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POSITIVITY, COMPLEX FIOS, AND TOEPLITZ OPERATORS

LEWIS A. COBURN, MICHAEL HITRIK AND JOHANNES SJÖSTRAND

We establish a characterization of complex linear canonical transformations that are positive with respect to
a pair of strictly plurisubharmonic quadratic weights. As an application, we show that the boundedness of
a class of Toeplitz operators on the Bargmann space is implied by the boundedness of their Weyl symbols.

1. Introduction and statement of results

The notion of a positive complex Lagrangian manifold, introduced in [Hörmander 1971], has long played
an important role in microlocal analysis and spectral theory. Restricting the attention to the linear case,
relevant for this work, let us recall that a complex Lagrangian planeƒ�C2n is said to be positive if we have

1

i
�.�; C.�//� 0; � 2ƒ: (1-1)

Here � is the complex symplectic form on C2n and C W C2n ! C2n is the antilinear map of complex
conjugation. Let us mention here several familiar problems, where considerations of positive Lagrangian
manifolds are essential. These include the spectral analysis and resolvent estimates for elliptic quadratic
differential operators [Sjöstrand 1974; Hitrik et al. 2013], the study of spectral instability and pseudospectra
for semiclassical nonnormal operators [Hörmander 1960; Dencker et al. 2004], as well as the construction
of Gaussian beam quasimodes for semiclassical self-adjoint operators of principal type, associated with
closed elliptic trajectories [Ralston 1976; Babich and Buldyrev 1991].

In [Sjöstrand 1982], one of us introduced and developed the notion of positivity of a complex Lagrangian
space relative to a strictly plurisubharmonic quadratic weight, which is the starting point for the present
work. To recall this notion, we let ˆ0 be a real-valued strictly plurisubharmonic quadratic form on Cn

and let us introduce the real linear subspace

ƒˆ0
D

��
x;

2

i

@ˆ0

@x
.x/

�
W x 2 Cn

�
� C2n: (1-2)

We can view ƒˆ0
as the image of the real phase space R2n � C2n under a suitable complex linear

canonical transformation on C2n, and in particular we notice that ƒˆ0
is maximally totally real. In
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analogy with the discussion above, we say that a complex linear Lagrangian space ƒ� C2n is positive
relative to ƒˆ0

provided that the natural analog of (1-1) holds,

1

i
�.�; �ˆ0

.�//� 0; � 2ƒ: (1-3)

Here the map of complex conjugation C has been replaced by the unique antilinear involution �ˆ0
W

C2n! C2n such that �ˆ0
jƒˆ0

D 1. A result of [Sjöstrand 1982] establishes a complete characterization
of complex Lagrangians that are positive relative to ƒˆ0

— see also Theorem 2.1 below.
In this work, we shall be mainly concerned with positive complex canonical transformations. Indeed,

the main goal of the present work is to provide a characterization of positive complex linear canonical
transformations relative to plurisubharmonic weights, and to consider Fourier integral operators (FIOs) in
the complex domain associated to positive canonical transformations, establishing a link between such
operators and Toeplitz operators. In particular, it seems that the point of view of complex FIOs allows us
to shed some new light on some basic questions in the theory of Toeplitz operators. We would like to
emphasize here that the original motivation for attempting to establish a link between FIOs in the complex
domain and Toeplitz operators came from a talk delivered by Coburn at the conference “Complex and
functional analysis and their interactions with harmonic analysis” at the Mathematical Research and
Conference Center, Będlewo, June 2017.

We shall now proceed to define the notion of a complex linear canonical transformation which is
positive relative to a strictly plurisubharmonic quadratic weight, and to state our main results. In fact,
proceeding in the spirit of the discussion above, it will be more transparent to introduce the notion of
positivity relative to a pair of strictly plurisubharmonic quadratic forms rather than relative to a single
one. Thus, let ˆ1, ˆ2 be two strictly plurisubharmonic quadratic forms on Cn with the corresponding
antilinear involutions �ˆ1

, �ˆ2
. Let � WC2n!C2n be a complex linear canonical transformation, ��� D � .

We say that � is positive relative to .ƒˆ1
; ƒˆ2

/ provided that

1

i

�
�.�.�/; �ˆ1

�.�//� �.�; �ˆ2
.�//

�
� 0; � 2 C2n: (1-4)

The positivity of � relative to .ƒˆ1
; ƒˆ2

/ is said to be strict provided that the inequality in (1-4) is strict
for all 0¤ � 2 C2n. Let us remark that in the case when the positivity is taken relative to the real phase
space R2n, see (1-1), such canonical transformations were studied in [Hörmander 1983, 1995]; see also
the recent works [Pravda-Starov et al. 2018; Aleman and Viola 2018].

We can now state the first main result of this work.

Theorem 1.1. Let � W C2n ! C2n be a complex linear canonical transformation and let ˆ1, ˆ2 be
strictly plurisubharmonic quadratic forms on Cn. The canonical transformation � is positive relative to
.ƒˆ1

; ƒˆ2
/ precisely when we have

�.ƒˆ2
/Dƒˆ; (1-5)

where ˆ is a strictly plurisubharmonic quadratic form such that ˆ�ˆ1.



POSITIVITY, COMPLEX FIOS, AND TOEPLITZ OPERATORS 329

Remark. The definition (1-4) of a positive canonical transformation is a direct adaptation of the corre-
sponding notion of positivity due to Hörmander [1983; 1995] to the weighted setting. One advantage of
the consideration of the general case of a pair of weights ˆ1, ˆ2 is that we can let � be the identity in
(1-4) and get an invariant notion of the positivity of one plurisubharmonic weight compared to another, in
view of Theorem 1.1.

Our second main result is concerned with applications of Theorem 1.1 to the study of Toeplitz operators
in the Bargmann space

Hˆ0
.Cn/DL2.Cn; e�2ˆ0L.dx//\Hol.Cn/;

where ˆ0 is a strictly plurisubharmonic quadratic form on Cn and L.dx/ is the Lebesgue measure
on Cn. See also (A-1). Specifically, we shall be concerned with the continuity properties of (in general
unbounded) Toeplitz operators of the form

Top.e2q/D…ˆ0
ı e2q

ı…ˆ0
WHˆ0

.Cn/!Hˆ0
.Cn/; (1-6)

where q is a complex-valued quadratic form on Cn and

…ˆ0
WL2.Cn; e�2ˆ0L.dx//!Hˆ0

.Cn/

is the orthogonal projection. Sufficient conditions for the boundedness of Top.e2q/ are provided in the
following result.

Theorem 1.2. Let ˆ0 be a strictly plurisubharmonic quadratic form on Cn and let q be a quadratic form
on Cn such that

2 Re q.x/ < ˆherm.x/ WD
1
2
.ˆ0.x/Cˆ0.ix//; x ¤ 0; (1-7)

@x@ Nx.ˆ0� q/¤ 0: (1-8)

Let a 2 C1.ƒˆ0
/ be the Weyl symbol of the Toeplitz operator Top.e2q/. Assume that a 2 L1.ƒˆ0

/.
Then the Toeplitz operator

Top.e2q/ WHˆ0
.Cn/!Hˆ0

.Cn/

is bounded.

Remark. Let us remark that Theorem 1.2 is closely related to the conjecture of [Berger and Coburn
1994; Coburn 2019] stating that a Toeplitz operator is bounded on Hˆ0

.Cn/ precisely when its Weyl
symbol is bounded on ƒˆ0

. Theorem 1.2 can therefore be regarded as establishing the sufficiency part
of the conjecture in the special case when the Toeplitz symbol is of the form exp.2q/, where q is a
complex-valued quadratic form on Cn, satisfying (1-7), (1-8).

Remark. As we shall see in Section 4, the strict inequality in condition (1-7) guarantees that the operator
Top.e2q/ is densely defined, and it seems difficult to weaken. Notice also that the Hermitian form ˆherm

in (1-7) is positive definite on Cn, thanks to the strict plurisubharmonicity of ˆ0.

The plan of the paper is as follows. In Section 2, we establish the necessity part of Theorem 1.1,
by means of direct geometric arguments, relying on some general results of [Sjöstrand 1982]; see also
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[Caliceti et al. 2012; Hitrik and Sjöstrand 2018]. The proof of Theorem 1.1 is completed in Section 3,
where we have found it convenient to introduce explicitly a Fourier integral operator in the complex domain
quantizing the canonical transformation � satisfying (1-5), when verifying the positivity of �. Applications
to Toeplitz operators are given in Section 4, where Theorem 1.2 is established. Appendix A is devoted
to some elementary remarks concerning integral representations for linear continuous maps between
weighted spaces of holomorphic functions, which can be regarded as a version of the Schwartz kernel
theorem in this setting. These representations are to be applied in the main text when deriving a Bergman-
type representation for our complex FIOs. Finally, Appendix B, for use in Section 4, characterizes
boundedness properties of operators given as Weyl quantizations of symbols of the form eiF.x;�/, where
F is a holomorphic quadratic form on C2n.

2. Positive Lagrangian planes and positive canonical transformations in the Hˆ-setting

Let ˆ0 be a strictly plurisubharmonic quadratic form on Cn. Associated to ˆ0 is the I-Lagrangian
R-symplectic linear manifold ƒˆ0

, given by

ƒˆ0
D

��
x;

2

i

@ˆ0

@x
.x/

�
W x 2 Cn

�
� C2n: (2-1)

The linear manifold ƒˆ0
is maximally totally real, and we let �ˆ0

be the unique antilinear involution

�ˆ0
W C2n

! C2n (2-2)

such that the restriction of �ˆ0
to ƒˆ0

is the identity. For future reference, we may recall the explicit
description of the involution �ˆ0

given in [Hitrik and Sjöstrand 2018],�
y;

2

i
.ˆ000;xxyCˆ000;x Nx Nx/

�
7!

�
x;

2

i
.ˆ000;xxxCˆ000;x Nx Ny/

�
: (2-3)

We also have
�ˆ0
W

�
y;

2

i
@y‰0.x; Ny/

�
7!

�
x;

2

i
@x‰0.x; Ny/

�
; (2-4)

where ‰0.x;y/ is the polarization of ˆ0, i.e., the unique holomorphic quadratic form on Cn
x �Cn

y such
that ‰0.x; Nx/Dˆ0.x/.

Let ƒ � C2n be a C-Lagrangian space, i.e., a complex linear subspace such that dimCƒ D n and
� jƒ D 0. Here � is the standard symplectic form on C2n. Let us consider the Hermitian form

b.�; �/D
1

i
�.�; �ˆ0

.�//; �; � 2 C2n: (2-5)

We say that ƒ is positive relative to ƒˆ0
if the Hermitian form (2-5) is positive semidefinite when

restricted to ƒ,
b.�; �/� 0; � 2ƒ: (2-6)

The positivity is said to be strict if the form b in (2-5) is positive definite along ƒ. As remarked in the
introduction, this notion is a direct adaptation of the corresponding notion of positivity due to Hörmander
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[1971], where in place of .ƒˆ0
; �ˆ0

/ we have .R2n; C/, with C being the antilinear map of complex
conjugation.

Remark. It is easy to see and is established in [Caliceti et al. 2012; Hitrik and Sjöstrand 2018] that the
Hermitian form b is nondegenerate along ƒ precisely when ƒ and ƒˆ0

are transversal.

Our starting point is the following well-known result; see [Sjöstrand 1982; Caliceti et al. 2012; Hitrik
and Sjöstrand 2018].

Theorem 2.1. A C-Lagrangian space ƒ is positive relative to ƒˆ0
if and only if ƒDƒ‰, where ‰ is a

pluriharmonic quadratic form such that ‰ �ˆ0.

The proof of Theorem 2.1 given in [Sjöstrand 1982; Caliceti et al. 2012; Hitrik and Sjöstrand 2018]
discusses the case of strictly positive Lagrangian planes only and depends on the general fact that the set
of all C-Lagrangian spaces which are strictly positive relative to ƒˆ0

is a connected component in the set
of all C-Lagrangian spaces that are transversal to ƒˆ0

. Here we shall give a more direct proof, using the
explicit description of the involution �ˆ0

, given in (2-3), (2-4). Let ƒ� C2n be C-Lagrangian, positive
relative to ƒˆ0

. It follows from (2-3), as explained in [Sjöstrand 1982; Hitrik and Sjöstrand 2018], that
the fiber f.0; �/I � 2 Cng is strictly negative relative to ƒˆ0

, in the sense that the Hermitian form b in
(2-5) is negative definite along the fiber, and therefore ƒ is necessarily of the form � D @x'.x/, where '
is a holomorphic quadratic form on Cn. It follows that

ƒDƒ‰; (2-7)

where ‰ D � Im' is pluriharmonic quadratic. We shall now see that ‰ � ˆ0, and to this end, let us
consider the decomposition

ˆ0 DˆhermCˆplh; (2-8)

where
ˆherm.x/Dˆ

00
0; Nxxx � Nx (2-9)

is positive definite Hermitian and

ˆplh.x/D Re.ˆ000;xxx �x/ (2-10)

is pluriharmonic. Let

AD
2

i
.ˆplh/

00
xx D

2

i
.ˆ0/

00
xx;

and let us consider the complex linear “vertical” canonical transformation

�A.y; �/D .y; �CAy/: (2-11)

We have
�A.ƒˆherm/Dƒˆ0

; (2-12)

and letting �ˆherm be the antilinear involution associated to ƒˆherm , it is then clear that

�ˆherm D �
�1
A ı �ˆ0

ı �A: (2-13)
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It follows that ƒ is positive relative to ƒˆ0
precisely when

��1
A .ƒ/Dƒ‰�ˆplh

is positive relative to ƒˆherm , and when proving Theorem 2.1 we may assume therefore that the plurihar-
monic part of ˆ0 vanishes. In this discussion, we are also allowed to perform complex linear changes of
variables in Cn, which correspond to canonical transformations of the form �C W .y; �/ 7! .C�1y;C t�/,
where C is an invertible complex n� n matrix. We have �C .ƒˆ0

/ D ƒˆ1
, ˆ1.x/ D ˆ0.Cx/, and it

follows therefore that when establishing Theorem 2.1 it suffices to consider the model case when

ˆ0.x/D
1
2
jxj2: (2-14)

An application of (2-3) shows that the involution �ˆ0
is then given by

.y; �/ 7!

�
1

i
N�;

1

i
Ny

�
; (2-15)

and therefore

b.�; �/D
1

i
�.�; �ˆ0

.�//D jxj2� j�j2; �D .x; �/ 2 C2n: (2-16)

When � 2 ƒ D ƒ‰, we write � D .2= i/@x‰.x/ D @x'.x/, ‰.x/ D � Im', where ' is a quadratic
holomorphic form, and therefore if ƒ is positive relative to ƒˆ0

, then (2-16) shows that

j'00xxxj � jxj; x 2 Cn
() k'00xxk � 1: (2-17)

We get
‰.x/D� Im'.x/� 1

2
j'00xxx �xj � 1

2
jxj2 Dˆ0.x/; x 2 Cn: (2-18)

Conversely, let ƒ be C-Lagrangian of the form ƒDƒ‰, where ‰ is pluriharmonic quadratic such that
‰ �ˆ0. Let us write ‰ D� Im', where ' is a holomorphic quadratic form. We shall now see that ƒ‰
is positive relative to ƒˆ0

, and it follows from the remarks above that it suffices to verify the positivity in
the model case when ˆ0 is given by (2-14), so that we have

‰.x/D� Im'.x/�ˆ0.x/D
1
2
jxj2: (2-19)

Writing
� Im'00xxx �x � jxj2; (2-20)

replacing x by ei�x and varying � 2 R, we get

j'00xxx �xj � jxj2; x 2 Cn: (2-21)

Next, writing
'00xxx �y D 1

4

�
'00xx.xCy/ � .xCy/�'00xx.x�y/ � .x�y/

�
;

we get, using (2-21),

j'00xxx �yj � 1
4
.jxCyj2Cjx�yj2/D 1

2
.jxj2Cjyj2/: (2-22)
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Replacing x 7! �1=2x, y 7! ��1=2y, � > 0, we get

j'00xxx �yj �
1

2

�
�jxj2C

1

�
jyj2

�
; (2-23)

and choosing �D jyj=jxj, assuming for simplicity that x ¤ 0, y ¤ 0, we obtain

j'00xxx �yj � jxjjyj:

Hence, k'00xxk � 1 and the positivity of ƒ‰ relative to ƒˆ0
follows from (2-16), (2-17). The proof of

Theorem 2.1 is complete.

Remark. Closely related to the proof of Theorem 2.1 given above is the normal form for strictly plurisub-
harmonic quadratic forms, given in Lemma 5.1 of [Hörmander 1997]; see also [Harvey and Wells 1973].

Letˆ1, ˆ2 be two strictly plurisubharmonic quadratic forms on Cn and let � WC2n!C2n be a complex
linear canonical transformation which is positive relative to .ƒˆ1

; ƒˆ2
/, in the sense of (1-4). In the

remainder of this section, we shall establish the necessity part of Theorem 1.1, while the sufficiency is
discussed in Section 3. To this end, let us observe first that the linear I-Lagrangian R-symplectic manifold
�.ƒˆ2

/ is transversal to the fiber f.0; �/ W � 2 Cng. Indeed, we have in view of (1-4),

1

i
�.�; �ˆ1

.�//� 0; � 2 �.ƒˆ2
/; (2-24)

while, as recalled above, we know from [Sjöstrand 1982; Hitrik and Sjöstrand 2018] that the fiber is
strictly negative relative to ƒˆ1

. It follows that �.ƒˆ2
/Dƒˆ, where ˆ is a real quadratic form such that

the Levi form N@@ˆ is nondegenerate. When verifying that ˆ is (necessarily strictly) plurisubharmonic,
we claim that it suffices to do so when the pluriharmonic part of ˆ2 vanishes. Indeed, introducing
the decomposition (2-8), with the quadratic form ˆ2 in place of ˆ0 and considering the canonical
transformation �A given in (2-11), we see, using also (2-13), that � is positive relative to .ƒˆ1

; ƒˆ2
/

precisely when ��1
A
ı � ı �A is positive relative to .ƒˆ1�ˆ2;plh ; ƒˆ2;herm/. Here ˆ2;plh and ˆ2;herm are the

pluriharmonic and the Hermitian parts of ˆ2, respectively. Here it is also helpful to notice that

�ˆ1�ˆ2;plh D �
�1
A ı �ˆ1

ı �A:

To summarize, if we know that the generating function of the linear I-Lagrangian R-symplectic manifold

��1
A ı � ı �A.ƒˆ2;herm/

is plurisubharmonic, then the same property is also enjoyed by the generating function of �.ƒˆ2
/. In

what follows we shall assume therefore that

ˆ2;xx Dˆ2; Nx Nx D 0: (2-25)

As above, in this discussion, we are also allowed to perform complex linear changes of variables in Cn,
which correspond to canonical transformations of the form .y; �/ 7! .C�1y;C t�/, where C is an invertible
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complex n�n matrix. Such canonical transformations preserve the plurisubharmonicity of the generating
functions, and similarly to the proof of Theorem 2.1, it suffices therefore to consider the case when

ˆ2.x/D
1
2
jxj2: (2-26)

Theorem 2.1 then shows that the C-Lagrangian plane given by f.x; �/ 2 C2n W � D 0g is strictly positive
relative to ƒˆ2

, and therefore �.f.x; �/ 2 C2n W � D 0g/ is strictly positive relative to ƒˆ1
, in view of the

positivity of �. Another application of Theorem 2.1 gives that

�.f.x; �/ 2 C2n
W � D 0g/Dƒ‰; (2-27)

where the quadratic form ‰ is pluriharmonic, with ‰ �ˆ1.
Let �.x;y; �/ be a holomorphic quadratic form on Cn

x �Cn
y �CN

�
, which is a nondegenerate phase

function in the sense of Hörmander, generating the graph of �. It follows from (2-27), as explained in
[Caliceti et al. 2012], that the quadratic form

Cn
�CN

3 .y; �/ 7! � Im�.0;y; �/ (2-28)

is nondegenerate, and since it is pluriharmonic, the signature is necessarily .nCN; nCN /. Recalling
that

�.ƒˆ2
/Dƒˆ; (2-29)

we see, using [Caliceti et al. 2012], that the quadratic form

.y; �/ 7! � Im�.0;y; �/Cˆ2.y/ (2-30)

is nondegenerate as well. We would like to conclude that the signature of the quadratic form in (2-30) is
also .nCN; nCN /, and to that end, we follow [Sjöstrand 1982] and consider the continuous deformation

Œ0; 1� 3 t 7! � Im�.0;y; �/C tˆ2.y/: (2-31)

Using (2-16) we see that

1

i
�.�; �ˆ2

.�//� 0; � 2ƒtˆ2
; 0� t � 1: (2-32)

It follows as before that the I-Lagrangian manifold �.ƒtˆ2
/ is transversal to the fiber, 0 � t � 1, and

therefore we conclude that the nondegeneracy of the quadratic forms in (2-31) is maintained along the
deformation 0� t � 1. Recalling that the set of nondegenerate quadratic forms of a fixed given signature
is a connected component in the set of all nondegenerate quadratic forms, we conclude that the signature
of the quadratic form in (2-30) is .nCN; nCN /. Now, as explained in [Caliceti et al. 2012], the quadratic
form ˆ in (2-29) is given by

ˆ.x/D vcy;� .� Im�.x;y; �/Cˆ2.y//; (2-33)

where vcy;� stands for the critical value with respect to y, � , and we conclude by the fundamental
lemma of [Sjöstrand 1982], see also [Hitrik and Sjöstrand 2018], that ˆ is plurisubharmonic. (As already
observed, the plurisubharmonicity of ˆ is necessarily strict.)
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We shall next see that ˆ � ˆ1, and when doing so it will be convenient to discuss the following
auxiliary result first, which may be of some independent interest.

Proposition 2.2. Let � W C2n ! C2n be a complex linear canonical transformation which is positive
relative to .ƒˆ1

; ƒˆ2
/. If ˆ2 is strictly convex then � has a generating function '.x; �/ which is a

holomorphic quadratic form such that

� W .'0�.x; �/; �/ 7! .x; '0x.x; �//: (2-34)

Proof. It suffices to show that the map

� W graph.�/ 3 .x; �Iy; �/ 7! .x; �/ 2 C2n

is bijective, i.e., injective. Let .0; �Iy; 0/ 2 Ker.�/ so that � W .y; 0/ 7! .0; �/. Let us consider the
Hermitian forms

bj .�; �/D
1

i
�.�; �

ĵ
.�//; j D 1; 2:

The strict convexity of ˆ2 together with Theorem 2.1 implies

b2..y; 0/; .y; 0//� jyj
2; y 2 Cn; (2-35)

and the strict negativity of the fiber with respect to ƒˆ1
gives

b1..0; �/; .0; �//��j�j
2; � 2 Cn:

Hence by the positivity of �, we get

0� b1..0; �/; .0; �//� b2..y; 0/; .y; 0//��.j�j
2
Cjyj2/:

It follows that .y; �/D 0 and we conclude that � is injective. �

Remark. Suppose that the assumptions of Proposition 2.2 hold. The holomorphic quadratic form
'.x; �/�y � � is then a nondegenerate phase function generating the graph of �.

Let us now turn to the proof of the fact that

ˆ�ˆ1: (2-36)

It follows from the remarks above that it suffices to verify (2-36) when the pluriharmonic part of ˆ2

vanishes, and since we are again allowed to perform complex linear changes of variables in Cn, as before,
we conclude that it suffices to consider the case when ˆ2 is given by (2-26). Proposition 2.2 applies and
there exists therefore a holomorphic quadratic form '.x; �/ such that

� W .'0� .x; �/; �/ 7! .x; '0x.x; �//: (2-37)

We shall now express the positivity of � relative to .ƒˆ1
; ƒˆ2

/ in terms of the generating function '. To
this end, we shall first obtain an explicit expression for the Hermitian form

1

i
�..y; �/; �ˆ1

.y; �//; .y; �/ 2 C2n;
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where we write

ˆ1.x/D
1
2
L Nx �xCRe.Ax �x/; LD 2ˆ001;x Nx; ADˆ001;xx : (2-38)

Here L is Hermitian positive definite and performing a unitary transformation, we may assume, for
simplicity, that L is diagonal, with real positive diagonal elements. A simple computation using (2-3)
shows that

1

i
�..y; �/; �ˆ1

.y; �//DL Ny �yC .2Ay � i�/ �x; (2-39)

where
L Nx D i�� 2Ay;

and therefore we get

1

i
�..y; �/; �ˆ1

.y; �//DL Ny �y �L�1.2iAyC �/ � .2iAyC �/: (2-40)

Using also (2-37), we conclude that � is positive relative to .ƒˆ1
; ƒˆ2

/ precisely when

L�1.'0xC 2iAx/ � .'0xC 2iAx/Cj'0� .x; �/j
2
�L Nx �xCj� j2; .x; �/ 2 C2n: (2-41)

It is now easy to conclude the proof of the necessity part of Theorem 1.1, using (2-41). It follows from
(2-33) that we can write

ˆ.x/D vcy;�

�
� Im.'.x; �/�y � �/Cˆ2.y/

�
: (2-42)

At the unique critical point .y.x/; �.x//, we have

y D '0� .x; �/; (2-43)

2

i

@ˆ2

@y
.y/D � () � D

1

i
Ny: (2-44)

Injecting (2-44) into (2-42), we get

ˆ.x/D� Im'.x; �/� 1
2
j� j2; � D �.x/; (2-45)

and in view of (2-38), it suffices therefore to establish the inequality

�2 Im'.x; �/�L Nx �xCj� j2C 2 Re.Ax �x/; .x; �/ 2 C2n: (2-46)

When verifying (2-46), we write, using the Euler homogeneity relation,

2'.x; �/D '0x.x; �/ �xC'
0
� .x; �/ � �; (2-47)

and therefore,

�2 Im'.x; �/D� Im
�
.'0x.x; �/C 2iAx/ �xC'0� .x; �/ � �

�
C 2 Re.Ax �x/: (2-48)

An application of the Cauchy–Schwarz inequality with respect to the positive definite Hermitian forms
.x;y/ 7!L�1x � Ny, .x;y/ 7! x � Ny together with the inequality ab � 1

2
a2C

1
2
b2 allows us to conclude
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that the first term in the right-hand side of (2-48) does not exceed

1
2

�
L�1.'0xC 2iAx/ � .'0xC 2iAx/CL Nx �xCj'0� .x; �/j

2
Cj� j2

�
:

The inequality (2-46) follows, in view of (2-41). The proof of the necessity part of Theorem 1.1 is
complete.

Remark. In the context of Theorem 1.1, assume that ˆ1 Dˆ2 DWˆ0 and let us write

ˆ0.x/D sup
y2Rn

.� Im'.x;y//; (2-49)

where '.x;y/ is a holomorphic quadratic form on Cn
x �Cn

y such that det'00xy ¤ 0 and Im'00yy > 0. In the
special case when ˆ0 is given by (2-26), we can take

'.x;y/D i
�

1
2
x2
C
p

2x �yC 1
2
y2
�
:

The complex canonical transformation

�' W C
2n
3 .y;�'0y.x;y// 7! .x; '0x.x;y// 2 C2n (2-50)

maps R2n bijectively ontoƒˆ0
, see [Hitrik and Sjöstrand 2018], and it exchanges the complex conjugation

map C and the involution �ˆ0
. Setting

Q� D ��1
' ı � ı �' ; (2-51)

we see that the complex linear canonical transformation Q� is positive in the sense of [Hörmander 1995],

1

i

�
�. Q�.�/; C Q�.�//� �.�; C.�//

�
� 0; � 2 C2n: (2-52)

An application of Proposition 5.10 of [Hörmander 1995] allows us to conclude therefore that the map Q�
enjoys the factorization

Q� D Q�1 ı Q�2 ı Q�3; (2-53)

where Q�1 and Q�3 are real linear canonical maps and the map Q�2 is of the form

Q�2 D exp.�iHQq/; (2-54)

where Qq is a quadratic form with Re Qq�0 on R2n — see also the discussion in the proof of Proposition 5.12
of [Hörmander 1995]. We obtain the factorization

� D �1 ı �2 ı �3; (2-55)

where we have
�j Wƒˆ0

!ƒˆ0
; j D 1; 3; (2-56)

and
�2 D exp.�iHq/; (2-57)

where q is a holomorphic quadratic form on C2n such that Re q � 0 along ƒˆ0
. The representation (2-55)

can be used to give an alternative proof of the basic inequality ˆ�ˆ0 in Theorem 1.1, in this special case.
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3. Positivity and Fourier integral operators

The purpose of this section is to establish the sufficiency part of Theorem 1.1. To this end, let ˆ1, ˆ2 be
two strictly plurisubharmonic quadratic forms on Cn and let � WC2n!C2n be a complex linear canonical
transformation. Assume that

�.ƒˆ2
/Dƒˆ; (3-1)

where ˆ is a strictly plurisubharmonic quadratic form such that

ˆ�ˆ1: (3-2)

We shall establish the positivity of � relative to .ƒˆ1
; ƒˆ2

/ by making a judicious choice of a nonde-
generate phase function generating the graph of �, and to this end, it will be convenient to consider a
metaplectic Fourier integral operator associated to �. Let therefore '.x;y; �/ be a holomorphic quadratic
form on Cn

x �Cn
y �CN

�
, which is a nondegenerate phase function in the sense of Hörmander, generating

the graph of �. It follows from [Caliceti et al. 2012] that the plurisubharmonic quadratic form

Cn
�CN

3 .y; �/ 7! � Im'.0;y; �/Cˆ2.y/ (3-3)

is nondegenerate of signature .nCN; nCN /. We conclude, following [Sjöstrand 1982; Caliceti et al.
2012] that the Fourier integral operator

Au.x/D

“
ei'.x;y;�/au.y/ dy d�; a 2 C; (3-4)

quantizing �, can be realized by means of a good contour and we obtain a bounded linear map,

A WHˆ2
.Cn/!Hˆ.C

n/: (3-5)

Here

Hˆ2
.Cn/D Hol.Cn/\L2.Cn; e�2ˆ2L.dx//;

with Hˆ.C
n/ having an analogous definition.

We shall now discuss a Bergman-type representation of the bounded operator in (3-5); see also [Melin
and Sjöstrand 2003] for a related discussion. To this end, let us recall from Theorem A.1 that we can
write

Au.x/D

Z
KA.x; Ny/u.y/ e�2ˆ2.y/L.dy/DW QAu.x/: (3-6)

Here the kernel KA.x; z/ is holomorphic on Cn
x �Cn

z , with

y 7!K.x; Ny/ 2Hˆ2
.Cn/;

uniquely determined by (3-6). If u 2L2
ˆ2
.Cn/DL2.Cn; e�2ˆ2L.dx// is orthogonal to Hˆ2

.Cn/, we
see from (3-6) that QAuD 0. Hence the operator QA in (3-6) is a well-defined linear continuous map

QA WL2
ˆ2
.Cn/!Hˆ2

.Cn/:
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Furthermore, QA extends to a map: E 0.Cn/! Hol.Cn/ and we have

KA.x; Ny/e
�2ˆ2.y/ D . QAıy/.x/; (3-7)

where ıy 2 E 0.Cn/ is the delta function at y. Let next …2 W L
2
ˆ2
.Cn/! Hˆ2

.C/ be the orthogonal
projection and let us recall from [Hitrik and Sjöstrand 2018] that the operator …2 is given by

…2u.x/D a2

Z
e2‰2.x; Ny/�ˆ2.y/u.y/L.dy/; a2 > 0: (3-8)

Here‰2 is the polarization ofˆ2, i.e., a holomorphic quadratic form on C2n
x;y such that‰2.x; Nx/Dˆ2.x/.

We get QAıy D QA…2ıy DA…2ıy , and it follows from (3-7) that

KA.x; Ny/DA.a2e2‰2. � ; Ny//.x/: (3-9)

From [Hitrik and Sjöstrand 2018], let us recall the basic property

2 Re‰2.x; Ny/�ˆ2.x/�ˆ2.y/��jx�yj2

on Cn
x �Cn

y , and in particular we have

2 Re‰2.x; Ny/�ˆ2.x/Cˆ2.y/: (3-10)

It follows that
� Im'.0; Qy; �/C 2 Re‰2. Qy; 0/� � Im'.0; Qy; �/Cˆ2. Qy/: (3-11)

Here, as observed in (3-3), the right-hand side is a nondegenerate plurisubharmonic quadratic form of
signature .nCN; nCN /, and since the left-hand side is pluriharmonic, we conclude that it is also
nondegenerate of signature .nCN; nCN /. Writing

� Im'.0; Qy; �/C 2 Re‰2. Qy; 0/D Re.i'.0; Qy; �/C 2‰2. Qy; 0//;

we conclude that the holomorphic quadratic form

Cn
�CN

3 . Qy; �/ 7! i'.0; Qy; �/C 2‰2. Qy; 0/

is nondegenerate. It follows that the holomorphic function

Cn
�CN

3 . Qy; �/ 7! i'.x; Qy; �/C 2‰2. Qy; z/

has a unique critical point which is nondegenerate for each .x; z/ 2 Cn �Cn. An application of exact
(quadratic) stationary phase allows us therefore to conclude that

KA.x; Ny/D Oae2‰.x; Ny/; Oa 2 C: (3-12)

Here ‰.x; z/ is a holomorphic quadratic form on C2n given by

2‰.x; z/D vc Qy;� .i'.x; Qy; �/C 2‰2. Qy; z//: (3-13)

Let us now make the following basic observation.
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Proposition 3.1. The holomorphic quadratic form ‰.x; z/ given in (3-13) satisfies

2 Re‰.x; Ny/�ˆ.x/Cˆ2.y/; .x;y/ 2 Cn
x �Cn

y : (3-14)

Proof. It will be more convenient to verify that

2 Re‰.x;y/�ˆ.x/Cˆ�2.y/; .x;y/ 2 Cn
x �Cn

y ; (3-15)

where ˆ�
2
.y/Dˆ2. Ny/. A direct calculation shows that

2

i
@yˆ

�
2.y/D�

2

i
.@yˆ2/. Ny/;

or equivalently,
2

i
@y.ˆ

�
2/. Ny/D�

2

i
.@yˆ2/.y/:

It follows that the antilinear involution

� W C2n
3 .y; �/ 7! . Ny;�N�/ 2 C2n (3-16)

maps ƒˆ2
bijectively onto ƒˆ�

2
. We conclude in view of (3-1) that

� ı� Wƒˆ�
2
!ƒˆ; (3-17)

and let us consider the graph of the map in (3-17), Graph.� ı �/\ .ƒˆ �ƒˆ�
2
/. Here ƒˆ �ƒˆ�

2
D

ƒˆ.x/Cˆ�
2
.y/ is I-Lagrangian and R-symplectic for the standard symplectic form

d� ^ dxC d�^ dy (3-18)

on C2n
x;�
�C2n

y;� and we claim that Graph.� ı�/\ .ƒˆ �ƒˆ�
2
/ is Lagrangian for the symplectic form in

(3-18), restricted to ƒˆ �ƒˆ�
2

. This can be seen by a direct computation: when .t; s/ 2ƒˆ�
2
�ƒˆ�

2
we

have, writing � for the standard symplectic form on C2n,

�
�
�.�.t//; �.�.s//

�
C �.t; s/D �.�.t/; �.s//C �.t; s/D��.t; s/C �.t; s/D 0;

since �.t; s/ is real. Here we have also used that, by a straightforward computation,

�.� t; �s/D��.t; s/: (3-19)

It is then well known that �x;y.Graph.�ı�/\.ƒˆ�ƒˆ�
2
//, the projection of Graph.�ı�/\.ƒˆ�ƒˆ�

2
/

in C2n
x;y , is maximally totally real; see [Melin and Sjöstrand 2003].

We now come to check (3-15). To this end, we observe that (3-13) gives

2@x‰.x;y/D i@x'.x; Qy; �/; (3-20)

2@y‰.x;y/D 2@y‰2. Qy;y/; (3-21)

where

@�'.x; Qy; �/D 0; @ Qy'.x; Qy; �/C
2

i
@ Qy‰2. Qy;y/D 0: (3-22)
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We shall consider (3-20), (3-21) at the points .x;y/2�x;y.Graph.�ı�/\ƒˆ�ƒˆ�
2
/, which corresponds

to Qy D Ny in (3-22). Using (3-22) together with the fact that

@ Qy‰2. Qy; NQy/D @ Qyˆ2. Qy/;

and (3-21) together with the fact that

.@y‰2/. Ny;y/D @yˆ
�
2.y/;

we conclude that at the points

.x;y/ 2 �x;y.Graph.� ı�/\ƒˆ �ƒˆ�
2
/;

the following equalities hold:

@x‰.x;y/D @xˆ.x/; @y‰.x;y/D @yˆ
�
2.y/: (3-23)

In other words,
@x.ˆ.x/� 2 Re‰.x;y//D @y.ˆ

�
2.y/� 2 Re‰.x;y//D 0;

along �x;y.Graph.� ı�/\ƒˆ �ƒˆ�
2
/, and thus the gradient of the real-valued function

F.x;y/Dˆ.x/Cˆ�2.y/� 2 Re‰.x;y/ (3-24)

vanishes on �x;y.Graph.� ı�/\ƒˆ�ƒˆ�
2
/. It follows that the strictly plurisubharmonic quadratic form

F.x;y/ vanishes to the second order along

�x;y.Graph.� ı�/\ƒˆ �ƒˆ�
2
/; (3-25)

and since the latter is maximally totally real, we get F � 0, thus implying (3-15). �

Remark. The strictly plurisubharmonic quadratic form F.x;y/ in (3-24) vanishes to the second order
along the maximally totally real subspace (3-25), and therefore the conclusion that F � 0 can be
strengthened to

F.x;y/� dist
�
.x;y/; �x;y.Graph.� ı�/\ƒˆ �ƒˆ�

2
/
�2
:

Let us now return to the Bergman-type representation of the Fourier integral operator A in (3-4)
quantizing �. Combining (3-6) and (3-12), we get

Au.x/D

“
Lae2.‰.x; Ny/�ˆ2.y//u.y/ dy d Ny (3-26)

for some La 2 C. This can be viewed as a Fourier integral operator

Au.x/D

“
Lae2.‰.x;�/�‰2.y;�//u.y/ dy d�; (3-27)

where we take the integration contour � D Ny in (3-27).
Since @y@�‰2.y; �/ is nondegenerate, the phase function

�.x;y; �/D
2

i
.‰.x; �/�‰2.y; �// (3-28)
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is nondegenerate in the sense of Hörmander, and the canonical transformation � takes the form

� W
�
y;

2

i
@y‰2.y; �/

�
7!

�
x;

2

i
@x‰.x; �/

�
; with @�‰.x; �/D @�‰2.y; �/: (3-29)

We may also notice here that if we define

�‰ W
�
�;�

2

i
@�‰.y; �/

�
7!

�
y;

2

i
@y‰.y; �/

�
and �‰2

similarly, then � D �‰ ı ��1
‰2

.
The discussion so far shows that the canonical transformation � enjoying the mapping properties (3-1),

(3-2), admits a nondegenerate phase function of the form (3-28), where the quadratic form ‰ satisfies

2 Re‰.x; Ny/�ˆ1.x/Cˆ2.y/; .x;y/ 2 Cn
x �Cn

y : (3-30)

The positivity of � relative to .ƒˆ1
; ƒˆ2

/ is then implied by the following general result.

Proposition 3.2. Let � be a canonical transformation satisfying (3-1) and let us consider a metaplectic
Fourier integral operator of the form (3-26), or equivalently (3-27), associated to �. Then the following
conditions are equivalent:

(i) � is positive relative to .ƒˆ1
; ƒˆ2

/ in the sense of (1-4):

1

i
�.t1; �ˆ1

t1/�
1

i
�.t2; �ˆ2

t2/� 0; whenever t1 D �.t2/; t2 2 C2n: (3-31)

(ii) ƒ2 Re‰.x; Ny/ is positive relative to ƒˆ1.x/Cˆ2.y/.

(iii) 2 Re‰.x; Ny/�ˆ1.x/�ˆ2.y/� 0 on Cn
x �Cn

y .

Proof. The equivalence (ii),(iii) follows from Theorem 2.1, so it suffices to show the equivalence
(i),(ii).

Clearly, (iii) is equivalent to

2 Re‰.x;y/�ˆ1.x/�ˆ
�
2.y/� 0 on C2n

x;y ; (3-32)

where ˆ�
2
.y/Dˆ2. Ny/.Dˆ2. Ny//, and by Theorem 2.1(ii) is equivalent to

ƒ2 Re‰.x;y/ is positive relative to ƒˆ1.x/Cˆ
�
2
.y/: (3-33)

We have
ƒ2 Re‰ D

n�
x;

2

i
@x2 Re‰.x;y/Iy; 2

i
@y2 Re‰.x;y/

�o
D

n�
x;

2

i
@x‰.x;y/Iy;

2

i
@y‰.x;y/

�o
; (3-34)

and (3-33) means that

1

i
�.t1; �ˆ1

t1/C
1

i
�.t2; �ˆ�

2
t2/� 0 for all .t1; t2/ 2ƒ2 Re‰: (3-35)

Here, we shall relate the involutions �ˆ�
2

and �ˆ2
. From (2-4) let us recall that �ˆ2

is given by

�ˆ2
W

�
y;

2

i
@y‰2.x; Ny/

�
7!

�
x;

2

i
@x‰2.x; Ny/

�
: (3-36)
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We also know that the antilinear involution � , given in (3-16), maps ƒˆ2
bijectively onto ƒˆ�

2
, and since

�ˆ2
, �ˆ�

2
are the unique antilinear maps equal to the identity on ƒˆ2

and ƒˆ�
2

respectively, it follows that

�ˆ�
2
D ��ˆ2

�: (3-37)

From (3-19), let us recall that
1

i
�.� t; �s/D

1

i
�.t; s/;

so using (3-37), we find that the second term in (3-35) is equal to

1

i
�.t2; ��ˆ2

� t2/D
1

i
�.� t2; �ˆ2

� t2/D
1

i
�.� t2; �ˆ2

� t2/D�
1

i
�.�ˆ2

� t2; � t2/;

where we also used the fact that .1= i/�.t; �ˆ2
t/ is real. Hence (3-33) is equivalent, via (3-35), to

1

i
�.t1; �ˆ1

t1/�
1

i
�.�ˆ2

� t2; � t2/� 0 for all .t1; t2/ 2ƒ2 Re‰: (3-38)

From (3-36), we get

�ˆ2
� W

�
Ny;�

2

i
@y‰2.x; Ny/

�
7!

�
x;

2

i
@x‰2.x; Ny/

�
I

i.e.,

�ˆ2
� W

�
�;

2

i
@�‰2.y; �/

�
7!

�
y;

2

i
@y‰2.y; �/

�
; (3-39)

where we changed the notation slightly for convenience.
Write

ƒ2 Re‰ 3 .t1; t2/D
�
x;

2

i
@x‰.x; �/I �;

2

i
@�‰.x; �/

�
;

and put t3 D �ˆ2
� t2, so that by (3-39)

t3 D
�
y;

2

i
@y‰2.y; �/

�
;

where �
�;

2

i
@�‰.x; �/

�
D

�
�;

2

i
@�‰2.y; �/

�
:

Comparing with (3-29), we see that t1 D �.t3/. Since � t2 D �2
ˆ2
� t2 D �ˆ2

t3, we see that (3-38) is
equivalent to

1

i
�.t1; �ˆ1

t1/�
1

i
�.t3; �ˆ2

t3/� 0; when t1 D �.t3/; (3-40)

which is precisely (3-31) up to a change of notation. This completes the proof of the equivalence (i),(ii)
and of the proposition. �

Combining Propositions 3.1 and 3.2, we see that the proof of the sufficiency part of Theorem 1.1 is
now complete.

Remark. Let � W C2n! C2n be a complex linear canonical transformation such that (3-1) holds, where
ˆ2, ˆ are strictly plurisubharmonic. It follows from (3-23) that the holomorphic quadratic form ‰.x;y/
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depends only on � and on the weights ˆ2, ˆ, but not on the choice of a nondegenerate phase function
'.x;y; �/, .x;y; �/ 2 Cn

x �Cn
y �CN

�
such that

ƒ0' D Graph.�/;

where
ƒ0' D f.x; '

0
x.x;y; �/Iy;�'

0
y.x;y; �// W '

0
� .x;y; �/D 0g:

It follows that if  .x;y; w/, .x;y; w/ 2 Cn
x �Cn

y �CN 0

w , is a second nondegenerate phase function such
that

ƒ0' Dƒ
0
 D Graph.�/;

then both ' and  give rise to the same Fourier integral operators, realized as bounded linear maps:
Hˆ2

.Cn/!Hˆ.C
n/.

We shall finish this section by making some remarks concerning metaplectic Fourier integral operators
in the complex domain, associated to canonical transformations that are strictly positive relative to
.ƒˆ1

; ƒˆ2
/. Let

� W C2n
! C2n (3-41)

be a complex linear canonical transformation which is strictly positive relative to .ƒˆ1
; ƒˆ2

/. According
to Theorem 1.1, we then have

�.ƒˆ2
/Dƒˆ; (3-42)

where ˆ is a strictly plurisubharmonic quadratic form on Cn such that

ˆ1.x/�ˆ.x/� jxj
2; x 2 Cn: (3-43)

Let

T u.x/D

“
ei�.x;y;�/au.y/ dy d�; a 2 C;

be a Fourier integral operator associated to �. As discussed above, it follows from [Caliceti et al. 2012;
Sjöstrand 1982] that the operator T can be realized by means of a suitable good contour and we then
obtain a bounded operator

T WHˆ2
.Cn/!Hˆ.C

n/: (3-44)

It follows from (3-43) that the inclusion map Hˆ.C
n/! Hˆ1

.C/ is compact, and the operator T W

Hˆ2
.Cn/!Hˆ1

.Cn/ is therefore compact. The following sharpening is essentially well known; see
[Aleman and Viola 2018].

Proposition 3.3. The operator
T WHˆ2

.Cn/!Hˆ1
.Cn/

is of trace class, with the singular values sj .T / satisfying

sj .T /DO.j�1/: (3-45)
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Proof. Let q be a holomorphic quadratic form on C2n such that its restriction toƒˆ1
is real positive definite.

Let us introduce the Weyl quantization of q, the operator Q D qw.x;Dx/. The quadratic differential
operator Q is self-adjoint on Hˆ1

.Cn/ with discrete spectrum, and let us consider the metaplectic Fourier
integral operator etQ, 0� t � t0� 1, acting on the space Hˆ.C

n/. Using some well-known arguments,
explained in detail in [Hérau et al. 2005; Hitrik and Pravda-Starov 2009; Hitrik et al. 2018], we see that,
for t 2 Œ0; t0� with t0 > 0 small enough, the operator etQ is bounded,

etQ
WHˆ.C

n/!Hˆt
.Cn/; (3-46)

where ˆt is a strictly plurisubharmonic quadratic form on Cn, depending smoothly on t � 0 small enough,
such that

ˆt .x/Dˆ.x/CO.t/jxj2: (3-47)

Combining this observation with (3-43) we conclude that there exists ı > 0 small enough such that the
operator

eıQT WHˆ2
.Cn/!Hˆ1

.Cn/ (3-48)

is bounded. Writing
T D e�ıQeıQT; (3-49)

and applying the Ky Fan inequalities, we get

sj .T /� sj .e
�ıQ/keıQT kL.Hˆ2

;Hˆ1
/ DO.j�1/:

Here we have also used the fact that the singular values of the compact positive self-adjoint operator
e�ıQ on Hˆ1

.Cn/ satisfy
sj .e

�ıQ/DO.j�1/:

It follows that T is of trace class and the proof of the proposition is complete. �

4. Applications to Toeplitz operators

The purpose of this section is to apply the point of view of Fourier integral operators in the complex
domain, developed in the previous sections, to the study of Toeplitz operators in the Bargmann space,
establishing Theorem 1.2.

Let ˆ0 be a strictly plurisubharmonic quadratic form on Cn and let p W Cn ! C be measurable.
Associated to p is the Toeplitz operator

Top.p/D…ˆ0
ıp ı…ˆ0

WHˆ0
.Cn/!Hˆ0

.Cn/: (4-1)
Here

…ˆ0
WL2.Cn; e�2ˆ0L.dx//!Hˆ0

.Cn/

is the orthogonal projection. We shall always assume that when equipped with the natural domain

D.Top.p//D fu 2Hˆ0
.Cn/ W pu 2L2.Cn; e�2ˆ0L.dx//g; (4-2)

the operator Top.p/ becomes densely defined.
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For future reference, let us recall the link between the Toeplitz and Weyl quantizations on Cn. Let
p 2L1.Cn/, say. Then we have

Top.p/D aw.x;Dx/; (4-3)

where a 2 C1.ƒˆ0
/ is given by

a

�
x;

2

i

@ˆ0

@x
.x/

�
D
�
exp

�
1
4
.ˆ000;x Nx/

�1@x � @ Nx
�
p
�
.x/; x 2 Cn: (4-4)

See [Guillemin 1984; Sjöstrand 1996]. Here �.ˆ00
0;x Nx

/�1@x � @ Nx is a constant coefficient second-order
differential operator on Cn whose symbol is the positive definite quadratic form

1
4
.ˆ000;x Nx/

�1 N� � � > 0; 0¤ � 2 Cn
' R2n;

and therefore the operator in (4-4) can be regarded as the forward heat flow acting on p.
In this section we shall be concerned with the question of when an operator of the form Top.p/ is

bounded,
Top.p/ 2 L.Hˆ0

.Cn/;Hˆ0
.Cn//;

and following [Berger and Coburn 1994], in doing so we shall only consider Toeplitz symbols of the
form

p D e2q; (4-5)

where q is a complex-valued quadratic form on Cn. Let us first proceed to give an explicit criterion,
guaranteeing that when equipped with the domain (4-2), the operator Top.e2q/ is densely defined.
Recalling the decomposition (2-8) and considering the unitary map

Hˆ0
.Cn/ 3 u 7! ue�f 2Hˆherm.C

n/; f .x/Dˆ000;xxx �x;

we may observe that the space ef P.Cn/D fef p W p 2 P.Cn/g is dense in Hˆ0
.Cn/. Here P.Cn/ is the

space of holomorphic polynomials on Cn. It follows that

ef P.Cn/� D.Top.e2q//;

so that Top.e2q/ is densely defined, provided that

2 Re q.x/ < ˆherm.x/; (4-6)

in the sense of quadratic forms on Cn.

Recalling (3-8), we may write

Top.e2q/u.x/D C

Z
e2.‰0.x; Ny/�ˆ0.y//e2q.y; Ny/u.y/ dy d Ny; u 2 D.Top.e2q//: (4-7)

Here C > 0 and ‰0 is the polarization of ˆ0. Similarly to (3-27), we get

Top.e2q/u.x/D C

“
�

e2.‰0.x;�/�‰0.y;�/Cq.y;�//u.y/ dy d�; (4-8)
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where � is the contour in C2n, given by � D Ny. Here the holomorphic quadratic form

F.x;y; �/D
2

i
.‰0.x; �/�‰0.y; �/C q.y; �// (4-9)

is a nondegenerate phase function in the sense of Hörmander, in view of the fact that det‰00
0;x�
¤ 0,

and therefore the operator Top.e2q/ in (4-8) can be viewed as a metaplectic Fourier integral operator
associated to a suitable canonical relation � C2n �C2n. We have the formal factorization

Top.e2q/DAB;

where

Av.x/D

Z
e2‰0.x;�/v.�/ d�; Bu.�/D

Z
e�2z‰0.y;�/u.y/ dy; (4-10)

and where we have written z‰0.y; �/D‰0.y; �/� q.y; �/. Here the operator A, formally, is an elliptic
Fourier integral operator associated to the canonical transformation�

�;�
2

i
@�‰0.x; �/

�
7!

�
x;

2

i
@x‰0.x; �/

�
:

It follows that the canonical relation associated to Top.e2q/ is the graph of a canonical transformation if
and only if this is the case for the Fourier integral operator B. We conclude that the operator Top.e2q/ in
(4-8) is associated to a canonical transformation precisely when

@y@� z‰0 ¤ 0: (4-11)

The condition (4-11) is equivalent to the assumption (1-8) in Theorem 1.2. The canonical transformation
is then given by

� W .y;�@yF.x;y; �// 7! .x; @xF.x;y; �//; @�F.x;y; �/D 0: (4-12)

Example. In the following discussion, we shall revisit the family of examples discussed in Section 6 of
[Berger and Coburn 1994] and show how the point of view of Fourier integral operators in the complex
domain, developed above, allows one to recover the main findings of Section 6 of that paper, obtained
there by means of a direct computation.

Let ˆ0.x/D
1

2
jxj2 and q D

1

2
�jyj2, � 2 C with Re� < 1

2
. Here the restriction on Re� implies that

(4-6) holds, so that the operator Top.e2q/ is densely defined in Hˆ0
.Cn/. We have

‰0.x;y/D
1
2
x �y;

and the phase function F in (4-9) is given by

F.x;y; �/D
2

i

�
1

2
x � � �

�
1��

2

�
y � �

�
: (4-13)

In particular, the condition (4-11) is satisfied and we may then compute the canonical transformation �
associated to the corresponding Fourier integral operator Top.e2q/ in (4-8).
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The critical set CF of the phase F is given by @�F D 0() x D .1� �/y, and the corresponding
canonical transformation � is of the form

� W .y;�@yF.x;y; �// 7! .x; @xF.x;y; �//; .x;y; �/ 2 CF : (4-14)

It follows that � is given by

� W .y; �/ 7!
�
.1��/y;

�

1��

�
: (4-15)

We shall now determine when the canonical transformation � is positive relative to ƒˆ0
, which can be

done by a direct computation: it follows from (2-4) that the involution �ˆ0
is given by

�ˆ0
W .y; �/ 7!

�
1

i
N�;

1

i
Ny

�
; (4-16)

and therefore, we may compute,

1

i
�.�.y; �/; �ˆ0

�.y; �//D
1

i
�

��
.1��/y;

�

1��

�
;

�
1

i

N�

1� N�
;
1

i
.1� N�/ Ny

��
D j1��j2jyj2�

j�j2

j1��j2
: (4-17)

Similarly, we have
1

i
�..y; �/; �ˆ0

.y; �//D jyj2� j�j2: (4-18)

Combining (4-17), (4-18) we see that the � is positive relative to ƒˆ0
if and only if

j1��j � 1: (4-19)

This condition occurs in [Berger and Coburn 1994, pp. 581–582] (with the inessential difference that in
the discussion in that paper one considers ˆ0.x/D

1
4
jxj2), where it is verified that the operator Top.e2q/

is in L.Hˆ0
.Cn/;Hˆ0

.Cn// precisely when (4-19) holds.
In the case when the strict inequality holds in (4-19), the canonical transformation � in (4-15) is strictly

positive relative to ƒˆ0
and it follows from Proposition 3.3 that the Toeplitz operator Top.e2q/ is of trace

class on Hˆ0
.Cn/.

We shall now proceed to discuss the “boundary” case when

j1��j D 1: (4-20)

In this case, using (4-15) we immediately see that �.ƒˆ0
/Dƒˆ0

, and therefore we conclude, in view of
[Caliceti et al. 2012; Sjöstrand 1982], that the operator

Top.e2q/ WHˆ0
.Cn/!Hˆ0

.Cn/ (4-21)

is bounded, with a bounded two-sided inverse.
We claim next that the operator in (4-21) is in fact unitary when (4-20) holds, and when verifying the

unitarity, it will be convenient to pass to the Weyl quantization, computing the Weyl symbol of Top.e2q/.
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It follows from (4-4) that

a

�
x;

2

i

@ˆ0

@x
.x/

�
D

�
exp

�
�

8

�
e2q

�
.x/D

�
2

�

�n Z
Cn

e�2jx�yj2e�jyj
2

L.dy/: (4-22)

Here � is the Laplacian on Cn ' R2n. Computing the Gaussian integral in (4-22) by the exact version of
stationary phase, we get, see also [Berger and Coburn 1994],

a

�
x;

2

i

@ˆ0

@x
.x/

�
D

�
2

2��

�n

exp
�

2�

2��
jxj2

�
: (4-23)

Here we may notice that

Re
�

2�

2��

�
D 0;

when (4-20) holds, reflecting the fact that the associated canonical transformation in (4-15) is “real” in
this case. We conclude that the Weyl symbol of the Toeplitz operator Top.e2q/ is given by

a.x; �/D
�

2

2��

�n
exp.iF.x; �//; F.x; �/D

2�

2��
x � �; (4-24)

so that

Top.e2q/D
�

2

2��

�n
.exp.iF //w: (4-25)

We have .Im F /jƒˆ0
D 0 and an application of Proposition 5.11 of [Hörmander 1995] together with the

metaplectic invariance of the Weyl quantization allows us to conclude that the operatorp
det.I �F=2/.exp.iF //w WHˆ0

.Cn/!Hˆ0
.Cn/ (4-26)

is unitary. Here F is the Hamilton map of F , i.e., the matrix of the (linear) Hamilton field HF , and it
remains therefore to check thatp

det.I �F=2/D
�

2

2��

�n
ei� ; � 2 R: (4-27)

To this end, we compute using (4-24),

F=2D
�

2��

�
1 0

0 �1

�
; I �F=2D

2

2��

�
1�� 0

0 1

�
;

and (4-27) follows, thanks to (4-20). We conclude therefore that the Toeplitz operator Top.e2q/ is unitary
on Hˆ0

.Cn/, when Re� < 1
2

and (4-20) holds. The unitarity property has also been observed in [Berger
and Coburn 1994].

Remark. In the case when Re� < 1
2

, j1� �j > 1, we observed that the operator Top.e2q/ is of trace
class on Hˆ0

.Cn/, and we get, using (4-24) and the metaplectic invariance of the Weyl quantization,

tr Top.e2q/D
1

.2�/n

“
ƒˆ0

a
.� jƒˆ0

/n

n!
;

where a is given in (4-24).
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We are now ready to discuss the proof of Theorem 1.2. It follows from Theorem 1.1 and the discussion
in this section that it suffices to check that the canonical transformation (4-12) associated to the operator
Top.e2q/ is positive relative to ƒˆ0

. To this end, let us consider the Weyl symbol of Top.e2q/, given by
(4-4),

a.x; �/D
�
exp

�
1
4
.ˆ000;x Nx/

�1@x � @ Nx
�
e2q

�
.x/; .x; �/ 2ƒˆ0

: (4-28)

A simple computation of the inverse Fourier transform of a real Gaussian shows that

a.x; �/D Cˆ0

Z
Cn

exp.�4ˆherm.x�y//e2q.y/L.dy/; Cˆ0
¤ 0: (4-29)

Here the convergence of the integral in (4-29) is guaranteed by (4-6). In view of the exact version of
stationary phase, it is therefore clear that

a.x; �/D C exp.iF.x; �//; .x; �/ 2ƒˆ0
; (4-30)

for some constant C ¤ 0, where F is a holomorphic quadratic form on C2n. Proposition B.1 shows that
the positivity of � in (4-12) relative to ƒˆ0

is equivalent to the fact that the Weyl symbol in (4-30) is
such that Im F jƒˆ0

� 0() exp.iF / 2L1.ƒˆ0
/. The proof of Theorem 1.2 is complete.

Appendix A: Schwartz kernel theorem in the Hˆ-setting

In this appendix we shall make some elementary remarks concerning integral representations for linear
continuous maps between weighted spaces of holomorphic functions. Such observations are essentially
well known; see for instance [Peetre 1990].

Let �j � Cnj be open, j D 1; 2, and let ĵ 2 C.�j IR/. We introduce the weighted spaces

H
ĵ
.�j /D Hol.�j /\L2.�j ; e

�2 ĵ L.dyj //; j D 1; 2; (A-1)

where L.dyj/ is the Lebesgue measure on Cnj. When viewed as closed subspaces of L2.�j ; e
�2 ĵL.dyj//,

the spaces H
ĵ
.�j / are separable complex Hilbert spaces and the natural embeddings H

ĵ
.�j /!

Hol.�j / are continuous. Here the space Hol.�j / is equipped with its natural Fréchet space topology of
locally uniform convergence. Let

T WHˆ1
.�1/!Hˆ2

.�2/ (A-2)

be a linear continuous map. Let us also write �1 D fz 2 Cn1 W Nz 2�1g.

Theorem A.1. There exists a unique function K.x; z/ 2 Hol.�2 ��1/ such that

�1 3 y 7!K.x; Ny/ 2Hˆ1
.�1/ (A-3)

for each x 2�2, and

Tf .x/D

Z
�1

K.x; Ny/f .y/e�2ˆ1.y/L.dy/; f 2Hˆ1
.�1/: (A-4)

We also have
�2 3 x 7!K.x; z/ 2Hˆ2

.�2/ (A-5)

for each z 2�1.



POSITIVITY, COMPLEX FIOS, AND TOEPLITZ OPERATORS 351

When proving Theorem A.1, we observe that it follows from the remarks above that for each x 2�2,
the linear form

Hˆ1
.�1/ 3 f 7! .Tf /.x/ 2 C (A-6)

is continuous, and there exists therefore a unique element kx 2Hˆ1
.�1/ such that for all f 2Hˆ1

.�1/

we have

Tf .x/D .f; kx/ˆ1
; x 2�2: (A-7)

Here and in what follows . � ; � /
ĵ

stands for the scalar product in the space H
ĵ
.�j /, j D 1; 2.

Letting .ej / be an orthonormal basis for Hˆ1
.�1/, we may write with convergence in Hˆ1

.�1/, for
each x 2�2 fixed,

kx D

1X
jD1

.kx; ej /ˆ1
ej D

1X
jD1

Tej .x/ej : (A-8)

By Parseval’s formula we get

kkxk
2
ˆ1
D

1X
jD1

jTej .x/j
2; x 2�2: (A-9)

Here we know that

kkxkˆ1
D sup
kf kˆ1

�1

jTf .x/j; (A-10)

and it follows that the function �2 3 x 7! kkxkˆ1
is locally bounded. Let us now make the following

elementary observation: Let �� Cn be open and let fn 2 Hol.�/ be such that the series
1X

nD1

jfn.z/j
2 (A-11)

converges for each z 2�, with the sum being locally integrable in �. Then the series converges locally
uniformly in �. Indeed, let us write

1X
nD1

jfn.z/j
2
DW F.z/ 2L1

loc.�/:

Let K�� be compact and let ! be an open neighborhood of K such that K�! b�. Then by Cauchy’s
integral formula and the Cauchy–Schwarz inequality we have

sup
K

jfnj
2
�OK ;!.1/kfnk

2
L2.!/

:

We get therefore the uniform bound
NX

nD1

sup
K

jfnj
2
�OK ;!.1/kFkL1.!/; N D 1; 2; : : : ;

implying the locally uniform convergence of (A-11).
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It follows that (A-9) holds with locally uniform convergence in x 2�2, and in particular the function
�2 3 x 7! kkxk

2
ˆ1

is continuous plurisubharmonic. We may therefore conclude that the series in (A-8)
converges locally uniformly in �1 ��2. Letting

K.x; z/ WD kx.Nz/D

1X
jD1

Tej .x/ej .Nz/; (A-12)

we conclude that K 2 Hol.�2 ��1/ is such that (A-3) and (A-4) hold, and these properties characterize
the kernel K uniquely.

When verifying (A-5), we let Qkx 2Hˆ2
.�2/ be the reproducing kernel for Hˆ2

.�2/. We may then
write, when f 2Hˆ1

.�1/, x 2�2,

Tf .x/D .Tf; Qkx/ˆ2
D .f;T � Qkx/ˆ1

; (A-13)

and therefore,

kx D T � Qkx : (A-14)

Here

T � WHˆ2
.�2/!Hˆ1

.�1/

is the adjoint of T. Letting .fj / be an orthonormal basis for Hˆ2
.�2/ and recalling that

Qkx D

1X
jD1

fj .x/fj ; (A-15)

we get

kx.y/D

1X
jD1

fj .x/T
�fj .y/; (A-16)

Therefore,

K.x; Ny/D

1X
jD1

fj .x/T �fj .y/:

and we see that (A-5) follows. We also get

kK. � ; Ny/k2ˆ2
D

1X
jD1

jT �fj .y/j
2: (A-17)

Remark. It follows from (A-9) that T 2 L.Hˆ1
.�1/;Hˆ2

.�2// is of Hilbert–Schmidt class precisely
when “

�1��2

jK.x; Ny/j2e�2.ˆ1.y/Cˆ2.x//L.dy/L.dx/ <1:

Remark. An alternative proof of Theorem A.1 can be obtained by applying the Schwartz kernel theorem
directly to the linear continuous map

…ˆ2
T…ˆ1

WL2.�1; e
�2ˆ1L.dy1//!L2.�2; e

�2ˆ2L.dy2//:
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Here
…

ĵ
WL2.�j ; e

�2 ĵ L.dyj //!H
ĵ
.�j /

is the orthogonal projection. Writing the Schwartz kernel of …ˆ2
T…ˆ1

in the form K.x; Ny/e�2ˆ1.y/,
we see that K should satisfy @ NxK.x; Ny/ D 0. Now the distribution kernel of the adjoint …ˆ1

T �…ˆ2

is given by K.y; Nx/e�2ˆ2.y/, and it follows that @ Nx.K.y; Nx// D 0. We get @x.K.y; Nx// D 0, so that
.@ NyK/.y; Nx/D 0() @ NyK.x;y/D 0. We conclude that K.x;y/ is holomorphic in .x;y/.

Appendix B. Positivity and Weyl quantization

The purpose of this appendix is to characterize the boundedness of the Weyl quantization of a symbol
of the form exp.iF.x; �//, where F a complex quadratic form, in the Hˆ-setting. See also [Hörmander
1995] for a related discussion in the context of L2-boundedness.

Let F DF.x; �/ be a complex-valued holomorphic quadratic form on C2n and let us consider formally
the Weyl quantization of eiF.x;�/,

Au.x/D Opw.eiF /u.x/D
1

.2�/n

“
ei..x�y/��CF..xCy/=2;�//u.y/ dy d�: (B-1)

The holomorphic quadratic form .x�y/ � � CF
�

1
2
.xCy/; �

�
is a nondegenerate phase function in the

sense of Hörmander and generates a canonical relation

� W .y; �/ 7! .x; �/; (B-2)

given by

x D
xCy

2
�

1
2
F 0�

�
xCy

2
; �

�
; � D � C 1

2
F 0x

�
xCy

2
; �

�
;

y D
xCy

2
C

1
2
F 0�

�
xCy

2
; �

�
; �D � � 1

2
F 0x

�
xCy

2
; �

�
:

(B-3)

The graph is parametrized by �D
�

1
2
.xCy/; �

�
2 C2n and (B-2), (B-3) take the form

� W �C 1
2
HF .�/ 7! �� 1

2
HF .�/; (B-4)

where HF .�/D .F
0
�
.�/;�F 0x.�// is the Hamilton field of F at �.

We shall now give a criterion for when � in (B-4) is a canonical transformation. Recall that HF .�/DF�,
where

F D

 
F 00
�x

F 00
��

�F 00xx �F 00
x�

!
is the fundamental matrix of F (usually appearing as the linearization of a Hamilton vector field, which
in our case is already linear). We have

F D JF 00; J D

�
0 1

�1 0

�
; F 00 D

 
F 00xx F 00

x�

F 00
�x

F 00
��

!
;
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and we notice that J 2 D�1, J> D�J . Then (B-4) is the relation

.1CF=2/� 7! .1�F=2/�: (B-5)

Now F is antisymmetric with respect to the bilinear form �.�; �/D J� ��; hence 1�F=2 is bijective if
and only if its transpose 1CF=2 with respect to � is bijective. We conclude that the following three
statements are equivalent:

(i) � is a canonical transformation.

(ii) 1�F=2 is bijective.

(iii) 1CF=2 is bijective.

In what follows, we shall assume that (i)–(iii) hold.

Letˆ0 be a strictly plurisubharmonic quadratic form on Cn and let �ˆ0
WC2n!C2n be the corresponding

antilinear involution, i.e., the unique antilinear map which is equal to the identity on ƒˆ0
. We shall now

proceed to characterize the positivity of the canonical transformation � in (B-4) relative to ƒˆ0
. Let

Œ�; ��D 1
2
b.�; �/; (B-6)

where b.�; �/ has been defined in (2-5). It is a Hermitian form and � is positive relative to ƒˆ0
precisely

when
Œ�; ��� Œ�; �� for all �; � with � D �.�/: (B-7)

By (B-4) this is equivalent to�
�� 1

2
HF .�/; ��

1
2
HF .�/

�
�
�
�C 1

2
HF .�/; �C

1
2
HF .�/

�
; � 2 C2n;

or equivalently,
ReŒHF .�/; ��� 0; � 2 C2n: (B-8)

To simplify the following discussion, we shall make use of the invariance (exact Egorov theorem) under
conjugation of A in (B-1) with a unitary metaplectic Fourier integral operator U W L2.Rn/!Hˆ0

.Cn/

with the associated canonical transformation �U , mapping R2n onto ƒˆ0
. The operator B D U�1AU

is the Weyl quantization of eiG, where G D F ı �U . Also �ˆ0
D �U C��1

U
, where C is the involution

associated to R2n, which is just the map of ordinary complex conjugation. By abuse of notation we write
F also for the pull back F ı �U and we continue the discussion in the case when ƒˆ0

has been replaced
with R2n and �ˆ0

with C, C.�/D N�. In this setting, (B-8) becomes

Im �.F 0�.�/;�F 0x.�/I Nx;
N�/� 0 for all �D .x; �/ 2 C2n

I

i.e.,
Im.F 0x.x; �/ � NxCF 0�.x; �/ �

N�/� 0; .x; �/ 2 C2n;

or even more simply,
Im.F 00��� � N�/� 0:
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Writing �D �C i�, �; � 2 R2n, we see that the last inequality is equivalent to

Im F 00� ��C Im F 00� � � � 0I

i.e.,
Im F 00 � 0I

i.e.,
Im F � 0 on R2n:

By the metaplectic invariance it follows that the positivity condition (B-7) is equivalent to

Im F � 0 on ƒˆ0
; (B-9)

now with the original F .

Remark. The condition (B-9) is quite natural since we know that for ordinary symbols instead of eiF,
the natural contour of integration in (B-1) should be

� D
2

i
@xˆ

�
xCy

2

�
I

see [Sjöstrand 1996; Hitrik and Sjöstrand 2018].

We summarize the discussion in this section in the following result.

Proposition B.1. Let F be a holomorphic quadratic form on C2n such that the fundamental matrix of
F does not have the eigenvalues˙2. Let ˆ0 be a strictly plurisubharmonic quadratic form on Cn. The
canonical transformation associated to the Fourier integral operator Opw.eiF / is positive relative toƒˆ0

precisely when
Im F jƒˆ0

� 0: (B-10)

In particular, if (B-10) holds, then the operator

Opw.eiF / WHˆ0
.Cn/!Hˆ0

.Cn/

is bounded.
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