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We prove that the local eigenvalue statistics of real symmetric Wigner-type matrices near the cusp
points of the eigenvalue density are universal. Together with the companion paper by Erdés et al.
(2018, arXiv:1809.03971), which proves the same result for the complex Hermitian symmetry class, this
completes the last remaining case of the Wigner—-Dyson—Mehta universality conjecture after bulk and
edge universalities have been established in the last years. We extend the recent Dyson Brownian motion
analysis at the edge by Landon and Yau (2017, arXiv:1712.03881) to the cusp regime using the optimal
local law by Erdds et al. (2018, arXiv:1809.03971) and the accurate local shape analysis of the density by
Ajanki et al. (2015, arXiv:1506.05095) and Alt et al. (2018, arXiv:1804.07752). We also present a novel
PDE-based method to improve the estimate on eigenvalue rigidity via the maximum principle of the heat

flow related to the Dyson Brownian motion.
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We consider Wigner-type matrices, i.e., N x N Hermitian random matrices H with independent, not
necessarily identically distributed entries above the diagonal; these are a natural generalisation of the
standard Wigner ensembles that have i.i.d. entries. The Wigner—-Dyson—-Mehta (WDM) conjecture asserts
that the local eigenvalue statistics are universal; i.e., they are independent of the details of the ensemble and

1. Introduction

MSC2010: 60B20, 15B52.
Keywords: cusp universality, Dyson Brownian motion, local law.

615

615
619
623
626
639
644
673
679
683
684
692
701
703
706
706


http://msp.org/paa/
http://dx.doi.org/10.2140/paa.2019.1-4
http://dx.doi.org/10.2140/paa.2019.1.615
http://msp.org
https://arxiv.org/abs/1809.03971
https://arxiv.org/abs/1712.03881
https://arxiv.org/abs/1809.03971
https://arxiv.org/abs/1506.05095
https://arxiv.org/abs/1804.07752

616 GIORGIO CIPOLLONI, LASZLO ERDOS, TORBEN KRUGER AND DOMINIK SCHRODER

depend only on the symmetry type, i.e., on whether H is real symmetric or complex Hermitian. Moreover,
different statistics emerge in the bulk of the spectrum and at the spectral edges with a square-root vanishing
behaviour of the eigenvalue density. The WDM conjecture for both symmetry classes has been proven
for Wigner matrices; see [Erdds and Yau 2017] for complete historical references. Recently it has been
extended to more general ensembles including Wigner-type matrices in the bulk and edge regimes; we
refer to the companion paper [Erdés et al. 2018] for up-to-date references.

The key tool for the recent proofs of the WDM conjecture is the Dyson Brownian motion (DBM), a
system of coupled stochastic differential equations. The DBM method has evolved during the last years.
The original version, presented in [Erdés and Yau 2017], was in the spirit of a high-dimensional analysis
of a strongly correlated Gibbs measure and its dynamics. Starting in [Erdds and Yau 2015] with the
analysis of the underlying parabolic equation and its short-range approximation, the PDE component of
the theory became prominent. With the coupling idea, introduced in [Bourgade et al. 2016; Bourgade and
Yau 2017], the essential part of the proofs became fully deterministic, greatly simplifying the technical
aspects. In the current paper we extend this trend and use PDE methods even for the proof of the rigidity
bound, a key technical input, that earlier was obtained with direct random matrix methods.

The historical focus on the bulk and edge universalities has been motivated by the Wigner ensemble
since, apart from the natural bulk regime, its semicircle density vanishes as a square root near the edges,
giving rise to the Tracy—Widom statistics. Beyond the Wigner ensemble, however, the density profile
shows a much richer structure. Already Wigner matrices with nonzero expectation on the diagonal, also
called the deformed Wigner ensemble, may have a density supported on several intervals and a cubic root
cusp singularity in the density arises whenever two such intervals touch each other as some deformation
parameter varies. Since local spectral universality is ultimately determined by the local behaviour of the
density near its vanishing points, the appearance of the cusp gives rise to a new type of universality. This
was first observed in [Brézin and Hikami 1998b] and the local eigenvalue statistics at the cusp can be
explicitly described by the Pearcey process in the complex Hermitian case [Tracy and Widom 2006]. The
corresponding explicit formulas for the real symmetric case have not yet been established.

The key classification theorem [Ajanki et al. 2017a] for the density of Wigner-type matrices showed
that the density may vanish only as a square root (at regular edges) or as a cubic root (at cusps); no other
singularity may occur. This result has recently been extended to a large class of matrices with correlated
entries [Alt et al. 2018a]. In other words, the cusp universality is the third and last universal spectral
statistics for random matrix ensembles arising from natural generalisations of the Wigner matrices. We
note that invariant f-ensembles may exhibit further universality classes; see [Claeys et al. 2018].

In the companion paper [Erdds et al. 2018] we established cusp universality for Wigner-type matrices
in the complex Hermitian symmetry class. In the present work we extend this result to the real symmetric
class and even to certain space-time correlation functions. In fact, we show the appearance of a natural
one-parameter family of universal statistics associated to a family of singularities of the eigenvalue density
that we call physical cusps. In both works we follow the three-step strategy, a general method developed
for proving local spectral universality for random matrices; see [Erdés and Yau 2017] for a pedagogical
introduction. The first step is the local law or rigidity, establishing the location of the eigenvalues with a
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precision slightly above the typical local eigenvalue spacing. The second step is to establish universality
for ensembles with a tiny Gaussian component. The third step is a perturbative argument to remove this
tiny Gaussian component relying on the optimal local law. The first and third steps are insensitive to the
symmetry type; in fact the optimal local law in the cusp regime has been established for both symmetry
classes in [Erd6s et al. 2018] and it completes also the third step in both cases.

There are two different strategies for the second step. In the complex Hermitian symmetry class, the
Brézin—Hikami formula [1998a] turns the problem into a saddle-point analysis for a contour integral. This
direct path was followed in [Erdés et al. 2018], relying on the optimal local law. In the real symmetric
case, lacking the Brézin—Hikami formula, only the second strategy via the analysis of Dyson Brownian
motion (DBM) is feasible. This approach exploits the very fast decay to local equilibrium of DBM. It
is the most robust and powerful method up to now to establish local spectral universality. In this paper
we present a version of this method adjusted to the cusp situation. We will work in the real symmetric
case for definiteness. The proof can easily be modified for the complex Hermitian case as well. The
DBM method does not explicitly yield the local correlation kernel. Instead it establishes that the local
statistics are universal and therefore can be identified from a reference ensemble that we will choose as
the simplest Gaussian ensemble exhibiting a cusp singularity.

In this paper we partly follow the recent DBM analysis at the regular edges [Landon and Yau 2017]
and we extend it to the cusp regime, using the optimal local law from the companion paper [Erdds et al.
2018] and the precise control of the density near the cusps [Ajanki et al. 2015; Alt et al. 2018a]. The
main conceptual difference between [Landon and Yau 2017] and the current work is that we obtain the
necessary local law along the time evolution of DBM via novel DBM methods in Section 6. Some other
steps, such as the Sobolev inequality, heat kernel estimates from [Bourgade et al. 2014] and the finite
speed of propagation [Erdés and Yau 2015; Bourgade and Yau 2017; Landon and Yau 2017], require
only moderate adjustments for the cusp regime, but for completeness we include them in the Appendix.
The comparison of the short-range approximation of the DBM with the full evolution, Lemma 7.2 and
Lemma C.1, will be presented in detail in Section 7 and in Appendix C since it is more involved in the
cusp setup, after the necessary estimates on the semicircular flow near the cusp are proven in Section 4.

We now outline the novelties and main difficulties at the cusp compared with the edge analysis in
[Landon and Yau 2017]. The basic idea is to interpolate between the time evolution of two DBMs, with
initial conditions given by the original ensemble and the reference ensemble, respectively, after their local
densities have been matched by shift and scaling. Beyond this common idea there are several differences.

The first difficulty lies in the rigidity analysis of the DBM starting from the interpolated initial
conditions. The optimal rigidity from [Erd6s et al. 2018], which holds for very general Wigner-type
matrices, applies for the flows of both the original and the reference matrices, but it does not directly
apply to the interpolating process. The latter starts from a regular initial data but it runs for a very short
time, violating the flatness (i.e., effective mean-field) assumption of [Erdds et al. 2018]. While it is
possible to extend the analysis of [Erdds et al. 2018] to this case, here we chose a technically lighter
and conceptually more interesting route. We use the maximum principle of the DBM to transfer rigidity
information on the reference process to the interpolating one after an appropriate localisation. Similar
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ideas for proving rigidity of the B-DBM flow have been used in the bulk [Huang and Landon 2016] and
at the edge [Adhikari and Huang 2018].

The second difficulty in the cusp regime is that the shape of the density is highly unstable under the
semicircular flow that describes the evolution of the density under the DBM. The regular edge analysed
in [Landon and Yau 2017] remains of square-root type along its dynamics and it can be simply described
by its location and its multiplicative slope parameter — both vary regularly with time. In contrast, the
evolution of the cusp is a relatively complicated process: it starts with a small gap that shrinks to zero
as the cusp forms and then continues developing a small local minimum. Heavily relying on the main
results of [Alt et al. 2018a], the density is described by quite involved shape functions, see (2-3c), (2-3e),
that have a two-scale structure, given in terms of a total of three parameters, each varying on different
time scales. For example, the location of the gap moves linearly with time, the length of gap shrinks
as the %—th power of the time, while the local minimum after the cusp increases as the %—th power of
the time. The scaling behaviour of the corresponding quantiles, which approximate the eigenvalues by
rigidity, follows the same complicated pattern of the density. All these require a very precise description
of the semicircular flow near the cusp as well as the optimal rigidity.

The third difficulty is that we need to run the DBM for a relatively long time in order to exploit the local
decay; in fact this time scale, N —2te s considerably longer than the characteristic time scale N ~%on
which the physical cusp varies under the semicircular flow. We need to tune the initial condition very pre-
cisely so that after a relatively long time it develops a cusp exactly at the right location with the right slope.

The fourth difficulty is that, unlike for the regular edge regime, the eigenvalues or quantiles on both
sides of the (physical) cusp contribute to the short-range approximation of the dynamics, and their effect
cannot be treated as mean-field. Moreover, there are two scaling regimes for quantiles corresponding to
the two-scale structure of the density.

Finally, we note that the analysis of the semicircular flow around the cusp, partly completed already in
the companion paper [Erdés et al. 2018], is relatively short and transparent despite its considerably more
complex pattern compared to the corresponding analysis around the regular edge. This is mostly due
to strong results imported from the general shape analysis [Ajanki et al. 2015]. Not only are the exact

1

formulas for the density shapes taken over, but we also heavily rely on the 3-Holder continuity in space

and time of the density and its Stieltjes transform, established in the strongest form in [Alt et al. 2018a].

Notations and conventions. We now introduce some custom notation we use throughout the paper. For
integers n we define [n] :={1,...,n}. For positive quantities f, g, we write f Sgand f ~gif f <Cg
or, respectively, cg < f < Cg for some constants ¢, C that depend only on the model parameters, i.e., on
the constants appearing in the basic Assumptions (A)—(C) listed in Section 2 below. Similarly, we write
f < gif f <cg for some tiny constant ¢ > 0 depending on the model parameters. We denote vectors by
bold-faced lower case Roman letters x, y € CV, and matrices by upper case Roman letters A, B € CNV*¥,
We write (4) := N7!TrA and (x) := N71}° ac[N]*¥a for the averaged trace and the average of a
vector. We often identify a diagonal matrix with the vector of its diagonal elements. Accordingly, for any
matrix R, we denote by diag(R) the vector of its diagonal elements, and for any vector r we denote by
diag(r) the corresponding diagonal matrix.
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We will frequently use the concept of “with very high probability”, meaning that for any fixed D > 0
the probability of the event is bigger than 1 — N =2 if N > No(D).

2. Main results

For definiteness we consider the real symmetric case H € RY>Y_ With small modifications, the proof
presented in this paper works for the complex Hermitian case as well, but this case was already considered
in [Erdés et al. 2018] with a contour integral analysis. Let W = W* € RV XN be a symmetric random

matrix and A = diag(a) be a deterministic diagonal matrix with entries a = (ai),N: 1 € RN. We say that

W is of Wigner type [Ajanki et al. 2017b] if its entries w;; for i < j are centred, Ew;; = 0, independent

random variables. We define the variance matrix or self-energy matrix S = (s; j)fV =1 Sij = E wlzj In

[Ajanki et al. 2017b] it was shown that as N tends to infinity, the resolvent G(z) := (H —z)~! of the
deformed Wigner-type matrix H = A + W entrywise approaches a diagonal matrix M(z) := diag(m(z))

for z € H:={z € C: 3z > 0}. The entries m = (my,...,my):H — HY of M have positive imaginary
parts and solve the Dyson equation
N
! +Y sijmj(z), zeH:={z€C:3z>0}, i €[N] (2-1)
— =z—a; i , = N s . -
mi(z) T

We call M or m the self-consistent Green’s function. The normalised trace (M) of M is the Stieltjes
transform (M (z)) = [p(z — z)~1p(dr) of a unique probability measure p on R that approximates the
empirical eigenvalue distribution of A + W increasingly well as N — co. We call p the self-consistent
density of states (scDOS). Accordingly, its support supp p is called the self-consistent spectrum. It was
proven in [Ajanki et al. 2015] that under very general conditions, p(dt) is an absolutely continuous
measure with a %—Hélder continuous density, p(t). Furthermore, the self-consistent spectrum consists of
finitely many intervals with square root growth of p at the edges, i.e., at the points in d supp p.

We call a point ¢ € R a cusp of p if ¢ € intsupp p and p(c) = 0. Cusps naturally emerge when we
consider a one-parameter family of ensembles and two support intervals of p merge as the parameter value
changes. The cusp universality phenomenon is not restricted to the exact cusp; it also occurs for situations
shortly before and after the merging of two such support intervals, giving rise to a one-parameter family
of universal statistics. More precisely, universality emerges if p has a physical cusp. The terminology
indicates that all these singularities become indistinguishable from the exact cusp if the density is resolved
with a local precision above the typical eigenvalue spacing. We say that p exhibits a physical cusp if it
has a small gap (e—, ¢e4+) C R\ supp p with e, e— € supp p in its support of size e —e_ < N-3ora
local minimum m € int supp p of size p(m) S N _%; see Figure 1. Correspondingly, we call the points
b:= %(e.,. + ¢_) and b := m physical cusp points, respectively. One of the simplest models exhibiting a
physical cusp point is the deformed Wigner matrix

H =diag(1,...,1,—1,...,—1)+ V1 +1W, (2-2)

with equal numbers of 1, and where W is a Wigner matrix of variance E|w;; |2 = N~ The ensemble H
from (2-2) exhibits an exact cusp if # = 0 and a physical cusp if |[t| S N _%, with ¢ > 0 corresponding to a
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Figure 1. The cusp universality class can be observed in a one-parameter family of

physical cusps.

small nonzero local minimum and ¢ < 0 corresponding to a small gap in the support of the self-consistent
density. For the proof of universality in the real symmetric symmetry class we will use (2-2) with
W ~ GOE as a Gaussian reference ensemble.

Our main result is cusp universality under the real symmetric analogues of the assumptions of [Erdés
et al. 2018]. Throughout this paper we make the following three assumptions:

Assumption (A) (bounded moments). The entries of the matrix ~/ N W have bounded moments and the
expectation A is bounded, i.e., there are positive Cy, such that

lai| < Co, |E|wij|k§CkN_%k, k eN.

Assumption (B) (flatness). We assume that the matrix S is flat in the sense s;j = E wlzj >c¢/N for some
constant ¢ > 0.

Assumption (C) (bounded self-consistent Green’s function). The scDOS p has a physical cusp point b,
and in a neighbourhood of the physical cusp point b € R the self-consistent Green’s function is bounded,
i.e., for positive C, k we have

lmi(z)| <C, zel[b—k,b+k]+iRT.

We call the constants appearing in Assumptions (A)—(C) model parameters. All generic constants in
this paper may implicitly depend on these model parameters. Dependence on further parameters, however,
will be indicated.

Remark 2.1. The boundedness of m in Assumption (C) can be, for example, ensured by assuming some
regularity of the variance matrix S. For more details we refer to [Ajanki et al. 2015, Chapter 6].

According to the extensive analysis in [Ajanki et al. 2015; Alt et al. 2018a] it follows! that there exists
some small §, ~ 1 such that the self-consistent density p around the points where it is small exhibits one
of the following three types of behaviours:

(1) Exact cusp. There is a cusp point ¢ € R in the sense that p(¢) =0 and p(¢£8) > 0for 0 #35 < 1. In
this case the self-consistent density is locally around ¢ given by

plc+w) = 14+ 0(lo|)] (2-3a)

ﬁy%|w|%[
2
for w € [—6«, 8«] and some y > 0.

IThe claimed expansions (2-3a) and (2-3d) follow directly from [Alt et al. 2018a, Theorem 7.2(c),(d)]. The error term
in (2-3b) follows from [Alt et al. 2018a, Theorem 7.1(a)], where we define y according to & therein.
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(2) Small gap. There is a maximal interval [e—, ¢4 ] of size 0 < A := ¢4 —e¢— <K 1 such that p[[,_ ., 1 =0.
In this case the density around ¢ is, for some y > 0, locally given by
4 1 1
3(2y)3 A3 2
ples £ o) = w\pedge 21+ 0 min] w3, 2= (2-3b)
27 A 3
for w € [0, §«], where
A1+ 2
Vegge (1) = vAl+2) iz, @30

A+2A+ 220+ AN+ (1 +2A -2 /A0 + A3 +1

(3) Nongzero local minimum. There is a local minimum at m € R of p such that 0 < p(m) < 1. In this
case there exists some y > 0 such that

pm o) 3/3y%w . 1 p(my* [ ? 1
= ot 5 ) -+ 0 it AT il S5 )] e
for w € [—6«, 6«], where
Wi (A) = V1422 . AeR (2-3¢)

WTTAZ+ 3+ (VTTAZ-3i—1

We note that the choices for the slope parameter y in (2-3b)—(2-3d) are consistent with (2-3a) in the sense
that in the regimes A < @ < 1 and p(m)3 < |w| < 1 the respective formulae asymptotically agree. The
precise form of the prefactors in (2-3) is also chosen such that in the universality statement y is a linear
rescaling parameter.

It is natural to express universality in terms of a rescaled k-point function p](CN) which we define
implicitly by )

[E(]Z) Y SR Ay :/k £ ™ () dx (2-4)
{i1 ik }CIN] R

for test functions f, where the summation is over all subsets of k distinct integers from [NV].

Theorem 2.2. Let H be a real symmetric or complex Hermitian deformed Wigner-type matrix whose
scDOS p has a physical cusp point b such that Assumptions (A)—(C) are satisfied. Let y > 0 be the slope
parameter at b, i.e., such that p is locally around b given by (2-3). Then the local k-point correlation
function at b is universal; i.e., for any k € N there exists a k-point correlation function p](sz/ GUE Such

that for any test function F € Cc1 (Q), with 2 C R¥ some bounded open set, it holds that
1
N3k x GOE/GUE -
/. F(")[y_kpzi (e yT) = SO0V ) 4 = 0 (NP F ),

where the parameter a and the physical cusp b are given by
0 in case (i), N in case (1),
2 . ..
o= 3(%)/A) SN2 in case (ii), b:= %(e_ +e4) incase (ii), (2-5)
—(np(m)/y)zN% in case (iii), m in case (iii),
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and ¢ (k) > 0 is a small constant only depending on k. The implicit constant in the error term depends on
k and the diameter of the set 2.

Remark 2.3. (i) In the complex Hermitian symmetry class the k-point function is given by

GUE(x) = det(Ko,a (i, xj))z =1

Here the extended Pearcey kernel K, g is given by

/ / exp(—gw* + JBw? —yw + Fz* — Jaz? + xz)

w—z
__ 1p=a « (y—x )2) )
,W(ﬁw)ep( 26-w) &0

. - 1; 1 .
where E is a contour consisting of rays from £ooe#'" to 0 and rays from 0 to £oce™ 4", and & is the

Ky p(x,y) = (271 B

ray from —ioo to ico. For more details we refer to [Tracy and Widom 2006; Adler et al. 2010; Brézin
and Hikami 1998b].

GOE

(ii) The real symmetric k-point function (possibly only a distribution) p;’-* is not known explicitly. In

fact, it is not even known whether pGOE is Pfaffian. We will nevertheless estabhsh the existence of pGOE
as a distribution in the dual of the C | functions in Section 3 as the limit of the correlation functions of a

one-parameter family of Gaussian comparison models.

Theorem 2.2 is a universality result about the spatial correlations of eigenvalues. Our method also allows
us to prove the corresponding statement on space-time universality when we consider the time evolution
of eigenvalues (A!); [y} according to the Dyson Brownian motion dH ) = dB, with initial condition
H®©® = H where, depending on the symmetry class, B; is a complex Hermitian or real symmetric
matrix-valued Brownian motion. For any ordered k-tuple T = (t1,..., ) with0 <7y <--- <z SN -3
we then define the time-dependent k-point function as follows. Denote the unique values in the tuple T by
o1 <--- <oy suchthat {rq,..., 7%} = {o1,...,07} and denote the multiplicity of o; in T by k; and note
that ) k; = k. We then define p](cj’vr) implicitly via

[E]_[[( ) > }f()tzl,...,/\?}

k1
{11 ’ :lk }CIN]

AT /\‘”)_/ f@pMVydx @7

for test functions f and note that (2-7) reduces to (2-4) in the case 11 = --- = 7 = 0. We note that
in (2-7) coinciding indices are allowed only for eigenvalues at different times. If the scDOS p of H has a
physical cusp in b, then for 7 < N =2 the scDOS pr of H® also has a physical cusp b; close to b and
we can prove space-time universality in the sense of the following theorem, whose proof we defer to
Appendix A.

Theorem 2.4. Let H be a real symmetric or complex Hermitian deformed Wigner-type matrix whose
scDOS p has a physical cusp point b such that Assumptions (A)—(C) are satisfied. Let y > 0 be the slope
parameter at b, i.e., such that p is locally around b given by (2-3). Then there exists a k-point correlation
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. _1 . = .
function p,?%E/ GUE Such that forany 0 <11 <--- <15 £ N~ 2 and for any test function F € C cl (2), with

Q C R¥ some bounded open set, it holds that

1
N#* x GOE/GUE —e(k)
[ F| S (e + yT) - P @) | ax = 0@V o)

where T = (t1,...,7), by = (bgy, ..., by ), a = — TN 2 with o from (2-5), and c(k) > 0 is a small
constant only depending on k. In the case of the complex Hermitian symmetry class the k-point correlation
function is known to be determinantal of the form

PEUE 4 (1) = det(Key oy (i X1)F .
with K g as in (2-6).

The analogous version of Theorem 2.4 for fixed energy bulk multitime universality has been proven in
[Landon et al. 2019, Section 2.3.1].

Remark 2.5. The extended Pearcey kernel K, g in Theorem 2.4 has already been observed for the
double-scaling limit of nonintersecting Brownian bridges [Adler et al. 2010; Tracy and Widom 2006].
However, in the random matrix setting our methods also allow us to prove that the space-time universality
of Theorem 2.4 extends beyond the Gaussian DBM flow. If the times 0 <7} <.-- <1 < N -3 are
ordered, then the k-point correlation function of the DBM flow asymptotically agrees with the k-point
correlation function of eigenvalues of the matrices

H+JuW, H+JuWi+Jo—uW., ... H+JuWi+ -+ Vo — -1 Wk

for independent standard Wigner matrices Wy, ..., Wy.

3. Ornstein—-Uhlenbeck flow

Starting from this section we consider a more general framework that allows for random matrix ensembles
with certain correlation among the entries. In this way we stress that our proofs regarding the semicircular
flow and the Dyson Brownian motion are largely model-independent, assuming the optimal local law
holds. The independence assumption on the entries of W is made only because we rely on the local law
from [Erd6s et al. 2018] that was proven for deformed Wigner-type matrices. We therefore present the
flow directly in the more general framework of the matrix Dyson equation (MDE)

14+ (z—A+S[ME))M(z)=0, A:=EH, S[R]:=EWRW, 3-1)

with spectral parameter in the complex upper half-plane, Jz > 0, and positive definite imaginary part,
%(M (z) — M(2)*) > 0, of the solution M. The MDE generalises (2-1). Note that in the deformed
Wigner-type case the self-energy operator S:CV*N — CN*N s related to the variance matrix S by
S|diag r] = diag(Sr).

As in [Erdss et al. 2018] we consider the Ornstein—Uhlenbeck flow

dH, = —L(H;— A)ds + 22[dB,],  S[R]:=LBEWTrWR, Hy:=H, (3-2)
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which preserves expectation and the self-energy operator S. Since we consider real symmetric H, the
parameter B indicating the symmetry class is 8 = 1. In (3-2) by B € RV XN we denote a real symmetric
matrix-valued standard (GOE) Brownian motion; i.e., (By);; fori < j and (By);;/ V2 are independent
standard Brownian motions and (By);; = (By);;. If H were complex Hermitian, we would have f = 2
and dB; would be an infinitesimal GUE matrix. This was the setting in [Erd6s et al. 2018]. The OU
flow effectively adds a small Gaussian component of size /s to Hy. More precisely, we can construct a
Wigner-type matrix H, satisfying Assumptions (A)—(C), such that, for any fixed s,

Hy = Hy + VesU, S;=8—¢sS°°F, FEH,=A, U~ GOE, (3-3)

where U is independent of H. Here ¢ > 0 is a small universal constant which depends on the constant in
Assumption (B), Sy is the self-energy operator corresponding to Hy and SSOF[R] := (R) + R’/ N, where
(-):= N~7!Tr(-) and R’ denotes the transpose of R. Since S is flat in the sense S[R] = (R) and s is
small, it follows that also S; is flat.

As a consequence of the well-established Green function comparison technique the k-point function of
H = FIO is comparable with the one of H saslongass <N —3—¢ for some € > 0. Indeed, from [Erdss
et al. 2018, equation (116)] for any F € Cc1 (), a compactly supported C! test function on a bounded
open set 2 C R¥, we find

1 X - X _
FNT*| pM o4+ =5 ) =M 0+ —5 ) |dx = Op oW CIIFllc1).  (3-4)
RK yN# yN4

where ﬁ](cj\? is the k-point correlation function of Hy and ¢ = ¢(k) > 0 is some constant.

It follows from the flatness assumption that the matrix Hj satisfies the assumptions of the local law
from [Erd6s et al. 2018, Theorem 2.5] uniformly in s < 1. Therefore [Erdés et al. 2018, Corollary 2.6]
implies that the eigenvalues of H; are rigid down to the optimal scale. It remains to prove that for long
enough times s the local eigenvalue statistics of Hy + /csU on a scale of 1/yN 1 around b agree with
the local eigenvalue statistics of the Gaussian reference ensemble around O at a scale of 1/N i By a
simple rescaling, Theorem 2.2 then follows from (3-4) together with the following proposition.

Proposition 3.1. Let t) := N_%Jr“’l with some small w1 > 0 and let ty be such that |ty —t1] < N_%.
Assume that H® and H® are Wigner-type matrices® satisfying Assumptions (A)—(C) such that the
scDOSs P, 1., Pyu,ts of HM + /1, UM and HW + /1, U W with independent UM | U ~ GOE have
cusps in some points ¢y, ¢, such that locally around ¢,, r = A, ju, the densities py;, are given by (2-3a)
with y = 1. Then the local k-point correlation functions p](cl’\t];r) of H) + JhU ) around the respective
physical cusps brs, of pre,» j = 1,2, asymptotically agree in the sense

1k (NA x 1k (N, x -

/ F(x)[N4kp£ " )([’A,tl + —3) — N o (bm - —)} dx = Og e (VO F 1)
RK ’ N1 ’ N4

forany F € Cc1 (), with Q C R¥ a bounded open set.

2We use the notation H*) and H ™) since we denote the eigenvalues of H @) and H®W by A; and pu; respectively, with
1<i<N.
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Proof of Theorem 2.2. Set s := 11 /c6% and H® := 0H;, where c is the constant from (3-3) and 6 ~ 1
is yet to be chosen. Note that H®) + \/1U = 0(H; + /t/62U), and in particular H® + /5;U = H.
Moreover, it follows from the semicircular flow analysis in Section 4 that for some 7 with |tx—#1| SN _%,
the scDOS 6p;, 4, (A-) of Hg++/t+/02U and thereby also p; ;, , the one of HWM 4 /1 U, have exact cusps
in ¢ /6 and c,, respectively. It follows from the %-Hélder continuity of the slope parameter, see [Alt et al.
2018a, Lemma 10.5, equation (7.5a)], that locally around ¢ /6 the scDOS of H + /1x/62U is given by

2 Vil ; ;
0.6+ 00) = O (6 5 +0)) = 214 0ol =11

Hence we can choose 6 = y[1 + O(|t; — t*l%)] appropriately such that
NEPE
7 |
big

and it follows that H® satisfies the assumptions of Proposition 3.1; in particular the slope parameter
of HM + V1« U is normalised to 1. Furthermore, the almost cusp b ;, of H @ 4 /1 U is given by
by s, = 0b with b as in Theorem 2.2.

We now choose our Gaussian comparison model. For o € R we consider the reference ensemble

Uy = UM :=diag(l,....1.—1,....,—~ 1)+ /1—aN"2U e RV*N U ~ GOE, (3-5)

with L%N J and |_%N -| times *1 in the deterministic diagonal. An elementary computation shows that

1
Pr ey + @) = 1+ 0(jw|3)]

for even N and o = 0, the self-consistent density of U, has an exact cusp of slope y = 1in ¢ =0; i.e.,
it is given by (2-3a). For odd N the exact cusp is at distance < N ! away from 0, which is well below
the natural scale of order N3 of the eigenvalue fluctuation and therefore has no influence on the k-point
correlation function. The reference ensemble Uy has for 0 # || ~ 1 a small gap of size N =3 or small
local minimum of size N4 at the physical cusp point |b| < 1/N, depending on the sign of «. Using
the definition in (3-5), let H .=y N1/24,, from which it follows that H ) 4 J/1xU ~ Uy has an exact
cusp in 0 whose slope is 1 by an easy explicit computation in the case of even N. For odd N the cusp
emerges at a distance of < N ~! away from 0, which is well below the investigated scale. Thus also H @
satisfies the assumptions of Proposition 3.1. The almost cusp b, 7, is given by b, ;; = 0 by symmetry
of the density py, s, in the case of even N and at a distance of b, s, | < N~ ! in the case of odd N. This
fact follows, for example, from explicitly solving a quadratic equation in two variables. The perturbation
of size 1/N is not visible on the scale of the k-point correlation functions.
Now Proposition 3.1 together with (3-4) and s ~ N —3tor implies

NE oy x 1k (N) X —c(k)
- F(x) % Pr b+ on: —N*"pp 4 GoE INE] dx = O (N [Fllci@y), (3-6)

with o = N%(Z* —11), where pl(c]\;)GOE

completes the proof of Theorem 2.2 modulo the comparison of p

denotes the k-point function of the comparison model Uy. This
(V)

k,a,GOE
to the size of the gap and the local minimum of p via [Erd6s et al. 2018, Lemma 5.1] (or (4-6a)—(4-6¢))

and recalling that 6 = y[1 + O(|t; — t*|%)].

with its limit by relating ¢, —#;
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To complete the proof we claim that for any fixed k and « there exists a distribution pGOE on R,
locally in the dual of C}(2) for every open bounded © C R¥, such that

N X _
/R F(x)[N4"p,£a’GOE(N ) p,?‘;Em]dx:ok,g(N @) Fllen) 3-7)
1

holds for any F € C!(2). We now show that (3-7) is a straightforward consequence of (3-6).

First notice that, for notational simplicity, we gave the proof of (3-6) only for the case when H and
U, are of the same dimension, but it works without any modification when their dimensions are only
comparable; see Remark 5.2. Hence, applying this result to a sequence of GOE ensembles UDEN") with
Ny = (%)n, for any compactly supported F € CCI(E_Z) we have

k (Nn X Ny d (k)
[ roo |t o 5 ) - btk () o = orat@ e @
4 4
N” n+1
Fix a bounded open set €2 C R¥ and define the sequence of functionals {.7, }»en in the dual space C 1(Q)* as

L X
A
RK Nn4

for any F € C1(Q2). Then, by (3-8) it easily follows that {7, }nen is a Cauchy sequence on C!(Q2)*.
Indeed, for any M > L we have by a telescopic sum

(Nn+1) X (N») X
F(x)[ n+1P kagé)E< 3 )_Nn4 pkaGOE( 3)}1"

4 N4

1 n

n+
Lc(k
<Ce. ( YO NF e (3-9)

[(Im — TL)(F)| =

Thus, we conclude that there exists a unique Jo € C cl (Q)* such that J, — Joo as n — 00 in norm.

Then, (3-9) clearly concludes the proof of (3-7), identifying Joo = Joo () GOE
GOE

with p,”o " restricted to Q. Since

this holds for any open bounded set 2 C R, the distribution p.” " can be 1dent1ﬁed with the inductive
limit of the consistent family of functionals {Joo m)}m>1, Where say, €2, is the ball of radius m. This

completes the proof of Theorem 2.2. O

4. Semicircular flow analysis

In this section we analyse various properties of the semicircular flow in order to prepare the Dyson
Brownian motion argument in Sections 6 and 7. If p is a probability density on R with Stieltjes transform m,
then the free semicircular evolution pl = p B /1 ps. of p is defined as the unique probability measure
whose Stieltjes transform m ¢ solves the implicit equation

myE(@) =m(& +1mf (L), {e€H, 1>0. (4-1)

Here /f py. is the semicircular distribution of variance ¢.
We now prepare the Dyson Brownian motion argument in Section 7 by providing a detailed analysis of
the scDOS along the semicircular flow. As in Proposition 3.1 we consider the setting of two densities p, oy,
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whose semicircular evolutions reach a cusp of the same slope at the same time. Within the whole section
we shall assume the following setup: Let p; , p, be densities associated with solutions My, M, to some
Dyson equations satisfying Assumptions (A)—(C) (or their matrix counterparts). We consider the free
convolutions p, ; := py H V1 pse and Pu,t = py H V1 pse of py, pu with semicircular distributions of
variance ¢ and assume that after a time ¢, ~ N ~2 7?1 both densities p A.tss Pty DAVE cusps in points ¢y, ¢y
around which they can be approximated by (2-3a) with the same y = y; (tx) = yu(t+). It follows from
the semicircular flow analysis in [Erd6s et al. 2018, Lemma 5.1] that for 0 < ¢ < ¢« both densities have

small gaps [e} ;, e;t ;). r = A, p in their supports, while for z, <t < 21, they have nonzero local minima in
some points m,;, r = A, . Instead of comparing the eigenvalue flows corresponding to py, p, directly,
we rather consider a continuous interpolation py for o € [0, 1] of p; and p. For technical reasons we
define this interpolated density py,; as an interpolation of p, ; and p,, ; separately for each time ¢, rather
than considering the evolution pg,o H Vit psc of the initial interpolation py,0. We warn the reader that
semicircular evolution and interpolation do not commute; i.e., Py, 7 Pa,0 B V1 psc. We now define the

concept of interpolating densities following [Landon and Yau 2017, Section 3.1.1].

Definition 4.1. For « € [0, 1] define the «-interpolating density pq.; as follows. For any 0 < E < §4 and
r=2A,ulet

o +E my+E
nre(E) = /+ pre@)do, 0<1<tw.  npy(E):= f pri@)do, 1w <1 <21
4

r.t mr.

be the counting functions and ¢, ;, ¢, their inverses; i.e., 1, (¢r,;(s)) = 5. Define now

Pa,t () :=agy () + (1 —a)pu.¢(s) 4-2)

for s € [0, 84x], where S« ~ 1 depends on 8« and is chosen in such a way that ¢q ; is invertible.> We
thus define ny ¢ (E) to be the inverse of ¢y ;(s) near zero. Furthermore, for 0 < <t set

eit = aef’t + (1 —oz)eit, (4-3)
d
Pai(eg; + E) = d—Ena,t(E), E €0, 4], 4-4)

and for t > t, set

Mg i=oamy  + (1 —a)my,,
d 4-5)
Pa,t(Mar + E) :=apy (my ) + (1 —a)pu(my )+ Ena’t(E)’ E €[04, 84].

We define po(E) for 0 <t <1y and E € [e, , — 6x, ¢, ,] analogously.

The motivation for the interpolation mode in Definition 4.1 is that (4-2) ensures that the quantiles of
Pa,: are the convex combination of the quantiles of p, ; and py ¢; see (4-13c). The following two lemmas
collect various properties of the interpolating density. Recall that py ; and p,,, are asymptotically close
near the cusp regime, up to a trivial shift, since they develop a cusp with the same slope at the same time.

3Invertibility in a small neighbourhood follows from the form of the explicit shape functions in (2-3b) and (2-3d)
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In Lemma 4.2 we show that py s shares this property. Lemma 4.3 shows that py  inherits the regularity
properties of p, ; and p,; from [Alt et al. 2018a].

Lemma 4.2 (size of gaps and minima along the flow). Fort <ty andr = o, A, i the supports of pr;

have small gaps [e,,, e;;] near ¢« of size

ty — 1t
3

and the densities are close in the sense

Brii= o=y = (M) 0 =0D] Ary = Al +0((6 —DD)], (462)

1
ora (6 £ ) = pua(ed, £ 0) [1 n o((z* by mm{ o}, (“’—)} )] (4-6b)
Ty —1)4

for 0 < w < x. Fortx <t <2ty the densities py; have small local minima my; of size
N
b4

pro(my) = 1+ 0t =12 pre(mps) = pus(mu )l + Ot —12)2)].  (4-6¢)

and the densities are close in the sense

Pr,t (mr,t + w)

_ 2 2
=1 +(9((t —t*)% +min{ (¢ —r*)%, M} +min{ w—s |w|§}) (4-6d)
Put(my r + ) 3

|o] (t —ts)2

for @ € [0+, 8x]. Here 8, 8xx ~ 1 are small constants depending on the model parameters in Assump-
tions (A)—(C).

Lemma 4.3. The density py from Definition 4.1 is well-defined and is a %—Hdlder continuous density.
More precisely, in the precusp regime, i.e., fort < t«, we have

1

Pl (e £X)| < " " ; (4-7a)
Po,t (eo(,t + x)(Pat (ea,t +x)+ Aé,:)
for 0 < x < 8x. Moreover, the Stieltjes transform mq ;s satisfies the bounds
|ma,t(%:£:,t +x)| <1,
|y|[log|y|| 4-7b
e (65, % (6 + 1)) = mas (e, £3)| < 2 . (+7b)
Pa,t(%jg:,t £ X)(0a,t (%jl:,t +x) + A;,t)
for|x| < %8*, |v| < x. In the small minimum case, i.e., fort > ty, we similarly have
1
Pt (May +X)| S 55— (4-8a)
W Pg.+ (Mo s + X)
for |x| < 6« and
lo
M (s + 0| S 1, i+ (5 1)) = s (g + )] 228 g

sz,t(ma,t + x)

for|x| <6« and |y| < |x|.
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Proof of Lemma 4.2. We first consider the two densities = A, u only. The first claims in (4-6a) and (4-6¢)
follow directly from [Erdds et al. 2018, Lemma 5.1], while the second claims follow immediately from
the first ones. For the proof of (4-6b) and (4-6d) we first note that by elementary calculus

Wedge (1 +€)A) = Weage(M)[1 + O(€)],  Wmin((1 + €)A) = WUnin(1)[1 + O(e)]
so that

AY W (i) A Wy (l)[l +O((te—0)h)]
A,t edge Ak’t M,t edge Au,t *
and the claimed approximations follow together with (2-3b) and (2-3d). Here the exact cusp case ¢ = 7«
is also covered by interpreting O%Wedge (w/0) = w3 /23.

In order to prove the corresponding statements for the interpolating densities py ¢, we first have to
establish a quantitative understanding of the counting function n,, and its inverse. We claim that for

r =a, A, u they satisfy, for 0 < £ <64, 0 <5 < s,

1
3 1 @2 ()
nra(E)~min) 2o B3 g ) ~maxisd s3ad 2 nind b (), 0 4 gy
Agt DAt (S) ’ AE
r, ’
fort <t, and
4 . 3 S
nrt(E) ~max{E3, Epr (M)},  @rs(s) ~mins4, ——— ¢,
Pr,t (mr,t) (4-9b)
) -
©r,e(5) . 1 ®,:(5) ‘pA :(5)
® ~ min go/u(s) ()’
DAt rt 7.t ,0 (mr ;)

for t > t4.

Proof of (4-9). We begin with the proof of (4-9a) for r = A, . Recall that the shape function Wegge
satisfies the scaling A3 Wegge(@w/A) ~ min{w% , w? / Aé}. We first find by elementary integration that

1

T 1 w2 9q% min{q,A}é—min{q,A}% . qz 4
minqw3, — ¢ do = ] ~min) ——,¢3
0 As 12A% A%

from which we conclude the first relation in (4-9a), and by inversion also the second relatlon Together

with the estimate for the error integral for py ,(e/1 , T ®)—pp, f(eu ; + o) <minf{w 3 a)/A }
7 2 W 6q§ min{q, A}§ —min{g, A}? q?

minjw3, — ¢ do = T ~ming —.¢3 ¢,
0 A3 10A3 A3

we can thus conclude also the third relation in (4-9a).

Wl

We now turn to the case ¢ > £« where both densities py ;, oy, exhibit a small local minimum. We first
record the elementary integral

a 1 w? g3 min{p®,q}3 + 12¢p® — 5min{g, p*}3 4
p+minj w3, —¢ | do = s ~max{g3,qp}
0 P 12p
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for g, p > 0 and easily conclude the first two relations in (4-9b). For the error integral we obtain

(1 @) (1 p* 1 w? (s ¢* ¢
minj w3, — |minj p2, —¢ + minj @3, — ¢ | do ~min) g3, —, =5 ¢,
0 p w p p’ o3

from which the third relation in (4-9b) follows. Finally, the claims (4-9a) and (4-9b) for r = « follow
immediately from Definition 4.1 and the corresponding statements for » = A, u. This completes the proof
of (4-9). d

We now turn to the density py, for which the claims (4-6a) and (4-6¢) follow immediately from
Definition 4.1 and the corresponding statements for p, , and p, ;. For ¢ < ¢« we now continue by
differentiating E = ¢, ;(n,,(E)) to obtain

B 1
Do, () aﬁoist(s) + (=)@, ,(s)

Pa,t (e;_,t + Pa,t(s)) =
o l—« -1
- - T -
Pre (&5 +01,0()  puilef, +¢u(s)

Pt (ei_,t +@3,:(5)) )_1
P,u,t(e;i_,; + @u.t(5))

—paalef, + ons) (a4 10

from which we can easily conclude (4-6b) for r = o together with (4-6b) for » = A and (4-9a). The proof
of (4-6d) for r = « follows by the same argument and replacing e:ft by m, ;. This finishes the proof of
Lemma 4.2 O

Proof of Lemma 4.3. By differentiating we find
ptlx,t(eo—tt +@a,r(5)) _ Ol(px’t(s)—i-(l—a)(plz,t (s)
Pat (e i+ 0ai(s)) (@) ()+(1—a)g; ,(s))?
( P 014 (5)
=\* 5 F
P2 (e 4 010(5)

p;/,,t (e,lt,t +9u.:(5)) )

+(1—a)
pi,t (e;:,t +@ue(s))

o l—o —2
X T + T )
PA,t(eA,t‘f’(PA,t(s)) Pt (eu,z+(pu,t(s))

from which we conclude the claimed bound (4-7a) together with the fact that the densities p; and p,
fulfil the same bound according to [Alt et al. 2018a, Remark 10.7], and the estimates from Lemma 4.2.
Similarly, the bound in (4-8a) follows by the same argument by replacing eit by mgy . The bound
|p'| < p~2 on the derivative implies %—H(’jlder continuity.

We now turn to the claimed bound on the Stieltjes transform and compute

ma,t(eit—i—x):/ Mda}—i—/ de
, 0 w—X 8, @ —Ngyr—Xx
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out of which for x > 0 the first term can be bounded by
B eh; to S |l — x|3 B e+ x
/ —pa’t( ot )da)ﬁ/ —| | da)—i—/ —/Oa,z( Ll )da)§|x|%|10gx|+|5*—x|%,
0 w—=X 0 2x w—=x

while the second term can be bounded by

/ Pa (g, + @) )
5 O — Aa r—X
both using the g—Hblder continuity of py ;. The corresponding bounds for x < 0 are similar, completing

the proof of the first bound in (4-7b).
The proof of the first bound in (4-8b) is very similar and follows from

b o —x|3 Pt (M + x)
[ 0= 40l + / Pot et TY) g < 1.
5, W—X 8,85\ [x— 585, x+ 18] w—=x

We now turn to the second bound in (4-7b), which is only nontrivial in the case x > 0. To simplify

the following integrals we temporarily use the short-hand notations m = my;, ¢ = eot P = Pays

0 < 185 — Aoy — x|3 + | Ags + x| [log(Agy + X)),

|moc,t (mot,t +x)| <

A = Ay, and compute

’

8+ + 8+ +
m(e++x+y)—m(e++x):/ de_/ de
—A-§, W—X—Y A=, W—X

where we now focus on the integration regime w > 0 as this is the regime containing the two critical
singularities. We first observe that

/5*_y ple™ +w+y) da)—/g* ple™ +w) o
0

—y w—X w—X

do + O(y),

w—X w—X

/5* p(et + o +y)—p(et + o) /0 p(et + o+ y)
= dw + _
0 -y

where the second integral is easily bounded by

0
1
/ —p(e+w+y)da)§—min{y%,y%A_é}S Y —.
-y WX X pet +x)(p(et +x) + A3)

We split the remaining integral into three regimes [O, %x], [;x 2] and [ x,6 ] In the first one we use

(4-7a) as well as the scaling relation p(et + @) ~ min{a)%,a)% A™ é} to obtain

1 1
jx + _ + jx 1
/ ple™ +w+y)—p(e —I—w)deX/ do
0 @ xJo p(e++w)(p(e++w)+A§)
2
<ym1n{x x;}w 2y —
x AS max{x3,x2As}

y
p(et + x)(p(et +x) + A3)

A
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The integral in the regime [%x, 8*] is completely analogous and contributes the same bound. Finally, we

are left with the regime [%x %x] which we again subdivide into [x—y, x4+ y] and [%x %x] \[x=y,x+y].

In the first of those we have

/x-l-y p(eT+o+y)—plet+w) o= /‘X+y p(et+w+y)—peT+x+y)—p(et +w)+p(et +x) do
x—=y w—x X

—y w—X
< Y -
p(et+x)(p(eT+x)+A3)

while in the second one we obtain
/ ,o(e++a)+y)—p(e++x+y)—,o(e++a))+p(e++x)dw
[$x,3x]\[x—y,x+»] w—Xx
< y /
T pet 4 x)(p(et +x) + A5) J[Ex 3\ r—yx)
< y|log y|
T p(et +x)(p(et +x) + AT)

lw — x|~ dw

Collecting the various estimates completes the proof of (4-7b).
The second bound in (4-8b) follows by a similar argument and we focus on the most critical term

3 pm+ o+ y) — pm+ o) o Xty 25\ p(m+ o + y) — p(m + o)
do = + + do.
— 18 w—X —38«  Jx—y x+y w—X

Here we can bound the middle integral by

f”y p(m+w+y)—p(m+w) ‘
dw
P

/x+y p(m+w+y)—pm+x+y)—p(m+w)+p(m+x) dw'

—y w—X —y w—X
<yl
~ p2(mx)’

while for the first integral we have

/"‘yp(m+w+y)—p(m+x+y)—p(m+w)+p(m+X) <yl AR S
15, w—X T p2(m+x) Jo1s, |o—x|
< Iy Iloglyll.
p*(m + x)
The third integral is completely analogous, completing the proof of (4-8b). O

4A. Quantiles. Finally we consider the locations of quantiles of p,; for r = &, A, ;t and their fluctuation
scales. For 0 <t <1, we define the shifted quantiles p,;(¢), and for #, <t < 21, the shifted quamtiles4

4We use a separate variable name y because in Section 8 the name § is used for the quantiles with respect to the base point M
instead of m.
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Yr,i () in such a way that

Vr.i () n i Vr.i (t) i
/(; p",t(er,t +(,l)) dCl) = N’ /(; pr,[(mr’t +C()) d(,l) == N,

Notice that for i = 0 we always have P, 0(t) = yr,0(¢t) = 0. We will also need to define the semiquantiles,

li| < N. (4-10)

distinguished from the quantiles by a star:

1 1

i— Vi@ i—41
) / pr,t(mr,t+w)dw: st 1 51 << N’ (4_11)
0

S]]

y:,’ @ n
/ pri(es, +w)do =
0

1

77 @ i+31 V7@ i+3
/ Pr,t (e;":t +w)do = —=, / Pr,t (mr,t +w)dw = N -N<Ki=<-1. (412
0 0

N

Note that the definition is slightly different for positive and negative i’s; in particular p* € [p;—1, y;] for
i > 1and p* €[y, Pi+1] for i <0. The semiquantiles are not defined for i = 0.

Lemmadd4. For 1 <|i| <K N, r=a, A, ;Land0<t<t* we have

yrl(t)~sgn(l)ma><{(| |) (M) (e —1)¢ } ;Z,,, :8

(4-13a)
5 = D 1 . VM i )
Vr,l(t)—yu,l(t) I1+0 (Z*—t)3+mln — 4 ,uz(l)
(tx — 1)
while for ty <t < 2ty we have
Vr.i(t) ~sgn(i) min l ) |ll( —t)_f
NJ) N
(1) © (4-13b)
v v 1 . j v
yr,l(t)zyﬂ,l(t)[1+0((t*_t)2+mln{ ‘yul 119)/Ml ) /Ll(l) })]
(tx—1)® Ix—
Moreover, the quantiles of py, are the convex combination
Va,i (1) =P i (0) + (1 =) Pp,i (@), Va,i(t) = aya ;i () + (1 —a)yu,i(?). (4-13c¢)
Proof. The proof follows directly from the estimates in (4-9a) and (4-9b). The relation (4-13c) follows
directly from (4-2) in the definition of the «-interpolating density. O

4B. Movement of edges, quantiles and minima. For the analysis of the Dyson Brownian motion it is
necessary to have a precise understanding of the movement of the reference points e;'f, and my;, r = A, i
For technical reasons it is slightly easier to work with an auxiliary quantity m,, which is very close
to m, ;. According to [Erdds et al. 2018, Lemma 5.1] the minimum m,; can approximately be found by
solving the implicit equation

ﬁlr’t = Cr — (t _t*)mmr,t (ﬁ:lr,t), ]ﬁr’t € R, r = A., M. (4—14&)

The explicit relation (4-14a) is the main reason why it is more convenient to study the movement of m;
rather than the one of m;. We claim that m,; is indeed a very good approximation for m, ; in the sense that
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1

~ 3,41 ~ 1
|mr,[ _mr,t| 5 (Z _t*)2+4, F\\‘Smr,t (mr’t) = )/z(t —l‘*)i + O([ —[*), r = A,, l/L (4—14b)

Proof of (4-14b). The first claim in (4-14b) is a direct consequence of [Erdés et al. 2018, Lemma 5.1].
For the second claim we refer to [Erdds et al. 2018, equation (89a)], which implies

Sy (Fire) = (1 — 1) 22 [1+ O((t = 1)3[Smps Fr)]$)] = Y2 )2 + O —1,). O

For the ¢-derivative of (semi-)quantiles y;;, i.e., points such that v

well as for the minima m, ;, we have the explicit relations

e Pr,z(x) dx is constant in ¢, as

%Vr,t = —Rmyr s (Yr,e), (4-14¢)
%rﬁr,t = —Nmp (M) + O —1x), 1x <1< 2t (4-14d)

In particular, for the spectral edges it follows from (4-14c) that
%e:f, =-—mp(ef,), 0=t =<t (4-14e)

Proof of (4-14c)—(4-14e). For the proof of (4-14c) we first recall that from the defining equation (4-1) of
the semicircular flow it follows that the Stieltjes transform m = m,({) of p; satisfies the Burgers equation

m=mm =L1m?), (4-15)

where prime denotes the - i derivative and dot denotes the & 57 derivative. Thus

1 VYr.t 1 Yr.t
Vet =——% iy (E)dE = ————3 (m2 Y(E)dE
" prt(Vrt) J-oo nt 207, (Vr,t) nt
Sm% t (Yre)
=——>2 """ = _Nm
23071 (Yrr) rt(Vrt)

follows directly from differentiating ngg pr,: (x) dx = const.
For (4-14d) we begin by computing the integral

4
/ . pr. (¢r +x) V3y3[x|3 4+ O(lx|3 ) y3
= = “dx= = (@ 3 4-16
mr,t* (Cr + 17']) o ()C —17’})2 X o 27T(X —1?7)2 377% + (77 ) ( )

so that by the definition m,;(z) = m;, (z + (t —t«)mr(2)) of the free semicircular flow,

d - d d
amr,t(mr,t) =m, t* (M + (2 — ta)my s (M, t))[ Wy +my (W) + (F — [*) mrt(mz t)j|

_ 1

o (3([ —t*)

= 1(; +O((t - t*)_é)) [%mrl(ﬁlr )+ —t*)ismrt(ﬁlr t)j|
3(r —ts) ’ ’ dt ’ ’

+O((t — 1)~ 2)) |:_mrt +mrt(mrt) + (¢ _t*) d mr t(mr t)]

= )/—2 li(\ ~ _ %
B (13(z —14)2 HEYTRE (m”))“ + Ot —1+)2)].
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Here we used (4-14a), (4-14b) together with (4-16) in the second step. The third step follows from taking
the 7-derivative of (4-14a). The ultimate inequality is again a consequence of (4-14b). By considering
real and imaginary parts separately it thus follows that

- 2 1 d -
¥y () = —— [+ O~ 1) D] Ry () = O(1),
dr 2(l —14)2 dr
and therefore (4-14d) follows by differentiating (4-14a). O

4C. Rigidity scales. In this section we compute, up to leading order, the fluctuations of the eigenvalues
around their classical locations, i.e., the quantiles defined in Section 4A. Indeed, the computation of the
fluctuation scale for the particles x; (¢), y; (¢), defined in (5-5), (5-7), will be one of the fundamental inputs
to prove rigidity for the interpolated process in Section 6. The fluctuation scale nf () of any density
function p(w) around t is defined via

r+nf(r) 1
/ p(@)do = -
t—nf (v) N

for T € supp p and by the value n¢(t) := n¢(z’), where ©’ € supp p is the edge closest to T for T & supp p.
If this edge is not unique, an arbitrary choice can be made between the two possibilities. From (4-13a)

we immediately obtain for 0 <¢ <t, and 1 <i < N that

Aét
r A r,
77? ! (ej:t + Vr,%i (t)) ~ max% 2.1
N3i3 N
while for t. <t <2tx, 1 <|[i| < N we obtain from (4-13b) that

s 1
T 3 1%, r=a, A, u, (4-17a)
ii4

y . 1 1 . 1 1
%Wmﬁmmwmﬁ : 31}mﬁ R },wwww<Mm
Npri(Mrs) Nilji|a N(t—ts)2 Nili|a
In the second relations we used (4-6a) and (4-6¢). For reference purposes we also list for 0 <i, j <K N

the bounds 1

A R APl =] i—j
|)/r’j(t)—)/r,j(t)|NmaX{ 2r,t 1° 3| J| 1 } (4_18)
N3G +j)5 NiG+j)s
in the case ¢ <t and
|%ﬁa>—fnxol~nm4 =gl J’_J'1§ (4-19)
pri(mr )N Na@i+ j)4
in the case ¢t > t.. Furthermore we have
1 .1
+ n A 13 14
Pr,t (er,t + Vri () ~ mln{ I ) _1} , (4-20)
N3(tx—1t)s N*
.1
M 14
Pre(Mys 4+ pri (1)) ~ max{ Pre(Myz), F} . (4-21)
4
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4D. Stieltjes transform bounds. It follows from (4-6b) and (4-6d) that also the real parts of the Stieltjes
transforms meg s, mj 4, My, are close. We claim that forr = A, o and v € [0, 4] and 0 < <4 we have

{m[(mr,t(e:t +v)— mr,t(e:t)) - (m,u,t(e;r,t +v)— m,,v,;(e;’t))]‘
< IR + (=03 flogll| + (@ — ) B < —1A,,). (@-22a)
while for ¢, <t < 2t we have
|R[mrp My +v) = Mg (W) — (M (s + 1) =My ()|
<V =t + (e —0)F + 03] loglv]].  (4-22b)

Proof of (4-22). We first recall from Lemma 4.3 that also the density py ¢ is %—Hﬁlder continuous, which
we will use repeatedly in the following proof. We begin with the proof of (4-22a) and compute for
r=o,A, U1

VPt (e;i,_t + ) d /oo vor (e, — ) do. (4-23)
0

N[my (e, +v) —mp (e =/
(Gt =l = f T S @+ Ars+ V)@ +Ary)

For v > 0 the first of the two terms is the more critical one. Our goal is to obtain a bound on

oo
Vv
/0 m[m,t (%tt + ) = pus (ej,, + )] dw

by using (4-6b). Let 0 <€ < %v be a small parameter for which we separately consider the two critical
regimes 0 < w < ¢€ and |v —w| <e. We use

1 1
pri(ef +®) Sw3 and  pri(ef; + @) = pri(ef; + V) + O(lo—v]3), r=2Apu (424

from the %-Hélder continuity of p,; and the fact that the integral over 1/(w —v) fromv —etov + €
vanishes by symmetry to estimate, for r = A, u,

€
V
/0 (w_—v)wpr,t(e;':t + w) do

/V+€ Prit (ej,_z + ) _ Pri (ej,_t +w) d
v ®—V 1)

€ 2 1
5/ |w]|73 dw S €3,
0

W=

vt+e 2 2 5
) 5/ |o—v|"3dw+€v™3 €3 +€v 3,
V—e€

—€

Next, we consider the remaining integration regimes where we use (4-6b) and (4-24) to estimate

v—e v
/ (@ —v)o [or,t (ej:t +w) = pu (ez,t + )] dw‘
€

1 1 2 1 1
Vw3 (ty—1)3 3 V=€ (3 (ty —1)3 k
5/ w3(tx—1)3 + o da)—i—/ (v (t« —1) LY )da)
p w v w—v w—V

SV3((te—1)3 +v7)[loge]

D=
WIN

D=
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and similarly

o v 1 L1
[ g e 6 0) = st + 00| 03—} D ogel.
VT€

We now consider the difference of the first terms in (4-23) for r = A, i and for v < 0, where the bound is
simpler because the integration regime close to v does not have to be singled out. Using (4-6b) we find

v 2 1o
/o =)o [ori (e, 4+ @) = pus(eff ; + w)] da)‘ <3+ (te—1)3v]3.

Finally, it remains to consider the difference of the second terms in (4-23). We first treat the regime
where v > _%Ar,t and split the difference into the sum of two terms

/00( VPr,t (er_,z —w) . VPr,t (er_,t —w) ) do
0o \(@+A+v)(@+Ar) (0+Au+v)(@+Auy)

® pri(er; —0)2Ar; + 20 + |v]]
S|v||Ar,t—AM,t|/ L 2r 2

0 (a)+Ar,t +v) (a)+Ar,t)
=Byl [Ar -

Ay 11
wtl < o= b

2 2
AL (At
and
oo % ¢, —w v ¢, , —w
/ ( pri(er; — @) - Prt (S0 =) )da)‘ <3+ (e —1)3 )3,
0 (a)+AM,t +V)(a)+A,u,l) (a)+AM,t +V)(a)+A,u,l)

Here we used pr,t(er_’t —w) < a)%, as well as (4-6a) for the first and (4-6a), (4-6b) for the second

computation. By collecting the various error terms and choosing € = v? we conclude (4-22a).
We define k := —v — A, ;. Then we are left with the regime v < —%Am or equivalently « > —%A ot
and use

mr,,(e;':t +v) —mpy (ej:t) = My (e —K) —myp (e ) + (mpe(e,,) — mr,t(e;t-t)) ,
as well as
Myt (e;‘;t +v) —mu,t(ez,z) = (mu,,t(e;,z =K+ B — D) —mp (e, — K))
+ (mu,t (e;,t —K) _mu,t(e;,t)) + (mpc,t (e;,t) - mu,t(e,t,t)) (4-25)

in the left-hand side of (4-22a). Thus we have to estimate the three expressions

|R[r.e (e — 1) = My (€)= (g (651 — 1) — e (e D, (4-262)
}m[(mr,t (er_,t) —Myy (e;t_t)) —(myz (e;,t) Myt (e;:,t))”’ (4-26b)
[R[m e (e s — Kk + Ape — Art) —my (e, , —©)]|. (4-26¢)

In order to bound the first term we use that estimating (4-26a) for x > —%Ar,t is equivalent to estimating
the left-hand side of (4-22a) for v > —%Ar,t, i.e., the regime we already considered above. This
equivalence follows by using the reflection A — —A of the expectation (see (3-1)) that turns every
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left edge e ¢ into a rlght edge e . In particular, by the analysis that we already performed (4-26a) is
bounded by |« |3 3 [Ix] 34 (tx« —1)3 ]|log|/<||. Since |k| < |v|, this is the desired bound.

For the second term (4-26b) we see from (4-23) that we have to estimate the difference between the
expressions

o0 A et o A e, —w
f r,t pr,t( r,t ) do + [ r,tpr,t( r,t ) dw (4_27)
0 0

w(w+ Ary) w(w~+ Ary)
for r = o, A, . The summands in (4-27) are treated analogously, so we focus on the first summand. We

split the integrand of the difference between the first summands and estimate

(Are = Apt)pra(efy + o) A A3 + (e =1)3)
B Sk b B (e + @) = ppa (), +w) S ——5 ,
(0 + Arg)(0+ Apy) w(@+ Auy) w3(w+ A)

where A := A, ; ~ A, and we used (4-6a), (4-6b) and the first inequality of (4-24). Thus

+ +
/°° Aripre(e,, + o) w_/oo Aptppt (e, + ) do| <%t A%(t* —t)%.
0 0

o+ Ary) w(w+ Ayy)

Since |v| Z A, this finishes the estimate on (4-26b).
For (4-26c) we use the %—Ht‘)lder regularity of m, , and (4-6a) to get an upper bound

A3ty —1)9 < (tx —1) 5.

This finishes the proof of (4-22a).

We now turn to the case of a small local minimum in (4-22b) and compute for r = o, A, & and v # 0

VPOr,t (mr,t +w) d

Ry (Mg +0) —mpp(Wy,)] = fR (@—v)o

Without loss of generality, we consider the case v > 0, as v < 0 is completely analogous. As before,
we first pick a threshold %6 < v and single out the integration over [—¢, €] and [v — €, v + €]. From the
%—Hélder continuity of p,; we have, forr = A, p,

1
Pr,t (mr,t +w) = Pr,t (mr,t +v)+0(v—w|3)

S ‘/ —p”(mrt—i_w) ‘ / |w|_%da)<e%
v’ —€ —€ ~

/v+e Pre(My s + )
v—e

w

and therefore

‘/ prt(mrt +w)
—€

w—V

and

/v—l—e Pr,t (mr,t +w)
v—e

v+e 2 .
do| < |w—v|73dw €3,
®w—v v

—€

€
do| < —.
)

We now consider the difference between p,, and p, ; for which we have

1 1 3 2
lore (M + @) —pp sy + @) S —te)|o]3( —t)3 + (f —14)* + |@]3
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from (4-6d), (4-6¢) and the %—Hdlder continuity of p,,. Thus we can estimate

—€ v—€ o0 V(p/l,t(mr,t +w)_pr’t(mr”+w))
R N e

[ et
= w
—00 € v+e |a)_v|w

< |10ge|[v%(t —Z*)% +(t —t*)% + v%]

We again choose € = v? and by collecting the various error estimates can conclude (4-22b). O

5. Index matching for two DBM

For two real symmetric matrix-valued standard (GOE) Brownian motions ;ng), %g“ ) e RV*N we define
the matrix flows
A A
H® = g® P g .= g 4 g (5-1)
In particular, by (5-1) it follows that
Ht(k) 4 H® 4 JiuW, Ht(M) d HW 4 Jiuw (5-2)

for any fixed 0 <t < ¢, where U ) and U™ are GOE matrices. In (5-2) with X 4 Y we denote that
the two random variables X and Y are equal in distribution.

We will prove Proposition 3.1 by comparing the two Dyson Brownian motions for the eigenvalues of
the matrices H t(k) and H t(“ ) for 0 <t <t1; see (5-3)—(5-4) below. To do this, we will use the coupling
idea of [Bourgade and Yau 2017; Bourgade et al. 2016], where the DBMs for the eigenvalues of H ,(A) and
H ,(“ ) are coupled in such a way that the difference of the two DBMs obeys a discrete parabolic equation
with good decay properties. In order to analyse this equation we consider a short-range approximation
for the DBM, first introduced in [Erdés and Yau 2015]. Coupling only the short-range approximation of
the DBMs leads to a parabolic equation whose heat kernel has a rapid off-diagonal decay by finite speed
of propagation estimates. In this way the kernels of both DBMs are locally determined and thus can
be directly compared by optimal rigidity since locally the two densities, hence their quantiles, are close.
Technically it is much easier to work with a one-parameter interpolation between the two DBMs and
consider its derivative with respect to the parameter, as introduced in [Bourgade and Yau 2017]; the proof
of the finite-speed propagation for this dynamics does not require us to establish level repulsion, unlike in
several previous works [Erd6s and Schnelli 2017; Erdés and Yau 2015; Landon and Yau 2017]. However,
it requires us to establish (almost) optimal rigidity for the interpolating dynamics as well. Note that optimal
rigidity is known for H ,(A) and H ,(M ) from [Erd6s et al. 2018], see Lemma 6.1, but not for the interpolation.
For a complete picture, we mention that in the works [Erd6s and Schnelli 2017; Erdés and Yau 2015;
Landon and Yau 2017] on bulk gap universality, beyond heat kernel and Sobolev estimates, a version of
the De Giorgi—Nash—Moser parabolic regularity estimate, which used level repulsion in a more substantial
way than finite speed of propagation, was also necessary. Fixed energy universality in the bulk can be
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proven via homogenisation without De Giorgi—-Nash—Moser estimates; hence level repulsion can also be
avoided [Landon et al. 2019]. In a certain sense, the situation at the edge/cusp is easier than the bulk regime
since relatively simple heat kernel bounds are sufficient for local relaxation to equilibrium. In another
sense, due to singularities in the density, the edge regime and especially the cusp regime are more difficult.

In Section 6 we will establish rigidity for the interpolating process by DBM methods. Armed with
this rigidity, in Section 7 we prove Proposition 3.1 for the small gap and the exact cusp case, i.e., ] < 4.
Some estimates are slightly different for the small minimum case, i.e., tx < f; < 2t4; the modifications
are given in Section 8. We recall that 4 is the time at which both H t(f) and H l(f ) have an exact cusp.
Some technical details on the corresponding Sobolev inequality and heat kernel estimates, as well as
finite speed of propagation and short-range approximation, are deferred to the Appendix; these are similar
to the corresponding estimates for the edge case (see [Bourgade et al. 2014] and [Landon and Yau 2017],
respectively).

In the rest of this section we prepare the proof of Proposition 3.1 by setting up the appropriate framework.
While we are interested only in the eigenvalues near the physical cusp, the DBM is highly nonlocal, so we
need to define the dynamics for all eigenvalues. In the setup of Proposition 3.1 we could easily assume
that the cusps for the two matrix flows are formed at the same time and their slope parameters coincide —
these could be achieved by a rescaling and a trivial time shift. However, the number of eigenvalues
to the left of the cusp may macroscopically differ for the two ensembles, which would mean that the
labels of the ordered eigenvalues near the cusp would not be constant along the interpolation. To resolve
this discrepancy, we will pad the system with N fictitious particles in addition to the original flow of
N eigenvalues, much as in [Landon et al. 2019], giving sufficient freedom to match the labels of the
eigenvalues near the cusp. These artificial particles will be placed very far from the cusp regime and from
each other so that their effect on the dynamics of the relevant particles is negligible.

With the notation of Section 4, we let py ;, pu,r denote the (self-consistent) densities at time 0 <7 <1,
of HI(A) and Ht(”“ ), respectively. In particular, py o = p; and p,0 = pp, where py, py, are the self-
consistent densities of H®* and H®™ and Pai» Pu.t are their semicircular evolutions. For each 0 <7 <t

both densities py, ¢, py,r have a small gap, denoted by [¢; ,, e;{ ,Jand [ e;r’,], and we let

e;,t,
Aysi= eit = Aup= e:;J —

denote the lengths of these gaps. In the case of 7« <7 < 21, the densities p, ;, oy, have a small minimum
denoted by m, , and m,, ; respectively. Since we always assume 0 <¢ <7; < 1, both H I(A) and H t(“ )
will always have exactly one physical cusp near ¢, and ¢, respectively, using that the Stieltjes transform
of the density is a Holder continuous function of ¢; see [Alt et al. 2018a, Proposition 10.1].

Let i) and i, be the indices defined by

/ex.o i)—1 /e;.o in—1
pr = : Pu = :
oo N o N

By band rigidity (see Remark 2.6 in [Alt et al. 2018b]) i3 and i,, are integers. Note that by the explicit
expression of the density in (2-3a)—(2-3b) it follows that cN <i,,i, < (1 —c)N with some small ¢ > 0,

because the density on both sides of a physical cusp is macroscopic.
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We let A; () and p;(¢) denote the eigenvalues of H ,()“) and H t(“ ) respectively. Let {B; };e[—n,N]\{0}

be a family of independent standard (scalar) Brownian motions. It is well known [Dyson 1962] that the

)

eigenvalues of H t(l satisfy the equation for Dyson Brownian motion, i.e., the system of coupled SDEs

[2 1 1
di; = /—dBi—; — dr 5-3
i N ZZA+I+NZA'1'_A]' ( )
J#i
with initial conditions A; (0) = A; (HW)). Similarly, for the eigenvalues of H t(“ ) we have
12 1 1
du; = /—dBi—i, +1 + — dt (5-4)
i N GPi—int N ; Wi —

with initial conditions p; (0) = u; (H ). Note that we chose the Brownian motions for A; and j;4; L—ix
to be identical. This is the key ingredient for the coupling argument, since in this way the stochastic
differentials will cancel when we take the difference of the two DBMs or we differentiate it with respect
to an additional parameter.

For convenience of notation, we will shift the indices so that the same index labels the last quantile
before the gap in p, and p,,. This shift was already prepared by choosing the Brownian motions for u;,
and A;, to be identical. We achieve this shift by adding N “ghost” particles very far away and relabelling,
as in [Landon et al. 2019]. We thus embed A; and j; into the enlarged processes {x; }; c[—n,N]\{0} and
{yi}ie[-N,N]\{0}- Note that the index 0 is always omitted.

More precisely, the processes x; are defined by the SDE (extended Dyson Brownian motion)

d ,/2d3+12 L oo 1<|i|<N (5-5)
X = — ] - ) S| = ) -
! N "' N —~ Xj — Xj
J#i
with initial data
—N200 LiN if =N <i <—iy,
Ai+i, (0) ifl1—i) <i<-1,
x0)=1"" o . (5-6)
ki+i)t—1(0) if1 <i <N+1—iy,
N2 4 iN if N+2—i) <i <N,
and the y; are defined by
2 1 1 .
dyi =/ dBi + = ) e, 1=<Ji| =N, (5-7)
N N = yi—yj;
J#i
with initial data
—N200 i N if =N <i<—i,,
Wi+i, (0) ifl—l'ufl' <-I,
yi(0) = 8 e . (5-8)
Miti,—1(0) if 1 <i <N+1—iy,
N2 4N ifN+2—i,<i<N.

The summations in (5-5) and (5-7) extend to all j with 1 <|j| < N except j =1i.
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The following lemma shows that the additional particles at distance N2°° have negligible effect on
the dynamics of the re-indexed eigenvalues; thus we can study the processes x; and y; instead of the
eigenvalues A;, ;. The proof of this lemma follows by Appendix C of [Landon et al. 2019].

Lemma 5.1. With very high probability the following estimates hold:

sup sup |xi (1) = Aj i1 (0)] < N 7100,
0<t<1 1<i<N+1-i,

—100
sup sup |xi(t)_)‘i+i)\(t)|§N ’
0<t<1 1-i}<i<N+1-i,

—100
sup sup  |yi (1) = piti,—1(0)] < N7H0,
0<t<1 1<i<N+1-iy,

sup sup i (1) = pti, ()] < N7,

0<t<11—iy<i<N+1—iy

200 200
sup Xx—j, (1) S—N“"",  sup xn42-i, (1) T N°,

0<t<1 0<r<1

200 200

sup y—i, (1) S—N-",  sup yny42-i, (1) I N
0<t<1 0<t<1

Remark 5.2. For notational simplicity we assumed that H ) and H®™ have the same dimensions,
but our proof works as long as the corresponding dimensions N, and N, are merely comparable, say
%N 2 <Ny < %N 2- The only modification is that the times in (5-1) need to be scaled differently in
order to keep the strength of the stochastic differential terms in (5-3)—(5-4) identical. In particular, we
rescale the time in the process (5-3) as t’ = (N, /N, )t, in such a way the N-scaling in front of the
stochastic differential and in front of the potential term are exactly the same in both the processes (5-3)
and (5-4); namely we may replace N with N, in both (5-3) and (5-4). Furthermore, the number of
additional “ghost” particles in the extended Dyson Brownian motion (see (5-5) and (5-7)) will be different
to ensure that we have the same total number of particles; i.e., the total number of x- and y-particles will
be 2N :=2max{N,, N, }, after the extension. Hence, assuming that N;, > N, there willbe N = N,
particles added to the DBM of the eigenvalues of H (1) and 2N, — N, particles added to the DBM
of HM. In particular, under the assumption N, > N,, we may replace (5-6) and (5-8) by

—NZO+iN, if =N, <i<—iy, —NZ+iN, if =N, <i<-—iy,
Ai+iy (0) if 1-i) <i <—1, Wi+i, (0) if 11, <i <—1,
i (0=, o . yi(0)= o .
i+i—1(0)  if1=<i <N;+1-i, Mi+i,—1(0) i 1 <i <Ny+1-iy,
N24iN, i Ny+2—iy <i <N, NZO+iNy i Np+2—ip <i <Ny

Then, all the proofs of Sections 5 and 6 are exactly the same as in the case N := N, = N,, since all the
analysis of the latter sections is done in a small, order-1 neighbourhood of the physical cusp. In particular,
only the particles x; (¢), y; (t) with 1 <|i| <emin{N,, N, }, for some small fixed € > 0, will matter for our
analysis. The far-away particles in the case will be treated exactly as in (5-9)—(5-13) replacing N by N,.



CUSP UNIVERSALITY FOR RANDOM MATRICES, II 643

We now construct the analogues of the self-consistent densities py ;, oy, for the x(7) and y(z)

processes, as well as for their «-interpolations. We start with py ;. Recall p, ; from Section 4, and set
1 —iy 1 N
pra(E)i=pre(E)++ ) V(E-—xi)++ Y, Y(E-x(). EeR (59
i=—N i=N-+2—iy

where ¥ is a nonnegative symmetric approximate delta-function on scale N1, i.e., it is supported in
an N~! neighbourhood of zero, [ =1, [[{[loc < N and ||¥/[|cc < N?. Note that the total mass is
fR px.: = 2. For the Stieltjes transform my ; of px s, we have sup,cc+|my (z)| < C since the same
bound holds for p, ; by the shape analysis. Note that p, ; is the semicircular flow with initial condition
Px,t=0 = p, by definition, but py ; is not exactly the semicircular evolution of px 0. We will not need this
information, but in fact, the effect of the far-away padding particles on the density near the cusp is very tiny.

Since py,; coincides with p, ; in a big finite interval, their edges and local minima near the cusp regime
coincide; i.e., we can identify
eit = ejﬁt, My, =My ;.
The shifted quantiles and semiquantiles yy ; (¢), yx,; (t) and )?;:l (1), )?;:l (¢) of pyx, are defined by the
obvious analogues of the formulas (4-10)—(4-12) except that the r subscript is replaced with x and the
indices run over the entire range 1 < |[i| < N. As before, yx o(f) = ej’t. The unshifted quantiles are
defined by

Yri () = Pri (D) + e, 0<1<ix, Vi (1) = Vi (1) + s, 1o ST <2y,

and similarly for the semiquantiles.

So far we explained how to construct px ; and its quantiles from py ;; in exactly the same way we
obtain py, ; from p, ; with straightforward notation.

Now for any « € [0, 1] we construct the «-interpolation of px ; and p) ;, which we will denote by p;.
The bar will indicate quantities related to «-interpolation that implicitly depend on «; a dependence that we
often omit from the notation. The interpolating measure will be constructed via its quantiles; i.e., we define

Vi(t):=aPxi(O)+A—a)Pyi (1), ¥ (0):=ap;(O)+(1—a)py; (1), 1=[i[<N, 0=t =tx, (5-10)
and similarly for 7, <t < 2t, involving y’s. We also set the interpolating edges
e :ae;—"’t —|—(l—a)e;ft. (5-11)

Recall the parameter 64« describing the size of a neighbourhood around the physical cusp where the
shape analysis for p, and p, in Section 2 holds. Choose i(d«) ~ N such that |y, _;,)(t)| < 6« and
|7x,i(8,) (t)] < 8 hold for all 0 < ¢ < 2t,. Then define, for any E € R, the function

pr(E) = pai (B) W(7-ig (O +& S E <FigoO+8 )+ 3, VE-F -7 (). (5-12)
i(8+)<li|l<N

where pg ; is the a-interpolation, constructed in Definition 4.1, between p, ;(E) = px,.(E) and py : (E) =
Py, (E) for |[E| < §«. By this construction (using also the symmetry of y/) we know that all shifted
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semiquantiles of p; are exactly y* (). The same holds for all shifted quantiles y; (7) at least in the interval
[—84, 6x] since here p; = pq,; and the latter was constructed exactly by the requirement of linearity of
the quantiles (5-10); see (4-13c).
We also record f pr = 2 and that for the Stieltjes transform m1;(z) of p; we have
max |ms(z)| <C (5-13)
1fz—e <18

for all 0 <t < 2t,. The first bound follows easily from the same boundedness of the Stieltjes transform
of pa,:. Moreover, m;(z) is %—H()'lder continuous in the regime [Nz — E;L| < %8* since in this regime
Pt = Pa,r and pg ;¢ 1S %—Hélder continuous by Lemma 4.3.

6. Rigidity for the short-range approximation

In this section we consider Dyson Brownian Motion (DBM), i.e., a system of 2N coupled stochastic
differential equations for z(t) = {z; (¢) }[—n,n]\{0} Of the form

d ,/2d3+12 L 1<l|i|<N (6-1)
Zj = . j . ) = = ) -
! N "' N r Zi —Zj :

with some initial condition z; (¢ = 0) = z; (0), where B(s) = (B_n(s),..., B_1(s), B1(s),..., By (s))
is the vector of 2N independent standard Brownian motions. We use the indexing convention that all
indices i, j, etc., run from —N to N but the zero index is excluded.

We will assume that z; (0) is an «-linear interpolation of x; (0), y; (0) for some « € [0, 1]:
zi(0) = z; (0, @) :== ax; (0) + (1 — ) y; (0). (6-2)

Throughout this section we will refer to the process defined by (6-1) using z (¢, &) in order to underline
the a-dependence of the process. Clearly for o = 0, 1 we recover the original y(¢) and x(¢) processes,
z(t,a=0)=y(t), z(t,a=1) = x(¢). For these processes we have the following optimal rigidity estimate,
which is an immediate consequence of [Erdds et al. 2018, Corollary 2.6] and Lemma 5.1:

Lemma 6.1. Let ri(t) = x;(¢t) or ri(t) = yi(t) and r = x,y. Then, there exists a fixed small € > 0,
depending only on the model parameters, such that for each 1 < |i| < €N, we have

sup i (£) = yri ()] < NP (pri (1)) (6-3)

0<t<2t4
for any & > 0 with very high probability, where we recall that the behaviour of r]fr’t (yr,i(t)), withr =x,y,
is given by (4-17a).

Note that, by (4-6a), (4-6¢) and (4-17), for all 1 < |i| < €N and for all 0 <t < t, we have

1
6@l

) N
e (rri (1)) S —

3 (6-4)
UENE

with r = x, y.
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In particular, we know that z(0, o) lie close to the quantiles (5-10) of an «-interpolating density
pz = Po; see the definition in (5-12). This means that p, has a small gap [¢;, ¢]] of size A, ~ t*% (.e.,
it will develop a physical cusp in a time of order 7x) and it is an a-interpolation between px o and py 0.
Here interpolation refers to the process introduced in Section 5 that guarantees that the corresponding
quantiles are convex linear combinations of the two initial densities with weights « and 1 —a, i.e.,

Vzi =ayx,i+ (1—a)yy,i.
In this section we will prove rigidity results for z (¢, o) and for its appropriate short-range approximation.

Remark 6.2. Before we go into the details, we point out that we will prove rigidity dynamically, i.e.,
using the DBM. The route chosen here is very different from the one in [Landon and Yau 2017, Section 6],
where the authors prove a local law for short times in order to get rigidity for the short-range approximation
of the interpolated process. While it would be possible to follow the latter strategy in the cusp regime
as well, the technical difficulties are overwhelming; in fact already in the much simpler edge regime a
large part of [Landon and Yau 2017] was devoted to this task. The current proof of the optimal law at
the cusp regime [Erdés et al. 2018] heavily uses an effective mean-field condition (called flatness) that
corresponds to large time in the DBM. Relaxing this condition would require adjusting not only [Erdss
et al. 2018] but also the necessary deterministic analysis from [Alt et al. 2018a] to the short-time case.
Similar complications would have arisen if we had followed the strategy of [Adhikari and Huang 2018;
Huang and Landon 2016] where rigidity is proven by analysing the characteristics of the McKean—Vlasov
equation. The route chosen here is shorter and more interesting.

Since the group velocity of the entire cusp regime is different for px; and py ;, the interpolated
process will have an intermediate group velocity. Since we have to follow the process for time scales
t~N _%Jr“’l, much bigger than the relevant rigidity scale N _%, we have to determine the group velocity
quite precisely. Technically, we will encode this information by defining an appropriately shifted process
Z(t,a) = z(t, ) — Shift(¢, o). It is essential that the shift function is independent of the indices i to
preserve the local statistics of the process. In the next section we explain how to choose the shift.

6A. Choice of the shifted process z. The remainder of Section 6 is formulated for the small gap regime,

i.e., for 0 <t < t.. We will comment on the modifications in the small minimum regime in Section 8. To

J’_
Z,t>

[e7.s5 ej’,] is the gap of the semicircular evolution p; ; of p, near the physical cusp, and approximate

match the location of the gap, the natural guess would be to study the shifted process z; (¢, ) —¢, ,, where
zi(t, ) — eZ, by the shifted semiquantiles ﬁ;’i(t) of p; ;. However, the evolution of the semicircular
flow t — pz,; near the cusp is not sufficiently well understood. We circumvent this technical problem by
considering the quantiles of another approximating density p; defined by the requirement that its quantiles
are exactly the a-linear combinations of the quantiles of py ; and p, ; as described in Section 5. The
necessary regularity properties of p; follow directly from its construction. The precise description below
assumes that 0 <t < 2t4; i.e., we are in the small gap situation. For #, <t <, an identical construction
works but the reference point e;ft is replaced with the approximate minimum m,; for r = x, y. For
simplicity we present all formulas for 0 <7 < ¢* and we will comment on the other case in Section 8.
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More concretely, for any fixed o € [0, 1] recall the (semi-)quantiles from (5-10). These are the
(semi-)quantiles of the interpolating density p = p; defined in (5-12), and let its Stieltjes transform be
denoted by m = m;. The use of a bar will indicate quantities related to this interpolation; implicitly all
quantities marked by a bar depend on the interpolation parameter «, and this dependence will be omitted
from the notation. Notice that p, has a gap [e;, E;r] near the cusp satisfying (5-11). Initially atz =0
we have p;—o = p; in particular y; (t =0) = P, ;(t = 0) and Eg: = e;t. We will choose the shift in the
definition of the Z; (¢, o) process so that we can use y*(¢) to trail it.

The semicircular flow and the a-interpolation do not commute, and hence y;(¢) are not the same
as the quantiles y; ;(¢) of the semicircular evolution p, ; of the initial density p,. We will, however,
show that they are sufficiently close near the cusp and up to times relevant for us, modulo an irrelevant
time-dependent shift. Notice that the evolution of y ; (¢) is hard to control since analysing

P 0) = W (2 (1) + 9m ()
would involve knowing the evolved density p; ; quite precisely in the critical cusp regime. While this
necessary information is in principle accessible from the explicit expression for the semicircular flow and
the precise shape analysis of p, obtained from that of p, and p,, here we chose a different, technically
lighter path by using y;(¢). Note that unlike p; ;(¢), the derivative of y;(¢) involves only the Stieltjes
transform of the densities px s and py ;, for which shape analysis is available.

However, the global group velocities of ¥ (¢) and p,(¢) are not the same near the cusp. We thus need
to define Z(¢, @) not as z (¢, o) — E;r but with a modified time-dependent shift to make up for this velocity

difference so that y(¢) indeed correctly follows Z(z, ). To determine this shift, we first define the function
R*(t,0) := R[—m; @) + (1= )my (e ) + amy s ()], (6-5)

where recall that 7, is the Stieltjes transform of the measure p;. Note that 2*(¢) = O(1) following from
the boundedness of the Stieltjes transforms my ;, m, ; and nﬁt(Ef). The boundedness of my ; and my, ;
follows by (4-1) and |m;(¢;)| < C by (5-13).
We note that
R*(t, 0= 0) =my, (%tt) — s (e)) = my,t(e;_,t) _ml(e;_,t)

since for « = 0 we have e;r, ;= E:r by construction. At o = 0 the measure p; is given exactly by the
density py ; in an O(1) neighbourhood of the cusp. Away from the cusp, depending on the precise
construction in the analogue of (5-12), the continuous py ; is replaced by locally smoothed out Dirac
measures at the quantiles. A similar statement holds at « = 1, i.e., for the density py ;. Itis easy to see that

the difference of the corresponding Stieltjes transforms evaluated at the cusp regime is of order N 71, i.e.,
|h*(t,0=0)| + |h*(t,a=1)| = O(N ). (6-6)

Since later in (6-110) we will need to give a very crude estimate on the «-derivative of 2* (¢, ), but
it actually blows up since 77} is singular at the edge, we introduce a tiny regularisation of 7*; i.e., we
define the function

R**(t,0) := R[—m; (& +iN 710 + (1 —a)my () +amy (). (6-7)
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Note that by the %—Hblder continuity of 77, in the cusp regime, i.e., for z € H such that [Rz —¢;| < %8*,
it follows that

R**(t, ) = h*(t,a) + O(N ~39). (6-8)
Then, we define
h(t) =h(t,a):=h**(t,a) —ah™ (1) — (1 —a)h**(,0) = O(1) (6-9)
to ensure that
h(t,a=0)=h(t,a=1)=0. (6-10)
In particular, we have
h(t, o) = R[—m: (&) + (A —aymy (e ) +amy (e )]+ ONT. (6-11)
Define its antiderivative
t
H(t,a):= / h(s,a)ds, H0,0) =0, max |H(t,a)| =< NTzter, (6-12)
0 0<t<t4

Now we are ready to define the correctly shifted process
Zi(ty=zi(t,a) ==z (t) — [oze;“,t + (1 —oc)e;r’,] —H(t,a), (6-13)
which will be trailed by y; (¢). It satisfies the shifted DBM

2 1 1
dz; = \/—dB' — D, (1) dt, 6-14
Zj N l+|:NZ§i—§j+ a()] ( )

J#i

with
D(t) 1= B (1) = afimy (e ) + (1 —a)Rmy, (ef,) — h(t, ), (6-15)

and with initial conditions Z(0) := z(0) — ¢ by (5-11) and H (0, @) = 0. The shift function satisfies
@ (1) = R ()] + ONT). (6-16)

Notice that for ¢ = 0, 1 this definition gives back the naturally shifted x(¢) and y(¢) processes since
we clearly have

Zta=1)=%1)=x()—c¢f,. Z(t.a=0)=j():=y@)—cf,. (6-17)
which are trailed by the shifted semiquantiles
prta=1)=pg,;(1) = V:,i([)—%tt, fi*(t,a:O)zﬁ;,i(t) = V;,i(f)—e;—,t- (6-18)

As we explained, the time-dependent shift H (¢, @) in (6-13) makes up for the difference between the

true edge velocity of the semicircular flow (which we do not compute directly) and the naive guess which
d
dr
will come out of the proof. The key point is that this adjustment is time-dependent but global; i.e., it is

is [aej’t +(1— oc)ej’ ;] hinted at by the linear combination procedure. The precise expression (6-5)

independent of i since this expresses a group velocity of the entire cusp regime.
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6B. Plan of the proof. In the following three subsections we prove an almost-optimal rigidity not directly
for Z; () but for its appropriate short-range approximation Z;(¢). This will be sufficient for the proof
of the universality. The proof of the rigidity will be divided into three phases, which we first explain
informally, as follows.

Phase 1 (Section 6C): The main result is a rigidity for Z; (r) — i (¢) for 1 < |i| < +/N on scale N —3+Co
without i-dependence in the error term. First we prove a crude rigidity on scale N —3+Co1 for all
indices i. Using this rigidity, we can define a short-range approximation Z of the original dynamics Z
and show that Z; and 2; are close by N —3+Cor for | < |i| £ +/N. Then we analyse the short-range
process 2 that has a finite speed of propagation, so we can localise the dynamics. Finally, we can directly
compare Z with a deterministic particle dynamics because the effect of the stochastic term /2/N dB;,
ie., tx«/N =N —itio1 ¢ N—itCon , remains below the rigidity scale of interest in this Phase 1.

However, to understand this deterministic particle dynamics we need to compare it with the corre-
sponding continuum evolution; this boils down to estimating the difference of a Stieltjes transform and its
Riemann sum approximation at the semiquantiles. Since the Stieltjes transform is given by a singular
integral, this approximation relies on quite delicate cancellations which require some strong regularity
properties of the density. We can easily guarantee this regularity by considering the density p; of the
linear interpolation between the quantiles of px ; and py ;.

Phase 2 (Section 6D): In this section we improve the rigidity from scale N —3+Co1 g scale N _%"'é"", for
a smaller range of indices, but we can achieve this not for Z directly, but for its short-range approximation Z.
Unlike Z in Phase 1, this time we choose a very short-scale approximation Z on scale N*®¢ with
w1 K wy K 1. As an input, we need the rigidity of Z; on scale N=i+Cor for | < |i] £ +/N obtained in
Phase 1. We use heat kernel contraction for a direct comparison with the y; () dynamics for which we
know optimal rigidity by [Erdds et al. 2018], with the precise matching of the indices (band rigidity). In
particular, when the gap is large, this guarantees that band rigidity is transferred to the Z-process from the
y-process.

Phase 3 (Section 6E): Finally, we establish the optimal i -dependence in the rigidity estimate for z; from
Phase 2; i.e., we get a precision N —itsw |i |_%. The main method we use in Phase 3 is the maximum
principle. We compare Z; with y;_g, a slightly shifted element of the y-process, where K = N § with
some tiny &. This method allows us to prove the optimal i -dependent rigidity (with a factor N %“’1) but
only for indices |i| 3> K because otherwise Z; and y;_x may be on different sides of the gap for small ;.
For very small indices, therefore, we need to rely on band rigidity for Z from Phase 2.

The optimal i -dependence allows us to replace the random particles Z by appropriate quantiles with a
precision so that

18— 2j1 S N |7 = 3] ~ NTF621ji] 3 = ]3],

Such an upper bound on |Z; — Z;|, hence a lower bound on the interaction kernel B;; = |2; —2;|~2 of the
differentiated DBM (see (6-106)) with the correct dependence on the indices i, j, is essential since this
gives the heat kernel contraction which eventually drives the precision below the rigidity scale in order to
prove universality. On a time scale tx = N ~3F01 the (P — {* contraction of the heat kernel gains a
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factor N~15%1 with the Convement choice of p = 5. Notice that 15 > %, so the contraction wins over
the imprecision in the rigidity N @1 from Phase 3, but not over N C“’l from Phase 1, showing that both

Phase 2 and Phase 3 are indeed necessary.

6C. Phase I: rigidity for Z on scale N —3+C1. The main result of this section is the following:

Proposition 6.3. Fix o € [0, 1]. Let Z(z, ) solve (6-14) with initial condition Z; (0, o) satisfying the crude
rigidity bound for all indices

max | 1%(0.0) =7 (0)] < NTzH201, (6-19)
1<li|<
We also assume that

”mx 0“00 + ||my 0||oo + |mt(et )l <C. (6-20)

Then we have a weak but uniform rigidity

sup  max |Zi(t,a)—p ()| SN~ 3+201 (6-21)

o<tr<ty 1<li|<N

with very high probability. Moreover, for small |i|, i.e., 1 <|i| <ix, with iy := N2 +Cxon for some large
Cyx > 100, we have a stronger rigidity:

Cwq

sup - max [7(1.0) ~ 77 (0] 5| max [%(0.0) =7 O + (6-22)

o<t <ty 1=[i]<ix < Nia
with very high probability.

In our application, (6-19) is satisfied and the right-hand side of (6-22) is simply N ~3+Co1 gince

: - NEN 6@
2(0,0) — 77 (0) = @(xi (0) — 1, (0)) + (1 = @) (3 (0) — yy,1(0)) = 0(—N3|,|1 ) (6-23)
7|j|4

for any & > 0 with very high probability, by optimal rigidity for x; (0) and y; (0) from [Erdés et al. 2018].
Similarly, the assumption (6-20) is trivially satisfied by (5-13). However, we stated Proposition 6.3 under
the slightly weaker conditions (6-19), (6-20) to highlight what is really needed for its proof.

Before starting the proof, we recall the formula

d
dtylr(t)__‘hmrl(yrl(t))—i_%mrt(ert) r=x,y, (6'24)

on the derivative of the (shifted) semiquantiles of a density which evolves by the semicircular flow and
follows directly from (4-14c) and (4-14e).

Proof of Proposition 6.3. We start with the proof of the crude rigidity (6-21), then we introduce a
short-range approximation and finally, with its help, we prove the refined rigidity (6-22). The main
technical input of the last step is a refined estimate on the forcing term. These four steps will be presented
in the next four subsections.
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6C1. Proof of the crude rigidity. For the proof of (6-21), using (6-24) twice in (5-10), we notice that

%?,-* (6) = @[ =R (v (1) + R (6] + (1= )[Ry (v (1)) + Rimy s (e,)] = O(1)

since my ; and m,, ; are bounded, recalling that the semicircular flow preserves (or reduces) the £>° norm
of the Stieltjes transform by (4-1), so ||[mx ¢ ||co < [[Mx,0/lcc < C, and similarly for m, ;. This gives

75 () =7 (0)] s N7, (6-25)
Thus in order to prove (6-21) it is sufficient to prove
12(t.) = (0. ) floo < N7z 21 (6-26)

for any fixed o € [0, 1]. To do that, we compare the dynamics of (6-14) with the dynamics of the
y-semiquantiles; i.e., set

wi i=ui(t, ) = Z(t) =y ; (1)

forall 0 <t <t,.

Compute
D) - ~
du; = ‘/ﬁ dB; + (Bu); dt + F;(¢) dt, (6-27)
with
~ 1 fi—fi
Bf)i = — N _ (6-28)
l N; (Zi_Zj)(V;,i_V;,j)
and

~ 1 1 ,
Fi(t) == Z s TRy (v () + a[?ﬂmx,z(e;,) - mmy,t(e;:t)] —h(@).

The operator B is defined on C2V and we label the vectors feC? as

f=U-N.f-N+1:-- . =1, f1... .. IN):

i.e., we omit the i = 0 index. Accordingly, in the summations the j = 0 term is always omitted since
Zj, zj and )?)’f ; are defined for 1 <|j| < N. Furthermore in the summation of the interaction terms, the
j =1 term is always omitted.

We now show that

IF(#)]|loo SlogN, 0<r<t* (6-29)

By the boundedness of my ;,my ; and the %—Hélder continuity of m; in the cusp regime, it remains to

control

1 1 1
~ 2.7 - < —— Slog N
N;V;‘,,-(t)—y;‘,j(t) . 2 li—Jjl

<|j—il=N

since [P ; — 5| = cli — j|/N as the density py,; is bounded.
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Let (s, t) be the fundamental solution of the heat evolution with kernel 5 from (6-28); i.e, for any
0<s<t

3; U(s, 1) =B)U(s, 1), U(s,s)=1. (6-30)

Note that #{ is a contraction on every £” space and the same is true for its adjoint / *(s, t). In particular,
for any indices a, b and times s, ¢ we have

Aap(s.1) <1, Uop(s.t) <1. (6-31)

By Duhamel’s principle, the solution to the SDE (6-27) is given by

~ 2 r_ t ~
u(t) = U, t)u(0) + \/;/0 U(s,t) dB(s)—i—/o U(s,t)F(s)ds, (6-32)

where B(s) = (B_n(s),...,B_1(s), B1(s),..., Bn(s)) are the 2N independent Brownian motions
from (6-1).
For the second term in (6-32) we fix an index i and consider the martingale

2 [t ~
M; = \/;/0 JZZ/I,-j(s,t)dBj(s),

with its quadratic variation process
2 (! ~ 2 [t 2t
[M]; ::N/O JZ(u,-j(s,z))stz N/o 18" (s, 008115 ds < -

By the Burkholder maximal inequality for martingales, for any p > 1 we have
TP
E sup |M;[*? <C,EM]} <Cp—.
0<t<T NP

By Markov inequality we obtain

¢ [T
sup |M;| < N°{/— (6-33)
0<t<T N

with probability more than 1 — N 2, for any (large) D > 0 and (small) & > 0.
The last term in (6-32) is estimated, using (6-29), by

‘/t T(s,t)F(s)ds
0

< 1 max|| F(s) oo < tlog N. (6-34)
s<
This, together with (6-33) and the contraction property of B implies from (6-32) that
Ju(®) = u(0)lloo S N™3+1 4 1log N 5 N~272
with very high probability. Recalling the definition of u and (6-25), we get (6-26) since

I2(6) = 20) lloo < () = u(0)loo + [75:(1) = P (O)l|oo < N™2H201,

This completes the proof of the crude rigidity bound (6-21).



652 GIORGIO CIPOLLONI, LASZLO ERDOS, TORBEN KRUGER AND DOMINIK SCHRODER

6C2. Crude short-range approximation. Now we turn to the proof of (6-22) by introducing a short-
range approximation of the dynamics (6-14). Fix an integer L. Let Z; = 2;(t) solve the L-localised
short-scale DBM

o [2 1 1 1
le' = NdBl + N Z o o dr + |:N Z %  —% + (D(t)] dr (6_35)

Zi —Zj
jilj—il<L “ T A e i Y

for each 1 < |i| < N and with initial data 2; (0) := Z; (0), where we recall that ® was defined in (6-15).
Then, we have the following comparison:

Lemma 6.4. Fix « € [0, 1]. Assume that

max [%(0.0) ~ 7' (0)] < N—zt201, (6-36)

1<lil<

Consider the short-scale DBM (6-35) with a range L = N2+C1@0 \pith 4 constant 10 <C; K Cy;in
particular L is much smaller than i«. Then we have a weak uniform comparison

sup  max |2 (t,a) —Z(t,a)| < N_f"'zw‘ (6-37)

0<t<t, 1<li|SN

and a stronger comparison for small i

sup  max |Zi(t,a)—Zi(t,a)| SN~ i+Cor (6-38)

o<t <ty 1=il<ix
both with very high probability.

Proof. For any fixed @ € [0, 1] and for all 0 <t <t,, set w := w(, ) = 2(¢, ) —Z(¢, o) and subtract (6-35)
and (6-14) to get
8tw == %lw + ﬁ?

where

PN Ji—fi o _ 1 L
(Blf)i _N Z (o E_N . Z |:_* ok ZZ—Z]:|

Jilj—il<L —EIGE =)

We estimate

|ﬁi|§% >

Jilj—il>L

Zi =71+ 12 — 7] - N—2H201 1
7 =7))E —Z) G —7)GE —Z)

Jilj—=il>L
where we used the crude rigidity (6-21) (applicable by (6-36)), and we chose C; in L = N 3+Cin large
enough so that |y — Vi *| for any |i — j| > L is much bigger than the rigidity scale N~ 34201 4y (6-21).
This is guaranteed since

N

|)7i*_)7;<|=a|ﬁ;,i_)§;,j|+(1_a)|)>yl J/y]
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with very high probability. By this choice of L we have |Z; — Z;| ~ [y — )7;‘| and therefore

1
° N—§+2w1 1
il < S SN Y
s W) Jilj—i>L i =l
< N-GC=2)e1 <1 foran fi| < N. (6-39)

Since Bj is positivity-preserving, its evolution is a contraction, so by a Duhamel formula, similarly
to (6-32), we get

o ~ e} _1
12(t) = 2(D)lloo = [w(@)lloo = w(O)lloo + 2 max|[F(s)lloo < N aten

with very high probability.
Next, we proceed with the proof of (6-38).
In fact, for 1 < |i| < 2i4, with i, much bigger than L, we have a better bound:

1
o N 21201 1 N2
IFil 2 N Z (_*__*)25 Z .3 1310
TS A A R A I E VAR
< N_%_(%CH—Z)&)I < N—%’ |l| < iy, (6—40)

which we can use to get the better bound (6-38). To do so, we define a continuous interpolation v(z, 8)
between Z and Z. More precisely, for any fixed B € [0, 1] we set v(¢, B) = {v(t, ,B)i}lNz _p as the solution
to the SDE

[2 1 1
dv; = 4+/—dB; + — dt + o, (¢) dt
V; N 1+N Z v —v; + a()

Jili—il<L
1-8 1 B 1
+—= A+ — ———dr (6-41)
N Z i—Zj N Z Vi*_yjfk

z
jilj—il>L Jilj—il>L
with initial condition v(t =0, B) = (1—B)Z; (0)+B2; (0). Clearly v(t, B=0) =Z(¢t) and v(t, B=1) = 2(¢).

Differentiating in 8, for u := u(¢, B) = dgv(z, ) we obtain the SDE

o , 1
du; = (Bu); dt + F; dr,  with (B f); = >

Jili—il=L

Ji—fi

—(Ui mpaTh (6-42)

with initial condition u(t =0, 8) = 2(0) — 2(0) = 0. By the contraction property of the heat evolution
kernel UV of BY, with a simple Duhamel formula, we have for any fixed j

sup [[u(t, B)lloo < tul Flloo < N™2T301 (6-43)

0<t<ty

with very high probability, where we used (6-39). After integration in 8 we get

B
||v<z,ﬂ>—¢*<r)||oos||v<z,0)—f*<z>||oo+ﬂfo e B)ap| . 0<i<n. Bel01] (644

o0
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From (6-43) we have

B B L3
[EH/ u(t, p)dp’ 5/ Ellu(, B)I17 dB’ < (N~2F21)P (6-45)
0 0

p
o
for any exponent p. Hence, using a high-moment Markov inequality, we have

(|

for any (large) D > 0 and (small) £ > 0 by choosing p large enough. Since v(z,0) = Z(¢), for which we
have rigidity in (6-21), by (6-44) and (6-46) we conclude that

Z N—;'i'%a)l'i'g) S N—D (6_46)

o0

sup [[0(t, B) — 7* (1) ]|oo S N™2H201 (6-47)

0<t <t
with very high probability for any 8 € [0, 1].
In particular L is much larger than the rigidity scale of v = v(¢, 8). This means that
o = vj] = |77 =771l S N2 2

and

7 =712 : ;Jl > NT3HCI01 sy N3t

whenever |[i — j| > L, so we have
lvi —v| ~ 1y =771, li—jl=L. (6-48)

Since iy is much bigger than L and L is much larger than the rigidity scale of v;(z, f) in the sense
of (6-48), the heat evolution kernel /" satisfies the following finite speed of propagation estimate (the
proof is given in Appendix B):

Lemma 6.5. With the notation above we have

sup [Up; +ULI<N™P, 1<|i| <ix, |pl = 2i, (6-49)

0<s<t<t: P
forany D if N is sufficiently large.

Using a Duhamel formula again, for any fixed 8, we have
t [e]
ui(t) =Y Upup(0) +/ > UP(5.1) Fp(s) ds.
0
p p

We can split the summation and estimate

|ui(r)|s[ Yoo+ ) }u;;|up<0>|+/0[ >+ ) }u,-”,,(s,z>|ﬁp(s>|ds.

IpI<2ix |p|>2ix Ip|<2ix  |p|>2ix
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For |i| <ix, the terms with |p| > 2i, are negligible by (6-49) and the trivial bounds (6-39) and (6-43).
For 1 <|p| < 2ix we use the improved bound (6-40). This gives

ui . Bl =

3 3
max |u;(0,B)| + N™aT@ = N7aTO || <i,,

<|jl=<2ix

since u(t =0, ) = 0. Integrating from 8 =0 to B = 1, and recalling that v(8=0) =Z and v(B=1) = 2,
by a high-moment Markov inequality, we conclude

- _3 S
Zi(O) =2 SNTFOL 1 <|i| <ia,

with very high probability. This yields (6-38) and completes the proof of Lemma 6.4.

We remark that it would have been sufficient to require that |Z;(0) —Z; (0)| < N —3te1 for all 1 <
|j| < 2i4 instead of setting Z(0) := Z(0) initially. Later in Section 6D we will use a similar finite speed
of propagation mechanism to show that changing the initial condition for large indices has negligible
effect. O

6C3. Refined rigidity for small |i|. Finally, in the last but main step of the proof of (6-22) in Proposition 6.3
we compare Z; with ;" for small |i| with a much higher precision than the crude bound N —3+Co
which directly follows from (6-37) and (6-21). Notice that we use the semiquantiles for comparison since
7 € [Vi—1.7i] and y* is typically close to the midpoint of this interval. In particular, p, (3" (¢)) is never
zero, in fact we have p; (7 (1)) > ¢N _%, because by band rigidity quantiles may fall exactly at spectral
edges, but semiquantiles cannot. This lower bound makes the semiquantiles much more convenient
reference points than the quantiles.

Proposition 6.6. Fix « € [0, 1]; then with the notation above for the localised DBM 2(t, ) on the short
scale L = N%"'Cl‘”l with 10 < Cq < I—IOC*, defined in (6-35), we have

|Gi(t.) = 77 (0) = Gi(0.@) — 77 (0)| < NT3FC0 1 <i| <iy = N3HO@1, (6-50)
with very high probability.
Combining (6-50) with (6-38) and noticing that

) ) ) i NEN GO
Zi(0,@) = 7/ (0) = % (0, ) — 7"(0) = 0( 31 )
Na|i|4

for any & > 0 with very high probability by (6-23), we obtain (6-22) and complete the proof of
Proposition 6.3. O

Proof of Proposition 6.6. We recall from (6-24) that

d
g O = alma (v (0) + Mo (eX )]+ (1 =) [=Rmy s (py; (0)) + Ry e (e )] (6-51)

Next, we define a dynamics that interpolates between Z; (¢, o) and y; (1), i.e., between (6-35) and (6-51).
Let B € [0, 1] and for any fixed 8 define the process v = v(z, B) = {v; (¢, ,8)}1N=_N as the solution of the
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interpolating DBM
2 1 1 1 1
dv; =84/ —=dBi+— dt — —— dt+P(¢)|dt
u=pyey Xy B ocaen)
Jilj—il<L jilj—il=L "t 7J

d _, 1 1 )
+(1_,B)|:EV1' (t)_ﬁ . § m}dl, 1<|i|<N, (6-52)
Jilj—=il=L "t *J

with initial condition v; (0, B) := BZ; (0) + (1 — B)7*(0). Notice that
vi(t.B=0) =77 (1). vit.p=1)=2Z (). (6-53)

Here we use the same letter v as in (6-41) within the proof of Lemma 6.4, but this is now a new
interpolation. Since both appearances of the letter v are used only within the proofs of separate lemmas,
this should not cause any confusion. The same remark applies to the letter u below.

Letu :=u(t, B) = dgv(t, B); then it satisfies the equation

2
du; = ,/ﬁ dB; + Y Bij(ui —uj)dt + Fydt, 1<[i| <N, (6-54)
J#i
with a time-dependent short-range kernel (omitting the time argument and the S-parameter)
11(i—jl=L)

Bij(t) = Bjj = N (002
i~V

(6-55)

and external force

1 1
A=RO =5 Y 7w
+aRmy e (vy,; () +(L—a)Rmy (v ; (1)) —h(t,@), 1=[i[<N. (6-56)

Since the density p is regular, at least near the cusp regime, we can replace the sum over j with an integral
with very high precision for small i; this integral is Rtm (e + 7). A simple rearrangement of various
terms yields

o _ 1 1 -
b = |:mm(e+ +7) - N Z W] —(1=a)Dy; —aDyi+ 0N, (6-57)
j J#i I
with

Dy i=R[0AE +77) —m@E) = mr (v)) —mr ()], r=1x,y,

where we used the formula for /4 from (6-11) and the definition of ® from (6-15). The choice of the shift &
was governed by the idea to replace the last three terms in (6-56) by R (e + 7). However, the shift
cannot be i-dependent as it would result in an i-dependent shift in the definition of Z;, see (6-13), which
would mean that the differences (gaps) of the processes z; and Z; are not the same. Therefore, we defined
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the shift 4(¢) by the similar formula evaluated at the edge, justifying the choice (6-11). The discrepancy
is expressed by Dy ; and Dy ; which are small. Indeed we have, for r = x, y and 1 < |i| < 2i, that

1Dril < [R[MGET + %) —m@ED) = (mp (e +97) —mr(e+))]\ + |ﬁ1(6+ + 95 —mEt + 7))

s+ dnox 13 L N—E+S . _u Pr; =77
S BIPE NS + N6 T3 loglpz, || + N~ ten 4 LT
p(yl)
NNg! ! . . 3 1.
g[Cﬂ)z+(£54N_ugm]&%N)+N_gﬂm+<Mﬂw+vaNyN'6 1
NN (il/N)}
< N—%+Cw1’ (6.58)

where from the first to the second line we used (4-22a) and the bound on the derivative of m; see (4-7b).
In the last inequality we used (4-13a) to estimate |yr A< (il/N )4 NC€@1 and similarly |y” ;| in the
regime |i| < iy = Nz"'c*“’1 furthermore we used that p(y*) > (|i |/N)4 and also |y*| > ¢/N, since a
semiquantile is always away from the edge.

Let U(s,t) be the fundamental solution of the heat evolution with kernel B from (6-55). Similarly
to (6-32), the solution to the SDE (6-54) is given by

u(t) = U, HHu + \/%/OtZ/I(s,t)dB(s) +/Otu(s,t)F(s) ds. (6-59)

The middle martingale term can be estimated as in (6-33). The last term in (6-59) is estimated by

t

U(s,t)F(s)ds
0

<t max [[F(s)| oo (6-60)
o<s<t

First we use these simple Duhamel bounds to obtain a crude rigidity bound on v; (¢, 8) by integrating
the bound on u

lvi(t, B) —vi(t. B=0)| < B mu»wxuﬁn
<ﬂm[ax]||u(0 B)lloo + NT2T@1HE | <|i| <N, (6-61)

for any £ > 0 with very high probability, using (6-33), (6-59), (6-60) and that { is a contraction. Note that
in the first inequality of (6-61) we used that it holds with very high probability by a Markov inequality as
in (6-45)—(6-46). We also used the trivial bound

max [|F(s)]eo SlogL ~1logN, (6-62)
0<s<ty

which easily follows from (6-56), (6-58) and the fact that |)7JT" () =y*@®Izli—jl/N.
Recalling that v; (£, $=0) = 7*(¢) and u; (0, B) = Z;(0) — 7*(0), together with (6-37) and (6-21),
by (6-61), we obtain the crude rigidity

vi (6. B)— 7 (1) < N"2F201 1 <|i| <N, (6-63)

with very high probability.
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The main technical result is a considerable improvement of the bound (6-63) at least for i near the
cusp regime. This is the content of the following proposition whose proof is postponed:

Proposition 6.7. The vector F defined in (6-56) satisfies the bound
max| F; (s)] < N75FC0 1< i] < 2i. (6-64)
S=<Ix
Since i is much bigger than L = N 2C101 with a large Cj, and we have the rigidity (6-63) on a

scale much smaller than L, similarly to Lemma 6.5, we have the following finite speed of propagation
result. The proof is identical to that of Lemma 6.5.

Proposition 6.8. For the short-range dynamics U = U® defined by the operator (6-55),

sup  [Upi (s, 1) +Uip(s. D] < NP, 1 <li| <ix, |p| = 2ix. (6-65)
0<s<t<t
for any D if N is sufficiently large. O

Armed with these two propositions, we can easily complete the proof of Proposition 6.6. For any
1 <|i| <ix we have from (6-32), using (6-31), (6-33), (6-65) and that I{ is a contraction on £°°, that

t
_3
i (0)] < N 4+wl+f+2uip|up(0>|+/o Dty 50101

<N74 +‘°1+§+ max |up(0)| +1¢ max max |F,(s)|+ N~ -b max ||F(s)||<,o (6-66)
|pI=<2ix 0=<s=tx |p|<2ix 0=

The trivial bound (6-62) together with (6-64) completes the proof of (6-50) by integrating back the
bound (6-66) for u = dgv in B, using a high-moment Markov inequality similar to (6-45)—(6-46), and
recalling (6-53). This completes the proof of Proposition 6.6. O

6C4. Estimate of the forcing term.

Proof of Proposition 6.7. Within this proof we will use y; := y;(¢), vy := y}(t), p = pr, m =m; and

= et for brevity. For notational simplicity we may assume within this proof that e™ = 0 by a simple
shift. The key input is the following bound on the derivative of the density, proven in [Alt et al. 2018a]
for self-consistent densities of Wigner type matrices:

P s —————. [x] <4 (6-67)
p(x)[p(x) + A3]
where A = A, is the length of the unique gap in the support of p = p, in a small neighbourhood of
size 84 ~ 1 around ¢* = 0. If there is no such gap, then we set A = 0 in (6-67). By the definition of the
interpolated density p; in (5-12) clearly follows that it satisfies (6-67) by Lemma 4.3. Notice that (6-67)
implies local Holder continuity; i.e.,

|p(x) — p(y)| < min{|x — y|3, |x — |2 A76} (6-68)

for any x, y in a small neighbourhood of the gap or the local minimum.
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Throughout the entire proof we fix an i with 1 < |i| < 2i,. For simplicity, we assume i > 0; the case
i <0 is analogous. We rewrite F; from (6-57) as

Fi =G14+ G2+ G3+ G, (6-69)
with

Yi 1 1 vi x)dx
Gi= ) f [ — *_y*}P(X)dx, G23=[ ox) >
i—1 i V4

1<|j—i|<L Yji— X yl y] i—1 x_yi
1 _
= > f [ y*_y*:|p(x)dx, Gy:=—(—a)Dy; —aDy; + ONY.
|j—i|>L Vji—1 J i

The term G4 was already estimated in (6-58). In the following we will show separately that |G,| S N ™4
a=1,2,3.
Estimate of G3. By elementary computations, using the crude rigidity (6-21), it follows that
1
N™21201 1

|G3| < %5
v =v)?*

Jilj=il>L
. _1 . . .
Then, the estimate |G3| < N~ 4 follows using the same computations as in (6-40).

Estimate of G,. We write

Vi p(x)dx vi p(x)—p(y) Vi dx
G2=/ p(x) — :[ —’dx—i— (Vz) = (6-70)
vie1r X 7 V; Vi—1 X = V vie1 X Vi

and we will show that both summands are bounded by CN ~Z. We make the convention that if Yi—1 18
exactly at the left edge of a gap, then for the purpose of this proof we redefine it to be the right edge of
the same gap and similarly, if y; is exactly at the right edge of the gap, then we set it to be the left edge.
This is just to make sure that [y;—1, ¥;] is always included in the support of p.

In the first integral we use (6-68) to get

/V' p(x) —p(y")
Yi—1 X = yl

Here we used that the local eigenvalue spacing (with the convention above) is bounded by

dx| Smin{(y; —yi_)3. (i —yi_)2 A6} = O(N™%).  (6-71)

AS 1
Vi —Yi—1 Smaxy —5, —5 - (6-72)
3 N4
For the second integral in (6-70) is an explicit calculation:

Vi ok

Vi —V;
p(yi") - =p(y) log ———. (6-73)

vie1 X Vi Vi —VYi—-1

Using the definition of the quantiles and (6-68), we have

*

Vi . 4 31
N p(x)dx = p(y) (v —yi—1) + O(min{|y;* — yi—1]3. |y —yi—1|2A76}),
Yi—1
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and similarly
1 Vi " " o 4, 3.1
5N = |, P dx = e (i =) + O(minflyy —yi[3. |y —yi|2A7¢)).
Vi

The error terms are comparable and they are O(N ~!) using (6-72); thus, subtracting these two equations,
we have
min{]y;* — il 3. |y} = 7i2 476}

Py '

(i =¥ = —vi-DI <

Expanding the logarithm in (6-73), we have

Yi dx
‘p(y,-*) —

Yi—1 i

< o) (i —vi) = (i —vi-1)]
o vi = vi-1

as in (6-71). This completes the estimate

. 1 1 _1 _1
Smin{|y —yi|3. |y —vi|2ZATs} SN

G2 S N7, (6-74)
Estimate of G1. Fix i > 0 and set n = n(i) as
. . . _3
n(i):=min{n € N : min{|y;—p—1 = y|. [Vi4n — v/} = cN72}, (6-75)

with some small constant ¢ > 0.
Next, we estimate n(i). Notice that for i = 1 we have n(i) = 0. If i > 2, then we notice that one can
choose ¢ sufficiently small, depending only on the model parameters, such that

p(x) :
3 < —— <2 forall x € [yi—n(i)—1.Vitn())- | =2 (6-76)
p(Vl' )
Let
m(i) :=max{m € N : % < px) <2forall x € [Vi—m—1,Yi+ml¢:

p(v;")
then, in order to verify (6-76), we need to prove that m (i) > n(i).
Then by a case-by-case calculation it follows that

m(i) > cylil, (6-77)
and thus

2 3
. % " i3 1 (1)\* _3
min{|Vi —m@y—1 = Vi I+ |YiemaG) = Vi |} RmaX{ (ﬁ) A9, (ﬁ) } >N (6-78)

with some c1, ¢2. Hence (6-76) will hold if ¢ < ¢, is chosen in the definition (6-75). Notice that in these
estimates it is important that the semiquantiles are always at a certain distance away from the quantiles.

Now we give an upper bound on n(i) when y;* is near a (possible small) gap as in the proof above.
The local eigenvalue spacing is

A 1
} , (6-79)

Vi—)’i*“’max{ 2 1’ 3 1
3(()3 Na(i)s

N
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C _3 ... 1.1 . . .
which is bigger than ¢cN ™% if i < A3N 4. So in this case n(i) = 0 and we may now assume that
1,1 o
I >A3N4% andstill i > 2.
. . 4. . .
Consider first the so-called cusp case when i > NA3; in this case, as long as n < %l , we have

" n
Yid4n —V; ~ 3 . 1
N3(i+ 1)+
D _3, 1 . 5 R
This is bigger than ¢ N ™% if n > i 4; thus we have n(i) <i# in this case.
. . 4 . . .
In the opposite case, the so-called edge case, i < NA3, which together with the above assumption
11 _ _3 . .
i > A3 N % also implies that A > N~ 4. In this case, as long as n < %l, we have
1
« NAd
Yi4n —V; ~ 2 1

313

_ L

This is bigger than cN~7ifn > A~5 N~12i3. So we have n() < ASN~12i
We split the sum in the definition of G1, see (6-69), as follows:

G Z /yj X=Y; p(x)dx = ( Z 4 Z ) =:851+S5>. (6-80)
Y

*_ * _ *
1<ij<r D 0 — =y n@)<lj—il<L  1<|j—il<n()

1, .
3 1in this case.

W=

<i

* * * * * *
For the first sum we use |x—yj | < Yie1— V) |y — x|~ |y —Y; |. Moreover, we have

1
(V)i —vie1) ~ v (6-81)

from the definition of the semiquantiles. Thus we restore the integration in the first sum S and estimate

1 Yi—n(i)—1 o0 dx 1 1 1 _1
|S1|§— + —*25— =1 - <CN 4. (6-82)
N|J-o Vitnird XK=V TN Licn@y 1= [Vidniy—Vi|

In the last step we used the definition of n (7).

Now we consider S5. Notice that this sum is nonempty only if 7(i) # O In this case to estimate S, we
have to symmetrise. Fix 1 <n < n(i), assume i > n and consider together

Yi—n X — yi*—n Yi+n X — yi*+n
p(x)dx +/ p(x)dx
/Vi—n_l v =rii)(x =y Vien—t V7 = Vi) (x—=v)

1 YVi-n x — )/~*_ 1 Yitn x — )/.*_l_
=ﬁ/ ﬁp(x)dx—l—ﬁ/ ﬁp(x)dx
. y ;

Vi = VYien dyicpr XY i~ Vitn JVitn—1 j

_1 1 1 Vien p(x)dy | [Vitn p(X)dX}_. )
_N[ _ . ]+[/y +/y | Byn) + Ban). (6:83)

* * * *
Vi =VYien Vi “Vign i—n—1 X Vi itn—1 X TV

We now use %—Hélder regularity,

p(x) = p(y}) + O(x —v|3).
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‘We thus have

Yi—n (x)d . Vien—1 _yf“ Yi+n(i) dx
3 / ASPAL 3 p(yi)log—ly.n —y*l +0(/ —) (6-84)
Y.

) —pkX _ ; ) x| 2
n<n(i)’Vi-n—1 X =Y n<n(i) I—n i i—n(i)—1 |X—)/l~ |3

and similarly

Yitn d a1 — ¥ Yi+n() d
> / 2L Y ey log Prtn1l 7V +0(/ = ) (6-85)
Y

~ — ¥ i — Y o x| 2
nen(i)” Vitn—1 X =Y n<n(i) Vitn =V i—n—1 | X — 7|3

The error terms are bounded by CN -1 using (6-75) and therefore we have

*_

* Vi —Vi-n—1 Vi+n—)/,-* _1
Y Bamy= Y py)|log ©—""— —log +O(N~7)

n<n(i) n<n(i) Vi = Vi-n Vign—1— yi*
* .. . X
D I | L el R}
n<n(i) Yi4n —Y; Vi = Vi-n
‘We now use the bound
lo(x) — p(y;)] < s X E[Vicn@)—1,Yi+n())s (6-86)
p(r[)? + p(y) A3

which follows from the derivative bound (6-67) if € in the definition of ix = €N is chosen sufficiently
small, depending on § since throughout the proof 1 < |i| < 2iyx and n(i) <K ix.
Note that

N e |Vien — v} 1?
v p(¥)dx = p(y)lyi = vi-nl + O — — T (6-87)
Y P(y;)* + p(y; ) A3

Thus, using (6-87) also for y; 1+, — yi, equating the two equations and dividing by p(y;"), we have

i—n

|Vien = v}'I?
Yi =Vi-n =VYi4+n—VYi + O 3 ol ) (6-88)
P(y)* + p(y;)> A3
A similar relation holds for the semiquantiles,
v, =P
* k * * 1—n 1
Vi ~Vicn =VYign~ Vi T 0( T ) (6-89)
p(r)? + p(y[)? A3

and for the mixed relations among quantiles and semiquantiles,
Vien — v I? )
1 ’
p(y)? + p(y )2 A3
|Vien — v} I? )
T |-
p(y)? + p(y)2 A3

Vi* —Yi-n =VYi+n—1— Vi* + 0(

ﬁ—wﬂ4=wﬂ—ﬁ+0(
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Thus, using y* — yi—n—1 ~ Vi+n — ¥;» We have
p(y") 0( Vien—1 =¥ )< |Vin-1—V]"]
~ i _ * 1 ~ 1
Vitn=Vi Np(y[) +p(r/)?A3/)  p(y)> + p(y])A3

Using n < n(i) and (6-75), we have |y;—p—1 —y/| < N~3. The contribution of this term to Y n Ba(n)is
thus

*
i —Vi—n—1

Y
log "
Yi+n —V;

p(yi) (6-90)

3
1 AN-3
- < n(l) 4 = 691
nenty PO+ (AT p(y)? + p(y[) A3

Al

N-

In the bulk regime we have p(y;*) ~ 1 and n(i) ~ N %, so this contribution is much smaller than N 7.
In the cusp regime, i.e., when A < (i/N)%, then we have y* ~ (i/N)% and p(y;/") ~ (i/N)%, thus
we get , ;
N3 N2
691y < — "0 _ON — SNTEIn(i)i "2 SN”
P2 +p(yHAs PP

I

since n(i) < i
In the edge regime, i.e., when A > (i/N)%, we have y* ~ AS (i/N)-% and p(y;") ~ ATS (i/N).%; thus
we get

Sl

n()N=3 3 n()N=3 < n(i)N~ 2 3 N_21
9

P2+ p(r)AY T p(y)As T ABiE T A

I

(6-91) <

=N"

since n(i) < i3 and A > N~3%. This completes the proof of ) ", B>(n) < N4,
Finally the ), Bj(n) term from (6-83) is estimated as follows by using (6-89):

1 [ 1 1 ] 1 1 ( (Vi — Vi-n—1)? )
; NLY =V wr Vi = Vi Ly O =vi? \p)2p(rf) + A3

n
5 i
No(y{)?[p(y/) + A3]
In the bulk regime this is trivially bounded by CN —3.In the cusp regime, A < (i/N )%, and we have
n(i) - n(il < ngi)3
No(y)2lpy) +A3] — Ne(vi)® = Naia

(6-92)

1
SN

since n(i) < i
Finally, in the edge regime, A > (i /N )%, we just use
n() < n() < I’lfl)3
Np(y)?[p(y) +A3]  Np(y)*A3s  N#ia

1
SN

since n(i) < i3. This gives ), B1(n) < N3, Together with the estimate on ), B>(n) we get
S2| SN _%; see (6-80) and (6-83). This completes the estimate of G; in (6-69), which, together
with (6-74) and (6-58), finishes the proof of Proposition 6.7. O
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6D. Phase 2: rigidity of z on scale N _%4‘%“’1, without i dependence. For any fixed « € [0, 1] recall
the definition of the shifted process Z(, a) (6-14) and the shifted a-interpolating semiquantiles y*(¢)
from (5-10) that trail Z. Furthermore, for all 0 <t < ¢, we consider the interpolated density p; with a
small gap [e;, E;r], and its Stieltjes transform m1,. In particular,

ef = aei, +(1 —oz)e;ft.

We recall that by Proposition 6.3 and (6-23) we have

sup max |3 (1.0) — pr(t)| < NTitCer (6-93)

0<t<t, 1<li|<ix

holds with very high probability for some iy = N 3+Cuor,

In this section we improve the rigidity (6-93) from scale N —3+Co1 (o the almost-optimal but still
i-independent rigidity of order N —its@1+E byt only for a new short-range approximation Z; (¢, &) of
Z;(t, ). The range of this new approximation £4 = N*®¢ with some w; < 1 is much shorter than that
of Z; (t, @) in Section 6C. Furthermore, the result will hold only for 1 <[|i|<N 400481 for some small
81 > 0. The rigorous statement is in Proposition 6.10 below, after we give the definition of the short-range
approximation.

Short-range approximation on fine scale. Adapting the idea of [Landon and Yau 2017] to the cusp
regime, we now introduce a new short-range approximation process Z(¢, ) for the solution to (6-14).
The short-range approximation in this section will always be denoted by hat, Z, to distinguish it from the
other short-range approximation, 2, used in Section 6C; see (6-35). Not only is the length scale shorter
for Z, but the definition of Z is more subtle than in (6-35)

The new short-scale approximation is characterised by two exponents wy and wy4. In particular, we will
always assume that w1 < wy < wq < 1, where recall that 7, ~ N ~3+®1 i5 defined in such a way that
Dz, has an exact cusp. The key quantity is £ := N®¢, which determines the scale on which the interaction
term in (6-14) will be cut off and replaced by its mean-field value. This scale is not constant; it increases
away from the cusp at a certain rate. The cutoff will be effective only near the cusp; for indices beyond
%i « Withiy =N %+C*“’1, no cutoff is made. Finally, the intermediate scale N ®4 is used for a technical
reason: closer to the cusp, for indices less than N ®4, we always use the density p,, ; of the reference
process y(t) to define the mean field approximation of the cutoff long-range terms. Beyond this scale
we use the actual density p;. In this way we can exploit the closeness of the density p; to the reference
density py ; near the cusp and simplify the estimate. This choice will guarantee that the error term o
in (6-105) below is nonzero only for |i| > N®4,

Now we define the Z-process precisely. Let

A= 4G, ) i — 1 <083 + i3 + 11D {G, j): il 1] > i) (6-94)

One can easily check that for each i with 1 <|i| < %i « the set {j : (i, j) € A} is an interval of the nonzero
integers and that (i, j) € A if and only if (j, i) € A. For each such fixed i we denote the smallest and the
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biggest j such that (i, j) € Aby j_(i) and j (i), respectively. We will use the notation

A, () A€, (@)

Ye=T . L%

J:(,j)eA J J:@,J)¢EA
i#]

Assuming for simplicity that i, is divisible by 4, we introduce the intervals
Tt) = [7_3,, (00,73, (), (6-95)
and for each 0 < |i| < %i* we define
Z2,i @) == [Vji_iy(®): Vi) (D] (6-96)
For a fixed o € [0, 1] and N > |i| > 1* we let

5 AW | LA |
dZ;i(t,0) = /—dB; — - - — — — Dy (1) | de, (6-97
fit o) =y ’+[N JZ G- Ga) N JZ S —Za) “()} (©-97)

for0 < |i| < N¥4

A, (@) +
) 2 1 1 Pyt (E+ey ;) n
dzi(t,a):,/NdBiJr[NJZ AT + =L dE+R[my, (e} )]| e, (6-98)

—zj(t,oz) 7, ()¢ Zl'(l,Ol)—E

and for N®4 < |i| < %i*

A’(l) - -+
2 1 E
dfi(f,a)Zw/ dB; + Z / MdE
— it Ot)—Z] ) Jr,0)enz@ Zit.a) —E

! 1
TN > Z,-(t,a)_gj(,,a)+<Da(f)]dz, (6-99)

VIESI®

with initial data
2i(0,a) :==Z; (0, ), (6-100)

where we recall that Z; (0, @) = aX; (0) + (1 —«)y; (0) for any « € [0, 1]. In particular, Z(z, 1) = X(¢) and
Z(t,0) = y(t), which are the short-range approximations of the X(¢) := x(t) — ej’t and y(t) :=x(t)— e;r,,
processes.

Using the rigidity estimates in (6-21) and (6-93) we will prove the following lemma in Appendix C.

Lemma 6.9. Assuming that the rigidity estimates (6-21) and (6-93) hold, for any fixed a € [0, 1] we have

Cw1
sup sup |Zi(t, ) —Zi(t, )| <
1<|i|<N 0=<t<tx« N2

(6-101)

with very high probability.
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In particular, since (6-21) and (6-93) have already been proven, we conclude from (6-93) and (6-101)
that

NCa)1
sup |Zi(t, @) = pi(t)]| < —=—, 1 =i Six, (6-102)
0<t <ty Na

for any fixed & € [0, 1].
Now we state the improved rigidity for Z, the main result of Section 6D:

Proposition 6.10. Fix any « € [0, 1]. There exists a constant C > 0 such that if 0 < 81 < Cwy then

NENs©
sup |2i(t, @) — 7 (1)] S ——5—, 1<[i| < N*eFo (6-103)
0<t<tx Ni

for any & > 0 with very high probability.

Proof. Recall that initially Z; (0, ) is a linear interpolation between X; (0) and y;(0) and thus for Z; (0, «)
optimal rigidity (6-23) holds. We define the derivative process

wi (t, o) 1= 042 (¢, ). (6-104)
In particular, we find that w = w(¢, @) is the solution of

dw=Lw+tO =B+, (6-105)
with initial data
w; (0, ) = X (0) — 3 (0).
Here, for any 1 < |i| < N, the (short-range) operator 5 is defined on any vector f € C2V as

A, ()

Bf)i:= Z Bii(fi— f;), Bij:= ! !
J

TN Gilt,e) =5t a)?

(6-106)

Moreover, V is a multiplication operator, i.e., (V. f); = V; f;, where V; is defined in different regimes of i
as follows:

E+e¢f
l%=—/‘ ?%}7—%%dm L<|i| <N,
e Ci(t, o) —
DO EERE (6-107)
1%; (E + ¢y )

V:—/ A—dE, Na)A<|l-|§ll.’
l Z..i ()NT: () Ci(t,a)— E)? 2 lx

and V; =0 for |i| > %i*. The error term Cl-(o) = é‘l-(o) (¢) in (6-105) is defined as follows: for |i| > %i* we
have
0 B2 (1.0) — BaZi (1.2)

o._ 1
TN L G w5 6w

+ 34 Do (t) =: Z1 + 0q P (1), (6-108)
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for N®4 < |i| < %i* we have

o._ 1 0o Zj(t, ) — 0o Zi (2, @) dals (E +2)]
Zi = Z +/Iz —_—

p = ~ dE
Gi(t,a)—Zj(t, )2 ioengzz@ Zilt,a)—E

ljl1=3ix

- (E 1+t
+ (aa/ )M dE+8a(Da([)
L.,enz@)/) Zi(t, o) — E
=:1Zo+Z3+Z4s+ 0aDu(2), (6-109)

and finally for 1 < |i| < N®4 we have ¢ l.(O) = 0. We recall that Z, ; (¢) and J;(¢) in (6-109) are defined
by (6-96) and (6-95) respectively. Next, we prove that the error term ) jn (6-105) is bounded by some
large power of N.

Lemma 6.11. There exists a large constant C > 0 such that

sup  max |§(O)(t)| <NC€. (6-110)

o<t<ty 1<[i|ISN

Proof of Lemma 6.11. By (6-15), it follows that
3o P (1) = 0 N[, (& +iIN 100 4 1** (¢, 1) — h**(¢,0),

with 2** (¢, ) defined by (6-7). Since the two h** terms are small by (6-6), for each fixed 7, we have

¢, + FE _ _
D e A (G111
where _ N
Vi (e
L pr(e + E) _ Pt(et + @a,(s))
Uy := aaf_ E_iN-100 dE| = |0q — 1009 P (8) ds |,
V—i(8+) 1 I Pai(s) =i
1 V(E -y (1))
U2 = '— 8a —l—l()()dE y
N ey R EZIN

using the notation y;s,) = ¥;(s,)(¢) and the definition of p; from (5-12). In U; we changed variables,
ie., E = @q,(s), using that s — @4 ((s) is strictly increasing. In particular, in order to compute the
limits of integration we used that ¢q(i/N) = y;(t) by (4-2) and defined the «-independent interval
Iy :=[—i(8+)/N,i(8+«)/N]. Furthermore, in U; we denoted by prime the s-derivative.

For U; we have that (omitting the ¢-dependence, p = py, etc.)

elbE O, FE euls)
Up < /* Pa(s) —iN—100 <;00¢(S)ds‘nL /I* (%(s)—iN—IOO)z(%(S)) .
/6(E+ + 0u ()
i /I* W a(ﬂa(s)ds . (6-112)

For s € I, by the definition of ¢, (s) and (4-4) it follows that

1= n;((Pa (S))%,x (5) = pa(@a(s))@als),
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and hence |
——= <5 4,
Po (@ (5))

. . . . 1,1 3 02,1
where in the last inequality we used that py (@) ~ min{w3,w2A76} and @u(s) ~ max{s#,s3A9}
by (4-9a).

In the first integral in (6-112) we use that

=

Qo (s) = (6-113)

p(9+ + @a(s)) = Poc(EJr +@a(s)), s € Iy,
by (5-12) and that d4[pe (8" + @u(s))] is bounded by the explicit relation in (4-10). For the other
two integrals in (6-112) we use that p is bounded on the integration domain and that (¢}, (s))? < 572
from (6-113); hence it is integrable. In the third integral we also observe that
Ja@a(s) = @2.(5) —@u(s)
by (4-2); thus |de @, (s)| < s~ 4 similarly to (6-113). Using |¢e(s) —iN 190 > N=190 we conclude that
U < N2%0.
Next, we proceed with the estimate for U,.

Notice [dq ¥ (E =7 ()| < 1Y ool Px,i (t) = Py,i ()| by (5-10). Furthermore, since | E —iN 100> 5,
on the domain of integration of U,, we conclude that

Uz £ N2y lloo,
and therefore from (6-111) we have
|00 Do (1)] < N292, (6-114)

since || V']loo < N? by the choice of ¥; see below (5-9).
Similarly, we conclude that
1Z3] < NP9l o (6-115)

To estimate Z5, by (6-14), it follows that

~ 1 aaz _aazl
d(aazi) = |:N Z (ZIJ—W + 3ad>a(t)] dr,
J

with initial data
9aZi (0, ) = X; (0) — 3i (0),

forall 1 <|i| < N. Since |0¢Z; (0, )| < N2°° forall 1 <|i| < N, by Duhamel’s principle and contraction,
it follows that

1002 (£, 0)| S N?%0 4+ 1, max |3 Pe(7)] < N20? (6-116)

0<7<t:
for all 0 <t < t,. In particular, by (6-116) it follows that
|Z5| S N*®VN (6-117)

. .. L S 1 - = . _1
since for all j in the summation in Z, we have |i — j| 2 ix ~ N2 and thus |Z; —Z;| 2 |i — j|/N Z N~ 2.
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Finally, we estimate Z4 using the fact that the endpoints of Z, ; ()¢ N Jz(¢) are quantiles y; (f) whose
a-derivatives are bounded by (5-10). Hence
pu(7i +&)

pr(7jy +f
4 Zi —Vj_

lat (77%1'* + E?_)
Zi — 77j+ Z

Zy =
i3,

<
~

+

)‘+

‘SN (6-118)

by rigidity. Combining (6-114)—(6-118) we conclude (6-110), completing the proof of Lemma 6.11. O

#

Continuing the analysis of (6-105), for any fixed « let us define w* = w#(¢, @) as the solution of

d,w* = Lw?, (6-119)
with cutoff initial data

w?(o, Ol) = 1{|l|5N4w£+8}wl (O, Ol),

with some 0 < § < Cwy, where C > 10 a constant such that (4 + C)wy < wy4.

By the rigidity (6-102), the finite-speed estimate (B-34), with §’ := §, for the propagator U/* of £ holds.
Let0< 4§y < %8; then, using Duhamel’s principle, that the error term é‘l.(o) is bounded by (6-110) and that
é‘l.(o) =0 forany 1 <|i| < N®4, it easily follows that

sup max |wf(t,cx)—wl-(t,a)| < NT100 (6-120)
0<t<t, |i|<N*@etd
for any « € [0, 1]. In other words, the initial conditions far away do not influence the w-dynamics; hence
they can be set zero.

Next, we use the heat kernel contraction for the equation in (6-119). By the optimal rigidity of X; (0)

and ¥; (0), since wf(O, «) is nonzero only for 1 < |i| < N4@¢+3 it follows that

NEN &1
max _[w!(0,a)] < ———, (6-121)
1<|i|l<N N2
and so, by heat kernel contraction and Duhamel’s principle,
NN
sup  max |wf(t, a)| < ———. (6-122)

o<r<t, 1=liISN N2

Next, we recall that Z(¢,x =0) = y(¢).
Combining (6-120) and (6-122), integrating w; (¢, a’) over &’ € [0, «], and by a high-moment Markov
inequality as in (6-45)—(6-46), we conclude that

£ N @1 5
sup |2 (t.a)— i ()| < ——5—., 1=]i| < Nt
0<r<t+ N3

for any fixed « € [0, 1] with very high probability for any & > 0. Since

) _ ) ) B ) NEN%wl
1Zi(t,0) = yi (O] = |9i (1) = Py,i O] + |7 () = Py,i (O] + EUVER

P\
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forall 1 <|i| < N*®¢td1 and o €0, 1], by (4-18) and the optimal rigidity of §; (1), see (6-3), we conclude

that
E N w1

NEN
sup |2 (1, @) — 7 (t)] < ———, 1<|i| < N4eto (6-123)
0<t=<tx 4

for any fixed @ € [0, 1], for any & > 0 with very high probability. This concludes the proof of (6-103). O

6E. Phase 3: rigidity for Z with the correct i -dependence. In this subsection we will prove almost-

optimal i -dependent rigidity for the short-range approximation Z; (¢, &) (see (6-97)—(6-100)) for 1 < |i| <
NAoet+s1

Proposition 6.12. Let 81 be defined in Proposition 6.10; then, for any fixed o € [0, 1], we have

EN 01 5
sup |2 (t, ) —7i ()| S —5—, 1 <|i|] < N*®eto, (6-124)
0=<r=<tx N#z|i|*
for any & > 0 with very high probability.
Proof. Define
K :=[N*®T;

then (6-103) (with § — %é) implies (6-124) for all 1 < |i| <2K. Next, we prove (6-124) for all 2K <
|i| < N4@et81 by coupling %, (1) with V(i—k)(t), where we make the following notational convention:
(i —K) = z:—K %fz:e[K—l—l,N]U[—N,—l],

i—K-1 ifiell,K].

This slight complication is due to our indexing convention that excludes i = 0.

(6-125)

In order to couple the Brownian motion of X; (z) with the one of y;_k\(¢), we construct a new process
Z*(t, ) satisfying

2 1 1
dzZf (t,a) = y/—dB_ — Dy (2)[ds, 1<]i| <N, 6-126
2 () = 5 4By, K>+[Nj§§;([’a)_7(t’a)+ a()] <lil < (6-126)

with initial data
270, ) = aX; (0) + (1 —a)Ji—k)(0), (6-127)

for any « € [0, 1]. Notice that the only difference with respect to Z; (¢, ) from (6-14) is a shift in the
index of the Brownian motion; i.e., Z and Z* (almost) coincide in distribution, but their coupling to the
y-process is different. The slight discrepancy comes from the effect of the few extreme indices. Indeed, to
make the definition (6-126) unambiguous even for extreme indices, i € [-N,—N + K — 1], additionally
we need to define independent Brownian motions B; and initial padding particles y;(0) = —jN 300 for
j=—N—-1,...,—N — K. Similarly to Lemma 5.1, the effect of these very distant additional particles
is negligible on the dynamics of the particles for 1 < |i| < €N for some small €.

Next, we define the process Z*(¢, ) as the short-range approximation of Z*(z, &), given by (6-97)—
(6-99) but with B; replaced with B(; _g) and we use initial data Z*(0, ) = Z*(0, ). In particular,

D) =%0)+ 0N, 2,00 =Ji—k) () + O(NT'?), 1<li|<eN, (6-128)
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the discrepancy again coming from the negligible effect of the additional K distant particles on the
particles near the cusp regime.
Let w*(t,a) := 042 (¢, @); i.e., w* = w* (¢, @) is a solution of

d;w* = Bw* +VYw* + é.(O)’
with initial data
] (0,@) = 27(0) = H(i—)(0).

The operators B, £ and the error term ¢(?) are defined as in (6-106)—(6-109) with all Z and ? replaced by
Z* and Z*, respectively.
*)#

We now define (w*)* as the solution of

3 (w** = L(w*)*, (6-129)
with cutoff initial data
WH*0, @) = 1y _yso+5w] (0, ),
with 0 < § < Cwy with C > 10 such that (4 4+ C)wy < wy.
We claim that
wH*0.0) >0, 1<]i| <N, (6-130)

We need to check it for 1 < |i| < N4@¢*3 otherwise (wl.*)#(O, «) = 0 by the cutoff. In the regime 1 <|i| <
N4®e+8 we yse the optimal rigidity (Lemma 6.1 with £ — 1L0§ ) for £7(0) and y;_k)(0), which yields

(w})*(0, ) = £7(0) — $(;—k) (0)
1 N N 1
> =N, (v (0)) + Px.i (0) = Py, (1— k) (0) = N 10 1 (55 iy (0)). (6-131)

We now check that Py ; (0) — Py i—k)(0) is sufficiently positive to compensate for the N 10é 1Ny error
terms. Indeed, by (4-13a) and (4-18), for all |i| > 2K we have

Pai () = Py =iy () Z Knp (v (0) > N10Ens (vF (1)
and

M iy O) ~ 17 (74 (D).

This shows (6-130) in the 2K < |i| < NAwets regime. If K <|i| <2K or —K <i < —1 we have that
(w7)*(0, ) > 0 since

R " K% 1 K% * *

Vx,i (0) = ¥y,(i—k)(0) X max v (tx —1)0 ¥ 2 Kmax{ns(yx;(0). 07 (vy i—k)y (O}
0 Px,i(0) —p k)(0) beats the error terms N 106 ns as well. Finally, if 1 <i < K — 1, the bound
in (6-131) is easy since Px,;(0) and P, (;_k)(0) have opp051te signs; i.e., they are in two different sides
of the small gap and one of them is at least of order (K/N )4 beating N 106 ns. This proves (6-130).
Hence, by the maximum principle we conclude that

WwH*(t,0) >0, 0<t<ty, ael0,1]. (6-132)
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Let 61 < %8 be defined in Proposition 6.10. The rigidity estimate in (6-102) holds for Z* as well, since
Z and Z* have the same distribution. Furthermore, by (6-102) the propagator U/ of £ := B + V satisfies
the finite-speed estimate in Lemma B.3. Then, using Duhamel’s principle and (6-110), we obtain
sup max |(wH*(t,a) —wk(t,a)| < N710° (6-133)
0<t<t. 1<|i|<N*®ctd1
for any « € [0, 1] with very high probability.
By (6-133), integrating w (¢, o) over o’ € [0, o], we conclude that

BX (@) — k) () = N1 1 <|i| < NAeetd (6-134)

for all « € [0, 1] and 0 < ¢ < 1, with very high probability. Note that in order to prove (6-134) with very
high probability we used a Markov inequality as in (6-45)—(6-46). Hence,

Er o) =7 (1) = Pu—k)y () = Dy i—k) (O] + [Py i— k) (1) — Py, (O] + [Py, (1) — 7i (1)] — N 190

> K17 (0 gy 0) + 0y (0 (0) = 77 (012
> 2K (0 (vy, -y ) + 17 (5 (1)) (6-135)

forall 1 <|i| < N*@¢t81 where we used the optimal rigidity (6-3) and (4-18) in going to the second
line. In particular, since for |i| > 2K we have 7¢ (y;k (1) ~ny (yy* g (1)), we conclude that

1
CKN&
BX(ta) = Pit) > —————, 2K <|i| < N4@etd (6-136)

N4|1|4

for all 0 <t < t, and for any « € [0, 1]. This implies the lower bound in (6-124).

In order to prove the upper bound in (6-124) we consider a very similar process Z* (¢, &) (we continue
to denote it by star) where the index shift in y is in the other direction. More precisely, it is defined as a
solution of

- [2 1 1
lefk(l‘,Ot) = NdB(H_K) + |:N Z = O{)—E}k(l‘ @) + cDa(Z)] dr,
j# LT ’

with initial data

Zi(0,0) = ay(i+k)(0) + (1 — ) X; (0),

for any « € [0, 1]. Here (i 4+ K) is defined analogously to (6-125). Then, by similar computations, we
conclude that
1
KN
Ea)—7i() < —5—. 2K <|i| < N*@th, (6-137)
Niaji|#

for all 0 <t <1, and for any « € [0, 1]. Combining (6-136) and (6-137) we conclude (6-124) and complete
the proof of Proposition 6.12. O
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7. Proof of Proposition 3.1: Dyson Brownian motion near the cusp

In this section #; < ¢4, indicating that we are before the cusp formation; we recall that ¢; is defined as
N1

Nz

for a small fixed w; > 0 and ¢, is the time of the formation of the exact cusp. The main result of this

=

section is the following proposition, from which we can quickly prove Proposition 3.1 for #; < t4. If
t1 > t« we conclude Proposition 3.1 using the analogous Proposition 8.1 instead of Proposition 7.1 exactly
in the same way.

Proposition 7.1. For t; < t«, with very high probability we have

(A1) = e, ) = (jiy—in () — ¢, )| < NT376 (7-1)
for some small constant ¢ > 0 and for any j such that |j —i| < N®L.

Note that if 11 = 4« then e:ft* =¢.; =Cr for r = A, u, with ¢, being the exact cusp point of the
scDOSs py, . The proof of Proposition 7.1 will be given at the end of the section after several auxiliary
lemmas.

Proof of Proposition 3.1. Firstly, we recall the definition of the physical cusp

1 _ .
E(e::tl +epp,) it <ty
brs =1 ¢r if 1] = tx,
mr’tl if [1 > [*

of prs, asin (2-5), for r = A, u. Then, using the change of variables x = Ni (x"—byy) forr = A, p,
and the definition of correlation function, for each Lipschitz continuous and compactly supported test
function F, we have

k (N,A) X Lk (N0 x
/R F(x)[N4 pk Na (bk,tl + m) N4 pkt (bﬂstl + E)] dx
N1 3 N
=Nk(k> Z [[EH;]A) F(N4(Ai1_b,l,tl)’-..,N4(kik_bk,tl))—[EHt(iu) Fo—w], (7-2)
{i1,.. ik }C[N]

where Ay,...,An and puy,..., uy are the eigenvalues, labelled in increasing order, of H,(l)L ) and Ht(lu )
respectively. In E H(‘” F(A — p) we also replace by ;, by b, .

In order to apply Proposmon 7.1 we split the sum in the right-hand side of (7-2) into two sums,
/

Z and its complement Z , (7-3)

{i1,eensix JC[NV]
[i1—=ixl,eeslig—in|<N€

where € is a positive exponent with € < wj.
We start with the estimate for the second sum of (7-3). In particular, we will estimate only the term
E H[(IM (+); the estimate for [ Ht(lm (+) will follow in an analogous way.



674 GIORGIO CIPOLLONI, LASZLO ERDOS, TORBEN KRUGER AND DOMINIK SCHRODER

Since the test function F' is compactly supported in some set 2 C R¥ and in Y/ there is at least one
index i; such that |i; —iy| > N€, we have

/
3 3
Z [EHI(I)L) F(N4(ll'1 — bl,ll)’ RN N4()&ik — bl,ll))
— _3
SNUFle 30 Pyoo(lhiy =bayl S CaNTH). (7-4)
itlip—ix|=N€
where Cgq is the diameter of 2. Let
Vi =1 t+eg,
be the classical eigenvalue locations of pj (¢;) defined by (4-10) forall 1 —iy <i < N +1—i,. Then, by
the rigidity estimate from [Erdds et al. 2018, Corollary 2.6], we have
_3 ., —
PHZ(I;\)(MZ'I—EJA,,JﬁCQN 4,|ll—lA|ZNe)§N D (7-5)
for each D > 0 if N is large enough, depending on Cg. Indeed, by rigidity it follows that
Nc€ Nc’;' Nc€
>

Aiy, = bae | = 1vai, = Vai | = 1Ay —vail = 1020 — Vi, | 2 RERRVEIN

(7-6)

with very high probability if N€ < |i; —iy| <¢N for some 0 < ¢ < 1. In (7-6) we used the rigidity from
[Erdés et al. 2018, Corollary 2.6] in the form

NE
Ai —vail = —.
N4

for any & > 0, with very high probability. Note that (7-5) and (7-6) hold for any € = £. If |i; —iy| > €N,
then |y;, — i, | ~ 1 and the bound in (7-6) clearly holds. A similar estimate holds for H t(lu ); hence,
choosing D > k + 1 we conclude that the second sum in (7-3) is negligible.

Next, we consider the first sum in (7-3). For #1 <« we have, by (4-6a), that

1
eF 1, = Bae) = (& =) = 3100y = A | S Mgty (e —11)

Hence, by (7-1), using that

< N~i-etCaor

W=

|[F(x) = FOI < IFllcrllxe — x|,

we conclude that

3 3
Z [[EHt(M F(N*(A; — b)c,tl)s N3G, — b/l,tl)) — [EHI(”) FA— )]

Ltk IV : : Nke
lit=inlseolig—inl < < Ck|lFllet ~eor (7-7)
for some ¢ > 0. Then, using that

N¥(N —k)!
(T) = 1 +Ok(N_1),

we easily conclude the proof of Proposition 3.1. O
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7A. Interpolation. In order to prove Proposition 7.1 we recall a few concepts introduced previously. In
Section 5 we introduced the padding particles x; (¢), y; (¢), for 1 <|i| < N, which are good approximations
of the eigenvalues A (¢), ; (¢) respectively, for 1 < j < N, in the sense of Lemma 5.1. They satisfy a Dyson
Brownian motion equation (5-5), (5-7) mimicking the DBM of genuine eigenvalue processes (5-3), (5-4).
It is more convenient to consider shifted processes where the edge motion is subtracted.

More precisely, for r = x, y and r(t) = x(¢), y(¢), we defined
Fi(0) = ri(t)—ef,, 1=<|i|<N,

r,t’

for all 0 <t < t. In particular, 7(¢) is a solution of

[2 1 1
dFi (t) = /— dB; S N, 1) dr, 7-8
rz() N l+(Nj§fi(t)—fj(l)+ [mr,t(er,t)]) (7-8)
with initial data
71(0) = ri(0) — ¢/, (7-9)

forall 1 <|i| <N.
Next, following a similar idea of [Landon and Yau 2017], we also introduced in (6-14) an interpolation
process between X(¢) and y(¢). For any o € [0, 1] we defined the process Z (¢, «) as the solution of

oy = as (L ! _
dz; (t,a) = \EdB, + (N ; PRI + @a(t)) dr, (7-10)

Zi(0, @) = ax; (0) + (1 — ) yi (0),
foreach 1 <|i| < N. Recall that @, (7) was defined in (6-15) and it is such that ®q(¢) = R[m,, (e;,:,)] and
D(2) = ﬂi[mx,,(e;",)]. Note that Z; (¢, 1) = X;(¢) and Z; (¢,0) = y;(¢) forall 1 <|i| < N and 0 <t < .
We recall the definition of the interpolated quantiles from (5-10) of Section 5:
Vi) :=apxi(t) + (1 —a)py,i(t), a€[0,1], (7-11)

where p,; and py; are the shifted quantiles of px, and p,, respectively, defined in Section 5. In

with initial data

particular,

e =aek, +(1—)ef,, ac0.1].

We denoted the interpolated density, whose quantiles are the y; (¢), by ps (5-12), and its Stieltjes transform
by m;.

Let Z(¢, ) be the short-range approximation of Z (¢, &) defined by (6-97)—(6-99), with exponents w; <
wy K wy K 1 and with initial data Z(0, ) = Z(0, @) and iy = N2+C@1 for some large constant Cy > 0.
In particular, X(z) = Z(¢, 1) and y(¢) = Z(¢, 0). Assuming optimal rigidity in (6-3) for 7; (t) = X; (¢), i (¢),
the following lemma shows that the process 7 and its short-range approximation 7 = X, y stay very close
to each other; i.e., |, —Fi| <N ~37¢ for some small ¢ > 0. This is the analogue of Lemma 3.7 in [Landon
and Yau 2017] and its proof, given in Appendix C, follows similar lines. It assumes the optimal rigidity,
see (7-12) below, which is ensured by [Erd6s et al. 2018, Corollary 2.6]; see Lemma 6.1.
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. 1 ~ - . . . g
Lemma 7.2. Let iy = N2TC91 Assume that Z(t,0) and 2(t, 1) satisfy the optimal rigidity

sup |Z;(1,0) = Pri (D] < Nou{™ (e + Prxi (1), 1< i Six, @ =0,1, (7-12)

0<t<ty
withr = x, y, for any & > 0, with very high probability. Then, for o =0 or o = 1 we have

sup  sup |Z;(¢t, ) —Z; (t, )|
1<|i|<N 0<t<t

~

NéwlNE N@1 N@t NCwlN%wA N%a}ANCwl NCw1
S 3 ( 3 i i + i i ) (7-13)
N2 N>®¢ N3 Neo N3 N8
for any & > 0, with very high probability.
In particular, (7-13) implies that there exists a small fixed universal constant ¢ > 0 such that

sup  sup |5i(f,0l)—3z‘(l,0l)|§N_%_C, =01, (7-14)

1<|i|<N 0=<t=1;
with very high probability.

Remark 7.3. Note the denominator in the first error term in (7-13): the factor N3?¢ is better than N 2®¢
in Lemma 3.7 in [Landon and Yau 2017]; this is because of the natural cusp scaling. The fact that this
power is at least N (1+6)@e wags essential in that paper since this allowed them to transfer the optimal
rigidity from Z to the Z-process for all « € [0, 1]. Optimal rigidity for Z is essential (i) for the heat kernel
bound for the propagator of £, see (6-105)—(6-106), and (ii) for a good £”-norm for the initial condition
in (7-25). With our approach, however, this power in (7-13) is not critical since we have already obtained
an even better, i-dependent rigidity for the Z-process for any o by using the maximum principle; see
Proposition 6.12. We still need (7-13) for the x- and y-processes (i.e., only for « = 0, 1), but only with a
precision below the rigidity scale; therefore the denominator in the first term has only to beat N o1+t

7B. Differentiation. Next, we consider the a-derivative of the process Z(z, o). Let
ui(t) =u;t,a) :=0a%;(t, ), 1=|]i| <N;

then u is a solution of the equation

dou=Lu+0, (7-15)

where ¢©, defined by (6-108)—(6-109), is an error term that is nonzero only for |i| > N®4 and such
that |¢ l-(0)| < N for some large constant C > 0 with very high probability, by (6-110), and the operator
L =B+ YV acting on R2V is defined by (6-106)—(6-107).

In the following by U/* we denote the semigroup associated to (7-15); i.e., by Duhamel’s principle

u(t) = U0, Hu(0) + /tuﬁ(s, @ (s)ds
0
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and U~ (s, s) = Id for all 0 < s < ¢. Furthermore, for each a, b such that lal, |b] < N, by LlaLb we denote
the entries of /%, which can be seen as the solution of (7-15) with initial condition u4(0) = 8,p.
By Proposition 6.3 and Lemma C.1, for any fixed « € [0, 1], it follows that

NCa)1
sup |2 (¢, @) = yi()]| S ——, 1=Ii| <N, (7-16)
0<t<t« N2

NCa)l
sup |Z;(t, ) — i ()| S , 1 <|i]| <, (7-17)
0<t<t« N4

with very high probability. Then, using (7-17), as a consequence of Lemma B.3 we have the following:

Lemma 7.4. There exists a constant C > 0 such that for any 0 < § < Cwy, if 1 <|a| < %N‘""‘f +3 and
|b| > N4@et8 then
sup U5 (s, 1) +UE, (s,1) < NP (7-18)

0<s<t<ts
for any D > O with very high probability.
Furthermore, by Proposition 6.12, for any fixed « € [0, 1], we have

EnN t01

N
sup |2i(t,@) — 7 (1)] S ———, 1<|i| < N*eto (7-19)
0<t<ts N?I|i|Z

for some small fixed §; > 0 and for any & > 0 with very high probability.
Next, we introduce the £” norms

1
p
il = (St el =
i

Following a similar scheme to [Bourgade et al. 2014; Erdés and Yau 2015] with some minor modifications
we will prove the following Sobolev-type inequalities in Appendix D.

Lemma 7.5. For any small ) > 0 there exists ¢y > 0 such that

O (Sr) Y (S ) e

i#jery |l4—J4|2 7 i1 itjer 113 =1j1% 7" i<—1

ST

hold, with p = 8/(2 + 31), for any function ||lu||, < co.

Using the Sobolev inequality in (7-20) and the finite-speed estimate of Lemma 7.4, in Appendix E we
prove the energy estimates for the heat kernel in Lemma 7.6 via a Nash-type argument.

Lemma 7.6. Assume (7-16), (7-17) and (7-19). Let 0 < 84 < %81 and wo € R?N such that |(wo);| <
N=100\wyq ||y for |i| = L* N5, Then, for any small > 0 there exists a constant C > 0 independent of n
and a constant ¢y such that for all 0 < s <1 < t«

. NC7]+3w1 1-3n
U™ (s, )woll2 < ﬁ lwoll1 (7-21)
Crl 2 Z_S
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and
. NCn+ior 2(1-3n)
0. w0l = () (7-22)
cyN 2t
for each p > 1.
Let0 <6, < %84. Define v; = v; (¢, @) to be the solution of
d;v =Ly, v;(0,a)= ui(O,a)l{lilstﬁsv}. (7-23)

Then, by Lemma 7.4 the next result follows.

Lemma 7.7. Let u be the solution of the equation in (7-15) and v defined by (7-23); then we have

sup sup |u;(t) —vi(?)| < N 100 (7-24)

0<t<r |i|<t4
with very high probability.
Proof. By (7-15) and (7-23) have

N N4wg+51; P
0
wi@—vi)= Y UsQ.0u; 0~ Y u§(o,z)uj(0)+/ S U8 (s) ds.
j=—N j=—N4ortsy 0 |jl=Nea

Then, using that £® = 0 for 1 < |i| < N4 and (6-110), the bound in (7-24) follows by Lemma 7.4. [
Proof of Proposition 7.1. We consider only the j =i, case. By Lemma 5.1 and (7-14) we have
|y (1) =€, ) = (i, (1) =€ )] < 1R () = 21| + |21(0) = Pr(E)| + [1(11) = F1 (1)
<|f1(11) = Hr(e)| + N3¢

with very high probability.
Since Z;j(t1,1) = x;(¢1) and Z;(¢t1,0) = p;(t1) for all 1 < |i| < N, by the definition of u; (¢, ), it
follows that

1
)?1(11)—)7101):/0 uy(ty, o) do.

Furthermore, by a high-moment Markov inequality as in (6-45)—(6-46) and Lemma 7.7, we get
1 1
/ |u (1, @) da S N71O0 +/ lv1(t1, @) de.
0 0
Since v; (0) = u; (0)1y);| < y4w,+svy and, by (4-18) and (6-3), for I < |i| < N*@etv we have
|1 (0)] < 1Xi(0) = Px,i (O)] + |7 (0) = Py,i (O)] + [V, (0) — 7y, (0)]
N1 [i[iNZ91 _ N&©
< T 11 < 1 3°
|i|ZNZ N 12 |i|ZNZ
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we conclude that
1
Nes®1
lv©@ls < = (7-25)

N 2

with very high probability. Hence, recalling that 11 = N _%"'"", by (7-22) and Markov’s inequality again,
we get
1 NCn+ior\30-3n)
[T elta = s ol = () Ol
0 aelo,1] 2n
N%w1+gn(zc+3w1—6nC) 1

= (7-26)
NiNTs® NiNz®

with very high probability, for 7 small enough, say 7 < w1 (8C + 12w;)~L. Notice that the constant in
front of the w; in the exponents plays a crucial role: eventually the constant (1 — %)% = % from the

Nash estimate beats the constant % from (7-25). This completes the proof of Proposition 7.1. O

8. Case of 1 > t,: small minimum

In this section we consider the case when the densities px ¢, py,r, hence their interpolation p; as well, have
a small minimum, i.e., #x <t < 2¢,. We deal with the small minimum case in this separate section mainly
for notational reasons: for t. <t < 2t the processes x(¢) and y(¢), and consequently the associated
quantiles and densities, are shifted by m,;, for r = x, y, instead of e;':t. We recall that m,;, defined
in (4-14a), denotes a close approximation of the actual local minimum m, ; near the physical cusp. We
chose to shift x(¢) and y(¢) by the tilde approximation of the minimum instead of the minimum itself
for technical reasons, namely because the z-derivative of m,;, r = x, y, satisfies the convenient relation
in (4-144).

As we explained at the beginning of Section 7, in order to prove universality, i.e., Proposition 3.1 at
time 71 > 74, it is enough to prove the following:

Proposition 8.1. For t; > t«, we have, with very high probability, that
_3_
[(Aj(t1) —mp ) = (jtiy—iy (1) =Wy )| S N 7276 8-1)

for some small constant ¢ > 0 and for any j such that |j —i| < N®'. Here mj ;, and wy ; are the local
minimums of py, ¢, and py, ¢, , respectively.

We introduce the shifted process 7 (t) = X;(t), y; (¢) for t > t«. Let us define
Fi(t):=ri(t) —mpe, 1=<[i[<N, (8-2)

for r = x, y; hence, by (4-14d), the shifted points satisfy the DBM

3 2 1 1 d .
dF; (1) = \/; dB; + N; ROFO dt — (Emr,t) dr. (8-3)
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Furthermore we recall that by ;. ; (#) we denote the quantiles of p,;, with r = x, y, for all £, <t <2t4;i.e.,
);r,i=yr,i_n~1r,ta 1§|i|§N-

By the rigidity estimate of [Erdés et al. 2018, Corollary 2.6], using Lemma 5.1 and the fluctuation
scale estimate in (4-17a) the proof of the following lemma is immediate.

Lemma 8.2. Let 7(t) = x(t), y(t). There exists a fixed small € > 0 such that for each 1 <|i| < eN we have

sup |7 (1) = Pri ()] < NEnP™ (pri (1)) (8-4)

te<t<t;

for any & > 0 with very high probability, where we recall that the behaviour of nf” (e;':, + Vr+i(t)), with
r =Xx,Y, is given by (4-17b).

In order to prove Proposition 8.1, by Lemma 5.1 and (4-14b), it is enough to prove the following:

Proposition 8.3. For t; > t« we have, with very high probability, that
- - 3
|(xi (11) = tery) — (i (01) =ty 1) S NT37° (8-5)
for some small constant ¢ > 0 and for any 1 < |i| < N“1.

The remaining part of this section is devoted to the proof of Proposition 8.3. We start with some
preparatory lemmas. We recall the definition of the interpolated quantiles given in Section 5,

Vi) == apxi(t) + (1 —a)Pyi(?) (8-6)
for all @ € [0, 1] and 7« <t < 2t4, as well as
ﬁlt = O[ﬁlx,t + (1 —a)tﬁy’t

for all @ € [0, 1] and t« <t < 2t«. Furthermore by p; from (5-12) we denote the interpolated density
between pyx s and py ; and by m; its Stieltjes transform.

We now define the process Z; (¢, ) whose initial data are given by the linear interpolation of X (0) and
¥(0). Analogously to the small gap case, we define the function Wy (¢), for t, <t < 21, that represents
the correct shift of the process Z(z,«), in order to compensate the discrepancy of our choice of the
interpolation for p; with respect to the semicircular flow evolution of the density po.

Analogously to the edge case, see (6-5)—(6-11), we define A (¢, o) with the following properties:

h(t,@) = afmy ; (fx,)] + (1 —@)Rmy ¢ @y )] — Rpne (@, +iN 100+ 0N (8-7)
and h(¢,0) = h(¢, 1) = 0. Then, similarly to the edge case, we define
d - d -
Wa (1) := —or— [t (e )] = (=) 2 [my o (M )] = h(t. ). (8-8)
In particular, by our definition of i(¢, ) in (8-7) it follows that Wy (¢) = my V() = mx s and

W, (1) = R, (@,)] + O(N 3T, (8-9)
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Note that the error in (8-9) is somewhat weaker than in the analogous equation (6-16) due to the additional
error in (4-14d) compared with (4-14e).
More precisely, the process Z (¢, «) is defined by

2 1 1
A (o) =/—dBi + |~ - _ W, (t) | dr, 8-10
G0 =y l+|:Nj§Z,-(t,a)—zj(t,oz)+ "‘()} (8-10)
with initial data
Zi(tx, ) 1= aXi (tx) + (1 =) yi (1), (8-11)

forall 1 <|i| < N and for all @ € [0, 1].

We recall that 1 K wy K wg < 1 and that iy = N 3 + Cyw1 with some large constant Cy.

Next, we define the analogues of J; () and Z; ; (¢) for the small minimum by (6-95) and (6-96) using
the definition in (8-6) for the quantiles. Then, for each ¢, <t <t;, we define the short-range approximation
zi(t, ) of Z(t «) by the following SDE:

For |i| > z* we let

5 1 AO 1 45O 1
dzi(t,a) = y/—dB; - - Wy ()| de, (8-12
it @) N l+|: JZ toz)—zj(t oz)+ ; zi(t,oz)—zj(t,oz)+ a( )} ( )

for |i| < N®4
.A (l) ~ +
1 E+m d
a2 (t,a)= ,/ dB;+ [ . + py;’(—y”)dE] dl‘—(—ﬁlm) dr, (8-13)
~ Zi(t,0)=Zj(t, ) Jz,,;0)c Zi(t,0)—E dr
and for N®4 < |i| < %i*
Aa (1) - -+
2 1 E
(o) = |y Bt | Y - PUEAR) 4
N ; l‘ Ol) Z] (l‘ Ol) I i (1) NT= () Z,'(l‘,Ol)—E

1
F Y sraae 0] 61

|J|> I

with initial data
Next, by Lemma C.2, by the optimal rigidity in (8-4) for X(¢) and y(¢), the next lemma follows
immediately.

Lemma 8.4. For o = 0 and o = 1, with very high probability, we have

N& (Net  NCo
— < =
sup  sup |Zi(t,) —Zi(t, )| S v (N3we + N )

1<li|<N te<t<t

(8-16)

forany £ > 0 and C > 0 a large universal constant.
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In order to proceed with the heat-kernel estimates we need an optimal i -dependent rigidity for Z; (¢, o)
for1 <|i| <N 400+8 for some 0 < 8 < Cwy. In particular, analogously to Proposition 6.12 we have:

Proposition 8.5. Fix any o € [0, 1]. There exists a small fixed 0 < §1 < Cwy, for some constant C > 0,

such that
NEN @

1 <t<2t, Ni|i|

1 <|i| < N4@eton, (8-17)

for any & > 0 with very high probability.

Proof. We can adapt the arguments in Section 6 to the case of the small minimum, ¢ > t4, in a
straightforward way. In Section 6, as the main input, we used the precise estimates on the density p;
(4-6b), (4-20), on the quantiles p,; (t) (4-13a), on the quantile gaps (4-18), on the fluctuation scale (4-17a)
and on the Stieltjes transform (4-22a), all formulated for the small gap case, 0 <7 < #4. In the small
minimum case, t > t,, the corresponding estimates are all available in Section 4; see (4-6d), (4-21),
(4-13b), (4-19), (4-17b) and (4-22b), respectively. In fact, the semicircular flow is more regular after the
cusp formation; see, e.g., the better (larger) exponent in the (# — ) error terms when comparing (4-6b)
with (4-6d). This makes handling the small minimum case easier. The most critical part in Section 6 is
the estimate of the forcing term (Proposition 6.7), where the derivative of the density (4-7a) was heavily
used. The main mechanism of this proof is the delicate cancellation between the contributions to S, from
the intervals [yi—n—1, Vi—n] and [yi+n—1, Yi+n]; see (6-83). This cancellation takes place away from
the edge. The proof is divided into two cases: the so-called “edge regime”, where the gap length A is
relatively large, and the “cusp regime”, where A is small or zero. The adaptation of this argument to
the small minimum case, ¢ > t,, will be identical to the proof for the small gap case in the cusp regime.
In this regime the derivative bound (4-7a) is used only in the form |p’| < p~2, which is available in the
small minimum case, ¢t > t«, as well; see (4-8a). This proves Proposition 6.7 for t > t.. The rest of the
argument is identical to the proof in the small minimum case up to obvious notational changes; the details
are left to the reader. O

Let us define u; (¢, &) := 0¢Z; (t, ) for tx <t < 2t,. In particular, u is a solution of the equation
du = Lu+ @ (8-18)

with initial condition u(fx, &) = X(t+) — ¥ (t+) from (8-11). The error term ¢© is defined analogously
to (6-108)—(6-109) but replacing &, and E;r with W, and m;, respectively. Note that this error term is
nonzero only for |i| > N®4 and for any i we have |§l.(0)| < N€ with very high probability, for some large
C > 0. Furthermore, £ = B+ V is defined as in (6-106)—(6-107) replacing e;: ; and Ej‘ by my ; and m;,
respectively. In the following by 2/* we denote the propagator of the operator L.

Let0<§, < %84, with &4 defined in Lemma 7.6. Define v; = v; (¢, @) to be the solution of

a[v = Ev, vV (Z*,Ot) = ul'(l*,a)l{|i|SN4w£+6v}. (8'19)

By the finite speed of propagation estimate in Lemma B.3, similarly to the proof of Lemma 7.7, we
immediately obtain the following:
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Lemma 8.6. Let u be the solution of (8-18) and v defined by (8-19); then we have

sup  sup Ju;(t) —vi ()| < N1 (8-20)

I <t=<2tx 1<|i|<l4
with very high probability.
Collecting all the previous lemmas we conclude this section with the proof of Proposition 8.3.

Proof of Proposition 8.3. We consider only the i = 1 case. By Lemmas 5.1 and 8.4 we have

|(x1(t1) =My ,r ) — (V1(t1) =Wy 0 )| < X1 (21) — X1 (20) |+ [X1(21) — Y1 ()| + [P1(t1) — Y1 (t1)]

< |X1(t1) = D1(t1)| + N%_H.

with very high probability. Since u(z,) = 94z (t, ), using x1(t1) — y1(t1) = fol u(ty,@)da and
Lemma 8.6 it will be sufficient to estimate fol |v1(t1, @)| da. By rigidity from (8-4), we have

3 3 N§
Vi (£, )| = [u; (L, )| = |Ji (t5) — Xi (t5)| < e
1|7|4

forany 1 <|i| < N4@etdv: hence
NE
[v(tx, @)|ls £ —5
4

for any £ > 0 with very high probability.
Finally, using the heat kernel estimate in (7-22) for 24*(0,t) for t« <t < 2t«, we conclude, after a
Markov inequality as in (6-45)—(6-46),

3
N (8-21)

3 4
NaNT15@1

1
/ |v1(t1, )| da <
0
with very high probability. O

Appendix A: Proof of Theorem 2.4

We now briefly outline the changes required for the proof of Theorem 2.4 compared to the proof of
Theorem 2.2. We first note that for 0 <7y <--- <1 < N~2 in distribution (H@, ..., H®)) agrees
with

(H+ 71U, H+ yTiUi + Voo —tUsz, ..., H + JT1Uy + - + Tk — i1 Ug), (A-1)

where Uy, ..., Uy are independent GOE matrices. Next, we claim and prove later by Green’s function
comparison that the time-dependent k-point correlation function of (A-1) asymptotically agrees with the
one of

(H: + ViU, Hy + JTiUs + Voo —11Us, ..., Hy + JTiUL + -+ T — 1 Up), (A-2)
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and thereby also with the one of

(Hi + VetU + J7iUy, Hy + VetU + iU + Yoo —t U, .. .,
H1+\/EU+\/EU1 4o+ Ve —t—1Ur)  (A-3)

for any fixed t < N _%_e, where H ¢+ and H; are constructed as in Section 3 (see (3-3)). Finally, we notice
that the joint eigenvalue distribution of the matrices in (A-3) is precisely given by the joint distribution of

(Ai(ct +11), ..., Ai(ct +11), 1 €[N])

where A; (s) are the eigenvalues evolved according to the DBM

2 1
dx;(s) = \/;dBi +,~§ RSESWE) ds, A:(0) = A; (Hy). (A-4)

The high probability control on the eigenvalues evolved according to (A-4) in Propositions 7.1 and 8.1
allows us to simultaneously compare eigenvalues at different times with those of the Gaussian reference
ensemble automatically.

In order to establish Theorem 2.4 it thus only remains to argue that the k-point functions of (A-1)
and (A-2) are asymptotically equal. For the sake of this argument we consider only the randomness in H

and the condition on the randomness in Uy, ..., Ux. Then the OU-flow
dA! = —L(H - A— JriUy —--— ST =7 1U;) ds + 22 [dBy],

with initial conditions
Hy=H+ JuUy+-+ Ju—1_1U,
for fixed Uy, ..., U; is given by

Hs’ = ﬁs + Ui+ + Ju—1_1U;

ie., we view /11Uy +---+ /17 — 1;_1 U} as an additional expectation matrix. Thus we can appeal to
the standard Green’s function comparison technique already used in Section 3 to compare the k-point
functions of (A-1) and (A-2). Here we can follow the standard resolvent expansion argument from [Erd&s
et al. 2018, equation (116)] and note that the proof therein verbatim also allows us to compare products
of traces of resolvents with differing expectations. Finally we then take the Ey, ... [Ey, expectation to
conclude that not only the conditioned k-point functions of (A-1) and (A-2) asymptotically agree, but
also the k-point functions themselves.

Appendix B: Finite speed of propagation estimate

In this section we prove a finite speed of propagation estimate for the time evolution of the «-derivative of
the short-range dynamics defined in (6-97)—(6-99). It is an adjustment to the analogous proof of Lemma 4.1
in [Landon and Yau 2017]. For concreteness, we present the proof for the propagator {/~, where £ = B+V
is defined in (6-105)—(6-107). The point is that once the dynamics is localised, i.e., the range of the
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interaction term 13 is restricted to a local scale |i — j | < |j+(i)—j—(i)|, with | j+(I)—j—(i)| = N4t =: L,
and the time is also restricted, 0 <t <2t, < N _%"'“”, the propagation cannot go beyond a scale that is
much bigger than the interaction scale. This mechanism is very general and will also be used in a slightly
different (simpler) setup of Lemma 6.5 and Proposition 6.8 where the interaction scale is much bigger
L ~ +/N. We will give the necessary changes for the proof of Lemma 6.5 and Proposition 6.8 at the end
of this section.

Lemma B.1. Ler Z(t) = Z(t, ) be the solution to the short-range dynamics (6-97)—(6-99) with i, =
N%+C*w17 exponents w1 K wy K wq K 1 and propagator L = B +V from (6-105)—(6-107). Let us
assume that

NCa)1
sup [Zi (1) = yi(O)| = ———, 1 =[i] i, (B-1)
0<t<t« N4

where y;(t) are the quantiles from (5-10). Then, there exists a constant C' > 0 such that for any
0<6<Clwy, |a| > LN and |b| < %LN‘S, for any fixed 0 < s < t«, we have

sup L{C’fb(s, 1) +Z/{lfa(s, <N P (B-2)

S<t=<tx

for any D > 0, with very high probability. The same result holds for the short-range dynamics after the
cusp defined in (8-18) for tx <5 < 2t.

Proof of Lemma B.1. For concreteness we assume that 0 < s <t < t,, i.e.,, we are in the small gap
regime. For tx < s <t < 2t4 the proof is analogous using the definition (8-6) for the y; (¢), the definition
of the short-range approximation in (8-12)—(8-15) for the Z; (¢, «) and replacing E;r by m;. With these
adjustments the proof follows in the same way except for (B-25) below, where we have to use the estimates
in (4-22b) instead of (4-22a).

First we consider the s = 0 case; then in Lemma B.3 below we extend the proof for all 0 <s <¢. Let
¥ (x) be an even 1-Lipschitz real function; i.e., ¥ (x) = ¥ (—x), ||¥/|lco < 1 such that

3 3 3 3
LiN3 LiN38
V(x)=|x| for|x|< —, Y/ (x)=0 for|x|>2 —. (B-3)
N4 N4
and
N3
1V Nloo S —5—5—- (B-4)
LaN4§

We consider a solution of the equation
0 f=Lf, 0=t =<ty

with some discrete Dirac delta initial condition f;(0) = &;,, at ps« for any |p«| > N4@¢N 5 For
concreteness, assume px > 0 and set p := N4@N 5 Define

¢ = i (1, a) := VWV ECOToO) g — ) = fi( )it ), v = ., (B-3)
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with some §’ > %8 to be chosen later. Let Z; = Z; (¢, @) and set

F(t)y:=)_ fre?VEmnM =3 "2, (B-6)
i

i
Since

2Y S Bidt =Y Biymi—m)?— Y Bijm,.mj(zz ¢,_2)’

(i,j)€A (i,j)eA j o @i

using It6’s formula, we conclude that

= > B,](m,—m])zdt+2zvlm dr (B-7)
@i,j)eA
-2 Bijmimj(¢l LY )dt (B-8)
(. pea ¢ b
+ ) vmPy (i —p) dGi — 7p) (B-9)
2 vz lca - \2 v 1A —
+ lZmi (ﬁw EZi—vp)"+ NW (Zi —Vp)) dr. (B-10)

Let 71 <, be the first time such that F' > 5 and let 7, be the stopping time such that the estimate (B-1)
holds with ¢ < 1, instead of ¢ < t4; the condition (B-1) then says that 7, = 74 with very high probability.
Define t := 11 A 72 Aty; our goal is to show that T = 74. In the following we assume ¢ < t.

Now we estimate the terms in (B-7)—(B-10) one by one. We start with (B-8). Note that the rigidity
scale N~3+Ce1 iy (B-1) is much smaller than N _%(1_8)"'3“’4, the range of the support of ¥/, which, in
turn, is comparable with |y; —y,| 2 (p/N)% for any i > 2p = 2L N?. Therefore v’/ (2; — ¥p) = 0 unless
i| < LNS. Moreover, if |i| < LN® and (i, j) € A, then | j| < LN®. Hence, the nonzero terms in the sum
in (B-8) have |i|,|j| < N*®¢t3 By (B-1) and Cw; < wy, for such terms we have

. li—jl NCe1  [iN3d
1Zi —Zj| £ — rt+—=-< T (B-11)
Niminglil.|j135 - N T Nd

Note that v|Z; — Z;| < 1. Therefore, by Taylor expanding in the exponent, we have

iz zf ‘ — (S ID VT IV ET T < 2y (3 — ) =9 G — )
) i
and thus

(B-12)

¢J ¢z N(Zi_zj)2 N

where in the last inequality we used that ¥ is Lipschitz continuous. Hence we conclude the estimate
of (B-8) as

A, (i) 3
S+ Zm Z Lo o < N p ), (B-13)

Z B,Jm,mj(zl +—— )

@i,/)eA
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since the number of j’s in the summation is at most
. s . s 4 L3 38
|j4 (@) —j-()| <€*+L]i]* < LN3°. (B-14)

By (B-4) and since [y'(x)| < 1, (B-10) is bounded as follows:

2
< (”_ T )F(t). (B-15)

2
2V_ Ry L”".__
,(NW(Zz ¥p) +NW (Zi Vp)) N NILINS

The next step is to get a bound for (B-9). Since ¥’ (Z; —yp) = 0 unless || < N4@e+s « N®4_ choosing
C > 0 such that (4 + C)wy < wq and using (6-98) we get

] O 1
A1)~ (1)) = \f aB; + Z T R 0] (B-16)

with

G(E+et,) A
Qi(1):= [I o ’”;F@Tg’dE+iR[my,t(e;t>]+a(m[mx,,(yx,p(t)+ej,t)—mx,t O
+(1=a) (Rlmye Py, p () Fe ) —my e (5)]). (B-17)

We insert (B-16) into (B-9) and estimate all three terms separately in the regime |i| < LN 5. For the
stochastic differential, by the definition of 7 < ¢4 and the Burkholder-Davis—Gundy inequality we have

su —v m2y’ (5 — 7,)dB; < N ——/ty sup F(t) SUN*N™3T29  (B-18)
p i 4 \/— p

0<t<rt 0<t<t

for any €’ > 0, with very high probability. In (B-18) we used that 7 < 7, ~ N _%""‘", and that, by the
definition of t, F(¢) is bounded forall 0 <t <.
The contribution of the second term in (B-16) to (B-9) is written, after symmetrisation, as

v V(2 — ?p)miz
(i,j)eA 5=
NeA Z = N i ea 2
Using (B-4) and (B-14), the second sum in (B-19) is bounded by
A, (i)
v 2 Ci=7p) =Y (Ej— Vp) v 2
oy 2 M — a5 2 D WG A )
(i.])EA j—Zi N4L4N4 ; I
UL%
e (B-20)

N3



688 GIORGIO CIPOLLONI, LASZLO ERDOS, TORBEN KRUGER AND DOMINIK SCHRODER

Using ml2 — mj2 = (m; —mj)(m; +m;) and the Schwarz inequality, the first sum in (B-19) is bounded as

follows:
v Z ¥' (i — 7p)(m? _mjz)
N i ea A
S_W 2 Bijlmi—m;)* +— Y VG = 7p) (i +m3). (B-21)
(i,/)EA (, e

The second sum in (B-21), using (B-14), is bounded by

Cu2LN45

Z V(i = Tp) o +m) < = F

(l JIEA

(B-22)

hence we conclude that

1 3
2, m? vLi  v2LN3§
v Z V(g _Vp) < Z Blj(ml_mj)2+c( — + )F, (B-23)
(z,J)eA A 100 (i,j)€A N3 N

Note that the first term on the right-hand side of (B-23) can be incorporated in the first, dissipative term
in (B-7).
To conclude the estimate of (B-9) we write the third term in (B-16) as

n
0= ([ P AR i G0+ 7))
+0l( mx e (Px,p(t) + €x, t) My t(ex D —=NR[my  (Px,p (1) + ey, t) my, l(ey t)])
+ O‘(m[my,t()/x,p(t) + ey,t)] —NR[my ¢ (7p (1) + ey,t)])
+ (1 =a)(R[my, Py, p(1) + e;_,t)] —R[my, (yp () + e;—,t))
=t A1+ A2+ A3+ Ag. (B-24)

Similarly to the estimates in (6-58), for A, we use (4-22a), while for A3, A4 we use (4-7b); then we
use the asymptotic behaviour of y,, yp, by (4-13a) and p = LN 5 to conclude that

L4 N48NC“’1 lo N
| Aa| + |As] + | Aa] < e £ (B-25)
6

We write the A1-term as

Pp(t) —2i (1) N / pyi(E+¢f )
Al = — — E + dE + —— =" dFE. B-26
! /Iy,mc GO - B0 B ETwdET | O (B-20)

Since i < Cp, we have py((E + ¢y, l) < py, t()/cp(t) + ey t) < LiN—3t%8 for any E €T, ;(t); the
second term in (B-26) is bounded by L iN“ 411+ § log N. In the first term in (B-26) we use that

1Zi(t)—E| = |yi(t) = E|=Zi (1) = 7i ()| Z vp (1)
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for E ¢ 7y ; (1), by rigidity (B-1) and by the fact that in the i < Cp regime |y; (t) = Vi+j, ()(D)| 2 Vp () >
N=i1+Co1 gince w; <« wg and = LN® = N4wctor,
We thus conclude that the first term in (B-26) is bounded by

[my s (e;—,t +iyp(1))]
Vp(t)

where we used again the rigidity (B-1). In summary, we have

_1 1. _141g
SPp SLANTATS,

I

516 — T ()]~

|A1] S LFN~3+38 Jog N, (B-27)
In particular (B-24)—(B-27) imply that

Q:= sup sup |Qi(®)|= LiN—atal log N. (B-28)

0<t<t« |j|SLNS
Collecting all the previous estimates using the choice of v from (B-5) with § > %8 and that F is

bounded up to ¢ < 7, we integrate (B-7)—(B-10) from O up to time 0 < ¢ < ¢, and conclude that

sup F(1) = F(0) <

0<t<t

VLNISFer  ypaNer  yoNe
( 3 + 3 + 1 )
2 N4a N2
N%S—Hm N @1 Nw1+%8
S 1 + 1 + 1
LZN2  [2N® L3NV
for large N and with very high probability, where we used the choice of v (B-5) and that w; < @y in the
last line. Since F'(0) = 1, we get that t = ¢, with very high probability, and so

logN <1 (B-29)

sup F(t) <5 (B-30)
0<r<t.
with very high probability.
Furthermore, since p = LN 8§ ifi < %LN 8 choosing §’ = %8 —ep, witheg < %8 , then by Proposition 6.3
we have

li—p| _ N3§
VPG (1)~ Tp) = VIZ(0) — Tpl Z v L 2 o = N
Nilpjs N

with very high probability.

Note that (B-30) implies

fit) < 5e—%vllf(2i ®=7p)
Therefore, if i < %LN § and P« > p, then for each fixed 0 <t <1, we have
uf,, 0.0)<N°P (B-31)

for any D > 0 with very high probability. A similar estimate holds if i and p. are negative or have
opposite sign. This proves the estimate on the first term in (B-2) for any fixed s. The estimate for
L{lf* ;(s,1) is analogous with initial condition f = §;. This proves Lemma B.1. O
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Next, we enhance this result to a bound uniform in 0 < s < t,. We first have:
Lemma B.2. Let u be a solution of

o:u = Lu (B-32)

with nonnegative initial condition u; (0) > 0. Then, for each 0 <t < tx we have
1
2 2 MO =) ui) =) ui(0) (B-33)
1 1 1

with very high probability.

Proof. Since U* is a contraction semigroup the upper bound in (B-33) is trivial. Notice that 9, Yoiui=
>; Viu;. Thus the lower bound will follow once we prove —V; < N 2L~ with very high probability
since t« N L2 is much smaller than 1 by w1 < wy.

The estimate —V; < N2L~2 proceeds similarly to (B-26). Indeed, for 1 < |i| < N4 we use
Pyt (E + e;,:,) < |E|% and that |Z; (t) — E| ~ |yi (t) — E| by rigidity (B-1) and by the fact that

@) =il 1j-() =] 2 N*+ Noei3
is much bigger than the rigidity scale. Therefore, we have

v — / pre(E + ej:t)
l 7, ()¢ (Zi(t)—E)?

‘ D=

</ —dE+/ |)71|% < N% _
Yo [E-pF Jnaoc E=7@)? T T N2 T

=

The estimate of —V; for N4 < |i| < %i « 18 similar. This concludes the proof of Lemma B.2. O
Finally we prove the following version of Lemma B.1 that is uniform in s:

Lemma B.3. Under the same hypotheses of Lemma B.1, for any §' > 0 such that §' < C'wy, with C’ >0
the constant defined in Lemma B.1, |a| < %LNS/ and |b| > LN® we have

sup U5 (s, 1) +UE, (s,1) < NP (B-34)

0<s<t<tx
with very high probability. The same result holds for ty« <s <t <2t as well.
Proof. By the semigroup property for any 0 < s <7 <t and any j we have
Uy (0,1) = Usy (s,1) Uy ; (0, 5). (B-35)

Furthermore, by Lemma B.2 for the dual dynamics we have

L w0 = Y i) = 3 Y WEO.5) ui (0),
J J iJ
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and so, by choosing #(0) = §, we conclude that

Zu,ﬁ}(o,s) 2% forall 0 <s < t,.
J

From the last inequality and since sup,,, Z/{bEj (0, 5) < N~190 with very high probability for any | j| <
%LN & by Lemma B.1, it follows that there exists an j« = j«(s), maybe depending on s, with | j.(s)| >
%LN % such that Z/{lfj* (s)(O, s) > 1/(4N). Furthermore, by the finite-speed propagation estimate in
Lemma B.1 (this time with |a| > %LN’S and |b| < %LNS; note that its proof only used that |a—b| > LN?%),
we have
sup UL 0,0y < N2 forall |ju| = 2LNY
<Ix

with very high probability. Hence we get from (B-35) with j = j«(s) that sup,, Z,{fb (s,t) S NP1
with very high probability. The estimate for ulfa (s, t) follows in a similar way. This concludes the proof
of Lemma B.3. O

Finally, we prove Lemma 6.5 and Proposition 6.8 which are versions of Lemma B.3 but for the
short-range approximation on scale L = N 3+C101 peeded in Section 6C2.

Proof of Lemma 6.5. Choosing L = N %+C1“", the proof of Lemma B.1 is exactly the same except for
the estimate of Q in (B-28), since, for any « € [0, 1], Q;(¢) from (6-41) is now defined as
B 1 1-8 1
0i)="; D St D Tz A+, (B-36)

Yi =V Zi —zj

Jilj—il>L Jili—il>L

with @4 (¢) given in (6-15) instead of (B-17). Then Lemmas B.2 and B.3 follow exactly in the same way.
By (B-36) it easily follows that

0 := sup sup Q)] Slog N. (B-37)

0<t=<t« |j|<LN¥

Hence, by an estimate similar to (B-29), we conclude that

sup F(t)—F(0) <

VILN3SFer  yLiNer  poNe
+ +

0<r<t N3 Ni NZ
3 3
NZS-HD[ N@1 NZ"""I
< — + — + —— logN <1 (B-38)
L2N%  L2N¥ LiN:zN¥
with very high probability. Note that in the last inequality we used that L = N 3+Cron O

Proof of Proposition 6.8. This proof is almost identical to the previous one, except that Q;(¢) is now
defined from (6-52) as

1 1 d 1 1
Qi([)3:,3|:_ Z ﬁ‘i‘q)(t)]"‘(l—ﬂ)[—%*(t)—— Z ﬁ],
Nj:lj—i|>L R dr Nj:lj—i|§L Vi 7Yj

which satisfies the same bound (B-37). The rest of the proof is unchanged. O
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Appendix C: Short-long approximation

In this section we estimate the difference of the solution of the DBM Z(¢, o) and its short-range approx-
imation Z(, o), closely following the proof of Lemma 3.7 in [Landon and Yau 2017] and adapting it
to the more complicated cusp situation. In particular, in Section C1 we estimate |Z(z, ) — Z(¢, )| for
0 <t <ty, i.e., until the formation of an exact cusp; in Section C2, instead, we estimate |Z (¢, @) — Z (¢, )|
for 1, <t <2t4, i.e., after the formation of a small minimum. The precision of this approximation depends
on the rigidity bounds we put as a condition. We consider a two-scale rigidity assumption, a weaker
rigidity valid for all indices and a stronger rigidity valid for 1 < |i| Six =N 3+Cron ; both described by
an exponent.

C1. Short-long approximation: small gap and exact cusp. In this subsection we estimate the difference
of the solution of the DBM Z (¢, o) defined in (6-14) and its short-range approximation Z(z, ) defined
by (6-97)-(6-100) for 0 <t < t,. We formulate Lemma C.1 (for 0 <t < t«) below a bit more generally
than we need in order to indicate the dependence of the approximation precision on these two exponents.
For our actual application in Lemmas 6.9 and 7.2 we use specific exponents.

Lemma C.1. Let 01 < wp K wq < 1. Let 0 < ap < % + Cwy, C > 0 a universal constant and
O0<a<Cwp. Letiy = N%"'C*“’l with Cy defined in Proposition 6.3. We assume that

N4
IZi(t, o) = yi()]| < —5. 1=[i[<N, 0=t <t (C-1)
N34
and
Na
Zi(t, ) = yi()]| < —5, 1=|i| <ix, 051 <ts (C-2)
N3
Then, for any a € [0, 1], we have
sup  sup |Z;(t, @) —Z; (1, )|
1<|i|<N O0=t=<tx
NaNCo1 (| Ni®ilogN N294logN 1 Nao 1
= 3 (Zw 1g + 1g + Tt T+ )(C-3)
Nz Nz NeNa NaNa N%aiE Naj2 Nigs Na
* *

with very high probability.

Proof of Lemma 6.9. Use Lemma C.1 with the choice ag = % + Cw; and a = Cw; for some universal
constant C > 0. The conditions (C-1) and (C-2) are guaranteed by (6-21) and (6-22). O

Proof of Lemma C.1. Let w; := Z; — Z;; hence w is a solution of
0w =Biw+Viw+¢, (C-4)

where the operator 5, is defined for any f € C2V by

. 1 fi—fi
( lf)z —N Z (Zi(t,a)—Ej(l‘,a))(fi(t’a)_21'([»&))‘

J

(C-5)
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The diagonal operator V; is defined by (V1 f); = V1 (i) fi, where

E+¢f
Vi(i) ;:_/ _ Py A ) dE for 0 < |i| < N4, (C-6)
7,10 Eit,a) — E)Zi(t,a) — E)

Vl(z):z—/ — ~ dE for N < |i| < 5ix. (C-7)
7. ;eng- ) Gi(t,0) = E)(Ei(t,a) — E) 2

Finally, V; (i) = 0 for |i| > %i . The vector ¢ in (C-4) collects various error terms.
We define the stopping time

T .= max{t €10,t«]: sup |Zi(s, @) —Zi (s, )| < %min{|IZ,,- ()], |Zy,i (t)]} for all a € [0, 1]}, (C-8)

0<s<t
where we recall that
_3
| Z2,i (D] ~ |Zy,i (1) ~ N™% + 3wy

For 0 <t < T we have V; < 0. Therefore, since

Y (Bf)i =0,

by the symmetry of A, the semigroup of By + V1, denoted by 245111 is a contraction on every £? space.
Hence, since w(0) = 0 by (6-100), we have

t
w(t):/ UBTTVI (s, )¢ (s) ds,
0
and so
lw@)lloo < sup E(s)lloo < N2+ sup [1£(5)lloo- (C-9)

0<s<t o<s<t

Thus, to prove (C-3) it is enough to estimate ||{(s)| oo, for all 0 < s < ts.
The error term ¢ is given by ¢; = 0 for |i| > %i*; then for 1 < |i| < N®4, {; is defined as

AS, (1)

/ Py (E + ¢ ) 1
i = — . d
Iy

e Zit.a)—E E-y + @ (1) = R[my (e )], (C-10)
i@)e i\l -

1
JZ, Zi(t,a)—Z;(t, @)

with ®,(¢) defined in (6-15), and for N®4 < |i| < %i* as

- E -+ l AL;(Z) 1
;:/ PERE) qp Ly S— (C-11)
7. (N7 (c) Zi(t, ) — E N = Lita)—Zi(ta)
1=<|jl<gix

Note that in the sum in (C-11) we do not have the summation over |j| > %i* since if 1 <|i| < %i* and
|j1 > 2y then (i, j) € A
In the following we will often omit the ¢- and the c-arguments from Z; and y; for notational simplicity.
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First, we consider the error term (C-11) for N4 < |i| < %i «. We start with the estimate

AS ()

6] = pe(E +¢) aE_ - 3 1
l I8 (NI (¢ zi— E N Zi—Zj
z,;() J=(8) 1§|j|<%i* J
AS, (1) AS, (1) = =
Z’ /V1+1 pt(E+e )E —7)) dE‘—l—‘i ZI Zj =y
_E _ N 5 55 — 7
1<|]|<4z* v )(Zi j) 1§|j|<%i* (Zi Zj)(zl VJ)
Vig+i E+¢f V—@/9is+1 5 (E +eF Y1 5. (E +¢eF
n / + ,Ot(~ +et)dE‘—|— / Pt(~ +et)dE‘—|— / ;Ot(~ +et)dE’. (C-12)
Vig Zi—E V—(3/4)ix Zi—E 0 Zi—k
Since |jy —i| > N4t +N”‘f|i|% and N®4,ie.,
_ _ Nei|2
[7j —vil = T

is bigger than the rigidity scale (C-2), all terms in the last line of (C-12) are bounded by N~ i3,
Then, using the rigidity estimate in (C-2) for the first and the second term of the right-hand side
of (C-12), we conclude that

AS, (1)

Na
|§z|<F >

1<|]|<4 «

1

AR 4+ N—a3er, (C-13)
i— VY

The sum on the right-hand side of (C-13) is over all the j, negative and positive, but the main contribution
comes from i and j with the same sign, because if i and j have opposite signs then
1 1
———5 = = -
i —v))? ~ (V=i — 7))
Hence, assuming that i is positive (for negative i’s we proceed exactly in the same way), we conclude
that

|Zi|<N—a Ai(f) ;+N_%‘3“’€. (C-14)
- N% 1=j<2i Vi — J7j)2

From now we assume that both i and j are positive. In order to estimate (C-14) we use the explicit
expression of the quantiles from (4-13a), i.e.,

2 3
_ JN\3-1 [ j\*
j ~ A ? ’ ~ ’
() 4 (3) ]
- 3
where A; <17 denotes the length of the small gap of p;, forall |j| <ix ~ N 2A simple calculation
from (4-13a) shows that in the regime i > N“4 and j € A° we may replace |y; — ;| ~ |vy,i (t)—Vy,; (1) ~
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|i% —j%|/N%;hence
a ASW

1
N i2+j2 _1_
Gls = Y SN (C-15)
@ o =])
1§j<il*

In fact, the same replacement works if either i > N 40¢ or j > N4t and at least one of these two
inequalities always holds as (i, j) € A°. Using i < > l* and that by the restriction (i, j) € A€ we have
|j—i| >0+ 14) elementary calculation gives

N(Z
Gl 8 ——— (C-16)
NiN2oe
Since analogous computations hold for i and j both negative, we have
Na
6| S ——— forany N®4 < |i| < 1i, (C-17)
NaN2we

with very high probability.
Next, we proceed with the bound for ¢; for |i| < N®4. From (C-10) we have
AS, (i)

e
l Li0eng@) Zi—E N ~ Zi—Zj
|]|<Zl*
_ . A1)
E+¢f 1 1
+(/ MdE—— Z ~ ~)
Zwe Zi—E N = Zig
|]|>Z*

+ o (t) — N[, (Z; + e?—)] + Nlmy, (Zi + ¢y, t)] NRlmy, t(ey £l

E +¢F E+e
+(/ MM—/ MdE)::A1+A2+A3+A4. (C-18)
.0 Zi—E 7,40 Zi—E

By the remark after (C-15), the estimate of A; proceeds as in (C-15) and so we conclude that

Na
AL S ——— (C-19)
Nz N2oe

To estimate A,, we first notice that the restriction (i, j) € A€ in the summation is superfluous for
. . . _3,.3 _ .
li|<N®4and|j|> %l*. Let n; € [N~3T324 N=3] for some small fixed § > 0, be an auxiliary scale
we will determine later in the proof; then we write A5 as

o, (E s+ o:(E S+
A2=(/ pr( +€t)dE_/ pi( +ef)dE)
¢ Zi—E 7 Zi —E+im

1 1 1 1
+(N Z Ei—§j+in1_ﬁ Z Ei—fj)

17123 17123
1 1 6:(E +¢f
+ (— Z 0 —/ f)t(——i_t) dE)
N ~ ZIi—Zj+im 7-@) Zi — E +1m
|jl<gzix

+ (me(Z; +in) —man (Zi +im,t,a)) =1 Ao g + Aop + Az 3+ Az 4, (C-20)
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696
where we introduced | |
m z,t,a) = — ——, zeH.
2N ) N Z zi(t,a)—z
[7I<N
For 1 <|i| < N® and |j| > 3 l*, the term A > is bounded by the crude rigidity (C-1) as
N7771
|22 < — < : (C-21)
Z (Zi _Z/)z 3
|]|> Ix Lk
Exactly the same estimate holds for A5 ;
Next, using the rigidity estimates in (C-1) and (C-2) we conclude that
1 2 — Vil 1 2 — ¥l
Malsy 2 o ETN X T
N o BE-g+mP N, & E— il
a B ) N 4o 1
< 3 SmN(J/i+IT]1)+—7 Z YRRV
Ninp T TN Vi — 7))
1
3 Na() Na Nao
< + . (C-22)
iZN%

Né (N 4a)A 3
S tTm) +— 132

Ninp \ N3 N#i2 Nip}
Here we used that the rigidity scale near i for 1 < |i| < N4 is much smaller than ; > N~212®4 In
in1) can be bounded by the density p;(y; + n1), which in turn is

particular, we know that Im y (y;
a

bounded by (y; + r)1)%. Similarly we conclude that

|A2,3] < 5
Nan;

Optimising (C-21) and (C-22) for 11, we choose 71 = (iZ N~%)5, which falls into the required
interval for n;. Collecting all estimates for the parts of A, in (C-20), we therefore conclude that
(C-23)

N5 3a N 4o

1

|A2] < -
Ao
iy N3

l*5N4
Next, we treat A3 from (C-18). By (6-16), we have @y (¢) = S)‘t[mt(e;r)] +O(N™1), and so by (4-22a)
we conclude that
| 43| = R, ()] - Sn[ﬁ%(fi + 0]+ Rlmy G + e )] = Rmy (e )]
li]# N18°t | | N #@a N 151 log N N2@a logN
(—1 — + — |log|yil| < — + (C-24)
N%N% N2 N%Ns% N2

Pyt (E + e;_,t) dE)

We proceed writing A4 as
- E _+
p:(E +¢;) dE—/ N
.0 Zi—E
Pyt (E + 2;:,) d
zi— E

A4=(/ —
) Zi—E
E +e¢f
+(/ Mdﬁ'_/
.0 Zi—E 7,:0)  Zi

E) =: A4,1 + A4,2. (C-25)
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We start with the estimate for A4 5. By (6-96) and the comparison estimates between y,; and Py ;
by (4-18) we have
_ A _ . N9 (€3 4 i)
1Z2,i )ALy i (D S Vzi—j i) = Vysi—je )| T V2t ) = Vysi+ir )] S o , (C-26)

N 12

where A is the symmetric difference. In the second inequality of (C-26) we used that |i + j1(i)| S N¥4
and wq < 1. For E € 7, ; AT, ; we have

E+4¢f N2+ |i|2
pra(E+ &) Al |2| ) (C-27)
zi—E 03 +1i|3
and so, using |i| < N®4,
1 1 1 1
Nja)]Nij NjwlewA
|A42| < = (C-28)

N NiNs
with very high probability.

To estimate the integral in A4,; we have to deal with the logarithmic singularity due to the values of E
close to Z; (). For max{e; ¢, ,} < E <0 we have

py.i(E+¢ ) = pi(E +¢) =0. (C-29)
For min{e;, e;,t} < E <max{e,, ey_,t}, using the %—H(’jlder continuity of p; and p,; and (4-6a) we have
+ - -+ 3 y o N
Pyt (E +e5 ) = pr(E+ ) S A7 (tx—1)° v (C-30)
36

for all 0 < ¢ < t4. In the last inequality we used that Ay, ; < Ay g <N —it33e for all # <. Similarly,
for E <min{¢, , ¢j,} we have

Py (E €50 = Pu(E + )] S Loy (B + €)= p(E + )] + A (1 = ). (C-31)
with E’ <0.
Using (4-6b) for £ > 0 and combining (4-6b) with (C-29)—(C-31) for E < 0, we have
(C+[i| )N (2 +]i]2) N1ser 1
NiNt - N2 - N )/I,i(t)n{|E—2,~|>N—60} |Z; — E|
pi(E + &) —pya(E +¢)
/lE—E,-lgN—@

|Aa,1| ( dE

_|_

dE|. (C-32

The two singular integrals in the second line are estimated separately. By the %—Hélder continuity py s
we conclude that

E+e¢t
[P
|E—Z;|<N—60

zi—F
< / ;2 dE S N2
|[E—%|<N—60 |Z; — E|3

/ Py, (E + 2;,) —pye(Zi + 2;;)
|E—Z;|<N—60 Zi—E

£
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The same bound holds for the other singular integral in (C-32) by using the %—Hélder continuity of p;.
Hence, for 1 < |i| < N®4, by (C-32) we have

N34 N 391 og N . N2@41og N . N18©1 log N

A <
44| < NiNe N2 N %

(C-33)

with very high probability.

Collecting all the estimates (C-17), (C-19), (C-23), (C-24), (C-28) and (C-33), and recalling w; <
wy K wyg K 1, we see that (C-19) is the largest term and thus |{| < N—i720c NyCor g5 g < Cw;. Thus,
using (C-9), we conclude that the estimate in (C-3) is satisfied for all 0 <¢ < T. In particular, this means that

N ~ _3
2i(t, ) —Zi(t,a)| < NTatCor  o<i<T,

for some small constant C > 0. We conclude the proof of this lemma by showing that T > .
Suppose by contradiction that 7' < t,; then, since the solution of the DBM have continuous paths (see
Theorem 12.2 of [Erd6s and Yau 2017]), we have

» B Na NCC!)]

Z(T+t)—Zi(T+1, )| < —5——

NiaN2oc
for some tiny 7 >0 and for any « € [0, 1]. This bound is much smaller than the threshold |Z, ; (¢)|, |Z;.; ()| ~
N—3 + 3w in the definition of 7. But this is a contradiction by the maximality in the definition of T;

hence T' = t4, proving (C-3) for all 0 <¢ < t,. This completes the proof of Lemma C.1. O

Proof of Lemma 7.2. The proof of this lemma is very similar to that of Lemma C.1; hence we will only
sketch the proof by indicating the differences. The main difference is that in this lemma we have optimal
i-dependent rigidity for all 1 < |i| < i«. Hence, we can give a better estimate on the first two terms
in (C-12) as follows (recall that N®4 <j < %i*):

|€|<N’3Né“’1 1 _ NENsr P12 +1j12  _ NENS

i~ 3 L~ 3 T~ 1 :
= —‘ —_ ) 2 o] = = . . 2 o= = 3
P P e VR ML Na g, (E=1D2 s NaN=e

Compared with (C-16), the additional N ®¢ factor in the denominator comes from the | j |i factor before-
hand that is due to the optimal dependence of the rigidity on the index. Consequently, using the optimal
rigidity in (6-3), we improve the denominator in the first term on the right-hand side of (C-3) from N2®¢
to N3%¢ with respect Lemma C.1.

Furthermore, by (6-3),

1

Nzm
1

11
SNaT2Cery

N&
|A2.3],|A2.4] <—— and |Az1],]|A222] S
Nm l*j

. . 1 . _s
since iy = N 21TC«@1; hence, choosing 7 = N ™58, we conclude that

NENeer  NE
NiN3oe Nk

All other estimates follow exactly in the same way of the proof of Lemma C.1. This concludes the proof

of Lemma 7.2. O
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C2. Short-long approximation: small minimum. In this subsection we estimate the difference of the
solution of the DBM Z (¢, @) defined by (8-10) and its short-range approximation Z(z, &) defined by (8-12)—
(8-15) for ty <t < 2.

Lemma C.2. Under the same assumption as Section CI and assuming that the rigidity bounds (C-1)
and (C-2) hold for the Z(t, a) dynamics (8-10) for all t« <t < 2t«, we conclude that

NeNCor ( 1 1 N

sup  sup |Zi(f, @) —Zi(f, )| S
1<|i|<N tx<t=<2tx

3 + +
P

1
~3er + 1 ) (C-34)

Nai2  NeN3

1
2,.%
5472

with very high probability, for any o € [0, 1].

Proof. The proof of this lemma is similar to the proof of Section C1, but some estimates for the semicircular
flow are slightly different mainly because in this lemma the Z; (¢, «) are shifted by m, instead of €.
Hence, we will skip some details in this proof, describing carefully only the estimates that are different
with respect to Section C1.

Let w; := Z; — Z;; hence w is a solution of

where B; and V; are defined as in (C-5)—(C-7) substituting Ej‘ by m;.
Without loss of generality we assume that V; <0 for all £, <t < T (see (C-8) in the proof of Section C1

but now we have . <t < 2t in the definition of the stopping time). This implies that /51 ™1 is a
contraction semigroup and so in order to prove (C-34) it is enough to estimate

sup {|€(s) loo-

t«<t<T

At the end, exactly as at the end of the proof of Lemma C.1, by continuity of the paths, we can easily
establish T = 2t for the stopping time.
The error term ¢ is given by ¢; = 0 for |i| > %i*; then ¢; for 1 < |i| < N®4 is defined as
0

Py (E 1y ) 1 1 d _
- ~ - Y-y Wy (1) + iy, C-35
“ Ly,i(t)c Zi—E N Z Zi—Zj + a()+d[my’t ( )

with Wy (1) defined in (8-8), and for N4 < |i| < 1ix as

_ _ AS, (D)
E 1

/ Pt (~ +my) dF — — Z

:0eng@ Zi—E N~

[jl<zZix

1

5%

&= (C-36)

We start to estimate the error term for N4 < |i| < %i «. By a similar computation to the one leading
to (C-17) in Section C1, using (C-2), we conclude that
Na
< — . N®<|i| < Li,. (C-37)
NaN2oc

_ - AC (D)
E 1 1
Pt(~ +mt)dE__ Z L
zi— E N Zi—Zj

ljl<Zix

S| =

/;iz(t)ﬂjz(t)
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Next, we proceed with the bound for ¢; for 1 < |i| < N®4. We rewrite {; as
AS, (D)

0;(E +m 1 1
gi:(/ MdE——§:~ ~)
@) Zi—FE N F Zi—zj

i,z

- d . o
+ m[my,t (i + my,t)] + Emy,t + Yo (1) — sh[mt(zi + mt)]

+ (/ wdE—/ MM) —: (A1 + A2) + A3 + Ag, (C-38)
7.;@) Zi—E Iy, (t) Zi—E

where (A1 + A) indicates that for the actual estimates we split the first line in (C-38) into two terms as
in (C-18). By similar computations to those in Section C1, see (C-19) and (C-23), we conclude that

N4 N3¢ Nao
+ +

|A1] + [A2] £ — —+7T— (C-39)
NiN2ee  N3i5  2ZN3
By (4-14b), (4-14d), (4-22b) and the definition of Wy (¢) in (8-8) it follows that
. - e o N
|A3] < ‘m[my,t(zi + My ) —my (M )] = Rime (M) —mye (Z; + mt)” =+ N
1 1 3 1 7 7
Ni®PANZ®  N3©1  N3@A . N1t N1
< ( 11 + 7+ ] )|10g|)/i O+ — 3 7 - (C-40)
NaNs N3 N2 N 24 N 24

We proceed writing A4 as

5 (B 4r i
Ay = (/ ,Ot(~ +my) dE—/ /0y,t(~ +my ;) dE)
.,0) Zi—E ;) Zi—E

E +w E 4+
+ (/ —py’l(~ + y.0) dE —/ —py’t(~  My.) dE) =: A4+ Agp. (C-41)
7.,0)  Zi—E 1,:0) Zi—E

We start with the estimate for A4 5.
By (4-19) we have

|Z2,i )ALy i (D] 5

NE(@+i]) (C42)
N b

where A is the symmetric difference. Note that this bound is somewhat better than the analogous (C-26)
due to the better bound in (4-19) compared with (4-18). For E € Z, ; (t)AZy ; (t) we have

1 1
E 4+ Nz2(2+i|2
|py,t~( +m;)|§ ( +|13| ) (C-43)
Zi—E 3+ i|2
and so
104
|A4,2] < ; (C-44)
N2

with very high probability.



CUSP UNIVERSALITY FOR RANDOM MATRICES, II 701
To estimate the integral in A4, 1, we combine (4-6d) and (4-14b) to obtain
_ - ~ 7
| (Ms + E)—py s (M + E)| < |pxe(@my s +(1—a)my ¢ + E) —py s (my s + E)|[+ (£ — 1) 2. (C-45)

Proceeding similarly to the estimate of |A4,1| at the end of the proof of Section C1, we conclude that

NEW2 +|i|2) N12@ 1
|A4,1|§( Sl )+ )/ R dE
.

N2 N SON|E—5;|>N—60} |Zi — E|
/ pr(E +mz) — py (E +my )
|E—Z;|<N—60

+ dE|. (C-46)

z;—E

Furthermore, similarly to the estimate in the singular integral in (C-32), but substituting Ej‘ and e;" ; by
m, and m, ; respectively, we conclude that the last term in (C-46) is bounded by N —20, Therefore,

NE@2 +|i N9 NT201
|Aa1] < @+l )+ < — (C-47)
Nz N7 N

for any |i| < N®4. Collecting (C-39), (C-40), (C-44) and (C-47) completes the proof of Lemma C.2. [J

Appendix D: Sobolev-type inequality

The proof of the Sobolev-type inequality in the cusp case is essentially identical to that in the edge case
presented in Appendix B of [Bourgade et al. 2014]; only the exponents need adjustment to the cusp
scaling. We give some details for completeness.

Proof of Lemma 7.5. We will prove only the first inequality in (7-20). The proof for the second one is
exactly the same. We start by proving a continuous version of (7-20) and then we will conclude the proof
by linear interpolation. We claim that for any small 7 there exists a constant ¢, > 0 such that for any real
function f € L?(R4+) we have

+o00 p+o00 2 too
/ / @)= FO)” . dchn(/O |f(x)|1’dx). (D-1)

jxF — yF[2-n

NN

We recall the representation formula for fractional powers of the Laplacian: for any 0 < o < 2 and for
any function f € L?(R) for some p € [1, 0o) we have

2
ol ) =ca [ VT axy 0-2)

with some explicit constant C(«), where |p| := ~/—A.
Since for 0 < x < y we have

y
yi_xi :%/ s ds < C(y —x)(xy) 5,
X
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in order to prove (D-1) it is enough to show that

/+°°/+°° (f(x) = f()?

=y

2

“+o00 >
() dx dy = cn( / If(x)lpdx) , (D-3)

where g := % — §r] and p :=8/(2+ 37). Let f(x) be the symmetric extension of f to the whole real
line; i.e., f(x):= f(x) for x >0 and f(x):= f(—x) for x <0. Then, by a simple calculation we have

/+°° /+°° (f(x)— f(1)? (f(x) = f()?

——|xy|? dxdy.
=y y|2=n

(xy)?dxdy > /

R JR |x —

Introducing ¢ (x) := |x|? and dropping the tilde for f, the estimate in (D-3) would follow from

2
/ [ (fx)—f() YROZII 4 gy drdy = ¢ (/le(x)VJ dx) _ (D-4)

lx — y|?77

SIS

By the same computation as in the proof of Proposition 10.5 in [Bourgade et al. 2014] we conclude that

— 2 2
[ [EEELEE g avay = 11100 + o [ PO
rJr |x—y[*77 R |x[PTT

with some Cy(n) > 0; hence for the proof of (D-4) it is enough to show that

SIS

whlpl o) = o [111)"

Let g := |p|%(1_”)|x|qf; we need to prove that
a1 —L—
lgllz = eqlllxl~1pI 72 g .

By the n-dimensional Hardy-Littlewood—Sobolev inequality in [Stein and Weiss 1958] we have

S C”g”r,
p

N / X~y g(y) dy

where
l—|—m=l+l, O§q<2 and O0<a<n.
r n )4 )4
In our case a = %(1 4+ 1), r =2, n =1 and all the conditions are satisfied if we take 0 < n < 1. This
completes the proof of (D-1).
Next, in order to prove (7-20), we proceed by linear interpolation as in Proposition B.2 in [Erdés and

Yau 2015]. Given u : Z — R, let ¥ : R — R be its linear interpolation; i.e., ¥ (i) := u; fori € Z and

V(x)i=u;i +Wip1 —ui))(x—i) =ujp1 — Ui+1—u;))(i +1—x) (D-5)

for x € [i,i + 1]. It is easy to see that for each p € [2, + 0] (1 e, n < ) there exists a constant Cj, such
that

CoH IV e @ < lullLr@) < Coll¥llLr@)- (D-6)
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In order to prove (7-20) we claim that

/+°°/+°°|w(x) VOIR gy cgy 3 )

S 3 (D-7)
|x4 y4|2" i#jeZ+|z4—]4|2_’l

for some constant ¢, > 0. Indeed, combining (D-6) and (D-7) with (D-1) we conclude (7-20). Finally,
the proof of (D-7) is a simple exercise along the lines of the proof of Proposition B.2 in [Erdés and Yau
2015]. O

Appendix E: Heat-kernel estimates

The proof of the heat kernel estimates relies on the Nash method. In the edge scaling regime a similar
bound was proven in [Bourgade et al. 2014] for a compact interval, extended to a noncompact interval
but with compactly supported initial data wg in [Landon and Yau 2017]. Here we closely follow the latter
proof, adjusted to the cusp regime, where interactions on both sides of the cusp play a role unlike in the
edge regime.

Proof of Lemma 7.6. We start by proving (7-21); then (7-22) follows by (7-21) by duality. Without loss of
generality we assume ||wgl|/; = 1 and that

lw@)|, = N1 (E-1)

for each s < § <t, where w(3) = U* (s, §)wg. Otherwise, by £P-contraction we have ||w(5)|, < N 100
implying (7-21) directly.
In the following we use the convention w := w(§) if there is no confusion. By (7-20), we have

.3 35,
,]>1 14_]4|2 " 1j§—1||l|4_|]|4|2 K
i#] i#j

First we assume that both i and j are positive. Let §4 < 8 < §3 < %8 1. We start with the estimate

DI L ) i
|14— 4|2 n |l4— 4|2 n l%
i,j>1 J (lJ)EA J i>1 j>1
i#] i,j=1
We proceed by writing
(wi_wj)2 < Z (w,-—wj)z n (w,-—wj)z (E-3)
3 3., .~ 3 .3, 3 .3, °
e ltF =T3P0 G péacj=a HE—J3PTT qlpea 1 —JaPRT
i,j>1 ior j<t4N%2 i,j=t*N%2
By Lemma B.3 we have
)2
M < N 200 (E-4)

3 35,7
i ea 13— 73]
i,j>L*N82
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since i > £4N%2 and l(wo);| < N7100 for j > £*N% by our hypotheses. Indeed, for i > £4N%2, we
have

AN
= (U*(s.5)wo); = Z Gwo) = Y. Uf(wo) + NI SN0 (E5)
Jj=—-N j=—L4N%a

with very high probability. If (i, j) € A, i, j > 1 and i or j is smaller than £*N%2 then both i and j are
smaller than ¢4 N %3, Hence, for such i and j, by (7-19), we have
Ne@1]ii — j3|

N1

for any fixed « € [0, 1] and for all 0 <t < t,, where Z; (¢, ) is defined by (6-106)—(6-107).
If i and j are both negative the estimates in (E-2)—(E-6) follow in the same way.
In the remainder of the proof B, B;; and V; are defined as in (6-106)—(6-107). By (E-6) it follows that

5. @) — 2 (1, 0)] < (E-6)

(wi —wj)? (wi —w;)? 1 1y 4c )
P > 3 .gz_ns_N NN S T By (wi —w))
Gyeaij=1 1% —J* (. j)edd,j<—1 1* = ]3] (.)€l
i orj§K4N82 i orjz—€4N82 11
= 2NT2N32HC(y Buw). (E-7)

Furthermore, since 1 < |i| < {*N 83 we have

pay I Nier+Cn 4Dy

>

By the rigidity (7-16), (7-17) and (7-19), we can replace Z; by y; in the sum on the right-hand side
of (E-8) and so approximate it by an integral; then using that p;(E) < py((E) in the cusp regime, i.e.,
|E| < 84, with 84 defined in Definition 4.1, we conclude that

(E-8)

< JE—
3 3 ~ 3 A A .
[ R e A A C

AS, (i) +
1 1 E+e
-y < [ A 224 y;’( y’;) dE = -V;. (E-9)
N = Ei)—Z1) L,y CGit)—E)
Hence, by (E-9), we conclude that
AS (1) 2 AS (1) 2

2 Z 2. Z TN

1<|i|<¢4N?%3 ||l|4 - |J| |2=n

11
5—N‘§N§w1+cn Z w,'ZVi 4 N 200
li|<t4 N33

< NTZN3FOFCN 1y Yoy 4 N 200, (E-10)

1% - |J| |2

Note that in the first inequality of (E-10) we used (E-5).
Summarising (E-4), (E-7) and (E-10) and rewriting N 200 into an £2-norm using (E-1), we obtain

2 -1 yio+C 1 2
lwly < =N"2N31FCNw, Lw) + g5 ]wllp.
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Hence, using Holder inequality, we have

1 1
drllwl2 = (w, Lw) < —c, N2N~391=C|jyy|2

I L(6-3 -1@-3
< —ep N3N T3=Cn )y 26730 72730

< —cyNZN~3917C|jy| 2 oll; E-11)

In the last inequality of (E-11) we used the £!-contraction of Z/~. Integrating (E-11) back in time, it easily
follows that

. NCrH—%an 1-3n

el = () ol (E-12)
cyN2(t—5)

proving (7-21). The same bound also holds for the transpose operator (4*)7.

In order to prove (7-22) we follow Lemma 3.11 of [Landon and Yau 2017]. Let y(i) :=1 (lil<t4N3s}>

with §4 < 85 < %81, and v € B2V, Then, we have
(U0, t)wo, v) = (wo, U")T xv) + (wo, UY)T (1= )v).
By Lemma B.3 we have

(wo, UHT (1= )v)| < N1 wg [l2]lv 1. (E-13)

By (7-21) and the Cauchy—Schwarz inequality we have

LT LT NCm+3en\ 1730
(w0, @) )] < woll | @5 yvll2 < ||wo||2(—l) ol (E-14)
c,,Nzt
Hence, combining (E-13) and (E-14), we conclude that
. NCn+ioi\1-31
[UE (0. Dywolleo < (—) lwoll. (E-15)
cy N2t
and so, by (E-12), that
L L(1 L 1 NCTH-%(DI =3 L 1
42 0.l = |24 0. 30) oo, % (F ) (0. Se o]
c,,Nzt
NCTH-%(OI 2(1-3n)
< (—1) lwoll1, (E-16)
cy N2t

where in the first inequality we used that &/“ (0, 3¢)wq satisfies the hypothesis of Lemma 7.6, since
! (Uﬁ (O, %t)wo)i ‘ < N 7100 for |i | > £4 N 2%4 by the finite-speed estimate of Lemma B.3. Combining (E-15)
and (E-16), inequality (7-22) follows by interpolation. O
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