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ON GEOMETRIC AND ANALYTIC MIXING SCALES:
COMPARABILITY AND CONVERGENCE RATES

FOR TRANSPORT PROBLEMS

CHRISTIAN ZILLINGER

We are interested in the geometric and analytic mixing scales of solutions to passive scalar problems.
Here, we show that both notions are comparable after possibly removing large-scale projections. In order
to discuss our techniques in a transparent way, we further introduce a dyadic model problem.

In a second part of our article we consider the question of sharp decay rates for both scales for Sobolev
regular initial data when evolving under the transport equation and related active and passive scalar
equations. Here, we show that slightly faster rates than the expected algebraic decay rates are optimal.

1. Introduction and main results

We are interested in the mixing behavior of passive scalar problems

∂tρ+ v · ∇ρ = 0,

ρ|t=0 = ρ0,
(1)

where v(t) is a given divergence-free vector field on Rn or Tn
×Rn. Assuming sufficient regularity of v,

the flow preserves all L p norms; i.e., ‖ρ(t)‖L p = ‖ρ0‖L p for all p ∈ [1,∞] and all t > 0. On the other
hand, if the flow is, for instance, ergodic, then ρ weakly converges to its average 〈ρ0〉 and, in particular,
‖〈ρ0〉‖L p ≤ ‖ρ0‖L p with generically a strict decrease for p 6= 1. The solution is mixed as t→∞.

In order to quantify this limiting behavior, one commonly considers two different functionals:

Definition 1.1 (mixing scales; [Thiffeault 2012]). Let ρ : Rn
→ R be a given measurable function. Then

we call ‖ρ‖H−1 the analytic mixing scale.
Furthermore, for given r > 0, we define the geometric mixing functionals

gr [ρ] := sup
BR(ξ);R≥r

1
|BR|

∣∣∣∣∫
BR(ξ)

ρ

∣∣∣∣. (2)

If further ρ ∈ L∞, then for each κ ∈ (0, 1) we define the geometric mixing scale as

Gκ [ρ] := inf{r : gr [ρ] ≤ κ‖ρ‖L∞}. (3)

MSC2010: primary 76F25, 35Q35; secondary 42C10.
Keywords: mixing, damping, transport, Walsh–Fourier.

543

http://msp.org/paa/
http://dx.doi.org/10.2140/paa.2019.1-4
http://dx.doi.org/10.2140/paa.2019.1.543
http://msp.org


544 CHRISTIAN ZILLINGER

As one of the main results of this article, we show that while both notions are not equivalent, they are
comparable in the sense that smallness of one implies smallness of the other. A control in one direction
has, for instance, been used in [Iyer et al. 2014] to establish lower bounds on decay rates of ‖ρ(t)‖H−1

(see Section 5). Furthermore, in [Lunasin et al. 2012] the authors construct several examples exhibiting
obstructions to comparability. As we discuss in Section 2, the present article suggests to instead view
these obstructions as contributions at large scales that need to be projected out.

Theorem 1.2 (comparison of mixing scales). Let ρ ∈ L2(Rn) and ‖ρ‖L2 ≤ 1. Then for all 0< ε ≤ 1:

(1) There exists a constant C>0, depending only on the dimension n and α=2/(n+2) and β=2/(n+4),
such that if ‖ρ‖H−1 ≤ ε and ρ is supported in B1, then also gε′[ρ]≤Cε′ for all ε′≥ εα and gε̃[ρ]≤C
for all ε̃ ≥ εβ.

In particular, supposing additionally that ‖ρ‖L∞ = 1, it follows that

GC [ρ] ≤ ε̃,

GCε′[ρ] ≤ ε
′.

(2) If gε[ρ] ≤ ε and ρ is supported in a compact set K , then also ‖ρ‖H−1 ≤ CK ε.

These estimates are optimal in the powers of ε.

In order to introduce our methods, we construct a dyadic Walsh–Fourier model on L2(T) in Section 3,
where we introduce new dyadic analogues of both scales and show them to be equivalent when restricted to
appropriate subspaces E j . In particular, in that setting optimality of estimates is transparent. Subsequently,
we discuss the continuous case as stated in Theorem 1.2 in Section 4.

A natural question here, of course, is whether

gr [ρ] ≤ Cr (4)

can be assumed in applications. Indeed, if ρ(t) solves the passive scalar problem (1) and asymptotically
converges weakly to a nontrivial state ρ∞, then we can generally not expect better control than

gr [ρ(t)] ≤ ‖ρ∞‖L∞ .

However, as we discuss in Section 2, upon removing large-scale projections (corresponding to asymptotic
states) this assumption is natural and comparability holds in the above sense.

As a second part of our article, in Section 5, we consider the evolution of the mixing scales under
transport-type equations and are interested in (sharp) upper and lower bounds on decay rates of the
scales. As a first model problem we consider the case of ρ(t) evolving under the free transport equation
on Tn

×Rn:
∂tρ+ y∂xρ = 0 for t ∈ (0,∞), x ∈ Tn, yRn,

ρt=0 = ρ0 for x ∈ Tn, y ∈ Rn.
(5)

Here, we show that if the initial data is normalized in a Sobolev space H s, 0≤ s ≤ 1, with respect to y,
then the first expected decay rates of t−s turn out to be slightly suboptimal and instead decay rates of
t−so(1) are achieved.
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Theorem 1.3. In the following, let 0< s ≤ 1, ρ0 ∈ L2(Tn
; H s(Rn)), with

∫
Tn ρ0(x, y) dx = 0, and let

ρ(t, x, y)= ρ0(t, x − t y, y)

be the solution of the free transport problem. For σ, s ∈ R let Hσ H s
= Hσ (Tn

; H s(Rn)) denote the
Hilbert space with norm

‖ρ‖2Hσ H s =

∑
k∈Zn

〈k〉2σ
∫

Rn
〈η〉2s
|ρ̃(k, η)|2 dη.

(1) There exists Cs > 1 such that for all t ≥ 1 and all initial data

‖ρ(t)‖L2 H−1 ≤ Ct−s
‖ρ0‖H−s H s .

(2) Let αj > 0 with ‖(αj )j‖l2 = 1. Then there exist c > 0, a sequence of times tj →∞ and initial data
ρ0 such that

‖ρ(tj )‖L2 H−1 ≥ cαj t−s
j ‖ρ0‖H−s H s .

(3) There exists no nontrivial initial data ρ0 ∈ L2(Tn
; H s(Rn)) such that

‖ρ(tj )‖L2 H−1 ≥ ct−s
j ‖ρ0‖H−s H s

along some sequence tj →∞.

In the second statement, tj can always be chosen larger and more rapidly increasing. For instance,
we may chose tj = exp(exp(· · · exp( j))) and αj = 1/j = ln(ln(· · · ln(tj ))) as iterated exponentials and
logarithms. Informally stated, the theorem hence shows that algebraic decay rates can be achieved along
a subsequence up to an arbitrarily small loss. Conversely, the third statement shows that this loss is
necessary and that the lower estimate is sharp in this sense.

We remark that in several works on (linear) inviscid damping, [Wei et al. 2018; Coti Zelati and
Zillinger 2019; Zillinger 2016; Bedrossian and Masmoudi 2015] or (linear) Landau damping [Bedrossian
et al. 2016], it is shown that perturbations to the Euler equations or Vlasov–Poisson equations scatter to
solutions of the free transport problem as t→∞. As a corollary, we hence obtain the optimality of the
decay rates for these equations as well.

Corollary 1.4. Let U (y) be bi-Lipschitz and U ′′ ∈W 2,∞ with ‖U ′′‖W 2,∞ sufficiently small. Then for any
s ∈ (0, 1) and any ω0 ∈ H s(T×R) the solution ω of the linearized Euler equations

∂tω+U (y)∂xω−U ′′(y)∂x1
−1ω = 0,

ω|t=0 = ω0

satisfies
‖ω(t)‖L2 H−1 ≤ Ct−s

‖ω0‖H−s H s

and there exists no nontrivial initial data ω0 ∈ L2(Tn
; H s(Rn)) such that

‖ω0(tj )‖L2 H−1 ≥ ct−s
j ‖ω0‖H−s H s

along some sequence tj →∞.
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We remark that we do not require U to be bounded and for instance allow U to be (a perturbation
of) an affine function, which is of interest in the study of the free transport equation and similar passive
scalar problems.

Proof. In [Zillinger 2016], we have shown that solutions to the linearized Euler equations around such a
shear flow U (y) are stable and scatter in H s. That is, for any initial datum ω0 ∈ H s there exists a solution
ω(t, x, y) and the associated (finite-time) scattering profile

W (t, x, y)= ω(t, x + tU (y), y)

satisfies
C−1
‖ω0‖Hσ H s ≤ ‖W (t)‖H s ≤ C‖ω0‖Hσ H s

for all t ≥ 0, σ ∈ R and σ ∈
[
0, 3

2

)
. Furthermore, there exists W∞ such that W (t)→ W∞ in Hσ H s

as t→∞. Since U (y) is bi-Lipschitz, we may change coordinates to (x, z = U (y)) and note that the
Sobolev spaces Hσ H s with respect to (x, y) and (x, z) are equivalent. Thus, with slight abuse of notation

ω(t, x, z)=W (t, x − t z, z)

can be considered as a solution of the free transport problem at time t with initial data W (t). Hence, by
Theorem 1.3, it follows that

‖ω(t)‖L2 H−1 ≤ Ct−s
‖W (t)‖H−s H s ≤ Ct−s

‖ω0‖H−s H s .

We prove the second claim by contradiction and suppose there exists such a nontrivial ω0. Then, by the
(asymptotic) scattering result, there also exists a nontrivial W∞ such that W (t)→W∞ and hence

‖ω(t, x, z)−W∞(t, x + t z, z)‖L2 H−1 ≤ Ct−s
‖W (t)−W∞‖H−s H s = o(t−s).

But this would then imply

‖W∞(x + tj z, z)‖L2 H−1 ≥ ‖ω(tj )‖L2 H−1 −‖ω(tj , x, z)−W∞(tj , x + tj z, z)‖L2 H−1

≥ ctj − o(tj )≥
c
2

tj

as j→∞. This contradicts the third statement of Theorem 1.3. �

Concerning more general passive scalar problems, a recent active area of research [Alberti et al. 2014;
Seis 2017; Crippa and Schulze 2017; Iyer et al. 2014] is given by the study of upper and lower bounds on
decay rates of mixing scales for solutions of (1),

∂tρ+ v · ∇ρ = 0,

where v may be chosen arbitrarily under given constraints such as ‖v(t)‖W 1,p ≤ 1. While in the present
article we establish no improved bound, the comparability results allow us to connect existing results in the
literature established for either mixing scale [Crippa and De Lellis 2008; Seis 2013; Bruè and Nguyen 2018]
(see Corollary 5.6). For instance, the following corollary establishes analytic mixing cost estimates [Iyer
et al. 2014, Theorem 1.1] as a corollary of geometric mixing cost estimates [Crippa and De Lellis 2008].
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Corollary 1.5. Let p > 1 and ρ|t=0 = 1[0,1/2](x2) ∈ L1(T2) and suppose that for 1
4 > ε > 0 and some

0< κ < 1
2 the solution ρ of

∂tρ+ v · ∇ρ = 0,

∇ · ρ = 0
satisfies ∥∥ρ|t=1−

1
2

∥∥
H−1 ≤ ε.

Then for p > 1 the velocity field v satisfies∫ 1

0
‖∇v‖L p dt ≥ C | log(ε)|.

The remainder of the article is organized as follows:

• In Section 2, we discuss to which extent both mixing scales might possibly be comparable by
considering two prototypical examples and also discuss the role of large-scale asymptotic profiles.

• In Section 3, we introduce a new dyadic Walsh–Fourier model of mixing scales. Due to improved
orthogonality properties here we can establish our estimates in a transparent, accessible way.

• Subsequently, in Section 4 we show that most properties and estimates persist in the continuous
setting despite the loss of beneficial additional structure.

• Finally, Section 5 considers (sharp) decay rates of mixing scales under passive scalar problems. Here,
we first establish optimal rates for the free transport problem and then discuss more general dynamics.

1A. Notation. Throughout this article we will consider x ∈ Tn and y ∈ Rn unless otherwise specified.
For a given function ρ(x, y), we denote by ρ̂(k, y) its partial Fourier transform with respect to x and by
ρ̃(k, η) its Fourier transform with respect to both x and y. Constants C, c > 0 may change from line to
line and may depend on the dimension but are independent of the choice of function ρ or initial data ρ0.

2. Preliminaries and prototypical examples

In [Lunasin et al. 2012] two families of functions are constructed to highlight the differences of the
analytic mixing scale (4) and the geometric mixing functionals (2). In order to introduce our ideas, we
recall their construction and show that after removing the large-scale weak limit of the second family
both notions are comparable and thus motivate our choice of spaces and estimates.

2A. The analytic mixing scale controls the geometric mixing scale. We briefly recall the construction
from [Lunasin et al. 2012, Section IV.B]. As a building block consider the “hat” function

v(x)=
{

1− |x | for |x | ≤ 1,
0 else.

Let ε = 2−n and let α ∈N with α < 2n−1. We then build an odd function u on [−1, 1] such that for x > 0

u(x)= αεv
(

x
αε

)
+

2n
−2α∑

j=1

εv

(
x − (2α+ 2 j)ε

ε

)
.
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This function is a sawtooth function with one large tooth on the interval (0, 2αε) and smaller teeth of
width 2ε on the remainder of (0, 1). Furthermore, u is Lipschitz and ρ = u′ ∈ {−1, 1} satisfies

‖ρ‖2H−1 = ‖u‖2L2 = ε
2( 1

3 −
2
3αε

)
+

2
3α

3ε3
≈ ε2

if ε is small. Taking α ≈ ε−1/3, we thus obtain that ‖ρ‖H−1 ≈ ε and that ρ = 1 on Bε2/3(0) and is hence
geometrically mixed at most at scale ε2/3.

Additionally, we compute that if we consider larger radii r ≥ ε2/5, then

1
|Br |

∣∣∣∣∫
Br (ξ)

ρ dx
∣∣∣∣≤ Cr.

This example hence shows that an estimate of the type ε ε is not possible, but ε εα is for this case. In
Sections 3 and 4 we show that such an estimate indeed holds for general functions and in higher dimensions
and that our exponents of ε are optimal. Roughly speaking, the loss of power in ε here is due to the L1

normalization of the characteristic functions and equivalence constants of (weighted) l2 and l∞ norms on
finite-dimensional vector spaces (see Section 3) and agrees with scaling (see the proof of Theorem 4.3).

2B. The geometric mixing scale and weak limits. Consider a periodic characteristic function u ∈ L2(T)

with
∫

T
u dx = 1

2 and for k ∈ N define

ρk(x)= sgn(x) u(k|x |) ∈ L2((−1, 1)).

We note that
∫
ρk dx = 0, ‖ρk‖L∞ = 1 and

ρk
L2
−⇀ 1

2 sgn(x).

Hence, for any given ball Br (ξ)⊂ (−1, 1),

1
|Br |

∣∣∣∣∫
Br (ξ)

ρk dx
∣∣∣∣→ 1
|Br |

∣∣∣∣∫
Br (ξ)

1
2 sgn(x) dx

∣∣∣∣≤ 1
2

as k→∞. Using the periodicity to obtain more quantitative estimates, we obtain that for any κ > 1
2 and

any r > 0, we can achieve
1
|Br |

∣∣∣∣∫
Br (ξ)

ρk dx
∣∣∣∣≤ κ‖ρk‖L∞

provided k is sufficiently large and that thus Gκ [ρk] → 0 as k→∞.
However, this fails for κ < 1

2 and by lower semicontinuity,

lim inf
k→∞

‖ρk‖H−1 ≥
∥∥1

2 sgn(x)
∥∥

H−1 > 0.

Hence, this at first suggests that the geometric mixing scale is distinct from the analytic mixing scale.
In view of our comparison result, Theorem 1.3, we instead suggest to interpret this example as

‖ρk‖H−1 ≤ C max(κ, r)
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and note that the lower bound on κ ≥ 1
2 here is due to large-scale structures in the weak limit. Indeed,

consider the functions vk obtained by projecting out large scales:

vk(x)= ρk(x)− 1
2 sgn(x).

Then it holds that
1
|Br |

∣∣∣∣∫
Br (ξ)

vk dx
∣∣∣∣≤min(2κ,Cr) for r ≥

c
k
,

‖vk‖L∞ ≥ κ, ‖vk‖H−1 ≤
C
k
, vk

L2
−⇀ 0 as k→∞.

Remark 2.1. When considering ρk = ρ(tk) for ρ(t) evolving under ergodic dynamics, the weak limit is
given by a constant function. In that setting, we may assume that constant to be zero after normalization
and hence, there without loss of generality both notions of geometric mixing coincide, i.e., vk = ρk .

More generally, we don’t need to know a candidate for the weak limit (or even have a sequence), but
rather consider the following setting:

If ρ ∈ L2
∩ L∞ ∩ H−1 is such that for all r ≥ r0 and all x0 ∈ Rn it holds that

1
|Br |

∣∣∣∣∫
Br (x0)

ρ dx
∣∣∣∣≤ κ,

then we claim that (see Lemma 4.8)

ρr0 = ρ−

(
1
|Br0 |

1Br0 (ξ)
∗ ρ

)
satisfies

‖ρ− ρr0‖L∞ ≤ κ,
1
|Br |

∣∣∣∣∫
Br (ξ)

ρr0 dx
∣∣∣∣≤ Cr, ‖ρr0‖H−1 ≤ Cr0‖ρ‖L2

for all r ≥ r0. Here, we stress that, while

1
|Br0 |

1Br0 (ξ)
∗ ρ→ ρ

as r0 ↓ 0 for fixed ρ, this is much more subtle for sequences ρ depending on r0. Indeed, letting uk(x) be
as above, we obtain

1
|B1/k |

1B1/k ∗ uk(x)= 1
2 sgn(x)

for all x with dist(x, {0, π,−π})≥ 2/k.

3. A Walsh–Fourier model

In order to introduce our ideas and establish sharpness of estimates, we first discuss and compare both
mixing scales in a dyadic model setting. Here, we consider averages over dyadic intervals and replace the
sine basis of L2(T) by functions that are constantly +1 or −1 on dyadic intervals. This setting is known
in harmonic analysis as a Walsh–Fourier setting and associated with a “tile” characterization and Haar
wavelet expansions [Muscalu et al. 2004; Thiele 2000a; 2000b]. In the following we briefly provide some
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definitions and statements. For a more in-depth introduction we refer the interested reader to [Thiele
2006]. We remark that, for simplicity of notation and estimates, we here consider the setting of L2([0, 1))
instead of L2(R). The dyadic setting has the benefit of greatly simplifying estimates due to orthogonality
and allows for explicit computations of newly introduced analogues of the mixing scales as Besov-type
norms in terms of certain L2 bases. Hence, here it is transparent what estimates are possible and whether
they are optimal. In Section 4 we show that, with minor modifications, these results also extend to the
continuous Sobolev setting.

3A. Definitions, tiles and bases.

Definition 3.1. Let [0, 1) be the half-open unit interval. Then for each j ∈ N+, we define the set of
dyadic intervals at scale 2− j by

Dj = {Ik, j := 2− j
[k, k+ 1) : k ∈ {0, . . . , 2 j

− 1}}.

Associated with this partition of [0, 1), we introduce the L2-normalized characteristic functions

χI =
1
√
|I |

1I ∈ L2([0, 1)).

We note that, if I, I ′ ∈ Dj , then either I = I ′ or the intervals are disjoint. If the intervals are not of the
same size, that is, I ∈Dj and I ′ ∈Dj ′ with j 6= j ′, they are either disjoint or one is contained in the other.

In addition to the (normalized) characteristic functions, χI , the following definition introduces a large
family of oscillating L2 normalized functions, which we use to define (fractional) Sobolev-type spaces.

Definition 3.2. A tile p is a dyadic rectangle of area 1 in [0, 1)×[0,∞). That is,

p := I ×ω = [2− j k, 2− j (k+ 1))×[2 j l, 2 j (l + 1)),

where k ∈ {0, 2 j
− 1}, j ∈ N0, l ∈ N0. If l = 0, we define the wave-packet φp := (1/

√
|I |)1I . For l > 0,

we define φp recursively. That is, if p is a tile at level l and scale 2 j, we can express it as either the upper
or lower half of the union of two tiles pl, pr at level bl/2c and scale 2− j−1. We thus define

φp =
1
√

2
(φpl +φpr ) if l is even,

φp =
1
√

2
(φpl −φpr ) if l is odd.

This definition allows us to consider questions of orthogonality and basis expansions in a graphical
way, a so-called cartoon (see Figure 1). The following lemma summarizes some of the main properties
we use in the following.

Lemma 3.3 [Thiele 2000a, Lemma 2.9]. For any two tiles p, p′ we have∣∣∣∣∫
[0,1)

φpφp′

∣∣∣∣=√|p∩ p′|.

In particular two wave packets are L2-orthogonal if and only if the underlying tiles have empty intersection.
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Figure 1. Various tiles down to scale 2−4. The vertical gray tiles correspond to char-
acteristic functions χI . The horizontal gray lines correspond to our replacement of a
Fourier basis, φpl . The tiles in green and blue in the upper right corner are at level l = 1.
Plots of the corresponding wave packets of all colored tiles are given in Figure 2. By
Lemma 3.3 wave packs φp, φp′ are L2 orthogonal if and only if they are disjoint.
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Figure 2. Walsh wave packets associated with the tiles of Figure 1.

Corollary 3.4 [Thiele 2000a, Corollary 2.7]. Furthermore, two families of tiles P, P ′ cover the same
region in [0, 1)× [0,∞) if and only if the spans of {φp : p ∈ P} and {φp : p ∈ P ′} are identical. In
particular, setting pl = [0, 1)× [l, l + 1), we obtain that {χI }I∈Dj and {φpl : l ∈ {0, 2 j

− 1}} are both
orthonormal bases of the same space, which we denote by E j . We further introduce the L2 orthogonal
projection operators Pj onto E j .

Definition 3.5 (mixing scales). Given ρ ∈ L2([0, 1)), we introduce the geometric mixing seminorms at
scale j as

gj [ρ] = sup
{

1
I

∣∣∣∣∫
I
ρ

∣∣∣∣ : I ∈ Dj

}
=

√

2 j sup{|〈χI , ρ〉| : I ∈ Dj }.
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Furthermore, for s ∈ [−1, 1] we define analytic mixing seminorms up to scale j by

‖ρ‖2hs
j
=

2 j
−1∑

l=0

(1+ l2)2|〈ρ, φpl 〉|
2.

We further define ‖ρ‖hs = supj ‖ρ‖hs
j
.

3B. Estimates. We note that the geometric mixing seminorms can be expressed as

gj [ρ] = sup
I∈Dj

√

2 j |〈χI , ρ〉|

and are hence indeed norms on the space E j . Likewise the analytic seminorms are weighted l2 norms on
the same space E j when expressed in the orthonormal basis {φpl }. Hence, both mixing seminorms are
equivalent, with constants depending on j .

The following theorem establishes the corresponding estimates as well as related estimates between
different scales with uniform constants.

Theorem 3.6. Let ρ ∈ L2((0, 1)). Then for all j ∈ N

‖ρ‖h−1
j
≤ gj [ρ],

‖ρ‖h−1 ≤ gj [ρ] + 2− j
‖(1− Pj )ρ‖L2,

gj [ρ] ≤ 2(3/2) j
‖ρ‖h−1

j
.

Furthermore, both seminorms depend on ρ only via its projection; that is, ‖ρ‖h−1
j
= ‖Pjρ‖h−1

j
and

gj [ρ] = gj [Pjρ].

We remark that the loss of the factor 2(3/2) j here can be interpreted as corresponding to the embedding
H−1
⊂ H 1/2

⊂ L∞. Indeed, if ρ ∈ E j , then ρ is constant on each interval I ∈Dj and thus gj [ρ] = ‖ρ‖L∞ .

Corollary 3.7. Let ρ ∈ L2((0, 1)). Then:

(1) If ‖ρ‖h−1
j0
≤ 2− j0 , then gj [ρ] ≤ C2(3/2) j− j0 . In particular, if j ≤ 2

3 j0, then ρ is geometrically mixed

at scale 2− j.

(2) Furthermore, for j ≤ 2
5 j0, we obtain that gj [ρ] ≤ 2− j.

(3) Conversely, if gj [ρ] ≤ 2− j, then

‖ρ‖h−1
j
≤ gj [ρ] ≤ 2− j .

If we additionally assume that ‖(1− Pj )ρ‖L2 ≤ 1, then furthermore

‖ρ‖h−1 ≤ gj [ρ] ≤ 2− j
+ 2− j

‖(1− Pj )ρ‖L2 ≤ C2− j .

Remark 3.8. Setting 2− j0 = ε, the above results show that ‖ρ‖h−1 ≤ ε implies glog(ε2/3)[ρ] ≤ C and
glog(ε′)[ρ] ≤ ε

′ for ε′ ≥ ε2/5.
Conversely, if glog(ε)[ρ] ≤ ε and we control ‖ρ‖L2 , then also ‖ρ‖h−1 ≤ ε.
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The analytic and geometric mixing scales are hence comparable with a loss in the exponent in one
direction (thus we do not use the word equivalent).

Furthermore, we show in Lemma 3.9 that this loss is optimal.
As mentioned in the introductory Section 2, in this article we hence stress the viewpoint that the

examples constructed in [Lunasin et al. 2012] should instead be interpreted as showing the necessity of
the control of glog(ε)[ρ] ≤ ε instead of glog(ε)[ρ] ≤ κ and of the loss ε→ ε2/3.

We discuss this interpretation, scaling and the constructions further in Section 4.

Proof of Theorem 3.6. Let ρ ∈ L2 be given and consider the basis expansions of Pjρ ∈ E j :

Pjρ =
∑

I

dIχI =
∑

l

clφpl .

Since both χI and φpl are orthonormal bases of E j , it follows that

‖dI‖l2 = ‖cl‖l2 .

Then we may estimate

‖ρ‖h−1
j
= ‖〈l〉−1cl‖l2 ≤ ‖cl‖l2 = ‖dI‖l2 ≤

√

2 j max |dI |.

On the other hand, the normalization of the geometric mixing functionals is such that

gj [ρ] =max
1
|I |
〈χI , ρ〉 =

√

2 j max |dI |.

For the converse estimate, we note that

gj [ρ] =
√

2 j max |dI | ≤
√

2 j‖dI‖l2

=

√

2 j‖cl‖l2 ≤

√

2 j 2 j
‖〈l〉−1cl‖l2 ≤ 2(3/2) j

‖ρ‖h−1
j
.

If ρ 6∈ E j , we note that by definition

‖ρ‖2
h−1

j
=

2 j
−1∑

l=0

1
1+ l2 |〈ρ, φpl 〉|

2
≤

∞∑
l=0

1
1+ l2 |〈ρ, φpl 〉|

2
= ‖ρ‖2h−1 .

For the estimate of ‖ρ‖h−1 , we thus split ρ using Pj , 1− Pj and obtain

‖ρ‖2h−1 = ‖ρ‖
2
h−1

j
+

∑
l≥2 j

1
1+ l2 |〈ρ, φpl 〉|

2
≤ gj [ρ]

2
+ 2−2 j

‖ρ‖2L2 . �

Proof of Corollary 3.7. We apply Theorem 3.6 to obtain

gj [ρ] ≤ C2(3/2) j− j0 .

The first statements hence follow by noting that

3
2 j − j0 ≤ 0 ⇐⇒ j ≤ 2

3 j0,
and the second from

3
2 j − j0 ≤− j ⇐⇒ j ≤ 2

5 j0.

The last statement similarly follows as a direct corollary of Theorem 3.6. �
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The following lemma shows that these restrictions on j are optimal.

Lemma 3.9. There exists a family of functions ρ = ρ( j0) such that ‖ρ‖h−1
j0
≤ C2− j0 and which satisfies

the following properties:

(1) For any α < 2
3 and j = bα j0c, it holds that gj [ρ] = o(1) as j0 → ∞. If instead α > 2

3 , then
gj [ρ] →∞.

(2) For any α < 2
5 and j = bα j0c, it holds that 2 jgj [ρ] = o(1) as j0 →∞. If instead α > 2

5 , then
2 jgj [ρ] →∞.

Proof. As shown in the preceding Theorem 3.6 and Corollary 3.7, we have

gj [ρ] =
√

2 j‖dI‖l∞ ≤
√

2 j‖dI‖l2 ≤ 2(3/2) j
‖ρ‖H−1 ≤ 2(3/2) j− j0 .

Hence, we note that 3
2 j − j0 ≤ 0⇐⇒ j ≤ 2

3 j0 and that 3
2 j − j0 ≤ j ⇐⇒ j ≤ 2

5 .
Thus it only remains to show that these estimates are indeed sharp in the thresholds in j . For this

purpose, consider
ρ =

∑
2α j0−1≤l≤2 j0−1

φpl ,

with α ∈ (0, 1) to be chosen later (see also Remark 3.10). Then we can compute

‖ρ‖h−1
j0
=

( ∑
2α j0−1≤l≤2 j0−1

l−2
)1/2

≈ 2− j0α/2.

On the other hand, averaging over the interval [0, 2− j ), wave packets φpl with l > 2− j are orthogonal,
while wave packets with l ≤ 2 j are constantly equal to 1 when restricted to this interval. Hence, we obtain
that for any j ≤ j0

gj [ρ] =
∑

2 j0α−1≤l≤2 j−1

1≈ 2 j

if j > j0α. If we now multiply ρ by 2− j0(1−α/2), we are exactly in the setting described. That is,

‖2− j0(1−α/2)ρ‖H−1 ≈ 2− j0(1−α/2)2− j0α/2 = 2− j0,

gj [2− j0(1−α/2)ρ] ≈ 2 j− j0(1−α/2)

for any j with α j0 ≤ j ≤ j0. Since the exponent is monotone in j , we only need to consider the case
when α j0 = j and thus the behavior of (α− (1−α/2)). This exponent is less than or equal to zero if and
only if α ≤ 2

3 and less than or equal to −α if and only if α ≤ 2
5 . The thresholds in j , respectively α, are

thus indeed optimal. �

Remark 3.10. We remark that 〈χ[0,2− j ), φpl 〉 = 2− j for all j = 0, . . . , 2 j−1. Hence,
∑

0≤l≤2 j−1 φpl =

2 j 1[0,2− j ). Thus, if α j0 is an integer, we obtain∑
2α j0≤l≤2 j0−1

φpl = 2 j01[0,2− j0 )− 2α j01[0,2−α j0 ),
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which provides a more immediate view of the geometric mixing size. However, this explicit character-
ization is much less simple if 2α j0 is not a power of 2 and also not transparent in terms of the H−1 norm.

4. The continuous setting

In the following we show that, with minor modifications, the estimates of the dyadic setting of Section 3
persist in the continuous setting. Here, additional key challenges are given by the lack of orthogonality
and thus nonexistence of spaces like E j .

4A. Definition of mixing scales.

Definition 4.1. If ρ ∈ Ḣ−1(Rn), we call ‖ρ‖Ḣ−1 the analytic mixing scale.
Let φ ∈ L1(Rn) with φ ≥ 0 and ‖φ‖L1 = 1 and define φr (x) := φ(r x)/rn. Then for any ρ ∈ L1

loc(R
n)

and every ε0 > 0, we introduce the (nonlinear) functionals

gε0[ρ] := ‖φr ∗ ρ‖L∞ .

Here, the most common choice is given by φ = (1/|B1|)1B1 , in which case

gε0[ρ] = sup
r>ε0,x∈Rn

|Br (x)|−1
∣∣∣∣∫

Br (x)
ρ(y) dy

∣∣∣∣.
We say that a function ρ ∈ L∞(�)∩ L1

loc(�) is geometrically mixed by a factor κ ∈ (0, 1) up to scale
ε0 > 0 if

gε0[ρ] ≤ κ‖ρ‖L∞ .

For a given κ , we define
Gκ [ρ] = inf{ε0 > 0 : gε0[ρ] ≤ κ‖ρ‖L∞},

where the infimum is over all such ε0, and call it the geometric mixing scale.

We remark that, by Hölder’s inequality,

gε0[ρ] ≤ ‖ρ‖L∞‖φr‖L1 = ‖ρ‖L∞

and that by Lebesgue integration theory

lim
ε0↓0

gε0[ρ] = ‖ρ‖L∞ .

The functionals g and the geometric mixing scale G thus describe the competition between cancellations
in Hölder’s inequality and convergence of Dirac sequences.

Remark 4.2. The reason for our more general formulation in terms of φ ∈ L1 is that in later estimates
optimality is easier to phrase and establish if we additionally require that φ ∈ H 1. In particular, by duality

sup
ρ∈H−s :‖ρ‖H−s≤1

g1[ρ] = ‖φ‖H s

and hence an estimate like (6) is not possible unless φ is sufficiently regular. However, for most estimates
this only poses technical challenges (see Lemma 4.10) in terms of the control of certain Fourier projections.
In the dyadic setting of Section 3 these complications could be avoided by using orthogonality properties.
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4B. Comparison estimates. Our main results are given by the following theorems and corollaries.

Theorem 4.3 (estimates). Let ρ ∈ L2
∩ Ḣ−1(Rn) and suppose that φ ∈ Hλ

∩ L1 for some λ ∈ [0, 1]. Then
for any ε0 > 0 it holds that

gε0[ρ] ≤ C
‖φ‖Hλ

‖φ‖L1
ε
−n/2−λ
0 ‖ρ‖H−λ .

As a consequence, the geometric mixing scale of ρ can be estimated by

Gκ(ρ)≤
(

Cλ,φ‖ρ‖H−λ

κ‖ρ‖L∞

)1/(n/2+λ)

.

In particular, if λ= 1, then
gε0[ρ] ≤ Cε−n/2−1

0 ‖ρ‖H−1,

Gκ(ρ)≤ C
(
‖ρ‖H−1

κ‖ρ‖L∞

)1/(n/2+1)

.
(6)

Conversely, if ρ is compactly supported and C denotes the measure of a 1-neighborhood of the support,
then for every ε0 ≤ 1 it holds that

‖ρ‖H−1 ≤ Cgε0[ρ] +Cε0‖ρ‖L2 . (7)

We note that in the estimate (7), assuming Gκ [ρ] ≤ ε0 only yields a bound of ‖ρ‖H−1 ≤ κ . Indeed, as
explored in Section 2B for fixed κ it is possible to find a sequence ρn such that

Gκ [ρn] → 0, ‖ρn‖H−1 ≥ κ,

where the failure of decay of ‖ρn‖H−1 was due to the persistence of structures at scale κ (see also
Theorem 1.2 and the remarks thereafter).

As discussed in Remark 4.2, if φ = c1B1 , we cannot choose λ= 1 since φ 6∈ H 1. However, we may
recover this estimate upon imposing further conditions on ρ (see Lemma 4.10).

As an application of the above estimates we derive comparability of both mixing scales. That is, while
not equivalent (semi-)norms, smallness of one scale implies smallness of the other with a necessary loss
in the exponents. For easier reference, we restate Theorem 1.2.

Theorem 4.4 (comparison of mixing scales). Let ρ ∈ L2(Rn) and ‖ρ‖L2 ≤ 1 and let φ ∈ H 1. Then for all
0< ε ≤ 1 it holds that:

(1) If gε[ρ] ≤ ε and ρ is supported in B1, then also ‖ρ‖H−1 ≤ Cε.

(2) If ‖ρ‖H−1 ≤ ε, then also gε̃[ρ]≤C for all ε̃≥ εα and gε′[ρ]≤Cε′ for all ε′≥ εβ, where α= 2/(n+2)
and β=2/(n+4) depend only on the dimension. In particular, supposing additionally that ‖ρ‖L∞=1,
it follows that

GC [ρ] ≤ ε̃,

GCε′[ρ] ≤ ε
′.

These estimates are optimal in the powers of ε.
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In Section 3 we have seen that the loss of exponents is caused by the (L1, L∞) normalization in the
geometric scale instead of L2 normalization for the analytic scale and can also be seen as being due to
the Sobolev embedding into L∞. In this continuous setting, this is much less transparent due to the lack
of spaces E j . The necessity of the loss is established in Lemma 4.7 in analogy with Lemma 3.9 of the
dyadic case.

Corollary 4.5. Let u : R+×Rn
→ R be such that

‖ρ(t)‖H−1 ≥ Ce−Ct .

Then, it follows that

ge−Ct [ρ(t)] ≥ Ce−Ct .

Remark 4.6. For example u(t) may be given by the solution of a passive or active scalar problem, as
in [Crippa et al. 2019]. As noted in Section 2, if one were instead to consider gκ [ρ(t)] for fixed κ , this
functional is not lower semicontinuous and there is no reason to expect any lower bound.

Proof of Theorem 4.3. As a first consistency check, we verify that the estimates of Theorem 4.3 scale
correctly.

Let thus δ > 0 and consider ρδ(x) = ρ(δx). For simplicity of notation, we consider λ = 1
2 . Then it

holds that
gε0[ρδ] = gδε0[ρ] ≤ C(δε0)

−n/2−1/4
‖ρ‖

1/2
L2 ‖ρ‖

1/2
H−1

= Cδ−n/2−1/4ε
−n/2−1/4
0 ‖ρ‖

1/2
L2 ‖ρ‖

1/2
H−1 .

On the other hand, estimating directly, we obtain

gε0[ρδ] ≤ Cε−n/2−1/4
0 ‖ρδ‖

1/2
L2 ‖ρδ‖

1/2
H−1

= Cε−n/2−1/4
0 (δ−n/2

‖ρ‖L2)1/2(δ−n/2−1/2
‖ρ‖L2)1/2

= Cδ−n/2−1/4ε
−n/2−1/4
0 ‖ρ‖

1/2
L2 ‖ρ‖

1/2
H−1 .

Note that this estimate is further invariant under replacing ρ(x) by µρ(x) for any µ > 0. Hence, we may
in addition choose µ= δn/2 to ensure L2 normalization.

Let us now consider the proof of the theorem and let λ ∈ [0, 1] and φ ∈ Hλ be given. Then we may
use duality to estimate

gr [ρ] ≤
‖φr‖Hλ

‖φr‖L1
‖ρ‖H−λ

and use interpolation to control
‖ρ‖H−λ ≤ Cλ‖ρ‖1−λL2 ‖ρ‖

λ
H−1 .

We further note that by scaling
‖φr‖Hλ

‖φr‖L1
≤ Cr−n/2−λ ‖φ‖Hλ

‖φ‖L1

for r ≤ 1 (for the homogeneous Sobolev norms we would have equality).
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Combining both estimates, we obtain

gr [ρ] ≤ C
‖φ‖Hλ

‖φ‖L1
r−n/2−λ

‖ρ‖1−λL2 ‖ρ‖
λ
H−1 .

For the estimate on the geometric mixing scale, we have to show that for given κ and all ε0 ≥ G[ρ]

gε0[ρ] ≤ κ‖ρ‖L∞ .

In view of the previous calculation this is implied by showing that

Cλ,φε
−n/2−λ/2
0 ‖ρ‖1−λL2 ‖ρ‖

λ
H−1 ≤ κ‖ρ‖L∞,

with Cλ,φ = C(‖φ‖Hλ/‖φ‖L1). Dividing by κ‖ρ‖L∞ > 0 and taking a power 1/(n/2+ λ/2), we obtain
that this holds if (Cλ‖ρ‖1−λL2 ‖ρ‖

λ
H−1

κ‖ρ‖L∞

)1/(n/2+λ/2)

≤ ε0.

We thus obtain an upper bound on the geometric mixing scale by the left-hand-side, which concludes the
proof. �

Proof of Theorem 1.2. We proceed as in the proof of Corollary 3.7 and consider ε0 = ε
t for t ∈ (0, 1) to

be determined. Then the estimate (6) of Theorem 4.3 implies

gεt ≤ Cεt (−n/2−1)+1,

which yields the critical cases

t
(
−

n
2
− 1

)
+ 1= 0 ⇐⇒ t = 2

n+2
,

t
(
−

n
2
− 1

)
+ 1= t ⇐⇒ t = 2

n+4
. �

The following lemmata consider questions of optimality and the removal of small scales discussed in
Section 2B.

Lemma 4.7 (counterexample in the continuous setting). There exists a sequence ε ↓ 0 and ρ = ρ(ε) ∈
L2(R) with

‖ρ‖H−1 ≤ ε,

but such that for every α < 2
3 , it holds that

gεα [ρ] →∞.

as ε ↓ 0 and such that for all β < 2
5

ε−βgεβ [ρ] →∞.

That is, the exponents in Theorem 1.2 are optimal.

Proof of Lemma 4.7. We follow a similar strategy as in the proof of Lemma 3.9 in the dyadic setting. Let
ε = 2− j0 and consider

ρ = 2 j01[0,2− j0 ]− 2 j11[0,2− j1 ],
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with j1 = α j0, α ∈ (0, 1). Then for any j1 ≤ j ≤ j0, we obtain

2 j
∫ 2− j

0
ρ dx = 2 j (2 j0 min(2− j , 2− j0)+ 2 j1 min(2− j , 2− j1))= 2 j

− 2 j1,

which is comparable to 2 j as long as j > j1.
We further make the following claim:

‖ρ‖H−1 ≈ 2− j1/2. (8)

Suppose that this claim holds and consider

ρ ′ := 2− j0(1−α/2)ρ,

which satisfies
‖ρ ′‖H−1 ≈ 2− j0,

g2− j [ρ ′] ≈ 2 j− j0(1−α/2) = 2− j0(1−(3/2)α).

We hence conclude as in the proof of Lemma 3.9.
Thus it remains to show the claim. We directly compute

ρ̂(ξ)=

∫
R

eiξ x 2 j01[0,2− j0 ]− 2 j1
1[0,2− j1 ] dx =

eiξ2− j0
− 1

iξ2− j0
−

eiξ2− j1
− 1

iξ2− j1
.

Both difference quotients are uniformly bounded by 1 and we distinguish the regions based on the size of
ξ2− j0 and ξ2− j1 .

If |ξ |> c2 j0, we may roughly estimate∫
{ξ :|ξ |>c2 j0 }

|ρ̂(ξ)|2

|ξ |2
≤

∫
∞

c2 j0

4
|ξ |2

dξ ≤ C2− j0,

which is a very small contribution.
If |ξ | < c2 j1 with c small, we may use a Taylor expansion to estimate the error of the difference

quotient:
eiξ2− j0

− 1
iξ2− j0

−
eiξ2− j1

− 1
iξ2− j1

= 1+O(ξ2− j0)− 1+O(ξ2− j1)=O(ξ2− j1).

The H−1 energy for this segment can hence be estimated by∫
{ξ :|ξ |<c2 j1 }

|ρ̂(ξ)|2

|ξ |2
≤ C

∫
{ξ :|ξ |<c2 j1 }

2−2 j1 ≤ C2− j1 .

Finally, if cj1 ≤ j ≤ cj0, one difference quotient is about 1, while the other oscillates, but is bounded
by 1. Thus the contribution can be estimated as∫

{ξ :c2 j1≤|ξ |<c2 j0 }

|ρ̂(ξ)|2

|ξ |2
≈

∫ c2 j0

c2 j1

1
|ξ |2

dξ ≈ 2− j1 . �
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Lemma 4.8. Let ρ ∈ L2(Rn) and r > 0 and define ρr := (1/|Br |)1Br ∗ ρ. Then ρ− ρr ∈ H−1 and there
exists C > 0 depending only on the dimension n such that

‖ρ− ρr‖H−1 ≤ Cr‖ρ‖L2 .

Proof of Lemma 4.8. We consider the Fourier transform of φr . Let thus r > 0 and ξ ∈ Rn be given and
consider

cn

rn

∫
Br

ei x ·ξ dx =
1
rn

∫
Br

ei x1|ξ | =
cn

|rξ |n

∫
Br |ξ |

ei x1 dx =: ψ(|rξ |).

We remark that ψ can be explicitly computed in terms of Bessel functions (see the proof of Theorem 5.2).
Since ψ( · ) is an average of ei x1 it follows that |ψ | ≤ 1. Furthermore, by continuity of ei x1

|ψ(|rξ |)− 1| ≤
cn

|rξ |n

∫
Br |ξ |

|ei x1 − 1| dx ≤ Cr |ξ |

as r |ξ | ↓ 0.
Hence, we can control

|F(ρr − ρ)|
2
= |(ψ(r |ξ |)− 1)ρ̂(ξ)|2 ≤min(2,Cr |ξ |)|ρ̂|2

and can estimate the H−1 energy of ρ−φr ∗ ρ by∫
min(C2

|ξr |2, 4)
|ξ |2

|ρ̂(ξ)|2 ≤ C2r2
∫
|ρ̂(ξ)|2 = C2r2

‖ρ‖2L2 . �

Lemma 4.9. Let ρ ∈ L2(Rn) with ‖ρ‖L2 ≤ 1 be supported in B1(0) such that∥∥∥∥ 1
cnεn 1Bε ∗ ρ

∥∥∥∥
L∞
≤ ε

for some 0< ε < 1. Then there exists C depending only on the dimension n such that the analytic mixing
scale satisfies

‖ρ‖H−1 ≤ Cε.

Proof of Lemma 4.9. By the triangle inequality

‖ρ‖H−1 ≤ ‖ρε‖H−1 +‖ρ− ρε‖H−1 .

The second term can be estimated by Cε‖ρ‖L2 ≤Cε using Lemma 4.8, while for the first term we control

‖ρε‖H−1 ≤ ‖ρε‖L2 ≤ | supp(ρε)|‖ρε‖L∞ ≤ 2nε,

where we estimated the support of ρε by B1+ε ⊂ B2. �

We remark that since the definition of g is given in terms of local Lebesgue spaces, some support or
decay condition is necessary.
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Indeed, consider ρ ∈ L2(R), which is compactly supported in (0, 1). Then for any N ∈ N we can
define σ(x) :=

∑N
j=0 ρ(x + 2 j). Due to the disjoint supports for all ε < 1

2 , it holds that

‖σε‖L∞ = ‖ρε‖L∞,

‖σ‖L2 =
√

N‖ρ‖L2 .

Furthermore, while H−1 is nonlocal, we obtain that ‖σ‖H−1 ≈
√

N‖ρ‖H−1 for N large.
The following lemma establishes the converse control of the geometric scale by the analytic scale. As

noted in Remark 4.2, here regularity of φ allows for easier proofs. However, under additional assumptions,
φ can also be chosen less regular, such as 1B1 .

Lemma 4.10. Let ρ ∈ H−1(Rn) with supp(ρ̂)⊂ Br−1(0) and let φ ∈ L1. Then there exists a constant C
depending on ρ such that

gε0[ρ] ≤ Cr−n/2−1
‖ρ‖H−1 .

If we require that φ ∈ H 1, then the support assumption can be omitted.

Proof of Lemma 4.10. Using Plancherel’s theorem we compute

φr ∗ ρ(x)=
∫
φr (x − y)ρ(y) dy =

∫
ei xξ ¯̂φr (ξ)ρ̂(ξ) dξ.

Now recall that φr (x) = φ(r x)/rn has constant L1 norm and thus ‖φ̂r‖L∞ ≤ ‖φr‖L1 . We may hence
control further by

‖φ̂r‖L∞‖ξ‖L2(supp(ρ̂))

∥∥∥∥ ρ̂ξ
∥∥∥∥

L2
≤ r−n/2−1

‖ρ‖H−1,

where we used the support of ρ̂ and that ‖φ̂r‖L∞ ≤ ‖φr‖L1 = 1.
If φ ∈ H 1, we can instead directly estimate

‖φr ∗ ρ‖L∞ ≤ ‖φr‖H1‖ρ‖H−1

= r−n/2−1
‖φ‖H1‖ρ‖H−1 . �

Hence, the failure of estimates with s ≥ 1
2 is due to the interaction of the “tail” of ρ̂ for |ξ | ≥ r−1.

We remark that in the dyadic setting of Section 3 this complication does not arise, since our seminorms
project on spaces E j of lower frequency.

5. Damping rates in transport-type equations

In this second part of our article, we are interested in the time dependence of mixing scales when ρ(t)
evolves under the passive scalar equation

∂tρ+ v · ∇ρ = 0

for a given divergence-free velocity field v. In particular, we are interested optimal decay rates of
‖ρ(t)‖H−1 and Gκ(t)[ρ(t)].
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In Section 5A, we consider the special case when ρ(t) is advected by a given specific, regular,
incompressible velocity field. This study is motivated by recent work of Crippa, Lucà and Schulze [Crippa
et al. 2019], who studied the time behavior of both mixing scales under the evolution

ρ(t, r, θ)= ρ0(r, θ − tr),

where r, θ are polar coordinates on R2
\ {0}, ρ0 ∈ L1

∩ L∞ and the angular averages 〈ρ0〉θ = 0 identically
vanish. Adapting conformal polar coordinates θ, es

= r , this setting shares strong similarities with
problems of inviscid damping in fluid dynamics.

Further examples of interest here are given by:

• Perturbations around shear flow solutions of Euler’s equations on T×R. In [Zillinger 2016; 2017a]
we showed that if U (y) is, roughly speaking, close to affine, the linearized Euler equations in vorticity
formulation asymptotically scatter in H s to the transport problem with v = (U (y), 0). Using different,
spectral methods [Wei et al. 2018] have further shown similar results under weaker conditions.

• When considering circular flows [Zillinger 2017b; Coti Zelati and Zillinger 2019] and when v = u(r)eθ
is an annular region or on R2, we similarly obtain stability, damping and scattering in weighted spaces
and for more degenerate profiles.

• In the setting of Landau damping [Bedrossian et al. 2016] similarly one observes scattering to a transport
problem.

The following results on the free transport equation

∂tρ(t, x, y)− y∂xρ = 0, (t, x, y) ∈ (0,∞)×Tn
×Rn,

hence also extend by scattering to asymptotics for further equations exhibiting phase-mixing.
Finally, we discuss optimal mixing and stirring for more general passive scalar problems. Here, a

recent active area of research, [Alberti et al. 2014; Seis 2017; Crippa and Schulze 2017; Bressan 2003;
Crippa and De Lellis 2008] is given by the study of upper and lower bounds on decay rates of mixing
scales for solutions of (1)

∂tρ+ v · ∇ρ = 0,

where v may be chosen arbitrarily under given constraints such as ‖v(t)‖W 1,p ≤ 1. Using our comparison
estimates of Theorem 1.2, we discuss implications of some known results.

5A. On sharp decay rates for the free transport equation. Our main results for the analytic mixing
scale are summarized in Theorem 1.3, which we restate in the following for easier reference. Using the
estimates of Theorem 4.3 we also obtain control of the geometric scale, which we study in Theorem 5.2.

Theorem 5.1. Let Hσ H s
= Hσ (Tn

; H s(Rn)) denote the Hilbert space with norm

‖ρ‖2Hσ
x H s

y
=

∑
k∈Zn

〈k〉2σ
∫

Rn
〈η〉2s
|ρ̃(k, η)|2 dη.
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In the following, let 0< s ≤ 1, ρ0 ∈ L2(Tn
; H s(Rn)) with

∫
Tn ρ0(x, y) dx = 0, and let

ρ(t, x, y)= ρ0(t, x − t y, y)

be the solution of the free transport problem. Then:

(1) There exists Cs > 1 such that for all t ≥ 1 and all initial data

‖ρ(t)‖H−1 ≤ Ct−s
‖ρ0‖H−s(Tn;H s(Rn)).

(2) Let αj > 0 with ‖(αj )j‖l2 = 1. Then there exist c > 0, a sequence of times tj →∞ and initial data
u0 such that

‖ρ(tj )‖H−1 ≥ cαj t−s
j ‖ρ0‖H−s(Tn;H s(Rn)).

(3) There exists no nontrivial initial data ρ0 ∈ L2(Tn
; H s(Rn)) such that

‖ρ(tj )‖H−1 ≥ ct−s
j ‖ρ0‖H−s(Tn;H s(Rn))

along some sequence tj →∞.

In the second statement, tj can always be chosen larger and more rapidly increasing. For instance,
we may chose tj = exp(exp(· · · exp( j))) and αj = 1/j = ln(ln(· · · ln(tj ))) as iterated exponentials and
logarithms. Informally stated, the theorem hence shows that algebraic decay rates can be achieved along
a subsequence up to an arbitrarily small loss. Conversely, the third statement shows that this loss is
necessary and that the lower estimate is sharp in this sense.

Proof of Theorem 1.3. We note that for all t the map L2
3 ρ0 7→ ρ(t) ∈ L2 is unitary and thus the

statement holds for s = 0. Furthermore, we may use the explicit solution of the free transport problem
and Plancherel’s identity with respect to x to obtain

‖ρ(t)‖H−1 = sup
φ:‖φ‖H1≤1

∣∣∣∣∑
k 6=0

∫
¯̂
φ(k, y)eikty ρ̂0(k, y) dy

∣∣∣∣
= sup
φ:‖φ‖H1≤1

∣∣∣∣∑
k 6=0

∫
eikty∂y

¯̂
φ(k, y)ρ̂0(k, y)

ikt

∣∣∣∣
≤ t−1

‖ρ0‖H−1(Tn;H1(Rn)),

and thus establish the result for s = 1. The result for 0< s < 1 then is obtained by interpolation.
For the second statement, we make use of resonant times and frequencies. Roughly speaking, if ρ0

is frequency localized at (k, η) (with respect to x and y), then free transport in physical space is also a
transport equation in Fourier space and ρ(t) will be frequency localized near (k, η+ kt). Hence, if k 6= 0,
η and k are parallel and t = −η/k, the frequency localization is near zero and hence any Hσ norm is
equivalent to the L2 norm for such a function.

Let thus φ ∈ C∞c be supported in a ball of radius 2 and L2 normalized and let (αj )j ∈ l2 with
‖(αj )j‖l2 = 1. Suppose further that tj , to be determined precisely later, satisfies min j1 6= j2 |tj1 − tj2 | > 4
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and min |tj |> 4. Then we define the function ρ0 ∈ H s(Tn
×Rn) by its Fourier transform:

ρ̃0(k, η)= δk=e1

∑
j∈N

αj 〈tj 〉
−sφ(η− tj e1).

We remark that the Dirac in k corresponds to assuming periodicity in x . This construction also
readily extends to the whole space case, Rn

×Rn, if δk=e1φ(η−tj e1) is replaced by a bump function
φ(10k−e1)φ(η−ktj ).

By our assumption on tj1 − tj2 , the functions φ( · − tj ) are disjointly supported and thus

‖ρ0‖
2
H s =

∑
j

|αj |
2
∥∥∥∥ 〈 · 〉2s

〈tj 〉
2s φ( · − tj e1)

∥∥∥∥2

L2(B2(0))
=

∑
j

|αj |
2
∥∥∥∥〈 · − tj e1〉

2s

〈tj 〉
2s φ( · )

∥∥∥∥2

L2(B2(0))
.

Similarly, for any t ∈ R, it holds that

‖ρ(t)‖2H s =

∑
j

|αj |
2
∥∥∥∥〈(tj − t)e1+ · 〉

2s

〈tj 〉
2s φ( · )

∥∥∥∥2

L2(B2(0))
.

By our assumptions on tj and φ, in the first sum |η| ≤ 2≤ |tj |/2, and thus ‖u0‖
2
H s is comparable (within

a factor 4±s) to
∑

j |αj |
2
= 1. One the other hand, for t = tj , the second sum is bounded from below by

|αj |
2
∥∥∥∥ 〈 · 〉2s

〈tj 〉
2s φ( · )

∥∥∥∥2

L2(B2(0))
≥
|αj |

2

〈tj 〉
2s .

This concludes the proof of the second statement. We note that a similar lower bound can also be obtained
for the homogeneous Sobolev spaces by choosing t = tj + 4 instead.

Finally, suppose that there exists ρ0 attaining the algebraic decay rates. Expressed in terms of ρ0 this
implies that for a sequence tj →∞∥∥∥∥ t s

j

〈η− tj k〉1〈η〉s
〈η〉s〈k〉−s ũ0

∥∥∥∥2

l2 L2
≥ C‖〈η〉s〈k〉−s ũ0‖

2
l2 L2 . (9)

Since the equation decouples with respect to k and for easier notation, in the following we consider k
arbitrary but fixed and omit the factors 〈k〉−s. The result of the theorem then follows by multiplying by
〈k〉−s and summing in k.

Now let t = tj and consider the sets

�C,t =

{
(k, η) :

|t s
|

〈η− tk〉1〈η〉s
<

√
C
2

}
and AC,t , their complements. Then the inequality (9) implies∥∥∥∥ t s

〈η− tj k〉1〈η〉s
〈η〉s ũ0

∥∥∥∥2

L2(AC,t )

+
C
2
‖〈η〉s ũ0‖

2
L2(�C,t )

≥ C‖〈η〉s ũ0‖
2
L2(�C,t )

=⇒

∥∥∥∥ t s

〈η− ktj 〉
1〈η〉s
〈η〉s ρ̃0

∥∥∥∥2

L2(AC,t )

≥
C
2
‖〈η〉s ρ̃0‖

2
L2 . (10)
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On the other hand
t s

〈η− ktj 〉
1〈η〉s

≤max
(

t s

〈ktj/2〉11
,

t s

1〈ktj/2〉s

)
≤ 2s,

by considering |η| ≤ tj/2 and |η|> tj/2 and using that 0≤ s ≤ 1.
Hence, it follows that, for a constant depending on s, but independent of t ,

‖〈η〉s ρ̃0‖
2
L2(AC,t )

≥ Cs‖〈η〉
s ρ̃0‖

2
L2 .

By assumption, this holds for a sequence tj →∞. Upon passing to a subsequence, the sets AC,tj can be
ensured to be mutually disjoint. Hence, by orthogonality

‖〈η〉s ρ̃0‖
2
L2 ≥

∑
j

‖〈η〉s ρ̃0‖
2
L2(AC,tj )

≥ Cs

∑
j

‖〈η〉s ρ̃0‖
2
L2 =∞‖〈η〉

s ρ̃0‖
2
L2 .

This is a contradiction unless ρ0 = 0. �

As a consequence of our comparison result, Theorem 1.2, we also obtain lower bounds on the decay
of the geometric mixing scale. The following theorem instead provides a direct construction of a lower
bound, where averages are taken over the scale j/tj instead.

Theorem 5.2. Let 0 ≤ s < 1
2 ; then there exists initial data ρ0 ∈ L2

x H s
y (T × [0, 2π ]) so that along a

sequence of times tj = 2100+ j the solution u of the free transport problem satisfies

g j/tj [ρ] ≥
‖ρ0‖L2 H s

j〈tj 〉
s .

That is, at scale r = j/tj we have a lower bound by 1/( j t s
j ).

We remark that as in the previous Theorem 1.3, tj can be chosen to be increasing more rapidly and thus
1/j = o(1) as tj →∞ can be chosen with very slow decay. Furthermore, the construction of our proof
also extends to the n-dimensional transport equations by extending constantly in the other directions.

Proof of Theorem 5.2. Consider the function

ρ0(x, y)= cei x
∞∑
j=1

1
j

ei tj y

〈tj 〉
s

as a functions on T×[0, 2π ], where c ∈
( 1

100 , 100
)

can be chosen such that this function is normalized
since 1/j ∈ l2.

Then, the solution ρ of the free transport problem is explicitly given by

ρ(t, x, y)= cei x
∞∑
j=1

1
j

ei(tj−t)y

〈tj 〉
s .

For simplicity of notation and presentation we first consider averages over squares instead of balls,
which allows for a simpler straightforward calculation. An extension to the latter setting is given at the
end of this proof. Let thus t = tj0 and consider a square S = Ix × Iy of side length 1

100 > d > j0/tj0 , which
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is centered close to a point where ei x
= 1. Then the integral of ρ over this square decouples by Fubini’s

theorem and we may compute that
1
d

∫
Ix

ei x dx ≈ 1

and that
1
d

∫
Iy

∞∑
j=1

1
j

cos((tj − t)y)
〈tj 〉

s dy =
1
d

∫
Iy

1
j0〈tj 〉

s +
1
d

∑
j 6= j0

∫
Iy

1
j

ei(tj−tj0 )y)

〈tj 〉
s .

We note that as an average over a constant function, the first term equals

1
j0〈tj 〉

s ≈
1

j02 j0s . (11)

On the other hand, by the construction of tj = 2100+ j, for each j 6= j0 we have |tj − tj0 | ≥
1
2 max(tj , tj0)

and thus all further integrands are highly oscillatory. In particular,∣∣∣∣∫
Sy

1
j

cos((tj − tj0)y)
〈tj 〉

s

∣∣∣∣≤ 1
j〈tj 〉

s |tj − tj0)|
≤

1
j2 js |2 j − 2 j0 |

,

where we used integration by parts. Considering the sum in j , we split into∑
j< j0

1
j2 js |2 j − 2 j0 |

≤
2

2 j0

∑
j

1
j2 js ≤

cs

2 j0

and ∑
j> j0

1
j2 js |2 j − 2 j0 |

≤ 2− j0s
∑
j> j0

2
j2 j ≤ 2− j0s2− j0 .

Dividing by d > j2− j0/(100cs), both terms will be smaller than the term in (11) by a large factor and
hence

1
|S|

∫
S
ρ(tj )≥ c

1
j0〈tj 〉

s ,

as claimed.
Let us next consider the original problem of averages over balls. In this case the integrals

1
j〈tj 〉

s

1
|Bd |

∫
Bd

ei x ei(tj−t)y

can be explicitly computed in terms of Bessel functions. That is, if the center of the ball is the point
(ξ1, ξ2), then after translating in x and y, we obtain an exponential factor eiξ1+i(tj−t)ξ2 and an integral
over a ball centered in (0, 0). We hence need to compute∫

Bd

ei x(1,tj−t) dx = dn
∫

B1

ei x(d,d(tj−t)) dx .

That is, the Fourier transform of the indicator function of a ball.
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Using the rotation-invariance of B1, we compute∫
B1

ei xξ dx =
∫

B1

ei x1|ξ | dx1 dx2 =

∫ 1

−1

√
1− x2

1ei x1|ξ | dx1 = c
J1(|ξ |)

|ξ |
,

where J1 denotes the Bessel function of the first kind and c ≤ 10. It hence follows that

d−n
∫

Bd

ei x(1,tj−t) dx ≤ Cd min
(

1,
C

d
√

1+ |tj − t |2

)
and d−n

∫
Bd

ei x(1,tj−t) dx ≈ 1

if tj − t is small. Thus, the above estimates for squares extend to this case in a straightforward way. �

5B. On lower bounds for mixing costs. Consider again the passive scalar problem

∂tρ+ v · ∇ρ = 0,

∇ · ρ = 0.
(12)

In the previous section we considered v as given and asked about decay rates of mixing scales for ρ0 ∈ H s

to be chosen freely.
As a related and in a sense inverse problem, one can ask about mixing costs. That is, you are given an

explicit initial datum ρ0 ∈ H s and want it to be mixed to scale ε by time 1. What kind of lower bound
does this imply on Sobolev norms of v in space and time?

More precisely, the aim is to a establish a lower bound of the type∫ 1

0
‖v‖W 1,p dt ≥ C p| log(ε)|,

when ρ(1) is geometrically mixed to scale ε. The case p > 1 was established in [Crippa and De Lellis
2008] and the case p = 1 is a conjecture in [Bressan 2003].

As an application of our comparison results, we consider the simplest case of p =∞, following the
proof in [Crippa and De Lellis 2008] via Gronwall’s estimate.

Lemma 5.3. Let 1> ε > 0 and ρ be a solution of (12) on Rn such that

‖ρ|t=0‖H−1 = 1, ‖ρ|t=1‖H−1 = ε > 0,

with v ∈W 1,∞. Then it holds that∫ 1

0
‖∂ivj + ∂jvi‖L∞ dt ≥ C | log(ε)|.

Proof. Since v is divergence-free, the solution operator S(t2, t1) mapping ρ|t1 to ρ|t2 is unitary. Character-
izing the H−1 norm via duality we hence obtain

‖ρ|t=0‖H−1 = sup
‖ψ‖H1≤1

∫
ψρt=0 = sup

‖ψ‖H1≤

∫
ψρt=0

= sup
‖ψ‖H1≤1

∫
(S(1, 0)ψ)ρt=1 ≤ ‖S(1, 0)‖H1→H1‖‖ρt=1‖H−1,
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and thus

‖S(1, 0)‖H1→H1 ≥
1
ε
. (13)

On the other hand, S(1, 0) conserves the L2 norm and ∂jρ satisfies

∂t∂jρ+ v · ∇∂jρ+ (∂jv) · ∇ρ = 0.

Testing against ρj we thus obtain

d
dt
‖∇ρ‖2L2 ≤ 2

∑
i, j

∫
(∂jρ)(∂jvi )(∂iρ)=

∑
i, j

∫
(∂jρ)(∂jvi + ∂ivj )(∂iρ)≤ ‖∂jvi + ∂ivj‖L∞‖∇ρ‖

2
L2 .

Gronwall’s inequality thus implies

‖S(1, 0)‖H1→H1 ≤ exp
(∫ 1

0
‖∂jvi + ∂ivj‖L∞ dt

)
,

which in combination with the inequality (13) concludes the proof. �

As a corollary we obtain a lower bound on the geometric scale. While our comparison estimates of
Section 4 cannot be expected to be optimal due the different time dependencies, we remark that lower
bounds in terms of powers of ε yield the same logarithmic lower bounds. Hence, we may consider the
assumptions of the following corollary to be equivalent to those of Lemma 5.3 for our purposes.

Corollary 5.4. Let 1 > ε > 0 and ρ be a solution of (12) on Rn with v ∈ W 1,∞(Rn). Suppose that
‖ρ|t=0‖H−1 = 1 and that ρ|t=1 is supported in B1 and

Gε[ρ|t=1] ≤ ε.

Then it follows that ∫ 1

0
‖∂ivj + ∂jvi‖L∞ dt ≥ C | log(ε)|.

Proof. By Theorem 1.2, ρ also satisfies the assumptions of Lemma 5.3, which implies the result. �

For the case p > 1, Crippa and De Lellis [2008] obtained the following mixing cost result; see also
[Seis 2013; Bruè and Nguyen 2018; Iyer et al. 2014]. Unlike the setting p = ∞ this seminal result
requires considerable effort to prove. In subsequent works we intend to study whether the comparability
can be used to simplify steps of this proof.

Theorem 5.5 [Crippa and De Lellis 2008, Theorem 6.2]. Let p > 1 and ρ|t=0 = 1[0,1/2](x2) ∈ L1(T2)

and suppose that for ε > 0 and some 0< κ < 1
2 the solution of (12) satisfies

κ ≤
1
Bε

∫
Bε
ρ|t=1 ≤ 1− κ.

Then there exits a constant C such that∫ 1

0
‖∇v‖L p dt ≥ C | log(ε)| (14)

for every 0< ε < 1
4 .
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The following corollary establishes a similar result for analytic mixing costs as consequence of this
result on geometric mixing costs by using comparability. Such an estimate was also obtained in [Iyer
et al. 2014] by more direct methods. We thus do not claim novelty of this estimate, but highlight that
comparability allows us to relate existing results available for either scale.

Corollary 5.6. Let p> 1 and ρ|t=0= 1[0,1/2](x2)∈ L1(T2) and suppose that for ε > 0 and some 0<κ < 1
2

the solution of (12) satisfies ∥∥ρ|t=1−
1
2

∥∥
H−1 ≤ ε.

Then inequality (14) holds.

Proof. Theorem 4.3 implies that for 0< α < 1
2∣∣∣∣ 1

Bεα

∫
Bεα
ρ|t=1−

1
2

∣∣∣∣≤ Cε1/2−α,

where the upper bound on α is due to the regularity of 1B1 as discussed in Remark 4.2. Defining
δ := Cε1/2−α and adding 1

2 , we thus obtain

1
2 − δ ≤

1
Bεα

∫
Bεα
ρ|t=1 ≤

1
2 + δ.

Thus, we may apply the theorem of Crippa and De Lellis with κ ≤ 1
2 − δ and εα to obtain∫ 1

0
‖∇v‖L p dt ≥ C | log(εα)| = Cα| log(εα)|. �
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