗. See Section 2E.
Recall that P±δ = −1+ V ± δW. Fefferman, Lee-Thorp, and Weinstein [Fefferman et al. 2016a;

2016b] analyzed an operator Pδ that describes an adiabatic transition from P−δ to Pδ transversely to the
edge Rv. Specifically,

Pδ
def
= P0+ δ · κδ ·W =−1+ V + δ · κδ ·W.

Above, the function κδ ∈C∞(R2,R) is an adiabatic modulation of a domain wall κ ∈C∞(R,R) along Rv:

κδ(x)= κ(δ〈k ′, x〉), ∃L > 0, κ(t)=
{
−1 when t ≤−L ,

1 when t ≥ L .
(1-8)

The operator Pδ is a Schrödinger operator with potential represented in Figure 9. It models the soft
junction of two insulators modeled by P±δ along the interface Rv.

Although Pδ is not periodic with respect to 3, it is periodic with respect to Zv because 〈k ′, v〉 = 0.
For every ζ ∈ R, Pδ acts as an unbounded operator on

L2
[ζ ]

def
=
{
u ∈ L2

loc(R
2,C) : u(x + v)= eiζu(x),

∫
R2/Zv

|u(x)|2 dx <∞
}
, (1-9)

with domain H 2
[ζ ]— defined according to (1-9). Let Pδ[ζ ] be the resulting operator.

We continue the analysis of [Fefferman et al. 2016a; 2016b]: we study the electronic properties of
the material modeled by Pδ. We investigate whether energy propagates along the edge Rv. This boils
down to studying edge states of Pδ . These are time-harmonic waves propagating along Rv and localized
transversely to Rv. Mathematically, they are the L2

[ζ ]-eigenvectors of Pδ[ζ ]. Such states correspond to
diffusionless electronic channels along Rv; they have great potential in technological applications.
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1C. The no-fold condition of Fefferman, Lee-Thorp, and Weinstein. We set ζ? = 〈ξ?, v〉 and ζ J
? =

〈ξ J
? , v〉. Thanks to (1-4),

ζ A
? =

2π
3 (2a1+ a2), ζ B

? =
2π
3 (a1+ 2a2). (1-10)

Hence, ζ? ∈
{
0, 2π

3 ,
4π
3

}
mod 2πZ. Recall the no-fold condition [Fefferman et al. 2016b, §1.3].

Definition 1.3. The no-fold condition holds along the edge Rv at ζ? if

∀ j ≥ 1, ∀τ ∈ R, λ0, j (ζ?k+ τk ′)= E? =⇒ j ∈ { j?, j?+ 1} and τ = 〈ξ?, v
′
〉 mod 2π.

The essential spectrum of Pδ[ζ?] is obtained from the (essential) spectra of the bulk operators P±δ[ζ?]
(the operators formally equal to P±δ , but acting on L2

[ζ?]). These are conjugated under spatial inversion.
Therefore they have the same spectrum. From Floquet–Bloch theory,

6L2[ζ?],ess(Pδ[ζ?])=6L2[ζ?](Pδ[ζ?])=
⋃

ξ∈ζ?k+Rk′
6L2

ξ
(Pδ(ξ)).

If (ξ?, E?) is a Dirac point of P0 and ϑ? 6= 0, then for small δ, P±δ(ξ) has an L2
ξ -spectral gap centered

at E? when ξ is O(δ)-away from ξ? — see, e.g., Section 4B. The no-fold condition requires this gap to
extend to an L2

[ζ?]-spectral gap of P±δ[ζ?].
The no-fold condition holds for |V |∞ sufficiently small and the zigzag edge a1 = 1, a2 = 0 [Fefferman

et al. 2016b, Theorem 8.2]. It holds for |V |∞ sufficiently large and edges satisfying a1 6= a2 mod 3
[Fefferman et al. 2018, Corollary 6.3]. It may fail in physically relevant cases. See, e.g., the case of certain
low-contrast potentials and the zigzag edge [Fefferman et al. 2016b, Theorem 8.4] and armchair-type
edges v = a1v1+ a2v2, where a1− a2 = 0 mod 3 [Fefferman et al. 2018, Remark 6.5] or Section 2E. In
particular, if the no-fold condition holds, (1-10) and a1−a2 6= 0 mod 3 prescribe the possible values of ζ?:

ζ? ∈ {ζ
A
? , ζ

B
? } =

{2π
3 ,

4π
3

}
mod 2πZ.

1D. The multiscale approach of [Fefferman et al. 2016b] and the Dirac operator. Let (ξ?, E?) be a
Dirac point of P0 and (φ1, φ2) be a Dirac eigenbasis (see Definition 1.2). The map

η ∈ R2
7→ 2〈φ1, (η · Dx)φ2〉 ∈ C (1-11)

is linear. Because of rotational invariance of P0 =−1+V, the map (1-11) acts (as an application from C

to C) like a complex multiplication:

∃ν? ∈ C \ {0}, ∀η ∈ R2
≡ C, ν?η = 2〈φ1, (η · Dx)φ2〉L2

ξ?
.

See Section 2C. Recall that ϑ? = 〈φ1,Wφ1〉L2
ξ?
6= 0 and that κ satisfies (1-8). In this section, we review

the role of the (unbounded) Dirac operator

/D? =

[
0 ν?k ′

ν?k ′ 0

]
Dt +ϑ?

[
1 0
0 −1

]
κ : L2(R,C2)→ L2(R,C2)

in the analysis of Fefferman, Lee-Thorp, and Weinstein [Fefferman et al. 2016b].
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When ϑ? 6= 0, [loc. cit.] produces arbitrarily accurate quasimodes of Pδ[ζ?] via a multiscale approach.
These are pairs (uδ, Eδ) ∈ H 2

ζ?
×R satisfying

(Pδ[ζ?] − Eδ)uδ = OL2[ζ?](δ
∞), Eδ = E?+ δE1+ O(δ2).

They are power series in δ whose coefficients solve a hierarchy of equations of orders 1, δ, δ2, . . . . The
operator /D? appears in the equation of order δ. This equation admits a solution if and only if E1 is an
eigenvalue of /D?; see [loc. cit., §6].

The operator /D? has essential spectrum equal to (−∞, ϑF ] ∪ [ϑF ,∞). It has an odd number of
eigenvalues {ϑj }

N
j=−N in (−ϑF , ϑF ), simple and symmetric about 0:

ϑ−N < · · ·< ϑ−1 < ϑ0 = 0< ϑ1 < · · ·< ϑN , ϑ− j =−ϑj .

In particular, 0 is always an eigenvalue of /D?. We refer to see Section 3B for details.
When the no-fold condition holds, [loc. cit.] uses a sophisticated Lyapounov–Schmidt reduction to

prove that each eigenvalue ϑj of /D? seeds an L2
[ζ?]-eigenvalue of Pδ[ζ?], with energy E?+δϑj +O(δ2).

They show that to leading order, the corresponding eigenvector equals the first term produced by the
multiscale approach: it is

α1(δ〈k ′, x〉) ·φ1(x)+α2(δ〈k ′, x〉) ·φ2(x)+ OH2
ζ?
(δ1/2), ( /D?−ϑj )

[
α1

α2

]
= 0.

In other words, they validate mathematically the formal multiscale procedure at leading order. But some
questions persist:

• Is the multiscale procedure rigorously valid at all orders?

• Do the eigenvalues of /D? seed all eigenvalues of Pδ[ζ?] near E??

• How can the relation between Pδ[ζ?] and /D? be clarified?

The present work responds to these questions.

1E. Results. Our first result relates the resolvents of Pδ[ζ?] and /D?. It requires the operator 5 and its
adjoint 5∗, defined as

5 : L2(R2/Zv,C2)→ L2(R,C2), (5 f )(t) def
=
∫ 1

0 f (sv+ tv′) ds,

5∗ : L2(R,C2)→ L2(R2/Zv,C2), (5∗g)(x) def
= g(〈k ′, x〉),

and the dilation Uδ defined as

Uδ : L2(R,C2)→ L2(R,C2), (Uδ f )(t) def
= f (δt).

Recall that V is a honeycomb potential — see Definition 1.1; W ∈C∞(R2,R) breaks spatial inversion —
see (1-5); and κ ∈ C∞(R,R) is a domain wall function — see (1-8). We make the following assumptions:

(H1) (ξ?, E?) is a Dirac point of P0 =−1+ V — see Definition 1.2 — with ξ? ∈ L∗.

(H2) The no-fold condition — Definition 1.3 — holds.

(H3) The nondegeneracy assumption ϑ? 6= 0 holds — see (1-6).
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Theorem 1.4. Assume (H1)–(H3) hold and fix ε > 0. There exists δ0 > 0 such that if

δ ∈ (0, δ0), z ∈ D(0, ϑF − ε), dist(6L2( /D?), z)≥ ε, λ= E?+ δz

then Pδ[ζ?] − λ is invertible and

(Pδ[ζ?] − λ)
−1
=

1
δ
·

[
φ1

φ2

]>
·5∗Uδ · ( /D?− z)−1

·U−1
δ 5 ·

[
φ1

φ2

]
+OL2[ζ?](δ

−1/3). (1-12)

The leading-order term in (1-12) comes with a coefficient 1/δ: the remainder term OL2[ζ?](δ
−1/3) is

subleading when z ∈ D(0, ϑF − ε). Hence, Theorem 1.4 shows that the resolvents of Pδ[ζ?] and of /D?

behave similarly, after suitable conjugations.
Theorem 1.4 applies to a spectral range that spans — modulo ε— the entire spectral gap of Pδ[ζ?]

about E?. The next result describes the spectrum of Pδ[ζ?] in the essential spectral gap in terms of the
eigenvalues

ϑ−N < · · ·< ϑ−1 < ϑ0 = 0< ϑ1 < · · ·< ϑN

of the Dirac operator /D?. Let X be the function space equal to

{ f ∈ C∞(R2
×R,C) : ∀t ∈ R, f ( · , t) ∈ L2

ξ?
and ∃a > 0, sup ea|t |

| f (x, t)|<∞}. (1-13)

Corollary 1.5. Assume (H1)–(H3) hold and fix ϑ] ∈ (ϑN , ϑF ). There exists δ0> 0 such that for δ ∈ (0, δ0)

the operator Pδ[ζ?] has exactly 2N + 1 eigenvalues {Eδ, j } j∈[−N ,N ] in [E?−ϑ]δ, E?+ϑ]δ] that are all
simple.

The associated eigenpairs (Eδ, j , uδ, j ) admit full two-scale expansions in powers of δ:

Eδ, j = E?+ϑj · δ+ a2 · δ
2
+ · · ·+ aM · δ

M
+ O(δM+1),

uδ, j (x)= f0(x, δ〈k ′, x〉)+ δ · f1(x, δ〈k ′, x〉)+ · · ·+ δM
· fM(x, δ〈k ′, x〉)+ oH k (δM).

In the above:

• M and k are any integers; H k is the k-th order Sobolev space.

• The terms am ∈ R, fm ∈ X are recursively constructed via multiscale analysis.

• The leading-order term f0 satisfies

f0(x, t)= α1(t) ·φ1(x)+α2(t) ·φ2(x), ( /D?−ϑj )

[
α1

α2

]
= 0.

This corollary (a) mathematically validates the multiscale procedure of [Fefferman et al. 2016b] at all
orders in δ, and (b) shows that all eigenvectors of Pδ[ζ?] are induced by the modes of /D?. See Figures 4
and 5. In particular, (a) improves the result of Fefferman, Lee-Thorp, and Weinstein [loc. cit.] to arbitrary
order in δ. From a general point of view, (b) represents the most important advance. It characterizes
edge states topologically. It opens the way for mathematical proofs of the bulk-edge correspondence in
continuous honeycomb structures. See Section 1G and [Drouot 2019] for further details.
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−ϑF ϑF

• • •

0
• •

Spectrum of /D?

E?−ϑFδ E?+ϑFδ

• • •
E?

• •

Spectrum of Pδ[ζ?]

Figure 4. Eigenvalues of /D? in (−ϑF , ϑF ) (top) and eigenvalues of Pδ in the spectral
gap containing E? (bottom). An approximate rescaling equal to z 7→ E?+ δz+ O(δ2)

maps the top to the bottom. The red dots represent the zero eigenvalue of /D? and the
corresponding one for Pδ. Theorem 1.4 and Corollary 1.5 do not apply in the lighter
gray area near the essential spectrum.

ϑ1
ϑ]

ϑF
essential spectrum

Eδ,1Eδ,0
δ

EE?
•

Figure 5. Discrete eigenvalues of /D? seed the bifurcation of eigenvalues of Pδ (red
dotted curves) from the Dirac point energy E? (at δ = 0) of P0 as δ increases away from
zero. The slopes of these curves at δ = 0 (blue lines) are given by the eigenvalues of /D?.

1F. Extension to quasimomenta near ζ?. Corollary 1.5 predicts that for δ ∈ (0, δ0), Pδ[ζ?] has precisely
2N+1 eigenvalues near E?. A general perturbation argument shows that Pδ[ζ ] also has 2N+1 eigenvalues
for ζ close enough to ζ?. However this argument does not specify quantitatively how close ζ needs to be
to ζ?.

We prove generalizations of Theorem 1.4 and Corollary 1.5 that hold for ζ at distance O(δ) from ζ?;
see Section 3C for statements. We show that the eigenvalues of Pδ[ζ?+µδ] lying near E? and of the
Dirac operator

/D(µ) def
=

[
0 ν?k ′

ν?k ′ 0

]
Dt +µ

[
0 ν?`

ν?` 0

]
+ϑ?

[
1 0
0 −1

]
κ, `

def
= k−

〈k, k ′〉
|k ′|2

k ′,

are O(δ2)-away after the rescaling z 7→ E?+ δz.
Interestingly enough, the spectrum of /D(µ) can be derived from that of /D?= /D(0); see Section 3B and

Figure 6. We observe that /D(µ) has a topologically protected mode that bifurcates linearly from the zero
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ϑ? > 0

µ

E

essential spectrum

µ

ϑ? < 0

E

essential spectrum

Figure 6. The spectrum of /D(µ) as a function of µ. The topologically protected eigen-
value (in red) bifurcate linearly, while the nontopologically protected eigenvalues (in
blue) bifurcate quadratically.

mode of /D?. This suggests that under the Pδ time-dependent evolution, L2-wave packets formed from
the topologically protected mode of /D(µ) propagate dispersionless along the edge for a very long time.

All other modes of /D(µ) are nontopologically protected and bifurcate quadratically from the modes
of /D?. L2-wave packets formed from such modes should have a shorter lifetime. This suggests that
topologically protected modes are more robust even in the time-dependent situation.

1G. A topological perspective. Recall that k ′ ∈3∗ is the dual direction transverse to an edge Rv and that
λ0, j (ξ) are the dispersion surfaces of a honeycomb Schrödinger operator P0. Let (ξ?, E?)= (ξ?, λ0, j?(ξ?))

denote a Dirac point of P0. We introduce an assumption (H4) that extends (H3) to values ζ 6= ζ?. It asks
for the j?-th L2

[ζ ]-gap of P0[ζ ] to be open when ζ /∈
{ 2π

3 ,
4π
3

}
mod 2πZ.

(H4) For every ζ /∈
{2π

3 ,
4π
3

}
mod 2πZ, for every τ, τ ′ ∈ R,

λ0, j?(ζk+ τk ′) < λ0, j?+1(ζk+ τ ′k ′).

Assumption (H4) holds for nonarmchair-type edges (a1 6= a2 mod 3) and high-contrast potentials: see
[Fefferman et al. 2018, Theorem 6.1 and Remark 6.5]. This follows from two general phenomena:

• Schrödinger operators with multiple-well potentials approach their tight binding limits as the depth
of the wells increases [Harrell 1979; Helffer and Sjöstrand 1984; 1985; 1987; Simon 1984; Martinez
1987; 1988; Outassourt 1987; Carlsson 1990; Fefferman et al. 2018; Fefferman and Weinstein 2018];

• Wallace’s tight binding model of honeycomb lattices [1947] satisfies a suitable version of (H4).

When (H1)–(H4) hold and δ is sufficiently small, the j?-th L2
[ζ ]-gap of Pδ[ζ ] is open. This allows us

to define the spectral flow of the family

ζ ∈ [0, 2π ] 7→Pδ[ζ ]
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E?

essential spectrum

ζ

E

2π
3

4π
3

Figure 7. The spectrum of Pδ[ζ ] as a function of ζ . The dark gray region represents
the essential spectrum. The dotted curves are the eigenvalues of Pδ[ζ ] (the edge state en-
ergies). Zooming about δ−1 times near

(2π
3 , E?

)
or
( 4π

3 , E?
)

produces Figure 6. Because
of complex conjugation, ϑ A

? =−ϑ
B
? : near 2π

3

(
resp. 4π

3

)
, the red curves move upwards

(resp. downwards). This results in a spectral flow cancellation.

in the j?-th L2
[ζ ]-gap. It is the signed number of L2

[ζ ]-eigenvalues of Pδ[ζ ] crossing the j?-th gap
downwards as ζ runs from 0 to 2π ; see, e.g., [Waterstraat 2017, §4]. Corollary 3.3 in Section 3C allows
one to count precisely these eigenvalues. It leads to:

Corollary 1.6. Assume that (H1)–(H4) hold for both Dirac points (ξ A
? , E?) and (ξ B

? , E?). There exists
δ0 > 0 such that for all δ ∈ (0, δ0), the spectral flow of Pδ in the j?-th L2

[ζ ]-gap vanishes.

This is because ϑ A
? and ϑ B

? are opposite — where ϑ J
? corresponds to ϑ? for the Dirac point (ξ J

? , E?).
See Figure 7. The spectral flow is a topological invariant: it does not change if a 2π-periodic family of
compact operators H 2

[ζ ] → L2
[ζ ] is added to Pδ[ζ ]. Hence Corollary 1.6 is very robust. However, it is

a disappointing result: it suggests that the edge states of Corollary 1.5 shall not be topologically stable.
We conjecture:

Conjecture. Assume that (H1)–(H4) hold for both Dirac points (ξ A
? , E?) and (ξ B

? , E?). There exists
δ0 > 0 such that for every δ ∈ (0, δ0) there exists a family ζ ∈ R 7→ Bδ(ζ ) such that:

• Bδ(ζ ) is a compact operator H 2
[ζ ] → L2

[ζ ].

• Bδ(ζ ) depends continuously on ζ (with respect to the operator norm on H 2
[ζ ] → L2

[ζ ]) and
Bδ(ζ + 2π)= Bδ(ζ ) for every ζ ∈ R.

• Pδ[ζ ] + Bδ(ζ ) : H 2
[ζ ] → L2

[ζ ] has no eigenvalues in the essential spectral gap containing E?.

On a positive note, our approach also applies to magnetic Schrödinger operators

Pδ =−(∇R2 + iδ · κδ ·A)2+ V,

A ∈ C∞(R2,R2), A(x +w)= A(x), w ∈3, A(−x)=−A(x).
(1-14)

The asymptotic operators for 〈k ′, x〉 near ±∞ are equal to

−(∇R2 + iδA)2+ V . (1-15)
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E?

essential spectrum

ζ

E

2π
3
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Figure 8. The spectrum of the magnetic-like perturbation Pδ of P0 for positive θ?. The
topologically protected mode of the Dirac operator induces precisely two edge-state
energy curves. In contrast with Figure 7, θ A

? = θ
B
? : both red curves move upwards. The

resulting spectral flow is −2, indicating topologically protected states.

From a physical point of view, (1-15) models quantum particles in a magnetic field δB = δ(∂1A2− ∂2A1)

(oriented in the direction e3 ∈ R3 orthogonal to R2) and an electric field ∇V. Therefore Pδ repre-
sents particles evolving in a near-periodic electromagnetic background, with magnetic field varying
adiabatically along Rv′ from −δB to δB. Note that the magnetic flux of B vanishes because B is
periodic.

We can see (1-14) as a perturbation of −1+ V by

δ · κδ ·W, W
def
= A · Dx + Dx ·A,

modulo a term of order δ2. The perturbation W no longer breaks spatial inversion; instead it breaks
time-reversal symmetry (complex conjugation). See [Raghu and Haldane 2008; Haldane and Raghu 2008;
Lee-Thorp et al. 2019] for related models. We replace (H3) with:

(H3′) The nondegeneracy condition θ?
def
= 〈φ1,Wφ1〉L2

ξ?
6= 0 holds.

When (H1), (H2) and (H3′) hold, the operator Pδ[ζ?] has an essential spectral gap centered at E?, of
width of order δ— similarly to Pδ[ζ?]. If moreover (H4) holds, then we can define the spectral flow of
the family ζ 7→ Pδ[ζ ].

Corollary 1.7. Assume that (H1), (H2), (H3′) and (H4) hold for both Dirac points (ξ A
? , E?) and (ξ B

? , E?).
There exists δ0 > 0 such that for all δ ∈ (0, δ0), the spectral flow of Pδ equals −2 · sgn(θ?).

Corollary 1.7 shows that Pδ admits two topologically protected edge states; see Figure 8. This
corroborates results of [Haldane and Raghu 2008; Raghu and Haldane 2008], where two quasimodes
are produced via a multiscale approach. They were not proved to be topologically protected there: a
statement in the spirit of Corollary 3.3 is missing. The authors perform a formal computation of the bulk
index: they show that it should equal 2 or −2. We studied rigorously the bulk aspects of our problem
in the recent work [Drouot 2019].
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1H. Strategy. Our proof has three essential components:

• The simplest step consists in deriving Corollary 1.5 from Theorem 1.4; see Section 3C. Theorem 1.4 is
used to count the exact number 2N +1 of eigenvalues in the essential spectral gap (slightly away from the
edges). We derive the full expansion of edge states in powers of δ using (a) the formal multiscale procedure
of [Fefferman et al. 2016b] to produce 2N + 1, almost orthogonal, arbitrarily accurate quasimodes, and
(b) a general selfadjoint principle that implies that these quasimodes must all be near genuine eigenvectors.

• We derive resolvent estimates for the bulk operators P±δ[ζ?]. We first obtain resolvent estimates for the
operators P±δ(ξ) : H 2

ξ → L2
ξ in Section 4. We prove that near (ξ?, E?), these operators essentially behave

like Pauli matrices. In Section 5 we integrate these estimates along the dual edge ζ?k+Rk ′ and derive
the expansion

(P±δ[ζ?] − λ)−1
=

1
δ
·

[
φ1

φ2

]>
5∗ ·Uδ( /D?,±− z)−1U−1

δ ·5

[
φ1

φ2

]
+OL2[ζ ](δ

−1/3).

Above, 5 and Uδ are the operators introduced in Section 1E, and /D?,± are the formal limits of /D? as t
goes to ±∞.

• We use a sophisticated version of the Lippmann–Schwinger principle to connect the resolvents of Pδ[ζ?]

and of P±δ[ζ?]. This requires us to construct a parametrix for Pδ[ζ?]. After algebraic manipulations —
essentially cyclicity arguments — homogenization effects take place and produce the operator /D?. This
leads to the resolvent estimate of Theorem 1.4.

1I. Relation to earlier work. The mechanism responsible for the production of edge states is the bifurca-
tion of eigenvalues from the edge of the continuous spectrum. Such problems have a long history: see, e.g.,
[Tamm 1932; Schockley 1939; Simon 1976; Deift and Hempel 1986; Figotin and Klein 1997; Borisov
2007; 2011; 2015; Borisov and Gadyl’shin 2008; Parzygnat et al. 2010; Hoefer and Weinstein 2011;
Zelenko 2016] for states generated by defects in periodic backgrounds; and [Golowich and Weinstein
2005; Borisov and Gadyl’shin 2006; Duchêne and Weinstein 2011; Duchêne et al. 2014; Dimassi 2016;
Dimassi and Duong 2017; Drouot 2018a; 2018c; 2018d; Duchêne and Raymond 2018] for localized
highly oscillatory perturbations.

Fefferman, Lee-Thorp and Weinstein [Fefferman et al. 2016a; 2016b] produced the closest results to
our analysis. They were the first to prove existence of edge states for continuous honeycomb lattices in
the small/adiabatic regime δ→ 0. They built on their own work [Fefferman et al. 2014; 2017], where
they proved existence of defect states for dislocated one-dimensional materials.

Our work improves and extends [Fefferman et al. 2016a; 2016b] in the following ways:

• It connects the resolvents of Pδ[ζ ] and /D(µ).

• It provides full expansions of edge states in powers of δ.

• It identifies all edge states with energy near Dirac point energies.

The third point allows for the topological interpretation of the results in terms of the spectral flow of
ζ 7→ Pδ[ζ ]. This is a robust invariant of the system, also called the edge index. We conjecture that
the modes of Pδ[ζ ] should not be topologically protected: the edge index vanishes. However, for the
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magnetic operator Pδ[ζ ] introduced in (1-14), two such states are topologically protected: they persist
under large (suitable) deformations.

We refer to [Gérard et al. 1991; Panati et al. 2003; Watson et al. 2017; Watson and Weinstein 2018] for
the study of similar operators with perturbations that vary adiabatically in all directions and to [De Nittis
and Lein 2011; 2014; Cornean et al. 2015; 2017a; 2017b] for analysis of perturbations small with respect
to the inverse scale of variation. The scaling studied here is peculiar: the perturbation varies adiabatically
in one direction only.

Our strategy generalizes the one-dimensional work [Drouot et al. 2018], developed to improve the
results of [Fefferman et al. 2014; 2017]. The construction of genuine edge states from quasimodes in
Section 3C follows the classical approach of [Drouot et al. 2018, §3.3]. We derive the fiberwise resolvent
estimates for P±δ(ξ) in Sections 4A–4B as in [loc. cit., §4.1-4.2]. We did not prove resolvent estimates
in [loc. cit.]; we used instead Fredholm determinants.

We pushed the analysis of [Drouot et al. 2018] further in [Drouot 2018b]. There, we showed that the
defect states of [Fefferman et al. 2014; 2017] are topologically stable in the following sense. The model
embeds naturally in a one-parameter family of dislocated systems, related to [Post 2003; Korotyaev 2000;
Hempel and Kohlmann 2011a; 2011b; Dohnal et al. 2009; Hempel et al. 2015]. We compute the spectral
flow in terms of bulk quantities. We show that it is equal to the bulk index — the Chern number of a Bloch
eigenbundle for the bulk. Hence, [Drouot 2018b] provides a novel continuous setting where the bulk-edge
correspondence holds — adding to [Kellendonk and Schulz-Baldes 2004a; 2004b; Taarabt 2014; Fukui
et al. 2012; Bal 2017; 2018; Bourne and Rennie 2018]. A similar strategy has been developed in [Drouot
2019] to deal with magnetic honeycomb operators.

1J. Further perspectives. Our results stimulate future lines of research:

• Armchair-type edges are edges such that the associated dual line ζ?k+Rk ′ passes through both Dirac
momenta ξ A

? and ξ B
? . They correspond to the directions

v = a1v1+ a2v2, v1 ∧ v2 = 1, a1 = a2 mod 3; (1-16)

see Section 2E. The no-fold condition barely fails for such edges: Pδ[ζ?] still has an essential gap in, say,
the sharp-contrast regime. See [Fefferman et al. 2018, Corollary 6.3]. We expect our techniques to be
robust enough to handle such edges. In particular, a 2× 2 block of uncoupled Dirac operators should
emerge in the resolvent estimates.

• This work may open the way to prove the no-fold conjecture of Fefferman, Lee-Thorp, and Weinstein
[Fefferman et al. 2016b]. It predicts that long-lived resonant edge states should appear when the no-fold
condition fails. This is supported by the existence of highly accurate localized quasimodes, still produced
by the formal multiscale procedure of [loc. cit.]. See [Gérard and Sigal 1992; Stefanov and Vodev 1996;
Tang and Zworski 1998; Stefanov 1999; 2000; Gannot 2015] for the relation between quasimodes and
resonances in other settings.

• The eigenvalue curve ζ 7→ Eζδ,0 of Pδ[ζ ] corresponding to the topologically protected mode of /D(µ)
intersects E? transversely. See the red curves in Figure 7. This contrasts with the eigenvalue curves
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ζ 7→ Eζδ, j , j 6= 0, which exhibit quadratic extrema near ζ?; see the blue curves in Figure 7. This indicates
that L2-wave packets constructed from the topologically protected modes of /D(µ) should have a longer
lifetime. Mathematical and experimental investigations of this phenomenon would be interesting. The
techniques could lead to a time-dependent analysis of quasimodes when the no-fold condition fails. See
[Gérard and Sigal 1992] for a related investigation in the shape resonance context and [Carles et al. 2004;
Ablowitz and Zhu 2012; 2013; Fefferman and Weinstein 2014; Arbunich and Sparber 2018] for related
investigations in gapless settings.

• In [Drouot 2019], we investigate the relation between the bulk and edge indices of Pδ[ζ ] or Pδ[ζ ], as
in [Haldane and Raghu 2008]. The bulk-edge correspondence is widely unexplored in continuous, asymp-
totically periodic settings: apart from [Bourne and Rennie 2018; Drouot 2018b], the only investigations
concern the quantum Hall effect [Kellendonk and Schulz-Baldes 2004a; 2004b; Taarabt 2014]. The discrete
setting is better understood [Kellendonk et al. 2002; Elgart et al. 2005; Graf and Porta 2013; Avila et al.
2013; Bal 2017; Shapiro 2017; Braverman 2018; Graf and Shapiro 2018; Graf and Tauber 2018; Shapiro
and Tauber 2018]. It would also be nice to study it in quantum graph models of graphene — see [Kuchment
and Post 2007; Becker and Zworski 2019; Becker et al. 2018; Lee 2016] for setting and spectral results.

• The recent numerical approach [Thicke et al. 2018] could be applied to Pδ as δ increases away from 0.
Corollary 1.7 shows that two edge states persist as long as the gap remains open. However their qualitative
description (Corollary 7.4) should progressively break down as δ increases. It would be interesting to
investigate numerically how their shape changes.

Notation. Here is a list of notation used in this work:

• If z ∈ C, then z̄ denotes its complex conjugate and |z| its modulus. We will sometimes identify a vector
x = [x1, x2]

>
∈ R2 with the complex number x1+ i x2.

• S1
⊂ C is the circle {z ∈ C : |z| = 1}.

• D(z, r)⊂ C denotes the disk centered at z ∈ C of radius r .

• If E, F ⊂ C, then dist(E, F) denotes the Euclidean distance between E and F.

• Dx is the operator (1/ i)[∂x1, ∂x2]
>
= (1/ i)∇.

• L2 denotes the space of square-summable functions and H s are the classical Sobolev spaces.

• If H and H′ are Hilbert spaces and ψ ∈ H, we write |ψ |H for the norm of H; if A : H→ H′ is a
bounded operator, the operator norm of A is

‖A‖H→H′
def
= sup
|ψ |H=1

|Aψ |H′ .

If H =H′, we simply write ‖A‖H = ‖A‖H→H.

• Ifψε ∈H and f :R\{0}→R, we writeψε=OH( f (ε))when there exists C>0 such that |ψε |H≤C f (ε)
for ε ∈ (0, 1]. If Aε : H→ H is a linear operator and f : R \ {0} → R, we write Aε = OH→H′( f (ε))
when there exists C > 0 such that ‖Aε‖H→H′ ≤ C f (ε) for ε ∈ (0, 1]. If H = H′, we simply write
Aε = OH( f (ε)).
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• We denote the spectrum of a (possibly unbounded) operator A on H by6H(A). It splits into an essential
part 6H,ess(A) and a discrete part 6H,d(A).

• 3 is the lattice Zv1⊕Zv2 — see Section 1A. An edge is a line Rv ⊂ R2, with v = a1v1+ a2v2 ∈ 3,
a1, a2 relatively prime integers. We associate to v vectors v′, k and k ′ via (1-7).

• The space L2
ξ consists of ξ -quasiperiodic functions with respect to 3:

L2
ξ

def
= {u ∈ L2

loc(R
2,C) : u(x +w)= ei〈ξ,w〉u(x), w ∈3}.

• ` ∈ (R2)∗ is the projection of k orthogonally to k ′:

`
def
= k−

〈k, k ′〉
|k ′|2

k ′.

• L2
[ζ ] is the space

L2
[ζ ]

def
=
{
u ∈ L2

loc(R
2,C) : u(x + v)= eiζu(x),

∫
R2/Zv

|u(x)|2 dx <∞
}
.

• V ∈ C∞(R2,R) is a honeycomb potential — see Definition 1.1.

• W ∈ C∞(R2,R) is 3-periodic and odd — see (1-5).

• Pδ is the operator −1+ V + δW on L2; for ξ ∈ R2, Pδ(ξ) is the operator formally equal to Pδ but
acting on L2

ξ . For ζ ∈ R, Pδ[ζ ] is the operator formally equal to Pδ but acting on L2
[ζ ].

• Pδ is the operator −1+ V + δ · κδ ·W on L2, where κδ(x) = κ(δ〈k ′, x〉) and κ is a domain-wall
function — see (1-8). Pδ[ζ ] is the operator formally equal to Pδ but acting on L2

[ζ ].

• (ξ?, E?) denotes a Dirac point of P0 = −1 + V, associated to a Dirac eigenbasis (φ1, φ2)— see
Definition 1.2.

• ζ? is the real number 〈ξ?, v〉.

• ξ A
? , ξ

B
? , ζ

A
? , ζ

B
? are defined in (1-4) and (1-10), respectively.

• ν? is a complex number associated to (ξ?, E?) and to the Dirac eigenbasis (φ1, φ2) such that |ν?| = νF —
see Section 2C.

• ϑ? = 〈φ1,Wφ1〉L2
ξ?

is always assumed to be nonzero; we also define |ϑ?| = ϑF .

• The Pauli matrices are

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
.

These matrices satisfy σ j
2
= Id and σiσ j =−σ jσi for i 6= j .

2. Honeycomb potentials, Dirac points and edges

2A. Equilateral lattice. We review briefly the definitions of Section 1A. The equilateral lattice 3 is
3= Zv1⊕Zv2 given in canonical coordinates by

v1 = a
[√

3
1

]
, v2 = a

[√
3
−1

]
,
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where a > 0 is a constant such that Det[v1, v2] = 1. Let k1, k2 ∈ (R
2)∗ be dual vectors: 〈ki , vj 〉 = δi j .

Identifying (R2)∗ with R2 via the scalar product,

[k1, k2] · [v1, v2] = Id =⇒ [k1, k2] = [v1, v2]
−1
=

1
6a

[√
3
√

3
3 −3

]
.

Our definition does not involve a factor 2π — in contrast with some other conventions. The fundamental
cell L and dual cell L∗ are

L
def
= {t1v1+ t2v2 : t1, t2 ∈ [0, 1)}, L∗

def
= {τ1k1+ τ2k2 : τ1, τ2 ∈ [0, 2π)}.

2B. Symmetries. Recall that the space of ξ -quasiperiodic functions is

L2
ξ

def
= {u ∈ L2

loc(R
2,C) : u(x +w)= ei〈ξ,w〉u(x), w ∈3}.

We introduce three operators: R (rotation); I (spatial inversion); and C (complex conjugation). These
are given by

Ru(x)= u(Rx), R def
=

1
2

[
−1

√
3

−
√

3 −1

]
, Iu(x)= u(−x), Cu(x)= u(x).

We study the action of these operators on the spaces L2
ξ . Note that Rv1 = −v2 and Rv2 = v1 − v2.

Hence, R leaves 3 invariant. If u ∈ L2
ξ then

(Ru)(x + v)= u(Rx + Rv)= ei〈ξ,Rv〉(Ru)(x)= ei〈R∗ξ,v〉(Ru)(x),

(Iu)(x + v)= u(−x − v)= e−i〈ξ,v〉(Iu)(x),

(Cu)(x + v)= u(x + v)= e−i〈ξ,v〉(Cu)(x).
It follows that

RL2
ξ = L2

R−1ξ
, IL2

ξ = L2
−ξ , CL2

ξ = L2
−ξ . (2-1)

Let ξ A
? and ξ B

? be given by (1-4):

ξ A
? =

2π
3 (2k1+ k2), ξ B

? =
2π
3 (k1+ 2k2).

We observe that
R−1ξ A

? = ξ
A
? + 2π(k1+ k2), R−1ξ B

? = ξ
B
? + 2πk1.

In particular, R−1ξ? = ξ? mod 2π3∗ when ξ? ∈ {ξ A
? , ξ

B
? }. Thanks to (2-1), we see that the space L2

ξ?
is

R-invariant. Since R3
= Id, we deduce that R : L2

ξ?
→ L2

ξ?
has three eigenvalues: 1, τ, τ̄ with τ = e2iπ/3.

Since R is a unitary operator, L2
ξ?

admits an orthogonal decomposition

L2
ξ?
= L2

ξ?,1⊕ L2
ξ?,τ
⊕ L2

ξ?,τ̄
, L2

ξ?,z
def
= kerL2

ξ?
(R− z).

The operator CI maps L2
ξ?

to itself. If u ∈ L2
ξ?,τ

then

R(CIu)(x)= u(−Rx)= τ · u(−x)= τ̄ · (CIu)(x).

Therefore CIL2
ξ?,τ
= L2

ξ?,τ̄
.
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2C. Dirac points. We recall that P0 =−1+V, where V is a honeycomb potential — see Definition 1.1.
We denote by

λ0,1(ξ)≤ λ0,2(ξ)≤ · · · ≤ λ0, j (ξ)≤ · · · (2-2)

the dispersion surfaces of P0, i.e., the L2
ξ -eigenvalues of P0(ξ). Conical intersections in the band spectrum

(2-2) are called Dirac points — see Definition 1.2. Fefferman and Weinstein [2012] — see also [Colin de
Verdière 1991; Grushin 2009; Berkolaiko and Comech 2018; Lee 2016; Keller et al. 2018; Ammari et al.
2018] for related perspectives — showed the following result:

Theorem 2.1 [Fefferman and Weinstein 2012, Theorem 5.1]. Let V0 ∈ C∞(R2,R) be a honeycomb
potential such that ∫

L

e−i(k1+k2)x V0(x) dx 6= 0. (2-3)

There exists a closed countable set S ⊂ R such that for every t ∈ R \S , the operator −1R2 + tV0 admits
Dirac points

(ξ?, E?) ∈ {ξ A
? , ξ

B
? }×R, ξ A

?

def
=

2π
3 (2k1+ k2), ξ B

?

def
=

2π
3 (k1+ 2k2).

This result shows that P0 generically admits Dirac points: the condition (2-3) excludes a hyperplane in
the space of honeycomb potentials; the “bad” set S is countable and accounts for extraordinary cases,
e.g., higher multiplicity of E? or quadratic intersections of dispersion surfaces. When P0 admits Dirac
points, the eigenspace kerL2

ξ?
(P0(ξ?)− E?) is spanned by an orthonormal basis {φ1, φ2}, with

φ1 ∈ L2
ξ?,τ
, φ2 = Iφ1 ∈ L2

ξ?,τ̄
.

We call (φ1, φ2) a Dirac eigenbasis. It is unique modulo the S1-action (φ1, φ2) 7→ (ωφ1, ω̄φ2), ω ∈ S1.

Lemma 2.2. Let (ξ?, E?) be a Dirac point of P0 with Dirac eigenbasis (φ1, φ2). Then

〈φ1, Dxφ1〉L2
ξ?
= 〈φ2, Dxφ2〉L2

ξ?
= 0.

In addition, there exists ν? ∈ C with |ν?| = νF such that for all η ∈ R2 (canonically identified with a
complex number),

2〈φ1, (η · Dx)φ2〉L2
ξ?
= ν?η, 2〈φ2, (η · Dx)φ1〉L2

ξ?
= ν?η.

This lemma can be deduced from [Fefferman et al. 2016b, Proposition 4.5]. We include a proof in
Appendix A.1. It relies on some algebraic relations relating P0, R and I , and on perturbation theory of
eigenvalues.

2D. Breaking the symmetry. We will consider Schrödinger operators Pδ =−1+ V + δW, where

W ∈ C∞(R2,R), W (x +w)=W (x), w ∈3, W (x)=−W (−x).

Lemma 2.3. Let (ξ?, E?) be a Dirac point of P0 with Dirac eigenbasis (φ1, φ2)— see Definition 1.2.
Then 〈φ1,Wφ2〉L2

ξ?
= 〈φ2,Wφ1〉L2

ξ?
= 0. Furthermore,

ϑ?
def
= 〈φ1,Wφ1〉L2

ξ?
=−〈φ2,Wφ2〉L2

ξ?
.
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See the proofs of [Fefferman et al. 2016b, (6.19), (6.20)] or Appendix A.1. These identities rely on I
being an isometry. If ω ∈ S1, the change (φ1, φ2) 7→ (ωφ1, ω̄φ2) of Dirac eigenbasis leaves ϑ? invariant.

2E. Edges. Let a1 and a2 be two relatively prime integers and v=a1v1+a2v2. Introduce v′=b1v1+b2v2,
where a1b2− a2b1 = 1. The vectors v and v′ span 3:

b1v− a1v
′
= (b1a2− a1b2)v2 =−v2,

b2v− a2v = (b2a1− a2b1)v1 = v1.
(2-4)

Let k and k ′ be dual vectors. We claim that k = b2k1− b1k2 and k ′ =−a2k1+ a1k2:

〈k, v〉 = b2a1− b1a2 = 1, 〈k, v′〉 = −a2a1+ a1a2 = 0,

〈k ′, v〉 = b2b1− b1b2 = 0, 〈k ′, v′〉 = −a2b1+ a1b2 = 1.

Let (ξ A
? , E?) be a Dirac point in the sense of Definition 1.2 and Rv be an edge. Assume that ξ B

? belongs to
the dual edge ζ A

? k+Rk ′ mod 2π3∗. In this case we can write ξ B
? = ζ

A
? k+τk ′, with τ 6= 〈ξ A

? , v
′
〉 mod 2πZ.

Since λ0, j?(ξ
B
? )= E?, the no-fold condition fails when ξ B

? ∈ ζ
A
? k+Rk ′ mod 2π3∗ (see Definition 1.3).

Given the expressions (1-4) of ξ A
? and ξ B

? and (1-7) of v′, this arises precisely when

2a1+ a2

3
−

a1+ 2a2

3
∈ Z ⇐⇒ a2− a1 ∈ 3Z.

In particular, if the no-fold condition holds then a1 − a2 6= 0 mod 3. This implies that {ζ A
? , ζ

B
? } ={2π

3 ,
4π
3

}
mod 2πZ because of (1-10).

3. The characterization of edge states

This work studies the eigenvalues of the operator

Pδ[ζ ] = −1+ V + δ · κδ ·W : L2
[ζ ] → L2

[ζ ].

Above, κδ is a domain-wall function — see (1-8) — and L2
[ζ ] is the space (1-9). The operator Pδ[ζ ] is

a Schrödinger operator that interpolates between Pδ[ζ ] at −∞ and Pδ[ζ ] at +∞. See Figure 9. In this
section we review the multiscale approach of [Fefferman et al. 2016a; 2016b] and we derive Corollary 1.5
assuming Theorem 1.4, in a slightly more general setting.

3A. The formal multiscale approach. The eigenvalue problem for Pδ[ζ ] is{
(−1+ V (x)+ δκδ(x)W (x)− Eδ)uδ = 0,
uδ(x + v)= eiζuδ(x),

∫
R2/Zv

|uδ(x)|2 dx <∞. (3-1)

The multiscale procedure of Fefferman, Lee-Thorp, and Weinstein [Fefferman et al. 2016b, §6] produces
approximate solutions of (3-1). We review it below.

We first observe that if we write a function uδ ∈ C∞(R2,C) as

uδ(x)=Uδ(x, δ〈k ′, x〉), Uδ ∈ C∞(R2
×R,C), (3-2)
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Figure 9. Pδ[ζ ] is a Schrödinger operator with a typical potential represented above,
with the zigzag edge v1−v2. Each red (resp. blue) circle supports an atomic (e.g., radial)
potential. The resulting potential is not periodic with respect to 3; rather it is periodic
with respect to Zv.

then uδ solves (3-1) if and only if Uδ solves{
((Dx + δk ′Dt)

2
+ V (x)+ δκ(t)W (x)− Eδ)Uδ = 0,

Uδ(x + v, t)= eiζUδ(x, t),

∫
R2/Zv

|Uδ(x, δ〈k ′, x〉)|2 dx <∞. (3-3)

We now produce approximate solutions to the system (3-3) when ζ is near ζ? = 〈ξ?, v〉. We fix (ξ?, E?)
a Dirac point of P0 and we write ζ = ζ?+µδ, ζ? = 〈ξ?, v〉. We make an ansatz for Uδ and Eδ:

Uδ(x, t)= eiµδ〈`,x〉
·

(∑
j=1,2

αj (t) ·φj (x)+ δ · Vδ(x, t)
)
, Eδ = E?+ϑδ+ O(δ2), (3-4)

where

• (φ1, φ2) is a Dirac eigenbasis for (ξ?, E?)— see Definition 1.2;

• α1, α2 are smooth, exponentially decaying functions on R, to be specified below;

• Vδ ∈ X — the space defined in (1-13).

• `= k− (〈k ′, k〉/|k ′|2)k ′ is the projection of k to the orthogonal of Rk ′;

• ϑ ∈ R is a real number that will be specified below.

Since φ1, φ2 ∈ L2
ξ?

, Vδ ∈ X and α1, α2 ∈ L2(R), the ansatz (3-4) implies

Uδ(x + v, t)= eiζUδ(x, t),
∫

R2/Zv

|Uδ(x, δ〈k ′, x〉)|2 dx <∞.

In particular the boundary and decay conditions of (3-3) hold under (3-4).
The eigenvalue problem (3-3) becomes a hierarchy of equations, obtained by identifying terms of

orders 1, δ, δ2, . . . . Since (P0− E?)φj = 0, the equation for the terms of order 1 is automatically satisfied.
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The equation for the terms of order δ is

eiµδ〈`,x〉(P0− E?)Vδ(x, t)+ eiµδ〈`,x〉(2(k ′ · Dx)Dt + κ(t)W (x)−ϑ)
∑
j=1,2

αj (t)φj (x)

+ 2µeiµδ〈`,x〉(` · Dx)
∑
j=1,2

αj (t)φj (x)= 0. (3-5)

Note that for every t ∈ R, (P0− E?)Vδ( · , t) is orthogonal to φ1 and φ2. Therefore, for this system to
have a solution, we must have for every t ∈ R and k = 1, 2,〈

φk,
(
2(k ′ · Dx)Dt + 2µ(` · Dx)+ κ(t)W −ϑ

) ∑
j=1,2

αj (t) ·φj

〉
L2
ξ?

= 0. (3-6)

The scalar products 〈φj , (k ′ · Dx)φk〉L2
ξ?

, 〈φj , (` · Dx)φk〉L2
ξ?

and 〈φj ,Wφk〉L2
ξ?

appear in the solvability
condition (3-6). They were computed in Lemmas 2.2 and 2.3. Using these formulas, (3-6) simplifies to

( /D(µ)−ϑ)
[
α1

α2

]
= 0, /D(µ) def

=

[
0 ν?k ′

ν?k ′ 0

]
Dt +µ

[
0 ν?`

ν?` 0

]
+ϑ?

[
1 0
0 −1

]
κ.

This system has exponentially decaying solutions [α1, α2]
> if and only if ϑ is an eigenvalue of /D(µ).

Under this condition, (3-5) has a solution Vδ . In other words, this constructs a function Uδ such that (3-3)
is satisfied modulo OX (δ

2), meaning that for some a,C > 0 and all δ ∈ (0, 1)

sup
R×R2

ea|t |
·
∣∣((Dx + δk ′Dt)

2
+ V (x)+ δκ(t)W (x)− Eδ

)
Uδ

∣∣≤ Cδ2.

We can iterate this procedure to arbitrarily high orders in δ. It produces a function Uδ such that (3-3) is
satisfied modulo OX (δ

M) for any M . Identifying Uδ with uδ according to (3-2), this procedure produces
for any M and any eigenvalue ϑ of /D(µ) a function uδ,M that solves

(Pδ[ζ ] − Eδ)uδ,M = OX (δ
M), Eδ = E?+ δϑ + O(δ2).

This is an approximate solution to the eigenvalue problem (3-1).
It is natural to ask whether these approximate solutions are close to eigenvectors. The work [Fefferman

et al. 2016b] shows that this holds at first order in δ. Below we state results that imply that this holds at any
order in δ. This dramatically refines the main result of [loc. cit.]. Our approach relies on resolvent estimates
rather than by-hand construction of eigenvectors. It comes with further improvements of [loc. cit.]:

• the precise counting of eigenvalues of Pδ[ζ ];

• an estimate that connects the resolvents of Pδ[ζ ] and /D(µ).

These results are stated in Section 3C and first require a spectral analysis of /D(µ).

3B. The Dirac operator /D(µ). The Dirac operator

/D(µ)=
[

0 ν?k ′

ν?k ′ 0

]
Dt +µ

[
0 ν?`

ν?` 0

]
+ϑ?

[
1 0
0 −1

]
κ



CHARACTERIZATION OF EDGE STATES IN PERTURBED HONEYCOMB STRUCTURES 407

emerges in the multiscale analysis of [Fefferman et al. 2016b]. We saw that its eigenvalues are particularly
relevant in the construction of approximate eigenvectors of Pδ[ζ ], ζ = ζ?+ δµ. In this section we relate
the spectra of /D(µ) and /D? = /D(0).

Lemma 3.1. The essential and discrete spectra of /D? and /D(µ) are related through

6L2,ess( /D(µ))= R \
(
−

√
ϑ2

F +µ
2
· ν2

F |`|
2,
√
ϑ2

F +µ
2
· ν2

F |`|
2),

6L2,d( /D(µ))=
{
µ · νF |`| · sgn(ϑ?) : ±

√
ϑ2

j +µ
2
· ν2

F |`|
2 with 0 6= ϑj ∈6L2,d( /D?)

}
.

All the eigenvalues of /D? and /D(µ) are simple.

The proof of Lemma 3.1 relies on a supersymmetry: there exists a 2× 2 matrix m2 such that m2
2
= Id

and m2 /D? =−m2 /D?. We postpone it to Appendix A.2. We also mention that /D? may have more than
one eigenvalue — see [Lu et al. 2018]. For a general perspective for applications of supersymmetries in
spectral theory, see [Cycon et al. 1987, §6–12].

3C. Parallel quasimomentum near ζ?. We are now ready to state the main result of our work. Recall
that the assumptions (H1)–(H3) were introduced in Section 1E and that 5,5∗ and Uδ are defined by

5 : L2(R2/Zv,C2)→ L2(R,C2), (5 f )(t) def
=
∫ 1

0 f (sv+ tv′) ds,

5∗ : L2(R,C2)→ L2(R2/Zv,C2), (5∗g)(x) def
= g(〈k ′, x〉),

Uδ : L2(R,C2)→ L2(R,C2), (Uδ f )(t) def
= f (δt).

Theorem 3.2. Assume that the assumptions (H1)–(H3) hold. Fix µ] > 0 and ε > 0. There exists δ0 > 0
such that if

µ ∈ (−µ], µ]), δ ∈ (0, δ0), z ∈ D
(
0,
√
ϑ2

F +µ
2
· ν2

F |`|
2
− ε

)
, dist(6L2( /D(µ)), z)≥ ε,

ζ = ζ?+ δµ, λ= E?+ δz

then Pδ[ζ ] − λ is invertible and its resolvent (Pδ[ζ ] − λ)
−1 equals

1
δ
·

[
φ1

φ2

]>
e−iµδ〈`,x〉

·5∗Uδ · ( /D(µ)− z)−1
·U−1

δ 5 · eiµδ〈`,x〉
[
φ1

φ2

]
+OL2[ζ ](δ

−1/3).

It suffices to take µ= 0 in Theorem 3.2 to derive Theorem 1.4.

Corollary 3.3. Assume (H1)–(H3) hold and fix ϑ] ∈ (ϑN , ϑF ) and µ] > 0. There exists δ0 > 0 such
that for

δ ∈ (0, δ0), µ ∈ (−µ], µ]), ζ = ζ?+ δµ,

the operator Pδ[ζ ] has exactly 2N + 1 eigenvalues {Eζδ, j } j∈[−N ,N ] in[
E?− δ

√
ϑ2
] +µ

2
· ν2

F |`|
2, E?+ δ

√
ϑ2
] +µ

2
· ν2

F |`|
2 ].
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These eigenvalues are simple. Furthermore, for each j ∈ [−N , N ], the eigenpairs (Eζδ, j , uζδ, j ) admit full
expansions in powers of δ:

Eζδ, j = E?+ϑ
µ
j · δ+ aµ2 · δ

2
+ · · ·+ aµM · δ

M
+ O(δM+1),

uζδ, j (x)= ei(ζ−ζ?)〈`,x〉
(

f µ0 (x, δ〈k
′, x〉)+ · · ·+ δM

· fM(x, δ〈k ′, x〉)
)
+ oH k (δM).

In the above expansions:

• M and k are any integers; H k is the k-th order Sobolev space.

• ϑ
µ
j is the j-th eigenvalue of /D(µ), described in Lemma 3.1.

• The terms aµm ∈ R and f µm ∈ X are recursively constructed via the multiscale analysis of [Fefferman
et al. 2016b] — see Section 3A.

• The leading-order term f µ0 satisfies

f µ0 (x, t)= αµ1 (t)φ1(x)+α
µ

2 (t)φ2(x), ( /D(µ)−ϑµj )
[
α
µ

1
α
µ

2

]
= 0.

Proof of Corollary 3.3 assuming Theorem 3.2. In order to locate eigenvalues of Pδ[ζ ], it suffices to
integrate the resolvent on contours enclosing regions where Theorem 3.2 does not apply.

Let ϑj be an eigenvalue of /D(µ) and ε > 0 so that /D(µ) has no other eigenvalues in D(ϑj , ε). We
compute the residue

1
2π i

∮
∂D(E?+δϑj ,εδ)

(λ−Pδ(ζ ))
−1 dλ. (3-7)

This is the projector on the spectrum of Pδ(ζ ) that is enclosed by ∂D(E? + δϑj , εδ). Because of
Theorem 3.2 and the relation λ= E?+ δz, dλ= δ dz, (3-7) equals[

φ1

φ2

]>
e−iµδ〈`,x〉

·5∗Uδ · 1
2π i

∮
∂D(ϑj ,ε)

(z− /D(µ))−1 dz ·U−1
δ 5 · eiµδ〈`,x〉

[
φ1

φ2

]
+OL2[ζ ](δ

2/3).

The residue
1

2π i

∮
∂D(ϑj ,ε)

(z− /D(µ))−1 dz

is a rank-1 projector on kerL2( /D−ϑj ). We write it as αζ ⊗ αζ , where |αζ |L2 = 1. We deduce that the
residue (3-7) equals[

φ1

φ2

]>
e−iµδ〈`,x〉

·5∗Uδ ·α⊗α ·U−1
δ 5 · eiµδ〈`,x〉

[
φ1

φ2

]
+OL2[ζ ](δ

2/3)= v
ζ

0 ⊗ v
ζ

0 +OL2[ζ ](δ
2/3),

where

v
ζ

0
def
= δ1/2

[
φ1

φ2

]>
e−iµδ〈`,x〉

·5∗Uδ ·α.

Above we used that (U−1
δ )∗ = δ ·Uδ.
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We deduce that (3-7) is a projector that takes the form v
ζ

0 ⊗ v
ζ

0 +OL2[ζ ](δ
2/3), where |vζ0 |L2[ζ ] = 1. In

particular, it is nonzero. Moreover, it has rank at most 1. Indeed, normalized vectors in its range must be
of the form v

ζ

0 + OL2[ζ ](δ
2/3); therefore two of them cannot be orthogonal for δ sufficiently small. We

deduce that (3-7) has rank exactly 1: Pδ[ζ ] has exactly one eigenvalue in D(E?+ δϑj , εδ).
The rest of the proof is identical to [Drouot et al. 2018, Proof of Corollary 1]. It relies on

• the fact that Pδ[ζ ] has exactly one eigenvalue in the disk enclosed by ∂D(E?+ δϑj , εδ)— proved
just above;

• a general variational argument that shows that an approximate eigenpair (ψ, E) for a selfadjoint
problem that has only one eigenvalue near E must be close to a genuine eigenpair — see [Drouot
et al. 2018, Lemma 3.1];

• the construction of arbitrarily accurate approximate eigenpairs thanks to the multiscale procedure of
[Fefferman et al. 2016b] — see Section 3A.

We refer to [Drouot et al. 2018, Proof of Corollary 1] for details. �

Most of the rest of the paper is devoted to the proof of Theorem 3.2.

4. The Bloch resolvent

Recall that V is a honeycomb potential — see Definition 1.1 — and that W ∈ C∞(R2,R) is odd and 3-
periodic. In this section we study the resolvent of Pδ(ξ), the operator formally equal to Pδ=−1+V+δW
but acting on quasiperiodic spaces L2

ξ .
Under the no-fold condition, we prove in Lemma 4.1 that (Pδ(ξ)− z)−1 is subdominant away from

the Dirac quasimomenta ξ?. The situation is more subtle near ξ?. In Lemma 4.2 we show that when the
nondegeneracy assumption (1-6) holds and (ξ, λ) is near a Dirac point (ξ?, E?), (Pδ(ξ)− λ)−1 behaves
like the resolvent of a rank-2 operator.

4A. Resolvent away from Dirac momenta. We recall that L is the fundamental cell associated to the
generators v1 and v2; see (1-2). Given ξ ∈ R2, we define ρ(ξ) as

ρ(ξ)
def
= dist(ξ + 2π3∗, ζ?k+Rk ′).

Lemma 4.1. Assume that the assumptions (H1) and (H2) hold. Let c > 0. There exist δ0, ε0 > 0 such
that if

δ ∈ (0, δ0), ξ ∈ L∗, ρ(ξ)≤ ε0, |ξ − ξ?| ≥ δ
1/3, λ ∈ D(E?, cδ) (4-1)

then Pδ(ξ)− λ is invertible and

‖(Pδ(ξ)− λ)−1
‖L2

ξ→H2
ξ
= O(δ−1/3).

Proof. 1. We first show that there exists ε0 > 0 such that

ξ ∈ L∗ \ {ξ?}, ρ(ξ)≤ ε0, =⇒ λ0, j?(ξ) < E?− 2ε0 · |ξ − ξ?|. (4-2)
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2πk1

2πk2

L∗

ξ?

Figure 10. If v = v1 − v2 is the zigzag edge then k ′ = k1 + k2. An ε0-neighborhood
of the dual line ζ?k + Rk ′ is represented above as the blue strip. Lemma 4.1 applies
to quasimomenta in the area enclosed in black. This domain of validity extends by
periodicity to the blue strips away from ξ? mod 2π3∗.

Indeed, if this does not hold then we can find ξn such that

ξn ∈ L∗ \ {ξ?}, ρ(ξn)≤
1
n
, λ0, j?(ξn)≥ E?−

2
n
· |ξ − ξ?|.

Since ξn ∈ L∗, we know ξn is bounded. There exists a subsequence ξϕ(n) of ξn that converges to an element
ξ∞ in the closure of L∗, with ρ(ξ∞) = 0. Because λ0, j? is continuous, we have λ0, j?(ξ∞) ≥ E?. Since
ρ(ξ∞)= 0, there exist η ∈3∗ and τ0 ∈ R such that

ξ∞+ 2πη = ζ?k+ τ0k ′.

We look at the function ϕ(τ) def
= λ0, j?(ζ?k+ τk ′). It is 2π-periodic and it equals E? precisely when

τ = 〈ξ?, v
′
〉 mod 2π because of (H2). Moreover,

ϕ(〈ξ?, v
′
〉+ ε)= E?− νF |εk ′| + O(ε2).

Therefore, the intermediate value theorem shows that ϕ(τ) < E? unless τ = 〈ξ?, v′〉 mod 2π . We deduce
that τ0 = 〈ξ?, v

′
〉 mod 2π . Hence ξ∞ = ξ? mod 2π3∗. Since ξ∞ is in the closure of L∗, we know ξ∞ = ξ?.

Since it also belongs to ζ?k+Rk ′, we have ξ∞ = ξ?. Since ξ? is a Dirac point, we deduce

E?−
2
ϕ(n)
· |ξϕ(n)− ξ?| ≤ λ0, j?(ξϕ(n))≤ E?− νF · |ξϕ(n)− ξ?| + O(ξϕ(n)− ξ?)2.

This cannot hold for large n, unless ξϕ(n) = ξ?, which is excluded. We deduce that (4-2) holds. A similar
argument implies that

ξ ∈ L∗ \ {ξ?}, ρ(ξ)≤ ε0 =⇒ λ0, j?+1(ξ) > E?+ 2ε0 · |ξ − ξ?|. (4-3)

2. From (4-2) and (4-3), we deduce that for δ > 0,

ξ ∈ L∗, ρ(ξ)≤ ε0, |ξ − ξ?| ≥ δ
1/3

=⇒

{
λ0, j?(ξ) < E?− 2ε0δ

1/3,

λ0, j?+1(ξ) > E?+ 2ε0δ
1/3.
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In particular, if c > 0 is given and λ ∈ D(E?, cδ) then

ξ ∈ L∗, ρ(ξ)≤ ε0, |ξ − ξ?| ≥ δ
1/3

=⇒

{
Re(λ0, j?(ξ)− λ) < cδ− 2ε0δ

1/3,

Re(λ0, j?+1(ξ)− λ) > 2ε0δ
1/3
− cδ.

In particular, when δ0 is sufficiently small, δ ∈ (0, δ0) and λ ∈ D(E?, cδ),

ξ ∈ L∗, ρ(ξ)≤ ε0, |ξ − ξ?| ≥ δ
1/3

=⇒

{
Re(λ0, j?(ξ)− λ) <−ε0δ

1/3,

Re(λ0, j?+1(ξ)− λ) > ε0δ
1/3.

Since the dispersion surfaces are labeled in increasing order, we deduce that if (4-1) is satisfied then

dist(6L2
ξ
(P0(ξ)), λ)≥ ε0δ

1/3, (P0(ξ)− λ)
−1
= OL2

ξ
(δ−1/3).

We derived the estimate on (P0(ξ)− λ)
−1 using the spectral theorem.

3. Assume that (4-1) holds. Thanks to step 1, P0(ξ)− λ is invertible and

Pδ(ξ)− λ= P0(ξ)− λ+ δW = (P0(ξ)− λ) · (Id+(P0(ξ)− λ)
−1δW ).

The second term equals Id+OL2
ξ
(δ2/3). In particular it is invertible by a Neumann series for δ sufficiently

small, with uniformly bounded inverse. We deduce that Pδ(ξ)− λ is invertible with inverse OL2
ξ
(δ−1/3).

4. To conclude we must show that the inverse of Pδ(ξ)− λ is OL2
ξ→H2

ξ
(δ−1/3). This is a standard

consequence of the elliptic estimate: using δ = O(1), λ= O(1), we see that for any f ∈ H 2
ξ ,

| f |H2
ξ
≤ | f |L2

ξ
+ |1 f |H2

ξ
≤ C | f |L2

ξ
+ |(Pδ(ξ)− λ) f |H2

ξ
.

We apply this inequality to f = (Pδ(ξ)− λ)−1u to deduce that

‖(Pδ(ξ)− λ)−1
‖L2

ξ→H2
ξ
≤ C‖(Pδ(ξ)− λ)−1

‖L2
ξ
+ 1.

In particular, the estimate OL2
ξ
(δ−1/3) proved in step 3 improves automatically to a bound OL2

ξ→H2
ξ
(δ−1/3).

This completes the proof. �

4B. Resolvent near Dirac momenta. Fix a Dirac point (ξ?, E?) of P0(ξ) and assume that ϑ? — defined
in (1-6) — is nonzero. Identify ξ − ξ? ∈ R2 with the corresponding complex number and introduce the
2× 2 matrix Mδ(ξ),

Mδ(ξ)
def
=

[
E?+ δϑ? ν? · (ξ − ξ?)

ν? · (ξ − ξ?) E?− δϑ?

]
.

Lemma 4.2. Let θ ∈ (0, 1). If

δ > 0, ξ ∈ R2, ϑF
def
= |ϑ?| 6= 0, λ ∈ D

(
E?, θ

√
ϑ2

F · δ
2
+ ν2

F · |ξ − ξ?|
2) (4-4)

then the matrix Mδ(ξ)− λ is invertible and

‖(Mδ(ξ)− λ)
−1
‖C2 = O((δ+ |ξ − ξ?|)−1).
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Proof. The matrix Mδ(ξ) is Hermitian. It has eigenvalues

µ±δ (ξ)
def
= E?±

√
ϑ2

F · δ
2
+ ν2

F · |ξ − ξ?|
2.

If (4-4) holds then the eigenvalues µ±δ (ξ)− λ of Mδ(ξ)− λ satisfy

|µ±δ (ξ)− λ| ≥ (1− θ)
√
ϑ2

F · δ
2
+ ν2

F · |ξ − ξ?|
2
≥

1− θ
√

2
· (νF · |ξ − ξ?| +ϑF · δ).

By the spectral theorem, we deduce that (Mδ(ξ) − λ)
−1 exists and has operator-norm bounded by

O((|ξ − ξ?| + δ)−1). �

Introduce the operator

50(ξ) : L2
ξ → C2, 50(ξ)u

def
=

[
〈ei〈ξ−ξ?,x〉φ1, u〉L2

ξ

〈ei〈ξ−ξ?,x〉φ2, u〉L2
ξ

]
. (4-5)

Lemma 4.3. Assume that the assumptions (H1) and (H3) hold. Let θ ∈ (0, 1). There exists δ0 > 0 such
that if

δ ∈ (0, δ0), |ξ − ξ?| ≤ δ
1/3, λ ∈ D

(
E?, θ

√
ϑ2

F · δ
2
+ ν2

F · |ξ − ξ?|
2) (4-6)

then Pδ(ξ)− λ is invertible and

(Pδ(ξ)− λ)−1
=50(ξ)

∗
· (Mδ(ξ)− λ)

−1
·50(ξ)+OL2

ξ→H2
ξ
(1).

Proof. 1. Introduce the ξ -dependent family of vector spaces

V (ξ)= C · ei〈ξ−ξ?,x〉φ1⊕C · ei〈ξ−ξ?,x〉φ2.

We split L2
ξ as V (ξ)⊕V (ξ)⊥. With respect to this decomposition, we write Pδ(ξ) as a block-by-block

operator:

Pδ(ξ)− λ=
[

Aδ(ξ)− λ Bδ(ξ)
Cδ(ξ) Dδ(ξ)− λ

]
. (4-7)

We use below 〈 · , · 〉 to denote the L2
ξ -scalar product.

2. We show that

Bδ(ξ)= OV (ξ)⊥→V (ξ)(δ+ |ξ − ξ?|), Cδ(ξ)= OV (ξ)→V (ξ)⊥(δ+ |ξ − ξ?|). (4-8)

Note that Cδ(ξ)= Bδ(ξ)∗; hence we just have to estimate Bδ(ξ), i.e., show that

u ∈ V (ξ)⊥, |u|L2
ξ
= 1 =⇒ 〈ei〈ξ−ξ?,x〉φj , Pδ(ξ)u〉 = O(δ+ |ξ − ξ?|), (4-9)

where the implicit constant does not depend on u. We have

〈ei〈ξ−ξ?,x〉φj , Pδ(ξ)u〉

= 〈Pδ(ξ) · ei〈ξ−ξ?,x〉φj , u〉 = 〈(−1+ V + δW ) · ei〈ξ−ξ?,x〉φj , u〉

= 〈ei〈ξ−ξ?,x〉(−1+ V )φj , u〉+ 〈[−1, ei〈ξ−ξ?,x〉]φj , u〉+ δ〈W ei〈ξ−ξ?,x〉φj , u〉

= (E?+ |ξ − ξ?|2)〈ei〈ξ−ξ?,x〉φj , u〉+ 2〈ei〈ξ−ξ?,x〉(ξ − ξ?) · Dxφj , u〉+ δ〈W ei〈ξ−ξ?,x〉φj , u〉.
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The first bracket vanishes because u ∈ V (ξ)⊥. The second and third brackets are O(ξ − ξ?) and O(δ),
respectively — and this holds uniformly in u with |u|L2

ξ
= 1. This gives (4-9), itself implying (4-8).

3. Here we prove that if (4-6) is satisfied then

Dδ(ξ)− λ : V (ξ)
⊥
∩ H 2

ξ → V (ξ)⊥ ∩ L2
ξ is invertible and (Dδ(ξ)− λ)

−1
= OV (ξ)⊥(1).

It suffices to construct an operator Eδ(ξ, λ) : V (ξ)⊥→ V (ξ)⊥ such that

Eδ(ξ, λ)= OV (ξ)⊥(1), Eδ(ξ, λ) · (Dδ(ξ)− λ)= IdV (ξ)⊥ +OV (ξ)⊥(δ+ |ξ − ξ?|). (4-10)

The space V (ξ?)= kerL2
ξ?
(P0(ξ?)− E?) has dimension 2; P0(ξ) depends smoothly on ξ in the sense

that e−iξ x
· P0(ξ) · eiξ x forms a smooth family of operators H 2

0 → L2
0. Therefore, there exist η > 0 and

ε > 0 such that

|ξ − ξ?| ≤ ε =⇒ P0(ξ) has precisely two eigenvalues in [E?− η, E?+ η]. (4-11)

See [Kato 1980, §VII.1.3, Theorem 1.8]. Let W (ξ) be the vector space spanned by the two eigenvectors
of P0(ξ) with energy in [E?− η, E?+ η]. Let Q0(ξ) be the operator formally equal to P0(ξ) but acting
on W (ξ)⊥. From (4-11), for |ξ − ξ?| ≤ ε, the spectrum of Q0(ξ) consists of the eigenvalues of P0(ξ)

outside [E?− η, E?+ η]. The spectral theorem implies that if δ0 is small enough, under (4-6),

Q0(ξ)− λ :W(ξ)⊥ ∩ H 2
ξ →W(ξ)⊥ ∩ L2

ξ is invertible and (Q0(ξ)− λ)
−1
= OW (ξ)⊥(1). (4-12)

Let J (ξ) : V (ξ)⊥→ W (ξ)⊥ be obtained by orthogonally projecting an element u ∈ V (ξ)⊥ ⊂ L2
ξ to

W (ξ)⊥. We set

Eδ(ξ, λ)
def
= J (ξ)∗ · (Q0(ξ)− λ)

−1
· J (ξ) : V (ξ)⊥→ V (ξ)⊥.

The first estimate of (4-10) is satisfied because of (4-12). We want to check the second estimate. Observe
that

Eδ(ξ, λ) · (Dδ(ξ)− λ)= Eδ(ξ, λ) ·πV (ξ)⊥(P0(ξ)− λ+ δW )

= J (ξ)∗ · (Q0(ξ)− λ)
−1
· J (ξ) ·πV (ξ)⊥(P0(ξ)− λ)+OV (ξ)(δ). (4-13)

Above, πV (ξ)⊥ : L2
ξ → L2

ξ is the orthogonal projection from L2
ξ to V (ξ)⊥, also seen as an operator

L2
ξ 7→ V (ξ)⊥. We introduce similarly πW(ξ)⊥ . Then

J (ξ) ·πV (ξ)⊥ = πW (ξ)⊥ · (Id−πV (ξ))= πW (ξ)⊥ − (Id−πW (ξ)) ·πV (ξ)

= πW (ξ)⊥ − (πV (ξ)−πW (ξ)) ·πV (ξ). (4-14)

The individual eigenvectors associated to the eigenvalues of P0(ξ) in [E?− η, E?+ η] do not depend
smoothly on ξ but the projector πW (ξ) depends smoothly on ξ — see [Kato 1980, §VII1.3, Theorem 1.7].
Since V (ξ?)=W (ξ?), this implies πV (ξ)−πW (ξ) = OL2

ξ
(ξ − ξ?). We deduce that

J (ξ) ·πV (ξ)⊥ = πW (ξ)⊥ +OW (ξ)⊥(ξ − ξ?). (4-15)
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We combine (4-13) and (4-15) to obtain

Eδ(ξ, λ) · (Dδ(ξ)− λ)= J (ξ)∗ · (Q0(ξ)− λ)
−1
·πW (ξ)⊥(P0(ξ)− λ)+OL2

ξ
(δ)

= J (ξ)∗πW (ξ)⊥ +OV (ξ)⊥(δ+ |ξ − ξ?|).

The operator J (ξ)∗ takes an element in W (ξ)⊥ and projects it to V (ξ)⊥. By the same argument as (4-14)
and (4-15) (inverting V (ξ) and W (ξ)),

J (ξ)∗πW (ξ)⊥ = πV (ξ)⊥ + OV (ξ)⊥(ξ − ξ?).

We conclude that the second estimate of (4-10) is satisfied. It follows that Dδ(ξ)− λ : V (ξ)
⊥
→ V (ξ)⊥

is invertible under (4-6).

4. We now study Aδ(ξ)− λ. This operator acts on the two-dimensional space V (ξ); its matrix in the
basis {ei〈ξ−ξ?,x〉φ1, ei〈ξ−ξ?,x〉φ2} is[

〈ei〈ξ−ξ?,x〉φ1, (Pδ(ξ)− λ)ei〈ξ−ξ?,x〉φ1〉 〈ei〈ξ−ξ?,x〉φ1, (Pδ(ξ)− λ)ei〈ξ−ξ?,x〉φ2〉

〈ei〈ξ−ξ?,x〉φ2, (Pδ(ξ)− λ)ei〈ξ−ξ?,x〉φ1〉 〈ei〈ξ−ξ?,x〉φ2, (Pδ(ξ)− λ)ei〈ξ−ξ?,x〉φ2〉

]
. (4-16)

We observe that

e−i〈ξ−ξ?,x〉(Pδ(ξ)− λ)ei〈ξ−ξ?,x〉 = Pδ(ξ?)− λ+ [e−i〈ξ−ξ?,x〉,−1]ei〈ξ−ξ?,x〉

= Pδ(ξ?)− λ+ [1, e−i〈ξ−ξ?,x〉]ei〈ξ−ξ?,x〉

= Pδ(ξ?)− λ+ 2((ξ − ξ?) · Dx)− |ξ − ξ?|
2.

Therefore the matrix elements in (4-16) are given by〈
ei〈ξ−ξ?,x〉φj , (Pδ(ξ)− λ)ei〈ξ−ξ?,x〉φk

〉
=
〈
φj ,

(
Pδ(ξ?)+ 2(ξ − ξ?) · Dx − λ− |ξ − ξ?|

2)φk
〉

= (E?− |ξ − ξ?|2− λ)δ jk +
〈
φj , (δW + 2(ξ − ξ?) · Dx)φk

〉
.

We deduce from Lemmas 2.2 and 2.3 that the matrix (4-16) is equal to Mδ(ξ)− λ+ O(ξ − ξ?)2. Using a
Neumann series argument based on (4-16), when (4-6) holds, Aδ(ξ)− λ is invertible, and

(Aδ(ξ)− λ)−1
=50(ξ)

∗
· (Mδ(ξ)− λ)

−1
·50(ξ)+OV (ξ)

(
|ξ − ξ?|

2

δ2+ |ξ − ξ?|2

)
. (4-17)

Because of Lemma 4.2, we also observe that

(Aδ(ξ)− λ)−1
= OV (ξ)((δ+ |ξ − ξ?|)

−1). (4-18)

5. Schur’s lemma allows us to invert block-by-block operators of the form (4-7) under certain conditions
on the blocks; see [Drouot et al. 2018, Lemma 4.1] for the version needed here. We need to verify that

Aδ(ξ)− λ : V (ξ)→ V (ξ) is invertible,

Dδ(ξ)− λ−Cδ(ξ) · (Aδ(ξ)− λ)−1
· Bδ(ξ) : V (ξ)⊥→ V (ξ)⊥ is invertible.

(4-19)
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The first statement holds because of step 4. Regarding the second statement, we observe that because of
(4-8) and (4-18),

Cδ(ξ) · (Aδ(ξ)− λ)−1
· Bδ(ξ)= OV (ξ)⊥(δ+ |ξ − ξ?|)= OV (ξ)⊥(δ

1/3).

Because of step 3, Dδ(ξ)− λ is invertible and its inverse is OV (ξ)⊥(1). Therefore a Neumann-series
argument shows that the second statement in (4-19) holds. It also shows that the inverse is OV (ξ)⊥(1).

We apply Schur’s lemma — see [Drouot et al. 2018, Lemma 4.1]. From (4-7), we obtain that Pδ(ξ)−λ :
H 2
ξ → L2

ξ is invertible when (4-6) holds, and moreover

(Pδ(ξ)− λ)−1
=

[
(Aδ(ξ)− λ)−1 0

0 0

]
+OL2

ξ
(1).

Using (4-17) and the projector (4-5), we deduce that

(Pδ(ξ)− λ)−1
=50(ξ)

∗
· (Mδ(ξ)− λ)

−1
·50(ξ)+OL2

ξ
(1). (4-20)

The error term in (4-20) improves automatically to OL2
ξ→H2

ξ
(1) because of elliptic regularity — see the

argument at the end of the proof of Lemma 4.1. �

5. The bulk resolvent along the edge

Let v ∈3 be the direction of an edge. We define accordingly v′, k, k ′ and `— see Section 2E. For ζ ∈ R,
we set

L2
[ζ ]

def
=
{
u ∈ L2

loc(R
2,C) : u(x + v)= eiζu(x),

∫
R2/Zv

|u(x)|2 dx <∞
}
.

Let Pδ[ζ ] be the operator formally equal to Pδ but acting on L2
[ζ ]. We are interested in the resolvent of

Pδ[ζ ] for δ small and ζ near ζ? = 〈ξ?, v〉. We recall

5 : L2(R2/Zv,C2)→ L2(R,C2), (5 f )(t) def
=
∫ 1

0 f (sv+ tv′) ds,

5∗ : L2(R,C2)→ L2(R2/Zv,C2), (5∗g)(x) def
= g(〈k ′, x〉),

Uδ : L2(R,C2)→ L2(R,C2), (Uδ f )(t) def
= f (δt).

(5-1)

Let /D±(µ) : H 1(R,C2)→ L2(R,C2) be the formal limits of /D(µ) as t→±∞:

/D±(µ)
def
=

[
ϑ? ν?k ′

ν?k ′ −ϑ?

]
Dt +µ

[
0 ν?`

ν?` 0

]
±

[
ϑ? 0
0 −ϑ?

]
.

The main result of this section relates the resolvent of P±δ[ζ ] at E?+ δz to that of /D±(µ) at z for small
enough δ. The assumptions (H1)–(H3) were defined in Section 1E.

Theorem 5.1. Assume that the assumptions (H1)–(H3) hold and fix µ] > 0 and θ ∈ (0, 1). There exists
δ0 > 0 such that if

δ ∈ (0, δ0), µ ∈ (−µ], µ]), z ∈ D
(
0, θ

√
ϑ2

F +µ
2
· ν2

F |`|
2),

ζ = ζ?+ δµ, λ= E?+ δz
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then the operators P±δ[ζ ] − λ : H 2
[ζ ] → L2

[ζ ] are invertible. Furthermore,

(P±δ[ζ ] − λ)−1
= S±δ(µ, z)+OL2[ζ ](δ

−1/3),

(k ′ · Dx)(P±δ[ζ ] − λ)−1
= SD
±δ(µ, z)+OL2[ζ ](δ

−1/3),

where

S±δ(µ, z) def
=

1
δ
·

[
φ1

φ2

]>
eiµδ〈`,x〉5∗ ·Uδ( /D±(µ)− z)−1U−1

δ ·5e−iµδ〈`,x〉
[
φ1

φ2

]
,

SD
±δ(µ, z) def

=
1
δ
·

[
(k ′ · Dx)φ1

(k ′ · Dx)φ2

]>
eiµδ〈`,x〉5∗ ·Uδ( /D±(µ)− z)−1U−1

δ ·5e−iµδ〈`,x〉
[
φ1

φ2

]
.

5A. Strategy. We first observe that it suffices to prove Theorem 5.1 for Pδ[ζ ]. Indeed, to go from Pδ[ζ ]
to P−δ[ζ ] we simply replace W with −W. The only parameter to change is ϑ?, which becomes −ϑ?. This
simply transforms /D+(µ) to /D−(µ).

To prove Theorem 5.1, we decompose Pδ[ζ ] fiberwise using the operators Pδ(ξ) (formally equal to Pδ
but acting on L2

ξ ). Specifically

Pδ[ζ ] =
1

2π

∫
⊕

R/(2πZ)

Pδ(ζk+ τk ′) · dτ = 1
2π

∫
⊕

[0,2π ]
Pδ(ζk+ τk ′) · dτ.

When Pδ[ζ ] − λ is invertible, we are interested in the resolvent

(Pδ[ζ ] − λ)−1
=

1
2π

∫
⊕

[0,2π ]
(Pδ(ζk+ τk ′)− λ)−1 dτ. (5-2)

The fiber resolvents (Pδ(ζk+τk ′)−λ)−1 were studied in Section 4. We first show that if ζk+τk ′ satisfies
ρ(ζk+τk ′)≥δ1/3 then this quasimomentum does not contribute significantly to the resolvent (Pδ[ζ ]−λ)−1.

Then we study the contributions from quasimomenta ζk+ τk ′ at distance at most δ1/3 from ξ?. The
Dirac operator /D+(µ) emerges from a rescaled direct integration of the dominant rank-2 matrix exhibited
in Lemma 4.3.

5B. Reduction to ζ k + τ k′ near ξ?. We start the proof of Theorem 5.1. Below θ ∈ (0, 1) and µ] > 0
are fixed numbers. Let n be the integer such that

〈ξ?, v
′
〉 ∈ [2πn, 2πn+ 2π).

Write ξ = ζk+ τk ′, τ ∈ [2πn, 2πn+ 2π), and introduce

I def
= {τ ∈ [2πn, 2πn+ 2π) : |ξ − ξ?| ≤ δ1/3

}, I c def
= [2πn, 2πn+ 2π) \ I.

Observe that ρ(ξ)= δ|µ`|. In particular for δ small enough ρ(ξ) is smaller than the threshold ε0 given
by Lemma 4.1. That lemma yields

(Pδ[ζ ] − λ)−1
=

1
2π

∫
⊕

τ∈I
(Pδ(ζk+ τk ′)− λ)−1 dτ + 1

2π

∫
⊕

τ∈I c
(Pδ(ζk+ τk ′)− λ)−1 dτ

=
1

2π

∫
⊕

τ∈I
(Pδ(ζk+ τk ′)− λ)−1 dτ +OL2[ζ ]→H2[ζ ](δ

−1/3). (5-3)
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We would like to apply Lemma 4.3 to the leading term of (5-3). We check the assumptions: we must
verify that when λ belongs to the range allowed in Theorem 5.1, λ belongs to the range required by
Lemma 4.3. This is equivalent to

D
(
E?, θδ

√
ϑ2

F +µ
2
· ν2

F |`|
2)
⊂ D

(
E?, θ

√
ϑ2

Fδ
2
+ ν2

F · |ξ − ξ?|
2). (5-4)

To check that (5-4) holds, we observe that

|ξ − ξ?|
2
= |k ′|2(τ − τ?)2+µ2δ2

|`|2,

τ?
def
= 〈ξ?, v

′
〉−µδ

〈k, k ′〉
|k ′|2

, `
def
= k−

〈k, k ′〉
|k ′|2

k ′.
(5-5)

This implies

θδ
√
ϑ2

F +µ
2
· ν2

F |`|
2
= θ

√
ϑ2

Fδ
2
+µ2ν2

F · |`|
2δ2
≤ θ

√
ϑ2

Fδ
2
+ ν2

F · |ξ − ξ?|
2.

Therefore we can apply Lemma 4.3 to the leading term of (5-3). It shows that

Pδ[ζ ] = Tδ[ζ ] +OL2[ζ ]→H2[ζ ](δ
−1/3),

Tδ[ζ ]
def
=

1
2π

∫
⊕

τ∈I
50(ζk+ τk ′)∗ · (Mδ(ζk+ τk ′)− λ)−1

·50(ζk+ τk ′) dτ.
(5-6)

Because of (5-5), τ? = 〈ξ?, v′〉 + O(δ). From Section 2E and the definition of n, we have 〈ξ?, v′〉 ∈{
2πn+ 2π

3 , 2πn+ 4π
3

}
. Hence τ? is in the interior of I for δ sufficiently small. It follows that I is an

interval centered at τ?:

I = [τ?− δ ·αδ, τ?+ δ ·αδ], αδ
def
=

√

δ2/3
−µ2

· ν2
F |`|

2δ2

|k ′|δ
=
δ−2/3

|k ′|
+ O(δ2/3). (5-7)

We make the substitution τ 7→ τ?+δτ . The vector ζk+τk ′ becomes ζk+ (τ?+δτ)k ′ = ξ?+δ(τk ′+µ`),
the interval I becomes [−αδ, αδ], dτ becomes δ dτ and

Mδ(ζk+ δ(τk ′+µ`))= E?+ δ
[

ϑ? ν?(τk ′+µ`)
ν?(τk ′+µ`) −ϑ?

]
,

(Mδ(ζk+ δ(τk ′+µ`))− λ)−1
=

1
δ

[
ϑ?− z ν?(τk ′+µ`)

ν?(τk ′+µ`) −ϑ?− z

]−1

, z def
=
λ− E?
δ

.

We deduce that Tδ[ζ ] equals

1
2π

∫
⊕

|τ |<αδ

50(ξ?+ δ(τk ′+µ`))∗ ·
[

ϑ?− z ν?(τk ′+µ`)
ν?(τk ′+µ`) −ϑ?− z

]−1

·50(ξ?+ δ(τk ′+µ`)) · dτ.

Thanks to the definition (5-7) of 50,

50(ξ?+ δ(τk ′+µ`))u =
[
〈eiδ〈τk′+µ`,x〉φ1, u〉
〈eiδ〈τk′+µ`,x〉φ2, u〉

]
.
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We conclude that the operator Tδ[ζ ] has kernel

1
2π

[
φ1(x)
φ2(x)

]>
·

∫
|τ |≤αδ

[
ϑ?− z ν?(τk ′+µ`)

ν?(τk ′+µ`) −ϑ?− z

]−1

eiδ〈τk′+µ`,x−y〉 dτ ·
[
φ1(y)
φ2(y)

]
. (5-8)

5C. Kernel identities and proof of Theorem 5.1. Recall that 5, 5∗ and Uδ are defined in (5-1).

Lemma 5.2. There exists C>0 such that for every δ∈ (0, 1), the following holds. Let9 ∈ L∞(R,M2(C)),
possibly depending on δ, and A9 be the operator with kernel

(x, y) 7→
[
φ1(x)
φ2(x)

]>
·

1
2π

∫
R

9(τ)eiδ〈τk′+µ`,x−y〉 dτ ·
[
φ1(y)
φ2(y)

]
.

Then A9 is bounded on L2
[ζ ] with ‖A9‖L2[ζ ] ≤ Cδ−1

|9|∞, and

A9 =
1
δ
·

[
φ1

φ2

]>
eiµδ〈`,x〉5∗ ·Uδ9(Dt)U−1

δ ·5e−iµδ〈`,x〉
[
φ1

φ2

]
. (5-9)

If in addition τ ·9 ∈ L∞(R,M2(C)) then (k ′ · Dx)A9 is bounded on L2
[ζ ] with

‖(k ′ · Dx)A9‖L2[ζ ] ≤ Cδ−1
|9|∞+C |τ ·9|∞

and

(k ′ · Dx)A9 =
1
δ
·

[
(k ′ · Dx)φ1

(k ′ · Dx)φ2

]>
eiµδ〈`,x〉5∗ ·Uδ9(Dt)U−1

δ ·5e−iµδ〈`,x〉
[
φ1

φ2

]
+OL2[ζ ](|〈τ 〉 ·ψ |∞).

Proof. 1. We first note that the operator δ−1
·Uδ9(Dt)U−1

δ has kernel

(t, t ′) ∈ R×R2
7→

1
2π

∫
R

eiδτ(t−t ′)9(τ) · dτ. (5-10)

Let δ0 denote the Dirac mass. We claim that the operator 5 has kernel

(t ′, y) ∈ R×R2/(Zv) 7→ δ0(〈k ′, y〉− t ′). (5-11)

Fix f ∈ C∞0 (R
2/Zv,C2). The integral∫

R2/Zv

δ0(〈k ′, y〉− t ′) f (y) dy

is well-defined. We perform the substitution y 7→ (〈k, y〉, 〈k ′, y〉); the inverse substitution is (s, t) 7→
sv+ tv′; the Jacobian determinant is dy =Det[v, v′] · ds dt . Since v, v′ are related to v1, v2 by (2-4) and
Det[v1, v2] = 1 because of (1-1), Det[v, v′] = 1. The above integral becomes∫

R2/Ze1

δ0(t − t ′) f (sv+ tv′) ds dt =
∫

R/Z

f (sv+ t ′v′) ds.

We recover the formula (5-1) for 5 f . From (5-11), we deduce that the kernel of 5∗ is

(x, t) ∈ R2/Zv×R 7→ δ0(〈k ′, x〉− t). (5-12)
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To obtain (5-10), we compose the kernels (5-11), (5-10) and (5-12). This forces t to be 〈k ′, x〉 and t ′

to be 〈k ′, y〉. Hence the operator δ−1
·5∗ ·Uδ9(Dt)U−1

δ ·5 has kernel

(x, y) 7→ 1
2π

∫
R

eiδτ 〈k′,x−y〉9(τ) · dτ.

This implies (5-9).

2. We prove the L2
[ζ ]-bound. The operator 5 maps L2(R2/Zv,C) to L2(R,C2), independently of

δ. Its adjoint maps L2(R,C2) to L2(R2/Zv,C), independently of δ. The dilations Uδ and U−1
δ map

L2(R,C2) to itself, with bounds δ−1/2 and δ1/2, respectively. The operator 9(Dt) is a Fourier multiplier;
hence it maps L2(R,C2) to itself, with bound |9|∞. Combining all these bounds together we get

‖A9‖L2[ζ ] ≤ Cδ−1
|9|∞.

3. We observe that the operator (k ′ · Dx)A9 has kernel[
(k ′ · Dx)φ1(x)
(k ′ · Dx)φ2(x)

]>
·

1
2π

∫
R

9(τ)eiδ〈τk′+µ`,x−y〉 dτ ·
[
φ1(y)
φ2(y)

]
+

[
φ1(x)
φ2(x)

]>
·

1
2π

∫
R

9(τ) · τδ|k ′|2ei tδ〈τk′+µ`,x−y〉 dτ ·
[
φ1(y)
φ2(y)

]
.

Above, we used that ` · k ′ = 0. These two terms are kernels of operators studied in steps 1 and 2. The first
one has L2

[ζ ]-operator norm controlled by Cδ−1
|9|∞ and the second one by C |τ ·9|∞. �

Lemma 5.3. Let ϑ] ∈ (0, ϑF ). There exists C > 0 such that for any z ∈D(0, ϑ]), the following holds. Let
90 : R→ M2(C) be given by

90(τ )
def
=

[
ϑ?− z ν?(τk ′+µ`)

ν?(τk ′+µ`) −ϑ?− z

]−1

. (5-13)

Then τ ·90 ∈ L∞(R,M2(C)) and for every a ≥ 0,

sup
|τ |≥a
‖90(τ )‖C2 ≤ Ca−1, sup

|τ |≥a
‖τ90(τ )‖C2 ≤ C. (5-14)

To prove Lemma 5.3, it suffices to observe that

90(τ )=−
1

|ϑ?− z|2+ ν2
F |`|

2µ2+ ν2
F |k ′|2τ 2

[
ϑ?− z ν?(τk ′+µ`)

ν?(τk ′+µ`) −ϑ?− z

]
.

In particular, 90(τ )= OC2(τ−1). This yields the bounds (5-14). Let /D+(µ) : H 1(R,C2)→ L2(R,C2)

be the Dirac operator defined by

/D+(ζ )
def
=

[
ϑ? ν?k ′

ν?k ′ −ϑ?

]
Dt +µ

[
0 ν?`

ν?` 0

]
+

[
ϑ? 0
0 −ϑ?

]
.

We are now ready to prove Theorem 5.1.
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Proof of Theorem 5.1. 1. Because of (5-6), it suffices to prove Theorem 5.1 when Pδ[ζ ] is replaced by
Tδ[ζ ]. We first apply Lemma 5.2 with 90 given by (5-13). It shows that

A90

def
=

1
δ
·

[
φ1

φ2

]>
eiµδ〈`,x〉5∗ ·Uδ( /D+(µ)− z)−1U−1

δ ·5e−iµδ〈`,x〉
[
φ1

φ2

]
has kernel

(x, y) 7→
[
φ1(x)
φ2(x)

]>
·

1
2π

∫
R

90(τ )eiδ〈τk′+µ`,x−y〉 dτ ·
[
φ1(y)
φ2(y)

]
.

2. We now apply Lemma 5.2 with91(τ )
def
=1R\[−αδ,αδ](τ )·90(τ ) (recall that αδ=|k ′|−1δ−2/3

+O(δ2/3)

was defined in (5-7)). It shows that A91 has kernel[
φ1(x)
φ2(x)

]>
·

1
2π

∫
|τ |≥αδ

90(τ )eiδ〈τk′+µ`,x−y〉 dτ ·
[
φ1(y)
φ2(y)

]
.

Thanks to the bounds of Lemma 5.3, A91 = OL2[ζ ](δ
−1α−1

δ )= OL2[ζ ](δ
−1/3).

3. When we subtract the kernel of A91 from the kernel of A90 , we get the kernel of Tδ[ζ ]; see (5-8).
This shows that Tδ[ζ ] = A90 − A91 . Hence

Tδ[ζ ] =
1
δ
·

[
φ1

φ2

]>
eiµδ〈`,x〉5∗ ·Uδ( /D+(µ)− z)−1U−1

δ ·5e−iµδ〈`,x〉
[
φ1

φ2

]
+OL2[ζ ](δ

−1/3).

4. Lemma 5.2 and the bounds of Lemma 5.3 imply that

(k ′ · Dx)A90 =
1
δ
·

[
(k ′ · Dx)φ1

(k ′ · Dx)φ2

]>
eiµδ〈`,x〉5∗ ·Uδ( /D+(µ)− z)−1U−1

δ ·5e−iµδ〈`,x〉
[
φ1

φ2

]
+OL2[ζ ](1).

It also implies that (k ′ · Dx)A91 = OL2[ζ ](δ
−1/3). We conclude that

(k ′·Dx)Tδ[ζ ] =
1
δ
·

[
(k ′·Dx)φ1

(k ′·Dx)φ2

]>
eiµδ〈`,x〉5∗·Uδ( /D+(µ)−z)−1U−1

δ ·5e−iµδ〈`,x〉
[
φ1

φ2

]
+OL2[ζ ](δ

−1/3). �

6. The resolvent of the edge operator

Recall that κ is a domain wall function — see (1-8) — and introduce the operator

Pδ =−1+ V + δ · κδ ·W, κδ(x)= κ(δ〈k ′, x〉).

We denote by Pδ[ζ ] the operator formally equal to Pδ but acting on L2
[ζ ]. In this section we prove

Theorem 3.2: we connect the resolvent of Pδ[ζ ] to that of the Dirac operator /D(µ) emerging from the
multiscale analysis of [Fefferman et al. 2016b]:

/D(µ)=
[

0 ν?k ′

ν?k ′ 0

]
Dt +µ

[
0 ν?`

ν?` 0

]
+ϑ?

[
1 0
0 −1

]
κ.

The strategy is as follows. We first prove a formula for (Pδ[ζ ]−λ)
−1 in terms of the asymptotic operators

(P±δ[ζ ] − λ)−1. We then apply Theorem 5.1 to exhibit the leading-order term in this formula.
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We use a cyclicity argument to simplify this leading-order term. An averaging effect emerges as the
driving phenomenon connecting Pδ[ζ ] to /D(µ). This yields Theorem 3.2.

6A. Parametrix. We first construct a parametrix for Pδ[ζ ] − λ. Introduce

Qδ(ζ, λ)
def
=

∑
±

χ±,δ · (P±δ[ζ ] − λ)−1, χ±
def
=

1± κ
2

. (6-1)

This operator is well-defined — and depends holomorphically on λ— as long as λ /∈ 6L2[ζ ](Pδ[ζ ]).
Formally speaking, it behaves asymptotically like (Pδ[ζ ] − λ)

−1.
A calculation similar to [Drouot et al. 2018, §5.2] yields

(Pδ[ζ ] − λ)Qδ(ζ, λ)= Id+Kδ(ζ, λ),

where

Kδ(ζ, λ)=
δ

2
(
2(Dtκ)δ · (k ′ · Dx)+ δ|k ′|2(D2

t κ)δ + (κ
2
δ − 1)W

)(
(Pδ[ζ ] − λ)−1

− (P−δ[ζ ] − λ)−1).
This identity shows that if Id+Kδ(ζ, λ) is invertible then Pδ[ζ ] − λ is invertible. When this holds,
(Pδ[ζ ] − λ)

−1 has an expression in terms of Qδ(ζ, λ) and Kδ(ζ, λ):

(Pδ[ζ ] − λ)
−1
=Qδ(ζ, λ) · (Id+Kδ(ζ, λ))

−1.

The operators Qδ(ζ, λ) and Kδ(ζ, λ) have expressions in terms of (P±δ[ζ ] − λ)−1. An application of
Theorem 5.1 estimates Qδ(ζ, λ) and Kδ(ζ, λ), assuming

δ ∈ (0, δ0), µ ∈ (−µ], µ]), z ∈ D
(
0,
√
ϑ2

F +µ
2
· ν2

F |`|
2),

λ= E?+ δz, ζ = ζ?+ δµ.
(6-2)

We introduce the operator

R0(µ, z) : L2(R,C2)→ H 2(R,C2),

R0(µ, z) def
= ( /D+(µ)2− z2)−1

= (ν2
F |k
′
|
2 D2

t +µ
2
|ν?`|

2
+ϑ2

F − z2)−1.

It is well-defined when z is away from the spectrum of /D±(µ)— in particular when

z ∈ D
(
0,
√
ϑ2

F +µ
2
· ν2

F |`|
2).

Lemma 6.1. Let µ] > 0, θ ∈ (0, 1). There exists δ0 > 0 such that under the assumptions of Theorem 5.1,
Kδ(ζ, λ) and Qδ(ζ, λ) admit the expansions

Kδ(ζ, λ)=Kδ(µ, z)+OL2[ζ ](δ
2/3), Qδ(ζ, λ)=Qδ(µ, z)+OL2[ζ ](δ

−1/3).

Above, Kδ(µ, z) is equal to

ϑ?

(
2(Dtκ)δ

[
k ′ · Dxφ1

k ′ · Dxφ2

]>
+ (κ2

δ − 1)W
[
φ1

φ2

]>)
e−iµδ〈`,x〉5∗Uδσ3 · R0(µ, z) ·U−1

δ 5eiµδ〈`,x〉
[
φ1

φ2

]
and

Qδ(µ, z) def
=

1
δ
·

[
φ1

φ2

]>
e−iµδ〈`,x〉5∗Uδ · ( /D(µ)+ z) · R0(µ, z) ·U−1

δ 5eiµδ〈`,x〉
[
φ1

φ2

]
.
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The proof is a calculation using the relation between Qδ(ζ, λ) and Kδ(ζ, λ) with the edge resolvents
(P±δ[ζ ] − λ)−1, and the expansions of these resolvents provided by Theorem 5.1. We defer it to
Appendix A.3.

6B. Weak convergence. We are interested in the eigenvalues of Pδ[ζ ]. We previously studied eigenvalue
problems in seemingly different situations [Drouot 2018a; 2018c; 2018d], as well as in a one-dimensional
analog [Drouot et al. 2018]. The proofs of these results rely on a cyclicity principle: if A and B are two
matrices then the nonzero eigenvalues of AB and B A are equal (together with their multiplicity).

Although the leading-order terms Kδ(µ, z) and Qδ(µ, z) have complicated expressions, they exhibit a
structure favorable to applying the cyclicity principle. This will provide a simple formula for the product

Qδ(µ, z) · (Id+Kδ(µ, z))−1

and complete the proof of Theorem 3.2.
A preliminary step is the computation of a weak limit that arises when permuting factors in Kδ(µ, z):

the operator L2(R,C2)→ L2(R,C2) given by

ϑ?U−1
δ 5eiµδ〈`,x〉

[
φ1

φ2

]
·

(
2(Dtκ)δ ·

[
k ′ · Dxφ1

k ′ · Dxφ2

]>
+ (κ2

δ − 1)W
[
φ1

φ2

]>)
· e−iµδ〈`,x〉5∗Uδσ3

= ϑ?U−1
δ ·5

[
φ1

φ2

](
2(Dtκ)δ ·

[
k ′ · Dxφ1

k ′ · Dxφ2

]>
+ (κ2

δ − 1)W
[
φ1

φ2

]>)
σ35

∗
·Uδ. (6-3)

Lemma 6.2. The operator (6-3) is a multiplication operator by a function U δ
:R→M2(C) with two-scale

structure:
U δ(t)= U

( t
δ
, t
)
, U ∈ C∞0 (R/Z×R,M2(C)). (6-4)

The function U δ converges weakly to

U 0
∈ C∞0 (R,M2(C)), U 0(t) def

= ϑ2
F (κ(t)

2
− 1)+ϑ?

[
0 −ν?k ′

ν?k ′ 0

]
(Dtκ)(t). (6-5)

Finally, if U δ
−U 0 is seen as a multiplication operator from H 1 to H−1,

U δ
−U 0

= OH1→H−1(δ). (6-6)

Proof. 1. We set

F(x, t) def
= ϑ?

[
φ1(x)
φ2(x)

](
(Dtκ)(t) ·

[
2k ′ · Dxφ1(x)
2k ′ · Dxφ2(x)

]>
+ (κ(t)2− 1)W (x)

[
φ1(x)
φ2(x)

]>)
σ3,

Fδ(x) def
= F(x, δ〈k ′, x〉).

Fix g ∈ C∞0 (R,C2). The action of the operator (6-3) on g is given by

(U−1
δ ·5Fδ5∗ ·Uδg)(t)=

∫ 1

0
Fδ
(
sv+ t

δ
v′
)

g
(〈

k ′, δ
(
sv+ t

δ
v′
)〉)

ds

=

∫ 1

0
F
(
sv+ t

δ
v′, t

)
g(t)ds =

∫ 1

0
F
(
sv+ t

δ
v′, t

)
ds · g(t).
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Therefore (6-3) is the multiplication operator by

U δ(t) def
=

∫ 1

0
F
(
sv+ t

δ
v′, t

)
ds.

Note that F is3-periodic in x and compactly supported in t . Therefore U δ has the two-scale structure (6-4):

U δ(t)= U
( t
δ
, t
)
, U (τ, t) def

=

∫ 1

0
F(sv+ τv′, t) ds. (6-7)

2. The function U is periodic in the first variable and compactly supported in the second one. Therefore
the weak limit of U δ is

U 0(t) def
=

∫ 1

0
U (τ, t) dτ =

∫ 1

0

∫ 1

0
F(sv+ τv′, t) dτ ds =

∫
L

F(x, t) dx . (6-8)

In the last inequality, we changed variables: sv+ τv′ became sv1+ τv2 (with Jacobian equal to 1); hence
[0, 1]2 became L, the fundamental cell of R2/3 given in (1-2). Going back to the definition of F, we end
up with

U 0(t)=
([
ϑ2

F 0
0 −ϑ2

F

]
(κ(t)2− 1)+ϑ?

[
0 ν?k ′

ν?k ′ 0

]
(Dtκ)(t)

)
σ3

= ϑ2
F (κ(t)

2
− 1)+ϑ?

[
0 −ν?k ′

ν?k ′ 0

]
(Dtκ)(t).

3. We show the quantitative estimate (6-6). Since U δ and U 0 are functions on R,

‖U δ
−U 0

‖H1→H−1 ≤ C |U δ
−U 0

|H−1 .

See, e.g., [Drouot 2018c, Lemma 2.1]. Recall that U δ is related to U via (6-7). The function U is periodic
in the first variable and compactly supported in the second variable. We write a Fourier decomposition
of U :

U (τ, t)=
∑
m∈Z

bm(t)e2iπmτ , bm(t)
def
=

∫ 1

0
e−2iπmτ ′U (t, τ ′) dτ ′.

Because of (6-7) and (6-8),
U δ(t)−U 0(t)=

∑
m 6=0

bm(t)e2iπmt/δ.

In other words, U δ
−U 0 has a highly oscillatory structure. The coefficients bm are smooth functions

of t . Their Sobolev norms decay rapidly since U depends smoothly on τ . We can then conclude as in the
proof of [Drouot 2018a, Lemma 3.1]. �

The function U 0 is an effective potential that arises as the homogenized limit of U δ. It appears in the
Dirac operator /D(µ). Indeed, a computation shows that

/D(µ)2 = ν2
F |k
′
|
2 D2

t +µ
2
· ν2

F |`|
2
+ϑ2

Fκ
2
+ϑ?

[
0 −ν?k ′

ν?k ′ 0

]
(Dtκ).
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Because of (6-5), we deduce that

/D(µ)2 = ν2
F |k
′
|
2 D2

t +µ
2
· ν2

F |`|
2
+ϑ2

F +U 0. (6-9)

We will apply this identity in the next section.

6C. A cyclicity argument. The next result is stated abstractly. It relies on the cyclicity principle.

Lemma 6.3. Let A, B,C, D, E be bounded operators:

A : H 1(R,C2)→ L2
[ζ ], B : L2

[ζ ] → L2(R,C2),

C : L2(R,C2)→ L2
[ζ ], D : L2(R,C2)→ H 1(R,C2),

E : L2(R,C2)→ L2(R,C2).

Assume that for some M ≥ 1:

(a) The operator norms of A, B,C, D, E are bounded by M.

(b) The operator Id+DE D : L2(R,C2)→ L2(R,C2) is invertible and

‖(Id+DE D)−1
‖L2(R,C2) ≤ M.

(c) The following estimate holds:

ε
def
= ‖D(BC − E)D‖L2(R,C2) ≤

1
2M

.

Then the operator Id+C D2 B : L2
[ζ ] → L2

[ζ ] is invertible,

‖(Id+C D2 B)−1
‖L2[ζ ] ≤ 3M5, and

‖AD2 B · (Id+C D2 B)−1
− AD · (Id+DE D)−1

· DB‖L2[ζ ] ≤ 2M6ε.
(6-10)

Proof. Below we use L2 and H 1 to denote L2(R,C2) and H 1(R,C2).

1. Recall that Id+C D2 B = Id+C D · DB : L2
[ζ ] → L2

[ζ ] is invertible if and only if Id+DB ·C D :
L2
→ L2 is invertible. In this case, the inverses are related via

(Id+C D2 B)−1
= Id−C D(Id+DB ·C D)−1 DB. (6-11)

Because of (b), Id+DE D is invertible and

Id+DB ·C D = Id+DE D+ D(BC − E)D

= (Id+DE D) · (Id+(Id+DE D)−1
· D(BC − E)D). (6-12)

Because of both (b) and (c),

‖(Id+DE D)−1
· D(BC − E)D‖L2 ≤

1
2 .

This implies that Id+(Id+DE D)−1
· D(BC − E)D is invertible by a Neumann series; the inverse has

operator norm controlled by 2. Thanks to (6-12), Id+DBC D is invertible and the inverse has norm



CHARACTERIZATION OF EDGE STATES IN PERTURBED HONEYCOMB STRUCTURES 425

controlled by 2M . Hence Id+C D2 B is invertible. Thanks to (6-11) and (a),

‖(Id+C D2 B)−1
‖L2[ζ ] ≤ 1+M2

· 2M ·M2
≤ 3M5.

This proves the first estimate of (6-10).

2. Observe that

(Id+DBC D)−1
− (Id+DE D)−1

= (Id+DE D)−1
· D(E − BC)D · (Id+DBC D)−1.

Because of the bounds proved in step 1 and of (c),

‖(Id+DBC D)−1
− (Id+DE D)−1

‖L2 ≤ 2M2ε. (6-13)

We write

AD2 B · (Id+C D2 B)−1
= AD2 B · (Id−C D(Id+DBC D)−1 DB)

= AD · DB− AD · DBC D(Id+DBC D)−1
· DB

= AD · (Id−DBC D(Id+DBC D)−1) · DB

= AD · (Id+DBC D)−1
· DB.

The operator norms of AD : L2
→ L2

[ζ ] and DB : L2
[ζ ]→ H 1 are each bounded by M2 because of (a).

We deduce from (6-13) that

‖AD2 B · (Id+C D2 B)−1
− AD · (Id+DE D)−1

· DB‖L2[ζ ] ≤ 2M6ε.

This proves the second estimate of (6-13), hence completes the proof of the lemma. �

We would like to apply Lemma 6.3 with the choices

A def
= δ1/2

·

[
φ1

φ2

]>
e−iµδ〈`,x〉5∗ ·Uδ( /D(µ)+ z), B def

=
1
δ1/2 ·U

−1
δ 5eiµδ〈`,x〉

[
φ1

φ2

]
,

C def
= δ1/2ϑ?

(
2(Dtκ)δ ·

[
k ′ · Dxφ1

k ′ · Dxφ2

]>
+ (κ2

δ − 1)W
[
φ1

φ2

]>)
· e−iµδ〈`,x〉5∗ · Uδσ3,

D = ( /D+(µ)2− z2)−1/2
= R0(µ, z)1/2, E = U 0. (6-14)

These operators are manufactured so that

Qδ(µ, z)= 1
δ

AD2 B, Kδ(µ, z)= C D2 B; (6-15)

see the formula of Lemma 6.1. Recall that U δ,U 0 were defined in Lemma 6.2 and observe that
BC =U δ

→ E = U 0 (for the operator norm H 1
→ H−1). This provides the favorable setting needed for

the use of the cyclicity argument (Lemma 6.3).
The definition of D requires some precision. Let ϕ(ω) = (ω2

− z2)−1/2, where the square root is
holomorphic on C \ (−∞, 0]. If |z|<

√

ϑ2
F +µ

2
· ν2

F |`|
2 and

ω ∈6L2( /D+(µ))= R \
[
−

√
ϑ2

F +µ
2
· ν2

F |`|
2,
√
ϑ2

F +µ
2
· ν2

F |`|
2].
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then Re(ω2
− z2) > 0. Hence ϕ is well-defined on the spectrum of /D+(µ). This allows to define

D = ϕ( /D+(µ)) using the spectral theorem.

Lemma 6.4. Fix ε1 > 0, µ] ∈ R. There exists δ0 > 0 such that if

δ ∈ (0, δ0), µ ∈ (−µ], µ]),

z2
∈ D(0, ϑ2

F +µ
2
· ν2

F |`|
2), dist(6L2( /D(µ)2), z2)≥ ε2

1
(6-16)

then (Id+DE D)−1 and (Id+C D2 B)−1 are invertible on L2
[ζ ]. Moreover,

AD2 B · (Id+C D2 B)−1
= AD · (Id+DE D)−1

· DB+OL2[ζ ](δ),

( Id+C D2 B)−1
= OL2[ζ ](1).

(6-17)

Proof. Below we use L2 and H 1 to denote L2(R,C2) and H 1(R,C2). The equation (6-17) is a consequence
of Lemma 6.3, assuming that the assumptions (a), (b) and (c) hold with a constant M independent of
δ, µ, z satisfying (6-16).

1. We first verify (a). We observe that the only singular dependence of A, B,C and E is in δ. It arises
only in the operators δ1/2Uδ and δ−1/2U−1

δ , which are both isometries on L2. In addition,

dist(6L2( /D(µ)2), z2)≥ ε2
1 =⇒ dist(6L2( /D+(µ)2), z2)≥ ε2

1 .

Therefore D is controlled by ε−2
1 , and (a) holds independently of δ, µ, z satisfying (6-16).

2. From the definition (6-14) of D, we know D is invertible. Therefore we can write

Id+DE D = D(D−2
+ E)D.

Moreover, thanks to (6-9),
D−2
+ E = /D(µ)2− z2. (6-18)

When z satisfies the condition of (6-16), the operator /D(µ)2− z2 is invertible. This comes with the bound

‖( /D(µ)2− z2)−1
‖L2 ≤

1
ε2

1
.

This is independent of δ: (b) holds.

3. The operator D maps L2 to H 1 and H−1 to L2, with uniformly bounded norm in µ, z satisfying
(6-16). Therefore (c) holds — possibly after shrinking δ0 — if

‖BC − E‖H1→H−1 = O(δ). (6-19)

We observe that BC = U δ and recall that E = U 0. Therefore (6-19) reduces to the quantitative estimate
(6-6) proved in Lemma 6.2.

4. Because of steps 1, 2 and 3, we can apply Lemma 6.3. It yields Lemma 6.4. �

According to this lemma, when (6-16) holds, Id+Kδ(µ, z) is invertible. Hence

Qδ(µ, z) · (Id+Kδ(µ, z))−1
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is well-defined. Thanks to (6-15),

Qδ(µ, z) · (Id+Kδ(µ, z))−1
=

1
δ

AD · (Id+DE D)−1
· DB+OL2[ζ ](1)

=
1
δ

AD · D−1(D−2
+ E)−1 D−1

· DB+OL2[ζ ](1)

=
1
δ

A · (D−2
+ E)−1

· B+OL2[ζ ](1).

We now plug in the formula (6-14) for A, B,C, D, E , and we use the relation (6-18). This yields

Qδ(µ, z) · (Id+Kδ(µ, z))−1

=
1
δ
·

[
φ1

φ2

]>
e−iµδ〈`,x〉5∗Uδ · ( /D(µ)+ z) · ( /D(µ)2− z2)−1

·U−1
δ 5eiµδ〈`,x〉

[
φ1

φ2

]
+OL2[ζ ](1)

=
1
δ
·

[
φ1

φ2

]>
e−iµδ〈`,x〉

·5∗Uδ · ( /D(µ)− z)−1
·U−1

δ 5 · eiµδ〈`,x〉
[
φ1

φ2

]
+OL2[ζ ](1). (6-20)

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. 1. Fix ε > 0 and µ] > 0. Fix z ∈ C satisfying

z ∈ D
(

0,
√
ϑ2

F +µ
2
· ν2

F |`|
2
−
ε

3

)
, dist(6L2( /D(µ)2), z2)≥

ε2

9
. (6-21)

Note that this does not quite correspond to the assumptions of Theorem 3.2. Instead it is a stronger
form of the assumptions of Lemma 6.4 with ε1 = ε/3. The equation (6-21) implies that Id+Kδ(µ, z) is
invertible. Apply Lemma 6.1 with

θ = 1−
ε

3
√

ϑ2
F +µ

2
· ν2

F |`|
2
.

It implies that

Id+Kδ(ζ, λ)= Id+Kδ(µ, z)+OL2[ζ ](δ
2/3).

Hence — after possibly shrinking δ0 — the operator Id+Kδ(ζ,λ) is invertible. The inverses of Id+Kδ(ζ,λ)

and Id+Kδ(µ, z) are related via

(Id+Kδ(ζ, λ))
−1
= (Id+Kδ(µ, z))−1

+OL2[ζ ](δ
2/3),

because (Id+Kδ(µ, z))−1
= (Id+C D2 B)−1 is uniformly bounded by Lemma 6.4. It follows that under

(6-21), Pδ[ζ ] − λ is invertible and

(Pδ[ζ ] − λ)
−1
=Qδ(ζ, λ) · (Id+Kδ(ζ, λ))

−1.

2. Observe that Qδ(µ, z)= OL2[ζ ](δ
−1): this comes from the relation between Qδ(ζ, λ) and Qδ(µ, z)

provided by Lemma 6.1. We deduce that Pδ[ζ ] − λ is invertible and

(Pδ[ζ ] − λ)
−1
=Qδ(µ, z) · (Id+Kδ(µ, z))−1

+OL2[ζ ](δ
−1/3).
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Figure 11. The top blue area represents the domain of validity of (6-22) provided by
steps 1 and 2. The bottom blue area represents the domain of validity of (6-22) as
specified by Theorem 3.2. In step 3 we prove that (6-22) holds near ϑ = −ϑµ0 , at the
price of increasing ε/3 to ε.

Thanks to (6-20), this simplifies to

(Pδ[ζ ]−λ)
−1
=

1
δ
·

[
φ1

φ2

]>
e−iµδ〈`,x〉5∗Uδ · ( /D(µ)− z)−1

·U−1
δ 5eiµδ〈`,x〉

[
φ1

φ2

]
+OL2[ζ ](δ

−1/3). (6-22)

See Figure 11.

3. The estimate (6-22) is valid as long as z satisfies (6-21). There is a subtlety here: (6-21) does not
quite correspond to the assumption of Theorem 3.2. To conclude the proof, we must show that (6-21) is
unnecessarily strong. In other words, we assume in these final steps that

z ∈ D
(
0,
√
ϑ2

F +µ
2
· ν2

F |`|
2
− ε

)
, dist(6L2( /D(µ)), z)≥ ε, dist(6L2( /D(µ)2), z2) <

ε2

9
.

The third condition implies

dist(6L2( /D(µ)), z) < ε

3
or dist(6L2(− /D(µ)), z) < ε

3
.

From the second condition, we deduce that dist(6L2(− /D(µ)), z) < ε/3. The spectra of /D(µ) and − /D(µ)
differ by at most one eigenvalue:

6L2(− /D(µ)) \6L2( /D(µ))⊂ {ϑ}, ϑ
def
=−µ · νF |`| · sgn(ϑ?), (6-23)

see Lemma 3.1. Hence, z must belong to D(ϑ, ε/3).

4. Because of step 3, the proof of Theorem 3.2 is complete if we can show that (6-22) holds when

z ∈ D
(
0,
√
ϑ2

F +µ
2
· ν2

F |`|
2
− ε

)
, dist(6L2( /D(µ)), z)≥ ε, z ∈ D

(
ϑ,
ε

3

)
.

Fix s ∈ ∂D(ϑ, ε/3). Then, |z− s|< 2ε/3. This implies that

s ∈ D
(

0,
√
ϑ2

F +µ
2
· ν2

F |`|
2
−
ε

3

)
, dist(6L2( /D(µ)), s)≥ ε

3
, |ϑ − s| = ε

3
.
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Because of (6-23), s satisfies

dist(6L2( /D(µ)), s)≥ ε
3
, dist(6L2(− /D(µ)), s)= ε

3
=⇒ dist(6L2( /D(µ)2), s)≥ ε

2

9
.

In particular, s satisfies (6-21).
Therefore steps 1 and 2 apply to s ∈ ∂D(ϑ, ε/3). They yield

(Pδ[ζ ] − E?− δs)−1

=
1
δ
·

[
φ1

φ2

]>
e−iµδ〈`,x〉5∗Uδ · ( /D(µ)− s)−1

·U−1
δ 5eiµδ〈`,x〉

[
φ1

φ2

]
+OL2[ζ ](δ

−1/3). (6-24)

Note that ( /D(µ)− s)−1 has no poles in the disk D(ϑ, ε/3): otherwise z could not be at distance at least ε
from 6L2( /D(µ)). Thus, integrating (6-24) over the circle ∂D(ϑ, ε/3),

1
2π i

∮
∂D(ϑ,ε/3)

(Pδ[ζ ] − E?− δs)−1 ds = OL2[ζ ](δ
−1/3). (6-25)

We substitute λ= E?+ δs in (6-25) to get

1
2π i

∮
∂D(E?+δϑ,εδ/3)

(Pδ[ζ ] − λ)
−1 dλ= OL2[ζ ](δ

2/3). (6-26)

Equation (6-26) implies that (Pδ[ζ ]−λ)
−1 cannot have a pole in D(E?+ϑδ, εδ/3). Indeed, since Pδ[ζ ]

is selfadjoint, the nonzero residues of its resolvent are nonzero projectors, and hence have L2
[ζ ]-operator

norm at least equal to 1.
We deduce that s 7→ (Pδ[ζ ] − E?− δs)−1 is holomorphic in the disk D(ϑ, ε/3), and so is the leading

term in (6-24). Their difference is bounded by OL2[ζ ](δ
−1/3) on the boundary of the disk. By the maximum

principle, this difference is OL2[ζ ](δ
−1/3) also inside the disk. This shows that (6-24) holds when s is

in the disk D(ϑ, ε/3). Equivalently (6-22) holds when z ∈ D(ϑ, ε/3). This completes the proof of
Theorem 3.2. �

7. A topological perspective

7A. The role of ϑ A
? and ϑ B

? in the spectral flow. Assume that P0 has Dirac points (ξ A
? , E?) and

(ξ B
? , E?)— where ξ A

? and ξ B
? were defined in (1-4). Following Definition 1.2, these Dirac points are

associated to Dirac eigenbases (φA
1 , φ

A
2 ) and (φB

1 , φ
B
2 ):

φ J
1 ∈ L2

ξ J
? ,τ
, φ J

2 ∈ L2
ξ J
? ,τ̄
, J = A, B, and ϑ J

? = 〈φ
J
1 ,Wφ J

1 〉L2
ξ J
?

. (7-1)

We recall that ϑ J
? does not depend on the choice of Dirac eigenbasis satisfying (7-1). The next result is a

key identity — see also [Lee-Thorp et al. 2019, §7.1].

Lemma 7.1. The identity ϑ A
? +ϑ

B
? = 0 holds.

Proof. 1. We claim that IφA
1 ∈ L2

ξ B
? ,τ

. Thanks to (1-4),

−ξ A
? =−

2π
3 (2k1+ k2)=

2π
3 (k1+ 2k2)= ξ

B
? mod 2π3∗.
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Because φA
1 ∈ L2

ξ A
? ,τ

,

(IφA
1 )(x +w)= φ

A
1 (−x −w)= e−i〈ξ A

? ,w〉(IφA
1 )(x)= ei〈ξ B

? ,w〉(IφA
1 )(x),

(RIφA
1 )(x)= φ

A
1 (−Rx)= τφA

1 (−x)= τ(IφA
1 )(x).

It follows that IφA
1 ∈ L2

ξ B
? ,τ

— as claimed. The same calculation shows that IφA
2 ∈ L2

ξ B
? ,τ̄

.
The operator P0 is I-invariant. Thus, IφA

1 and IφA
2 form an orthonormal basis of kerL2

ξ?
(P0(ξ

B
? )− E?),

and (IφA
1 , IφA

2 ) is a Dirac eigenbasis for (ξ B
? , E?).

2. Because W is odd and ϑ B
? does not depend on the choice of Dirac eigenbasis,

ϑ B
? = 〈IφA

1 ,WIφA
1 〉L2

ξ B
?

=−〈φA
1 ,WφA

1 〉L2
ξ A
?

=−ϑ A
? . �

Recall the assumption (H4): for every ζ /∈
{2π

3 ,
4π
3

}
mod 2πZ and τ, τ ′ ∈ R,

λ0, j?(ζk+ τk ′) < λ0, j?+1(ζk+ τ ′k ′).

Lemma 7.2. Assume (H1)–(H4) hold for both ξ A
? and ξ B

? . There exists a function E ∈ C0(R/(2πZ),R)

with E(ζ A
? )= E(ζ B

? )= E? and such that

∀ζ ∈ R, E(ζ ) /∈6L2[ζ ],ess(Pδ[ζ ]).

Moreover, there exist µ[ > 0 and δ0 > 0 such that if

δ ∈ (0, δ0), ζ ∈ [0, 2π ],
∣∣ζ − 2π

3

∣∣≥ µ[δ, ∣∣ζ − 4π
3

∣∣≥ µ[δ,
then the operator Pδ[ζ ] has no spectrum in [E(ζ )− δ, E(ζ )+ δ].

Proof. 1. Set r(ζ )= dist
(
ζ,
{2π

3 ,
4π
3

})
. We first show that there exists a > 0 such that for ζ ∈ [0, 2π ],

inf
τ,τ ′∈R

(λ0, j?+1(ζk+ τ ′k ′)− λ0, j?(ζk+ τk ′))≥ 4a · r(ζ ). (7-2)

Otherwise, we can find ζn ∈ [0, 2π ], τn, τ
′
n ∈ R, such that

λ0, j?+1(ζnk+ τ ′nk ′)− λ0, j?(ζnk+ τnk ′)≤
r(ζn)

n
=

1
n
· dist

(
ζn,
{ 2π

3 ,
4π
3

})
. (7-3)

Using periodicity of the dispersion curves, we can assume that τn, τ
′
n both live in [0, 2π ]. In particular

we can pass to converging subsequences: there exist ζ∞, τ∞ and τ ′
∞

with

λ0, j?(ζ∞k+ τ∞k ′)= λ0, j?+1(ζ∞k+ τ ′
∞

k ′). (7-4)

Because of (H4), ζ∞ ∈
{2π

3 ,
4π
3

}
= {ζ A

? , ζ
B
? } mod 2π . In the proof of Lemma 4.1, we showed that

ζ? ∈
{2π

3 ,
4π
3

}
, τ, τ ′ ∈ R =⇒ λ0, j?(ζ?k+ τk ′)≤ E?, λ0, j?+1(ζ∞k+ τ ′k ′)≥ E?.

Thanks to (7-4), we deduce that λ0, j?+1(ζ∞k+ τ ′
∞

k ′)= E? = λ0, j?(ζ∞k+ τ∞k ′). The no-fold condition
implies that ζ∞k+τ∞k ′= ζ∞k+τ ′

∞
k ′= ξ?, where ξ? ∈ {ξ A

? , ξ
B
? } is a Dirac-point momentum. In particular,
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ζnk+ τ ′nk ′ and ζnk+ τnk ′ both converge to ξ?. We deduce that for n sufficiently large,

λ0, j?+1(ζnk+ τ ′nk ′)− λ0, j?(ζnk+ τnk ′)≥ νF |ζnk+ τ ′nk ′− ξ?| ≥ νF |k ′| · r(ζn),

because 〈ξ?, v〉 ∈
{2π

3 ,
4π
3

}
. This contradicts (7-3). We deduce that (7-2) holds for some a > 0. Without

loss of generalities, we assume below that a < νF |`|.

2. Define
E(ζ ) def

= 2a · r(ζ )+ sup
τ∈R

λ0, j?(ζk+ τk ′).

This is a continuous, 2π -periodic function. Observe that for every ξ ∈ ζk+Rk ′

λ0, j?(ξ)≤ E(ζ )− 2a · r(ζ )≤ E(ζ )+ 2a · r(ζ )≤ λ0, j?+1(ξ). (7-5)

Assume that a · r(ζ )≥ δ and that λ ∈ [E(ζ )− δ, E(ζ )+ δ]. Since the dispersion surfaces are labeled in
increasing order, we deduce that

ξ ∈ ζk+Rk ′ =⇒ dist(6L2
ξ
(P0(ξ)), λ)≥ a · r(ζ ).

The reconstruction formula (5-2) and the spectral theorem yield

a · r(ζ )≥ δ, λ ∈ [E(ζ )− δ, E(ζ )+ δ] =⇒ ‖(P0[ζ ] − λ)
−1
‖L2[ζ ] ≤

1
a ·r(ζ )

. (7-6)

3. We now observe that under the assumptions of (7-6),

Pδ[ζ ] − λ= (P0[ζ ] − λ) · (Id+δ · (P0[ζ ] − λ)
−1
· κδW ). (7-7)

Because of (7-6) and since κ , W are in L∞, there exist δ0 > 0 and µ[ > 0 with

δ ∈ (0, δ0), ζ ∈ [0, 2π ], r(ζ )≥ µ[δ =⇒ ‖δ · (P0[ζ ] − λ)
−1
· κδW‖L2[ζ ] ≤

1
2 .

In particular, the second factor in the right-hand side of (7-7) is invertible via a Neumann series. We
deduce that Pδ[ζ ]−λ is invertible. This implies that Pδ[ζ ] has no spectrum in [E(ζ )− δ, E(ζ )+ δ], as
long as r(ζ )≥ µ[δ.

4. It remains to show that E(ζ ) is not in the essential spectrum of Pδ[ζ ], independently of ζ . Because
of step 3, this holds for every ζ such that r(ζ )≥ µ[δ. Fix ζ such that r(ζ ) < µ[δ. Let ξ? be a Dirac point
closest to ζk+Rk ′: the distance between ξ? and the line ζk+Rk ′ is r(ζ )|`|. Because of (7-5),

λ0, j?(ζk+ τk ′)+ 2a · r(ζ )≤ E(ζ )≤ λ0, j?+1(ζk+ τk ′)− 2a · r(ζ ).

Since ξ? is a Dirac point, we get

E?− (νF |`| − 2a) · r(ζ )+ O(r(ζ )2)≤ E(ζ )≤ E?+ (νF |`| + 2a) · r(ζ )+ O(r(ζ )2).

Hence, for δ sufficiently small,

E(ζ ) ∈ [E?− (νF |`| − a) · r(ζ ), E?+ (νF |`| − a) · r(ζ )].
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Fix θ ∈ (0, 1) such that νF |`| − a = θνF |`|; θ exists because a ∈ (0, νF |`|). Then

E(ζ ) ∈ D
(
E?, θ

√
ϑ2

Fδ
2
+ r(ζ )2 · ν2

F |`|
2).

Apply Theorem 5.1 with µ] > µ[: for δ sufficiently small and |ζ − ζ?| < µ]δ, we have E(ζ ) /∈
6L2[ζ ],ess(P±δ(ζ )). This implies that E(ζ ) is not in the essential spectrum of Pδ[ζ ] as long as r(ζ )<µ[δ,
which concludes the proof. �

Lemma 7.2 allows us to define the spectral flow of the family ζ 7→Pδ[ζ ] as ζ runs from 0 to 2π : it is
the signed number of eigenvalues of Pδ[ζ ] that cross the curve ζ 7→ E(ζ ) (with downwards crossings
counted positively). Because Pδ[ζ ] depends periodically on ζ , the spectral flow of Pδ is a topological
invariant. We refer to [Waterstraat 2017, §4] for an introduction to spectral flow. We are now ready to
prove Corollary 1.6.

Proof of Corollary 1.6. We split [0, 2π ] in three parts: [0, 2π ] = IA ∪ IB ∪ I0 with

IJ
def
= [ζ J

? −µ[δ, ζ
J
? +µ[δ], J = A, B, I0

def
= [0, 2π ] \ (IA ∪ IB),

where we identified ζ J
? with their reduction modulo 2πZ. The spectral flow of ζ ∈ I0 7→Pδ[ζ ] through

E? vanishes because of Lemma 7.2.
In order to compute the spectral flow of ζ ∈ IJ 7→ Pδ[ζ ] through E?, we fix µ] > µ[, ϑ] > ϑN

and we apply Corollary 3.3. This result allows us to precisely count the number N J
±

of eigenvalues of
Pδ[ζ

J
? ±µ[δ] in the set

E def
=
[
E?− δ

√
ϑ2
] +µ

2
[ · ν

2
F |`|

2, E?
]

in terms of the number of eigenvalues 2N +1 of the Dirac operator /D(µ). Thanks to Lemma 3.1, we find

N J
−
= N + 1, N J

+
= N if ϑ J

? > 0, N J
−
= N , N J

+
= N + 1 if ϑ J

? < 0.

In particular, the spectral flow of ζ ∈ IJ 7→ Pδ[ζ ] through E? is N J
+
− N J

−
= − sgn(ϑ J

? )— see, e.g.,
[Waterstraat 2017, §4.1]. Since ϑ A

? and ϑ B
? have opposite sign, the spectral flow of the whole family

ζ ∈ [0, 2π ] 7→Pδ[ζ ] vanishes. �

7B. Magnetic perturbations of honeycomb Schrödinger operators. Let V be a honeycomb potential
and A ∈ C∞(R2,R2) be 3-periodic, odd and real-valued. Set

Pδ
def
= (Dx + δ · κδ ·A)

2
+ V .

This operator is a nonlocal perturbation of P0 =−1+ V, where δ · κδ ·A plays the role of a perturbing
magnetic potential. We introduce similarly to Pδ[ζ ] the operator Pδ[ζ ] formally equal to Pδ but acting
on L2

[ζ ]. We observe that

Pδ[ζ ] = −1+ V + δ · κδ · (ADx + Dx A)+ δ2((k ′ · Dxκ)δ + κ
2
δ |A|

2)

= P0+ δ · κδ ·W+OL2[ζ ](δ
2) where W

def
= A · Dx + Dx ·A. (7-8)

We first state a simple analog of Lemma 2.3:
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Lemma 7.3. Let (ξ?, E?) be a Dirac point of P0 with Dirac eigenbasis (φ1, φ2)— see Definition 1.2.
Then 〈φ1,Wφ2〉L2

ξ?
= 〈φ2,Wφ1〉L2

ξ?
= 0. Furthermore,

θ?
def
= 〈φ1,Wφ1〉L2

ξ?
=−〈φ2,Wφ2〉L2

ξ?
.

See Appendix A.1 or [Lee-Thorp et al. 2019, Proposition 5.1] for the proof. Below we state Corollary 7.4,
which is the analog of Corollary 3.3 for the magnetic operator Pδ[ζ ]. We assume:

(H3′) The nondegeneracy condition θ? 6= 0 holds.

When (H3′) holds and δ is small enough, the operator Pδ[ζ ] has an essential spectral gap centered at
E? of width ∼ δ. Indeed (H3′) implies that P0+ δ · κδ ·W admits such a gap — as for Pδ when (H3) is
satisfied. This gap can only be moved by O(δ2) under the perturbation OL2[ζ ](δ

2) of (7-8). We introduce
the operator

/D(µ)
def
=

[
0 ν?k ′

ν?k ′ 0

]
Dt +µ

[
0 ν?`

ν?` 0

]
+ θ?

[
1 0
0 −1

]
κ.

We denote by {θµj }
n
j=−n its eigenvalues. They are all simple — see Lemma 3.1 — and lie in (−θF , θF ),

where θF = |θ?|.

Corollary 7.4. Assume that (H1), (H2) and (H3′) hold and fix θ] ∈ (θN , θF ) and µ] > 0. There exists
δ0 > 0 such that for

δ ∈ (0, δ0), µ ∈ (−µ], µ]), ζ = ζ?+ δµ,

the operator Pδ[ζ ] has exactly 2n+ 1 eigenvalues {λζδ, j } j∈[−n,n] in[
E?− δ

√
θ2
] +µ

2
· ν2

F |`|
2, E?+ δ

√
θ2
] +µ

2
· ν2

F |`|
2 ].

These eigenvalues are simple. Furthermore, for each j ∈ [−N , N ], the eigenpairs (λζδ, j , v
ζ
δ, j ) admit full

expansions in powers of δ:

λ
ζ
δ, j = E?+ θ

µ
j · δ+ bµ2 · δ

2
+ · · ·+ bµM · δ

M
+ O(δM+1),

v
ζ
δ, j (x)= ei(ζ−ζ?)〈`,x〉

(
gµ0 (x, δ〈k

′, x〉)+ · · ·+ δM
· gµM(x, δ〈k

′, x〉)
)
+ oH k (δM).

In the above expansions:

• M and k are any integers; H k is the k-th order Sobolev space.

• θ
µ
j is the j-th eigenvalue of /D(µ).

• The terms bµm ∈ R, gµm ∈ X are recursively constructed via multiscale analysis.

• The leading-order term gµ0 satisfies

gµ0 (x, t)= βµ1 (t)φ1(x)+β
µ

2 (t)φ2(x), ( /D(µ)− θ
µ
j )

[
β
µ

1
β
µ

2

]
= 0.

The proof is identical to that of Theorem 3.2 and Corollary 3.3; we do not reproduce it here. Let θ J
? be

the coefficient θ? associated to the Dirac point (ξ J
? , E?). The main difference between Pδ[ζ ] and Pδ[ζ ]

lies in the next identity — see also [Lee-Thorp et al. 2019, §7.1].
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Lemma 7.5. The identity θ A
? = θ

B
? holds.

Proof. Because of step 1 in the proof of Lemma 7.1, (IφA
1 , IφA

2 ) is a Dirac eigenbasis for (ξ B
? , E?).

Since θ B
? does not depend on the choice of Dirac eigenbasis and W commutes with I ,

θ B
? = 〈IφA

1 ,WIφA
1 〉L2

ξ B
?

= 〈φA
1 ,WφA

1 〉L2
ξ A
?

= θ A
? . �

Corollary 1.7 has the same proof as Corollary 1.6. We find that the spectral flow of Pδ in the j?-th gap
as ζ runs from 0 to 2π is equal to

− sgn(θ A
? )− sgn(θ B

? )=−2 · sgn(θ?).

Appendix

A.1. Proofs of some identities. We prove the identities relating the Dirac eigenbasis and W. Similar
proofs arise in [Fefferman et al. 2016b; 2017; Lee-Thorp et al. 2019].

Proof of Lemma 2.2. Below we use 〈 · , · 〉 instead of 〈 · , · 〉L2
ξ?

to simplify notations.

1. We first analyze the (2-vector) 〈φ1, Dxφ1〉. We observe that 〈φ1, Dxφ1〉 ∈ R2 because Dx is
selfadjoint. Since φ1 ∈ L2

ξ?,τ
,

〈φ1, Dxφ1〉 = 〈Rφ1,RDxφ1〉 = 〈τφ1,RDxR−1
· τφ1〉 = 〈φ1, (RDxR−1) ·φ1〉.

As RDxR−1
= R−1 Dx , we conclude that 〈φ1, Dxφ1〉 is either 0 or an eigenvector of R. Since the latter

cannot be real, we conclude 〈φ1, Dxφ1〉 = 0. The same argument applies to 〈φ2, Dxφ2〉.

2. We now analyze 〈φ1, Dxφ2〉. Since φ1 ∈ L2
ξ?,τ

and φ2 ∈ L2
ξ?,τ̄

〈φ1, Dxφ2〉 = 〈Rφ1,RDxφ2〉 = 〈τφ1,RDxR−1
· τ̄ φ2〉 = τ̄

2
〈φ1, (RDxR−1) ·φ2〉.

As RDxR−1
= R−1 Dx and τ̄ 2

= τ , we deduce R〈φ1, Dxφ2〉 = τ 〈φ1, Dxφ2〉. This yields 〈φ1, Dxφ2〉 ∈

kerC2(R− τ). This eigenspace is C · [1, i]>; thus there exists ν? ∈ C with

2〈φ1, Dxφ2〉 = ν? ·

[
1
i

]
.

If we identify the point η = (η1, η2) ∈ R2 with η1+ iη2 ∈ C, then

2〈φ1, (η · Dx)φ2〉 = 2〈φ1, (η1 Dx1 + η2 Dx2)φ2〉 = ν?η1+ iν?η2 = ν?η.

Above ν?η denotes the multiplication of ν? with η = η1 + iη2. Taking the complex conjugate of this
identity and observing that η · Dx is a selfadjoint operator, we get

2〈φ2, (η · Dx)φ1〉 = ν?η.

3. It remains to show that |ν?| = νF . Fix η ∈ R2 with |η| = 1. Because of perturbation theory of
eigenvalues, the operator P0(ξ?+ tη) has precisely two eigenvalues near E? when t is sufficiently small —



CHARACTERIZATION OF EDGE STATES IN PERTURBED HONEYCOMB STRUCTURES 435

see [Kato 1980, §VII1.3, Theorem 1.8]. Because (ξ?, E?) is a Dirac point of P0, they are

E?± νF t + O(t2). (A-1)

Let ξ = ξ?+ tη. We want to construct approximate eigenvectors of P0(ξ). Let a, b ∈ C2, µ ∈ R, and
v ∈ H 2

ξ?
, with v = OH2

ξ?
(1) uniformly in t . Then

e−i t〈η,x〉(P0− E?+µt)ei t〈η,x〉
· (aφ1+ bφ2+ tv)

= ((Dx + tη)2+ V − E?+µt)(aφ1+ bφ2+ tv)

= t (P0− E?)v+ t (2η · Dx +µ)(aφ1+ bφ2)+ OL2
ξ?
(t2). (A-2)

We now construct v such that

(P0− E?)v+ (2η · Dx +µ)(aφ1+ bφ2)= 0. (A-3)

This equation admits a solution if and only if (2η · Dx +µ)(aφ1+ bφ2) is orthogonal to φ1 and φ2. This
solvability condition is equivalent to{

〈φ1, (2η · Dx +µ)(aφ1+ bφ2)〉 = 0,
〈φ2, (2η · Dx +µ)(aφ1+ bφ2)〉 = 0,

⇐⇒

{
ν?η · b+µa = 0,
ν?η · b+µa = 0.

(A-4)

A nontrivial solution of (A-4) exists if and only if

Det
[
µ ν?η

ν?η µ

]
= 0 ⇐⇒ |ν?η|

2
= |ν?|

2
= µ2.

Therefore, when µ = |ν?|, we can construct (a, b) 6= (0, 0) satisfying (A-4) for µ = ±|ν?|. With this
choice, (A-3) admits a solution v. It follows from (A-2) that

(P0(ξ)− E?+ |ν?|t) · ei t〈η,x〉(aφ1+ bφ2+ tv)= O(t2).

In other words, we constructed an O(t2)-accurate quasimode for P0(ξ), with energy E? + |ν?|t . A
general principle — see, e.g., [Drouot et al. 2018, Lemma 3.1] — implies that P0(ξ) has an eigenvalue at
E?− |ν?|t + O(t2). Because of (A-1), this eigenvalue must be E?− νF t + O(t2). This implies |ν?| = νF

and completes the proof. �

Proof of Lemma 2.3. Below we use 〈 · , · 〉 instead of 〈 · , · 〉L2
ξ?

to simplify notation. We start by proving
the first identity. Since I is an isometry and Iφ2 = φ̄1,

〈φ2,Wφ1〉 = 〈Iφ2, IWIφ1〉 = −〈φ̄1,W φ̄2〉 = −〈φ2,Wφ1〉.

This implies 〈φ2,Wφ1〉 = 0. Using that W is real-valued, 〈φ1,Wφ2〉 = 0 as well. We prove now the
second identity: for the same reasons as above,

〈φ1,Wφ1〉 = 〈Iφ1, IWIφ1〉 = −〈φ̄2,W φ̄2〉 = −〈φ2,Wφ2〉. �

Proof of Lemma 7.3. Below we use 〈 · , · 〉 instead of 〈 · , · 〉L2
ξ?

to simplify notations. We start by proving
the first identity. Since I is an isometry from L2

ξ A
?

to L2
ξ B
?

and Iφ2 = φ̄1, IW =WI ,

〈φ2,Wφ1〉 = 〈Iφ2, IWIφ1〉 = 〈φ̄1,Wφ̄2〉.
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Moreover, W =−W because A is real-valued and Dx = (1/ i)∇. Therefore,

〈φ2,Wφ1〉 = −〈φ̄1, W̄φ2〉 = −〈Wφ2, φ1〉 = −〈φ2,Wφ1〉.

We used in the last equality the selfadjointness of W. We deduce 〈φ2,Wφ1〉= 0. Similarly, 〈φ1,Wφ2〉= 0.
We prove now the second identity: for the same reasons as above,

〈φ1,Wφ1〉 = 〈Iφ1, IWφ1〉 = −〈φ̄2,Wφ̄2〉 = −〈φ̄2,Wφ2〉 = −〈φ2,Wφ2〉. �

A.2. Spectrum of the Dirac operator.

Proof of Lemma 3.1. 1. Introduce the matrices

m1 =
1

νF |k ′|

[
0 ν?k ′

ν?k ′ 0

]
, m2 =

1
νF |`|

[
0 ν?`

ν?` 0

]
, m3 =

[
1 0
0 −1

]
.

Note that m j
2
= Id. Moreover, the matrices m j anticommute: m j mk+mkm j = 0 when j 6= k. Indeed,

m1m2+m2m1 equals

1
νF |k ′| · νF |`|

[
ν?k ′ · ν?`+ ν?` · ν?k ′ 0

0 ν?k ′ · ν?`+ ν?` · ν?k ′

]
=

2 Re(k ′ ¯̀)
|`k ′|

= 0,

because Re(k ′ ¯̀)= 〈k ′, `〉 = 0. With this notation,

/D(µ)= νF |k ′|m1 Dt +µ · νF |`|m2+ϑ?m3κ = /D?+µ · νF |`|m2.

2. The formula for the essential spectrum is derived by looking at those of the asymptotic operators:

/D±(µ)
def
= νF |k ′|m1 Dt +µ · νF |`|m2±ϑ?m3.

These are Fourier multipliers. Their essential spectrum corresponds to the possible eigenvalues of their
symbol as the Fourier parameter runs through R. We find

6L2,ess( /D±(µ))= R \
(
−

√
ϑ2

F +µ
2
· ν2

F |`|
2,
√
ϑ2

F +µ
2
· ν2

F |`|
2).

3. We start by studying the bifurcation of the zero mode of /D? = /D(0). This mode satisfies the
equation /D(0)u = 0 or equivalently

(νF |k ′|∂t +ϑ?im1m3κ)u = 0.

The matrix im1m3 has eigenvalues ±1. Let u0 be an eigenvector of im1m3 associated with the eigenvalue
sgn(ϑ?) and set

u(t)= u0 · exp
(
−

ϑF

νF |k ′|

∫ t

0
κ(s) ds

)
.

A direct calculation shows that u is an eigenvector of /D(0).
We claim that m2u0 = sgn(ϑ?)u0. Since im1m3u0 = sgn(ϑ?)u0,

im2m1m3u0 = sgn(ϑ?)m2u0, im2m1m3 =
i
|k ′`|

[
`k̄ ′ 0
0 − ¯̀k ′

]
.
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Recall that Re(`k̄ ′)= 0 because ` and k ′ are orthogonal. Therefore − ¯̀k ′ = `k̄ ′, and we deduce that

sgn(ϑ?)m2u0 =−
i
|k ′`|

k ′ ¯̀u0 =⇒ m2u0 = sgn(Im(k ′ ¯̀)) · sgn(ϑ?)u0.

We recall that k ′ =−a2k1+ a1k2, k = b2k1− b1k2, a2b1− b2a1 = 1 — see Section 2E. Hence

Im(k ′ ¯̀)= Det[k, k ′] = (a2b1− b2a1) ·Det[k1, k2] = 1> 0.

We deduce that m2u0 = sgn(ϑ?)u0 and m2u = sgn(ϑ?)u.
We recall that /D(µ)= /D?+µ · νF |`|m2, /D?u = 0 and obtain

/D(µ)u = µ · νF |`| · sgn(ϑ?)u.

This shows that µ · νF |`| · sgn(ϑ?) is an eigenvalue of /D(µ).

4. Let ϑj > 0 be an eigenvalue of /D?. Since m2 /D? =− /D?m2, we deduce that −ϑj is also eigenvalue
of /D?. The respective eigenvectors are denoted by f+, f− and are related via m2 f+ = f−. We look for
an eigenpair (E, a+ f++ a− f−) of /D(µ)= /D?+µ · νF |`|m2: it suffices to solve the equation

( /D?+µνF |`|m2)
∑
±

a± f± = E
∑
±

a± f± ⇐⇒

∑
±

±ϑj a± f±+µ · νF |`|a± f∓ = E
∑
±

a± f±

⇐⇒ (ϑjσ3+µ · νF |`|σ1)

[
a+
a−

]
= Ea.

This is equivalent to (E, a) being an eigenpair of ϑjσ3 + µ · νF |`|σ1. Thus we conclude that E =
±

√

ϑ2
j +µ

2
· ν2

F |`|
2 are both eigenvalues of /D(µ).

5. So far we only showed that the eigenvalues of /D? induce eigenvalues of /D(µ). We must prove the
converse statement. Without loss of generality, µ 6= 0. We first deal with eigenvalues of /D(µ) which
apparently do not bifurcate from the zero mode of /D?. That is, we assume first that (E, f ) is an eigenpair
of /D(µ)= /D?+µ · νF |`|m2, with E 6= sgn(ϑ?) · νF |`|µ.

We first claim that f and g = m2 f are linearly independent. Otherwise, we would have f = m2 f or
f =−m2 f because m2

2
= Id. This would imply respectively in the first and second cases

/D? f = (E −µ · νF |`|) f or /D? f = (E +µ · νF |`|) f. (A-5)

In particular, f is an eigenvector of /D? with m2 f and f colinear. Because of step 3 it must be a zero
mode of /D?. Because of step 2 we must have m2 f = sgn(ϑ?) f . Going back to (A-5), E = sgn(ϑ?) ·νF |`|,
which contradicts our assumption.

We now look for an eigenpair of /D? in the form (ϑj , a f + bg). We get the equation

/D?(a f + bg)= ϑj (a f + bg) ⇐⇒ a(E f −µ · νF |`|g)+ b(µ · νF |`| f − Eg)= ϑj (a f + bg)

⇐⇒ (Eσ1+ iµ · νF |`|σ2)

[
a
b

]
= ϑj

[
a
b

]
.

Hence, ϑ is an eigenvalue of Eσ1+ iµ · νF |`|σ2; equivalently, ϑj =±
√

E2
−µ2

· ν2
F |`|

2.
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6. To conclude we deal with the case of an eigenpair (E, f ) of /D(µ) with E = µ · νF |`| · sgn(ϑ?)—
i.e., when E seemingly bifurcates from the zero mode of /D?.

We claim that f and g = m2 f are colinear. Otherwise, following the last part of step 5, we would be
able to construct [a, b]>, an eigenvector of sgn(ϑ?)σ1+ iσ2 such that a f + bg is an eigenvector of /D?.
The matrix sgn(ϑ?)σ1+ iσ2 has only one eigenvector, which is either [0, 1]> or [1, 0]>. Therefore either
f or g — but not both — is an eigenvector of /D?. This implies that f or g is a zero eigenvector of /D?. In
particular, f and m2 f (or g and m2g) are colinear — which is a contradiction.

It follows that f =m2 f or f =−m2 f . If m2 f = sgn(ϑ?) f , we are done. In the other case, we deduce
the existence of an eigenpair ( f, 2µ ·νF |`| ·sgn(ϑ?)) of /D?. This would require f and m2 f to be colinear,
which is impossible. This completes the proof of the converse statement.

7. The argument presented in steps 5 and 6 shows that the eigenvalues of /D(µ) and /D? have the same
multiplicity. Appendix C of [Drouot et al. 2018] shows that /D? has only simple eigenvalues. �

A.3. A calculation.

Proof of Lemma 6.1. 1. From Theorem 5.1, when (6-2) is satisfied,

(Pδ[ζ ] − λ)−1
± (P−δ[ζ ] − λ)−1

= Sδ(µ, z)± S−δ(µ, z)+OL2[ζ ](δ
−1/3).

A calculation yields

Sδ(µ, z)±S−δ(µ, z)= 1
δ
·

[
φ1

φ2

]>
e−iµδ〈`,x〉5∗ ·Uδ

(
( /D+(µ)−z)−1

±( /D−(µ)−z)−1)U−1
δ ·5eiµδ〈`,x〉

[
φ1

φ2

]
.

We now compute the resolvent difference ( /D+(µ)− z)−1
± ( /D−(µ)− z)−1. We have

( /D+(µ)− z)−1
+ ( /D−(µ)− z)−1

= 2
[

z ν?k ′Dt +µν?`

ν?k ′Dt +µν?` z

]
R0(µ, z),

( /D+(µ)− z)−1
− ( /D−(µ)− z)−1

= 2ϑ?

[
1 0
0 −1

]
R0(µ, z)= 2ϑ?σ3 R0(µ, z).

Above we recall that R0(µ, z)= (ν2
F |k
′
|
2 D2

t +µ
2
· ν2

F |`|
2
+ϑ2

F − z2)−1. This implies that

Sδ(µ, z)+ S−δ(µ, z)

=
2
δ
·

[
φ1

φ2

]>
e−iµδ〈`,x〉5∗ ·Uδ

[
z ν?k ′Dt +µν?`

ν?k ′Dt +µν?` z

]
R0(µ, z)U−1

δ ·5eiµδ〈`,x〉
[
φ1

φ2

]
and

Sδ(µ, z)− S−δ(µ, z)= 2
δ
·

[
φ1

φ2

]>
e−iµδ〈`,x〉5∗ ·Uδϑ?σ3 R0(µ, z)U−1

δ ·5eiµδ〈`,x〉
[
φ1

φ2

]
.

We similarly obtain

(k ′ ·Dx)(Sδ(µ, z)− S−δ(µ, z))= 2
δ
·

[
(k ′ · Dx)φ1

(k ′ · Dx)φ2

]>
e−iµδ〈`,x〉5∗ ·Uδϑ?σ3 R0(µ, z)U−1

δ ·5eiµδ〈`,x〉
[
φ1

φ2

]
.
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2. From the definition of Kδ[ζ ](z), we see that

Kδ[ζ ](z)= 1
2

(
[−1, κδ] + δ(κ

2
δ − 1)W

)(
(Pδ[ζ ] − λ)−1

− (P−δ[ζ ] − λ)−1)
=

1
2

(
2(Dtκ)δ · (k ′ · Dx)+ δ(κ

2
δ − 1)W

)(
Sδ(µ, z)− S−δ(µ, z)

)
+OL2[ζ ](δ

2/3).

Thanks to step 1, the leading-order term is

Kδ(µ, z)

def
= ϑ?

(
2(Dtκ)δ ·

[
k ′ · Dxφ1

k ′ · Dxφ2

]>
+ (κ2

δ − 1)W
[
φ1

φ2

]>)
· e−iµδ〈`,x〉5∗ · Uδσ3 R0(µ, z)U−1

δ ·5eiµδ〈`,x〉
[
φ1

φ2

]
.

3. Because of the definition (6-1) and Theorem 5.1,

Qδ(ζ, λ)=
1
2
· ((Pδ[ζ ] − λ)−1

+ (P−δ[ζ ] − λ)−1)+
κδ
2
· ((Pδ[ζ ] − λ)−1

− (P−δ[ζ ] − λ)−1)

=
1
2
(Sδ(µ, z)+ S−δ(µ, z))+ κδ

2
· (Sδ(µ, z)− S−δ(µ, z))+OL2[ζ ](δ

−1/3).

Thanks to the first step, the leading-order term is

Qδ(µ, z) def
=

1
δ
·

[
φ1

φ2

]>
e−iµδ〈`,x〉5∗ ·Uδ ·

[
z ν?k ′Dt +µν?`

ν?k ′Dt +µν?` z

]
R0(µ, z) ·U−1

δ ·5eiµδ〈`,x〉
[
φ1

φ2

]
+ κδ ·

1
δ
·

[
φ1

φ2

]>
e−iµδ〈`,x〉5∗ ·Uδ ·ϑ?σ3 R0(µ, z) ·U−1

δ ·5eiµδ〈`,x〉
[
φ1

φ2

]
.

A key identity is κδ5∗Uδ =5∗Uδκ . Therefore, we deduce that

Qδ(µ, z)= 1
δ
·

[
φ1

φ2

]>
e−iµδ〈`,x〉5∗ ·Uδ ·

[
ϑ?κ + z ν?k ′Dt +µν?`

ν?k ′Dt +µν?` −ϑ?κ + z

]
R0(µ, z)·U−1

δ ·5eiµδ〈`,x〉
[
φ1

φ2

]
.

The operator

/D(µ)+ z =
[

ϑ?κ + z ν?k ′Dt +µν?`

ν?k ′Dt +µν?` −ϑ?κ + z

]
emerges and we end up with

Qδ(µ, z)= 1
δ
·

[
φ1

φ2

]>
e−iµδ〈`,x〉5∗ ·Uδ( /D(µ)+ z) · R0(µ, z)U−1

δ ·5eiµδ〈`,x〉
[
φ1

φ2

]
. �
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In n ≥ 1 spatial dimensions, we study the Cauchy problem for a genuinely nonlinear quasilinear transport
equation coupled to a quasilinear symmetric hyperbolic subsystem of a rather general type. For an open
set (relative to a suitable Sobolev topology) of regular initial data that are close to the data of a simple
plane wave, we give a sharp, constructive proof of shock formation in which the transport variable remains
bounded but its first-order Cartesian coordinate partial derivatives blow up in finite time. Moreover, we prove
that, at least at the low derivative levels, the singularity does not propagate into the symmetric hyperbolic
variables: they and their first-order Cartesian coordinate partial derivatives remain bounded, even though
they interact with the transport variable all the way up to its singularity. The formation of the singularity
is tied to the finite-time degeneration, relative to the Cartesian coordinates, of a system of geometric
coordinates adapted to the characteristics of the transport operator. Two crucial features of the proof are that
relative to the geometric coordinates, all solution variables remain smooth, and that the finite-time degen-
eration coincides with the intersection of the transport characteristics. Compared to prior shock formation
results in more than one spatial dimension, in which the blowup occurred in solutions to quasilinear wave
equations, the main new features of the present work are: (i) we develop a theory of nonlinear geometric
optics for transport operators, which is compatible with the coupling and which allows us to implement
a quasilinear geometric vector field method, even though the regularity properties of the corresponding
eikonal function are less favorable compared to the wave equation case and (ii) we allow for a full quasilinear
coupling; i.e., the principal coefficients in all equations are allowed to depend on all solution variables.
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1. Introduction

The study of quasilinear hyperbolic PDE systems is one of the most classical pursuits in mathematics,
and it is also among the most active. Such systems are of intense theoretical interest, in no small part due
to the fact that their study lies at the core of the revered field of nonlinear hyperbolic conservation laws
(more generally “balance laws”); we refer readers to [Dafermos 2010] for a detailed discussion of the
history of nonlinear hyperbolic balance laws as well as a comprehensive introduction to the main results
of the field and the main techniques behind their proofs, with an emphasis on the case of one spatial
dimension. The subject of quasilinear hyperbolic systems is of physical interest as well since they are
used to model a vast range of physical phenomena.

A fundamental issue surrounding the study of the initial value problem for such PDEs is that solutions
can develop singularities in finite time, starting from regular initial data. In one spatial dimension,
the theory is in a rather advanced state, and in many cases, the known well-posedness results are able
to accommodate the formation of shock singularities as well as their subsequent interactions; see the
aforementioned work of Dafermos. The advanced status of the one-space-dimensional theory is highly
indebted to the availability of estimates in the space of functions of bounded variation (BV). In contrast,
Rauch [1986] showed that for quasilinear hyperbolic systems in more than one spatial dimension, well-
posedness in BV class generally does not hold. For this reason, energy estimates in L2-based Sobolev
spaces play an essential role in multiple spatial dimensions, and as a consequence, even the question of
whether or not there is stable singularity formation (starting from regular initial data) can be exceptionally
challenging. That is, in proving a constructive shock formation result in more than one spatial dimension,
one cannot avoid the exacting task of deriving energy estimates that hold up to the singularity; below we
will elaborate on this difficulty.

In view of the remarks above, it is not surprising that the earliest blowup results for quasilinear hyperbolic
PDEs in more than one spatial dimension without symmetry assumptions were not constructive, but were
instead based on proofs by contradiction, with influential contributions coming from, for example, John
[1981] for a class of wave equations and Sideris [1984; 1985] for a class of hyperbolic systems in the
former work and for the compressible Euler equations in the latter. The main idea of the proofs was
to show that for smooth solutions with suitable initial data, certain spatially averaged quantities satisfy
ordinary differential inequalities that force them to blow up, contradicting the assumption of smoothness.

Although the blowup results mentioned in the previous paragraph are compelling, their chief drawback
is that they provide no information about the nature of the singularity, other than an upper bound on
the solution’s classical lifespan. In particular, such results are not useful if one aims to extract sharp
information about the blowup mechanism and blowup time, or if one aims to uniquely continue the solution
past the singularity in a weak sense. In contrast, many state-of-the-art blowup results for hyperbolic PDEs
yield a detailed description of the singularity formation, even in the challenging setting of more than one
spatial dimension. This is especially true for results on the formation of shocks starting from smooth
initial conditions, a topic that has enjoyed remarkable progress in the last decade, as we describe in
Section 1G. Our main results are in this vein, our motivation being to advance the rigorous mathematical
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theory of the formation of shocks. We recall that a shock singularity1 is such that some derivative of the
solution blows up in finite time, while the solution itself remains bounded. Shock singularities are of
interest in part due to their rather mild nature, which leaves open the hope that one might be able to extend
the solution uniquely past the shock, in a weak sense, under suitable selection criteria. In the case of the
relativistic Euler equations and the compressible Euler equations in multiple spatial dimensions, this hope
has been realized in the form of Christodoulou’s recent breakthrough resolution [2019] of the restricted
shock development problem without symmetry assumptions; see Section 1G2 for further discussion.

We now provide a very rough statement of our results; see Theorem 1.5 on page 453 for a more detailed
summary and Theorem 10.1 on page 509 for the complete statements.

Theorem 1.1 (stable shock formation (very rough version)). In an arbitrary number of spatial dimensions,
there are many quasilinear hyperbolic PDE systems, comprising a transport equation satisfying an
appropriate genuinely nonlinear-type assumption coupled to a symmetric hyperbolic subsystem, such that
the following occurs: there exists an open set of initial data without symmetry assumptions such that
the transport variable remains bounded but its first derivatives blow up in finite time. More precisely,
the derivatives of the transport variable in directions tangent to the transport characteristics remain
bounded, while its derivative with respect to any unit-length transversal vector field blows up. Moreover,
the singularity does not propagate into the symmetric hyperbolic variables; they remain bounded, as do
their first derivatives in all directions.2

Remark 1.2 (rescaling the transversal derivative so as to “cancel” the blowup). We note already that a
key part of the proof is showing the derivative of the transport variable in the transversal direction X̆
also remains bounded. This does not contradict Theorem 1.1 for the following reason: the vector field X̆
is constructed so that its Cartesian components go to 0 as the shock forms, in a manner that exactly
compensates for the blowup of an “order-unity-length” transversal derivative of the transport variable.
Roughly, the situation can be described as follows, where 9 is the transport variable and the remaining
quantities will be rigorously defined later in the article: |X9| blows up,3 |X̆9| remains bounded, X̆ =µX ,
and the weight µ vanishes for the first time at the shock; one could say that |X9| blows up like C/µ as
µ ↓ 0, where C is the size of |X̆9| at the shock; see Section 1F4 for a more in-depth discussion of this
point.

Remark 1.3 (the heart of the proof and the kind of initial data under study). The heart of the proof of
Theorem 1.1 is to control the singular terms and to show that the shock actually happens, i.e., that chaotic
interactions do not prevent the shock from forming or cause a more severe kind of singularity. In an effort
to focus on only the singularity formation, we have chosen to study the simplest nontrivial set of initial
data to which our methods apply: perturbations of the data corresponding to simple plane symmetric
waves (see Section 1D for further discussion), where we assume plentiful initial Sobolev regularity.

1The formation of a shock is sometimes referred to as “wave breaking”.
2Our proof allows for the possibility that the second-order Cartesian coordinate partial derivatives of the symmetric hyperbolic

variables might blow up at the locations of the transport variable singularities.
3Here and throughout, if Z is a vector field and f is a scalar function, then Z f := Zα ∂α f is the derivative of f in the

direction Z .
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The corresponding solutions do not experience dispersion, so there are no time or radial weights in our
estimates. We will describe the initial data in more detail in Section 1F3.

Remark 1.4 (extensions to other kinds of hyperbolic subsystems). From our proof, one can infer that the
assumption of symmetric hyperbolicity for the subsystem from Theorem 1.1 is in itself not important; we
therefore anticipate that similar shock formation results should hold for systems comprising quasilinear
transport equations coupled to many other types of hyperbolic subsystems, such as wave equations or
regularly hyperbolic, in the sense of [Christodoulou 2000], subsystems.

1A. Paper outline. • In the remainder of Section 1, we give a more detailed description of our main
results, summarize the main ideas behind the proofs, place our work in context by discussing prior works
on shock formation, and summarize some of our notation.

• In Section 2, we precisely define the class of systems to which our main results apply.

• In Section 3, we construct the majority of the geometric objects that play a role in our analysis. We
also derive evolution equations for some of the geometric quantities.

• In Section 4, we derive energy identities.

• In Section 5, we state the number of derivatives that we use to close our estimates, state our size
assumptions on the data, and state bootstrap assumptions that are useful for deriving estimates.

• In Section 6, we derive pointwise estimates for solutions to the evolution equations and their derivatives,
up to top order.

• In Section 7, we derive some properties of the change of variables map from geometric to Cartesian
coordinates.

• In Section 8, which is the main section of the paper, we derive a priori estimates for all of the quantities
under study.

• In Section 9, we provide some continuation criteria that, in the last section, we use to show that the
solution survives up to the shock.

• In Section 10, we state and prove the main theorem.

1B. The role of nonlinear geometric optics in proving Theorem 1.1. In prior constructive stable shock
formation results in more than one spatial dimension (which we describe in Section 1G2), the blowup
occurred in the derivatives of a solution to a quasilinear wave equation. In the present work, the blowup
occurs in the derivatives of the solution to the transport equation. The difference is significant in that to
obtain a sharp picture of shock formation, one must rely on a geometric version of the vector field method
that is precisely tailored to the family of characteristics whose intersection is tied to the blowup. The key
point is that the basic regularity properties of the characteristics and the geometric vector fields (which
seem essential for the proofs) that are adapted to them are different in the wave equation and transport
equation cases. In fact, in the transport equation case, the Cartesian components of the geometric vector
fields are one degree less differentiable compared to the wave equation case; see (1F.1) for the set of
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geometric vector fields that we use in the present article. Although one might anticipate that the reduced
regularity will lead to new complications, in the present paper, we are able to handle the loss of regularity
using a strategy that, in fact, leads to simplifications compared to the wave equation case: roughly by
treating the first-order Cartesian coordinate partial derivatives of the symmetric hyperbolic variables as
new unknowns, we are able to allow the loss of regularity in the geometric vector fields. The fact that we
can allow the loss is ultimately tied to the fact that in the present article, the variable that forms a shock is
a solution to a first-order equation (in contrast to the case of wave equations). We emphasize that our
approach is considerably different from, and in some ways simpler than, approaches that have been taken
in proving shock formation in solutions to quasilinear wave equations, a context in which the known
proofs fundamentally rely on avoiding4 the loss of regularity; while the special structure of wave equations
indeed allows one to avoid the loss of regularity in the eikonal function and the corresponding geometric
vector fields, the known approaches to avoiding the loss introduce enormous technical complications into
the analysis. We will discuss these fundamental points in more detail in Sections 1E and 1F5.

Although the blowup mechanism for solutions to the transport equations under study is broadly similar
to the Riccati-type mechanism that drives singularity formation in the simple one-space-dimensional
example of Burgers’ equation5 (see Section 1D for related discussion), the proof of our main theorem
is much more complicated, owing in part to the aforementioned difficulty of having to derive energy
estimates in multiple spatial dimensions. The overall strategy of our proof is to construct a system of
geometric coordinates adapted to the transport characteristics, relative to which the solution remains
smooth, in part because the geometric coordinates “hide”6 the Riccati-type term mentioned above. In
more than one spatial dimension, the philosophy of constructing geometric coordinates to regularize
the problem of shock formation seems to have originated in Alinhac’s work [1999a; 1999b; 2001]
on quasilinear wave equations; see Section 1G2 for further discussion. As will become abundantly
clear, our construction of the geometric coordinates and other related quantities is tied to the following
fundamental ingredient in our approach: our development of a theory of nonlinear geometric optics for
quasilinear transport equations, tied to an eikonal function, that is compatible with full quasilinear
coupling to the symmetric hyperbolic subsystem. We use nonlinear geometric optics to construct
geometric vector field differential operators (see (1F.1)) adapted to the characteristics as well as to
detect the singularity formation. By “compatible”, we mean, especially, from the perspective of regu-
larity considerations. Indeed, in any situation in which one uses nonlinear geometric optics to study a
quasilinear hyperbolic PDE system, one must ensure that the regularity of the corresponding eikonal
function is consistent with that of the solution. By “full quasilinear coupling”, we mean that in the
systems that we study, the principal coefficients in all equations are allowed to depend on all solution
variables.

4Actually, as we describe in Section 1G2, Alinhac’s approach handles the loss of regularity through a Nash–Moser iteration
scheme. However, Alinhac’s Nash–Moser approach suffers from some technical limitations that seem to obstruct one’s ability to
track the behavior of the solution up to the boundary of the maximal development. In turn, this poses an obstacle to even properly
setting up the shock development problem; see Section 1G2 for further discussion.

5The Riccati term appears after one spatial differentiation of Burgers’ equation.
6In one spatial dimension, this is sometimes referred to as “straightening out the characteristics” via a change of coordinates.
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Upon introducing nonlinear geometric optics into the problem, we encounter the following key difficulty,
which we alluded to above:

Some of the geometric vector fields that we construct (see (1F.1)) have Cartesian components
that are one degree less differentiable than the transport variable, as we explain in Section 1F5.

On the one hand, due to the full quasilinear coupling, it seems that we must use the geometric vector fields
when commuting the symmetric hyperbolic subsystem to obtain higher-order estimates; this allows us to
avoid generating uncontrollable commutator error terms involving “bad derivatives” (i.e., in directions
transversal to the transport characteristics) of the shock-forming transport variable. On the other hand,
the loss of regularity of the Cartesian components of the geometric vector fields leads, at the top-order
derivative level, to commutator error terms in the symmetric hyperbolic subsystem that are uncontrollable
in that they have insufficient regularity. To overcome this difficulty, we employ the following strategy:

We never commute the symmetric hyperbolic subsystem a top-order number of times with a
pure string of geometric vector fields; instead, we first commute the symmetric hyperbolic
subsystem with a single Cartesian coordinate partial derivative, and then follow up the Cartesian
derivative with commutations by the geometric vector fields.

The strategy above allows us to avoid the loss of a derivative, but it generates commutator error terms
depending on a single Cartesian coordinate partial derivative, which are dangerous because they are
transversal to the transport characteristics. Indeed, the first-order Cartesian coordinate partial derivatives of
the transport variable blow up at the shock. Fortunately, by using a weight7 adapted to the characteristics,
we are able to control such error terms featuring a single Cartesian differentiation, all the way up to the
singularity.

We close this subsection by providing some remarks on prior implementations of nonlinear geometric
optics in the study of the maximal development8 of initial data for quasilinear hyperbolic PDEs without
symmetry assumptions. The approach was pioneered by Christodoulou and Klainerman [1993] in their
celebrated proof of the stability of Minkowski spacetime as a solution to the Einstein vacuum equations.9

Since perturbative global existence results for hyperbolic PDEs typically feature estimates with “room
to spare”, in many cases, it is possible to close the proofs by relying on a version of approximate
nonlinear geometric optics, which features approximate eikonal functions whose level sets approximate
the characteristics. The advantage of using approximate eikonal functions is that is that their regularity
theory is typically very simple. For example, such an approach was taken by Lindblad and Rodnianski
[2010] in their proof of the stability of the Minkowski spacetime relative to wave coordinates. Their proof
was less precise than Christodoulou and Klainerman’s but significantly shorter since, unlike Christodoulou
and Klainerman, Lindblad and Rodnianski relied on approximate eikonal functions whose level sets were

7The weight is the quantity µ from Remark 1.2, and we describe it in detail below.
8The maximal development is, roughly, the largest possible classical solution that is uniquely determined by the data. Readers

can consult [Sbierski 2016; Wong 2013] for further discussion.
9Roughly, [Christodoulou and Klainerman 1993] contains a small-data global existence result for Einstein’s equations.
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standard Minkowski light cones; in particular, Lindblad and Rodnianski were able to close their proof
using C∞ vector fields tied to the background Minkowskian geometry.

The use of eikonal functions for proving shock formation for quasilinear wave equations in more than
one spatial dimension without symmetry assumptions was pioneered by Alinhac [1999a; 1999b; 2001],
and his approach was later remarkably sharpened/extended by Christodoulou [2007]. In contrast to global
existence problems, in proofs of shock formation without symmetry assumptions, the use of an eikonal
function adapted to the true characteristics (as opposed to approximate ones) seems essential, since the
results yield that the singularity formation exactly coincides with the intersection of the characteristics.
One can also draw an analogy between works on shock formation and works on low regularity well-
posedness for quasilinear wave equations, such as [Klainerman and Rodnianski 2003; 2005; Smith and
Tataru 2005; Klainerman et al. 2015], where the known proofs fundamentally rely on eikonal functions
whose levels sets are true characteristics.

1C. A more precise statement of the main results. For the systems under study, we assume that the
number of spatial dimensions is n ≥ 1, where n is arbitrary. For convenience, we study the dynamics of
solutions in spacetimes of the form R×6, where

6 = R×Tn−1 (1C.1)

is the spatial manifold and Tn−1 is the standard (n−1)-dimensional torus (i.e., [0, 1)n−1 with the endpoints
identified and equipped with the usual smooth orientation). The factor Tn−1 in (1C.1) will correspond
to perturbations away from plane symmetry. Our assumption on the topology of 6 is for technical
convenience only; since our results are localized in spacetime, one could derive similar stable blowup
results for arbitrary spatial topology.10 Throughout, {xα}α=0,...,n are a fixed set of Cartesian spacetime
coordinates on R×6, where t := x0

∈R is the time coordinate, {x i
}i=1,...,n are the spatial coordinates on6,

x1
∈ R is the “noncompact space coordinate”, and {x i

}i=2,...,n are standard locally defined coordinates on
Tn−1 such that (∂2, . . . , ∂n) is a positively oriented frame. We denote the Cartesian coordinate partial
derivative vector fields by ∂α := ∂

∂xα , and we sometimes use the alternate notation ∂t := ∂0. Note that
the vector fields {∂α}α=0,...,n can be globally defined so as to form a smooth frame, even though the
{x i
}i=2,...,n are only locally defined. For mathematical convenience, in our main results, we consider

nearly plane symmetric solutions, where by our conventions, exact plane symmetric solutions depend
only on t and x1. We now roughly summarize our main results; see Theorem 10.1 for precise statements.

Theorem 1.5 (stable shock formation (rough version)).
Assumptions. Consider the following coupled system11 with initial data posed on the constant-time
hypersurface 60 := {0}×R×Tn−1

' R×Tn−1:

Lα(9, v) ∂α9 = 0, (1C.2a)

Aα(9, v) ∂αv = 0, (1C.2b)

10However, assumptions on the data that lead to shock formation generally must be adapted to the spatial topology.
11Throughout we use Einstein’s summation convention. Greek lowercase “spacetime” indices vary over 0, 1, . . . , n, while

Latin lowercase “spatial” indices vary over 1, 2, . . . , n.
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where 9 is a scalar function, v = (v1, . . . , vM) is an array (M is arbitrary), and the Aα are symmetric
M ×M matrices. Assume that L1(9, v) satisfies a genuinely nonlinear-type condition tied to its depen-
dence on 9 (specifically condition (2B.1)) and that for small 9 and v, the constant-time hypersurfaces 6t

and the Pu are spacelike12 for the subsystem (1C.2b). Here and throughout, the Pu are L-characteristics,
which are the family of (solution-dependent) hypersurfaces equal to the level sets of the eikonal function u,
that is, the solution to the eikonal equation (see footnote 3 regarding the notation) Lu = 0 with the initial
condition u|60 = 1− x1.

To close the proof , we make the following assumptions on the data, which we propagate all the way up
to the singularity:

Along 60, the array v, all of its derivatives, and the Pu-tangential derivatives of 9 are small
relative13 to quantities constructed out of a first-order Pu-transversal derivative of 9 (see
Section 5D for the precise smallness assumptions, which involve geometric derivatives). More-
over, along P0, all derivatives of v up to top order are relatively small.

Conclusions. There exists an open set (relative to a suitable Sobolev topology) of data that are close to
the data of a simple plane wave (where a simple plane wave is such that 9 =9(t, x1) and v ≡ 0), given
along the unity-thickness subset 61

0 of 60 and a finite portion of P0, such that the solution behaves as
follows:

maxα=0,...,n |∂α9| blows up in finite time, while |9|, {|v J
|}1≤J≤M , and {|∂αv J

|}0≤α≤n,1≤J≤M

remain uniformly bounded.

The blowup coincides with the intersection of the Pu , which in turn is precisely characterized by the
vanishing of the inverse foliation density µ := 1/∂t u of the Pu , which satisfies µ|61

0
≈ 1; see Figure 1 for

a picture in which a shock is about to form (in the region up top, where µ is small). Moreover, one can
complete (t, u) to form a geometric coordinate system (t, u, ϑ2, . . . , ϑn) on spacetime with the following
key property, central to the proof :

No singularity occurs in 9, {v J
}1≤J≤M , {∂αv J

}0≤α≤n,1≤J≤M , or their derivatives with respect
to the geometric coordinates14 up to top order.

Put differently, the problem of shock formation can be transformed into an equivalent problem in which
one proves nondegenerate estimates relative to the geometric coordinates and, at the same time, proves
that the geometric coordinates degenerate in a precise fashion with respect to the Cartesian coordinates
as µ ↓ 0.

Remark 1.6 (nontrivial interactions all the way up to the singularity). We emphasize that in Theorem 1.5,
v can be nonzero at the singularity in maxα=0,...,n |∂α9|. This means, in particular, that the problem
cannot be reduced to the study of blowup for the much easier case of a decoupled scalar transport equation.

12This means that Aαωα is positive definite, where the one-form ω is conormal to the surface and satisfies ω0 > 0.
13We also assume an absolute smallness condition on ‖9‖L∞(60).
14In practice, we will derive estimates for the derivatives of the solution with respect to the vector fields depicted in Figure 1.
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Figure 1. The dynamics until close to the time of the shock when n = 2.

Remark 1.7 (extensions to allow for semilinear terms). We expect that the results of Theorem 1.5 could
be extended to allow for the presence of arbitrary smooth semilinear terms on the right-hand sides of
(1C.2a)–(1C.2b) that are functions of (9, v). The extension would be straightforward to derive for
semilinear terms that vanish when v = 0 (for example, terms of type v ·9). The reason is that our
main results imply that such semilinear terms remain small, in suitable norms, up to the shock. In fact,
such semilinear terms completely vanish for the exact simple waves whose perturbations we treat in
Theorem 1.5; see Section 1D for further discussion of simple waves. Consequently, a set of initial data
similar to the one from Theorem 1.5 would also lead to the formation of a shock in the presence of such
semilinear terms. In contrast, for semilinear terms that do not vanish when v = 0 (for example, terms of
type 92), the analysis would be more difficult and the assumptions on the data might have to be changed
to produce shock-forming solutions. In particular, such semilinear terms can, at least for data with 9
large, radically alter the behavior of some solutions. This can be seen in the simple model problem of the
inhomogeneous Burgers-type equation ∂t9+9 ∂x9 =9

2. This equation admits the family of ODE-type
blowup solutions 9(ODE);T (t) := (T − t)−1, whose singularity is much more severe than the shocks that
typically form when the semilinear term 92 is absent.

Remark 1.8 (description of a portion of the maximal development). We expect that the approach we
take in proving our main theorem is precise enough that it can be extended to yield sharp information
about the behavior of the solution up the boundary of the maximal development, as Christodoulou [2007,
Chapter 15] did in his related work (which we describe in more detail in Section 1G2). For brevity, we
do not pursue this issue in the present article. However, in the detailed version of our main results (i.e.,
Theorem 10.1), we set the stage for the possible future study of the maximal development by proving a
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“one-parameter family of results”, indexed by U0 ∈ (0, 1]; one would need to vary U0 to study the maximal
development. Here and throughout, U0 corresponds to an initial data region 6U0

0 of thickness U0; see
Figure 2 on page 472 and Section 1F2 for further discussion. For U0 = 1, which is implicitly assumed in
Theorem 1.5, a shock forms in the maximal development of the data given along15 6

U0
0 ∪P0. However,

for small U0, a shock does not necessarily form in the maximal development of the data given along
6

U0
0 ∪P0 within the amount of time that we attempt to control the solution.

1D. Further discussion on simple plane symmetric waves. Theorem 1.5 shows, roughly, that the well-
known stable blowup of ∂x9 in solutions to the one-space-dimensional Burgers’ equation

∂t9 +9 ∂x9 = 0 (1D.1)

is stable under a full quasilinear coupling of (1D.1) to other hyperbolic subsystems, under perturbations
of the coefficients in the transport equation, and under increasing the number of spatial dimensions. We
now further explain what we mean by this. A special case of Theorem 1.5 occurs when v ≡ 0 and 9
depends only on t and x1 (plane symmetry). In this simplified context, the blowup of maxα=0,1 |∂α9|

for solutions to (1C.2a) can be proved using a simple argument based on the method of characteristics,
similar to the argument that is typically used to prove blowup in the case of Burgers’ equation. Solutions
with v ≡ 0 are sometimes referred to as simple waves since they can be described by a single nonzero
scalar component. From this perspective, we see that Theorem 1.5 yields the stability of simple plane
wave shock formation for the transport variable in solutions to the system (1C.2a)–(1C.2b).

1E. The main new ideas behind the proof. The proof of Theorem 1.5 is based in part on ideas used
in earlier works on shock formation in more than one spatial dimension. We review these works in
Section 1G. Here we summarize the two most novel aspects behind the proof of Theorem 1.5.

• (nonlinear geometric optics for transport equations) As in all prior shock formation results in more
than one spatial dimension, our proof relies on nonlinear geometric optics, that is, the eikonal function u.
The use of an eikonal function is essentially the method of characteristics implemented in more than one
spatial dimension. All of the prior works were such that the blowup occurred in a solution to a quasilinear
wave equation and thus the theory of nonlinear geometric optics was adapted to the corresponding “wave
characteristics”. In this article, we advance the theory of nonlinear geometric optics for transport equations.
Although the theory is simpler in some ways, compared to the case of wave equations, it is, as our prior
discussion has suggested, also more degenerate in the following sense: the regularity theory for the
eikonal function u is less favorable in that u is one degree less differentiable in some directions compared
to the case of wave equations. We therefore must close the proof of Theorem 1.5 under this decreased
differentiability. We defer further discussion of this point until Section 1F5. Here, we will simply further
motivate our use of nonlinear geometric optics in proving shock formation.

First, we note that in more than one spatial dimension, it does not seem possible to close the proof using
only the Cartesian coordinates; indeed, Theorem 1.5 shows that the blowup of 9 precisely corresponds to

15Actually, we only need to specify the data along the subset 6U0
0 ∪P

2 Å−1
∗

0 of 6U0
0 ∪P0; see Section 1F2 for discussion of

this subset and the data-dependent parameter Å∗.
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the vanishing of the inverse foliation density µ of the characteristics, which is equivalent to the blowup
of ∂t u. Hence, it is difficult to imagine how a sharp, constructive proof of stable blowup would work
without referencing an eikonal function. In view of these considerations, we construct a geometric
coordinate system (t, u, ϑ2, . . . , ϑn) adapted to the transport operator vector field L and prove that 9,
v, Vα := ∂αv, and their geometric coordinate partial derivatives remain regular all the way up to the
singularity in maxα=0,...,n |∂α9|. The blowup of maxα=0,...,n |∂α9| occurs because the change of variables
map between geometric and Cartesian coordinates degenerates, which is in turn tied to the vanishing
of µ; the Jacobian determinant of this map is in fact proportional to µ; see Lemma 3.25. The coordinate t
is the standard Cartesian time function. The geometric coordinate function u is the eikonal function
described in Theorem 1.5. The initial condition u|60 = 1− x1 is adapted to the approximate plane
symmetry of the initial data. We similarly construct the “geometric torus coordinates” {ϑ j

} j=2,...,n by
solving Lϑ j

= 0 with the initial condition ϑ j
|60 = x j. The main challenge is to derive regular estimates

relative to the geometric coordinates for all quantities, including the solution variables and geometric
quantities constructed out of the geometric coordinates.

• (full quasilinear coupling) Because we are able to close the proof with decreased regularity for u
(compared to the case of wave equations), we are able to handle full quasilinear coupling between all
solution variables. This is an interesting advancement over prior works, where the principal coefficients in
the evolution equation for the shock-forming variable were allowed to depend only on the shock-forming
variable itself and on other solution variables that satisfy a wave equation with the same principal part
as the shock-forming variable; i.e., in (1C.2a), we allow Lα = Lα(9, v), where the principal part of the
evolution equation (1C.2b) for v is distinct (by assumption) from L .

1F. A more detailed overview of the proof. In this subsection, we provide an overview of the proof of
our main results. Our analysis is based in part on some key ideas originating in earlier works, which
we review in Section 1G. Our discussion in this subsection is, at times, somewhat loose; our rigorous
analysis begins in Section 2.

1F1. Setup and geometric constructions. In Sections 2–3, we construct the geometric coordinate system
(t, u, ϑ2, . . . , ϑn) described in Section 1B, which is central for all that follows. We also construct many
related geometric objects, including the inverse foliation density µ (see Definition 3.5 for the precise
definition) of the characteristics Pu of the eikonal function u, i.e., of the level sets of u. As we mentioned
earlier, our overall strategy is to show that the solution remains regular with respect to the geometric coordi-
nates, all the way up to the top derivative level, to show that µ vanishes in finite time, and to show that the
vanishing of µ is exactly tied to the blowup of maxα=0,...,n |∂α9|. It turns out that when deriving estimates,
it is important to replace the geometric coordinate partial derivative vector field ∂

∂u with a6t -tangent vector
field that we denote by X̆ , which is similar to ∂

∂u but generally not parallel to it; see Figure 1 on page 455 for
a picture of X̆ . In the context of the present paper, the main advantage of X̆ is that it enjoys the following
key property: the vector field X =µ−1 X̆ has Cartesian components that remain uniformly bounded, all the
way up to the shock. Put differently, we have X̆ =µX , where we will show that X is a vector field of order-
unity Euclidean length (and thus the Euclidean length of X̆ is O(µ)). We further explain the significance
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of this in Section 1F4, when we outline the proof that the shock forms. In total, when deriving estimates
for the derivatives of quantities, we differentiate them with respect to elements of the vector field frame

Z := {L , X̆ , (2)2, . . . , (n)2}, (1F.1)

which spans the tangent space of spacetime at each point with µ > 0. Here, (i)2 := ∂
∂ϑ i , L is the vector

field from (1C.2a) and, by construction, we have L = ∂
∂t (see (3C.5)). The vector fields L and (i)2

are tangent to the Pu , while X̆ is transversal and normalized by X̆u = 1 (see (3C.6)); see Figure 1 on
page 455 for a picture of the frame. Note that since X̆ is of length O(µ), the uniform boundedness of
|X̆9| is consistent with the formation of a singularity in |X9| and thus in the Cartesian coordinate partial
derivatives of 9 when µ ↓ 0; see Section 1F4 for further discussion of this point.

We now highlight a crucial ingredient in our proof, alluded to earlier: we treat the Cartesian coordinate
partial derivatives of v J as independent unknowns V J

α , defined by

V J
α := ∂αv

J . (1F.2)

As we stressed already in Section 1B, our reliance on V J
α allows us to avoid commuting (1C.2b) up to

top order with elements of Z , which allows us to avoid certain top-order commutator terms that would
result in the loss of a derivative. Moreover, as we noted in Theorem 1.5, a key aspect of our framework is
our proof that the quantities Vα remain bounded up to the singularity in maxα=0,...,n |∂α9|. To achieve
this, we will control Vα by studying its evolution equation subsystem Aβ ∂βVα = −(∂αAβ)Vβ , whose
inhomogeneous terms are controllable under the scope of our approach.

1F2. A more precise description of the spacetime regions under study. For convenience, we study only
the future portion of the solution that is completely determined by the data lying in the subset 6U0

0 ⊂60

of thickness U0 and on a portion of the transport characteristic P0, where 0<U0 ≤ 1 is a parameter, fixed
until Theorem 10.1; see Figure 2 on page 472. We will study spacetime regions such that 0≤ u ≤U0,
where u is the eikonal function described above. We have introduced the parameter U0 because one would
need to allow U0 to vary in order to study the behavior of the solution up the boundary of the maximal
development, as we mentioned in Remark 1.8.

In our analysis, we will use a bootstrap argument in which we only consider times t with 0≤ t < 2 Å−1
∗

,
where Å∗ > 0 is a data-dependent parameter described in Section 1F3 (see also Definition 5.1). Our
main theorem shows that if U0 = 1, then a shock forms at a time equal to a small perturbation of Å−1

∗
;

see Section 1F4 for an outline of the proof. For this reason, in proving our main results, we only take
into account the portion of the data lying in 6U0

0 and in the subset P2 Å−1
∗

0 of the characteristic P0; from
domain-of-dependence considerations, one can infer that only this portion can influence the solution in
the regions under study.

Remark 1.9. For the remainder of Section 1F, we will suppress further discussion of U0 by setting U0= 1.

1F3. Data-size assumptions, bootstrap assumptions, and pointwise estimates. In Section 5, we state our
assumptions on the data and formulate bootstrap assumptions that are useful for deriving estimates. Our
assumptions on the data involve the parameters α̊ > 0, ε̊ ≥ 0, Å > 0, and Å∗ > 0, where, for our proofs
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to close, α̊ must be chosen to be small in an absolute sense and ε̊ must be chosen to be small in a relative
sense compared to Å−1 and Å∗ (see Section 5D for a precise description of the required smallness). The
following remarks capture the main ideas behind the data-size parameters:

(1) α̊ = ‖9‖L∞(61
0 )

is the size of 9.

(2) ε̊ is the size, in appropriate norms, of the derivatives of 9 up to top order in which at least one
Pu-tangential differentiation occurs, and of v, V and all of their derivatives up to top order with respect to
the elements of the vector field frame Z defined in (1F.1). We emphasize that we will study perturbations
of plane symmetric shock-forming solutions such that ε̊ = 0. That is, the case ε̊ = 0 corresponds to a
plane symmetric simple wave in which v ≡ 0. We state the total number of derivatives that we use to
close the estimates in Sections 5A and 5B2. We also highlight that to close our proof, we never need to
differentiate any quantity with more than one copy of the Pu-transversal vector field X̆ . This approach is
possible in part because of the following crucial fact, proved in Lemma 3.22: commuting the elements of
the frame Z with each other yields a vector field belonging to span{(2)2, . . . , (n)2}.

(3) Å = ‖X̆9‖L∞(61
0 )

is the size of the Pu-transversal derivative of 9.

(4) Å∗ = sup61
0
[G X̆9]− is a modified measure of the size of the Pu-transversal derivative of 9, where

G 6= 0 is a coefficient determined by the nonlinearities and [ f ]− := |min{ f, 0}|.

(5) When t = 0, other geometric quantities that we use in studying solutions obey similar size estimates,
where any differentiation of a quantity with respect to a Pu-tangential vector field leads to O(ε̊)-smallness;
see Lemma 5.5. A crucial exception occurs for Lµ, which initially is of relatively large size O( Å) in
view of its evolution equation Lµ∼ X̆9 + · · · (see (3G.1a) for the precise evolution equation).

(6) The relative smallness of ε̊ corresponds to initial data that are close to that of a simple plane symmetric
wave, as we described in Section 1D.

One of the main steps in our analysis is to propagate the size assumptions above all the way up
to the shock. To this end, on a region of the form (t, u, ϑ) ∈ [0, T(Boot))× [0,U0] × Tn−1, we make
L∞-type bootstrap assumptions that capture the expectation that the size assumptions stated above hold.
In particular, the bootstrap assumptions capture our expectation that no singularity will form in any
quantity relative to the geometric coordinates. Moreover, since V J

α = ∂αv
J, the bootstrap assumptions

for the smallness16 of V capture our expectation that the Cartesian coordinate partial derivatives of v
should remain bounded; indeed, this is a key aspect of our proof that we use to control various error terms
depending on V. As we mentioned earlier, a crucial point is that we have set the problem up so that the
shock forms at time T(Lifespan) < 2 Å−1

∗
. Therefore, we make the assumption

0< T(Boot) < 2 Å−1
∗
, (1F.3)

which leaves us with ample margin of error to show that a shock forms. In particular, in view of (1F.3),
we can bound factors of t , exp(t), etc. by a constant C > 0 depending on Å−1

∗
, and the estimates will

16We note that the bootstrap assumptions refer to a parameter ε > 0 that, in our main theorem, we will show is controlled
by ε̊; for brevity, we will avoid further discussion of ε until Section 5C2.
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close as long as ε̊ is sufficiently small; see Section 1H for further discussion on our conventions regarding
the dependence of constants C .

In Section 6, with the help of the bootstrap assumptions and data-size assumptions described above,
we commute all evolution equations, including (1C.2a)–(1C.2b) and evolution equations for µ and related
geometric quantities, with elements of the Z up to top order and derive pointwise estimates for the error
terms. Actually, due to the special structures of the equations relative to the geometric coordinates, we
never need to commute the evolution equations satisfied by v, V, or µ with the transversal vector field X̆ .
Moreover, for the other geometric quantities, we need to commute their evolution equations at most
once with X̆ . We clarify, however, that we commute all equations many times with the elements of the
Pu-tangential subset P := {L , (2)2, . . . , (n)2}.

1F4. Sketch of the formation of the shock. Let us assume that the bootstrap assumptions and pointwise
estimates described in Section 1F3 hold for a sufficiently long amount of time. We will sketch how
they can be used to give a simple proof of shock formation, that is, that µ ↓ 0 and ∂9 blows up.
The main estimates in this regard are provided by Lemma 6.8; here we sketch them. First, using
(3G.1a), the bootstrap assumptions, and the pointwise estimates, we deduce the following evolution
equation for the inverse foliation density: Lµ(t, u, ϑ) = [G X̆9](t, u, ϑ) + · · · , where the “blowup
coefficient” G 6= 0 was described in Section 1F3 and “· · · ” denotes small error terms, which we ignore
here. Next, we note the following pointwise estimate, which falls under the scope of the discussion in
Section 1F3: L(G X̆9)= · · · (smallness is gained since L is a Pu-tangential differentiation). Recalling
that L = ∂

∂t , we use the fundamental theorem of calculus and the smallness of L(G X̆9) to deduce
[G X̆9](t, u, ϑ)= [G X̆9](0, u, ϑ)+ · · · . Inserting this estimate into the one above for Lµ, we find that
Lµ(t, u, ϑ)= [G X̆9](0, u, ϑ)+· · · . From the fundamental theorem of calculus and the initial condition
µ(0, u, ϑ) = 1+ · · · , we obtain µ(t, u, ϑ) = 1+ t[G X̆9](0, u, ϑ)+ · · · . From this estimate and the
definition of Å∗, we obtain min(u,ϑ)∈[0,1]×Tn−1 µ(t, u, ϑ)= 1− t Å∗+· · · . Hence, µ vanishes for the first
time at T(Lifespan) = Å−1

∗
+ · · · , as desired. Moreover, the reasoning used above can easily be extended

to show that |X̆9|(t, u, ϑ)& 1 at any point (t, u, ϑ) such that µ(t, u, ϑ) < 1
4 . Recalling that X̆ = µX ,

where X has order-unity Euclidean length, we see that the following holds:

|X9| must blow up like C/µ as µ ↓ 0.

This argument shows, in particular, that the vanishing of µ exactly coincides with the blowup of
maxα=0,...,n |∂α9|.

1F5. Considerations of regularity. This subsubsection is an interlude in which we highlight some issues
tied to considerations of regularity. Our discussion will distinguish the problem of shock formation
for transport equations from the (by now) well-understood case of quasilinear wave equations, which
we further describe in Section 1G2. To illustrate the issues, we will highlight some features of our
analysis, with a focus on derivative counts. In Lemma 3.21, we derive the following evolution equation
for the Cartesian components of (i)2: L(i)2 j

=
(i)2L j, where (i)2 = ∂

∂ϑ i . Recalling that L = ∂
∂t , that

V J
α = ∂αv

J, and that L j is a smooth function of (9, v), we infer, from standard energy estimates for
transport equations, that (i)2 j should have the same degree of Sobolev differentiability as ∂9 and V. In
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particular, we expect that (i)2 j should be one degree less differentiable than 9. For similar reasons, µ, V,
and some other geometric quantities that play a role in our analysis are also one degree less differentiable
than 9. The following point is crucial for our approach:

We are able to close the energy estimates for9 up to top order even though, upon commuting9’s
transport equation, we generate error terms that depend on the “less differentiable” quantities.

That is, in controlling 9, we must carefully ensure that all error terms feature an allowable amount of
regularity. Moreover, the same care must be taken throughout the paper, by which we mean that we
must ensure that we can close the estimates for all quantities using a consistent number of derivatives. In
particular, we stress that it is precisely due to considerations of the regularity of the Cartesian components
of (i)2 and X̆ that we have introduced the quantities V J

α = ∂αv
J, as we explained in Section 1F1.

In the case of quasilinear wave equations with principal part (g−1)αβ(9)∂α∂β9, the derivative counts
are different. For example, the inverse foliation density µ enjoys the same Sobolev regularity as the wave
equation solution variable 9 in directions tangent to the characteristics, a gain of one tangential derivative
compared to the present work. Moreover, for quasilinear wave equations, a similar gain in tangential
differentiability also holds for some other key geometric objects, which we will not describe here. The
gain is available because certain special combinations of quantities constructed out of the eikonal function
and the wave equation solution variable satisfy an unexpectedly good evolution equation, with source
terms that have better-than-expected regularity; see Section 1G2 or the survey article [Holzegel et al.
2016] for further discussion. Moreover, this gain seems essential for closing some of the top-order energy
estimates in the wave equation case, the reason being that one must commute the geometric vector fields
through the second-order wave operator, which eats up the gain. As we explain in Section 1G2, one
pays a steep price in gaining back the derivative: the resulting energy estimates allow for possible energy
blowup at the high geometric derivative levels (a potential phenomenon that is related to, but distinct
from, the formation of a shock), a difficulty which we do not encounter in the present work.

We close this subsubsection by again highlighting that we are able to prove shock formation for systems
with full quasilinear coupling (in the sense explained in the second paragraph of Section 1B) precisely
because we are able to close our estimates using geometric quantities that are one degree less differentiable
than 9, and that the viability of allowing the loss of differentiability leads to simplifications in the proof
compared to the case of quasilinear wave equations. In contrast, in the case of quasilinear wave equations,
due to the apparent necessity of avoiding a loss of differentiability in various geometric quantities, it
does not seem possible to prove shock formation for general systems of quasilinear wave equations with
multiple propagation speeds; the special combinations of quantities mentioned in the previous paragraph,
which are needed to close the geometric energy estimates in the case of quasilinear wave equations, seem
to be unstable under a full quasilinear coupling of multiple speed wave systems. Here is one representative
manifestation of this issue: the problem of multispace-dimensional shock formation for covariant wave
equation systems (see footnote 24 on page 467 regarding the notation) of the form

�g1(91,92)91 = 0, (1F.4a)

�g2(91,92)92 = 0, (1F.4b)
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where g1 and g2 are Lorentzian metrics,17 is open whenever g1 6= g2, even though shock formation for
systems with g1 = g2 and for scalar equations �g(9)9 = 0 is well-understood [Speck 2016]. We note,
however, that stable shock formation has been understood for some wave equation systems such that the
quasilinear part of the shock-forming variable’s wave equation has a decoupled structure. Specifically, in
[Speck 2018], in two spatial dimensions, we proved a stable shock formation result for the variable 91

for systems in the unknowns (91, 92) of the form

�g1(91)91 =N1(91, ∂91, 92, ∂92), (1F.5a)

(g−1
2 )αβ(91, 92, ∂92) ∂α∂β92 =N2(91, ∂91, 92, ∂92), (1F.5b)

under appropriate assumptions on the semilinear terms N1 and N2 as well as the assumption that the wave
propagation speed corresponding to g1 is faster than the wave propagation speed corresponding to g2, i.e.,
that 91 is the “fastest wave variable”; see Section 1G2 for further discussion of this result. We clarify
that a key structural feature, exploited in [Speck 2018], is that in (1F.5a), the metric g1 corresponding
to the shock-forming variable 91 depends only on 91; this is tantamount to the assumption of partial
decoupling of the most difficult quasilinear terms.

1F6. Energy estimates. In Section 8, we derive the main technical estimates of the article: energy
estimates up to top order for 9, v, V, µ, and related geometric quantities. Energy estimates are an
essential ingredient in the basic regularity theory of quasilinear hyperbolic systems in multiple spatial
dimensions, and in this article, they are also important because they yield improvements of our bootstrap
assumptions described in Section 1F3. We now describe the energies, which we construct in Section 4.
To control the transport variable 9, we construct geometric energies along 6t . To control the symmetric
hyperbolic variables v and V, we construct µ-weighted energies along 6t as well as non-µ-weighted
energies along the transport characteristics Pu . With6u

t defined to be the subset of6t in which the eikonal
function takes on values in between 0 and u and P t

u defined to be the subset of Pu corresponding to times
between 0 and t , our energies E(Shock)

[P9](t, u), . . . , and our characteristic fluxes E(Regular)
[V ](t, u), . . .

satisfy, with P ∈P = {L , (2)2, . . . , (n)2} (see Section 4 for the details)

E(Shock)
[P9](t, u) :=

∫
6u

t

(P9)2 dϑ du′, (1F.6a)

E(Regular)
[v](t, u)≈

∫
6u

t

µ|v|2 dϑ du′, F(Regular)
[v](t, u)≈

∫
P t

u

|v|2 dϑ dt ′, (1F.6b)

E(Regular)
[V ](t, u)≈

∫
6u

t

µ|V |2 dϑ du′, F(Regular)
[V ](t, u)≈

∫
P t

u

|V |2 dϑ dt ′. (1F.6c)

In our analysis, we of course must also control various higher-order energies, but here we ignore this
issue. The degenerate µ weights featured in E(Regular)

[v] and E(Regular)
[V ] arise from expressing the

standard energy for symmetric hyperbolic systems in terms of the geometric coordinates; roughly, the
weight µ appears because 6t is transversal to the Pu and because dx1 is “well-approximated by” µ du′.

17That is, for i = 1, 2, the matrix of Cartesian components of gi has signature (−,+, . . . ,+).
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For controlling certain error integrals that arise in the energy identities, it is crucial that the characteristic
fluxes F(Regular)

[v] and F(Regular)
[V ] do not feature any degenerate µ weight. These characteristic fluxes

are positive definite only because our structural assumptions on the equations ensure that the propagation
speed of v and V is strictly slower than that of 9 (see (2C.1) for the precise assumptions). Readers can
consult Lemma 4.2 and its proof to better understand the role of these assumptions.

We now outline the derivation of the energy estimates; see Section 8 for precise statements and proofs.
Let us define18 the controlling quantity W(t, u) to be the sum of the energies and characteristic fluxes in
(1F.6a)–(1F.6c) and their analogs up to the top derivative level (corresponding to differentiations with
respect to the geometric vector fields). The initial data that we study in our main theorem satisfy (by
assumption) W(0, 1). ε̊2 and W(2 Å−1

∗
, 0). ε̊2, where ε̊ is the small parameter described in Section 1F3.

We again stress that W(t, u)≡ 0 for simple plane waves.
Next, we note that energy identities, based on applying the divergence theorem on the geometric

coordinate region [0, t]× [0, u]×Tn−1, together with the pointwise estimates for error terms mentioned
in Section 1F3, lead to the inequality

W(t, u)≤ C ε̊2
+C

∫ t

t ′=0

∫ u

u′=0

∫
Tn−1
{|P9|2+ |v|2+ |V |2}(t ′, u′, ϑ) dϑ du′ dt ′+ · · · , (1F.7)

where the terms “· · · ” depend on the geometric derivatives of9, v, and V up to top order and the derivatives
of various geometric quantities up to top order; the terms “· · · ” can be bounded using arguments similar
to the ones we sketch below, so we will not discuss them further here. In view of the definition of W, we
deduce the following inequality from (1F.7):

W(t, u)≤ C ε̊2
+C

∫ t

t ′=0
W(t ′, u) dt ′+C

∫ u

u′=0
W(t, u′) du′+ · · · . (1F.8)

Then from (1F.8) and Gronwall’s inequality with respect to t and u, we conclude, ignoring the terms “· · · ”
and taking into account (1F.3), that the following a priori estimate holds for (t, u) ∈ [0, T(Boot))×[0,U0]

(see Proposition 8.6 for the details):

W(t, u). ε̊2 exp(C Å−1
∗
). ε̊2. (1F.9)

The estimate (1F.9) represents the realization of our hope that the solution remains regular relative to the
geometric coordinates, up to the top derivative level.

We now stress the following key point: the characteristic fluxes F(Regular)
[v] and F(Regular)

[V ] are
needed to control the terms |v|2+ |V |2 on the right-hand side of (1F.7); without the characteristic fluxes,
instead of the term C

∫ u
u′=0 W(t, u′) du′ on the right-hand side of (1F.8), we would instead have the term

C
∫ t

t ′=0 W(t ′, u)/(min6u
t ′
µ) dt ′, whose denominator vanishes as the shock forms. Such a term would have

led to a priori estimates allowing for the possibility that at all derivative levels, the geometric energies
blow up as the shock forms. This in turn would have been inconsistent with the bootstrap assumptions

18Our definition of W(t, u) given here is schematic. See Definition 8.1 for the precise definition of the controlling quantity,
which we denote by Q(t, u).
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described in Section 1F3 and would have obstructed our approach of showing that the solution remains
regular relative to the geometric coordinates.

1F7. Combining the estimates. Once we have obtained the a priori energy estimates, we can derive
improvements of our L∞-type bootstrap assumptions via Sobolev embedding (see Corollary 8.8). These
steps, together with the estimates from Section 1F4 showing that µ vanishes in finite time, are the main
steps in the proof of the main theorem. We need a few additional technical results to complete the proof,
including some results guaranteeing that the geometric and Cartesian coordinates are diffeomorphic up to
the shock (see Section 7) and some fairly standard continuation criteria (see Section 9), which in total
ensure that the solution survives up to the shock. We combine all of these results in Section 10, where we
prove the main theorem.

1G. Connections to prior work. Many aspects of the approach outlined in Section 1F have their genesis
in earlier works, which we now describe.

1G1. Results in one spatial dimension. In one spatial dimension and in symmetry classes whose PDEs
are effectively one-dimensional, there are many results, by now considered classical, that use the method
of characteristics to exhibit the formation of shocks in initially smooth solutions to various quasilinear
hyperbolic systems. Important examples include Riemann’s work [1860] (in which he developed the
method of Riemann invariants), Lax’s proof [1964] of stable blowup for 2×2 genuinely nonlinear systems
via the method of Riemann invariants, Lax’s blowup results [1972; 1973] for scalar conservation laws,
John’s extension [1974] of Lax’s work to systems in one spatial dimension with more than two unknowns
(which required the development of new ideas since the method of Riemann invariants does not apply),
and the recent work of Christodoulou and Perez [2016], in which they significantly sharpened [John 1974].
The main obstacle to extending the results mentioned above to more than one spatial dimension is that one
must complement the method of characteristics with an ingredient that, due to the singularity formation,
is often accompanied by enormous technical complications: energy estimates that are adapted to and that
hold up to the singularity. We further explain these technical complications in the next subsubsection.

1G2. Results in more than one spatial dimension. The first breakthrough results on shock formation in
more than one spatial dimension without symmetry assumptions were proved by Alinhac [1999a; 1999b;
2001] for small-data solutions to scalar quasilinear wave equations of the form

(g−1)αβ(∂8) ∂α ∂β8= 0 (1G.1)

that fail to satisfy the null condition. Here, g(∂8) is a Lorentzian metric equal to the Minkowski metric
plus an error term of size O(∂8). As we do in this paper, Alinhac constructed a set of geometric
coordinates tied to an eikonal function u, which in the context of his problems was a solution the fully
nonlinear eikonal equation

(g−1)αβ(∂8) ∂αu ∂βu = 0. (1G.2)

Much like in our work here, the level sets of u are characteristic hypersurfaces for (1G.1). They are also
known, in the context of Lorentzian geometry, as null hypersurfaces, in view of their intimate connection
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to the g-null19 vector field −(g−1)αβ ∂βu. In his works, Alinhac identified a set of small compactly
supported initial data satisfying a nondegeneracy condition such that maxα,β=0,...,n |∂α∂β8| blows up in
finite time due to the intersection of the characteristics, while |8| and maxα=0,...,n |∂α8| remain bounded.
Moreover, relative to the geometric coordinates, 8 and {∂α8}α=0,...,n remain smooth, except possibly at
the very high derivative levels (we will elaborate upon this just below).

In proving his results, Alinhac faced three serious difficulties. We will focus only on the case of three
spatial dimensions, though Alinhac obtained similar results in two spatial dimensions. The first difficulty
is that for small data, solutions to (1G.1) experience a long period of dispersive decay, which seems to
work against the formation of a shock and which necessitated the application of Klainerman’s commuting
vector field method [1985; 1986] in which the vector fields have time and radial weights. We stress that
such dispersive behavior is not exhibited by the solutions that we study in this article and hence our vector
fields do not feature time or radial weights. Alinhac showed that after an era20 of dispersive decay, the
nonlinearity in (1G.1) takes over and drives the formation of the shock.

The second main difficulty faced by Alinhac is that to follow the solution up the singularity, it
seems necessary to commute the equations with geometric vector fields constructed out of the eikonal
function, and these vector fields seem to lead to the loss of a derivative when commuted through the wave
operator. Specifically, the geometric vector fields Z have Cartesian components that depend on ∂u, and
hence commuting them through the wave equation (1G.2) leads to an equation of the schematic form
(g−1)αβ(∂8) ∂α∂β(Z8)= ∂2 Z · ∂8+· · · . The difficulty is that standard wave equation energy estimates
suggest, due to the source term ∂2 Z , that 8 enjoys only the same Sobolev regularity as Z ∼ ∂u, whereas
standard energy estimates for the eikonal equation (1G.2) only allow one to prove that ∂u enjoys the same
Sobolev regularity as ∂28; this suggests, misleadingly, that the approach of using vector fields constructed
out of an eikonal function will lead to the loss of a derivative. To overcome this difficulty, Alinhac
obtained the nonlinear solution, up to the shock, as the limit of iterates that solve singular linearized
problems, and he used a rather technical Nash–Moser iteration scheme featuring a free boundary in order
to recover the loss of a derivative. For technical reasons, his reliance on the Nash–Moser iteration allowed
him to follow “most” small-data solutions to the constant-time hypersurface of first blowup, and not
further. More precisely, his approach only allowed him to treat “nondegenerate” data such that the first
singularity is isolated in the constant-time hypersurface of first blowup. We again emphasize that in our
work here, we encounter a similar difficulty concerning the regularity of the geometric vector fields, but
since our PDE systems are first-order, we are able to overcome it in a different way, in fact by allowing
for reduced regularity in the geometric vector fields; see Sections 1B and 1F5.

The third and most challenging difficulty encountered by Alinhac is the following: when proving
energy estimates relative to the geometric coordinates, it seems necessary to rely on energies that feature
degenerate weights that vanish as the shock forms; the weights are direct analogs of the inverse foliation
density µ from Theorem 1.5. These weights make it difficult to control certain error terms in the energy

19That is, if L̂α := −(g−1)αβ ∂βu, then by (1G.2), we have g(L̂, L̂)= 0.
20Roughly the era of dispersive decay lasts for a time interval of length exp(c/ε), where ε is the size of the data in a weighted

Sobolev norm.
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identities, which in turn leads to a priori estimates allowing for the following possibility: as the shock
forms, the high-order energies might blow up like a positive power of21 1/µ. We stress that the possible
high-order energy blowup encountered by Alinhac occurs relative to the geometric coordinates and is
related to — but distinct from — the formation of the shock singularity (in which maxα,β=0,...,n |∂α∂β8|

blows up). To close the proof, Alinhac had to show that the possible high-order geometric energy blowup
does not propagate down too far to the lower geometric derivative levels, i.e., that the solution remains
fairly smooth relative to the geometric coordinates. This “descent scheme” costs many derivatives, and
for this reason, the data must belong to a Sobolev space of rather high order for the estimates to close.
We stress that although the energies that we use in the present paper also contain the same degenerate µ
weights, we encounter different kinds of error terms in our energy estimates, tied in part to the fact that
our systems are first-order and tied in part to our strategy of estimating the quantity V J

α defined by (1F.2).
For this reason, our a priori energy estimates relative to the geometric coordinates are regular in that even
the top-order geometric energies remain uniformly bounded up to the shock.

In the remarkable work [Christodoulou 2007], Alinhac’s shock formation results are significantly
sharpened for the quasilinear wave equations of irrotational (i.e., vorticity-free) relativistic fluid mechanics
in three spatial dimensions, which form a subclass of wave equations of type (1G.1). These wave equations
arise from formulating the relativistic Euler equations in terms of a fluid potential 8, which is possible
when the vorticity vanishes. The equations studied by Christodoulou enjoy special features that he
exploited in his proofs, such as having an Euler–Lagrange formulation with a Lagrangian that is invariant
under the Poincaré group. The main results proved by Christodoulou are as follows: (i) there is an open
(relative to a Sobolev space of high, nonexplicit order) set of small22 data such that the only possible
singularities that can form in the solution are shocks driven by the intersection of the characteristics;
(ii) there is an open subset of the data from (i), not restricted by nondegeneracy assumptions of the
type imposed by Alinhac, such that a shock does in fact form in finite time; and (iii) for those solutions
that form shocks, Christodoulou gave a complete description of the maximal classical development
of the data near the singularity, which intersects the future of the constant-time hypersurface of first
blowup. His sharp description of the maximal development seems necessary for even properly setting
up the shock development problem. This is the problem of uniquely locally continuing the solution past
the singularity to the Euler equations in a weak sense, a setting in which one must also construct the
“shock hypersurface”, across which the solution jumps (the solution is smooth on either side of the shock
hypersurface). The shock development problem in relativistic fluid mechanics was solved in spherical
symmetry in [Christodoulou and Lisibach 2016] and, in yet another breakthrough work [Christodoulou
2019], for the nonrelativistic compressible Euler equations and the relativistic Euler equations without
symmetry assumptions in a restricted case (known as the restricted shock development problem) such
that the jump in entropy across the shock hypersurface was ignored. The work [Christodoulou 2019] is

21In the context of wave equations, µ is often defined as follows: µ=−1/((g−1)αβ ∂αu ∂β t), where t is the Cartesian time
function.

22In the context of [Christodoulou 2007], “small” means a small perturbation of the nontrivial constant-state fluid solutions,
which take the form 8= kt , where k > 0 is a constant.
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the first of its type in more than one spatial dimension. We remark that in one spatial dimension, there
are general results of this type. For example, for the existence of (weak — but unique under suitable
admissibility criteria) solutions to strictly hyperbolic systems in one spatial dimension with small total
variation (a context that allows for the presence of and interaction of “small” shock waves), we refer
readers to the aforementioned work [Dafermos 2010, Chapter XV].

Compared to Alinhac’s approach, the main technical improvement afforded by Christodoulou’s approach
[2007] to proving shock formation is that it avoids the loss of a derivative through a sharper, more direct
method; instead of using Alinhac’s Nash–Moser scheme, Christodoulou found special combinations of
geometric quantities that satisfy good evolution equations, and he combined them with elliptic estimates
on codimension-two spacelike hypersurfaces.23 This approach to avoiding the loss of a derivative in wave
equation eikonal functions originated in the aforementioned proof [Christodoulou and Klainerman 1993]
of the stability of Minkowski spacetime, and it was extended by Klainerman and Rodnianski [2003] to
the case of general scalar quasilinear wave equations in their study of low-regularity well-posedness for
wave equations of the form −∂2

t 9 + gab(9) ∂a∂b9 = 0. In total, Christodoulou’s approach allowed him
to control the solution up to the shock using a traditional “forwards” approach, without the free boundary
found in Alinhac’s iteration scheme. However, as in Alinhac’s work, Christodoulou’s energy estimates
allowed for the possibility that the high-order energies might blow up as the shock forms. Therefore, like
Alinhac, Christodoulou had to give a separate, technical argument to show that any high-order energy
singularity does not propagate down too far to the lower geometric derivative levels.

In [Speck 2016], we extended Christodoulou’s sharp shock formation results to the case of general
quasilinear wave equations of type (1G.1) in three spatial dimensions that fail to satisfy the null condition,
to the case of covariant wave equations of the type24 �g(9)9=0 that fail to satisfy the null condition, and to
inhomogeneous versions of these wave equations featuring “admissible” semilinear terms. Similar results
were proved in [Christodoulou and Miao 2014] for a subset of these equations, namely those wave equations
arising from nonrelativistic compressible fluid mechanics with vanishing vorticity. All of the results
mentioned so far in this subsubsection are explained in detail in the survey article [Holzegel et al. 2016].

In the wake of the results above, there have been significant further advancements, which we now
describe. In [Speck et al. 2016], we extended the shock formation results of [Speck 2016] to a new,
physically relevant regime of initial conditions for wave equations in two spatial dimensions such that
the solutions are close to simple outgoing plane symmetric waves, much like the setup of the present
article. For the initial conditions studied in [Speck et al. 2016], the solutions do not experience dispersive
decay. Hence, we used a new analytic framework to control the solution up to the shock, based on
“close-to-simple-plane-wave”-type smallness assumptions on the data that are similar in spirit to the
assumptions that we make on the data in the present article. The results of [Speck et al. 2016] can be
viewed as an extension, to the case of quasilinear wave equations without symmetry assumptions, of the
aforementioned blowup results of [Lax 1964] for 2× 2 genuinely nonlinear systems, and as an extension
of well-known blowup results for first-order quasilinear scalar conservation laws in an arbitrary number

23These codimension-two surfaces are analogs of the (n−1)-dimensional tori Tt,u from Definition 3.2.
24�g is the covariant wave operator of g. Relative to arbitrary coordinates, �g9 = (1/

√
| det g|) ∂α(

√
| det g|(g−1)αβ ∂β9).
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of spatial dimensions; see, for example, [Dafermos 2010, Section 6.1] for a discussion of finite-time
shock formation for scalar equations on R1+n of the form ∂t8+

∑n
a=1 ∂a[G(8)] = 0 under appropriate

assumptions on the nonlinearity G and the initial data. For special classes of wave equations in three
spatial dimensions with cubic nonlinearities, Miao and Yu [2017] proved similar shock formation results
for a set of large initial data featuring a single scaling parameter, similar to the short pulse ansatz exploited
in the breakthrough work [Christodoulou 2009] on the formation of trapped surfaces in solutions to the
Einstein vacuum equations. For the same wave equations studied in [Miao and Yu 2017], Miao [2018]
recently made a related-but-distinct ansatz on the initial data and proved the existence of an open set of
solutions that exist classically on the time interval (−∞, T(Shock)) but blow up at time T(Shock) ≈−1.

All of the works mentioned above concern systems whose characteristics have a simple structure: they
correspond to a single wave operator. We now describe some recent shock formation results in which the
systems have more complicated principal parts, leading to multiple speeds of propagation and distinct
families of characteristics. The first result of this type without symmetry assumptions was our joint work
[Luk and Speck 2018] with J. Luk, which concerned the compressible Euler equations in two spatial
dimensions under an arbitrary25 barotropic26 equation of state. Specifically, in [Luk and Speck 2018],
we extended the shock formation results of [Christodoulou and Miao 2014] for the compressible Euler
equations to allow for the presence of small amounts of vorticity at the location of the singularity. The
vorticity satisfies a transport equation and, as it turns out, remains Lipschitz with respect to the Cartesian
coordinates, all the way up to the shock. More precisely, the shock occurs in the “sound wave part” of the
system rather than in the vorticity, and, as in all prior works, the shock is driven by the intersection of a
family of characteristic hypersurfaces corresponding to a Lorentzian metric (known as the acoustical
metric in the context of fluid mechanics). In particular, [Luk and Speck 2018] yielded the first proof
of stable shock formation without symmetry assumptions in solutions to a hyperbolic system featuring
multiple speeds, where all solution variables were allowed to interact up to the singularity.

The results proved in [Luk and Speck 2018] were based on a new wave-transport-div-curl formulation
of the compressible Euler equations under a barotropic equation of state, which we derived in [Luk and
Speck 2016]. The new formulation exhibits remarkable null structures and regularity properties, tied in
part to the availability of elliptic estimates for the vorticity in three spatial dimensions (vorticity stretching
does not occur in two spatial dimensions, and in its absence, one does not need elliptic estimates to
control the vorticity). In a forthcoming work, we will extend the shock formation results of [Luk and
Speck 2018] to the much more difficult case of three spatial dimensions, where to control the vorticity
up to top order in a manner compatible with the wave part of the system, one must rely on the elliptic
estimates, which allow one to show that the vorticity is exactly as differentiable as the velocity with
respect to geometric vector fields adapted to the sound wave characteristics. In [Speck 2017], we extended
the results of [Luk and Speck 2016] to allow for an arbitrary equation of state in which the pressure

25There is one exceptional equation of state, known as that of the Chaplygin gas, to which the results of [Luk and Speck
2018] do not apply. In one spatial dimension, the resulting PDE system is totally linearly degenerate, and it is widely believed
that shocks do not form in (initially smooth) solutions to such systems.

26A barotropic equation of state is such that the pressure is a function of the density.
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depends on the density and entropy. The formulation of the equations in [Speck 2017] exhibits further
remarkable properties that, in our forthcoming work, we will use to prove a stable shock formation result
in three spatial dimensions in which the vorticity and entropy are allowed to be nonzero at the singularity.
In the work [Speck 2018] (which we mentioned at the end of Section 1F5), in two spatial dimensions, we
proved the first stable shock formation result for systems of quasilinear wave equations featuring multiple
wave speeds of propagation; i.e., the systems featured more than one distinct quasilinear wave operator.
The main result yielded an open set of data such that the “fastest” wave forms a shock in finite time,
while the remaining solution variables remain regular up to the singularity in the fast wave, much like
in Theorem 1.5. The initial conditions were perturbations of simple plane waves, similar to the setup
for the case of the scalar wave equations studied in [Speck et al. 2016] and similar to the setup of the
present article. The main new difficulty that we faced in [Speck 2018] is that the geometric vector fields
adapted to the shock-forming fast wave, which seem to be an essential ingredient for following the fast
wave all the way to its singularity, exhibit very poor commutation properties with the slow wave operator.
Indeed, commuting the geometric vector fields all the way through the slow wave operator produces error
terms that are uncontrollable, both from the point of view of regularity and from the point of view of the
strength of the singular commutator terms that this generates. To overcome this difficulty, we relied on a
first-order reformulation of the slow wave equation which, though somewhat limiting in the precision it
affords, allows us to avoid commuting all the way through the slow wave operator and hence to avoid the
uncontrollable error terms.

1H. Notation, index conventions, and conventions for “constants”. We now summarize some of our
notation. Some of the concepts referred to here are defined later in the article. Throughout, {xα}α=0,1,...,n

denote the standard Cartesian coordinates on spacetime R×6, where x0
∈ R is the time variable and

(x1, x2, . . . , xn) ∈6 = R×Tn−1 are the space variables. We denote the corresponding Cartesian partial
derivative vector fields by ∂α =: ∂

∂xα (the ∂
∂xα are globally defined and smooth even though {x i

}
n
i=2 are

only locally defined) and we often use the alternate notation t := x0 and ∂t := ∂0.

• Lowercase Greek spacetime indices α, β, etc. correspond to the Cartesian spacetime coordinates and
vary over 0, 1, . . . , n. Lowercase Latin spatial indices a, b, etc. correspond to the Cartesian spatial
coordinates and vary over 1, 2, . . . , n. An exception to the latter rule occurs for the geometric torus
coordinate vector fields (i)2 from (3A.5), in which the labeling index i varies over 2, . . . , n. Uppercase
Latin indices such as J correspond to the components v J of the array of symmetric hyperbolic variables
and typically vary from 1 to M.

• We use Einstein’s summation convention in that repeated indices are summed over their respective
ranges.

• Unless otherwise indicated, all quantities in our estimates that are not explicitly under an integral are
viewed as functions of the geometric coordinates (t, u, ϑ) of Definition 3.4. Unless otherwise indicated,
quantities under integrals have the functional dependence established below in Definition 3.26.

• If Q1 and Q2 are two operators, then [Q1, Q2] = Q1 Q2− Q2 Q1 denotes their commutator.
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• A . B means that there exists C > 0 such that A ≤ C B.

• A ≈ B means that A . B and B . A.

• A =O(B) means that |A|. |B|.

• Constants such as C and c are free to vary from line to line. These constants, as well as implicit
constants, are allowed to depend in an increasing, continuous fashion on the data-size parameters Å and
Å−1
∗

from Section 5B. However, the constants can be chosen to be independent of the parameters α̊, ε̊, and
ε whenever the following conditions hold: (i) ε̊ and ε are sufficiently small relative to 1, relative to Å−1,
and relative to Å∗, and (ii) α̊ is sufficiently small relative to 1, in the sense described in Section 5D.

• Constants C� are also allowed to vary from line to line, but unlike C and c, the C� are universal in that,
as long as α̊, ε̊, and ε are sufficiently small relative to 1, they do not depend on α̊, ε, ε̊, Å, or Å−1

∗
.

• A =O�(B) means that |A| ≤ C�|B|, with C� as above.

• b · c and d · e respectively denote the standard floor and ceiling functions.

2. Rigorous setup of the problem and fundamental definitions

In this section, we state the equations that we will study and state our basic assumptions on the nonlinear-
ities.

2A. Statement of the equations. Our main results concern systems in 1+ n spacetime dimensions and
1+M unknowns of the form

L9 = 0, (2A.1a)

Aα ∂αv = 0, (2A.1b)

where, in our main theorem, the scalar function 9 forms a shock, M ≥ 1 is an integer,27

v := (v J )J=1,...,M (2A.2)

denotes the “symmetric hyperbolic variables” (whose first-order Cartesian coordinate partial derivatives
will remain bounded up to the singularity in maxα=0,...,n |∂α9|), L is a vector field whose Cartesian
components are given smooth functions of 9 and v, that is, Lα = Lα(9, v), and the Aα are symmetric
M × M matrices whose components Aα;JI = Aα;IJ are given smooth functions of 9 and v. Note that
(2A.1b) is equivalent to the M scalar equations Aα;IJ ∂αv

J
= 0, where 1≤ I ≤ M, and we sum over the

repeated occurrences of α and J. For convenience, we assume the normalization conditions

L0
≡ 1, (2A.3a)

L1
|(9,v)=(0,0) = 1. (2A.3b)

More generally, if we were to assume that (L0
|(9,v)=(0,0), L1

|(9,v)=(0,0)) 6= (0, 0), then we could achieve
(2A.3a)–(2A.3b) by performing a linear change of coordinates in the (t, x1)-plane and then dividing
(2A.1a) by a scalar.

27Our results also apply in the case M = 0, though we omit discussion of this simpler case.
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As we stressed in the introduction, an essential aspect of our analysis is that we treat the Cartesian
coordinate partial derivatives of v J as independent quantities. For this reason, we define

V J
α := ∂αv

J , Vα := (V J
α )1≤J≤M , V := (V J

α )0≤α≤n,1≤J≤M . (2A.4)

As a straightforward consequence of (2A.1b) and definition (2A.4), we obtain the following evolution
equation for Vα:

Aβ ∂βVα =−(∂αAβ)Vβ . (2A.5)

2B. The genuinely nonlinear-type assumption. Recall that we can view L1
= L1(9, v). To ensure that

shocks can form in nearly plane symmetric solutions, we assume that

∂L1

∂9

∣∣∣∣
(9,v)=(0,0)

6= 0. (2B.1)

By continuity, it follows from (2B.1) that ∂L1

∂9
6= 0 whenever |9| + |v| is sufficiently small.

2C. Assumptions on the speed of propagation for the symmetric hyperbolic subsystem. In this subsec-
tion, we state our assumptions on the speed of propagation for the symmetric hyperbolic subsystem
(2A.1b). Specifically, we assume that the matrices

A0
|(9,v)=(0,0) and A0

|(9,v)=(0,0)− A1
|(9,v)=(0,0) are positive definite. (2C.1)

We now explain the significance of (2C.1). The positivity of A0
|(9,v)=(0,0) ensures that for solution values

near the “background state” (9, v)= (0, 0), the hypersurfaces 6t are spacelike for (2A.1b), that is, for the
evolution equation satisfied by the non-shock-forming variable v. By (2A.3a), the 6t are also spacelike
for (2A.1a); i.e., L is transversal to 6t . The positivity of A0

|(9,v)=(0,0)− A1
|(9,v)=(0,0) will ensure that

for solution values near the background state, hypersurfaces close to the flat planes {t − x1
= const.} are

spacelike for (2A.1b). This assumption is significant because for the solutions that we will study, we will
construct (in Section 3A) a family {Pu}u∈[0,1] of hypersurfaces that are characteristic for (2A.1a) (that
is, for the operator L) and that are close to the flat planes {t − x1

= const.}. Put differently, the Pu will
be characteristic for the evolution equation for 9 but spacelike for the evolution equation for v, which
essentially means that for solution values near the background state, 9 propagates at a strictly faster
speed than v (and also strictly faster than V, since the principal coefficients in the evolution equations for
v and Vα are the same).

3. Geometric constructions

In this section, we define/construct most of the geometric objects that we use to analyze solutions. We
defer the construction of our L2-type energies until Section 4.

3A. The eikonal function and the geometric coordinates. In this subsection, we construct the geometric
coordinates that we use to follow the solution all the way to the shock. The most important of these is the
eikonal function.
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Figure 2. The spacetime region under study in the case n = 2.

Definition 3.1. The eikonal function is the solution u to the following transport initial value problem,
where L is the transport operator vector field from (2A.1a):

Lu = 0, u|60 = 1− x1. (3A.1)

For reasons described in Remark 1.8 and Section 1F2, we now fix a real parameter U0 satisfying

0<U0 ≤ 1. (3A.2)

We will restrict out attention to spacetime regions with 0≤ u ≤U0.
Our analysis will take place on the following subsets of spacetime, which are tied to the eikonal

function; see Figure 2 for a picture of the setup.

Definition 3.2. We define the following subsets of spacetime, where x := (x1, x2, . . . , xn) denotes a
point in R×Tn−1 and (t, x) denotes a point in R×R×Tn−1:

6t ′ := {(t, x) | t = t ′}, (3A.3a)

6u′
t ′ := {(t, x) | t = t ′, 0≤ u(t, x)≤ u′}, (3A.3b)

Pu′ := {(t, x) | u(t, x)= u′}, (3A.3c)

P t ′
u′ := {(t, x) | 0≤ t ≤ t ′, u(t, x)= u′}, (3A.3d)

Tt ′,u′ := P t ′
u′ ∩6

u′
t ′ = {(t, x) | t = t ′, u(t, x)= u′}, (3A.3e)

Mt ′,u′ :=
⋃

u∈[0,u′]

P t ′
u ∩ {(t, x) | 0≤ t < t ′}. (3A.3f)
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We refer to the 6t and 6u
t as “constant time slices”, the P t

u as “characteristics”, and the Tt,u as “tori”.
Note that Mt,u is “open-at-the-top” by construction.

To complete the geometric coordinate system, we now construct local coordinates on the tori Tt,u .

Definition 3.3. We define the local geometric torus coordinates (ϑ2, . . . , ϑn) to be the solutions to the
following initial value problems, where L is the transport operator vector field from (2A.1a):

Lϑ i
= 0, ϑ i

|60 = x i , (i = 2, 3, . . . , n). (3A.4)

Note that we can view (ϑ2, . . . , ϑn) as locally defined coordinates on Tt,u ' Tn−1.

Definition 3.4. We refer to (t, u, ϑ2, . . . , ϑn) as the geometric coordinates, and we set ϑ := (ϑ2, . . . , ϑn).
We denote the corresponding partial derivative vector fields by

∂

∂t
,

∂

∂u
, (i)2 :=

∂

∂ϑ i , (i = 2, . . . , n). (3A.5)

Note that the (i)2 are Tt,u-tangent by construction. Moreover, we note even though the coordinate
functions ϑ i are only locally defined on Tt,u , the vector fields {(i)2}i=2,...,n can be defined so as to form a
smooth (relative to the geometric coordinates) global positively oriented frame on Tt,u .

3B. The inverse foliation density. We now define µ > 0, the inverse foliation density of the characteris-
tics Pu . When µ goes to 0, the characteristics intersect and, as our main theorem shows, maxα=0,...,n |∂α9|

blows up. That is, µ ↓ 0 signifies the formation of a shock singularity.

Definition 3.5 (inverse foliation density). We define µ > 0 as follows:

µ :=
1
∂t u

. (3B.1)

We observe that from (2A.3a)–(2A.3b) and (3A.1), it follows that when |9| + |v| is sufficiently small
(as will be the case in our main theorem), we have

µ|60 = 1+O�(|9|)+O�(|v|). (3B.2)

In particular, if 9 and v are initially small, then µ is initially close to 1.

3C. Vector fields and one-forms adapted to the characteristics and the blowup coefficient. In this sub-
section, we construct various vector fields and one-forms that are adapted to the characteristics Pu . We
also derive some of their basic properties. We also define the blowup coefficient G which, when nonzero,
signifies the genuinely nonlinear nature of the transport equation (2A.1a).

Definition 3.6 (the eikonal function gradient one-forms). We define λ and ξ to be the one-forms with the
following Cartesian components (0≤ α ≤ n, 1≤ j ≤ n):

λα := µ∂αu, (3C.1a)

ξ0 := 0, ξ j := µ∂ j u. (3C.1b)
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Remark 3.7. From (3B.1) and (3C.1a), we deduce that

λ0 = 1. (3C.2)

The following definition captures the strength of the coefficient of the main term that drives the shock
formation (as is evidenced by the estimates (6C.8a)–(6C.8b)). The definition is adapted to the x1-direction
since, in our main theorem, we study solutions with approximate plane symmetry (where by plane
symmetric solutions, we mean ones that depend only on t and x1).

Definition 3.8 (the blowup coefficient). Viewing L1
= L1(9, v), we define the blowup coefficient G as

G :=
∂L1

∂9
ξ1. (3C.3)

Remark 3.9 (G 6= 0). The solutions that we will study will be such that ξ1 is a small perturbation of −1;
see definition (3D.3d) and the estimate (6C.7a). Hence, from (2B.1), it follows that G 6= 0 for |9| + |v|
sufficiently small (as will be the case for the solutions under study).

In the next definition, we define a pair of Pu-transversal vector fields that we use to study the solution.

Definition 3.10 (Pu-transversal vector fields). We define the Cartesian components of the 6t -tangent
vector fields X and X̆ as follows (1≤ j ≤ n):

X j
:= −L j , (3C.4a)

X̆ j
:= µX j

=−µL j . (3C.4b)

We now derive some basic properties of L and X̆ .

Lemma 3.11 (basic properties of L and X̆ ). Relative to the geometric coordinates, we have

L =
∂

∂t
. (3C.5)

Moreover, the following identity holds:

X̆u = 1. (3C.6)

Finally, there exists a Tt,u-tangent vector field 4 such that

X̆ =
∂

∂u
−4. (3C.7)

Proof. To prove (3C.5), we note that Lu = Lϑ j
= 0 by construction. Also taking into account (2A.3a),

we conclude (3C.5).
To prove (3C.6), we first use the eikonal equation (3A.1) and the assumption (2A.3a) to deduce the

identity ∂t u =−La ∂au. Multiplying this identity by µ and appealing to definition (3B.1), we deduce that
1=−µLa ∂au, which, in view of definition (3C.4b), yields (3C.6). The existence of a Tt,u-tangent vector
field such that (3C.7) holds then follows as a simple consequence of (3C.6) and the identity X̆ t = 0 (that
is, the fact that X̆ is 6t -tangent). �
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Lemma 3.12 (basic identities for the eikonal function gradient one-forms). The following identities hold:

Lαλα = 0, Laξa =−1, (3C.8a)

Xαλα = 1, Xaξa = 1. (3C.8b)

Moreover, if Y is any Tt,u-tangent vector field, then

Y αλα = 0, Y aξa = 0. (3C.8c)

Proof. The identities in (3C.8a) are a straightforward consequence of (3A.1), definitions (3C.1a)–(3C.1b),
(2A.3a), and (3C.2). The identities in (3C.8b) follow from (3C.4b), (3C.6), definitions (3C.1a)–(3C.1b),
and the fact that X0

= 0. To obtain (3C.8c), we first note that for Tt,u-tangent vector fields Y, we
have Y ∈ span{(i)2}i=2,...,n and thus Y u := Y α ∂αu = 0. The identities in (3C.8c) follow from this fact,
definitions (3C.1a)–(3C.1b), and the fact that Y 0

= 0. �

To obtain estimates for the solution’s derivatives, we will commute the equations with the vector fields
belonging to the following sets.

Definition 3.13. We define the following sets of commutation vector fields:
Z := {L , X̆ , (2)2, (3)2, . . . , (n)2}, (3C.9a)

P := {L , (2)2, (3)2, . . . , (n)2}. (3C.9b)

Remark 3.14. Note that P consists of precisely the Pu-tangent elements of Z .

3D. Perturbed parts of various scalar functions. In this subsection, we define the perturbed parts of
various scalar functions that we have constructed. The perturbed quantities, which are decorated with the
subscript or superscript “Small”, vanish for the background solution (9, v)= (0, 0).

Definition 3.15 (the perturbed parts of various scalar functions). Let L be the vector field from (2A.1a),
let {(i)2}i=2,...,n be the geometric torus vector fields from (3A.5), and let ξ be the one-form defined in
(3C.1b). We define the following “background” quantities, which are constants ( j = 1, . . . , n):

L̃ j
:= L j

|(9,v)=(0,0), (3D.1a)

X̃ j
:= X j

|(9,v)=(0,0) =−L j
|(9,v)=(0,0). (3D.1b)

In (3D.1a)–(3D.1b), we are viewing L j and X j to be functions of (9, v) (this is possible for X j by
(3C.4a)). Note that by (2A.3b) and (3C.4a), we have

L̃1
= 1, X̃1

=−1. (3D.2)

We also define the perturbed quantities

L j
(Small) := L j

− L̃ j , (3D.3a)

X j
(Small) := X j

− X̃ j
=−L j

(Small), (3D.3b)
(i)2

j
(Small) :=

(i)2 j
− δi j , (3D.3c)
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ξ
(Small)
j := ξ j + δ

1
j , (3D.3d)

where the second equality in (3D.3b) follows from (3C.4a) and δi j and δ1
j are standard Kronecker deltas.

3E. Arrays of unknowns and schematic notation. We use the following arrays for convenient shorthand
notation.

Definition 3.16 (shorthand notation for various solution variables). We define the following arrays γ and
γ of scalar functions:

γ := (9, v J , V J
α , ξ

(Small)
i , ( j)2k

(Small))0≤α≤n, 1≤i, k≤n, 2≤ j≤n, 1≤J≤M , (3E.1a)

γ := (µ,9, v J , V J
α , ξ

(Small)
i , ( j)2k

(Small))0≤α≤n, 1≤i, k≤n, 2≤ j≤n, 1≤J≤M . (3E.1b)

Remark 3.17 (schematic functional dependence). In the remainder of the article, we use the notation
f(s1, s2, . . . , sm) to schematically depict an expression that depends smoothly on the scalar functions
s1, s2, . . . , sm . Note that in general, f(0) 6= 0.

Remark 3.18 (the meaning of the symbol P). Throughout, P schematically denotes a differential operator
that is tangent to the characteristics Pu , typically L or (i)2. We use such notation when the precise details
of P are not important.

3F. Cartesian partial derivatives in terms of geometric vector fields. In the next lemma, we expand the
vector fields {∂α}α=0,...,n in terms of the geometric commutation vector fields.

Lemma 3.19 (Cartesian partial derivatives in terms of geometric vector fields). There exist smooth scalar
functions fi j (γ ) such that the Cartesian vector fields ∂α can be expanded as follows in terms of the
elements of the set Z defined in (3C.9a) whenever |γ | is sufficiently small, where ξ j is defined in (3C.1b):

∂t = L + X, (3F.1a)

∂ j = ξ j X +
n∑

i=2

fi j (γ )
(i)2 (1≤ j ≤ n). (3F.1b)

Proof. Equation (3F.1a) follows from (2A.3a), (3C.4a), and the fact that X0
= 0.

To prove (3F.1b), we first note that for any fixed j with 1≤ j ≤ n, since ∂ j is 6t -tangent and since
{X, (2)2, . . . , (n)2} spans the tangent space of6t , there exist unique ( j -dependent) scalars α1, . . . , αn such
that ∂ j =α1 X+

∑n
i=2 αi

(i)2. Using both sides of this expansion to differentiate the eikonal function u and
using (3C.4b) and (3C.6), we obtain the identity ∂ j u = α1µ

−1. In view of definition (3C.1b), we conclude
that α1= ξ j , as is stated on the right-hand side of (3F.1b). Next, for 1≤ j, k≤ n, we allow both sides of the
expansion to differentiate the Cartesian coordinate xk to obtain the identity δk

j =α1 X k
+
∑n

i=2 αi
(i)2k. For

fixed j , we can view this as an identity whose left-hand side is the n-dimensional vector with components
(δ1

j , . . . , δ
n
j )
> and whose right-hand side is equal to the product of a matrix Mn×n and the n-dimensional

vector (α1, . . . , αn)
>, where > denotes transpose. From Definition 3.15, we see that

Mn×n =

(
−1 01×(n−1)

∗(n−1)×1 I(n−1)×(n−1)

)
+M (Small)

n×n ,
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where the entries of ∗(n−1)×1 are of the schematic form f(γ ) and the entries of M (Small)
n×n are of the schematic

form γ f(γ ) (and thus are small when |γ | is small). Hence, when |γ | is small, we can invert Mn×n to
conclude that the αi are smooth functions of γ , which completes the proof of (3F.1b). �

3G. Evolution equations for the Cartesian components of various geometric quantities. In this sub-
section, we derive transport equations for the Cartesian components of various geometric quantities that
are adapted to the characteristics Pu . Later, we will use these transport equations to derive estimates for
these quantities.

Lemma 3.20 (transport equations for µ, ξ j , and ξ (Small)
j ). The scalar functions µ, ξ j , and ξ (Small)

j , which
are defined respectively in (3B.1), (3C.1b), and (3D.3d), satisfy the following transport equations, where
the scalar functions fi j (γ ) are as in Lemma 3.19 (i = 2, . . . , n, j = 1, . . . , n):

Lµ= (X̆ La)ξa +µ(L La)ξa, (3G.1a)

Lξ j = Lξ (Small)
j = (L La)ξaξ j −

n∑
i=2

fi j (γ )(
(i)2La)ξa. (3G.1b)

Moreover, there exist functions that are smooth whenever |γ | is sufficiently small and that are schemati-
cally denoted by f such that the following initial conditions hold along 60:

µ|60 = 1+ (9, v) · f(9, v), (3G.2a)

ξ j |60 = {−1+ (9, v) · f(9, v)}δ1
j , (3G.2b)

ξ
(Small)
j |60 = (9, v) · f(9, v)δ

1
j . (3G.2c)

Proof. Differentiating the eikonal equation (3A.1) with ∂α and using (2A.3a), we obtain

L ∂αu =−(∂αLa) ∂au. (3G.3)

Setting α = 0 in (3G.3) and appealing to definition (3B.1), we deduce

Lµ= µ(∂t La)(µ ∂au). (3G.4)

From (3G.4), (3F.1a), (3C.4b), and definition (3C.1b), we conclude (3G.1a).
Next, we set α = j in (3G.3), multiply the equation by µ, and use definition (3C.1b) and (3G.4) to

compute that
L(µ ∂ j u)=−(∂ j La)(µ ∂au)+ (∂t La)(µ ∂au)(µ ∂ j u)

=−(∂ j La)ξa + (∂t La)ξaξ j . (3G.5)

From (3G.5) and (3F.1a)–(3F.1b), we conclude (3G.1b).
To prove (3G.2a), we use (2A.3a)–(2A.3b), (3A.1), definition (3B.1), (3D.2), and (3D.3a) to obtain

(1/µ)|60 = ∂t u|60 = −La ∂au|60 = L1
|60 = 1+ (9, v) · f(9, v), from which (3G.2a) easily follows

(when |9| and |v| are small). To prove (3G.2b), we use definition (3C.1b) and the argument above to
deduce that ξ j |60 =−(µδ

1
j )|60 = {−1+ (9, v) · f(9, v)}δ1

j , as desired. Equation (3G.2c) then follows
from (3G.2b) and definition (3D.3d). �
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In the next lemma, we derive transport equations for the Cartesian components of the geometric torus
coordinate partial derivative vector fields.

Lemma 3.21 (transport equations for the Cartesian components of (i)2). The Cartesian components (i)2 j

of the Tt,u-tangent vector fields from (3A.5) and their perturbed parts (i)2 j
(Small) defined in (3D.3c) are

solutions to the following transport equation initial value problem:

L(i)2 j
=
(i)2L j , (i)2 j

|60 = δ
i j , (3G.6a)

L(i)2 j
(Small) =

(i)2L j , (i)2 j
|60 = 0, (3G.6b)

where δi j is the standard Kronecker delta.

Proof. L and (i)2 are geometric coordinate partial derivative vector fields and they therefore commute:
[L , (i)2] = 0. Relative to Cartesian coordinates, the vanishing commutator can be expressed as L(i)2 j

=

(i)2L j , which is the desired evolution equation in (3G.6a). Next, we observe that along 60, (i)2 = ∂i

by construction. Hence, (i)2 j
|60 =

(i)2|60 x j
= ∂i x j

= δi j, which yields the initial condition (3G.6a).
Equation (3G.6b) then follows from definition (3D.3c) and (3G.6a). �

3H. Vector field commutator properties. In this subsection, we derive some basic properties of various
vector field commutators.

Lemma 3.22. The following vector fields are Tt,u-tangent (i = 2, . . . , n):

[L , X̆ ], [L , (i)2], [X̆ , (i)2], (i = 2, . . . , n). (3H.1)

Moreover, there exist smooth functions, denoted by subscripted versions of f, such that the following
identities hold whenever |γ | is sufficiently small (see Remark 3.18 regarding the notation) (i, i1, i2 =

2, . . . , n):
[L , (i)2] = [(i1)2, (i2)2] = 0, (3H.2a)

[L , X̆ ] =
n∑

i=2

fi (γ , L9, X̆9)(i)2, (3H.2b)

[X̆ , (i)2] =
n∑

j=2

fi j (γ , X̆γ, P9, Pµ)( j)2. (3H.2c)

Proof. Since (3C.5) implies that L is a geometric coordinate partial derivative vector field and since, by
definition, the same is true of (i)2, we conclude (3H.2a).

To prove (3H.2b), we first use (3C.5), (3C.6), and the fact that X̆ is 6t -tangent to deduce that
[L , X̆ ]t = [L , X̆ ]u = 0. Hence, [L , X̆ ] is Tt,u-tangent. Therefore, there exist unique scalars αi such
that the following identity holds for j = 1, 2, . . . , n: [L , X̆ ] j =

∑n
i=2 αi

(i)2 j. Next, we use the fact
that La

= f(9, v), (3C.4a)–(3C.4b), and the evolution equation (3G.1a) to deduce the schematic identity
[L , X̆ ] j = L(µX j )− X̆ L j

= f(γ , LαVα, X̆a Va, L9, X̆9)= f(γ , L9, X̆9). Next, considering the index
range 2 ≤ j ≤ n, we view the identity [L , X̆ ] j =

∑n
i=2 αi

(i)2 j as an identity whose left-hand side is
the (n−1)-dimensional vector with Cartesian components equal to ([L , X̆ ]2, . . . , [L , X̆ ]n)> and whose
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right-hand side is the product of the (n − 1) × (n − 1) matrix M(n−1)×(n−1) := (
(i)2 j )i, j=2,...,n and

the (n−1)-dimensional vector (α2, . . . , αn)
>, where > denotes transpose. From definition (3D.3c), we

see that M(n−1)×(n−1) is equal to the identity matrix plus an error matrix whose components are of
the schematic form γ f(γ ). In particular, M(n−1)×(n−1) is invertible whenever |γ | is sufficiently small.
Hence, (α2, . . . , αn)

> is the product of a matrix, whose components are of the form f(γ ) and the vector
([L , X̆ ]2, . . . , [L , X̆ ]n)>, whose components are of the form f(γ , L9, X̆9). This completes the proof of
(3H.2b). The identity (3H.2c) can be proved in a similar fashion and we omit the details. �

Corollary 3.23 (evolution equation for 4 j ). There exist functions that are smooth whenever |γ | is
sufficiently small and that are schematically denoted by indexed versions of f such that the Cartesian
components 4 j ( j = 1, . . . , n) of the Tt,u-tangent vector field 4 from (3C.7) satisfy the evolution equation

L4 j
=

n∑
i=2

4afia(γ )
(i)2L j

−

n∑
i=2

fi (γ , L9, X̆9)(i)2 j (3H.3)

and the initial condition
4 j
|60 = f j (9, v), (3H.4)

where the fia on the right-hand side of (3H.3) are as in (3F.1b), and the second sum on the right-hand side
of (3H.3) is precisely the sum on the right-hand side of (3H.2b).

Proof. From (3C.5) and (3C.7), we deduce that [L , 4] j=−[L , X̆ ] j. Considering the Cartesian components
of both sides of this equation and using (3H.2b), we obtain L4 j

=4a ∂a L j
−
∑n

i=2 fi (γ , L9, X̆9)(i)2 j.
Finally, we use (3F.1b) to substitute for ∂a in the expression 4a ∂a L j, and we use (3C.8c) to deduce that
the component 4aξa X L j vanishes. In total, this yields (3H.3).

To prove (3H.4), we use (3C.7) to deduce that 4 j
= 4x j

=
∂
∂u x j
− X̆ j. In view of the way in

which the geometric coordinates were constructed, along 60, we have ∂
∂u = −∂1. Moreover, in view

of (3C.4a)–(3C.4b) and (3G.2a), we deduce that X̆ j
|60 = X̆ x j

|60 = (µX j )|60 = µ|60f(9, v)= f(9, v),
where f depends on j . Combining the calculations above, we conclude (3H.4). �

3I. The change of variables map. In this subsection, we define the change of variables map from
geometric to Cartesian coordinates and derive some of its basic properties.

Definition 3.24. We define ϒ : R×R×Tn−1
→ R×R×Tn−1 to be the change of variables map from

geometric to Cartesian coordinates; i.e., ϒα(t, u, ϑ2, . . . , ϑn)= xα.

Lemma 3.25 (basic properties of the change of variables map). The following identities hold, where L is
the vector field from (2A.1a), the (i)2 are the vector fields from (3A.5), X̆ is the vector field from (3C.4b),
and 4 is the vector field from (3C.7):

∂ϒ

∂(t, u, ϑ2, . . . , ϑn)
:=
∂(x0, x1, x2, . . . , xn)

∂(t, u, ϑ2, . . . , ϑn)
=


1 0 0 0 · · · 0
L1 µX1

+41 (2)21 (3)21
· · ·

(n)21

L2 µX2
+42 (2)22 (3)22

· · ·
(n)22

...
...

...
...

...
...

Ln µXn
+4n (2)2n (3)2n

· · ·
(n)2n

 . (3I.1)
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Moreover, there exists a smooth function of γ vanishing at γ = 0, schematically denoted by γ f(γ ),
such that

det
∂(x0, x1, x2, . . . , xn)

∂(t, u, ϑ2, . . . , ϑn)
=
∂(x1, x2, . . . , xn)

∂(u, ϑ2, . . . , ϑn)
=−µ{1+ γ f(γ )}. (3I.2)

Similarly, the following identity holds:

det
∂(x2, . . . , xn)

∂(ϑ2, . . . , ϑn)
= 1+ γ f(γ ). (3I.3)

Proof. The first column of (3I.1) is a simple consequence of (3C.5) and the fact that Lxα = Lα. The
second column of (3C.4b) follows similarly from the fact that X̆ is 6t -tangent (i.e., X̆ t = 0), (3C.4b), and
(3C.7). The remaining n− 1 columns of (3C.4b) follow similarly from the fact that the vector fields (i)2
are 6t -tangent.

The first equality in (3I.2) is a simple consequence of (3I.1). To derive the second equality in (3I.2),
we first note that since 4 ∈ span{(i)2}i=2,...,n , we can delete 4 from the matrix on the right-hand side of
(3I.1) without changing its determinant. It follows that

left-hand side of (3I.2)= µ det


X1 (2)21 (3)21

· · ·
(n)21

X2 (2)22 (3)22
· · ·

(n)22

...
...

...
...

...

Xn (2)2n (3)2n
· · ·

(n)2n

 .
In view of Definition 3.15 and definition (3E.1a), we see that the previous expression is equal to µ times the
determinant of Mn×n +M (Small)

n×n , where Mn×n and M (Small)
n×n are the matrices from the proof of Lemma 3.19.

Using arguments similar to the ones given in the proof of Lemma 3.19, we conclude the identity (3I.2).
The identity (3I.3) can be proved via a similar argument, and we omit the details. �

3J. Integration forms and integrals. In this subsection, we define quantities connected to the two kinds
of integration that we use in our analysis: integration with respect to the geometric coordinates and
integration with respect to the Cartesian coordinates. In Remark 3.29, we clarify why both kinds of
integration play a role in our analysis and why geometric integration is the most important for our analysis.
In Lemma 3.30, we quantify the relationship between the two kinds of integration.

3J1. Geometric integration.

Definition 3.26 (geometric forms and related integrals). Relative to the geometric coordinates of Definition
3.4, we define the following forms:28

dϑ := dϑ2
· · · dϑn, d$ := dϑdu′,

d$ := dϑdt ′, d$ := dϑdu′dt ′.
(3J.1)

28Throughout the paper, we blur the distinction between the (nonnegative) integration measure dϑ and the corresponding
form dϑ2

∧· · ·∧dϑn, and similarly for the other quantities appearing in (3J.1). The precise meaning will be clear from context.
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If f is a scalar function, then we define∫
Tt,u

f dϑ :=
∫
ϑ∈Tn−1

f (t, u, ϑ) dϑ, (3J.2a)∫
6u

t

f d$ :=
∫ u

u′=0

∫
ϑ∈Tn−1

f (t, u′, ϑ) dϑ du′, (3J.2b)∫
P t

u

f d$ :=
∫ t

t ′=0

∫
ϑ∈Tn−1

f (t ′, u, ϑ) dϑ dt ′, (3J.2c)∫
Mt,u

f d$ :=
∫ t

t ′=0

∫ u

u′=0

∫
ϑ∈Tn−1

f (t ′, u′, ϑ) dϑ du′ dt ′. (3J.2d)

3J2. Cartesian integration.

Definition 3.27 (the one-form H ). Let λ be the one-form from Definition 3.6. We define H to be the
one-form with the following Cartesian components:

Hν :=
1

(δαβλαλβ)1/2
λν, (3J.3)

where δαβ is the standard inverse Euclidean metric on R×6 (that is, δαβ = diag(1, 1, . . . , 1) relative to
the Cartesian coordinates). Note that H is the Euclidean-unit-length conormal to Pu .

Definition 3.28 (Cartesian coordinate volume and area forms and related integrals). We define

dM := dx1dx2
· · · dxndt, d6 := dx1dx2

· · · dxn, dP (3J.4)

to be, respectively, the standard volume form on Mt,u induced by the Euclidean metric29 on R×6, the
standard area form induced on 6u

t by the Euclidean metric on R×6, and the standard area form induced
on P t

u by the Euclidean metric on R×6.
We define the integrals of functions f with respect to the forms above in analogy with the way that we

defined the integrals (3J.2a)–(3J.2d). For example,∫
6U

t

f d6 :=
∫
{(x1,...,xn)|0≤u(t,x1,...,xn)≤U }

f (t, x1, . . . , xn) dx1
· · · dxn,

where u(t, x1, . . . , xn) is the eikonal function.

Remark 3.29 (the role of the Cartesian forms). We never estimate integrals involving the Cartesian
forms; before deriving estimates, we will always use Lemma 3.30 below in order to replace the Cartesian
forms with the geometric ones of Definition 3.26; we use the Cartesian forms only when deriving energy
identities relative to the Cartesian coordinates, in which the Cartesian forms naturally appear.

29By definition, the Euclidean metric has the components diag(1, 1, . . . , 1) relative to the standard Cartesian coordinates
(t, x1, x2, . . . , xn) on R×6.
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3J3. Comparison between the Cartesian integration measures and the geometric integration measures.
In the next lemma, we quantify the relationship between the Cartesian integration measures and the
geometric integration measures.

Lemma 3.30. There exist scalar functions, schematically denoted by f(γ ), that are smooth for |γ |
sufficiently small and such that the following relationship holds between the geometric integration
measures corresponding to Definition 3.26 and the Cartesian integration measures corresponding to
Definition 3.28, where all of the measures are nonnegative (see footnote 28):

dM= µ{1+ γ f(γ )} d$, d6 = µ{1+ γ f(γ )} d$, dP = {
√

2+ γ f(γ )} d$. (3J.5)

Proof. We prove only the identity dP = {
√

2+ γ f(γ )} d$ since the other two identities in (3J.5) are a
straightforward consequence of Lemma 3.25 (in particular, the Jacobian determinant30 expressions in
(3I.2)). Throughout this proof, we view d$ (see (3J.1)) as the n-form dt ∧dϑ2

∧· · ·∧dϑn on Pu , where
dt∧dϑ2

= dt⊗dϑ2
−dϑ2

⊗dt , etc. Similarly, we view dP as the n-form induced on Pu by the standard
Euclidean metric on R×6. Then relative to Cartesian coordinates, we have dP= (dx0

∧dx1
∧· · ·∧dxn)·W ,

where W is the future-directed Euclidean normal to Pu and (dx0
∧dx1

∧· · ·∧dxn)·W denotes contraction
of W against the first slot of dx0

∧ dx1
∧ · · · ∧ dxn. Note that W α

= δαβHβ , where Hα is defined in
(3J.3) and δαβ = diag(1, 1, . . . , 1) is the standard inverse Euclidean metric on R×6. Since d$ and
dP are proportional and since (dt ∧ dϑ2

∧ · · · ∧ dϑn) · (L ⊗ (2)2⊗ · · · ⊗ (n)2) = 1, it suffices to show
that {
√

2+ γ f(γ )} = (dx0
∧ dx1

∧ · · · ∧ dxn) · (W ⊗ L ⊗ (2)2⊗ · · · ⊗ (n)2). To proceed, we note that
(dx0
∧dx1

∧· · ·∧dxn)·(W⊗L⊗(2)2⊗· · ·⊗(n)2) is equal to the determinant of the (1+n)×(1+n)matrix

N :=


W 0 L0 0 · · · 0
W 1 L1 (2)21

· · ·
(n)21

...
...

...
...

W n Ln (2)2n
· · ·

(n)2n

 .
From (2A.3a)–(2A.3b), Definition 3.6, (3C.2), Definition 3.15, definition (3E.1a), definition (3J.3), and
the relation W α

= δαβHβ , it follows that

N =


√

2
2 1

02×(n−1)

−

√
2

2 1

∗(n−1)×2 I(n−1)×(n−1)

+ N (Small),

where the entries of the submatrix ∗(n−1)×2 are of the schematic form f(γ ), I(n−1)×(n−1) is the identity
matrix, and N (Small) is a matrix whose entries are all of the schematic form γ f(γ ), where f is smooth.
From these facts and the basic properties of the determinant, we conclude that det N =

√
2+ γ f(γ ),

which is the desired identity. �

30Note that the minus sign in (3I.2) does not appear in (3J.5) since we are viewing (3J.5) as a relationship between integration
measures.
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3K. Notation for repeated differentiation. In this subsection, we define some notation that we use when
performing repeated differentiation.

Definition 3.31. Recall that the commutation vector field sets Z and P are defined in Definition 3.13.
We label the n+ 1 vector fields in Z as follows: Z(1) = L , Z(2) = (2)2, Z(3) = (3)2, . . . , Z(n) = (n)2,
Z(n+1) = X̆ . Note that P = {Z(1), Z(2), . . . , Z(n)}. We define the following vector field operators:

• If EI = (ι1, ι2, . . . , ιN ) is a multi-index of order | EI | := N with ι1, ι2, . . . , ιN ∈ {1, 2, . . . , n+ 1}, then
Z
EI
:= Z(ι1)Z(ι2) · · · Z(ιN ) denotes the corresponding N -th order differential operator. We write Z N

rather than Z
EI when we are not concerned with the structure of EI, and we sometimes omit the

superscript when N = 1.

• If EI = (ι1, ι2, . . . , ιN ), then EI1+ EI2= EI means that EI1=(ιk1, ιk2, . . . , ιkm ) and EI2=(ιkm+1, ιkm+2, . . . , ιkN ),
where 1≤ m ≤ N and k1, k2, . . . , kN is a permutation of 1, 2, . . . , N.

• Sums such as EI1+ EI2+ · · ·+ EIK = EI have an analogous meaning.

• Pu-tangent operators such as P
EI are defined analogously, except in this case we have ι1, ι2, . . . , ιN ∈

{1, 2, . . . , n}. We write P N rather than P
EI when we are not concerned with the structure of EI, and

we sometimes omit the superscript when N = 1.

3L. Notation involving multi-indices. In defining our main L2-controlling quantity (see Definition 8.1),
we will refer to the following set of multi-indices.

Definition 3.32 (a set of Z -multi-indices). We define I[1,N ];1∗ to be the set of Z multi-indices EI (in the
sense of Definition 3.31) such that (i) 1 ≤ | EI | ≤ N, (ii) Z

EI contains at least one factor belonging to
P = {L , (2)2, (3)2, . . . , (n)2}, and (iii) Z

EI contains no more than one factor of X̆ .

3M. Norms. In this subsection, we define the norms that we use in studying the solution.

Definition 3.33 (pointwise norms). We define the following pointwise norms for arrays v = (v J )1≤J≤M

and V = (V J
α )0≤α≤n,1≤J≤M :

|v| :=

M∑
J=1

|v J
|, |Vα| :=

M∑
J=1

|V J
α |, |V | :=

M∑
J=1

n∑
α=0

|V J
α |. (3M.1)

We will use the following L2 and L∞ norms in our analysis.

Definition 3.34 (L2 and L∞ norms). In terms of the geometric forms of Definition 3.26, we define the
following norms for scalar or array-valued functions w:

‖w‖2L2(Tt,u)
:=

∫
Tt,u

|w|2 dϑ, ‖w‖2L2(6u
t )
:=

∫
6u

t

|w|2 d$, ‖w‖2L2(P t
u)
:=

∫
P t

u

|w|2 d$, (3M.2a)

‖w‖L∞(Tt,u) := ess sup
ϑ∈Tn−1

|w|(t, u, ϑ),

‖w‖L∞(6u
t )
:= ess sup

(u′,ϑ)∈[0,u]×Tn−1
|w|(t, u′, ϑ),

‖w‖L∞(P t
u)
:= ess sup

(t ′,ϑ)∈[0,t]×Tn−1
|w|(t ′, u, ϑ).

(3M.2b)
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3N. Strings of commutation vector fields and vector field seminorms. We will use the following short-
hand notation to capture the relevant structure of our vector field differential operators and to schematically
depict estimates.

Definition 3.35. • Z N ;1 f denotes an arbitrary string of N commutation vector fields in Z (see (3C.9a))
applied to f , where the string contains at most one factor of the P t

u-transversal vector field X̆ . We
sometimes write Z f instead of Z 1;1 f .

• P N f denotes an arbitrary string of N commutation vector fields in P (see (3C.9b)) applied to f .
Consistent with Remark 3.18, we sometimes write P f instead of P1 f .

• For N ≥ 1, Z N ;1
∗

f denotes an arbitrary string of N commutation vector fields in Z applied to f , where
the string contains at least one Pu-tangent factor and at most one factor of X̆ . We also set Z 0;0

∗
f := f .

• For N ≥ 1, P N
∗

f denotes an arbitrary string of N commutation vector fields in P applied to f , where
the string contains at least one factor belonging to the geometric torus coordinate partial derivative vector
field set {(2)2, (3)2, . . . , (n)2} or at least two factors of L .

Remark 3.36 (another way to think about operators P N
∗

). For exact simple plane wave solutions, if
N ≥ 1 and f is any of the quantities that we must estimate, then we have P N

∗
f ≡ 0.

We also define seminorms constructed out of sums of the strings of vector fields above:

• |Z N ;1 f | simply denotes the magnitude of one of the Z N ;1 f as defined above (there is no summation).

• |Z ≤N ;1 f | is the sum over all terms of the form |Z N ′;1 f | with N ′ ≤ N and Z N ′;1 f as defined above.
We sometimes write |Z ≤1 f | instead of |Z ≤1;1 f |.

• |Z [1,N ];1 f | is the sum over all terms of the form |Z N ′;1 f | with 1 ≤ N ′ ≤ N and Z N ′;1 f as defined
above.

• Sums such as |P≤N f |, |P [1,N ]∗ f |, etc. are defined analogously.

• Seminorms such as ‖Z [1,N ];1∗ f ‖L∞(6u
t )

and ‖P [1,N ]∗ f ‖L∞(6u
t )

(see (3M.2)) are defined analogously.

Remark 3.37. In our forthcoming estimates, terms that do not make sense are assumed to be absent.
For example in the case N = 1, all terms on the right-hand side of (6B.3) are absent except for the term
|P≤N−1V |.

Remark 3.38 (remarks on the symbol “∗”). Some operators in Definition 3.35 are decorated with a ∗.
These operators involve Pu-tangent differentiations that often lead to a gain in smallness in the estimates.
More precisely, the operators P N

∗
always lead to a gain in smallness, while the operators Z N ;1

∗
lead to a

gain in smallness except perhaps when they are applied to µ (because Lµ is not generally small).

4. Energy identities

In this section, we define the building block energies and characteristic fluxes that we use to control the
solution in L2 and derive their basic coerciveness properties. We then derive energy identities involving
the building blocks. Later in the article, in Definition 8.1, we will use the building blocks to define the
main L2-controlling quantity.
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4A. Energies and characteristic flux definitions.

Definition 4.1 (energies and characteristics fluxes). In terms of the geometric forms of Definition 3.26,
we define the energy E(Shock)

[ · ], which is a functional of scalar-valued functions f , as

E(Shock)
[ f ](t, u) :=

∫
6u

t

f 2 d$. (4A.1)

In terms of the Cartesian forms of Definition 3.28 and the Euclidean-unit-length one-form Hα defined
in (3J.3), we define the energy E(Regular)

[ · ] and characteristic flux F(Regular)
[ · ], which are functionals of

RM -valued functions w, as

E(Regular)
[w](t, u) :=

∫
6u

t

δJ K A0;J
I (9, v)w IwK d6, (4A.2a)

F(Regular)
[w](t, u) :=

∫
P t

u

δJ K Aα;JI (9, v)Hαw IwK dP, (4A.2b)

where δJ K is the standard Kronecker delta.

Lemma 4.2 (coerciveness of the energies and characteristic fluxes for the symmetric hyperbolic variables).
If |γ | is sufficiently small, then the energy and the characteristic flux from Definition 4.1 enjoy the following
coerciveness:

E(Regular)
[w](t, u)≈

∫
6u

t

µδJ Kw
JwK d$, (4A.3a)

F(Regular)
[w](t, u)≈

∫
P t

u

δJ Kw
JwK d$, (4A.3b)

where δJ K is the standard Kronecker delta.

Proof. From the arguments given in the proof of Lemma 3.30, it follows that the one-form Hα defined in
(3J.3) can be decomposed as Hα = δ0

α − δ
1
α + H (Small)

α , where H (Small)
α = γ f(γ ). Hence, from (2C.1), it

follows that when |γ | is sufficiently small, we have δJ K A0;J
I w IwK

≈ δJ Kw
JwK and δJ K Aα;JI Hαw IwK

≈

δJ Kw
JwK. Appealing to definitions (4A.2a)–(4A.2b) and using the integration measure relationships

stated in (3J.5), we conclude (4A.3a)–(4A.3b). �

4B. Energy-characteristic flux identities. The integral identities in the following proposition form the
starting point for our L2 analysis of solutions. A crucial point is that the left-hand side of (4B.4) features the
characteristic flux F(Regular)

[ · ](t, u), which by (4A.3b) can be used to control v and V on the characteristic
hypersurfaces P t

u without any degenerate µ weight.

Proposition 4.3 (energy-characteristic flux identities). Let L = Lα(9, v) ∂α be the vector field from
(2A.1a) and let f be a solution to the inhomogeneous transport equation

L f = F. (4B.1)

Then the following integral identity holds for the energy defined in (4A.1):

E(Shock)
[ f ](t, u)= E(Shock)

[ f ](0, u)+ 2
∫
Mt,u

f F d$. (4B.2)
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Moreover, let Aα;IJ (9, v) be the components of the symmetric matrices from (2A.1b) and let w be a
solution to the (linear-in-w) inhomogeneous symmetric hyperbolic system

µAα;IJ ∂αw
J
= FI . (4B.3)

Then there exist smooth functions, schematically denoted by f, such that the following integral identity
holds for the energy and characteristic flux defined in (4A.2a)–(4A.2b):

E(Regular)
[w](t, u)+ F(Regular)

[w](t, u)= E(Regular)
[w](0, u)+ F(Regular)

[w](t, 0)

+ 2
∫
Mt,u

{1+ γ f(γ )} δJ KF
JwK d$

+

∫
Mt,u

fJ K (γ , X̆9, P9)w Jwk d$, (4B.4)

where δJ K is the standard Kronecker delta.

Proof. The identity (4B.2) is a simple consequence of (4B.1) since L = ∂
∂t relative to the geometric

coordinates (t, u, ϑ).
To prove (4B.4), we define the following vector field relative to the Cartesian coordinates: J α

:=

δJ K Aα;JI w IwK. Using (4B.3) and the symmetry assumption Aα;IJ = Aα;JI , we derive (relative to the
Cartesian coordinates) the following divergence identity: µ∂αJ α

= 2δJ KF
JwK
+ δJ K (µ ∂αAα;JI )w IwK.

We now apply the divergence theorem to the vector field J on the region Mt,u , where we use the
Cartesian coordinates, the Euclidean metric δαβ := diag(1, 1, . . . , 1) on R×6, and the Cartesian forms
of Definition 3.28 in all computations. Also using that the future-directed Euclidean conormal to 6t

has Cartesian components δ0
α and that the future-directed Euclidean conormal to P t

u has Cartesian
components Hα (see Definition 3.27), we deduce∫
6u

t

δJ K A0;J
I w IwK d6+

∫
P t

u

δJ K Aα;JI Hαw IwK dP

=

∫
6u

0

δJ K A0;J
I w IwK d6+

∫
P t

0

δJ K Aα;JI Hαw IwK dP

+

∫
Mt,u

{2δJ KF
JwK
+ δJ K (µ ∂αAα;JI )w IwK

}
dM
µ
. (4B.5)

Next, using Lemma 3.19 and definition (3E.1b), we can express the integrand δJ K (µ ∂αAα;JI )w IwK

on the right-hand side of (4B.5) in the following schematic form: fJ K (γ , X̆9, P9)w Jwk. Also using
Lemma 3.30 to express the integration measure dM/µ on the right-hand side of (4B.5) as {1+γ f(γ )} d$
and appealing to definitions (4A.2a)–(4A.2b), we arrive at the desired identity (4B.4). �

5. The number of derivatives, data-size assumptions, bootstrap assumptions, smallness
assumptions, and running assumptions

In this section, we state the number of derivatives that we use to close the forthcoming estimates, state
our assumptions on the size of the data, formulate bootstrap assumptions that we use to derive estimates,
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and describe our smallness assumptions. In Section 5E, we explain why there exist data that satisfy the
assumptions.

5A. The number of derivatives. Throughout the rest of the paper, NTop and NMid denote two fixed
positive integers satisfying the following relations, where n is the number of spatial dimensions:

NTop ≥ n+ 5, NMid :=
⌈1

2 NTop
⌉
+ 1. (5A.1)

The solutions that we will study are such that, roughly, the order ≤ NTop derivatives of 9 (with respect
to suitable strings of geometric vector fields) are uniformly bounded in the norm ‖ · ‖L2(6u

t )
and the

order ≤ NMid derivatives of 9 are uniformly bounded in the norm ‖ · ‖L∞(6u
t )

. The remaining quantities
that we must estimate satisfy similar bounds but, in some cases, they are one degree less differentiable.
The definitions in (5A.1) are convenient in the sense that they will lead to the following: when we derive
L2 estimates for error term products in the commuted equations, all factors in the product except at most
one will be uniformly bounded in the norm ‖ · ‖L∞(6u

t )
.

5B. Data-size assumptions. In this subsection, we state our assumptions on the size of the data.

5B1. The data-size parameter that controls the time of shock formation. We start with the definition of
a data-size parameter Å∗, which is tied to the time of first shock formation. More precisely, our main
theorem shows that maxα=0,...,n |∂α9| blows up at a time approximately equal to Å−1

∗
.

Definition 5.1 (the crucial quantity that controls the time of shock formation). We define Å∗ as

Å∗ := sup
61

0

[G X̆9]−, (5B.1)

where G 6= 0 (see Remark 3.9) is the blowup coefficient from Definition 3.8 and [ f ]− := |min{ f, 0}|.

Remark 5.2 (functional dependence of G along60). Note that by (3G.2b) and the fact that L1
= L1(9, v),

we can view G, along 60, as a function of 9|60 and v|60 .

Remark 5.3 (positivity of Å∗). Our main theorem relies on the assumption that Å∗ > 0. Thus, we will
make this assumption for the rest of the article.

5B2. Data-size assumptions. For technical convenience, we assume that the solution is C∞ with respect
to the Cartesian coordinates along the “data hypersurfaces” 6U0

0 and P2 Å−1
∗

u . However, to close our
estimates, we only need to make assumptions on various Sobolev and Lebesgue norms of the data, where
the norms are defined in terms of the geometric coordinates and the commutation vector fields Z defined
in (3C.9a). In this subsubsection, we state the norm assumptions, which involve three parameters, denoted
by α̊, ε̊, and Å, that complement the parameter Å∗. We note that Å does not need to be small, and that
the same is true for the parameter Å∗ from Definition 5.1. We will describe our smallness assumptions on
α̊ and ε̊ in Section 5D.

We assume that the data satisfy the following size assumptions (see Section 3N regarding the vector
field differential operator notation).
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L2 assumptions along 61
0 .

‖Z
[1,NTop];1
∗ 9‖L2(61

0 )
, ‖Z ≤NTop−1;1v‖L2(61

0 )
, ‖Z ≤NTop−1;1V ‖L2(61

0 )
≤ ε̊. (5B.2)

L∞ assumptions along 61
0 .

‖9‖L∞(61
0 )
≤ α̊, (5B.3a)

‖Z [1,NMid];1
∗

9‖L∞(61
0 )
, ‖Z ≤NMid−1;1v‖L∞(61

0 )
, ‖Z ≤NMid−1;1V ‖L∞(61

0 )
≤ ε̊, (5B.3b)

‖X̆9‖L∞(61
0 )
≤ Å. (5B.3c)

Assumptions along P2 Å−1
∗

0 .

‖Z ≤NTop−1;1v‖
L2(P2 Å−1

∗

0 )
, ‖Z ≤NTop−1;1V ‖

L2(P2 Å−1
∗

0 )
≤ ε̊. (5B.4)

Assumptions along T0,u . We assume that for u ∈ [0, 1], we have

‖P≤NTop−2v‖L2(T0,u), ‖P
≤NTop−2V ‖L2(T0,u) ≤ ε̊. (5B.5)

Remark 5.4. Roughly, we will study solutions that are perturbations of nontrivial solutions with ε̊ = 0.
Note that ε̊ = 0 corresponds to a simple plane symmetric wave, as we described in Section 1D. Note also
that α̊, Å∗, and Å are generally nonzero for simple plane symmetric waves.

5B3. Estimates for the initial data of the remaining geometric quantities. To close our proof, we will
have to estimate the scalar functions µ, ξ (Small)

j , (i)2 j
(Small), and 4 j featured in the array (3E.1b) and

definition (3C.7). In this subsubsection, as a preliminary step, we estimate the size of their data along 61
0 .

Lemma 5.5 (estimates for the data of µ, ξ (Small)
j , (i)2 j

(Small), and 4 j ). Under the data-size assumptions
of Section 5B2, there exists a constant C > 0 depending on the parameter Å from (5B.3c) and a constant
C� > 0 that does not depend on Å such that the following estimates hold for the scalar functions µ,
ξ
(Small)
j , (i)2 j

(Small) and4 j defined in Definitions 3.5 and 3.15 and (3C.7), whenever α̊ and ε̊ are sufficiently
small (see Section 3N regarding the vector field notation):

‖P
[1,NTop−1]
∗ µ‖L2(61

0 )
≤ C ε̊, (5B.6a)

‖µ− 1‖L∞(61
0 )
≤ C�(α̊+ ε̊), (5B.6b)

‖Lµ‖L∞(61
0 )
≤ C, (5B.6c)

‖P [1,NMid−1]
∗

µ‖L∞(61
0 )
≤ C ε̊, (5B.6d)

‖Z
[1,NTop−1];1
∗ ξ

(Small)
j ‖L2(61

0 )
≤ C ε̊, (5B.7a)

‖ξ
(Small)
j ‖L∞(61

0 )
≤ C�(α̊+ ε̊)δ1

j , (5B.7b)

‖Z [1,NMid−1];1
∗

ξ
(Small)
j ‖L∞(61

0 )
≤ C ε̊, (5B.7c)

‖X̆ξ (Small)
j ‖L∞(61

0 )
≤ C, (5B.7d)
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‖Z ≤NTop−1;1(i)2
j
(Small)‖L2(61

0 )
≤ C ε̊, (5B.8a)

‖Z ≤NMid−1;1(i)2
j
(Small)‖L∞(61

0 )
≤ C ε̊, (5B.8b)

‖P≤NTop−14 j
‖L2(61

0 )
≤ C, (5B.9a)

‖P≤NMid−14 j
‖L∞(61

0 )
≤ C. (5B.9b)

Remark 5.6 (the “nonsmall” quantities). Note that the only estimates not featuring the smallness param-
eters α̊ or ε̊ are (5B.6c), (5B.7d), (5B.9a), and (5B.9b).

Proof sketch. We only sketch the proof since it is standard but has a tedious component that is similar to
other analysis that we carry out later: commutator estimates of the type proved in Lemma 6.2, based on
the vector field commutator identities (3H.2a)–(3H.2c).

To proceed, we use Lemmas 3.20 and 3.21, Corollary 3.23, and the fact that Lα and Xα are smooth
functions of (9, v) (the latter by (3C.4a)) to deduce the following schematic relationships, which hold
along 60 (where f is smooth):

(µ− 1)|60 = (9, v) · f(9, v), (5B.10)

ξ
(Small)
j |60 = (9, v) · f(9, v)δ

1
j , (5B.11)

(i)2
j
(Small)|60 = 0, (5B.12)

4 j
|60 = f(9, v), (5B.13)

as well as the following evolution equations, also written in schematic form (where P ∈P):

Lµ= f(γ )X̆9 +µf(γ )L9 +µf(γ )V, (5B.14)

Lξ (Small)
j = f(γ )P9 + f(γ )V, (5B.15)

L(i)2 j
(Small) = f(γ )P9 + f(γ )V, (5B.16)

L4 j
= (41, . . . , 4n) · f(γ, P9)+ f(γ , L9, X̆9). (5B.17)

By repeatedly differentiating (5B.14)–(5B.17) with the elements of Z and using the commutator identities
(3H.2a)–(3H.2c), we can algebraically express all quantities that we need to estimate in terms of the deriva-
tives of µ, ξ (Small)

j , (i)2 j
(Small), and 4 j with respect to the (6t -tangent) vector fields in {X̆ , (2)2, . . . , (n)2}

and the Z derivatives of 9, v, and V. Then using (5B.10)–(5B.13), we can express, along 60, the
derivatives of µ, ξ (Small)

j , (i)2 j
(Small) and 4 j with respect to the elements of {X̆ , (2)2, . . . , (n)2} in terms

of the derivatives of 9 and v with respect to the elements of {X̆ , (2)2, . . . , (n)2}. The estimates (5B.6a)–
(5B.9b) then follow from these algebraic expressions, the data-size assumptions (5B.2)–(5B.3c), and the
standard Sobolev calculus. We stress that the identities (3H.2a)–(3H.2c) show that commutator terms
contain a factor involving a differentiation with respect to one of the (i)2, which, in view of our data-size
assumptions from Section 5B2, leads to a gain in O(ε̊) smallness for all commutator terms. �
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5C. Bootstrap assumptions. In this subsection, we state the bootstrap assumptions that we use to control
the solution.

5C1. T(Boot), the positivity of µ, and the diffeomorphism property of ϒ . We now state some basic
bootstrap assumptions. We start by fixing a real number T(Boot) with

0< T(Boot) ≤ 2 Å−1
∗
, (5C.1)

where Å∗ > 0 (see Remark 5.3) is the data-dependent parameter from Definition 5.1.
We assume that on the spacetime domain MT(Boot),U0 (see (3A.3f)), we have

µ > 0. (B Aµ > 0)

Inequality (B Aµ > 0) essentially means that no shocks are present in MT(Boot),U0 .
We also assume that

the change of variables map ϒ from Definition 3.24 is a diffeomorphism from
[0, T(Boot))×[0,U0]×Tn−1 onto its image.

(5C.2)

5C2. Fundamental L∞ bootstrap assumptions. In this section, we state our fundamental L∞ bootstrap
assumptions. We will derive strict improvements of the fundamental bootstrap assumptions in Corollary 8.8,
on the basis of a priori energy estimates and Sobolev embedding.

Fundamental bootstrap assumptions for v and V . We assume that the following inequalities hold for
(t, u) ∈ [0, T(Boot))×[0,U0] (α = 0, . . . , n, J = 1, . . . ,M):

‖P≤NMid−1v J
‖L∞(6u

t )
, ‖P≤NMid−1V J

α ‖L∞(6u
t )
≤ ε, (5C.3)

where ε > 0 is a small bootstrap parameter (see Section 5D for discussion on the required smallness).

5C3. Auxiliary bootstrap assumptions. In addition to the fundamental bootstrap assumptions, we find it
convenient to make auxiliary bootstrap assumptions, which we state in this subsubsection. We will derive
strict improvements of the auxiliary bootstrap assumptions in Proposition 6.5.

Auxiliary bootstrap assumptions for 9. We assume that the following inequalities hold for (t, u) ∈
[0, T(Boot))×[0,U0]:

‖9‖L∞(6u
t )
≤ α̊+ ε1/2, (5C.4a)

‖Z [1,NMid;]1
∗

9‖L∞(6u
t )
≤ ε1/2, (5C.4b)

‖X̆9‖L∞(6u
t )
≤ Å+ ε1/2. (5C.4c)

Auxiliary bootstrap assumptions for v and V . We assume that the following inequalities hold for (t, u) ∈
[0, T(Boot))×[0,U0]:

‖Z ≤NMid−1;1v‖L∞(6u
t )
≤ ε1/2, (5C.5a)

‖Z ≤NMid−1;1V ‖L∞(6u
t )
≤ ε1/2. (5C.5b)
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Auxiliary bootstrap assumptions for µ, ξ (Small)
j , and ( j)2k

(Small). We assume that the following inequali-
ties hold for (t, u) ∈ [0, T(Boot))×[0,U0]:

‖µ‖L∞(6u
t )
≤ 1+ 2 Å−1

∗
‖G X̆9‖L∞(6u

0 )
+ α̊1/2

+ ε1/2, (5C.6a)

‖Lµ‖L∞(6u
t )
≤ ‖G X̆9‖L∞(6u

0 )
+ ε1/2, (5C.6b)

‖P [1,NMid−1]
∗

µ‖L∞(6u
t )
≤ ε1/2, (5C.6c)

where G 6= 0 (see Remark 3.9) is the blowup coefficient from Definition 3.8, ‖G X̆9‖L∞(6u
0 )
≤ C� Å, and

C� > 0 is a constant with the parameter-dependence properties described in Section 1H.
Moreover, we assume that

‖ξ
(Small)
j ‖L∞(6u

t )
≤ α̊1/2

+ ε̊1/2, (5C.7a)

‖Z [1,NMid−1];1
∗

ξ
(Small)
j ‖L∞(6u

t )
≤ ε1/2, (5C.7b)

‖X̆ξ (Small)
j ‖L∞(6u

t )
≤ ‖X̆ξ (Small)

j ‖L∞(6u
0 )
+ ε1/2, (5C.7c)

‖Z ≤NMid−1;1( j)2k
(Small)‖L∞(6u

t )
≤ ε1/2. (5C.7d)

5D. Smallness assumptions. For the remainder of the article, when we say that “statement X holds
whenever A is small relative to B”, we mean that there is a particular continuous increasing function
f : (0,∞)→ (0,∞) such that statement X holds whenever A < f (B). The functions f are allowed to
vary throughout the article. To avoid lengthening the paper, we often avoid explicitly specifying the form
of f .

To ensure that all of the statements needed for our main results hold, we will make the following
smallness assumptions, where we will continually adjust the required smallness in order to close our
estimates:

• The bootstrap parameter ε and the data smallness parameter ε̊ from Section 5B2. are small relative
to 1.

• ε and ε̊ are small relative to Å−1, where Å is the data-size parameter from Section 5B2.

• ε and ε̊ are small relative to the data-size parameter Å∗ from Definition 5.1.

• The data-size parameter α̊ from Section 5B2 is small relative to 1.

• ε̊ ≤ ε < α̊.

The first two assumptions will allow us to treat error terms of size ε and ε Å as small quantities. The third
assumption is relevant because the expected blowup time is approximately Å−1

∗
, and the assumption will

allow us to show that various error products featuring a small factor ε in fact remain small for t < 2 Å−1
∗

,
which is plenty of time for us to show that a shock forms. The smallness assumption on α̊ ensures that
the solution remains within the regime of hyperbolicity of the equations and that G 6= 0, where G is the
blowup coefficient from Definition 3.8.
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5E. Existence of data satisfying the size assumptions. We now outline a proof that there exists an open
set of data satisfying the size assumptions of Section 5B and the smallness assumptions of Section 5D.
Since the assumptions are stable under Sobolev perturbations, it is enough to exhibit data corresponding to
plane symmetric solutions, that is, solutions that depend only on t and x1. This means that along 60, it is
enough to exhibit appropriate data that depend only on x1. To exhibit data for 9, we simply let f (x1) be
any smooth nontrivial function that is compactly supported in 61

0 , and we set 9(0, x1, . . . , xn) := κ f (x1),
where κ is a real parameter. We then take vanishing data for v, so that, as a consequence of the evolution
equation (2A.1b), we have v ≡ 0 and V ≡ 0. With the help of these facts, it is straightforward to check
that by choosing κ to be sufficiently small in magnitude, we can satisfy all of the desired assumptions.
More precisely, by construction, we have ε̊ = 0, and by choosing |κ| to be small, we can ensure that the
quantity α̊ > 0 on the right-hand side of (5B.3a) is as small as we want.

5F. Basic assumptions, facts, and estimates that we use silently. In this subsection, we state some basic
assumptions and conventions that we silently use throughout the rest of the paper when deriving estimates.

(1) All of the estimates that we derive hold on the bootstrap region MT(Boot),U0 . Moreover, in deriving
estimates, we rely on the data-size assumptions and bootstrap assumptions from Sections 5B–5C,
and the smallness assumptions of Section 5D.

(2) All quantities that we estimate can be controlled in terms of the quantities featured in the array γ
from definition (3E.1b), the Cartesian components 4 j of the Tt,u-tangent vector field 4 from (3C.7),
and the Z -derivatives of these quantities.

(3) We typically use the Leibniz rule for vector field differentiation when deriving pointwise estimates
for the Z -derivatives derivatives of products of the schematic form

∏m
i=1 pi . Our derivative counts

are such that after any product is differentiated, all factors except at most one are uniformly bounded
in L∞ on MT(Boot),U0 .

(4) The constants C > 0 in all of our estimates are allowed to depend on the data-size parameters Å
and Å−1

∗
, as we described in Section 1H.

(5) The constants C� > 0 do not depend on Å or Å∗, as we described in Section 1H.

(6) We use the convention for nonsensical terms mentioned in Remark 3.37.

5G. Omission of the independent variables in some expressions. We use the following notational con-
ventions in the rest of the article:

• Many of our pointwise estimates are stated in the form

| f1|. F(t)| f2|

for some function F . Unless we otherwise indicate, it is understood that both f1 and f2 are evaluated at
the point with geometric coordinates (t, u, ϑ).

• Unless we otherwise indicate, in integrals
∫
Tt,u

f dϑ , we view the integrand f as a function of (t, u, ϑ),
and ϑ is the integration variable.
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• Unless we otherwise indicate, in integrals
∫
6u

t
f d$ , we view the integrand f as a function of (t, u′, ϑ),

and (u′, ϑ) are the integration variables.

• Unless we otherwise indicate, in integrals
∫
P t

u
f d$ , we view the integrand f as a function of (t ′, u, ϑ),

and (t ′, ϑ) are the integration variables.

• Unless we otherwise indicate, in integrals
∫
Mt,u

f d$ , we view the integrand f as a function of
(t ′, u′, ϑ), and (t ′, u′, ϑ) are the integration variables.

6. Pointwise estimates and improvements of the auxiliary bootstrap assumptions

In this section, we use the data-size assumptions and bootstrap assumptions of Section 5 to derive
pointwise and L∞ estimates for various quantities. The main result is Proposition 6.5. In particular, the
results of this section yield strict improvements of the auxiliary bootstrap assumptions of Section 5C3.

Remark 6.1. Throughout this section, we silently use the conventions described in Section 5F. Moreover,
NTop and NMid denote the integers from Section 5A.

6A. Commutator estimates. We start by providing some commutator estimates that we will use through-
out the analysis.

Lemma 6.2. Let 1 ≤ N ≤ NTop be an integer, let EI be a multi-index for the set P of Pu-tangent
commutation vector fields such that | EI | = N, and let EJ be any permutation of EI (in particular, | EI | = | EJ | =
N ≤ NTop). Then the following identity for scalar functions f holds:

P
EI f −P

EJ f = 0. (6A.1)

Let 1≤ N ≤ NTop be an integer. Then the following commutator estimate for scalar functions f holds
(see Definition 3.35 regarding the vector field notation):

|[L ,Z N ;1
] f |. |P [1,N ]

∗
f | + |P [1,bN/2c]

∗
f ||Z [1,N ];1

∗
9|︸ ︷︷ ︸

absent if N = 1

+ |P [1,bN/2c]
∗

f ||P [1,N−1]
∗

γ |︸ ︷︷ ︸
absent if N = 1

. (6A.2)

Let 2 ≤ N ≤ NTop be an integer, let EI ∈ I[1,N ];1∗ (see Definition 3.32), and let EJ be any permutation
of EI . Then the following commutator estimate for scalar functions f holds:

|Z
EI f −Z

EJ f |. |P [1,N−1]
∗

f | + |P [1,bN/2c]
∗

f ||Z [1,N−1];1
∗

γ | + |P [1,bN/2c]
∗

f ||P [1,N−1]
∗

γ |. (6A.3)

Proof. Equation (6A.1) is a trivial consequence of the commutation identity (3H.2a).
The estimate (6A.2) is a straightforward consequence of the commutation identities (3H.2a)–(3H.2b)

and the bootstrap assumptions.
Similarly, the estimate (6A.3) is a straightforward consequence of the commutation identities (3H.2a)–

(3H.2c) and the bootstrap assumptions. �
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6B. Transversal derivatives in terms of tangential derivatives. The next lemma, which is algebraic in
nature, plays a crucial role in controlling v and V. Roughly, the lemma shows that the X̆ derivative of these
quantities can be expressed in terms of their Pu-tangential derivatives plus error terms. In particular, this
means that we do not have to commute the evolution equations for v and V with X̆ in order to control X̆v
and X̆ Vα; we can instead use the equations to algebraically solve for the X̆ derivative. This is important
because commuting these equations (which must be weighted with µ to avoid singular error terms) with
X̆ would generate the error term X̆µ, which is uncontrollable based on the degree of X̆ -differentiability
that we have imposed on 9.

Lemma 6.3 (algebraic expressions for transversal derivatives of v and V in terms of their tangential
derivatives). There exist smooth functions of γ , schematically denoted by f, such that the following
algebraic identities hold whenever |γ | is sufficiently small (where P ∈P and Z ∈Z ):

X̆v = µf(γ )V, (6B.1)

X̆ Vα = f(γ )PV + f(γ , Z9)V . (6B.2)

Proof. To prove (6B.1), we first multiply (2A.1b) by µ and use Lemma 3.19 to obtain the following identity,
whose right-hand side is written in schematic form: µ(A0

+Aaξa)Xv=µf(γ )Pv=µf(γ )PαVα=µf(γ )V.
Next, using Definition 3.15, we see that µ(A0

+ Aaξa)Xv = (A0
− A1

+ A(Small))X̆v, where A0
− A1

is a matrix whose entries are of the schematic form f(γ ) and A(Small) is a matrix whose entries are of
the schematic form γ f(γ ). From these facts and the assumption (2C.1), it follows that whenever |γ | is
sufficiently small, the matrix A0

− A1
+ A(Small) is invertible. From this fact, the desired identity (6B.1)

easily follows.
The proof of (6B.2) is based on (2A.5) and is similar but requires one new ingredient: we use

Lemma 3.19 to (schematically) express the right-hand side of (2A.5) as f(γ , Z9)V. �

With the help of Lemmas 6.2 and 6.3, we now derive pointwise estimates showing that the derivatives
of v and V involving up to one X̆ differentiation can be controlled in terms of quantities that do not
depend on the X̆ derivatives of v and V.

Lemma 6.4 (pointwise estimates for transversal derivatives of v and V in terms of their tangential
derivatives). The following estimates hold for 1≤ N ≤ NTop:

|Z N ;1v|. |Z [1,N−1];1
∗

9| + |P [1,N−1]v| + |P≤N−1V |

+

n∑
j=1

|Z [1,N−1];1
∗

ξ
(Small)
j | +

n∑
i=2

n∑
j=1

|Z [1,N−1];1
∗

(i)2
j
(Small)| + |P

[1,N−1]
∗

µ|. (6B.3)

Moreover, the following estimates hold for 1≤ N ≤ NTop− 1:

|Z N ;1V |. |Z [1,N ];1
∗

9| + |P [1,N−1]v| + |P≤N V |

+

n∑
j=1

|Z [1,N−1];1
∗

ξ
(Small)
j | +

n∑
i=2

n∑
j=1

|Z [1,N−1];1
∗

(i)2
j
(Small)| + |P

[1,N−1]
∗

µ|. (6B.4)
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Proof. We will prove (6B.3)–(6B.4) simultaneously by using induction in N. The base case N = 1 can
be handled using the same arguments given below and we omit these details. We therefore assume the
induction hypothesis that (6B.3)–(6B.4) have been proved with N − 1 in the role of N ; to prove (6B.3)–
(6B.4) in the case N, we first consider an order-N operator of the form P N−1 X̆ . Using (6B.2), we deduce
that P N−1 X̆ Vα =P N−1

{f(γ )PV + f(γ , Z9)V }. From this expression and the bootstrap assumptions,
we deduce that |P N−1 X̆ Vα| . the right-hand side of (6B.4) as desired. Then using the commutator
estimate (6A.3) and the bootstrap assumptions, we can arbitrarily permute the vector field factors in
P N−1 X̆ Vα up to error terms that are pointwise bounded in magnitude by . the right-hand side of (6B.4)
plus error terms of the form |Z [1,N−1];1

∗ v| + |Z
[1,N−1];1
∗ V |, which (by the induction hypothesis) have

already been shown to be bounded by . the right-hand side of (6B.4). We have therefore obtained
the desired bounds for V in the case that Z N ;1 contains a factor of X̆ . In the case that the operator
Z N ;1 contains a factor of X̆ , the estimate (6B.3) for v follows similarly with the help of (6B.1). To
prove (6B.3) in the case that the operator Z N ;1 does not contain a factor of X̆ , that is, that Z N ;1

=

P N, we first write P Nv =P N−1(Pα ∂αv) =P N−1(PαVα) =P N−1(f(γ )Vα). From this expression
and the bootstrap assumptions, we bound the magnitude of the right-hand side of this equation by
. the right-hand side of (6B.3) as desired. In the case that Z N ;1 does not contain a factor of X̆ , that is,
that Z N ;1

=P N, the estimate (6B.4) is trivial. We have therefore closed the induction. We clarify that in
the final step, we allow N = NTop in (6B.3), but not in (6B.4). �

6C. Pointwise estimates and improvements of the auxiliary bootstrap assumptions. We now state and
prove the main result of this section.

Proposition 6.5 (pointwise estimates and improvements of the auxiliary bootstrap assumptions). Let
NTop and NMid be the integers fixed in Section 5A. If N ≤ NTop, then the following estimates hold (see
Section 3N regarding the vector field differential operator notation).

Pointwise estimates for the commuted evolution equations of 9, v and V .

|LZ N ;19|. |Z [1,N ];1
∗

9| + |Z [1,N−1];1
∗

γ | + |P [1,N−1]
∗

γ |. (6C.1)

Similarly, if 1≤ N ≤ NTop, then the following pointwise estimates hold:

|µAα ∂αP N−1v|. |Z [1,N ];1
∗

9| + |Z [1,N−1];1
∗

γ | + |P [1,N−1]
∗

γ |, (6C.2a)

|µAα ∂αP N−1Vα|. |Z [1,N ];1∗
9| + |Z [1,N−1];1

∗
γ | + |P [1,N−1]

∗
γ | + |V |. (6C.2b)

Pointwise estimates for the commuted evolution equations of ξ (Small)
j , (i)2 j

(Small), and µ. If 1≤ N ≤ NTop,
then the following estimates hold:

|LZ N−1;1ξ
(Small)
j |. |Z [1,N ];1

∗
9| + |Z [1,N−1];1

∗
γ | + |P [1,N−1]

∗
γ | + |V |, (6C.3a)

|LZ N−1;1(i)2
j
(Small)|. |Z

[1,N ];1
∗

9| + |Z [1,N−1];1
∗

γ | + |P [1,N−1]
∗

γ | + |V |. (6C.3b)

Furthermore, if 2≤ N ≤ NTop, then the following estimates hold:

|LP N−1µ|. |Z [1,N ];1
∗

9| + |P [1,N−1]γ | + |P [1,N−1]
∗

γ | + |V |. (6C.4)
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L∞ estimates for 9. In addition, the following estimates hold:

‖9‖L∞(6u
t )
≤ α̊+Cε, (6C.5a)

‖Z [1,NMid];1
∗

9‖L∞(6u
t )
≤ Cε, (6C.5b)

‖X̆9‖L∞(6u
t )
≤ Å+Cε. (6C.5c)

L∞ estimates for v and V . Moreover, the following estimates hold:

‖Z ≤NMid−1;1v‖L∞(6u
t )
≤ Cε, (6C.6a)

‖Z ≤NMid−1;1V ‖L∞(6u
t )
≤ Cε. (6C.6b)

L∞ estimates for ξ (Small)
j , (i)2 j

(Small), and µ. The following estimates hold:

‖ξ
(Small)
j ‖L∞(6u

t )
≤ C�α̊δ1

j +Cε, (6C.7a)

‖Z [1,NMid−1];1
∗

ξ
(Small)
j ‖L∞(6u

t )
≤ Cε, (6C.7b)

‖X̆ξ (Small)
j ‖L∞(6u

t )
≤ ‖X̆ξ (Small)

j ‖L∞(6u
0 )
+Cε, (6C.7c)

‖Z ≤NMid−1;1(i)2
j
(Small)‖L∞(6u

t )
≤ Cε, (6C.7d)

‖P [1,NMid−1]
∗

µ‖L∞(6u
t )
≤ Cε. (6C.7e)

Sharp estimates for µ and Lµ. In addition, the following pointwise estimates hold:

µ(t, u, ϑ)= 1+ t[G X̆9](0, u, ϑ)+O�(α̊)+O(ε)

= 1+ t[G X̆9](t, u, ϑ)+O�(α̊)+O(ε), (6C.8a)

Lµ(t, u, ϑ)= [G X̆9](0, u, ϑ)+O(ε)

= {G|(9,v)=(0,0)+O�(α̊)}X̆9(t, u, ϑ)+O(ε), (6C.8b)

where the blowup coefficient G is defined in Definition 3.8 and, in view of Remark 5.2 and (3G.2b),
G|(9,v)=(0,0) =− ∂L1

∂9

∣∣
(9,v)=(0,0).

Moreover,
‖µ‖L∞(6u

t )
≤ 1+ 2 Å−1

∗
‖G X̆9‖L∞(6u

0 )
+C�α̊+Cε, (6C.9a)

‖Lµ‖L∞(6u
t )
≤ ‖G X̆9‖L∞(6u

0 )
+Cε. (6C.9b)

Estimates for 4 j . Finally, if 1≤N ≤NTop, then the following estimates hold for the Cartesian components
4 j of the Tt,u-tangent vector field 4 from (3C.7):

|LP≤N−14 j
|. |P≤N−14 j

| + |Z ≤N ;1
∗

9| + |P [1,N−1]
∗

γ | + 1, (6C.10a)

‖P≤NMid−14 j
‖L∞(6u

t )
. 1. (6C.10b)

Remark 6.6 (strict improvements of the auxiliary bootstrap assumptions). The L∞ estimates of Proposition
6.5 provide, in particular, strict improvements of the auxiliary bootstrap assumptions of Section 5C3
whenever α̊ and ε are sufficiently small.
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Proof of Proposition 6.5. See Section 5F for some comments on the analysis. We start by noting that the
order in which we prove estimates is important. Throughout the proof, we use the phrase “conditions on
the data” to mean the assumptions from Section 5B2 for the data of 9, v, and V, as well as the estimates
from Lemma 5.5 for the data of µ, ξ (Small)

j , (i)2 j
(Small), and 4 j . We also silently use the last item on

page 491.

Proof of (6C.1): The estimate follows from the evolution equation (2A.1a), the commutator estimate
(6A.2), and the bootstrap assumptions.

Proof of (6C.4): We first schematically write (3G.1a) as Lµ= f(γ )X̆9+ f(γ )L9+ f(γ )V. Hence, using
(6A.1), we deduce LP N−1µ =P N−1

{f(γ )X̆9 + f(γ )L9 + f(γ )V }. The desired bound (6C.4) then
follows from this equation and the bootstrap assumptions (we stress that the assumption N ≥ 2 is needed
for this estimate).

Proof of (6C.3a) and (6C.3b): We first schematically write (3G.1b) as Lξ (Small)
j = f(γ )P9 + f(γ )V.

Hence, LZ N−1;1ξ
(Small)
j = [L ,Z N−1;1

]ξ
(Small)
j +Z N−1;1

{f(γ )P9+f(γ )V }. To bound the magnitude of
the term Z N−1;1

{· · · } by . the right-hand side of (6C.3a), we use the bootstrap assumptions. To bound
the commutator term [L ,Z N−1;1

]ξ
(Small)
j , we also use (6A.2). The estimate (6C.3b) can be proved in the

same way as the estimate (6C.3a), since by (3G.6b), (i)2 j
(Small) obeys a schematically identical evolution

equation: L(i)2 j
(Small) = f(γ )P9 + f(γ )V .

Proof of (6C.5b), (6C.7b), (6C.7d), and (6C.7e): We set

q = q(t, u, ϑ) := |Z [1,NMid];1
∗

9| +

n∑
j=1

|Z [1,NMid−1];1
∗

ξ
(Small)
j |

+

n∑
i=2

n∑
j=1

|Z ≤NMid−1;1(i)2
j
(Small)| + |P

[1,NMid−1]
∗

µ|. (6C.11)

From (6C.1), (6C.3a)–(6C.4), the pointwise estimates of (6B.3), the fundamental bootstrap assumptions
(5C.3), and the fundamental theorem of calculus, we deduce, in view of the fact that L = ∂

∂t , that
|q(t, u, ϑ)| ≤ |q(0, u, ϑ)| + c

∫ t
s=0 |q(s, u, ϑ)| ds+Cε. Moreover, the conditions on the data imply that

|q(0, u, ϑ)| ≤Cε. Hence, from Gronwall’s inequality, we deduce that |q(t, u, ϑ)|. ε exp(ct). ε, which
implies all four of the desired bounds.

Proof of (6C.5a), (6C.5c), (6C.7a), and (6C.7c): To prove (6C.5a), we first use the fundamental theorem
of calculus to obtain |9|(t, u, ϑ)≤ |9|(0, u, ϑ)+

∫ t
s=0 |L9|(s, u, ϑ) ds. The estimate (6C.5b) implies

that the time integral in the previous inequality is . ε. In view of the conditions on the data, we conclude
(6C.5a). The remaining three estimates can be proved similarly with the help of the estimates (6C.5b)
and (6C.7b).

Proof of (6C.6a)–(6C.6b): These estimates follow from the pointwise estimates (6B.3)–(6B.4), the funda-
mental bootstrap assumptions (5C.3), and the estimates (6C.5b), (6C.7b), (6C.7d), and (6C.7e).

Proof of (6C.2a)–(6C.2b): We first use Lemma 3.19 to deduce the schematic relation

µ∂α = f(γ )X̆ +µf(γ )P = f(γ )X̆ + f(γ )P. (6C.12)
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Next, using (6C.12), the definition ∂αv = Vα , and the fact that for Z ∈Z we have Zα = f(γ ), we deduce
that µ× the right-hand side of (2A.5)= f(γ , Z9)V. Therefore, commuting µ× (2A.5) with P N−1, we
obtain

µAα ∂αP N−1Vα = [f(γ )X̆ ,P N−1
]Vα + [f(γ )P,P N−1

]Vα +P N−1
{f(γ , Z9)V }. (6C.13)

Using the bootstrap assumptions, we deduce that |P N−1
{f(γ , Z9)V }|. the right-hand side of (6C.2b)

as desired. To bound the commutator term |[f(γ )P,P N−1
]Vα|, we use the bootstrap assumptions and the

commutator identity (6A.1). To bound the commutator term |[f(γ )X̆ ,P N−1
]Vα|, we use the bootstrap

assumptions, the commutator estimate (6A.3), and the pointwise estimate (6B.4). We have therefore
proved (6C.2b). The estimate (6C.2a) can be proved in a similar fashion starting from (2A.1b) and with
the help of (6B.3); we omit the details.

Proof of (6C.8b): A special case of (6C.7e) is the estimate L Lµ(t, u, ϑ)=O(ε). From this bound and
the fundamental theorem of calculus, we deduce Lµ(t, u, ϑ)= Lµ(0, u, ϑ)+O(ε). Next, we use the
identity (X̆ La)ξa =−(X̆ L1)ξ1+

∑n
a=2(X̆ La)ξ

(Small)
a , definition (3C.3), and the conditions on the data to

decompose (3G.1a) at time 0 as

Lµ(0, u, ϑ)=−[G X̆9](0, u, ϑ)+O(ε). (6C.14)

We next note that fundamental theorem of calculus yields

[G X̆9](t, u, ϑ)= [G X̆9](0, u, ϑ)+
∫ t

s=0
L[G X̆9](s, u, ϑ) ds. (6C.15)

Since the estimates (6C.5b) and (6C.7b) and the bootstrap assumptions imply that L[G X̆9] =O(ε), we
deduce from (6C.15) that [G X̆9](t, u, ϑ)= [G X̆9](0, u, ϑ)+O(ε). Moreover, in view of Remark 5.2
and our data assumptions (5B.3a)–(5B.3b), we have, by Taylor expanding, the estimate G(0, u, ϑ) :=
G|(9(0,u,ϑ),v(0,u,ϑ)) = G|(9,v)=(0,0)+O�(α̊)+O(ε). Combining these estimates, we arrive at both of the
bounds stated in (6C.8b).

Proof of (6C.8a): Using the fundamental theorem of calculus (as in (6C.15)) and the initial condition
µ|60=1+O�(α̊)+O(ε), which follows from (3B.2) and the conditions on the data, we obtainµ(t, u, ϑ)=
1+O�(α̊)+O(ε)+

∫ t
s=0 Lµ(s, u, ϑ) ds. Substituting the right-hand side of (6C.8b) (evaluated at (s, u, ϑ))

for the integrand Lµ(s, u, ϑ), we arrive at the first estimate stated in (6C.8a). To obtain the second estimate
stated in (6C.8a), we use the first estimate and the bound [G X̆9](t, u, ϑ)= [G X̆9](0, u, ϑ)+O(ε) noted
in the previous paragraph.

Proof of (6C.9a) and (6C.9b): Estimate (6C.9a) follows easily from (6C.8a) and the fact that 0< t < 2 Å−1
∗

.
Similarly, (6C.9b) follows easily from (6C.8b).

Proof of (6C.10a)–(6C.10b): Using (3H.3) and (6A.1), we deduce the following schematic identity:
LP N−14 j

=P N−1
{4a
[f(γ )V + f(γ )P9]} +P N−1

{f(γ , Z9)}. From this identity and the bootstrap
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assumptions, we deduce

max
1≤ j≤n

|LP≤N−14 j
|. max

1≤ j≤n
|P≤N−14 j

|

+ max
1≤ j≤n

|P≤b(N−1)/2c4 j
|{|Z ≤N ;1

∗
9|+|P [1,N−1]

∗
γ |+1}

+|Z ≤N ;1
∗

9|+|P [1,N−1]
∗

γ |+1. (6C.16)

In particular, from (6C.16) and the bootstrap assumptions, we deduce

max
1≤ j≤n

|LP≤NMid−14 j
|. max

1≤ j≤n
|P≤NMid−14 j

| + 1. (6C.17)

Moreover, from the conditions on the data, we deduce that max1≤ j≤n |P
≤NMid−14 j

|(0,u,ϑ).1. Recalling
that L = ∂

∂t , we now use this data bound, (6C.17), and Gronwall’s inequality in max1≤ j≤n |P
≤NMid−14 j

|

to deduce that max1≤ j≤n ‖P
≤NMid−14 j

‖L∞(6u
t )
. 1, which is the desired bound (6C.10b). Finally, from

(6C.16) and (6C.10b), we conclude (6C.10a). �

6D. Estimates closely tied to the formation of the shock. In this subsection, we prove a lemma that lies
at the heart of showing that µ vanishes in finite time and that its vanishing coincides with the blowup of
maxα=0,...,n |∂α9|. Roughly, the lemma shows that when µ is small, X̆9 must be quantitatively large in
magnitude and that X̆9 has a sign that forces µ to continue shrinking (the latter fact is important in that
X̆9 is the dominant term in the evolution equation (3G.1a) for µ).

We start by defining a quantity that captures the “worst-case” behavior of µ along 6u
t .

Definition 6.7. We define the following quantity, where µ is the inverse foliation density in Definition 3.5:

µ?(t, u) :=min
6u

t

µ. (6D.1)

We now prove the main result of this subsection.

Lemma 6.8 (|X̆9| is large when µ is small). The following implication holds:

µ(t, u, ϑ) < 1
4 =⇒ [G X̆9](t, u, ϑ) <−1

4 Å∗, (6D.2)

where the blowup coefficient G 6= 0 (see Remark 3.9) is defined in Definition 3.8 and the data-size
parameter Å∗ is defined in Definition 5.1.

In addition,

µ(t, u, ϑ) < 1
4 =⇒ |X9|(t, u, ϑ) >

1
8|G̃|

1
µ(t, u, ϑ)

Å∗, (6D.3)

where the constant G̃ := G|(9,v)=(0,0) is the blowup coefficient evaluated at the background value of
(9, v)= (0, 0) (see Remark 5.2 and note that, as we mentioned just below (6C.8b), G̃ =− ∂L1

∂9

∣∣
(9,v)=(0,0)).

Finally, when U0 = 1, the quantity µ? defined in (6D.1) satisfies the estimate

µ?(t, 1)= 1− t Å∗+O�(α̊)+O(ε). (6D.4)

Proof. From the second estimate stated in (6C.8a), we deduce that ifµ(t, u, ϑ)< 1
4 , then t[G X̆9](t, u, ϑ)<

−
3
4 +O�(α̊)+O(ε). From this bound and the fact that 0≤ t < T(Boot) < 2 Å−1

∗
, we conclude (6D.2).
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To prove (6D.3), we first use the fundamental theorem of calculus to deduce

G(t, u, ϑ)= G(0, u, ϑ)+
∫ t

s=0
LG(s, u, ϑ) ds. (6D.5)

Since the estimates (6C.5b) and (6C.7b) and the bootstrap assumptions imply that LG =O(ε), we find
from (6D.5) that G(t, u, ϑ)= G(0, u, ϑ)+O(ε). Moreover, in view of Remark 5.2 and our data assump-
tions (5B.3a)–(5B.3b), we have, by Taylor expanding, the estimate G(0, u, ϑ) := G|(9(0,u,ϑ),v(0,u,ϑ)) =
G̃+O�(α̊)+O(ε). It follows that G(t, u, ϑ)= G̃+O�(α̊)+O(ε). Using this estimate to substitute for
the factor G(t, u, ϑ) in the second inequality in (6D.2) and then taking the absolute value of the resulting
inequality, we deduce that if µ(t, u, ϑ) < 1

4 , then

|X̆9|(t, u, ϑ) >
1

4
{
|G̃| +O�(α̊)+O(ε)

} Å∗.

Dividing both sides of this inequality by µ(t, u, ϑ) and appealing to (3C.4b), we arrive at (6D.3).
To prove (6D.4), we use the first line of (6C.8a) to deduce µ(t, u, ϑ)= 1+ t[G X̆9](0, u, ϑ)+O�(α̊)+

O(ε). Taking the minimum of both sides of this estimate over (u, ϑ) ∈ [0, 1] ×Tn−1 and appealing to
Definitions 5.1 and 6.7, we conclude (6D.4). �

7. Estimates for the change of variables map

In this section, we derive estimates for the change of variables map ϒ from Definition 3.24. The main
result is Proposition 7.3, which will serve as a technical ingredient in our proof that the solution exists up
until the first shock. Roughly, the proposition shows that if µ remains bounded from below strictly away
from 0, then ϒ can be extended to a diffeomorphism on the closure of the bootstrap domain.

7A. Control of the components of the change of variables map. In this subsection, we provide two
preliminary lemmas that yield estimates for the components of ϒ.

Lemma 7.1 (bounds for geometric coordinate partial derivatives of functions in terms of geometric vector
field derivatives). For K ∈ {0, 1}, the following estimate holds for scalar functions f :∑

i0+i1+···+in≤1

∥∥∥∥( ∂∂t

)i0+K(
∂

∂u

)i1
(
∂

∂ϑ2

)i2

· · ·

(
∂

∂ϑn

)in

f
∥∥∥∥

L∞(6u
t )

. ‖Z ≤1+K ;1 f ‖L∞(6u
t )
. (7A.1)

Proof. From (3C.7) and (3F.1b), the fact that 4 is Tt,u-tangent, and (3C.8c), we deduce the identity

∂

∂u
= X̆ +4a ∂a = X̆ +

n∑
i=2

4afia(γ )
(i)2.

From this identity and the L∞ estimates of Proposition 6.5 (in particular the estimate (6C.10b)), it follows
that ∂

∂u is a linear combination of the elements of Z with coefficients that are bounded in the norm
‖ · ‖L∞(6u

t )
by . 1. The estimate (7A.1) is a straightforward consequence of this fact and the facts that

L = ∂
∂t ∈Z and (i)2= ∂

∂ϑ i ∈Z . �
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We now show that ϒ can be extended to a function defined on the closure of the bootstrap domain that
belongs to several function spaces.

Lemma 7.2 (a preliminary extension result for the change of variables map). The componentsϒα(t, u, ϑ)
of the change of variables map from Definition 3.24 extend to the compact domain [0, T(Boot)]× [0,U0]×

Tn−1 with the following regularity (i = 2, . . . , n, α = 0, . . . , n):

ϒα,
∂

∂ϑ i ϒ
α
∈

⋂
k=0,1

Ck(
[0, T(Boot)],W 1−k,∞([0,U0]×Tn−1)

)
.

Moreover, the following estimates31 hold for (t, u) ∈ [0, T(Boot)]× [0,U0], where C = C( Å):∑
i0+i1+···+in≤1

∥∥∥∥( ∂∂t

)i0
(
∂

∂u

)i1
(
∂

∂ϑ2

)i2

· · ·

(
∂

∂ϑn

)in

ϒα

∥∥∥∥
L∞(6u

t )

≤ C, (7A.2a)

∑
i0+i1+···+in≤2

1≤i2+···+in

∥∥∥∥( ∂∂t

)i0
(
∂

∂u

)i1
(
∂

∂ϑ2

)i2

· · ·

(
∂

∂ϑn

)in

ϒα

∥∥∥∥
L∞(6u

t )

≤ Cε. (7A.2b)

Proof. We will show that the following estimates hold for (t, u) ∈ [0, T(Boot))×[0,U0]:

1∑
K=0

∑
i0+i1+···+in≤1

∥∥∥∥( ∂∂t

)i0+K(
∂

∂u

)i1
(
∂

∂ϑ2

)i2

· · ·

(
∂

∂ϑn

)in

ϒα

∥∥∥∥
L∞(6u

t )

. 1, (7A.3)

1∑
K=0

∑
i0+i1+···+in≤2

1≤i2+···+in

∥∥∥∥( ∂∂t

)i0+K(
∂

∂u

)i1
(
∂

∂ϑ2

)i2

· · ·

(
∂

∂ϑn

)in

ϒα

∥∥∥∥
L∞(6u

t )

. ε. (7A.4)

Since L = ∂
∂t relative to geometric coordinates, all results of the lemma then follow as straightforward

consequences of (7A.3)–(7A.4), the fundamental theorem of calculus, and the completeness of the spaces
W j,∞([0,U0]×Tn−1) for j = 0, 1.

Using (7A.1), we see that to establish (7A.3), it suffices to show that

‖Z ≤2;1ϒα
‖L∞(6u

t )
. 1. (7A.5)

To derive (7A.5), we first clarify that ϒα can be identified with the Cartesian coordinate xα, viewed as
a function of (t, u, ϑ2, . . . , ϑn). To bound xα, we note that Lxα = Lα = f(9, v). Hence, the bootstrap
assumptions imply that ‖Lxα‖L∞(6u

t )
. 1. From this estimate and the fundamental theorem of calculus

(as in (6C.15)), we conclude (see footnote 31) that ‖xα‖L∞(6u
t )
. 1 as desired. Next, we note that for

P ∈P, we have Pxα = Pα = f(γ ) and X̆ xα = X̆α
= f(γ ). Hence, to complete the proof of (7A.5), we

need only to show that ‖P≤1f(γ )‖L∞(6u
t )
. 1 and ‖Z ≤1;1f(γ )‖L∞(6u

t )
. 1. These bounds are simple

31The L∞ estimate for the torus coordinates x i
∈ T (where i = 2, . . . , n) stated in (7A.2a) should be interpreted as

the statement that for each fixed i ∈ {2, . . . , n} and (u, ϑ) ∈ [0,U0] × Tn−1, the Euclidean distance traveled by the curves
t→ x i (t, u, ϑ), t ∈ [0, T(Boot)], in the universal covering space R of T is uniformly bounded.
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consequences of the bootstrap assumptions. We have therefore proved (7A.3). The estimate (7A.4) can
be proved using a similar argument and we omit the details. �

7B. The diffeomorphism properties of the change of variables map. We now derive the main result of
Section 7.

Proposition 7.3 (sufficient conditions for ϒ to be a global diffeomorphism). If

inf
(t,u)∈[0,T(Boot))×[0,U0]

µ?(t, u) > 0, (7B.1)

then the change of variables map ϒ extends to a global diffeomorphism from [0, T(Boot)]× [0,U0]×Tn−1

onto its image with the following regularity (i = 2, . . . , n, α = 0, . . . , n):

ϒα, (i)2ϒα
∈

⋂
k=0,1

Ck(
[0, T(Boot)],W 1−k,∞([0,U0]×Tn−1)

)
. (7B.2)

Proof. By the bootstrap assumption (5C.2), ϒ is a diffeomorphism from [0, T(Boot))×[0,U0]×Tn−1 onto
its image MT(Boot),U0 . In addition, Lemma 7.2 implies that each component ϒα extends to a function of the
geometric coordinates satisfying (7B.2). Next, we use (3I.2), the L∞ estimates of Proposition 6.5, and the
assumption (7B.1) to deduce that the Jacobian determinant of ϒ is uniformly bounded in magnitude from
above and below away from 0 on [0, T(Boot)]× [0,U0]×Tn−1. Hence, from the inverse function theorem,
we deduce that ϒ extends as a local diffeomorphism from [0, T(Boot)] × [0,U0] ×Tn−1 onto its image.
Therefore, to complete the proof of the lemma, we need only to show that ϒ is injective on the domain
[0, T(Boot)] × [0,U0] ×Tn−1. Since ϒ is a diffeomorphism on the domain [0, T(Boot))× [0,U0] ×Tn−1,
it suffices to show that ϒ(T(Boot), u1, ϑ1) 6= ϒ(T(Boot), u2, ϑ2) whenever (ui , ϑi ) ∈ [0,U0] × Tn−1 and
(u1, ϑ1) 6= (u2, ϑ2).

We first show that if u1 6= u2, then ϒ(T(Boot), u1, ϑ1) 6= ϒ(T(Boot), u2, ϑ2). To this end, we observe
that from definitions (3C.1b) and (3D.3d), the estimates (6C.9a) and (6C.7a), and the assumption (7B.1),
it follows that

∑n
a=1 |∂au| is uniformly bounded from above and from below, strictly away from 0. It

follows that no two distinct (closed) characteristic hypersurface portions PT(Boot)
u1 and PT(Boot)

u2 can intersect,
which yields the desired result.

To finish the proof of the lemma, we must show that ϒ(T(Boot), u, ϑ1) 6= ϒ(T(Boot), u, ϑ2) whenever
u ∈ [0,U0] and ϑ1 6= ϑ2. That is, we must show that for each fixed u ∈ [0,U0], the map υ defined by
υ(ϑ) :=ϒ(T(Boot), u, ϑ) is an injection from Tn−1 onto its image. To this end, for each fixed u ∈ [0,U0],
we consider the family of t-parametrized maps υ̃(t, · ) (where t ∈ [0, T(Boot)]) defined to be the last
n− 1 components of ϒ(t, u, · ); that is, υ̃(t;ϑ) :=

(
ϒ2(t, u, · ), ϒ3(t, u, · ), . . . , ϒn(t, u, · )

)
(recall that

ϒ i can be identified with the local Cartesian coordinate x i ). Note that υ̃(t, · ) can be viewed as a map from
the domain Tn−1 (equipped with the geometric coordinates (ϑ2, . . . , ϑn)) to the target Tn−1 (equipped with
the Cartesian coordinates (x2, . . . , xn)). Since ϒ is continuous on [0, T(Boot)]× [0,U0]×Tn−1, it follows
that υ is homotopic to the degree-one32 map υ̃(0, · ) by the homotopy υ̃(t;ϑ). Hence, it is a basic result of
degree theory (see, for example, [Lee 2013, Proposition 17.36]) that υ̃(t, · ) is also a degree-one map. In

32υ̃(0, · ) is degree-one because x i (0, u, ϑ2, . . . , ϑn)= ϑ i for i = 2, . . . , n by construction.
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particular, υ( · )= υ̃(T(Boot), · ) is degree-one. Next, we note that Lemma 7.2 implies that ϒ j (T(Boot), u, · )
can be viewed as a C1 function of (ϑ2, . . . , ϑn)∈Tn−1 and that by (3D.3c) and (7A.2b), for i, j=2, . . . , n,
we have (i)2ϒ j (T(Boot), u, ϑ2, . . . , ϑn)= δi j

+
(i)2

j
(Small)(T(Boot), u, ϑ2, . . . , ϑn)= δi j

+O(ε), where δi j

is the standard Kronecker delta. From this estimate and the degree-one property of υ( · )= υ̃(T(Boot), · ),
we deduce33 that for sufficiently small ε, υ( · ) is a bijection34 from Tn−1 to Tn−1. In particular, υ is
injective, which is the desired result. �

8. Energy estimates and strict improvements of the fundamental bootstrap assumptions

In this section, we derive the main estimates of the paper: a priori energy estimates that hold up to top
order on the bootstrap region. The main ingredients in the proofs are the energy identities of Section 4
and the pointwise estimates of Proposition 6.5. As a corollary, we also derive strict improvements of the
fundamental L∞ bootstrap assumptions of Section 5C2.

8A. Definition of the fundamental L2-controlling quantity. We start by defining the coercive quantity
that we use to control the solution in L2 up to top order.

Definition 8.1 (the main coercive L2-controlling quantity). In terms of the energy-characteristic flux
quantities of Definition 4.1 and the multi-index set I[1,NTop];1

∗ of Definition 3.32, we define

Q(t, u) := sup
(t ′,u′)∈[0,t]×[0,u]

max
{

max
EI∈I
[1,NTop];1
∗

E(Shock)
[Z
EI9](t ′, u′),

max
| EI |≤NTop−1

f ∈{v J }1≤J≤M∪{V J
α }0≤α≤n;1≤J≤M

{
E(Regular)

[P
EI f ](t ′, u′)+ F(Regular)

[P
EI f ](t ′, u′)

}}
. (8A.1)

8B. Coerciveness of the fundamental L2-controlling quantity. In the next lemma, we exhibit the coer-
civeness properties of Q(t, u).

Lemma 8.2 (coerciveness of Q(t, u)). The following estimates hold:

sup
(t ′,u′)∈[0,t]×[0,u]

‖Z
[1,NTop];1
∗ 9‖L2(6u′

t ′ )
≤Q1/2(t, u), (8B.1)

sup
(t ′,u′)∈[0,t]×[0,u]

‖
√
µP≤NTop−1v‖L2(6u′

t ′ )
≤ CQ1/2(t, u), (8B.2a)

sup
(t ′,u′)∈[0,t]×[0,u]

‖
√
µP≤NTop−1V ‖L2(6u′

t ′ )
≤ CQ1/2(t, u), (8B.2b)

33Recall that if f : Tn−1
→ Tn−1 is a C1 surjective map without critical points, then f is degree-one if for p, q ∈ Tn−1,

1=
∑

p∈ f −1(q)(sign det d f (p)), where d f (p) denotes the differential of f at p and the d f (p) are computed relative to an atlas
corresponding to the smooth orientation on Tn−1 chosen at the beginning of the article. It is a basic fact of degree theory (see,
for example, [Lee 2013, Theorem 17.35]) that the sum is independent of q . Note that in the context of the present argument, the
components of the (n−1)× (n−1) matrix d f ( · ) are (i)2ϒ j (T(Boot), u, · ) (i, j = 2, 3, . . . , n).

34The surjective property of this map is easy to deduce.
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sup
(t ′,u′)∈[0,t]×[0,u]

‖P≤NTop−1v‖L2(P t ′
u′ )
≤ CQ1/2(t, u), (8B.3a)

sup
(t ′,u′)∈[0,t]×[0,u]

‖P≤NTop−1V ‖L2(P t ′
u′ )
≤ CQ1/2(t, u). (8B.3b)

Proof. Lemma 8.2 follows from Definition 8.1, Definition 4.1, Lemma 4.2, and the L∞ estimates of
Proposition 6.5 (which provide the smallness of γ that is assumed, for example, in the hypotheses of
Lemma 4.2). �

8C. Sobolev embedding. The main result of this subsection is Lemma 8.4, a Sobolev embedding result
which shows that the norm ‖ · ‖L∞(6u

t )
of v and V and their Pu-tangential derivatives up to mid-order

is controlled by Q. In Corollary 8.8, we will use the lemma as an ingredient in our derivation of
strict improvements of the fundamental L∞ bootstrap assumptions. As a preliminary step, we provide
the following lemma, in which we derive some L2 estimates for v, V, and their derivatives along the
codimension-two tori Tt,u .

Lemma 8.3 (L2 control of the non-shock-forming variables on Tt,u). The following estimates hold for
0≤ α ≤ n and 1≤ J ≤ M :

‖P≤NTop−2v J
‖L2(Tt,u), ‖P

≤NTop−2V J
α ‖L2(Tt,u) ≤ C ε̊+CQ1/2(t, u). (8C.1)

Proof. We first note the following estimate for scalar functions f , which follows from differentiating
under the integral and using Young’s inequality:

∂

∂t
‖ f ‖2L2(Tt,u)

= 2
∫
Tt,u

f L f dϑ ≤ ‖ f ‖2L2(Tt,u)
+‖L f ‖2L2(Tt,u)

. (8C.2)

Integrating (8C.2) from time 0 to time t , we find that

‖ f ‖2L2(Tt,u)
≤ ‖ f ‖2L2(T0,u)

+

∫ t

s=0
‖ f ‖2L2(Ts,u)

ds+‖L f ‖2L2(P t
u)
. (8C.3)

From (8C.3) and Gronwall’s inequality, we deduce that

‖ f ‖2L2(Tt,u)
≤ C‖ f ‖2L2(T0,u)

+C‖L f ‖2L2(P t
u)
. (8C.4)

We now apply (8C.4) with the role of f played by P≤NTop−2v J and P≤NTop−2V J
α . In view of the data-size

assumptions (5B.5) and the bounds ‖LP≤NTop−2v‖2L2(P t
u)
.Q(t, u) and ‖LP≤NTop−2V ‖2L2(P t

u)
.Q(t, u),

which follow from (8B.3a)–(8B.3b), we arrive at the desired estimate (8C.1). �

We now prove the main result of this subsection.

Lemma 8.4 (L∞ control of the non-shock-forming variables up to mid-order in terms of Q). The following
estimates hold:

‖P≤NMid−1v‖L∞(6u
t )
, ‖P≤NMid−1Vα‖L∞(6u

t )
≤ C ε̊+CQ1/2(t, u). (8C.5)

Proof. Standard Sobolev embedding on Tn−1 yields the following estimate for scalar functions f :

‖ f ‖L∞(Tt,u) . ‖ f ‖L2(Tt,u)+

b(n+1)/2c∑
K=1

∑
Y(1),...,Y(K )∈{(i)2}i=2,3,...,n

‖Y(1) · · · Y(K ) f ‖L2(Tt,u). (8C.6)
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The desired estimate (8C.5) now follows from (8C.6), (8C.1), and (5A.1), where the last of these equations
in particular implies that NMid− 1+b(n+ 1)/2c ≤ NTop− 2. �

8D. Preliminary L2 estimates for µ, ξ (Small)
j , and (i)2

j
(Small). In the next lemma, we bound the L2

norms of the derivatives of the quantities µ, ξ (Small)
j , and (i)2

j
(Small) in terms of Q. This serves as a

preliminary step for our forthcoming derivation of L2 estimates for 9, v, and V, since µ, ξ (Small)
j , and

(i)2
j
(Small) appear as source terms in their commuted evolution equations (as is shown by the right-hand

sides of (6C.1)–(6C.2b)).

Lemma 8.5 (L2 estimates for µ, ξ (Small)
j , and (i)2

j
(Small) in terms of Q). The following estimates hold for

2≤ i ≤ n, 1≤ j ≤ n, and (t, u) ∈ [0, T(Boot))×[0,U0], where Q is defined in Definition 8.1:

‖P
[1,NTop−1]
∗ µ‖L2(6u

t )
≤ C ε̊+CQ1/2(t, u), (8D.1a)

‖Z
[1,NTop−1];1
∗ ξ

(Small)
j ‖L2(6u

t )
≤ C ε̊+CQ1/2(t, u), (8D.1b)

‖Z [1,NTop−1];1(i)2
j
(Small)‖L2(6u

t )
≤ C ε̊+CQ1/2(t, u). (8D.1c)

Proof. See Section 5F for some comments on the analysis. We set

q = q(t, u) := ‖P [1,NTop−1]
∗ µ‖2L2(6u

t )
+

n∑
j=1

‖Z
[1,NTop−1];1
∗ ξ

(Small)
j ‖

2
L2(6u

t )

+

n∑
i=2

n∑
j=1

‖Z [1,NTop−1];1(i)2
j
(Small)‖

2
L2(6u

t )
. (8D.2)

The estimates from Lemma 5.5 for the data of µ, ξ (Small)
j , and (i)2

j
(Small) imply that q(0, u) ≤ C ε̊2.

Hence, from the pointwise estimates (6C.3a)–(6C.3b) and (6C.4), the pointwise estimates (6B.3)–(6B.4),
Definition 3.16, Young’s inequality, the energy identity (4B.2), and Lemma 8.2, we deduce that

q(t, u)≤ C ε̊2
+C

n∑
j=1

∫
Mt,u

|Z
[1,NTop−1];1
∗ ξ

(Small)
j |

2 d$

+C
n∑

i=2

n∑
j=1

∫
Mt,u

|Z
[1,NTop−1];1
∗

(i)2
j
(Small)|

2 d$

+C
∫
Mt,u

|P
[1,NTop−1]
∗ µ|2 d$ +C

∫
Mt,u

|Z
[1,NTop];1
∗ 9|2 d$

+C
∫
Mt,u

|P≤NTop−1v|2 d$ +C
∫
Mt,u

|P≤NTop−1V |2 d$

≤ C ε̊2
+C

∫ t

s=0
q(s, u) ds+C

∫ t

s=0
Q(s, u) ds+C

∫ u

u′=0
Q(t, u′) du′

≤ C ε̊2
+C

∫ t

s=0
q(s, u) ds+CQ(t, u). (8D.3)

From (8D.3) and Gronwall’s inequality, we conclude the bound q(t, u)≤ C ε̊2
+CQ(t, u), from which

the estimates (8D.1a)–(8D.1c) easily follow. �
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8E. The main a priori estimates. In the next proposition, we derive our main a priori energy estimates.

Proposition 8.6 (the main a priori estimates). There exists a constant C > 0 such that under the data-size
assumptions of Section 5B2, the bootstrap assumptions of Section 5C2, and the smallness assumptions of
Section 5D, the following estimates hold for (t, u) ∈ [0, T(Boot))×[0,U0]:

Q(t, u)≤ C ε̊2
+C

∫ t

s=0
Q(s, u) ds+C

∫ u

u′=0
Q(t, u′) du′. (8E.1)

Moreover, as a consequence of (8E.1), the following estimate holds for (t, u) ∈ [0, T(Boot))×[0, 1]:

Q(t, u)≤ C ε̊2. (8E.2)

Remark 8.7 (a top-order L2 estimate for v). From the pointwise estimate (6B.3), the bootstrap assump-
tions, Lemma 8.5, and (8E.2), one can easily obtain the bound ‖Z ≤NTop;1v‖L2(6u

t )
≤C ε̊, which is a gain of

one derivative for v compared to what is directly implied by (8E.2). Similarly, we could gain a derivative
for v in the L∞ estimate (8E.8) below. However, we have no need for these gains of a derivative, so we
will ignore them for the remainder of the paper.

Proof of Proposition 8.6. Proof of (8E.1): We first derive energy inequalities for 9 and its derivatives.
Let EI ∈ I[1,NTop];1

∗ (see Definition 3.32). From definitions (3E.1a)–(3E.1b), the energy identity (4B.2), the
data-size assumption (5B.2), the pointwise estimate (6C.1), the estimates (6B.3)–(6B.4), and Young’s
inequality, we deduce

E(Shock)
[Z
EI9](t, u)≤ C ε̊2

+C
∫
Mt,u

|Z
[1,NTop];1
∗ 9|2 d$ +C

∫
Mt,u

|P≤NTop−1v|2 d$

+C
∫
Mt,u

|P≤NTop−1V |2 d$ +C
∫
Mt,u

|P
[1,NTop−1]
∗ µ|2 d$

+C
n∑

j=1

∫
Mt,u

|Z
[1,NTop−1];1
∗ ξ

(Small)
j |

2 d$

+C
n∑

i=2

n∑
j=1

∫
Mt,u

|Z
[1,NTop−1];1
∗

(i)2
j
(Small)|

2 d$. (8E.3)

From Lemmas 8.2 and 8.5, and (8E.3), we deduce

E(Shock)
[Z
EI9](t, u)≤ C ε̊2

+C
∫ t

s=0
Q(s, u) ds+C

∫ u

u′=0
Q(t, u′) du′. (8E.4)

We now derive a similar energy inequality for v, V, and their derivatives. Specifically, using definitions
(3E.1a)–(3E.1b), the energy-characteristic flux identity (4B.4), the data-size assumptions (5B.2) and
(5B.4), the pointwise estimates (6C.2a)–(6C.2b), the estimates (6B.3)–(6B.4), Lemmas 8.2 and 8.5,
and the L∞ estimates of Proposition 6.5, we deduce that for | EI | ≤ NTop − 1, we have, for any f ∈
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{v J
}1≤J≤M ∪ {V J

α }0≤α≤n;1≤J≤M , the estimate

E(Regular)
[P
EI f ](t, u)+F(Regular)

[P
EI f ](t, u)≤ C ε̊2

+C
∫ t

s=0
Q(s, u) ds+C

∫ u

u′=0
Q(t, u′) du′. (8E.5)

From (8E.4), (8E.5), and Definition 8.1, we conclude the desired bound (8E.1).

Proof of (8E.2): With c > 0 a real parameter to be chosen below, we define

Qc(t, u) := sup
(t̂,û)∈[0,t]×[0,u]

{exp(−ct̂) exp(−cû)Q(t̂, û)}. (8E.6)

Using (8E.1) and the simple inequality
∫ y

y′=0 exp(cy′) dy′ ≤ (1/c) exp(cy), we deduce that for (t̂, û) ∈
[0, t]× [0, u] ⊂ [0, T(Boot))×[0,U0], the following estimate holds:

exp(−ct̂)exp(−cû)Q(t̂, û)≤C exp(−ct̂)exp(−cû)ε̊2

+C exp(−ct̂)exp(−cû)×
{

sup
t ′∈[0,t̂]

exp(−ct ′)Q(t ′, û)
}
×

∫ t̂

t ′=0
exp(ct ′)dt ′

+C exp(−ct̂)exp(−cû)×
{

sup
u′∈[0,û]

exp(−cu′)Q(t̂,u′)
}
×

∫ û

u′=0
exp(cu′)du′

≤C ε̊2
+

2C
c

sup
(t ′,u′)∈[0,t̂]×[0,û]

{exp(−ct ′)exp(−cu′)Q(t ′,u′)}, (8E.7)

where the constant C on the right-hand side of (8E.7) can be chosen to be independent of c > 0.
From (8E.7) and definition (8E.6), we deduce that Qc(t, u) ≤ C ε̊2

+ (2C/c)Qc(t, u). Hence, fixing
c := c′ > 2C , we deduce that Qc′(t, u)≤ C ′ε̊2. From this bound and the definition of Qc′ , it follows that
for (t, u) ∈ [0, T(Boot))× [0,U0], we have Q(t, u) ≤ C ′ exp(c′t) exp(c′u)ε̊2

≤ C ′′ε̊2, where C ′′ depends
on C ′, c′, and Å−1

∗
(in view of the bootstrap assumption (5C.1)). This is precisely the desired bound

(8E.2). �

Corollary 8.8 (improvement of the fundamental L∞ bootstrap assumptions). For 0≤α≤n and 1≤ J ≤M,
the following estimates hold:

‖P≤NMid−1v J
‖L∞(6u

t )
, ‖P≤NMid−1V J

α ‖L∞(6u
t )
≤ C ε̊. (8E.8)

In particular, if C ε̊ < ε, then the estimate (8E.8) is a strict improvement of the fundamental bootstrap
assumption (5C.3).

Proof. Estimate (8E.8) follows from the energy estimate (8E.2) and the Sobolev embedding result
(8C.5). �

9. Continuation criteria

In this section, we provide a proposition that yields continuation criteria. We will use the proposition
during the proof of the main theorem (Theorem 10.1), specifically as an ingredient in showing that the
solution survives until the shock.
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Proposition 9.1 (continuation criteria). Let (9, v1, . . . , vM) be a smooth solution to the system (2A.1a)–
(2A.1b) satisfying the size assumptions35 on 61

0 and P2 Å−1
∗

0 stated in Section 5B as well as the small-
ness assumptions stated in Section 5D. Let T(Local) ∈ (0, 2 Å−1

∗
) and U0 ∈ (0, 1], and assume that the

solution exists classically on the (“open-at-the-top”) spacetime region MT(Local),U0 (where MT(Local),U0

is defined in (3A.3f)) that is completely determined by the data on6U0
0 ∪P

2 Å−1
∗

0 (see Figure 2 on page 472).
Let u be the eikonal function that satisfies the eikonal equation initial value problem (3A.1), let µ be the
inverse foliation density of the characteristics Pu defined in (3B.1), and let λα = µ∂αu (as in (3C.1a)).
Assume that µ > 0 on MT(Local),U0 and that the change of variables map ϒ from geometric to Cartesian
coordinates (see Definition 3.24) is a diffeomorphism from [0, T(Local))×[0,U0]×Tn−1 onto MT(Local),U0

such that for i = 2, . . . , n and α = 0, . . . , n, we have

ϒα, (i)2ϒα
∈

⋂
k=0,1

Ck(
[0, T(Local)),W 1−k,∞([0,U0]×Tn−1)

)
. (9.1)

Let H⊂ R×RM
×R1+n be the set of arrays (9̃, ṽ, λ̃) such that the following two conditions hold:

• The Cartesian components L i (9, v) (i=1, . . . , n) and the M×M matrices Aα(9, v) (α=0, . . . , n)
are smooth functions for (9, v) belonging to a neighborhood of (9̃, ṽ).

• A0(9, v) and Aα(9, v)λα are positive definite matrices for (9, v, λ) belonging to a neighborhood
of (9̃, ṽ, λ̃).

Assume that none of the following four breakdown scenarios occur:

(1) infMT(Local),U0
µ= 0.

(2) supMT(Local),U0
µ=∞.

(3) There exists a sequence pn ∈MT(Local),U0 such that (9(pn), v(pn), λ(pn)) escapes every compact
subset of H as n→∞.

(4) supMT(Local),U0
maxα=0,1,...,n{|∂α9| + |Vα|} =∞, where V J

α = ∂αv
J.

In addition, assume that the following condition is satisfied:

(5) The change of variables map ϒ extends to the compact set [0, T(Local)] × [0,U0] × Tn−1 as a
diffeomorphism onto its image that enjoys the regularity properties (9.1) with [0, T(Local)) replaced
by [0, T(Local)].

Then there exists a 1 > 0 such that 9, v, V, u, µ, λ, and all of the other geometric quantities
defined throughout the article can be uniquely extended (where 9, v, u, and µ are smooth solutions
to their evolutions equations) to a strictly larger region of the form MT(Local)+1,U0 into which their
Sobolev regularity along 6U0

0 and P2 Å−1
∗

0 (described in Section 5B) is propagated.36 Moreover, if 1 is
sufficiently small, then none of the four breakdown scenarios occur in the larger region, and ϒ extends to

35Recall that even though we make size assumptions only for certain Sobolev norms, for technical convenience, we have
assumed that the data on 61

0 and P2 Å−1
∗0 are C∞.

36Put differently, the same norms that are finite along 6U0
0 and P2 Å−1

∗

0 (as stated in Section 5B) are also finite along 6u
t and

P t
u for (t, u) ∈ [0, T(Local)+1]× [0,U0].
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[0, T(Local)+1]× [0,U0]×Tn−1 as a diffeomorphism onto its image that enjoys the regularity properties
(9.1) with [0, T(Local)) replaced by [0, T(Local)+1].

Discussion of proof. The proof of Proposition 9.1 is mostly standard. A sketch of a similar result was
provided in [Speck 2016, Proposition 21.1.1], so here, we only mention the main ideas. Criterion (3) is
connected to avoiding a breakdown in hyperbolicity of the equation. Criterion (4) is a standard criterion
used to locally continue the solution relative to the Cartesian coordinates. Criteria (1) and (2) and the
assumption (5) for ϒ are connected to ruling out the blowup of u, degeneracy of the change of variables
map, and degeneracy of the region MT(Local),U0 . In particular, criteria (1) and (2) play a role in a proving
that

∑n
a=1 |∂au| is uniformly bounded from above and strictly from below away from 0 on MT(Local),U0

(the proof was essentially given in the proof of Proposition 7.3). �

10. The main theorem

We now prove the main result of the paper.

Theorem 10.1 (stable shock formation). Let n denote the number of spatial dimensions, let NTop and
NMid be positive integers satisfying (5A.1), and let α̊ > 0, ε̊ ≥ 0, Å > 0, and Å∗ > 0 be the data-size
parameters from Section 5B. For each U0 ∈ (0, 1] (as in (3A.2)), let

T(Lifespan);U0 := sup
{
t ∈ [0,∞)

∣∣ the solution exists classically on Mt;U0 and
ϒ is a diffeomorphism from [0, t)×[0,U0]×Tn−1 onto its image

}
,

where ϒ is the change of variables map from Definition 3.24. If α̊ is sufficiently small relative to 1 and if
ε̊ is sufficiently small relative to 1, Å−1, and Å∗ in the sense explained in Section 5D, then the following
conclusions hold, where all constants can be chosen to be independent of U0 (see Section 1H for our
conventions regarding the dependence of constants on the various parameters).

Dichotomy of possibilities. One of the following mutually disjoint possibilities must occur, where
µ?(t, u)=min6u

t
µ (as in (6D.1)) and µ is the inverse foliation density of the transport characteristics

Pu from Definition 3.5:

(I) T(Lifespan);U0>2 Å−1
∗

. In particular, the solution exists classically on the spacetime region clM2 Å−1
∗ ,U0

,
where cl denotes closure. Furthermore, inf{µ?(s,U0) | s ∈ [0, 2 Å−1

∗
]}> 0.

(II) 0< T(Lifespan);U0 ≤ 2 Å−1
∗

, and

T(Lifespan);U0 = sup
{
t ∈ [0, 2 Å−1

∗
)
∣∣ inf{µ?(s,U0) | s ∈ [0, t)}> 0

}
. (10.1)

In addition, case (II) occurs when U0 = 1, and we have the estimate37

T(Lifespan);1 = {1+O�(α̊)+O(ε̊)} Å−1
∗
. (10.2)

Case (I). The energy estimates of Proposition 8.6 and the L∞ estimates of Corollary 8.8 hold on
clM2 Å−1

∗ ,U0
. The same is true for the estimates of Lemma 6.4 and Proposition 6.5, but with all factors ε

37See Section 1H regarding our use of the symbol O�.
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on the right-hand side of all inequalities replaced by C ε̊. Moreover, for µ and the quantities from
Definition 3.15, the following estimates hold for 2 ≤ i ≤ n, 1 ≤ j ≤ n, and (t, u) ∈ [0, 2 Å−1

∗
] × [0,U0]

(see Section 3N regarding the differential operator notation):

‖P
[1,NTop−1]
∗ µ‖L2(6u

t )
≤ C ε̊, (10.3a)

‖Z
[1,NTop−1];1
∗ ξ

(Small)
j ‖L2(6u

t )
≤ C ε̊, (10.3b)

‖Z [1,NTop−1];1(i)2
j
(Small)‖L2(6u

t )
≤ C ε̊. (10.3c)

Case (II). The energy estimates of Proposition 8.6 and the L∞ estimates of Corollary 8.8 hold on
MT(Lifespan);U0 ,U0 , as do the estimates of Lemma 6.4 and Proposition 6.5 with all factors ε on the right-
hand side of all inequalities replaced by C ε̊. Moreover, the estimates (10.3a)–(10.3c) hold for (t, u) ∈
[0, T(Lifespan);U0)×[0,U0]. In addition, the scalar functions Z ≤NMid−1;19, Z ≤NMid−2;1v J, Z ≤NMid−2;1V J

α ,
P≤NMid−2µ, Z ≤NMid−2;1ξ j , Z ≤NMid−2;1(i)2 j , Z ≤NMid−2;1L i , P≤NMid−2 X̆ i , and Z ≤NMid−2;1 X i extend
to6U0

T(Lifespan);U0
as functions of the geometric coordinates (t,u,ϑ) belonging to the space C

(
[0,T(Lifespan);U0],

L∞([0,U0]×Tn−1)
)
.

Moreover, let 6U0;(Blowup)
T(Lifespan);U0

be the subset of 6U0
T(Lifespan);U0

defined by

6
U0;(Blowup)
T(Lifespan);U0

:= {(T(Lifespan);U0, u, ϑ) | µ(T(Lifespan);U0, u, ϑ)= 0}. (10.4)

Then for each point (T(Lifespan);U0, u, ϑ) ∈6U0;(Blowup)
T(Lifespan);U0

, there exists a past neighborhood38 containing it
such that the following lower bound holds in the neighborhood:

|X9(t, u, ϑ)| ≥
1

8 Å∗

1
|G̃|µ(t, u, ϑ)

, (10.5)

where G̃ := G|(9,v)=(0,0) is the blowup coefficient of Definition 3.8, evaluated at the background value of
(9, v)= (0, 0) (see Remark 5.2 and note that, as we mentioned just below (6C.8b), G̃ =− ∂L1

∂9

∣∣
(9,v)=(0,0)).

In (10.5), 1/(8|G̃| Å∗) is a positive39 data-dependent constant, and the Tt,u-transversal, 6t -tangent vector
field X is of order-unity Euclidean length: C−1

≤ δab Xa Xb
≤ C , where δi j is the standard Kronecker

delta. In particular, X9 blows up like 1/µ at all points in 6U0;(Blowup)
T(Lifespan);U0

. Conversely, at all points
(T(Lifespan);U0, u, ϑ) ∈6U0

T(Lifespan);U0
\6

U0;(Blowup)
T(Lifespan);U0

, we have

|X9(T(Lifespan);U0, u, ϑ)|<∞. (10.6)

Proof. Let C ′ > 1 be a constant. We will enlarge C ′ as needed throughout the proof. We define

T(Max);U0 := the supremum of the set of times T(Boot) ∈ [0, 2 Å−1
∗
] such that: (10.7)

• 9, v J, V J
α , u, µ, ξ (Small)

j , (i)2 j
(Small), and all of the other quantities defined throughout the article exist

classically on MT(Boot),U0 .

38By a past neighborhood, we mean an open set of points (t, u, ϑ) intersected with the slab [0, T(Lifespan);U0 ]×R×Tn−1.
39See Remarks 3.9 and 5.3.
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• The change of variables map ϒ from Definition 3.24 is a (global) diffeomorphism from [0, T(Boot))×

[0,U0]×Tn−1 onto its image MT(Boot),U0 satisfying

ϒα,
∂

∂ϑ i ϒ
α
∈

⋂
k=0,1

Ck(
[0, T(Boot)),W 1−k,∞([0,U0]×Tn−1)

)
.

• inf{µ?(t,U0) | t ∈ [0, T(Boot))}> 0 (see Definition 6.7).

• The fundamental L∞ bootstrap assumptions (5C.3) hold with ε := C ′ε̊ for (t, u) ∈ ×[0, T(Boot))×

[0,U0].

By standard local well-posedness for quasilinear hyperbolic systems (see, for example, [Ringström 2009,
Part I]), if α̊ and ε̊ are sufficiently small in the sense explained in Section 5D and C ′ is sufficiently large,
then T(Max);U0 > 0. Under the same smallness/largeness assumptions, by Corollary 8.8, the bootstrap
assumptions (5C.3) are not saturated for (t, u) ∈ [0, T(Max);U0)× [0,U0]. For this reason, all estimates
proved throughout the article on the basis of the bootstrap assumptions in fact hold on MT(Boot),U0 with
ε replaced by C ε̊. We use this fact throughout the remainder of the proof without further remark. In
particular, the estimates of Proposition 6.5 hold for (t, u) ∈ [0, T(Max);U0)×[0,U0] with all factors ε on
the right-hand side of all inequalities replaced by C ε̊. Moreover, by inserting the energy estimates of
Proposition 8.6 into the right-hand sides of the estimates of Lemma 8.5, we conclude that the estimates
(10.3a)–(10.3c) hold for (t, u) ∈ [0, T(Max);U0)×[0,U0].

We now establish the dichotomy of possibilities. We first show that if

inf{µ?(t,U0) | t ∈ [0, T(Max);U0)}> 0, (10.8)

then T(Max);U0 = 2 Å−1
∗

. To proceed, we assume for the sake of deriving a contradiction that (10.8)
holds but that T(Max);U0 < 2 Å−1

∗
. Then from (10.8) and Proposition 7.3, we see that if α̊ and ε̊ are

sufficiently small, then ϒ extends to a global diffeomorphism from [0, T(Max);U0] × [0,U0] × T onto
its image that enjoys the regularity (7B.2) (with T(Boot) replaced by T(Max);U0 in (7B.2)). Also using
the assumption (2C.1), Definition 3.6, definition (3D.3d), and the estimates of Proposition 6.5, we
see that none of the four breakdown scenarios of Proposition 9.1 occur on MT(Max);U0 ,U0 . Hence, by
Proposition 9.1, we can classically extend the solution to a region of the form MT(Max);U0+1,U0 , with
1 > 0 and T(Max);U0 +1 < 2 Å−1

∗
, such that all of the properties defining T(Max);U0 hold for the larger

time T(Max);U0 +1. This contradicts the definition of T(Max);U0 and in fact implies that if (10.8) holds
and if α̊ and ε̊ are sufficiently small, then (I) T(Max);U0 = 2 Å−1

∗
and T(Lifespan);U0 > 2 Å−1

∗
. The only other

possibility is: (II) inf{µ?(t,U0) | t ∈ [0, T(Max);U0)} = 0.
We now aim to show that case (II) corresponds to the formation of a shock singularity in the constant-

time hypersurface subset 6U0
T(Max);U0

. We first derive the statements regarding the quantities that extend
to 6U0

T(Lifespan);U0
as elements of the space C

(
[0, T(Lifespan);U0], L∞([0,U0] × T)

)
. Here we will prove

the desired results with T(Max);U0 in place of T(Lifespan);U0 ; in the next paragraph, we will show that
T(Max);U0 = T(Lifespan);U0 . Let q denote any of the quantities Z ≤NMid−1;19, . . . , Z ≤NMid−2;1 X i that, in
the theorem, are stated to extend. From the estimates of Lemma 6.4 and Proposition 6.5, we deduce
that ‖Lq‖

L∞(6
U0
t )

is uniformly bounded for 0≤ t < T(Max);U0 . Using this fact, the fact that L = ∂
∂t , the
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fundamental theorem of calculus, and the completeness of the space L∞([0,U0] × T), we conclude
that q extends to 6U0

T(Max);U0
as a function of the geometric coordinates (t, u, ϑ) belonging to the space

C
(
[0, T(Max);U0], L∞([0,U0]×T)

)
, as desired.

We now show that the classical lifespan is characterized by (10.1) and that T(Max);U0 = T(Lifespan);U0 .
To this end, we first use (6D.3) and the continuous extension properties proved in the previous paragraph
to deduce (10.5). Also using Definition 3.15, the schematic relation X j

(Small) = γ f(γ ), and the L∞

estimates of Proposition 6.5, we deduce that C−1
≤ δab Xa Xb

≤ C . That is, the vector field X is of
order-unity Euclidean length. From this estimate and (10.5), we deduce that at points in 6U0

T(Max);U0
where

µ vanishes, |X9| blows up like 1/µ. Hence, T(Max);U0 is the classical lifespan. That is, we conclude that
T(Max);U0 = T(Lifespan);U0 , and we obtain the characterization (10.1) of the classical lifespan. The estimate
(10.6) follows from the estimate (6C.5c), the fact that X̆ = µX , and the continuous extension properties
proved in the previous paragraph.

Finally, to obtain (10.2), we use (6D.4) to conclude that µ?(t, 1) vanishes for the first time when
t = {1+O�(α̊)+O(ε̊)} Å−1

∗
. We have therefore proved the theorem. �
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